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Resumo 

 

Nas últimas décadas temos observado um constante crescimento na utilização de imagens de 

sensoriamento remoto para o monitoramento de atividades e fenômenos na Terra, o que permite o 

desenvolvimento de diversas aplicações. Dentre as aplicações existentes, a criação de mapas 

temáticos é uma das mais comuns, pois permite a classificação e análise dos vários objetos que 

compõe uma imagem podendo ser utilizado para muitos fins, tais como: monitoramento, 

planejamento e reconhecimento. Mapas temáticos podem ser construídos de forma manual ou por 

modelos treinados através de aprendizagem supervisionada. Neste tipo de aprendizagem, o sistema 

é treinado para aprender diferentes padrões através da utilização de amostras rotuladas fornecidas 

pelo usuário. Nesse sentido, nesta dissertação, um método de geração de mapas temáticos foi 

desenvolvido para o reconhecimento de colheitas de café visando auxiliar na obtenção de dados 

dessa cultura agrícola. Pois, apesar de sua grande importância na economia do país e de Minas 

Gerais, a obtenção de dados ainda é realizada de forma manual. O método desenvolvido neste 

trabalho baseia-se na combinação de redes neuronais de convolução em múltiplas escalas sendo a 

escolha das redes neuronais para o desenvolvimento deste projeto atribuída ao seu desempenho 

superior aos métodos tradicionais propostos em visão computacional e também por ainda não ser 

amplamente utilizada em tarefas relacionadas à área agrícola. A utilização de uma abordagem 

multi-escala está relacionada à variação do tamanho dos padrões encontrados em imagens de 

satélite e visa tornar o método mais robusto ao permitir que características distintas sejam 

aprendidas em cada uma das escalas e usadas de forma complementar.  

 

Palavras-chave: Sensoriamento remoto, Classificação, Redes neuronais de convolução 

 

 

  



Abstract 

 

In the last decades we have observed a constant growth in the use of remote sensing images for the 

monitoring of activities and phenomena on Earth allowing the development of several applications. 

Among the existing applications, the creation of thematic maps is one of the most common, since 

it allows the classification and analysis of the various objects that composes an image and can be 

used for many purposes, such as: monitoring, planning and recognition. Thematic maps are, 

usually, generated manually or by the use of models trained by supervised learning. In this type of 

learning, the system is trained to learn different patterns by using labeled samples provided by the 

user. In this sense, in this dissertation, a thematic map generation method was developed for the 

recognition of coffee crops in order to obtain data from this crop. For, despite its great importance 

in the country's economy and Minas Gerais, data collection is still performed manually. The method 

developed in this work is based on the combination of convolutional neural networks in multiple 

scales and the choice by neural networks for the development of this project is attributed to the fact 

that its performance is superior to the traditional methods proposed in computer vision and also not 

yet be widely used in tasks related to the agricultural area. The use of a multi-scale approach is 

related to the variation of the size of the patterns found in satellite images and aims to make the 

method more robust by allowing distinct features to be learned at each of the scales and used in a 

complementary way.  

 

Keywords: Remote sensing, Coffee classification, Convolutional neural networks.  
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1 Introduction 

 
In the last decades, we have observed an increasing in the use of remote sensing images to monitor 

activities and phenomena on Earth allowing the development of several applications, such as: urban 

planning, environmental monitoring, [Almeida et al., 2014], [Berger et al., 2013] environmental 

disasters [Dong and Shan, 2013]. This growth is due to the constant evolution in the quality of the 

image sensors and an easier access to this type of image.  

A remote sensing image (RSI) is formed by the responses of interactions between 

electromagnetic energy and the various materials that compose the Earth's surface. These responses 

are obtained by the use of sensors on board satellites or some type of aerial vehicle [Meneses and 

Almeida, 2012].  

Among the diverse applications that can be developed with the use of RSI, the creation of 

thematic maps is one of the most common, since it allows the classification and analysis of the 

various objects that compose an image and can be used for many purposes, such as: monitoring, 

planning and recognition. Thematic maps are images constructed in order to identify the category 

in which each object belongs in the image and these images, usually, are generated by the use of 

models trained by supervised learning that is a process in which the system is trained to learn 

patterns by using samples labeled by the user. In Figure 1.1b, we can see the thematic map 

generated from the spatial information presented in Figure 1.1a. 

                 
                                               (a)                                                                           (b) 
           Figure 1.1: Example of a thematic map using a RSI: (a) a scene taken over Monte Santo de Minas County 
           (State of Minas Gerais, Brazil) and (b) a thematic map that indicates coffee regions (white) and non-coffee 
           (black) 
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The cultivation of coffee is a very important economic activity in Brazil. According to the 

Ministry of Agriculture [Ministério da agricultura, 2017], Brazil is the largest exporter of coffee 

and the second largest consumer of the product being this one of the main export sectors of the 

country. In December 2016, the product accounted for 9.8 % of Brazilian exports. The coffee 

park is estimated to be 2.22 million hectares and is distributed in 15 states and 98.6% of the 

national production are concentrated at Minas Gerais, Espírito Santo, São Paulo, Bahia, 

Rondônia, Paraná, Rio de Janeiro, Goiás and Mato Grosso.  

Thus, in order to maintain the quality and quantity of the product, it is necessary to develop 

efficient and effective techniques for the management of its crops.  

Currently, data on coffee in Brazil is mainly obtained by mean of manual survey applied to 

producers, cooperatives and public agencies [da Silveira et al., 2017]. This procedure makes 

obtaining the data in short time very hard, moreover, it has a high cost [Ippoliti-Ramilo et al., 1999]. 

In this way, the extraction of data by satellite images becomes an efficient way to obtain 

information and allow the development of several approaches for the recognition and classification 

of coffee areas [Souza et al., 2016], [Santos et al., 2010], [Faria et al., 2012], [Faria et al., 2014], 

[Chemura et al., 2016], [Ferreira et al., 2016].  

The identification of coffee areas is not a trivial task. Some intrinsic issues faced in this 

activity are the fact that this product is cultivated in different areas with different climates, reliefs, 

altitudes and latitudes, which allow the production of various types of coffee producing a wide 

variety of patterns. The characteristics of the relief can lead to the occurrence of shadows that 

modifies the encoding of the spectral information obtained by the satellites, reducing or even 

eliminating them [Zhou et al., 2009]. Moreover, the growth of coffee does not occur in a seasonal 

way which allows the existence of plantations of different ages. In addition to the challenges 

provided by the identification of coffee, we have those related to remote sensing images. When 

working with remote sensing images we have to deal with relatively large images and some images 

may have millions of pixels and still contain thousands of time series. These properties may 

interfere with the performance of machine learning algorithms, even those given as state of the art 

(e.g., Neural Networks, Support Vector Machine), because most of the proposed approaches are 

not scalable. Furthermore, high resolution images are usually composed of a large amount of 

objects of different patterns and sizes which makes choosing an ideal scale to deal with such 

differences a very difficult task which also strongly influences the performance of the algorithms. 
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Other factors of great impact are the mixtures of pixels (pixel that contains information of different 

objects, due to low resolution), noises and corrupted bands (hyperspectral images).  

Finally, we have to ensure the e-ciency of the algorithms to handle a large amount of data, 

so that we can use them in real contexts, because some types of data must be analyzed almost in 

real time, such as earthquakes and tsunamis. 

 

1.1  Objective and Contributions  

 

In this work, convolutional neural networks are employed to perform coffee crop mapping. This 

approach is modeled as a supervised learning problem that aims at assigning a label for each pixel 

in the image, which is a process known as semantic segmentation. In other words, the main 

objective of the approach proposed in this work is to recognize coffee crops in remote sensing 

images to generate a thematic map that consists of regions classified as coffee and non-coffee.  

The proposed approach is based on the combination of convolution neural networks (CNN) 

in multiple scales. Neural networks are used for the development of this project for the reason that 

its performance has been superior to the great majority of the traditional methods proposed in the 

most diverse areas, such as iris recognition [Silva et al., 2015], [Luz and Menotti, 2015], vehicles 

[Menotti et al., 2014], and also in previous works for classification of remote sensing images 

[Castelluccio et al., 2015], [Penatti et al., 2015], [Nogueira et al., 2017]. 

The use of a multi-scale approach is related to the variation of the size of the patterns found 

in satellite images and aims to make the method more robust by allowing distinct features to be 

learned at each of the scales and used in a complementary way and, so that the different networks 

are combined a fusion is used at the decision level through majority voting. 
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1.2 Organization of the text  

 

This dissertation was organized as follows: Chapter 2 is a brief explanation of the main background 

concepts required to follow the remainder chapters in this work. Chapter 3 is an overview of the 

current semantic segmentation and multi-scale classification on coffee crops. Chapter 4 presents 

the details of the proposed approaches. Chapter 5 shows the corresponding evaluation protocols 

and experimental results of the proposed methods. We conclude this work in Chapter 6 with some 

remarks and future directions of this research. 
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2 . Background 
 

A thematic map is an image constructed in order to identify the category of objects of the image. 

These images, usually, are generated by the use of models trained by supervised learning that is a 

task in which the system is trained to learn patterns by using samples labeled by the user. In this 

work, the process of creating thematic maps is composed of the following steps: data acquisition, 

features extraction and classification.  

This chapter introduces fundamental concepts about remote sensing and data acquisition in 

Section 2.1 and describes the feature extraction by convolutional neural networks (CNN) 

architecture in Section 2.2.  

