
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Gleison Souza Diniz Mendonça

AutoParBench: Uma ferramenta para verificação de código paralelo

Belo Horizonte
2020-03

Gleison Souza Diniz Mendonça

AutoParBench: Uma ferramenta para verificação de código paralelo

Versão Final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do título de Mestre
em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira
Coorientador: Chunhua Liao

Belo Horizonte
2020-03

Gleison Souza Diniz Mendonça

AutoParBench: A Framework for Parallel Code verification

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintão Pereira
Co-Advisor: Chunhua Liao

Belo Horizonte
2020-03

© 2020, Gleison Souza Diniz Mendonça.
 Todos os direitos reservados

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

 Mendonça,Gleison Souza Diniz.

M539a AutoParBench: a framework for parallel code verification /
 Gleison Souza Diniz Mendonça. — Belo Horizonte, 2020.
 xxvi, 51 f. il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais – Departamento de Ciência da Computação
 Orientador: Fernando Magno Quintão Pereira.
 Coorientador: Chunhua Liao

 1. Computação – Teses. 2. Benchmarking. 3. Paralelização.
 4.Software – Verificação. I. Orientador. II. Coorientador. III. Título.

CDU 519.6*32 (043)

Dedico este trabalho a meus pais, que nunca me abandonaram
ante dificuldades.

Acknowledgments

Agradeço aos meus pais, Vânia Helena dos Reis e Hervê Pereira Mendonça por todo o
apoio e dedicação ao longo destes anos. Agradeço ao meu orientador Fernando Magno, que
me possibilitou construir algo que creio ser relevante para as comunidades de programação
paralela e compiladores. Agradeço ao meu mentor Liao Chunhua pela oportunidade de
estágio. Agradeço ao meu ex orientador Thiago Ferreira de Noronha e aos meus cole-
gas da maratona de programação, Marcos Almeida e Felipe Arcanjo. Também gostaria
de lembrar dos meus colegas de laboratório Péricles Alves, Breno Guimarães, Guilherme
Leobas, Késia Andrade, Pedro Ramos, Junio César, Carina Capelão, Henrique Nazaré,
Tarsila Bessa e José Wesley, que sempre se mostraram solícitos. Por fim, um agradesci-
mento especial aos professores e todo o corpo docente da Universidade Federal de Minas
Gerais, que me possibilitaram melhorar minhas habilidades profissionais e pessoais ao
longo de tantos anos.

“Mais vale um péssimo acordo do que um grande confronto.”
(Autor desconhecido)

Resumo

Atualmente, existem muitas ferramentas de paralelização que realizam inserção automática
de diretivas OpenMP em programas. No entanto, é um desafio comparar automaticamente
essas ferramentas quanto a seus pontos fortes e limitações, devido às diversas opções de
paralelização de um mesmo programa. Visando suprir esta carência, fornecemos o Au-
toParBench, uma estrutura de teste que visa mitigar este problema. O AutoParBench
consiste em benchmarks e um verificador. Atualmente, os benchmarks incluem 99 pro-
gramas com 1.579 loops. Um procedimento é definido para permitir a adição rápida e
fácil de novos programas. O verificador consiste em uma representação intermediária co-
mum, baseada em JSON, além de todo o mecanismo necessário para converter programas
OpenMP em um formato doravante denominado objeto JSON. Os objetos produzidos por
diferentes ferramentas permitem a comparação semântica automáticamente de resultados
de paralelização sintaticamente diferentes. O AutoParBench é um instrumento eficaz para
encontrar bugs. Ao investigar as diferenças nos objetos produzidos por fontes separadas,
ou seja, ferramenta versus ferramenta ou ferramenta versus ser humano, relatamos bugs
em ferramentas de paralelização selecionadas, como ICC, Cetus, AutoPar e DawnCC.
Esses bugs foram todos confirmados.

Benchmark, Parallelization, Tools, VerificationBenchmark, Parallelization, Tools,
Verification

Palavras-chave: Testes de referência, Parallelização, Ferramentas, Verificação

Abstract

Abstract

There exist presently many parallelization tools based on the automatic insertion
of OpenMP pragmas into programs. However, it is challenging to automatically and
quantitatively compare these tools for their strengths and limitations, due to the
diverse choices to parallelize a program. This work describes AutoParBench, a test
framework aimed to mitigate this problem. AutoParBench consists of benchmarks
and a verifier. Benchmarks currently include 99 programs with 1,579 loops.

A procedure is defined to allow quick and easy additions of new programs. The
verifier consists of a common intermediate representation, based on JSON, plus all
the machinery necessary to convert OpenMP programs into a format henceforth
called a JSON snapshot. The snapshots produced by different tools enable auto-
matic semantics-aware comparison of syntactically different parallelization results.
AutoParBench is an effective bug-finding instrument. By investigating differences in
snapshots produced by separate sources, i.e., tool versus tool or tool versus human,
we have reported bugs in selected parallelization tools such as ICC, Cetus, AutoPar
and DawnCC, all of which have been confirmed.

Keywords: Benchmark, Parallelization, Tools, Verification

List of Figures

4.1 Figure Explaining how to add new samples or compilers to AutoParBench. . . 30
4.2 Production and evaluation of Snapshots for C/C++. 32
4.3 Fields for JSON snapshot objects. 33
4.4 (a-b) Two semantically equivalent parallelizations of the same program. (c)

The corresponding loop object. 34
4.5 JSON snapshots extracted from a C program representing a loop and a non-

loop object. 35
4.6 A graphical report produced by AutoParBench. Program on top was produced

by auto-parallelizer; program on the bottom is part of the reference collection. 39

5.1 Lines of code and loops per benchmarks. 42
5.2 Graphical comparison between tools and baseline. 46
5.3 Performance comparison. We use the following keys: IO3 = sequential code

compiled with ICC -O3, MAN = manual OpenMP annotations in the original
benchmarks, REF = the reference collection (every loop annotated), ATP =
AutoPar, CST = ICC-Cost, FLL = ICC-Full. 54

List of Tables

4.1 Categories of parallel strategies. 31

5.1 Summary of results. Pr = number of programs; Lp = number of loops handled;
Tt = total of loops given to the tool; WF1 = Weighted F1-Score. Higher is
better. 43

5.2 Summary of results for DataRaceBench. Pr = number of programs; Lp = num-
ber of loops handled; Tt = total of loops given to the tool; WF1 = Weighted
F1-Score. The higher, the better. 45

5.3 Summary of results for Rodinia. Pr = number of programs; Lp = number
of loops handled; Tt = total of loops given to the tool; WF1 = Weighted
F1-Score. The higher, the better. 45

5.4 Summary of results for NAS. Pr = number of programs; Lp = number of loops
handled; Tt = total of loops given to the tool; WF1 = Weighted F1-Score.
The higher, the better. 45

5.5 Number of suspicious results grouped by tiers. 47

Contents

1 Introduction 14
1.1 Publications . 15

2 Literature Review 17
2.1 Benchmarks in General . 17
2.2 Benchmarks for parallel computing . 19
2.3 Testing in general . 20
2.4 Testing for parallelization tools . 21

3 Challenges 23
3.1 A program may be amenable to different parallelization strategies. 23
3.2 Code might be amenable to conditional or multi-versioning parallelization. 24
3.3 Nested loops might be parallelized in a combinatorial number of ways. . . . 24
3.4 There are multiple data mapping variants for accelerator offloading. 25
3.5 Pragmas can use expressions parameterized by different program symbols. 26
3.6 Auto-parallelization tools can apply transformations in programs, such as

loop-splitting and loop-coalescing. 27
3.7 Auto-parallelization tools can produce outputs in different formats. 28

4 The design of AutoParBench 29
4.1 The Reference Collection . 29
4.2 The Intermediate Representation . 32
4.3 The Translators . 36
4.4 Configurable Scripts and Reports . 38
4.5 Summary of the Solutions . 38

5 Experiments 41
5.1 The Framework . 41
5.2 Comparing the Output of Tools . 42
5.3 Actionable Results . 47
5.4 Performance Comparison . 53

6 Conclusion 55
6.1 Future Work . 55

Contents 13

Bibliography 56

14

Chapter 1

Introduction

The growing prominence of OpenMP [12] has contributed to the appearance of many au-
tomatic parallelization tools. OpenMP works as a set of annotations embedded into a host
language, such as C, C++ or Fortran. By annotating programs with OpenMP directives,
said tools are able to generate parallel code without having to deal with minutiae of algo-
rithmic parallelization or details of the target architecture. Examples of automatic par-
allelizers based on OpenMP include Intel Compilers (ICC), DawnCC [26], AutoPar [23],
Mercurium [6], Pluto [8], TaskMiner [32] and Cetus [3].

The existence of so many tools of similar purpose should, in principle, aid devel-
opment: by comparing their outputs, developers can find correctness or efficiency issues
in their implementations. However, as we explain in Section 3, such is not the case.
Presently, the only way to compare the output of these tools is via manual inspection.
Visual comparison is a hard task: each parallelizer produces code that, even when seman-
tically equivalent, can use very different syntax. Furthermore, tools like ICC or Pluto
are able to change the layout of the target program, to enable further parallelization.
Additionally, not every tool is source-to-source. ICC, for instance, generates binary code.
Developers must read its logs to understand the transformations performed by the com-
piler.
Our Thesis. We claim that it is possible to design a common representation that nor-
malizes OpenMP directives; hence, allowing direct and automatic comparison between
the output of different parallelization tools.
Our Contributions. To support our thesis, we have designed such a representation to
enable the verification of OpenMP 4.5 annotations across different tools. Centered around
this normalized representation, described in Section 4, we built a test framework called
AutoParBench. This framework contains, as of today, 103 programs, for a total of 1,594
loops. Some of them were taken from well-known benchmark suites, such as NAS [5] and
Rodinia [11]. A procedure is defined to allow quick and easy additions of new programs.
AutoParBench also provides harnesses to run the benchmarks and check their outputs.
A parser is provided to generate a JSON object out of a C/C++ program with OpenMP
directives. This file is called a JSON snapshot. To compare the output of two tools, or
the output of a tool with the reference collection, it suffices to compare two automatically

1.1. Publications 15

generated snapshots. The reference collection comes with positive and negative examples.
The former are loops that can be parallelized; the latter are loops that should not be
parallelized due to known data dependencies. This separation is helpful to point out
bugs and inaccuracies in automatic parallelizers. The combination of benchmarks, parser
and unified representation lets us perform semantics-aware comparison of thousands of
parallelization results in seconds; thus, generating metrics such as precision, recall and
accuracy organized into graphic reports. At the best of our knowledge, AutoPark Bench
is the first benchmark suite designed to correctness checking, making its focus a unique
contribution to ensure the quality of parallel software.
Our Results. The direct benefit of AutoParBench is bug discovery. We have used this
framework to evaluate four different automatic parallelization tools: The Intel Compiler
(ICC), DawnCC, Cetus and AutoPar. AutoParBench lets us compare them all, providing
a final, unified score for each tool, that gives the user some perspective on their practicality
and reach. Using this infrastructure, we have gotten hundreds of warnings and some
confirmed bugs in different tools: 2 in DawnCC, 2 in Cetus, 4 in AutoPar and 2 in
ICC. These bugs have been acknowledged as true problems, as we report in Section 5.
AutoParBench is publicly available at https://github.com/gleisonsdm/AutoParBench.