 

2.1 Remote sensing  

 

The concept of remote sensing can be defined in a simple and scientific way as: “Remote sensing 

is the science which aims to obtain images from the earth surface through the detection and 

quantitative measurement of the answers of the interaction of electromagnetic radiation with 

terrestrial materials.” [Meneses and Almeida, 2012].  

The electromagnetic radiation can be decomposed into several regions depending on the 

characteristics of the electromagnetic wave, as you can see in Figure 2.1 each region of the 

electromagnetic wave can provide different types of information which allows the development of 

diverse applications [Zhou and Wei, 2016], [Wang et al., 2017], [Yokoya et al., 2014].  

 

               
             Figure 2.1: Eletromagnetic spectrum 
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The reflected or emitted electromagnetic radiation of an object is obtained by a device 

called sensor that can be classified, according to its characteristics, as passive or active. 

A sensor is called passive when it uses an external stimulus to obtain data, which can be an 

energy reflected or emitted by the Earth's surface. Unlike passive sensors, an active sensor produces 

its own energy and uses it to perform data collection on Earth (Figure 2.2). 

                        
Figure 2.2: Example of passive and active sensors. (a) A passive sensor that receives the electromagnetic radiation emitted by the 

sun and reected by the Earth. (b) An active sensor that emits its own signal and receives it back 

 

The output of the data collected from a sensor is usually a digital image obtained from the 

observed region. The digital image (IH×W ) can be dened as a discrete representation of a real 

scene formed by H × W pixels, where H, W is the height and width of the image, respectively. 

Each pixel p is expressed as a vector representing a measure taken from a region. 

An example of digital image of remote sensing covering an urban area is shown in Figure 2.3. 

 
     Figure 2.3: Digital image (a) With zoomed area of the group of pixels in gray values (b) and corresponding digital     

     values 

 

Since each region of the electromagnetic wave can be represented digitally, it is quite 

common for satellite images to be composed of overlays of several digital images that are referred 
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to as band or channel. This overlay of bands originates different types of images, a fairly common 

image type formed by channel overlays are the RGB images which is composed by the overlap of 

the red (R), green (G) and blue (B) band regions. The stacking of many bands also originates the 

multispectral and hyperspectral images where the difference between them consists of the number 

of channels composing the image, multispectral images is usually composed of 3 to 10 wider bands 

whereas hyperspectral images are constituted by hundreds of small bands. 

In this work, the images used are composed of three channels: red, green and a near infrared 

channels. The near-infrared channel was used instead of the blue channel because it helps to 

emphasize the differences between plants. 

 

2.2 Convolutional Neural Networks 

 
2.2.1 Neural networks 

 

The Artificial Neural Network (ANN) is an architecture inspired by biological neural systems, 

more specifically, the brain. As the brain, an artificial neural network is made up of neurons. The 

neurons that compose an artificial neural network (Figure 2.4) simulate the functioning of 

biological neurons, and as these neurons, receive signals (synapses) from other neurons (I.e., x0) 

by the dendrites, these signals (I.e., w0) interact with the receiver neuron (I.e., w0x0) and the sum 

of the interactions (∑ 𝑤!𝑥! 	+ 	b! ) are used to calculate the activation rate of these neuron by an 

activation function f. 

                                              
       Figure 2.4: Example of artificial neuron 
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A neural network is built by the combination of neurons that are grouped together 

originating layers and, the neurons of one layer can only connect to neurons of other layers. In 

Figure 2.5, an example of ANN called Multi-Layer perceptron (MLP) is shown. 

 

                                       
             Figure 2.5: Example of artificial neural network 

 

This ANN is composed of 4 layers known as fully connected layer. In this type of layer, neurons 

of two adjacent layers are completely paired. In the above example, the gray layer represents the 

input, the two green layers are the hidden layers and the last layer (yellow) is the neural network 

output which can be a class score (rank), real value numbers or a target of real value (regression) 

The aim of an artificial neural network is to learn features by adjusting the weights (W) 

values to distinguish data that is not linearly separable. The learning of these features can be 

achieved by supervised learning, which is a technique that uses previously labeled data called 

training data to analyze the performance of the algorithm and adjust it to become more effective.  

During the learning process the training data is used several times as input by the ANN that 

is initialized with random weights. The dot product of each sample (𝑥!) of the training data with 

the ANN weights (𝑤!) will generate predictions (𝑦!) these predictions will be compared to the real 

labels (𝑦!) to measure network error by a function called loss function.  

This function is used as a guide to the learning algorithm that aims to minimize it by 

adjusting the weights of the whole network by a process called backpropagation. All training data 

output layer

hidden layer 2hidden layer 1

input layer
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is sent to the neural network and when all data is used an epoch is completed. At the end of an 

epoch, if the network did not reach an acceptable loss value, the process can be repeated by 

randomly reorganizing the training data and resubmitting it to the neural network. The complete 

process can be seen in Figure 2.6. 

 

 
Figure 2.6: Example of artificial neural network 

 

2.2.2 Loss function  

 
A loss function is used to quantify the quality of any particular set of weights W. A low loss value 

indicates that a W configuration must produce predictions for examples xi consistent with their 

groundtruth labels yi . There are many loss functions, such as: mean squared error (MSE), cross 

entropy, exponential, each with its advantages and limitations. Among them, one of the most 

commonly used loss function is crossentropy, which is dened as: 

 

𝐿(𝑊) = 	− "
#
∑ [𝑦! 	log	𝑦$2 +	(1	 −	𝑦!)log(1	 −	𝑦$2)]													#
!%"                     (2.1) 

 

where N is the number of examples, 𝑦! is the groundtruth and 𝑦$2  is the probability assigned by the 

classifier to a given class. The main advantage of cross-entropy is attributed to its way to penalty 

wrong outputs, that is, outputs that are very wrong are heavily penalized while outputs close to the 

expected class have an error close to 0. The loss function works jointly with the learning algorithm 

and its outputs are used to guide when to stop training. The learning algorithm aims to minimize 

the loss function (L(W)) by updating the weight values (W). 
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2.2.3 Learning algorithm  

 

There are several learning algorithms for training Neural Networks (Gradient Descent, Newton 

Method, Conjunctive Gradient, Quasi Newton, Levenberg Marquardt).  

The Newton Method, Quasi Newton, Levenberg Marquardt are second order methods, 

since they use the exact or approximate Hessian matrix and its inverse, which is a matrix with 

partial second derivatives, that is computationally expensive to calculate, which restricts the use of 

these algorithms for small datasets. The conjugate gradient also uses the Hessian matrix, however, 

it avoids its inverse which reduces computational cost.  

Among these algorithms, the gradient descent (GD) is the most common used since it is a 

first order method that uses information from the gradient vector to calculate the updates that make 

it a fast algorithm and the best choice to handle large amount of data.  

The gradient descent is a way to minimize the loss function 𝐿(𝜃) parameterized by the 

parameters of a model 𝜃 ∈ 	ℝ& 	, the parameters are updated in the opposite direction of the gradient 

of the loss function ∇'𝐿(𝜃)  [Ruder, 2016], the opposite direction is used, because, the gradient 

points in the direction of the highest increase of 𝐿(𝜃)  and the aim is to minimize this function.  

The size of the update step is determined by the learning rate η and an appropriate choice 

of this parameter is a difficult task. A large learning rate can hinder convergence and cause 

fluctuations of the loss function around the minimum or even diverge, while a small leads to slow 

convergence.  

 

To perform the updates, training data is used by the learning algorithm to adjust the weights 

and the way that the data is sent to the learning algorithm can give rise to three variants of the 

gradient descent: 

• Batch gradient descent: It uses all the data to do an update on the network which makes 

the learning process more precise, however, it is very slow.  

																														𝜃 = 	𝜃 − 	𝜂∇'𝐿(𝜃)																																																																										(2.2) 

 

• Stochastic gradient descent (SGD): It updates the network for each training sample xi 

and label yi , this approach makes learning faster, but unstable. 

																																											𝜃 = 	𝜃 − 	𝜂∇'𝐿(𝜃; 𝑥!; 𝑦!)																																																															(2.3) 
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• Mini-batch gradient descent: it is the half term between batch gradient descent and 

stochastic gradient descent. In this approach the update is performed from small portions 

of training examples, called, mini-batches 

																																											𝜃 = 	𝜃 − 	𝜂∇'𝐿(𝜃; 𝑥!:!)*; 𝑦!:!)*)																																																		(2.4) 

 

A common problem encountered by the learning algorithm is to minimize highly non-convex 

error functions. In these functions, there are many suboptimal local minima, and in this type of 

point, there exist dimensions that slope up, slopes down and a plateau with the same error which 

hinders the gradient descent algorithm to find a better point. In these regions, the gradient is close 

to zero in all dimensions that make the gradient descent algorithm to oscillate. To deal with this, a 

method called momentum can be used to help the gradient descent algorithm to follow a relevant 

direction (Figure 2.7).  

 
(a)                                                                     (b) 

 
        Figure 2.7: Example of SGD (a) without momentum (b) with momentum 

 

The idea of momentum is to add a fraction of the previous step to the current update 

vector (Equation 2.5):  

																																											𝒱+ 	= 	𝒱+ + 	𝜂∇'𝐿(𝜃)																																																	 

																																											𝜃 = 	𝜃 −	𝒱+																																																																																				(2.5) 
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This addition is accumulated when the parameters are updated in the right direction and 

reduced when the updates change direction. The use of the momentum makes the convergence 

faster while reducing the oscillation. 
                            

2.2.4 Convolutional Neural Networks Architecture  

 

Convolutional Neural Networks (CNNs), as the MLP, are deep learning architectures typically 

composed of multiple layers that can learn data-driven features and classifiers while adjusting 

learning, in processing time, based on network accuracy.  

Since the layers of an MLP are fully connected, depending on the size of the input and the 

number of layers, there will be so many parameters to train that it will become impractical and 

even if it is not intractable, a large number of parameters can lead to the overfitting, that occurs 

when the architecture memorizes the training data, which makes very hard for the network to 

recognize an unseen sample.  

CNN is an ANN that uses shared weights which drastically reduces the number of 

parameters, computational cost and the overfitting effect. The shared weights use also allows a 

greater number of layers which permit to generate higher level features that are more 

representative. Since the encoding of spatial features in an e-cient and robust way is the key to the 

generation of discriminatory models, the feature learning step, which can be stated as a technique 

that learns a transformation from raw input to a representation which improves separability of the 

class, is a great advantage of CNNs when compared to conventional methods.  

In fact, multiple layers (responsible for encoding spatial resources automatically) learn 

adaptive and specific resource representations in a hierarchical, data-dependent manner. Thus, low-

level descriptors are learned in the early layers of the network and high-level features in the deepest. 

This process learns all viable data information, which creates robust features and classifiers.  

In Figure 2.8, we can see an example of CNN and the common layers found in this 

architecture, that is, pooling, convolution and fully connected layers. The addition of fully-

connected layers is a way to learn nonlinear combinations of high-level features. 

 



 
 

20 

 
Figure 2.8: CNN proposed by [LeCun et al., 1998] 

 

2.2.4.1 Convolutional layer  

 

The convolutional layer is the most important layer of a convolutional neural network. Unlike the 

fully-connected layer, where all neurons in one layer are connected to all neurons in the previous 

layers, the convolutional layers connect each neuron to a local region (filter) of the previous layers. 

Every filter is spatially small and extends through the full depth of the input volume, the 

convolution process is done by sliding each filter across the width and height to compute dot 

products between the filter and the input values. The output of this process is called feature map 

and its size is controlled by three hyperparameters: depth, stride and zero-padding.  

• Depth: controls the number of filters used in the convolution and each filter will learn a 

different feature 

• Stride: determines the size of the filter step. For example, if the stride is 1, the filter will 

move one pixel at a time 

• Zero-padding: it wraps the input volume with zeros helping to control the spatial size of 

the output volume. The spatial size of the output volume can be calculated as follows:  

 
			

																																																							Output,-./01 =	
V	 − 	F	 + 	2P	

S	 + 	1 																																															(2.6) 

 

where V is the volume size, F filter size, S stride applied and P the amount of zeropadding used. 

If the output of Equation 2.6 is not an integer, then, the value of any parameter cannot be used for 

the input.  
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An example of convolution is shown in Figure 2.9. 

 

 
Figure 2.9: Example of convolution 

 
where high values after this operation means that the lter pattern is similar to some region in the 

image (Figure 2.10) 

 
Figure 2.10: Example of pattern recognition 
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2.2.4.2 Pooling layer  

 

A pooling layer is usually inserted after a convolutional layer and the aim of this layer is to reduce 

the dimensionality of each feature map, reducing the number of parameters and computation in the 

network maintaining the most important information and avoiding overfitting. The main concept 

of this layer is that the exact location of a feature is not so important than its rough location in 

relation to other features which ensures a translational invariance. The pooling layer operates by 

sliding a filter along the height and width, applying a nonlinear function. As well as convolutional 

layer, the steps are controlled by the stride and it is also possible to use zero-padding, the most 

common use is a pooling layer with 2x2 size filter and stride 2, which downsamples every depth 

slice of the input by 2, discarding 75% of the activations. As a good practice, pooling layers should 

not contain large filters because large filters can cause destructive effects. There are many functions 

used in the pooling layer, among then, the max pooling is the most common, this function consist 

in to extract the maximum value in each subregion (Figure 2.11). 

 

 
     Figure 2.11: Example of max pooling 
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3.    Related Work 

 

Semantic segmentation A common process used in remote sensing area is the image 

segmentation. This process aims to separate different objects that belong to an image in relation 

to some property, such as texture, pixel values, shape, among others. The segmentation process is 

called semantic segmentation when the image is divided into objects that belong to some 

category (class) with some semantic meaning such as coffee and non-coffee.  

In remote sensing, this is an important process since we are interested in specific objects 

(classes), in this way, a good segmentation algorithm, that is, that does not have a high 

misclassification rate, is essential to help in further analysis. To ensure the quality of a 

segmentation method, evaluations are performed, manually or in an automatic and supervised 

way. In the manual way, a human expert in the area, in which the segmentation method was 

applied, visually analyzes the result of the segmentation, while, in the supervised way, a 

manually segmented image denoted groundtruth is compared with the result of the segmentation 

obtained by the method. In Figure 3.1, we can see an example of a segmented image in two 

different classes: coffee and noncoffee 

 

               
 (a)                                                                                        (b) 

Figure 3.1: Example of semantic segmentation (a) original image and (b) original image classified into coffee (white) and non-

coffee (black) 

 

Over the years, with the increase in the availability and quality of satellite images, many 

works related to semantic segmentation have appeared. In [Slavkovikj et al., 2015] it was 
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proposed an approach that uses a 220-band hyperspectral image as input to a deep learning 

architecture known as convolutional neural network (CNN) to segment a hyperspectral image 

into 16 different classes. In this approach, the features are learned by the use of the spectral pixel 

and its neighbors that are used in order to capture spectral and spatial information at the same 

time.  

In contrast to [Slavkovikj et al., 2015], in [Makantasis et al., 2015], the hyperspectral 

image was first subjected to a dimensionality reduction by an algorithm called PCA [Jolliffe, 

2002] that extracts a reduced image representation maintaining a minimum of 95 % of the initial 

information. This reduced image is then used by a CNN architecture to extract relevant features.  

In [Yao et al., 2016], they created a framework to perform the segmentation task on high-

resolution images, this structure consists of a combination of high-level features, which is a feature 

with a high level of abstraction, learned by stacked discriminative sparse autoencoder and 

supervised feature transferring using labeled tiles. 

 
3.2 Spatial feature extraction  

 

The development of algorithms for spatial extraction information is a hot research topic in the 

remote sensing community [Benediktsson et al., 2013]. It is mainly motivated by the recent 

accessibility of high spatial resolution data provided by new sensor technologies.  

Even though many visual descriptors have been proposed or successfully used for remote 

sensing image processing [Yang and Newsam, 2008; dos Santos et al., 2010; Bouchiha and Besbes, 

2013], some applications demand more specific description techniques. As an example, very 

successful low-level descriptors in computer vision applications do not yield suitable results for 

coffee crop classification, as shown in [dos Santos et al., 2014]. Despite this, higher accuracy rates 

can be obtained by the combination of complementary descriptors that exploits late fusion learning 

techniques. Following this trend, many approaches have been proposed for selection of spatial 

descriptors in order to find suitable algorithms for each application [Faria et al., 2014; Cheriyadat, 

2014; Tokarczyk et al., 2015].  

Cheriyadat [2014] proposed a feature learning strategy based on Sparse Coding, which 

learned features from well-known datasets are used for building detection in larger image sets. 

Faria et al. [2014] proposed a new method for selecting descriptors and pattern classifiers based on 
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rank aggregation approaches. Tokarczyk et al. [2015] proposed a boosting-based approach for the 

selection of low-level features for very-high resolution semantic classification. Tsai and Chen 

[2017] proposed a spectral domain method to extract structural features of row-planted coffee fields 

using the Fourier transform.  

Despite the fact that the use of Neural Network-based approaches for remote sensing image 

classification is not recent [Barsi and Heipke, 2003], its massive use is recently motivated by the 

study on deep learning-based approaches that aims at the development of powerful application-

oriented descriptors.  

Many works have been proposed to learn spatial feature descriptors [Firat et al., 2014; Hung 

et al., 2014; Xie et al., 2014; Zhang et al., 2015]. Firat et al. [2014] proposed a method that 

combines Markov Random Fields with CNNs for object detection and classification in high-

resolution remote sensing images. Hung et al. [2014] applied CNNs to learn features and detect 

invasive weed. In [Xie et al., 2014], the authors presented an approach to learn features from 

Synthetic Aperture Radar (SAR) images. Zhang et al. [2015] proposed a deep feature learning 

strategy that exploits a pre-processing salience filtering. Moreover, new effective hyperspectral 

and spatio-spectral feature descriptors [Romero et al., 2014; Midhun et al., 2014; Chen et al., 2014; 

Tuia et al., 2015] have been developed mainly boosted by the deep learning growth in recently 

years. 

 

3.3 Coffee crop mapping  

 

As mentioned in Chapter 1, the recognition of coffee crops is not a trivial task and this fact is related 

to the great amount of patterns found in this areas. This diversity originates mainly due to 

differences in climates, relief and the fact that the coffee crops is not seasonal, which allows plants 

of different ages within the same crop.  

To deal with the coffee recognition problem, in [Santos et al., 2010], a genetic programming 

(GP) approach was proposed. This approach combines the similarities of descriptors to recognize 

coffee crops. In this approach, the entire image is partitioned into sub-images and for each sub-

image features are extracted by using descriptors. 