1.1 Publications

Several papers have been published in the context of this work. Some of these
papers have inspired this dissertation, whereas at least one stemmed directly from it.
Below we provide a list of publications that I have co-authored during my stay at the
Compilers Lab:

• Gleison Mendonça, Breno Guimarães, Péricles Rafael Oliveira Alves, Márcio Pereira,
Guido Araújo and Fernando Magno Quintão Pereira. DawnCC: Automatic Anno-
tation for Data Parallelism and Offloading. ACM Transactions on Architecture and
Code Optimization. 14 (2), July 2017.

• Pedro Ramos, Gleison Mendonça, Divino Soares, Guido Araújo and Fernando Magno
Quintão Pereira. Automatic Annotation of Tasks in Structured Code. PACT. 2018.

• Pedro Ramos, Gleison Souza Diniz Mendonça, Guilherme V. Leobas and Fernando
Magno Quintão Pereira. Taskminer: Automatic identification of tasks, SBLP, pages
11-18, 2018.

https://github.com/gleisonsdm/AutoParBench

1.1. Publications 16

• Gleison Souza Diniz Mendonça, Breno Campos Ferreira Guimarães, Péricles Rafael
Oliveira Alves, Márcio Machado Pereira, Guido Araújo and Fernando Magno Quin-
tão Pereira. Automatic Insertion of Copy Annotation in Data-Parallel Programs.
SBAC. 2016.

• Kézia Correa Andrade Moreira, Gleison Souza Diniz Mendonça, Breno Campos Fer-
reira Guimarães and Fernando Magno Quintão Pereira. Paralelização Automática
de Codigo com Diretivas OpenACC. XX Simpósio Brasileiro de Linguagens de Pro-
gramação. Maringá, Brasil, 2016.

• Breno Campos Ferreira Guimarães, Gleison Souza Diniz Mendonça and Fernando
Magno Quintão Pereira. DawnCC: a Source-to-Source Automatic Parallelizer of C
and C++ Programs. CBSoft Tools. Maringá, Brasil, 2016.

• Douglas Couto, Kézia Andrade, Gleison Souza, and Fernando Pereira. Etino: Colo-
cação Automática de Computação em Hardware Heterogêneo. Simpósio Brasileiro
de Linguagens de Programação, Belo Horizonte, Brasil, 2015.

• Douglas Couto, Kezia Andrade, Gleison Souza, and Fernando Pereira. Etino: Colo-
cação Automática de Computação em Hardware Heterogêneo. CBSoft Tools, pages
65-72, Belo Horizonte, Brasil, 2015.

In addition to this paper, together with Fernando Pereira, my MSc advisor, and
Chunhua Liao, my MSc co-advisor, I have written and submitted for evaluation the fol-
lowing work:

• AutoParBench: A Unified Test Framework for OpenMP-based Parallelizers

This paper summarizes the findings that this dissertation reports in a greater level
of detail.

17

Chapter 2

Literature Review

Nowadays, there exists much work aimed at the evaluation of parallel programs. Optimiza-
tions like parallelization and vectorization are commonly used in this domain to improve
the performance of computing systems. Unfortunately, such optimizations may compro-
mise the correctness of programs, if implemented incorrectly. This possibility motivates
the design and implementation of benchmark suites to evaluate the effects of automatic
parallelization tools. In this chapter, we discuss some of the state-of-the-art benchmark
suites that exist in different research fields related to high-performance computing.

2.1 Benchmarks in General

The process of testing software is based on the use of samples representing program
inputs. In the context of this work, the software under test is some automatic paralleliza-
tion tool, and the samples used as inputs are programs that must be parallelized. Relevant
features can be verified using a reference collection, comparing the results and checking if
they are as expected for a given sample. There are hundreds of benchmarks designed to
assess the behavior of algorithms in a given context. These benchmarks can be categorized
as Synthetic or Real World and grouped as System-Level or Component-Level.

Synthetic benchmarks are formed by code snippets extracted from other benchmark
suites. These samples are usually created combining functions from different applications.
This kind of technique can be used to increase the number of benchmarks available. The
synthetic references allow the developer to change data structures, providing a more proper
evaluation for programs.

In the paper Fast System Level Benchmarks for Multicore Architectures, Sen et
al. [34] present a framework to generate system-level synthetic benchmarks. These syn-
thetic programs can be used for evaluation when the source code is not available. The
artificial samples are smaller and faster than the original programs. However, they approx-
imate the dynamic behavior of real-world code. The System-Level test cases can, not only

2.1. Benchmarks in General 18

identify correctness issues within programs, but also reveal the impacts of optimizations
on them.

In some cases, benchmarks should represent variety of scenarios that test some
common aspect of a program. One example of a benchmark suite designed according
to this guideline is HiBench [19]. That benchmark suite was designed to evaluate the
implementation of MapReduce. It contains samples of synthetic micro-benchmarks and
real-world applications, which constitute a comprehensive collection of functions. That
framework includes the computation of throughput, system resources utilization and data
access patterns.

Some benchmark suites are categorized as Real-World, because they are extracted
from real use cases. In this category, we can cite BigDataBench [38], which was released
to evaluate computer architectures using data that represents authentic use cases. The
collection on that suite was originally composed of 19 benchmarks, selected for fairly
evaluating big data systems.

Component-Level benchmarks focus on evaluating specific aspects instead of test-
ing the behavior of the complete system. Huang et al. [20] describe a benchmark collection
for mobile devices that has been shown to facilitate microarchitectural exploration. That
collection, called Moby, contains different applications for testing components in domains
as diverse as social networking and video streaming. The framework was designed to
facilitate the use of full-system architectural simulators.

2.1.1 The role of a reference collection in compiler construction

The use of benchmarks for testing is a reliable way to check if the software works as
expected. To ensure correctness and performance improvements, compiler writers often
resort to a reference collection. That collection is formed by a number of test cases of
known semantics. They are typically accepted as baselines for performance measurements,
or correctness. By comparing against that reference collection, developers can track how
much improvement has been achieved by a particular optimization or some new static code
analysis. As an example, the LLVM compiler [21] provides developers with a reference
collection with over 200 programs split into 30 different benchmark suites.

The reference collection can be used for performance verification on optimized
programs. By running benchmarks with different input sizes, it is possible to measure
how the modifications impact the quality of the code produced by the compiler. Reference
collections also allow developers to evaluate characteristics of different architectures, as
hardware may affect program execution. Therefore, reference collections guide research

2.2. Benchmarks for parallel computing 19

efforts, because they contribute to the definition of quality standards.

2.1.2 Some relevant benchmark suites

The construction of benchmark suites has been a staple of compiler and tool de-
velopment since its early years. Testimony of this importance is the fact that a few
benchmark collections, namely from the SPEC CPU family [18], have been a fundamen-
tal guiding force behind the design and implementation of static analyses and program
optimizations for C, C++ and Fortran compilers, as thoroughly discussed in Patterson
and Hennessy’s classic textbook [28]. Similar role the DaCapo benchmark has fulfilled for
the Java programming Language and the JVM virtual machine [7].

Compilers, being complex tools, demand different kinds of tests and verifications.
FreeBench [33] and MallocBench [17] are indicated for memory evaluation. BitBench [14]
is a collection originally containing six key algorithms that can operate on streaming input
data. And, even today, we watch the rise of new suites [31, 36], or the re-edition of old
ones [24, 25] to fill niches not yet covered by well-established collections.

2.2 Benchmarks for parallel computing

The design of parallel algorithms is an error-prone task, which demands careful
verification due to its complexity. In this context, parallel benchmarks may contain
features that are designed to catch side effects of parallelization strategies. In this section
we revisit some benchmarks typically used to test parallelization methodologies.

2.2.1 The most important benchmarks

Rodinia [11] is a benchmark suite designed for heterogeneous computing. It pro-
vides developers with different programs that implement the same core algorithm. For
instance, there are versions of Rodinia that run sequentially, or in GPUs, or in multi-
threaded CPUs. That collection provides developers with the means to evaluate program

2.3. Testing in general 20

characteristics such as power consumption and synchronization.
It is hard to measure costs for the development and design of large systems. Differ-

ent alternatives can be considered to pick the best one available, which makes it required
to examine systems efficiently. Parsec [4] is a framework designed to help managing simu-
lations in parallel. Bagrodia et al. [4] have presented a parallel simulation language called
Parsec. That programing language incorporates a GUI and a runtime system.

Some parallel algorithms exploit intensive data processing in supercomputers. That
is a domain that demands very specific reference collections. The NAS [5] suite is an
example of benchmark developed for that domain. NAS emulates typical scenarios of data
movement and batch computation that are common in supercomputing applications.

Independently of the size of the program, different parallelization strategies can
be used by programmers and companies. Such strategies might be based on regular
or irregular applications. In the latter category we count recursive function calls, for in-
stance. Programmers can easily exploit irregular parallelism using interfaces like OpenMP
or OpenACC. Those systems of annotations facilitate the creation of parallel programs.
BOTS [16] is a benchmark suite that contains samples of the OpenMP tasking model,
released in the OpenMP (3.0) specification. It was projected to test multicore architec-
tures. Programs in that collection are often recursive, or contain loops that iterate over
irregular data-structures.

2.3 Testing in general

Nowadays, there are many options to evaluate applications. Measure the effec-
tiveness of optimizations is essential to avoid issues in algorithms, which makes necessary
a collection with samples that can represent real uses. Testing tends to reveal program
limitations that should receive attention. These constraints are analyzed by develop-
ers, following test reports. From these reports, developers can propose improvements to
programs.

2.3.1 How test is used to find bugs in compilers

Testing provides a methodology for correctness checking in compilers. Due to its
complexity, that kind of software is prone to generate code with issues. And, contrary

2.4. Testing for parallelization tools 21

to most programs, errors in compilers will surface in secondary code, i.e., the generated
program, not in the compiler itself. In this scenario, good reference collections play a
fundamental role.