Some of these sub-images that belong to different classes (coffee and non-coffee) are used 

as sample, for GP training, which aims to discover similarity functions for each class. These 
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similarity functions are used to classify the test sub-images that are classiffed based on the 

similarities encountered with the training set images. After classification of all sub-images, the 

classes assigned to these are used as seeds that will guide the watershed-based algorithm [Lotufo 

and Falcao, 2002] to segment the image semantically.  

Faria et al. [2012] built a framework for fusion of classifiers using support vector machine 

(SVM) [Hearst et al., 1998], this framework is composed of C classifiers constructed by combining 

a set of learning methods (e.g. Decision Tree, Naive Bayes) with a set of image descriptors (e.g. 

Color Histogram). The performance of each classifier was computed in a validation set V and 

stored in a matrix Mv that can be used to train fusion technique that requires prior training (e.g., 

SVM).  

In addition of [Faria et al., 2012] approach, in [Faria et al., 2014] the authors proposed a 

rank aggregation method to select the most suitable classifiers based on both the diversity and the 

effectiveness performance of classifiers. In [Ferreira et al., 2016], a boosting-based approach was 

proposed that uses different types (i.e., very high spatial and hyperspectral imagery) of data in a 

complementary way to improve the recognition of coffee. For the spatial image, the image is 

segmented and for each segmented region a combination of descriptors is used to generate features, 

whereas in the hyperspectral image only the pixel signature is used. The images are mapped to 

create a feature with both images information to train the boosting that is used to classify the entire 

image.  

A very common problem in remote sensing is the great number of information of different 

shapes and sizes that composes the images, which makes the choice of a suitable scale to extract 

relevant information a very difficult task. To deal with this problem, some approaches use a 

resource called context window that uses the neighborhood around a pixel of some interest class to 

extract features.  

To correctly extract features, the size of the neighborhood must be adjusted to best fit the 

shape of the class. For example, suppose a class of small objects, if a large context window is used, 

this window may contain other objects that are not related to the class of the object. These objects 

may become noise making it di-cult to extract relevant features [Nogueira et al., 2016], however, 

if the object contains shapes larger than the context window, information may become incomplete 

or useless, which justifies the use of a larger window as we can see in the spatial image of IEEE 

GRSS Data Fusion Contest 20141 in Figure 3.2. 
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Figure 3.2: Example of use of dierent sizes context windows. Blue dashed box is a example of large context window meanwhile 

red dashed box is a example of small context window 

 

To avoid both, some methods use a multi-scale approach. In [Nogueira et al., 2015], it was 

proposed a method called Cascade Convolutional Neural Network Model (CCNN), which is a 

hierarchical model composed of three levels that employs the same architecture for each level, 

differentiating only in the classification layer and training data. In this method, an input is sent to 

the first level that can classify the input or not. If an input is not classified, it is subdivided into four 

parts and resized to the size of the input of the first level and sent to the second level that does the 

same process of the first level. If there are still unclassified data these are submitted to the last level 

that will classify the remaining inputs into some class.  

Dos Santos et al. [2013] proposed a method called multiscale classifier (MSC) to classify 

remote sensing images based on the Adabost [Schapire, 1999] algorithm that create a strong 

classifier of weak classifiers. In this approach, the image is segmented on several scales using the 

algorithm from [Guigues and Le Men, 2003] algorithm, each segmentation level is composed of a 

set of regions that are used to calculate features using different types of descriptors. These features 

are used to construct an F(p) classifier that is a linear combination MSC(p) of T weak classiers 

ℎ+(𝑝) each related to a specific scale and feature type.  

The final classifier is constructed at the end of N iterations where, at each iteration, each 

learner creates a weak classiifer that decreases the expected classification error of the combination. 

The error is decreased by using training data where each sample has a weight, which is the same 

for all data at the beginning. At each iteration, the weight of misclassified samples is increased, 

which forces weak learners to focus on hard samples in the next iteration. The algorithm then 

selects the weak classifier which further decreases the error. 

A drawback of the MSC is that the method does not guarantee the representation of all the 

scales in the final result. To solve this problem, the authors proposed a variation called Hierarchical 
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multiscale classifiers (HMSC), which is constructed using a hierarchy that relates each scale of the 

model. The HMSC is constructed by selecting weak classifiers for each scale, starting from highest 

to lowest scales. Each weak learner is trained with only the samples related to the current scale and 

at the end of each step, only the most difficult samples are selected, limiting the training set used 

in the next step. For each scale, the weak learner produces a set 𝐻2 of weak classifiers. The HMSC 

is a combination of the set of weak classifiers 𝑆2(𝑝) selected for each λ scale. 
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4.    Methodology 

 

Our approach for creating thematic maps was based on the notion of context windows proposed in 

[dos Santos et al., 2012] and consists in combining Convolutional Neural Networks (CNNs) that 

work with different scales. The proposed method extracts, at the same time, context windows of 

different sizes of a region that belongs to an image to send, as input, to different CNN scales. Each 

CNN output class probability vectors that are combined to generate only one vector. From this 

vector, the class that has the highest probability is selected as the predicted class. It was projected 

to work with a binary class mapping scenario that contains the classes: coffee and non-coffee. 

Figure 4.1 illustrates an example of the proposed methodology to combine different CNNs in this 

work. 

                         
Figure 4.1: The multiscale CNN structure was designed to receive as input, at the same time, context windows of a very high spatial 

resolution (VHS) image with dierent size relative to the same region. Each classier produces a vector that contains a probability for 

the input to be coee or non-coee that sums 1. The probability vectors are fused by the sum of all vectors generating a single resulting 

vector, the value of the highest probability class in this vector is selected to be the predicted class. 

 

The proposed methodology is composed of four main steps: object representation, learning, fusion 

and prediction (Figure 4.2). 

 
                                                Figure 4.2: Steps of the proposed methodology 
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In the process of object representation, the image was subdivided into several context windows. 

Some context windows are used as input for the CNN to build a data model in the learning step 

that will learn how to extract representative features to distinguish classes. Next, the fusion step 

was used to combine the output of each CNN at the decision level by majority voting, giving rise 

to the multi-scale approach that was used in the last step, to predict coffee crops. 

 

4.1 Object representation  

 

In remote sensing, one of the most common way for classification is at pixel level, which assigns 

each pixel to a class based on their values. As mentioned in Section 2.1, in high resolution images 

there are many objects rich in detail, in this way, the use of only one pixel to represent an object 

belonging to a specific class may not be su-cient to provide relevant information. A common way 

to deal with this problem is to use a context window that is a set of pixels around a central pixel 

that aim to extract different and complementary information as we can see in Figure 4.3.  

 

 

 
                                                                   Figure 4.3: Example of context window use 

 

 

 

 

 

 

 

(a) (b) (c)
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Since all pixels of the image were used, it was allowed overlapping context windows (Figure 4.4). 

 

 
                                                           Figure 4.4: Examples of 3 context window with overlap 

 

Since a context window is designed as an area around a central pixel, when the center pixel 

belongs to some extremity of the image, it may not contain neighbors in some direction. To handle 

such cases, it was decided to padding the image by a mirroring scheme.  

For example, suppose an image of 6 × 6 pixels and we want to use a context windows with 

size 5 × 5 pixels. In this case, without padding it is possible to use only 4 pixels to extract features 

(Figure 4.5). 

 
                                                   Figure 4.5: Example of context window use without padding 
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The padding was done by calculating the size that the image must have to support the use 

of the context window of the desired size (Equation 4.1). This new dimension was then achieved 

by the image by the mirroring of the extremities.  

																																														𝑤𝑖𝑑𝑡ℎ*34 =		𝑤𝑖𝑑𝑡ℎ56& +		 Q
𝑓𝑖𝑙𝑡𝑒𝑟4!&+7

2 V ∗ 2																																					(4.1)		 

ℎ𝑒𝑖𝑔ℎ𝑡*34 =	ℎ𝑒𝑖𝑔ℎ𝑡56& +		 Y
𝑓𝑖𝑙𝑡𝑒𝑟73!87+

2 Z ∗ 2 

 

For the above example, for all pixels to be used, the dimensions of the image should be 

10×10 pixels. This new dimension can be achieved by adding 2 rows and 2 columns on each side 

of the image. The extremities mirroring is created by inverting the column or line positions of the 

original image (Figure 4.6). 

 

 
                                                    Figure 4.6: Example of context window use with padding 

 

To ensure that each context window follows the same distribution, all data (X) was normalized to 

mean 0 and standard deviation 1 𝒩(0,1) and this process was performed by applying the following 

equation in the original image:  

																																																																			𝑋
#59:;6!<3&%	>?	@A

																																																																		(4.2) 

 

where µ, σ is the mean and standard deviation of the training data, respectively. 
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4.2 Learning  

 

It is a great advantage of CNNs when compared to conventional methods, the use of multiple 

layers in a hierarchical manner (Section 2.2.4) to learn extracting representative features to 

recognize unseen data. The features were obtained by combining convolutional layers and 

pooling layers.  

In the convolutional layer, different image patterns called feature maps were extracted by 

the filters, these feature maps were reduced by the pooling layer that preserves the location of the 

relevant features and makes them invariant. As the network becomes deeper, smaller, more 

representative and abstract the features become. The final features generated by CNN are those of 

the last layer that are connected, usually, by a fully connected layer that will learn to relate them. 

The extracted features of a learned model are used to recognize unseen samples related to 

the classes in which the model was trained. Initially, the extracted features are not representative 

enough to correctly recognize unseen samples. In this way, the feature extraction was tuned by a 

training process that is used to adjust the weights of the CNN to make extracted features more 

representative. This process was performed by constructing a training data with N samples that 

are composed of a pair (𝑥! , 𝑦!) where 𝑥! is a context windows and 𝑦! is it label. The constructed 

training data were randomly arranged and were used as input to each CNN separately.  

The CNN error was calculated using a validation data that is a set of unseen samples that 

is used to see the generalization capability of the network. The training process was performed on 

each CNN separately and was maintained until the error rate remains stable with close validation 

and training errors. This process was done because, if the validation error is high while the 

training error is low, this indicates the occurrence of overfitting, i.e., the CNN has memorized the 

training data.  

In this work, several CNNs were proposed, each of them constructed to use a specific 

context window size that was chosen based on the average size of the patterns found in the coffee 

crops. For the datased used in this work, each pixel is equal to 2.5m, so a cropsize of 17 × 17 is 

equivalent to an area of 1806.25𝑚B.  
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In Table 4.1, it is summarized each CNN architecture used in this work and, Figures 4.7 - 

4.16 show each one of the architectures. 

 
Blocks (conv 

+ pool) 
17 x 17 

(1806.25𝑚!) 
25 x 25 

(3906.25𝑚!) 
33 x 33 

(6806.25𝑚!) 
41 x 41 

(10506.25𝑚!) 
49 x 49 

(15006.25𝑚!) 
57 x 57 

(20306.25𝑚!) 
3 x x x    
4   x x x  
5     x x 
6      x 

 

                                                                   Table 4.1: Summary of architectures used 

 

 
Figure 4.7: CNN # 1: architecture with 17 × 17 pixels context windows as input and 3 blocks of convolution and maxpooling 

 

 

Figure 4.8: CNN # 2: architecture with 25 × 25 pixels context windows as input and 3 blocks of convolution and maxpooling 
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Figure 4.9: CNN # 3: architecture with 33 × 33 pixels context windows as input and 3 blocks of convolution and maxpooling 

 

 
Figure 4.10: CNN # 4: architecture with 41 × 41 pixels context windows as input and 3 blocks of convolution and maxpooling  
 

  

Figure 4.11: CNN # 5: architecture with 33 × 33 pixels context windows as input and 4 blocks of convolution and maxpooling 

 



 
 

36 

 
Figure 4.12: CNN # 6: architecture with 41 × 41 pixels context windows as input and 4 blocks of convolution and maxpooling  

 

 
Figure 4.13: CNN # 7: architecture with 49 × 49 pixels context windows as input and 4 blocks of convolution and maxpooling  
 

 

Figure 4.14: CNN # 8: architecture with 49 × 49 pixels context windows as input and 5 blocks of convolution and maxpooling 
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Figure 4.15: CNN # 9: architecture with 57 × 57 pixels context windows as input and 5 blocks of convolution and maxpooling 

 

 
Figure 4.16: CNN # 10: architecture with 57×57 pixels context windows as input and 6 blocks of convolution and maxpooling 

 

The architectures proposed in this work were based in [Nogueira et al., 2015] that also 

proposed an approach to recognize coffee crops. In contrary of [Nogueira et al., 2015] that used 

only one CNN to build a three stage network to deal with the scale problem, in this work, we 

used a combination of several CNNs that extracts different and complementary information at 

distinct scales. Each CNN architecture used in this work was built based on a specific context 

window size. In this way, objects with more complex patterns required large window size. 

Consequently, the large context window size was, more complex the required CNN was, that is, 

more layers, filtering and pooling operations. 
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4.3 Fusion  

 
The fusion was performed by using the last layer (classification layer) output. Given a set of CNNs, 

each CNN provides a probability vector P with length equal the number of classes, the vectors are 

summed generating a resultant vector, within the class with the highest value selected as the class 

of the pixel to be predicted (Figure 4.17). 

 

 
Figure 4.17: Example of CNN combination 

 

4.4 Prediction  

 
Once all CNNs were trained, the scales were used to build the multi-scale approach and the 

thematic map generation process was done by extracting context windows for each selected scale 

in the image to be classified and sent to their respective networks. Each network generates a 

probability vector that contains the probability of the context window belong to some class. The 

probability vectors are combined to generate a resultant vector in which the class with largest 

probability value determines the classification of a pixel of the image. The prediction process is 

shown in Figure 4.18 for a fusion of three CNNs. 
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       Figure 4.18: Example of prediction process. 

 

5. Experimental evaluation  

 
In this section, we present the experiments that were performed to validate our method. We have 

carried out experiments in order to address the following research questions: (1) is multiple scale 

fusion more effective than individual CNNs for semantic segmentation of coffee crops? (2) What 

is the best combination of architectures? (3) Are the proposed methods effective in the coffee crop 

recognition problem when compared to the baselines?  

 

5.1 Setup  

• Evaluation metric: we used the Overall Accuracy and Cohen's Kappa described in Section 

5.1.3. 

• Feature extraction: we used several CNNs to work with different scales to encode spatial 

information about the classes coffee and non-coffee. 

• Training: All CNN were trained using SGD with an initial learning rate 0.001 and 

momentum 0.9, the learning rate is decreased in an exponential way using a decay rate of 

0.1. The training data were shued in each epoch and divided in k mini-batches of 250 

samples and the weights were initialized using xavier [Glorot and Bengio, 2010]. 

• Baselines: We compared the proposed method against two approaches that follows the 

traditional three-main-step strategy: (i) segmentation, (ii) feature extraction and, (iii) 

classification. These approaches, named here as MSC-Boost and HMSC-Boost, described 

in Section 2.1, are based on boosting of classifiers and combine features from multiple 

segmentation scales [dos Santos et al., 2012]. In our experiments, both approaches were 
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implemented to consider features extracted from five segmentation scales. The main 

difference between them is that MSC-Boost consider all regions segmented over the 

segmented scales while HMSC-Boost starts from the coarse regions and use the other scales 

in sequence as refinement steps. We have used the same engineered features of the original 

paper dos Santos et al. [2012]. For a better comparison, we also included results with a 

SVM [Hearst et al., 1998] with radial basis function (RBF) [Broomhead and Lowe, 1988] 

and the best engineered descriptor in the best segmentation scale as reported in [dos Santos 

et al., 2012].  

•  Implementation details: The proposed approach was implemented by using the Tensorow 

[Abadi et al., 2016] framework. This framework is more suitable due to its support to 

parallel programming using CUDA, a NVIDIA parallel programming based on graphics 

processing units. The complete set of experiments was performed on a 64 bits Intel i7 

4960X machine with 3.6GHz of clock and 64GB of RAM memory. We used the following 

GPUs: a GeForce GTX770 with 4GB of internal memory and a GeForce GTX Titan X with 

12GB of memory, both under a 7.5 CUDA version. Ubuntu version 14.04.3 LTS was used 

as operating system. The CNNs and their parameters were adjusted by considering a full 

set of experiments based on [Nogueira et al., 2015].  

 

5.1.1 Dataset  

 
The dataset used in this work is a composition of scenes taken by using the Satellite Pour 

l'Observation de la Terre (SPOT) 5, which offers a higher resolution of 2.5 to 5 meters in 

panchromatic mode in 2005 over Monte Santo de Minas county, State of Minas Gerais, Brazil. The 

images were obtained through collaboration with the researcher in agriculture from the Núcleo 

Interdisciplinar de Planejamento Energético da Unicamp (NIPE), Dr. Rubens Lamparelli, who 

maintains direct contact with the Cooperativa de Cafeicultores de Guaxupé (Cooxupé).  

The area covered by the image is a traditional place of coffee crops, characterized by its 

mountainous terrain. In addition to common issues in the area of pattern recognition in remote 

sensing images, these factors add further problems that must be taken into account. In mountainous 

areas, spectral patterns tend to be affected by the topographical differences and by interferences 
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generated by shadows. This dataset provides an ideal environment for multi-scale analysis, since 

the variations in topography require the cultivation of coffee in different crop sizes. 

Another problem is that coffee is not an annual crop. This means that, in the same area, 

there are crops of different ages. In terms of classification, we have several completely different 

patterns representing the same class while some of these patterns are much closer to other classes 

(Figure 5.1). 

 

         
(a) Non-coffee                                   (b)   Original image                                  (c)     Coffee 

                   Figure 5.1: Intravariance class in dataset                              
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The dimensions of the image used are 3000 × 3000 pixels and to allow the comparison with the 

baselines, the dataset was divided into a grid of 3 × 3, generating 9 subimages with dimensions 

equal to 1000 × 1000 pixels (Figure 5.2). 

 

 
Figure 5.2: (a) Original image (b) Original image divided into sub-images of the same size. (c) Example of subimage 
and a train sample (d) Train sample 𝑥" 	and its groundtruth 𝑦"  
 

In Figures 5.3 and 5.4 are show each image and its groundtruth, respectively.  