Perhaps the most well-known tool to test compilers is Csmith [40], which generates
random C programs. Those programs, once fed to two or more compilers, indicate errors
if different compilers produce executables that behave differently. That tool can generate
a large subset of programs that represent different patterns from real applications.

2.4 Testing for parallelization tools

This work describes a test framework to compare automatic parallelization tools.
There are many relevant parallel benchmarks. Among those, we include Linpack [15],
Rodinia [11], Parsec [4] (and its task-based extensions [10]), NAS [5, 35], SHOC [13] and
BOTS [16]. There are also frameworks to evaluate the performance of auto-parallelizers,
such as PETRA [27]; however, automatic evaluation is centered on runtime. Recently,
Prema et al. [30] have pointed out the need for supporting comparisons oriented towards
correctness, like the one AutoParBench provides.

Several programs distributed with AutoParBench — the focus of this work —
were taken from public suites, namely NAS and Rodinia. The main difference between
the present work, and those previous benchmark collections is the fact that we provide
a program representation that unifies the methodology used to test and verify automatic
parallelization compilers and tools. All our infrastructure, including programs and their
harnesses, have been designed around that intermediate representation. Said represen-
tation is built as a meta-language on top of the JSON format. Thus, in contrast to
previous benchmark suites, AutoParBench lets us compare different tools using the same
framework, as long as these tools contain annotated reference programs.

2.4.1 DataRaceBench

DataRaceBench ([22]) is a benchmark suite designed at Lawrence Livermore Na-
tional Laboratory. It was desiged to evaluate the effectiveness of data race detection
tools; hence, it contains samples without and with known data-races. The framework
only needs to check a tool’s output against a simple true or false reference answer for a

2.4. Testing for parallelization tools 22

given OpenMP input loop.
Given its goals and scope, DataRaceBench [22] is closely related to this work.

However, AutoParBench was designed to produce a unified representation of the code
generated by compilers. These tools output programs that, although syntactically differ-
ent, can represent correct parallelizations of the original input code. DataRaceBench did
not have a focus on comparing different tools. Rather, it was a collection of programs
with known semantics meant to detect bugs in auto-parallelizers.

2.4.2 Other kinds of tests for parallelization tools

There exist different ways to design tests for parallelized programs, which provides
options to ensure correctness. NDSet ([9]) introduces to the sequential version of the
program a form of “controlled nondeterminism“ which emulates different outputs possible
if the program runs in parallel. Its insight is recognizing common patterns of writing non-
deterministic sequential specifications. It explores a few Java benchmarks comparing the
sequential and parallel versions depending on non-deterministic sequential requirements.
NDSet’s authors have reported a significant reduction in the number of false positives
facing traditional checking when searching for parallelization bugs.

A different verification strategy can explore model checking to verify parallel pro-
grams. BlobFlow [37] presents an application that resorts to such methodology. BlobFlow’s
authors use formal verification to validate a code snippet, checking for deadlock freedom
or functional equivalence to the available versions.

23

Chapter 3

Challenges

Having a common framework that allows testing different automatic parallelization tools
is difficult, because tools may generate very different outputs—some not even in textual
format. Although distinct, they might represent correct parallelizations of the same pro-
gram. In this section, we list the major challenges we face when creating AutoParBench.

3.1 A program may be amenable to different

parallelization strategies.

A program may be amenable to different parallelization strategies.
There exist different parallel patterns, e.g., data and task parallelism. Targets can

also vary, e.g., CPUs and GPUs. As an example, Listing 3.1 shows how different targets
lead to different parallelizations of the same program.

Listing 3.1: Loop parallelization using two different strategies: vectorization or GPU
acceleration.

1 void CPU_vectorization(int *a, int len) {
2 #pragma omp simd
3 for (int i=0; i<len; i++)
4 a[i]= i;
5 }
6 void GPU_parallelization(int *a, int len) {
7 #pragma omp target map(from:a[0:len])
8 #pragma omp teams distribute parallel for
9 for (int i=0; i<len; i++)

10 a[i]= i;
11 }

The functions in Listing 3.1 are semantically different: the loop in CPU_vectorization

will be vectorized, whereas the loop in GPU_parallelization will be accelerated in a

3.2. Code might be amenable to conditional or multi-versioning parallelization. 24

GPU. Nevertheless, both are correct; hence, both should be acceptable by an automatic
validation tool. Key to solve this challenge is a categorization of potential parallelizations
of a program, which we shall discuss in Section 4.1.2.

3.2 Code might be amenable to conditional or

multi-versioning parallelization.

Pointer aliasing might hinder parallelization due to potential dependencies. Depen-
dences occur when pointers dereference overlapping memory regions. A combination of
code versioning and conditional checks is a technique adopted by tools like ICC, DawnCC
and the LLVM’s code vectorizer [1] to avoid dependences at runtime. As an example,
Listing 3.2 shows code produced by DawnCC.

Listing 3.2: Conditionalized Parallelization

1 void foo (int *dest, int *src, int n) {
2 char ovrlp = ((void*)(dest)<(void*)(src+n));
3 ovrlp &= ((void*)(src)<(void*)(dest+n));
4 #pragma omp parallel for if(!ovrlp)
5 for (int i = 0; i < n; i++)
6 dest[i] = src[i];
7 }

Function foo contains a loop that is parallel, as long as the two arrays, dest and
src, do not overlap. The guard on ovrlp, at line 4, only allows parallel execution when
the two arrays cover disjoint memory regions. Thus, the program in Listing 3.2 is correct,
as long as the guard is present. Section 4.2.1 explains how we evaluate multi-versioned
loops.

3.3 Nested loops might be parallelized in a

combinatorial number of ways.

Although a loop might be parallelizable, this transformation might not be prof-
itable. This phenomenon happens, for instance, when the work in the loop body is not

3.4. There are multiple data mapping variants for accelerator offloading. 25

enough to pay off the cost of creating threads or offloading data. Nested loops may con-
tain multiple levels of parallelizable loops. The cost model of a tool might lead to the
parallelization of one, or several of these loops. Thus, the fact that a tool might leave some
loops untouched does not necessarily imply that the tool has not been able to identify the
potential parallelism. Listing 3.3 illustrates this issue with an example. In Section 4.2.1 we
explain how we represent loops at different granularities, and in Section 4.1.3 we discuss
how to deal with unprofitable parallelization.

Listing 3.3: Nested loops can be parallelized in different ways.

1 void both_parallel (int **a, int len) {
2 int i, j;
3 #pragma omp parallel for private(j)
4 for (i=0; i< len; i++)
5 #pragma omp parallel for simd
6 for (j=0; j<len; j++)
7 a[i][j] = (i * len + j + 0.5);
8 }
9 void outer_parallel (int **a, int len) {

10 int i, j;
11 #pragma omp parallel for private(j)
12 for (i=0; i< len; i++)
13 for (j=0; j<len; j++)
14 a[i][j] = (i * len + j + 0.5);
15 }

3.4 There are multiple data mapping variants for

accelerator offloading.

When parallelizing codes for accelerators, data often need to be transferred between
locations. OpenMP provides various directives to specify such data transfers; however, the
data mapping pragmas may not be syntactically associated with the offloading directive.
Listing 3.4 illustrates this issue.

Listing 3.4: Data mapping variants for target directives

1 void target_loop (int *a, int tmp) {
2 int len = 100, i;
3 #pragma omp target parallel for private(tmp) map(a[0:len])
4 for (i=0;i<len;i++) {
5 tmp =a[i]+i;

3.5. Pragmas can use expressions parameterized by different program symbols. 26

6 a[i] = tmp;
7 }
8 }
9 void target_context (int *a, int tmp) {

10 int len = 100, i;
11 #pragma omp target data map(tofrom: a[0:len]) {
12 #pragma omp target parallel for private(tmp)
13 for (i = 0; i < len; i++) {
14 tmp = a[i] + i;
15 a[i] = tmp;
16 }
17 }
18 }

Function target_loop in Listing 3.4 contains one loop parallelized with the target
directive combined with a map clause. Function target_context, in turn, sets up GPU
parallelization in two steps, via a combination of clauses “target data map" and “target
parallel for". A verification tool needs to match the semantics of these two uses of the
target pragma, as we explain in Section 4.2.2.

3.5 Pragmas can use expressions parameterized by

different program symbols.

Several OpenMP directives are parameterized by program symbols, i.e., user-
defined names. As an example, the map and the depends pragmas receive an array and a
memory range. Memory ranges are expressions that use program symbols. Such expres-
sions complicate the verification of OpenMP clauses because they can be written in an
unbounded number of ways, all of which encode a similarly correct semantics. Listing 3.5
illustrates this challenge.

Listing 3.5: map clauses with variables

1 void symbolic_map (int *a, int n) {
2 int len = 100, i;
3 #pragma omp target data map(a[0:len])
4 #pragma omp target parallel for private(i)
5 for (i = 0; i < len; i++) {
6 a[i]++;
7 }
8 }
9 void numeric_map (int *a, int n) {

3.6. Auto-parallelization tools can apply transformations in programs, such as
loop-splitting and loop-coalescing. 27

10 int len = 100, i;
11 #pragma omp target data map(tofrom: a[0:100])
12 #pragma omp target parallel for private(i)
13 for (i = 0; i < len; i++) {
14 a[i]++;
15 }
16 }

The expressions len and 100 are semantically equivalent. A reference output for
this program cannot simply settle for one of them, because a tool might use the other, and
still deliver correct code. In Section 4.3.1 we explain how AutoParBench reports different
parallelizations.

3.6 Auto-parallelization tools can apply

transformations in programs, such as

loop-splitting and loop-coalescing.

There is a long list of code transformations that can be used to enable automatic
parallelization [39]. Such transformations may render the parallel program very different
than its original – sequential – version. Therefore, to be effective, a verification tool must
be able to match the original and transformed programs. Listing 3.6 illustrates this issue.

Listing 3.6: Example of loop amenable to coalescing

1 int b[1000][1000];
2 void original_loop(int n, int m) {
3 for (int i=0; i<n; i++)
4 for (int j=0; j<m; j++)
5 b[i][j] = 0.5;
6 }
7 void coalesced_loop(int n, int m) {
8 #pragma omp parallel for
9 for (int index=0; index<(n * m); index++) {

10 int i = index / n;
11 int j = index % m;
12 b[i][j] = 0.5;
13 }
14 }

The second program in Listing 3.6, the function coalesced _loop is produced by

3.7. Auto-parallelization tools can produce outputs in different formats. 28

ICC, via loop coalescing [29]. A common format that allows using function coalesced_loop

as the reference output for the parallelization of function original_loop (Listing 3.6)
must provide hooks to match these two different programs. In Section 4.3 we elaborate
on how we deal with such transformations.