 

        
        (a)  7_5                                                 (b)  7_6                                                  (c)  7_7 
 

(a) (b) (c)

Context window

Pixel to classify

(d)

Pixel correct class
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        (d)  8_5                                                 (e)  8_6                                                  (f)  8_7 
 

       
       (g)  9_5                                                 (h)  9_6                                                  (i)  9_7 
 

                                                        Figures 5.3: Subimages of the original images 
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         (a)  7_5                                                 (b)  7_6                                                  (c)  7_7 
 

       
      (d)  8_5                                                 (e)  8_6                                                  (f)  8_7 

 

       
                 (g)  9_5                                                 (h)  9_6                                                  (i)  9_7 
 
                                      Figures 5.4: Subimages groundtruth of the original images 
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The informations about the class distribution in each subimage are shown in Table 5.1. 

 
Image Subimage 1 Subimage 2 Subimage 3 Subimage 4 Subimage 5 

Coffee 32,71% 26,52% 14,61% 29,57% 38,66% 

Non-Coffee 67,29% 73,48% 85,39% 70,43% 61,34% 

 
Image Subimage 6 Subimage 7 Subimage 8 Subimage 9 Original Image 

Coffee 25,98% 23,06% 42,44% 35,49% 29,89% 

Non-Coffee 74,02% 76,94% 57,56% 64,51% 70,11% 

 

         Table 5.1: Class distribution for each subimage 

 

In the experiments, we used 9 different sets of 1 million pixels each to be used for training 

and classification (prediction step). The results of the experiments described in the following 

sections are obtained from all combinations (Table 5.15) of the 9 subimages used (6 for training 

and 3 for classification). 

 
Instance Train Test 

1 8_5 9_6 7_7 7_6 7_5 8_7 8_6 9_7 9_5 

2 8_7 9_7 7_7 9_6 8_6 8_5 7_6 7_5 9_5 

3 8_7 9_6 7_5 8_5 9_5 7_6 9_7 7_7 8_6 

4 9_6 9_7 7_5 7_7 8_5 7_6 9_5 8_6 8_7 

5 8_7 8_5 9_5 7_5 7_7 8_6 7_6 9_6 9_7 

6 7_5 8_7 9_5 8_5 9_6 7_7 8_6 7_6 9_7 

7 8_6 8_7 9_7 8_5 7_6 7_5 9_5 7_7 9_6 

8 9_7 7_7 8_5 7_6 7_5 9_5 8_6 8_7 9_6 

9 8_7 9_5 8_5 7_5 7_7 9_7 8_6 9_6 7_6 

10 7_5 8_7 9_6 8_5 8_6 9_5 9_7 7_7 7_6 

 
                Table 5.2: Instances used to evaluate the proposed approach 
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5.1.2 Evaluated architectures  

 
To construct the proposed approach, several fusions of different CNN architectures were evaluated 

and each architecture was constructed with respect to a context window size. In this work, were 

used context windows of sizes 17, 25, 33, 41, 49 and 57 pixels. Context windows with size 17 

resulted in a poor classification, while sizes greater than 41 did not offered significant improvement 

and still made training slower. 

 

       
      (a) Cropsize 17 (Kappa 0.7168)          (b) Cropsize 41 (Kappa 0.7435)           (c) Cropsize 57 (Kappa 0.7388) 

Figure 5.5: Comparative of small, medium and large cropsizes, where black, white, red, green are true negative 
(TN), true positive (TP), false positive (FP) and false negative (FN), respectively. 
 

5.1.3 Assessment of results  

 
To analyze the results, we computed the overall accuracy and kappa index by using a confusion 

matrix for each test image.  

A confusion matrix is a widely used table in supervised learning that allows an easy analysis 

of the performance of the algorithm in relation to the prediction results and the expected result. 

Each column represents the instances in a predicted class while each row represents the instances 

in an actual class. An example of confusion matrix with 2 classes can be seen in Table 5.3 
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True label 
 

Predicted Label 

N =100 Non-coffee Coffee Total 

Non-coffee 2 (TN) 18 (FP) 20 

Coffee 5 (FN) 75 (TP) 80 

Total 7 93 100 
 

      Table 5.3: Example of consuon matrix with 2 classes 
 

Each position in confusion matrix has a definition and is related with the current class and 

the predicted class:  

• TN - True negative - the classifier predicted no coffee and the current class is no coffee 

• FN - False negative - the classifier predicted no coffee, but, the current class is coffee 

• TP - True positive - the classifier predicted coffee and the current class is coffee 

• FP - False positive - the classifier predicted coffee, but, the current class is no coffee 

The overall accuracy is defined as the sum of true positive and true negative samples divided 

by the total number of samples (Equation 5.1).  

 

																																																		𝑂𝐴 = 	
	(T	P	 + 	T	N)	

(T	P	 + 	T	N	 + 	F	P	 + 	F	N)																																																	(5.1) 

 

Kappa index is an effective index which compares the accuracy of a trained classifier with the 

accuracy of a random classifier, commonly used in the RSI classification [dos Santos et al., 2012]. 

Experiments in different areas show that Kappa can have several interpretations and these 

guidelines could be different depending on the application. However, Landis and Koch [1977] 

characterize Kappa values above 0.80 as “almost perfect agreement”, 0.60 to 0.79 as a “substantial 

agreement”, 0.40 to 0.59 as a “moderate agreement” and below 0.40 as “poor agreement”. Negative 

Kappa index means that there is no agreement between classified data and verification data (Table 

5.4). 
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Kappa Index Agreement 

< 0 Less than chance agreement 

0 - 0.39  Poor agreement 

0.40 - 0.59  Poor agreement 

0.60 - 0.79 Substantial agreement 

0.80 - 0.99 Almost perfect agreement 

 
                                                             Table 5.4: Kappa index interpretation 
 

The Kappa index (Equation 5.2) is used jointly with overall accuracy (OA), because OA 

measures the total agreement of all predictions that make this metric less robust to handle 

unbalanced datasets, since OA can hide poor performance from a classifier in some minority class. 

In the example of coffee in Table 5.3, we have an unbalanced dataset where the coffee class is 

equivalent to four times the non-coffee class. In this example, the non-coffee class was not well 

classified, but the classifier still had high precision (0.77). Meanwhile, the kappa metric has 

penalized this case of unbalance resulting in a poor result (0.04) for the algorithm.  

 

																																																							kappa	 = 	
𝑂𝐴 −	𝑟𝑎𝑛𝑑𝑜𝑚CDD

1 −	𝑟𝑎𝑛𝑑𝑜𝑚CDD
																																																								(5.2) 

where the randomACC is defined as: 

 

					𝑟𝑎𝑛𝑑𝑜𝑚CDD =	
	(T	N	 + 	F	P) 	× 	(T	N	 + 	F	N) 	+	(F	N	 + 	T	P) 	× 	(F	P	 + 	T	P)	

	(T	P	 + 	T	P	 + 	F	N	 + 	F	P)	B 												(5.3) 

 

 

 

 

 

 

 

 

 



 
 

49 

5.2 Results and discussion  

 
5.2.1 Multiple × Individual Scales  

 

In this section, we compared the classification results obtained by using individual scales 

represented by all CNN architectures (CNN #1 to CNN #10 ) against the combination of scales by 

using the proposed fusion scheme. Table 5.15 presents the classification results. 

 
Instance #1 

Train images 8_5, 9_6, 7_7, 7_6, 7_5, 8_7 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,865 0,717  0,868 0,723  0,868 0,709  0,874 0,736  0,871 0,729 
9_7 0,870 0,709  0,873 0,715  0,870 0,719  0,876 0,723  0,870 0,709 
9_5 0,919 0,769  0,918 0,764  0,919 0,755  0,928 0,795  0,918 0,768 

Mean 0,885 0,732  0,886 0,734  0,886 0,728  0,892 0,751  0,886 0,735 
Std 0,030 0,032  0,027 0,026  0,028 0,024  0,031 0,039  0,028 0,030 

 41x41 
(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,877 0,744  0,853 0,701  0,872 0,730  0,875 0,739  0,868 0,725 
9_7 0,880 0,732  0,868 0,710  0,868 0,704  0,877 0,723  0,867 0,702 
9_5 0,931 0,804  0,912 0,763  0,925 0,784  0,925 0,787  0,922 0,780 

Mean 0,896 0,760  0,877 0,725  0,888 0,739  0,892 0,749  0,886 0,735 
Std 0,030 0,039  0,030 0,034  0,032 0,041  0,028 0,033  0,031 0,040 

 
                                               Table 5.5: Results of instance # 1 for all architectures 
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Instance #2 
Train images 8_7, 9_7, 7_7, 9_6, 8_6, 8_5 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
7_6 0,910    0,773  0,910 0,776  0,886 0,728  0,907 0,773  0,911 0,780 
7_5 0,836  0,622  0,838 0,632  0,818 0,607  0,840 0,638  0,845 0,649 
9_5 0,915  0,762  0,925 0,792  0,895 0,729  0,931 0,809  0,928 0,801 
Mean 0,887  0,719  0,891 0,733  0,866  0,688  0,893  0,740  0,895  0,743 
Std 0,044  0,084  0,046  0,088  0,042  0,070  0,047  0,090  0,044  0,082 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
7_6 0,921  0,802  0,912  0,784  0,918  0,793  0,918  0,793  0,916  0,791 
7_6 0,848  0,653  0,849  0,653  0,842  0,632  0,850  0,656  0,852  0,663 
9_5 0,938  0,825  0,935  0,819  0,939  0,824  0,938  0,824  0,937  0,822 
Mean 0,902  0,760  0,899  0,752  0,900  0,749  0,902  0,758  0,902  0,759 
Std 0,047  0,094  0,045  0,087  0,051  0,103  0,046  0,089  0,044 0,084 

 
                                                Table 5.6: Results of instance # 2 for all architectures 
 

Instance #3 
Train images 8_7, 9_6, 7_5, 8_5, 9_5, 7_6 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,843  0,704  0,874  0,722  0,869  0,709  0,869  0,720  0,869  0,710 
9_7 0,858  0,725  0,932  0,739  0,942  0,777  0,942  0,780  0,936  0,755 
9_5 0,854  0,710  0,861  0,712  0,871  0,730  0,871  0,734  0,867  0,725 
Mean 0,852  0,713  0,889  0,724  0,894  0,739  0,894  0,744  0,891  0,730 
Std 0,008  0,011  0,038  0,014  0,041  0,035  0,041  0,031  0,039  0,023 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,879  0,730  0,867  0,708  0,872  0,715  0,873  0,716  0,871  0,712 
9_7 0,947  0,792  0,934  0,754  0,947  0,794  0,947  0,789  0,948  0,792 
9_5 0,878  0,745  0,861  0,715  0,879  0,748  0,881  0,752  0,873  0,736 
Mean 0,901  0,755  0,887  0,726  0,899  0,752  0,901  0,752  0,897  0,747 
Std 0,040  0,032  0,041  0,025  0,041  0,040  0,041  0,037  0,044  0,041 

 
                                                 Table 5.7: Results of instance # 3 for all architectures 
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Instance #4 
Train images 9_6, 9_7, 7_5, 7_7, 8_5, 7_6 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_5 0,919  0,767  0,920  0,770  0,912  0,760  0,929  0,804  0,919  0,778 
8_6 0,854  0,691  0,851  0,686  0,845  0,680  0,855  0,701  0,852  0,686 
8_7 0,901  0,734  0,891  0,710  0,882  0,701  0,896  0,735  0,870  0,717 

Mean 0,891  0,730  0,888  0,722  0,880  0,714  0,893  0,747  0,880  0,727 
Std 0,034  0,038  0,035  0,044  0,034  0,041  0,037  0,053  0,035  0,047 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_5 0,931  0,809  0,924  0,793  0,928  0,797  0,930  0,806  0,930  0,805 
8_6 0,860  0,710  0,842  0,676  0,857  0,703  0,861  0,713  0,854  0,697 
8_7 0,902  0,746  0,891  0,725  0,899  0,739  0,905  0,756  0,904  0,752 

Mean 0,898  0,755  0,886  0,731  0,894  0,747  0,898  0,758  0,896  0,751 
Std 0,036  0,050  0,042  0,058  0,036  0,048  0,035  0,047  0,038  0,054 

 
                                                 Table 5.8: Results of instance # 4 for all architectures 
 

Instance #5 
Train images 8_7, 8_5, 9_5, 7_5, 7_7, 8_6 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
7_6 0,911  0,778  0,923  0,805  0,925  0,807  0,923  0,805  0,906  0,769 
9_6 0,817  0,630    0,823  0,636  0,836  0,660  0,829  0,649  0,815  0,624 
9_7 0,864  0,700  0,870  0,712  0,867  0,699  0,869  0,710  0,860  0,695 

Mean 0,864  0,703  0,872  0,718  0,876  0,722  0,873  0,721  0,860  0,696 
Std 0,047  0,074  0,050  0,084  0,045  0,076  0,047  0,079  0,045  0,073 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
7_6 0,927  0,815  0,925  0,811  0,923  0,808  0,926  0,812  0,928  0,816 
9_6 0,838  0,669  0,827  0,645  0,829  0,652  0,836  0,664  0,831  0,653 
9_7 0,877  0,728  0,859  0,687  0,870  0,712  0,874  0,719  0,873  0,717 

Mean 0,881  0,737  0,871  0,714  0,874  0,724  0,879  0,732  0,877  0,728 
Std 0,045  0,073    0,050  0,086  0,047  0,079  0,045  0,075  0,049  0,082 

 
                                                 Table 5.9: Results of instance # 5 for all architectures 
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Instance #6 
Train images 7_5, 8_7, 9_5, 8_5, 9_6, 7_7 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,854  0,693  0,872  0,734  0,873  0,735  0,877  0,743  0,865  0,720 
7_6 0,904  0,753  0,911  0,777  0,914  0,782  0,914  0,786  0,903  0,762 
9_7 0,875  0,718  0,875  0,724  0,875  0,719  0,876  0,725  0,865  0,704 

Mean 0,878  0,721  0,886  0,745  0,887  0,745  0,889  0,751  0,878  0,729 
Std 0,025  0,030  0,021  0,028  0,023  0,032  0,022  0,031  0,022  0,030 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,880  0,750  0,876  0,743  0,876  0,740  0,878  0,745  0,879  0,747 
7_6 0,920  0,799  0,908  0,772  0,917  0,790  0,919  0,795  0,919  0,794 
9_7 0,880  0,734  0,863  0,699  0,871  0,711  0,874  0,716  0,878  0,726 

Mean 0,893  0,761  0,882  0,738  0,888  0,747  0,890  0,752  0,892  0,756 
Std 0,023  0,034  0,023  0,037  0,025  0,040  0,025  0,040  0,023  0,035 

 
                                                 Table 5.10: Results of instance # 6 for all architectures 
 

Instance #7 
Train images 8_6, 8_7, 9_7, 8_5, 7_6, 7_5 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_5 0,905  0,734  0,907  0,743  0,908  0,748  0,916  0,769  0,910  0,758 
7_7 0,935  0,751  0,944  0,784  0,937  0,761  0,945  0,792  0,929  0,741 
9_6 0,804  0,600  0,812  0,614  0,810  0,614  0,812  0,618  0,804  0,605 

Mean 0,881  0,695  0,888  0,714  0,885  0,707  0,891  0,726  0,881  0,701 
Std 0,068  0,083  0,068  0,089  0,067  0,081  0,070  0,095  0,067  0,084 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_5 0,918  0,781  0,916  0,769  0,917  0,773  0,922  0,784  0,917  0,772 
7_7 0,944  0,788  0,944  0,790  0,936  0,759  0,943  0,778  0,936  0,760 
9_6 0,812  0,618  0,797  0,590  0,812  0,618  0,815  0,625  0,808  0,611 

Mean 0,891  0,729  0,886  0,716  0,888  0,717  0,893  0,729  0,887  0,714 
Std 0,070  0,096  0,078  0,110  0,067  0,086  0,068  0,090  0,069  0,090 

 
                                                  Table 5.11: Results of instance # 7 for all architectures 
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Instance #8 
Train images 9_7, 7_7, 8_5, 7_6, 7_5, 9_5 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,847  0,682  0,857  0,702  0,841  0,673  0,856  0,703  0,844  0,679 
8_7 0,897  0,730  0,897  0,731  0,892  0,725  0,906  0,760  0,899  0,742 
9_6 0,825  0,642  0,824  0,637  0,820  0,632  0,819  0,632  0,815  0,623 

Mean 0,857  0,684  0,859  0,690  0,851  0,677  0,860  0,698  0,853  0,681 
Std 0,036  0,044  0,037  0,048  0,037  0,047  0,044  0,065  0,043  0,060 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,853  0,695  0,845  0,682  0,859  0,705  0,861  0,712  0,866  0,720 
8_7 0,910  0,769  0,905  0,761  0,909  0,756  0,914  0,775  0,916  0,781 
9_6 0,827  0,646  0,817  0,628  0,827  0,642  0,829  0,650  0,826  0,643 

Mean 0,863  0,703  0,856  0,690  0,865  0,701  0,868  0,712  0,869  0,715 
Std 0,043  0,062  0,045  0,067  0,042  0,057  0,043  0,063  0,045  0,069 

 
                                                  Table 5.12: Results of instance # 8 for all architectures 
 

Instance #9 
Train images 8_7, 9_5, 8_5, 7_5, 7_7, 9_7 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,851  0,687    0,869  0,723  0,863  0,711  0,870  0,727  0,862  0,711 
9_6 0,825  0,637  0,835  0,658  0,838  0,665  0,831  0,652  0,826  0,643 
7_6 0,916  0,783  0,921  0,797  0,922  0,800  0,920  0,799  0,912  0,780 

Mean 0,864  0,702  0,875  0,726  0,874  0,725  0,874  0,726  0,867  0,711 
Std 0,047  0,074  0,043  0,070  0,043  0,069  0,045  0,074  0,043  0,069 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
8_6 0,869  0,724  0,846  0,684  0,861  0,706  0,865  0,717  0,874  0,736 
9_6 0,834  0,658  0,831  0,656  0,830  0,650  0,831  0,653  0,835  0,661 
7_6 0,926  0,811  0,911  0,781  0,917  0,786  0,924  0,806  0,922  0,803 

Mean 0,876  0,731  0,863  0,707  0,869  0,714  0,873  0,726  0,877  0,733 
Std 0,047  0,077  0,043  0,065  0,044  0,068  0,047  0,077  0,044  0,071 

 
                                                  Table 5.13: Results of instance # 9 for all architectures 
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Instance #10 
Train images 7_5, 8_7, 9_6, 8_5, 8_6, 9_5 
 17x17 