3.7 Auto-parallelization tools can produce outputs in

different formats.

Automatic parallelization tools can be source-to-source or source-to-binary. The
former provide information about the parallelization in source files, via human-readable
OpenMP annotations. The latter implements parallelization directly into the binary code.
For instance, AutoPar, Cetus and DawnCC are source-to-source: they generate a C/C++
program annotated with OpenMP pragmas. ICC, in turn, produces binary code plus an
optional report with debugging information. Listing 3.7 shows an example of such report.

Listing 3.7: Example of optimization report produced by ICC

1 LOOP BEGIN at DRB020-privatemissing-var-yes.c(60,3)
2 remark #17109: LOOP WAS AUTO-PARALLELIZED
3 remark #17101: parallel loop shared={ .2 } private={ } firstprivate={ len a i }

lastprivate={ } firstlastprivate={ } reduction={ }
4 remark #15540: loop was not vectorized: auto-vectorization is disabled with -no-

vec flag
5 remark #25439: unrolled with remainder by 2
6 LOOP END

The report in Listing 3.7 contains the information necessary to recover the trans-
formations that ICC has carried out in a given program. A comprehensive test framework
should be able to handle different output formats to enable comparison among them. We
explain how we deal with different output formats in Section 4.3.

29

Chapter 4

The design of AutoParBench

AutoParBench consists of a reference collection of benchmarks, an intermediate repre-
sentation (IR) of parallel code, software that translates annotated programs into the IR
and a harness that compares tools by normalizing their outputs via the IR. This section
discusses each one of these parts.

4.1 The Reference Collection

The reference collection is a set of ready-to-use C/C++ benchmarks intended to
serve as a ground-truth for automatic parallelization tools. Currently, this collection
contains 89 micro-kernels, plus fourteen larger programs from Rodinia and NAS. The
provenance of these benchmarks is detailed in Section 5.1. The larger benchmarks let
AutoParBench compare the performance of parallel programs. However, AutoParBench’s
main goal is to find correctness bugs in auto-parallelizers, not to measure their perfor-
mance. Programs in the reference collection contain a sequential and a parallel version,
the latter annotated with OpenMP 4.5 pragmas. Annotations are for correctness, not for
efficiency; hence, even small loops, when data-race free, are annotated. Most of the an-
notations were already present in the original benchmarks. We had to annotate race-free
loops in the fourteen large programs — details are described in AutoParBench’s public
distribution. To ensure correctness, we run each annotated program with Intel Inspector1.

1https://software.intel.com/en-us/inspector

https://software.intel.com/en-us/inspector

4.1. The Reference Collection 30

4.1.1 Extending the Reference Collection

We have designed AutoParBench considering that community support might play
a role into its development. The addition of new benchmarks to the reference collection
is a desirable consequence of this design. To support the addition of new benchmarks,
AutoParBench’s reference collection is partitioned into self-contained programs. Thus, the
addition of new programs does not cause modifications in the structure or composition of
the framework. In other words, benchmarks and scripts already there remain untouched.
To add a new program to the reference collection, users can either start with a plain-
C/C++ program, and annotate it, either manually or via a trusted parallelizer; or they
can start with an annotated program, and strip its annotations off, to obtain the sequential
version. AutoParBench provides users with a correctness step, which uses Intel Inspector,
plus output comparison, to check if the new addition is sound.

Figure 4.1 provides a description of how to add new samples to AutoParBench.
The process includes manual checking, and scripts to check the output. Step C2 includes
output comparison and Intel Inspector, using scripts to automatize such tasks avoiding
unnecessary efforts.

Source files
generated by
tools (F7)

OpenMP
Extractor (C11)

ICC Parser
(C9)

ICC (log)
files (F5)

Baseline JSON files (F12)

Tools
JSON
files
(F10)

Equivalence Checker (C14)

Files
containing
classified
loops (F13)

Scripts to calculate metrics
and write reports (C15)

Markdown files
containing reports (F14)

Source files
Manually
inspected
(F2)

Source
files
without
OpenMP
(F4)

Scripts to
remove
OpenMP
pragmas (C3)

Source to
binary tools
(C5)

Source to
Source tools
(C6)

Original Source
files from
repositories (F1)

Manual
checking
(C1)

Manual
Inspection
(C16)

ICC without
threshold (C4)

ICC without
threshold
JSON files (F9)

Parsable output
(log) files (F6)

Specific tools
Parser (C10)

Scripts to
check the
output (C2)

Correct
source files
as reference
(F3)

Manual reference
JSON files (F8)

OpenMP
Extractor (C7)

JSON
combinator
(C12)

Actionable
Info

Scripts to
check the
output (C8)

Reference files (F11)

Manual Inspection (C13)

Figure 4.1: Figure Explaining how to add new samples or compilers to AutoParBench.

Reports produced in F14 include summarized reports, which make it easy to collect
qualitative data grouping files with the same benchmark collection. Such info creates easy
to evaluate samples based on relevant aspects, which permits the appropriate evaluation
of each parallel strategy.

4.1. The Reference Collection 31

Categories Example OpenMP Directives
CPU Threading for, parallel, parallel for, task, task loop

CPU SIMD
simd, for simd, parallel for simd
task loop simd

GPU Threading

target parallel for, teams distribute
target teams distribute parallel for
teams distribute parallel for
target teams distribute

GPU SIMD

target simd
target parallel for simd
target teams distribute simd
teams distribute parallel for simd
target teams distribute parallel for simd

Table 4.1: Categories of parallel strategies.

4.1.2 Parallelization Strategies

Automatic parallelization tools may apply different parallelization strategies. For
example, AutoPar and Cetus deal with multi-core parallelization (CPU Threading); DawnCC
targets accelerators (GPU Threading). ICC, in turn, supports both, albeit not at the
same time. To accommodate these differences, benchmarks in the reference collection are
grouped into the four categories seen in Table 4.1. Categorization lets us use AutoPar-
Bench to verify the output of tools that target different software/hardware features. For
instance, the categories “CPU SIMD" and “GPU SIMD" contain the same benchmarks.
However, in the first category, benchmarks are annotated with vectorizing pragmas for
CPUs; in the second, they target accelerators. This categorization helps AutoParBench
provide a solution to Challenge 3.1.

4.1.3 Unprofitable Parallelization

The reference collection is not performance-focused. We have strived to annotate
every loop that could be parallelized, even when such annotations are clearly unprofitable.
If a tool, for any reason, refuses to parallelize one of these loops, then AutoParBench
reports a false negative. False negatives are not necessarily bugs, although they might
account for inefficiencies. This approach, combined with the possibility to execute the
program, lets AutoParBench provides a best-effort solution to Challenge 3.3.

4.2. The Intermediate Representation 32

4.2 The Intermediate Representation

The core equipment that AutoParBench uses to compare the output of different
tools is an intermediate representation using JSON snapshots. A snapshot is a file that
represents the parallelization decision of a code region within some benchmark. Thus,
the application of a parallelizer onto a program might yield multiple snapshots — each
one representing a particular code region in that program. Snapshots are produced by a
translator, i.e., a software that parses the output of a tool, and produces the corresponding
JSON snapshots. As we shall explain in Section 4.3, currently AutoParBench provides
two translators: a general one, that reads C/C++ programs augmented with OpenMP
pragmas, and another specific to ICC, which is not a source-to-source compiler. Figure 4.2
illustrates how snapshots are produced.

file
.c

ICC

AutoPar

Cetus

DawnCC

…

Human

log
.txt

atpr
.c

ctus
.c

dawn
.c

hman
.c

ICC-Trans

S2S-Trans

ilog
json

atpr
json

ctus
json

dawn
json

hman
json

… …

Eval fp

tp

fn

tn

dp

Sec.III-C Sec.III-D

(Sec.III-A)

Sec.III-B

Figure 4.2: Production and evaluation of Snapshots for C/C++.

4.2.1 Snapshot Objects

A JSON snapshot, that is, the normalized representation of a code region po-
tentially annotated with OpenMP pragmas, is a human-readable text file that contains

4.2. The Intermediate Representation 33

multiple objects. Figure 4.3 shows the fields present in objects. We consider two subcate-
gories of objects: those that represent loops, and those that represent code regions other
than loops. The former category represents loops in the C/C++ programming languages:
while, do-while and for. Loops formed by goto statements are not considered.

Common Features

id
file

function
line

column
category

type
parent

children
clauses

Unique object identifier
Location: benchmark name
Location: function name
Location: line number
Location: column number
Category of parallel strategy
Type of OpenMP pragma
Enclosing code region, if any
Links to nested code regions
Encoding associated clauses

Loop Features

map
multiv
indvar
access

reduction

Data mapping information
True if loop is versioned
Loop induction variable
private(i), firstprivate(i), etc
Reduction (+/*,min/max, etc)

Figure 4.3: Fields for JSON snapshot objects.

Example 1 Figure 4.4 shows an example of a loop object, together with two different
programs that lead to it. Notice that, except for the fields file and line, the object is
identical for both programs.

Non-loop objects represent code regions that can be annotated with OpenMP
pragmas, but that are not loops. Example 2 shows code that produces this kind of
object. We have opted to separate loop and non-loop objects to allow comparing tools
at a granularity smaller or larger than loop blocks. This strategy lets AutoParBench’s

4.2. The Intermediate Representation 34

void main() {
 int *a = (int*)malloc(400);
 #pragma omp parallel
 #pragma omp for
 for (int i=0; i<100; i++) {
 a[i] = 1;
 }
}

void main() {
 int *a = (int*)malloc(400);
 #pragma omp parallel for
 for (int i=0; i<100; i++) {
 a[i] = 1;
 }
}

{
"id":"1"{
"file":" ",
"function":"main",
"line":" ",
"column":"3",
"category":"CPU Thr.”,
"type":"parallel for",
"multiv":"false”,
"indvar”:”i”
}

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7

(a)

(b)

(c)

Figure 4.4: (a-b) Two semantically equivalent parallelizations of the same program. (c)
The corresponding loop object.

evaluator pinpoint the parts of a parallel loop that are identical across tools, and the parts
that differ.

Example 2 Figure 4.5 shows the objects extracted from a single loop. The non-loop object
denotes the invocation of the printf function, which has been annotated with the ordered

directive. The atomic pragma, not shown in this example, is a second source of non-loop
objects.