(3 blocks) 
CNN #1 

 17x17 
(3 blocks) 
CNN #2 

 17x17 
(3 blocks) 
CNN #3 

 17x17 
(4 blocks) 
CNN #4 

 17x17 
(3 blocks) 
CNN #5 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_7 0,868  0,709  0,876  0,723  0,869  0,712  0,872  0,719  0,866  0,705 
7_7 0,922  0,709  0,939  0,755  0,931  0,739  0,936  0,761  0,937  0,760 
7_6 0,906  0,766  0,906  0,765  0,910  0,777  0,909  0,775  0,910  0,778 

Mean 0,899  0,728  0,907  0,748  0,903  0,743  0,906  0,752  0,904  0,748 
Std 0,028  0,033  0,031  0,022  0,031  0,033  0,032  0,030  0,036  0,038 
 41x41 

(4 blocks) 
CNN #6 

 49x49 
(4 blocks) 
CNN #7 

 49x49 
(5 blocks) 
CNN #8 

 57x57 
(5 blocks) 
CNN #9 

 57x57 
(6 blocks) 
CNN #10 

Test images Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa  Acc Kappa 
9_7 0,877  0,726  0,861  0,694  0,875  0,723  0,874  0,718  0,873  0,716 
7_7 0,947  0,790  0,937  0,764  0,937  0,758  0,944  0,781  0,942  0,776 
7_6 0,919  0,796  0,906  0,768  0,909  0,772  0,920  0,796  0,917  0,790 

Mean 0,915  0,771  0,901  0,742  0,907  0,751  0,913  0,765  0,911  0,761 
Std 0,035  0,039  0,038  0,041  0,031  0,025  0,036  0,041  0,035  0,039 

 
                                                  Table 5.14: Results of instance # 10 for all architectures 
 

Scale Overall acc. (%) Kappa (k) 
CNN #1 (17 × 17 − 3blocks) 87.57 ± 1.61 0.713 ± 0.026 
CNN #2 (25 × 25 − 3blocks) 88.41 ± 1.33 0.725 ± 0.029 
CNN #3 (33 × 33 − 3blocks) 88.02 ± 1.20 0.719 ± 0.021 
CNN #4 (41 × 41 − 3blocks) 87.94 ± 1.21 0.720 ± 0.023 
CNN #5 (33 × 33 − 4blocks)  88.66 ± 1.29  0.736 ± 0.025 
CNN #6 (41 × 41 − 4blocks) 89.16 ± 1.26 0.746 ± 0.024 
CNN #7 (49 × 49 − 4blocks) 88.08 ± 1.44 0.724 ± 0.028 
CNN #8 (49 × 49 − 5blocks)  88.73 ± 1.19 0.734 ± 0.025 
CNN #9 (57 × 57 − 5blocks) 89.10 ± 4.02 0.743 ± 0.022 
CNN #10 (57 × 57 − 6blocks) 88.91 ± 4.13 0.740 ± 0.021 
Combination architetures 3 blocks 89.00 ± 4.00 0.743 ± 0.018 
Combination architetures 4 blocks 89.20 ± 2.00 0.749 ± 0.062 
Combination architetures 5 blocks 89.20 ± 2.30 0.747 ± 0.061 
Combination best architetures 89.60 ± 2.20 0.755 ± 0.062 
Combination all architetures 89.70 ± 4.20 0.759 ± 0.062 

 
                        Table 5.15: Classication using CNNs over dierent scales and the combined results. 
 

According to the results, one can observe that the combination of scales achieved better 

maps than the best individual scales. We can suppose that the combination improved the results by 

exploiting the diversity of individual CNNs in different scales. Overall, we could observe that the 

voting scheme fusion created an intermediate result among each scale, as expected.  
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We showed an example of result for each single scale in Figure 5.6. Note, for example, the 

reduction of false positives (red) and false negatives (green) pixels as the scale increases. In 

contrast, smaller scales are better at recognizing non-coffee paths between coffee regions. 

 

        
    (a)  CNN #1                                          (b)  CNN #2                                           (c)  CNN #3 

 

         
    (d)  CNN #4                                          (e)  CNN #5                                           (f)  CNN #6 
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    (g)  CNN #7                                          (h)  CNN #8                                           (i)  CNN #9 

 

 
                  (j)  CNN #10            

Figure 5.6: Results for each single scale. Pixels correctly classified are shown in white (true positive) and black 
(true negative) while misclassified pixels are displayed in red (false positive) and green (false negative).                                
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In Figure 5.7, we show an example result for combining scales. As we can see, the combination of 

scales uses characteristics of each architecture. Note the reduction of false positives (red pixels) as 

we increase the number of combined scales. In addition, some non-coee paths between cultures 

have been maintained, which is a characteristic of small scales. 

 

       
          (a)  Combination 3 blocks                   (b)  Combination 4 blocks                    (c)  Combination 5 blocks                   

       architectures                                          architectures                                          architectures 
 

                             
                                          (d)  Combination of                               (e)  Combination of  
                                                best architectures                                     all architectures 
 
Figure 5.7: Results for combined scales. Pixels correctly classied are shown in white (true positive) and black 
(true negative) while misclassied pixels are displayed in red (false positive) and green (false negative). 
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5.2.2 Comparison to the baselines  

 

In Table 5.16 we presented the results for the proposed approach and the baselines.  

 

Aproacch Overall Acc. (%) Kappa (κ) 

SVM (RBF)  80.09 ± 1.58 0.748 ± 0.025 

MSC-Boost  82.28 ± 1.60 0.780 ± 0.025 

HMSC-Boost  82.69 ± 1.68 0.788 ± 0.024 

Ours  89.60 ± 2.20 0.755 ± 0.062 
 
                  Table 5.16: Classication results comparing the proposed approach against the baselines. 
 

As it can be observed, the proposed approach overcame the results of the baseline only in one 

metric. Despite this, the proposed approach is more robust to recognize, correctly, the coffee class 

which is the class more important. Figure 5.8 illustrates an example of results comparing the 

proposed method against the HSMC-Boost baseline.  

 

                                
                                                           (a)                                                            (b) 
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                                                           (c)                                                            (d) 

 

Figure 5.8: Example of results: (a) input image, (b) ground truth, (c) the proposed approach, and (d) HMSC- 
Boost. Pixels correctly classied are shown in white (true positive) and black (true negative) while the errors 
are displayed in red (false positive) and green (false negative). 
 

One can observe that the main difference in these examples is that the proposed approach produced 

less false negative than the baseline. On the other hand, our approach produced more false positives 

Overall, our approach seems to be promising in reducing two main problems found in the 

baselines: (1) to discriminate recently planted coffee crops; and (2) to detect paths between the 

crops. As pointed by dos Santos et al. [2012], most of the HMSC-Boost classification errors are 

related to confusion caused by recently planted coffee crops, which usually appear in light blue in 

the composition of colors displayed. The proposed approach achieved better results in those areas. 

Moreover, it was more effective in assigning the class “non-coffee” to the paths between crops, as 

can be also observed in Fig. 5.8. The more the number of “black lines” between coffee crops the 

more accurate was the classification of paths.  

The regions in red in Fig. 5.8(c) indicates most of the false positives produced by the 

proposed approach are due to dense native vegetation canopy. We believe the misclassified pixels 

can be better classified by including largest context windows in the process. Also, these pixels are 

easier to remove by using some post-processing approaches than the misclassified regions 

produced by HSMC-Boost and other segmentation-based methods found in the literature. Note that 

the proposed approach misclassifies some very small groups or even isolated pixels. 
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6.  Conclusions and future work  

 

This work addressed the use of RSI to recognize coffee crops to build thematic maps and to answer 

the research questions related to the combination of scales, the choice of architectures and the 

effectiveness of the proposed approach in relation to baselines. For this purpose, we proposed the 

CNN-based approach that extracts, from a RSI, context windows of different scales at the same 

time. In Section 5.2, we evaluated the proposed approach using different architectures that are used 

individually and combined in a coffee scene, referred to in Section 5.1.1, which demonstrated a 

significant improvement using the Kappa index and overall accuracy metrics when we combine 

different scales and more robustness to recognize coffee crops compared to the baselines. Our 

approach extracted features described in Section 3.2 from the same region with dierent context 

windows and architectures that produced different characteristics that helps in the correct 

identification of the classes by the combination at the decision level. The creation of the final 

thematic maps consisted of classifying each non-labeled region by combining the class probability 

of each CNN into a resulting vector and selecting the highest probability as the predicted class.  

According to the results, it was observed that the combination of scales brings better maps 

than the best individual scale. From this, we can suppose that the combination improves the results 

by exploring the diversity of individual CNNs at different scales, and the best result is achieved by 

combining all the architectures. Compared with baselines, the proposed approach is more robust to 

correctly recognize the class of coffee that is the most important class and appears to be promising 

in reducing two main problems encountered in baselines: (1) to discriminate recently planted coee 

crops; and (2) detect paths between the crops.  

As future work we plan to:  

• analyze the influence of scale size on the recognition of each class separately for multiclass 

problems, which can help build more effective architectures that can work in a 

complementary way. 

• use different and e-cient fusion schemes. The majority voting, which was used as a fusion 

method in this work, takes into account only the final result of each architecture. In this 

way, other methods of fusion can be used to make better use of the information of each 

network, such as: combination of layers of characteristics, specialty of each architecture, 

among others.  
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• validate the proposed approach in another applications containing different data types. 

• apply post-processing algorithms to help smoothing classification errors such as: Markov 

Random Field (MRF) [Rozanov, 1982] and Conditional Random Field (CRF) [Laerty et 

al., 2001]. 
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