Notice that our choice of JSON as the intermediate representation is based mostly
in our personal taste. We could have used other textual representations that support
encoding hierarchical structures, such as XML or YAML, for instance. The advantage of
using JSON, over, for instance, designing a domain specific language, is the availability of
tools to parse and serialize it in mainstream languages such as Python, Ruby, Java and
JavaScript.
Multi-Versioning. The multiv field of a JSON object indicates that a loop has been
replicated by the auto-parallelizer. Conditional parallelization, as seen in Listing 3.2, falls
into this category. Every loop object that describes one of the multiple versions of the
same code has the same id field. When evaluating tools, the evaluator (to be discussed in
Section 4.3.1) compares only the parallel version of a multi-versioned loop. This approach
provides us with a pragmatic solution to Challenge 3.2.

4.2. The Intermediate Representation 35

#pragma omp parallel for ordered private(i)
for (i=0; i<len; i++)
 #pragma omp ordered
 printf("%d\n", a[i]);

{"id”:”2”,
"file":" ",
"function":"main",
"line":"72”,
"column":"13”,
"type":"ordered",
“parent”:”1”
}

{"id”:”1”,
"file":" ",
"function":"main",
"line":"70”,
"column":"3",
"category":"CPU Threading",
"type":"parallel for",
“children”:[“2”],
“clause”:[“ordered”],
"multiv":"false",
"indvar":"i",
“access”:”private(i)”
}

Figure 4.5: JSON snapshots extracted from a C program representing a loop and a non-
loop object.

4.2.2 Semantic Equivalences

JSON snapshots enable the normalization of syntactically different codes into se-
mantically equivalent classes of annotations. The need for such normalization stems from
the different syntaxes that the OpenMP standard accepts to represent the same paral-
lelization concept. Presently, we consider four classes of normalizations:

• Joining separate constructions. For instance, “omp parallel“ and “omp for“ are
combined into “omp parallel for“, as seen in Example 1, or, similarly, “omp target

data“ and “omp target“ give “omp target data“. This helps AutoParBench deal
with Challenge 3.4.

• Making explicit every implicit data-sharing clause. For instance, AutoParBench sets
as private the loop index variable, unless this variable is explicitly annotated with
a different data-sharing mode.

• Reduction operator “minus“ is normalized into the “plus“ operator since they are
semantically the same.

4.3. The Translators 36

• Constant variables are replaced with their values whenever possible: e.g. len is
replaced with 100 in the snapshot that represents Listing 3.4.
We use the relative position of a code region within its enclosing function to assign

IDs in a snapshot. For example, the first loop in a function will get the ID 1, regardless of
its line number. This approach helps matching regions in files produced by tools with those
in the reference collection. JSON snapshots also tolerate positional syntactic differences
for variables in OpenMP directives, e.g., “to a, from b“ vs “from b, to a“, as each one
of the occurrences becomes an individual field within the JSON file.

4.3 The Translators

Translators are used by AutoParBench to convert the output of an automatic
parallelizer into a JSON snapshot. Currently, AutoParBench provides two translators.
The first is used by tools that perform source-to-source code annotation, such as DawnCC,
AutoPar and Cetus. The second is exclusive to ICC, since it does not annotate source
code; instead, it produces parallel binary code. Additionally, when used in debugging
mode, ICC produces a textual report. Our ICC translator parses this textual report,
and produces the JSON snapshot out of it. The translators collectively help address
Challenge 3.7.

The source-to-source translator is implemented as a clang plugin. The ICC trans-
lator is implemented as a standalone parser. Both these tools recognize most OpenMP
4.5 clauses; however, at the time of this writing, task-oriented pragmas [2] are not fully
supported. This decision was pragmatic: none of the benchmarks in the reference col-
lection contain task-oriented pragmas. Furthermore, the only task annotator that we are
aware of is TaskMiner [32], still a research artifact limited to small programs.
Dealing with Loop Transformations. AutoParBench also deals with Challenge 3.6
during this translation step. Out of all the tools currently evaluated with AutoParBench,
only ICC performs a transformation: loop coalescing. Coalescing consists in merging
into a single loop two successive loops that have a common trip count. When parsing
ICC’s report, AutoParBench identifies the loops that have been coalesced. By reading
the original input file, the translator recovers the identifier of the eliminated loop, as
well as its location (line and column). A snapshot is created for each loop that has been
eliminated. This object is written in a way to denote the same parallel semantics of the
coalesced loop.

4.3. The Translators 37

4.3.1 The Evaluator

AutoParBench defines positive and negative tests in the context of automatic paral-
lelization. A positive test contains a parallelizable code region (mostly a loop); a negative
test contains a code region that should not be parallelized. For a given comparison, a tool
can generate the results below. Notice that such results are relative to a reference. That
reference can be the reference collection of Section 4.1, or it can be the output of another
automatic parallelizer.

• True Positive (TP): parallelized code generated by a tool is syntactically or seman-
tically equivalent to the reference parallel code.

• False Positive (FP): a tool parallelized code that is not marked as parallel in the
reference.

• True Negative (TN): a tool avoided parallelizing code that is not parallel in the
reference.

• False Negative (FN): a tool did not parallelize code, although it is parallelizable in
the reference.

• Different Parallelization (DP): code produced by a tool is parallel; however, Au-
toParBench does not (yet) recognize it as semantically equivalent to the reference.

• Crash: A tool crashes when parallelizing the code.
These results let us compute four standard metrics for every tool that AutoPar-

Bench evaluates: precision = TP/(TP+FP), recall = TP/(TP+FN), accuracy = (TP+

TN)/(TP+TN +FP+FN) and the F1-score = 2×precision×recall/(precision+recall).
JSON objects in the “different parallelization“ and “Crash“ categories are not included in
these metrics. Warnings reported as different parallelization give us a means to continu-
ally evolve AutoParBench. By investigating those warnings, we can refine them further
as either true positives or wrong parallelizations.
Different Parallelizations. Semantic equivalence and positional independence let Au-
toParBench match many syntactically different annotations as true positives. However,
there are annotations that AutoParBench cannot yet classify as equivalent or different. To
aid debugging, when reporting an occurrence of “different parallelization“, AutoParBench
also specifies the type of difference to enable manual investigation. The investigation may
lead to a verdict of either true positive or wrong parallelization. An example of wrong
parallelization occurs when a tool correctly parallelizes a loop, but misses the insertion of
a reduction clause.

Warnings of different parallelization are often due to symbolic expressions. Sym-
bolic expressions specify ranges of data, such as the intervals [a:len] and 0:100 at lines
3 and 11 of Listing 3.5. Proving that general range expressions are equivalent amounts
to solving Diophantine Equations, an undecidable problem. To mitigate this issue, Au-

4.4. Configurable Scripts and Reports 38

toParBench compares the program variables used in each expression. Hence, it can report
that syntactically different arithmetic expressions are built on the same symbols. This is
the strategy currently used to deal with Challenge 3.5.

4.4 Configurable Scripts and Reports

AutoParBench provides a collection of configurable scripts to evaluate auto-parallelizers.
The baseline of evaluation is configurable, because it is possible to use the output of a tool
as ground-truth. In other words, although AutoParBench provides a reference collection,
which we use as the ground-truth when hunting for bugs, nothing hinders developers from
using the output of a trusted tool as the baseline. Such comparisons lead to actionable
items, that is, indications of bugs or inefficiencies that developers can investigate. The
result of a comparison is either a textual or a graphical report. The latter gives developers
an easy-to-see idea on how close or distant are the outputs produced by different tools.

Example 3 Figure 4.6 shows a graphical report produced by AutoParBench. Each cell
in the matrix on the right represents the comparison result between the outcome of a
parallelizer and the corresponding ground-truth reference. Results are either TP, TN, FP,
FN, or DP, indicated by different colors. Similar reports can be generated for any pair of
parallelizers, by treating one of them as the reference.

4.5 Summary of the Solutions

This section provides an overview of the solution proposed in this manuscript.

• The use of different parallelization strategies can deal with the versions generated by
different tools. Challenge 3.1 shows why it is necessary to categorize the reference
collection, as explained in the Solution 4.1.2

• Loops can be replicated by compilers, which generates multiple versions of the same
target source code snippet, as exposed on Challenge 3.2. This framework was de-
signed to compare only the parallel version of the multi-versioned loop.

4.5. Summary of the Solutions 39

Different
Parallelization

False
Negative

False
Positive

True
Negative

True
Positive

void main() {
 int *a = (int*)malloc(400);
 #pragma omp parallel
 #pragma omp for
 for (int i=0; i<100; i++) {
 a[i] = 1;
 }
}
void main() {
 int *a = (int*)malloc(400);
 #pragma omp parallel for
 for (int i=0; i<100; i++) {
 a[i] = 1;
 }
}

- vs -

Figure 4.6: A graphical report produced by AutoParBench. Program on top was produced
by auto-parallelizer; program on the bottom is part of the reference collection.

• Code can be parallelized considering profitability, which means it is necessary to
consider nested parallel regions as described in Challenge 3.3. To figure out this
problem, AutoParBench uses a best-effort solution, as explained in Solution 4.1.3.

• Challenge 3.4 expose the necessity of managed multiple versions of data mapping
variants for accelerator offloading. To solve this issue, Solution 4.2.2 explains how
to produce a standard format, making possible to verify equivalent constructions.

• Different symbolic expressions in programs may mean the same range of data, which
produces an undecidable problem to evaluate their equivalence. Challenge 3.5 ex-
poses the impacts of such a normalization problem. AutoParBench reports a cat-
egory named “different parallelization“ whenever the auto-parallelizer differs from
the reference collection, requiring manual inspection.

• Loops may be transformed due to optimizations applied in the source code. Au-
toParBench also deals with Challenge 3.6 during this translation step, it identifies
the loops that have been modified, producing a snapshot for each loop that has been
eliminated.

4.5. Summary of the Solutions 40

• Compilers can produce outputs in different formats, Challenge 3.7. To solve that,
the framework uses different parsers to process files and extract normalized reports
into a JSON snapshot. This solution is explained in Section refsub:extract.

41

Chapter 5

Experiments

This chapter describes the experiments used to evaluate AutoParBench Version 1.0. In
particular, we:

• provide overall statistics about the benchmarks included in AutoParBench in Sec-
tion 5.1;

• compare the output produced by different parallelizers in Section 5.2;

• demonstrate that AutoParBench is able to detect bugs in both research and industry
tools in Section 5.3;

• carry out a performance comparison between different parallelization approaches in
Section 5.4.

Compilers and Tools Selected. We use AutoParBench to evaluate three source-to-
source tools: AutoPar (0.9.10.235), DawnCC (3.7.0), and Cetus (1.4.4), and one source-
to-binary tool: ICC (19.0.4.243).
Runtime Setup. Results reported in this section were produced on an 8-core Intel(R)
Core(TM) i7-6700T at 3.6GHz with 8GB of RAM running Ubuntu 18.04, featuring a
GPU Intel HD Graphics 530.

5.1 The Framework

Provenance. Currently, AutoParBench’s reference collection contains 89 programs taken
from DataRaceBench v1.2.0, plus 6 programs from the NAS Parallel Benchmark Suite v3.0
and 8 programs from Rodinia v3.1. Together, these 99 programs give us 1,579 loops. Loops
are classified as positive or negative. Positive examples are amenable to parallelization
via one of the strategies that AutoParBench recognizes (as seen in Table 4.1). Negative
examples are loops which should not be parallelized due to data dependencies.

5.2. Comparing the Output of Tools 42

Size of Benchmarks. Figure 5.1 (top) groups benchmarks per lines of code. Each bucket
in the X-axis indicates a range. For example bucket “< 100" includes benchmarks with
less than 100 lines of source code. The Y-axis indicates how many benchmarks fall into
a given range. Most of the benchmarks are small; however, some performance oriented
programs have more than 1,000 lines of code. Figure 5.1 (bottom) shows a histogram of
the number of positive and negative loops per benchmarks. Eight benchmarks contain
only one loop. Our largest benchmark, SP, contains 317 loops.

0	

20	

40	

60	

80	

0	

30	

60	

90	

<10
0

<20
0

<30
0

<40
0

<50
0

<60
0

<70
0

<80
0

<90
0

<10
00

≥1
00

0

<10 <20 <30 <40 <50 <60 <70 <80 <90
<10

0
≥1

00

5 4 3 2 2 3 4 2 5 6 4

N
um

be
r o

f B
en

ch
m

ar
ks

Number of Lines of Code

Number of Loops

Negative
Positive

78 benchmarks have
less than 10 negative
loops, and 87
benchmarks have less
than 10 positive loops

9 benchmarks have more
than 1,000 lines of code

Figure 5.1: Lines of code and loops per benchmarks.

5.2 Comparing the Output of Tools

5.2. Comparing the Output of Tools 43

5.2.1 Standard Metrics.

To generate the metrics defined in Section 4.3.1, we compare the four auto-parallelizers
with the reference collection. Table 5.1 shows how the tools fare in terms of precision,
recall, accuracy and F1-score. It also shows how many programs (Pr) and loops (Tt)
were assigned to each tool, and how many loops were analyzed (Lp). The number of
loops analyzed per tool differs in Table 5.1 for two reasons. First, some benchmarks are
specific to particular targets. For instance, DawnCC and ICC-Simd work on data parallel
programs. Second, some benchmarks cause crashes in the parallelizer, and their loops are
not analyzed.

Tool Prec. Rec. Acc. F1 Pr/Lp/Tt WF1
AutoPar 0.85 0.89 0.85 0.87 99/1381/1579 0.76
Cetus 0.92 0.93 0.95 0.93 99/430/1579 0.25
ICC Cost 0.91 0.28 0.61 0.43 99/1579/1579 0.43
ICC Full 0.91 0.83 0.88 0.87 99/1579/1579 0.87
DawnCC 1.00 0.30 0.73 0.46 17/63/63 0.11
ICC Simd 1.00 0.59 0.65 0.74 17/63/63 0.74

Table 5.1: Summary of results. Pr = number of programs; Lp = number of loops handled;
Tt = total of loops given to the tool; WF1 = Weighted F1-Score. Higher is better.

Table 5.1 considers three different uses of the Intel compiler. ICC-Full parallelizes
every loop that ICC deems parallel, regardless of potential runtime benefits. ICC-Cost
uses the compiler’s default cost model to only parallelize profitable loops. ICC-Simd adds
vectorization on top of ICC-Cost. These tools are used with the following flags:

• AutoPar -c -w -rose:verbose 0
• DawnCC -writeInFile -stats -Emit-GPU=false -Run-Mode= false -Emit-Parallel=true -

Emit-OMP=1 -Restrictifier=true -Memory-Coalescing=true -Ptr-licm=true -Ptr-region=true
• Cetus -parallelize-loops=2 -ompGen=2 -profitable-omp=0
• ICC-Cost -no-vec -fno-inline -parallel -qopt-report-phase= all -qopt-report=5
• ICC-Full -par-threshold0 -no-vec -fno-inline -parallel -qopt-report-phase=all -qopt-report=5
• ICC-Simd -par-threshold0 -vec-threshold0 -fno-inline -parallel -qopt-report-phase=all -

qopt-report=5

ICC-Full, ICC-Cost, AutoPar and Cetus use, as baseline, the 1,579 loops that, in the
reference collection, are in the category CPU Threading (see Tab.4.1). ICC-Simd uses
as reference the category CPU SIMD, and DawnCC uses GPU SIMD. These categories
comprise 63 loops from 17 programs.

The last column of Table 5.1, WF1, is a weighted F1-score. This number, for a
given tool, is defined as WF1 = F1 × P/U , where U is the total of loops given to the

5.2. Comparing the Output of Tools 44

tool, and P is the number of programs that the tool was able to handle. The weighted
score gives us a measure of how close the output of a tool is from the reference collection.

Example 4 (Weighted F1-Score) Although Cetus and ICC-Full receive the same uni-
verse of 1,579 loops from the CPU Threading category, the former analyzes only 430 of
them. Cetus’ F1-score, in this universe of 430 programs, is 0.93. Thus, its weighted
F1-score is 0.93 × 430/1, 579 = 0.25. ICC-Full’s weighted score is 0.87, the same as its
F1-score, because this tool analyzed all the programs that it received. Thus, ICC-Full is
closer to our ground-truth than Cetus.

The WF1-score points out which tool is closer to the reference collection; however,
it is not an indicative of which tool is better, or more likely to present bugs. A tool
that refuses to parallelize every loop will have a WF1-score of zero, but will be bug-free.
Precision (Prec. in Table 5.1) is a better indicative of potential for bugs, as it takes the
number of false positives in consideration. As we shall see in Section 5.3, false positives
mark loops that are likely to be faulty.

Example 5 ICC-Cost refuses to parallelize several loops, which are deemed unprofitable
by its cost model. Such abstentions lead to numerous false negatives; hence, low recall;
however, they do not compromise ICC-Cost’s precision, which remain high (0.91).

5.2.2 Metrics for Benchmark suites.

This section discusses the results seen in Table 5.1. We shall split that table per
benchmark; hence, showing individual results for DataRaceBench, Rodinia and NAS —
the three suites that constitute AutoParBench.

Table 5.2 shows the results for each compiler when parallelizing DataRaceBench’s
benchmarks. Autopar cannot analyze all of them, because it breaks in some of the bench-
marks. In particular, it adds OpenMP directives outside a loop which contains a return

statement — an action invalid due to the OpenMP specification.
Table 5.3 shows metrics for the Rodinia collection. ICC’s cost model has prevented

this tool to parallelize all the loops in the Rodinia programs. Because some of these loops
are known to be profitable [26], we speculate that the cost model used by ICC still has
room for further tuning. Again, AutoPar could not analyze every loop in the target
collection, although the ratio of failures is considerably smaller than that observed in
Table 5.2.

5.2. Comparing the Output of Tools 45

Tool Prec. Rec. Acc. F1 Pr/Lp/Tt WF1
Autopar 0.98 0.93 0.95 0.96 89/269/473 0.57
ICC Cost 01.00 0.18 0.54 0.31 89/473/473 0.31
ICC Full 0.96 0.71 0.83 0.82 89/473/473 0.82
Cetus 0.97 0.96 0.96 0.97 89/236/473 0.50

Table 5.2: Summary of results for DataRaceBench. Pr = number of programs; Lp =
number of loops handled; Tt = total of loops given to the tool; WF1 = Weighted F1-
Score. The higher, the better.

Tool Prec. Rec. Acc. F1 Pr/Lp/Tt WF1
Autopar 0.18 0.28 0.84 0.22 6/178/219 0.18
ICC Cost 00.00 00.00 0.91 0.00 6/219/219 0.00
ICC Full 0.37 0.78 0.87 0.51 6/219/219 0.51
Cetus 0.33 0.66 0.97 0.44 6/171/219 0.34

Table 5.3: Summary of results for Rodinia. Pr = number of programs; Lp = number of
loops handled; Tt = total of loops given to the tool; WF1 = Weighted F1-Score. The
higher, the better.

Table 5.4 presents results for the NAS Parallel Benchmarks (NPB for short). This
collection contains samples that represent classical parallel computations. Cetus is cur-
rently able to deal with a very small subset of the loops found in this benchmark suite.
The issue seems to be motivated by a shortcoming in its implementation: Cetus does not
support compiling multiple source files from different directories. ICC Full and AutoPar,
in turn, perform exceedingly well in the NAS collection, analyzing correctly every loop
that it contains.

Tool Prec. Rec. Acc. F1 Pr/Lp/Tt WF1
Autopar 0.84 0.89 0.83 0.86 8/934/934 0.86
ICC Cost 0.89 0.32 0.57 0.47 8/934/934 0.47
ICC Full 0.94 0.88 0.90 0.91 8/934/934 0.91
Cetus 0.20 0.25 0.69 0.22 8/23/934 0.01

Table 5.4: Summary of results for NAS. Pr = number of programs; Lp = number of loops
handled; Tt = total of loops given to the tool; WF1 = Weighted F1-Score. The higher,
the better.

5.2.3 Graphical Comparison.

Figure 5.2 provides a graphical comparison between tools. Each part of the figure
is a grid; each cell of this grid is the result of the comparison between the output of

5.2. Comparing the Output of Tools 46

a tool and the annotated baseline. We use light colors to represent true positives and
true negatives; thus, the lighter the grid, the closer is the tool’s output to the baseline.
False positives and different parallelization strategies might demand investigation from
developers. These outcomes receive darker colors in Figure 5.2. Thus, the darker the
figure, the larger its potential to present bugs.

Different
Parallelization

False
Negative

False
Positive

True
Negative

(A) ICC-Full - 1579 samples (B) AutoPar- 1381 samples

(D) ICC-Simd - 63 samples(C) DawnCC - 63 samples

(E) ICC-Cost - 1579 samples (F) Cetus - 430 samples

True
Positive

Figure 5.2: Graphical comparison between tools and baseline.

5.3. Actionable Results 47

5.3 Actionable Results

Aided by AutoParBench, we have reported several bugs to developers of compilers
and tools. At the time of this writing, we have acknowledgements of 3 bugs uncovered in
ICC, 2 bugs uncovered in DawnCC, 4 bugs uncovered in AutoPar, and 2 bugs uncovered
in Cetus. We expect that more bugs will emerge, as we are still investigating warnings.

5.3.1 A protocol to investigate results.

We have adopted a methodology to rank warnings. In our experience, said method-
ology improves the debugging process, as it prioritizes bugs that are more likely to be fixed
by tool developers. We rank suspicious results as follows: 1st tier: tool crashes; 2nd tier:
parallel program produces wrong result (Example 5.3.2); 3rd tier: false positive reports
(Examples 5.3.2 and 5.3.2); 4th tier: reports of the different parallelization category (Ex-
ample 5.3.2); and 5th tier: false negative reports (Example 5.3.2).

Tool 1st tier 2nd tier 3th tier 4th tier 5th tier
ICC-Cost 0 0 18 126 491
ICC-Full 0 1 45 217 96
ICC-Smid 0 0 0 8 19
Cetus 11 1 11 8 9
AutoPar 5 1 111 33 81
DawnCC 0 0 0 10 14
Total 16 3 185 402 710

Table 5.5: Number of suspicious results grouped by tiers.

Table 5.5 shows the number of occurrences of suspicious results in the different
tiers, considering the six experiments graphically reported in Figure 5.2. As it would be
natural to expect, most of the warnings are concentrated in the less pressing tiers of the
investigation protocol. Consequently, developers can focus on more serious bugs, leaving
less severe warnings for posterior inspection. Notice that the number of warnings is not
correlated with the number of bugs that we have reported, because the same bug may
cause warnings in several different benchmarks.

5.3. Actionable Results 48

5.3.2 Examples of confirmed bugs.

Below we describe some of the confirmed bugs that we have reported.

Parallel program crashes

The process described in this work to find bugs could guide the experts to find an invalid
generated code.

Listing 5.1: Sequential program that uncovered bug in Cetus.

1 for (i=0;i<len;i++) {
2 c[j]+=a[i]*b[i];
3 j++;
4 }

Listing 5.2: Code produced by Cetus.

1 #pragma omp parallel for private(i) reduction(+: c[i+j])
2 for (i=0; i<len; i ++) {
3 c[i+j]+=(a[i]*b[i]);
4 }
5 j+=len;

Cetus, when given the program in Listing 5.1, produces the code in Listing 5.2. Cetus
extracts variable j from the loop, and transforms it into a reduction. Said reduction causes
a runtime crash, the possible reason is that the variable j is not privatized with the initial
value, and becomes shared. The compiler also is modifying the sequential portion of the
code, replacing c[j] for c[i+j]. Listing 5.3 shows the same code present in the reference
collection.

Listing 5.3: Code in reference collection.

1 #pragma omp parallel for private(i) linear(j)
2 for (i=0;i<len;i++) {
3 c[j]+=a[i]*b[i];
4 j++;
5 }

False Positive in ICC

The framework has reported a false positive case when ICC parallelizes the first loop in
the program in Listing 5.4.

Listing 5.4: Program that caused a false positive in ICC.

5.3. Actionable Results 49

1 void main(int argc, char *argv[]) {
2 int i, len = argc;
3 int x = argc > 2 ? len - 2 : 0;
4 int* a = (int*)malloc(len * sizeof(int));
5 for (i = 0; i < len; i++) {
6 a[x] = i; x=i;
7 }
8 for (i = 0; i < len - 1; i++)
9 printf("\%d ", a[i]);

10 printf("x=\%d",x);
11 }

However, when argc is greater than 2, a race condition occurs in a[len-2], caused
by a primary race in x. This race condition has been found by Intel Inspector in a setup
with len==16.

False Positive in DawnCC

DawnCC has parallelized a doubly nested loop with a combination of the directives target
parallel for and parallel for, something that should not be used due to OpenMP
specifications.

Listing 5.5: Code in reference collection.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(int argc, char *argv[]) {
4 int i, j;
5 int len = 20;
6

7 double a[20][20];
8

9 for (i = 0; i < len; i++)
10 for (j = 0; j < len; j++)
11 a[i][j] = (i * len + j + 0.5);
12 return 0;
13 }

Listing 5.5 shows the sequential code that produces the sample present at List-
ing 5.6, wich contains the invalid OpenMP construction.

Listing 5.6: Code in reference collection.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(int argc, char *argv[]) {
4 int i, j;
5 int len = 20;

5.3. Actionable Results 50

6

7 double a[20][20];
8

9 #pragma omp target data map(tofrom: a[0:20])
10 {
11 #pragma omp target parallel for
12 for (i = 0; i < len; i++)
13 #pragma omp parallel for
14 for (j = 0; j < len; j++)
15 a[i][j] = (i * len + j + 0.5);
16 }
17 return 0;
18 }

DawnCC missing private clause

DawnCC is parallelizing loops considering variables that should be private as shared (by
default). In these cases, the compiler is introducing a race condition.

Listing 5.7: Code in reference collection.

1 #include <stdlib.h>
2 #include <stdio.h>
3 int main(int argc, char *argv[]) {
4 int i;
5 int tmp;
6 int len = 100;
7 int a[100];
8 #pragma omp target data map(tofrom: a[0:100])
9 {

10 #pragma omp target parallel for
11 for (i = 0; i < len; i++)
12 a[i] = i;
13 }
14

15 #pragma omp target data map(tofrom: a[0:100])
16 {
17 #pragma omp target parallel for
18 for (i = 0; i < len; i++) {
19 tmp = a[i] + i;
20 a[i] = tmp;
21 }
22 }
23

24 printf("a[50]=%d\n", a[50]);
25 return 0;
26 }

5.3. Actionable Results 51

Listing 5.7 is the code generated by DawnCC, which inserts all OpenMP directives
and clauses presented on it. A possible parallelization can be found at Listing 5.8.

Listing 5.8: Code in reference collection.

1 #include <stdlib.h>
2 #include <stdio.h>
3 int main(int argc, char* argv[])
4 {
5 int i;
6 int tmp;
7 int len=100;
8 int a[100];
9 #pragma omp target data map(a[0:len])

10 #pragma omp target parallel for
11 for (i=0;i<len;i++)
12 a[i]=i;
13

14 #pragma omp target data map(a[0:len])
15 #pragma omp target parallel for private(tmp)
16 for (i=0;i<len;i++)
17 {
18 tmp =a[i]+i;
19 a[i] = tmp;
20 }
21

22 printf("a[50]=%d\n", a[50]);
23 return 0;
24 }

Different parallelization

The variable sum in the loop showed in Listing 5.9 was marked as firstlastprivate by
ICC; however, that construction should be a reduction.

Listing 5.9: Code in reference collection.

1 #include <stdio.h>
2 int main (void)
3 {
4 int sum=0;
5 for (int i = 0; i < 100; i++)
6 {
7 sum += 1;
8 }
9 printf ("sum=\%d\n",sum);

10 return 0;
11 }

5.3. Actionable Results 52

The bug was acknowledged at https://software.intel.com/en-us/comment/

1946142. It exposes that, sometimes, the reports from ICC are not accurate. However,
these cases can expose an uncovered bug in the compiler, which provides a guide to the
possible target region where the problem is coming from.

ICC crashing

When compiling the program in Listing 5.10, ICC produces code that crashes when run
in parallel; however, the sequential version of the same program works correctly. The
following command line was used to parallelize the program: icc -w -par-threshold0

-no-vec -fno-inline -parallel -qopt-report-phase=all -qopt-report=3 This bug
has been acknowledged at https://software.intel.com/pt-br/forums/intel-c-compiler/
topic/822023.

Listing 5.10: Code in reference collection.

1 #include <stdlib.h>
2 #include <stdio.h>
3 int main(int argc, char* argv[])
4 {
5 int i,j;
6 int n=1000, m=1000;
7 double b[1000][1000];
8

9 for (i=0; i<n; i++)
10 for (j=0; j<m; j++)
11 b[i][j] = 0.5;
12

13 for (i=1;i<n;i++)
14 for (j=1;j<m;j++)
15 b[i][j]=b[i-1][j-1];
16

17 for (i=0;i<n;i++)
18 for (j=0;j<m;j++)
19 printf("b[\%d][\%d]=\%f\n", i, j, b[i][j]);
20 return 0;
21 }

False Negative

The program seen in Listing 5.11 gives us a false negative report when submitted to
AutoPar.

Listing 5.11: Sequential program that reports a false negative to Autopar.

1 for (i=0;i<len;i++) {

https://software.intel.com/en-us/comment/1946142
https://software.intel.com/en-us/comment/1946142
https://software.intel.com/pt-br/forums/intel-c-compiler/topic/822023
https://software.intel.com/pt-br/forums/intel-c-compiler/topic/822023

5.4. Performance Comparison 53

2 c[j]+=a[i]*b[i];
3 j++;
4 }

Listing 5.12: Code in reference collection.

1 #pragma omp parallel for private(i) linear(j)
2 for (i=0;i<len;i++) {
3 c[j]+=a[i]*b[i];
4 j++;
5 }

This tool refuses to annotate this loop. However, arrays a, b and c are allocated statically;
hence, it is trivial to show that aliasing cannot occur in this case. Listing 5.12 contains
an example o a possible parallelization for this sample.

5.4 Performance Comparison

The current distribution of AutoParBench has been designed to uncover bugs.
However, AutoParBench includes benchmarks taken from the Rodinia and NPB suites,
which can be used to evaluate the performance of compilers and hardware. AutoPar-
Bench provides a harness to execute these programs. We have used this framework to
compare the speed of the code produced by two different auto-parallelization tools: ICC
and AutoPar. Figure 5.3 shows the result of this comparison for six NPB benchmarks, and
five Rodinia benchmarks that run when compiled with AutoPar, ICC-Full and ICC-Cost,
namely BFS, BPT=B+Tree, , E3C=Euler3D, E3C= Euler3D (Double), and HTW=Heartwall.

The original benchmarks (MAN) have been annotated by their developers with
OpenMP pragmas. This is generally the fastest code. In some cases, e.g., E3C and EP, MAN
is over 5x faster than the fastest code automatically produced. The reference collection
has not been conceived for performance: we have annotated every loop that is paralleliz-
able. Nevertheless, except for NPB’s SP, the reference is still faster than automatically
annotated programs. ICC-Cost improves the runtime of ICC-Full, the unrestricted paral-
lelizer, by using a cost model that rules out potentially unprofitable parallelizations. Such
improvement can be dramatic: about 37x for Rodinia’s BPT. There is no clear winner be-
tween AutoPar and ICC-Cost. The former yields statistically significant faster code in
three cases; the latter in five. In every case, differences can be elastic: AutoPar’s version
of Rodinia’s E3C is 1.8x faster; ICC-Cost’s version of NPB’s BT is 5.3x faster.

5.4. Performance Comparison 54

IO3	 MAN	 REF	 ATP	 CST	 FLL	

BF
S

BP
T BT C
G

E3
C

E3
D EP FT

H
TW IS

M
G SP

10-1

100

101

102

103

104

Ru
nt

im
e

(s
ec

on
ds

)

Figure 5.3: Performance comparison. We use the following keys: IO3 = sequential code
compiled with ICC -O3, MAN = manual OpenMP annotations in the original benchmarks,
REF = the reference collection (every loop annotated), ATP = AutoPar, CST = ICC-Cost,
FLL = ICC-Full.

55

Chapter 6

Conclusion

This dissertation has presented AutoParBench, a framework that allows semantics-aware,
quantitative comparison of the output of different automatic parallelization tools. Au-
toParBench is engineered around a unified representation of OpenMP-based parallel pro-
grams, in the JSON format. A suite of supporting translators and evaluator are developed
to enable semantics-aware comparison of programs produced by auto-parallelizers and by
humans. We have evaluated AutoParBench by applying it onto four parallelizers. Au-
toParBench has allowed us to discover several bugs in these tools, many of which were
acknowledged by developers. Many more warnings are still left to be confirmed.

6.1 Future Work

As future work, we plan to augment AutoParBench’s reference collection with
more benchmarks, including SPEC OMP and SPEC ACCEL. AutoParBench has been
conceived to facilitate the incorporation of new benchmarks into its reference collection.
However, we believe that there exists still much room for improvements in the infrastruc-
ture necessary to receive new benchmarks. Said improvement consists of more tutorials
and instructions about how to add new benchmarks, and the implementation of scripts
and supporting tools that ease this task.

We also intend to add to AutoParBench’s intermediate representation the ability
to encode OpenMP-based Task Directives. Thus far, AutoParBench allows the repre-
sentation of pragmas mostly related to the creation of data-parallel programs. However,
there exist a vast ecosystem of task-parallel related benchmarks publicly available. This
ecosystem has grown particularly in the most recent years, due to the addition of task
primitives to the OpenMP standard. We believe that the incorporation of such directives
into AutoParBench will be a valuable extension of it.

56

Bibliography

[1] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias
Grosser, Fabrice Rastello, and Fernando Magno Quintão Pereira. Runtime pointer
disambiguation. In OOPSLA, pages 589–606, New York, NY, USA, 2015. ACM.

[2] Eduard Ayguadé, Rosa M Badia, Pieter Bellens, Daniel Cabrera, Alejandro Du-
ran, Roger Ferrer, Marc González, Francisco Igual, Daniel Jiménez-González, Jesús
Labarta, et al. Extending openmp to survive the heterogeneous multi-core era. In-
ternational Journal of Parallel Programming, 38(5-6):440–459, 2010.

[3] Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin, Chirag Dave,
Rudolf Eigenmann, and Samuel P. Midkiff. The cetus source-to-source compiler
infrastructure: Overview and evaluation. Int. J. Parallel Program., 41(6):753–767,
2013.

[4] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu-an Chen, Xiang Zeng, Jay Martin,
and Ha Yoon Song. Parsec: A parallel simulation environment for complex systems.
Computer, 31(10):77–85, 1998.

[5] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A.
Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakr-
ishnan, and S.K. Weeratunga. The NAS parallel benchmarks. Int. J. High Perform.
Comput. Appl., 5(3):63–73, 1991.

[6] Jairo Balart, Alejandro Duran, Eduard Gonzalez, Xavier Martorell, Eduard Ayguade,
and Jesus Labarta. Nanos mercurium: a research compiler for OpenMP. In EWOMP,
pages 103–109. IEEE, 2004.

[7] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dinck-
lage, and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA, pages 169–190, NY, USA, 2006. ACM.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In PLDI, pages 101–113,
New York, NY, USA, 2008. ACM.

Bibliography 57

[9] Jacob Burnim, Tayfun Elmas, George Necula, and Koushik Sen. Ndseq: Runtime
checking for nondeterministic sequential specifications of parallel correctness. SIG-
PLAN Not., 46(6):401–414, June 2011.

[10] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús
Labarta, and Mateo Valero. PARSECSs: Evaluating the impact of task parallelism
in the PARSEC benchmark suite. ACM Trans. Archit. Code Optim., 12(4):1–, 2015.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In IISWC, pages 44–54, Washington, DC, USA, 2009. IEEE.

[12] L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory
programming. Comput. Sci. Eng., 5(1):46–55, 1998.

[13] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable hetero-
geneous computing (shoc) benchmark suite. In GPGPU-3, pages 63–74, New York,
NY, USA, 2010. ACM.

[14] Kyle Daruwalla, Heng Zhuo, Carly Schulz, and Mikko Lipasti. Bitbench: A bench-
mark for bitstream computing. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems,
pages 177–187, 2019.

[15] Jack Dongarra. The linpack benchmark: An explanation. In International Conference
on Supercomputing, pages 456–474, London, UK, UK, 1988. Springer-Verlag.

[16] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguade. Barcelona OpenMP tasks suite: A set of benchmarks targeting the ex-
ploitation of task parallelism in OpenMP. In ICPP, pages 124–131, Washington,
DC, USA, 2009. IEEE.

[17] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache locality
of memory allocation. In Proceedings of the ACM SIGPLAN 1993 conference on
Programming language design and implementation, pages 177–186, 1993.

[18] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[19] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hi-
bench benchmark suite: Characterization of the mapreduce-based data analysis. In
2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW
2010), pages 41–51. IEEE, 2010.

Bibliography 58

[20] Yongbing Huang, Zhongbin Zha, Mingyu Chen, and Lixin Zhang. Moby: A mobile
benchmark suite for architectural simulators. 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 45–54, 2014.

[21] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[22] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
Dataracebench: A benchmark suite for systematic evaluation of data race detection
tools. In SC, pages 11:1–11:14, New York, NY, USA, 2017. ACM.

[23] Chunhua Liao, Daniel J Quinlan, Jeremiah J Willcock, and Thomas Panas. Semantic-
aware automatic parallelization of modern applications using high-level abstractions.
International Journal of Parallel Programming, 38(5):361–378, 2010.

[24] Anderson M. Maliszewski, Dalvan Griebler, Claudio Schepke, Alexander Ditter, Di-
etmar Fey, and Luiz Gustavo Fernandes. The NAS benchmark kernels for single
and multi-tenant cloud instances with LXC/KVM. In HPCS, pages 359–366, Los
Alamitos, CA, USA, 2018. IEEE Computer Society Press.

[25] Carlos A. F. Maron, Adriano Vogel, Dalvan Griebler, and Luiz Gustavo Fernandes.
Should PARSEC benchmarks be more parametric? A case study with dedup. In
PDP, pages 217–221, Los Alamitos, CA, USA, 2019. IEEE Computer Society Press.

[26] Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira, Guido Araújo,
and Fernando Magno Quintão Pereira. DawnCC: Automatic annotation for data
parallelism and offloading. ACM Trans. Archit. Code Optim., 14(2):13:1–13:25, May
2017.

[27] Dheya Mustafa and Rudolf Eigenmann. PETRA: Performance evaluation tool for
modern parallelizing compilers. Int. J. Parallel Program., 43(4):549–571, 2015.

[28] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[29] C. Polychronopoulos. Loop coalescing: A compiler transformation for parallel ma-
chines. In International Conference on Parallel Processing, pages 235–242, Washing-
ton, DC, USA, 1987. OSTI.

[30] S. Prema, Rupesh Nasre, R. Jehadeesan, and B. K. Panigrahi. A study on popu-
lar auto-parallelization frameworks. Concurrency and Computation: Practice and
Experience, 31(17), 2019.

Bibliography 59

[31] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. Renaissance: Benchmarking suite for par-
allel applications on the jvm. In PLDI, pages 31–47, New York, NY, USA, 2019.
ACM.

[32] Pedro Ramos, Gleison Souza, Divino Soares, Guido Araújo, and Fernando Magno
Quintão Pereira. Automatic annotation of tasks in structured code. In PACT, pages
31:1–31:13, New York, NY, USA, 2018. ACM.

[33] Peter Rundberg and Fredrik Warg. The freebench v1. 0 benchmark suite. URL:
http://www. freebench. org, 2002.

[34] Alper Sen, Gokcehan Kara, Etem Deniz, and Smaïl Niar. Fast system level bench-
marks for multicore architectures. 2014 17th Euromicro Conference on Digital System
Design, pages 635–638, 2014.

[35] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the NAS
parallel benchmarks in opencl. In IISWC, pages 137–148, Piscataway, NJ, USA, 2011.
IEEE Press.

[36] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites for bench-
marks of static analysis tools. In 2015 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages 12–15. IEEE, 2015.

[37] Stephen F Siegel and Louis F Rossi. Analyzing blobflow: A case study using model
checking to verify parallel scientific software. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages 274–282. Springer, 2008.

[38] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent
Zhan, Xiaona Li, and Bizhu Qiu. Bigdatabench: A big data benchmark suite from
internet services. 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 488–499, 2014.

[39] Michael Joseph Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[40] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. SIGPLAN Not., 46(6):283–294, June 2011.

	1 Introduction
	1.1 Publications

	2 Literature Review
	2.1 Benchmarks in General
	2.2 Benchmarks for parallel computing
	2.3 Testing in general
	2.4 Testing for parallelization tools

	3 Challenges
	3.1 A program may be amenable to different parallelization strategies.
	3.2 Code might be amenable to conditional or multi-versioning parallelization.
	3.3 Nested loops might be parallelized in a combinatorial number of ways.
	3.4 There are multiple data mapping variants for accelerator offloading.
	3.5 Pragmas can use expressions parameterized by different program symbols.
	3.6 Auto-parallelization tools can apply transformations in programs, such as loop-splitting and loop-coalescing.
	3.7 Auto-parallelization tools can produce outputs in different formats.

	4 The design of AutoParBench
	4.1 The Reference Collection
	4.2 The Intermediate Representation
	4.3 The Translators
	4.4 Configurable Scripts and Reports
	4.5 Summary of the Solutions

	5 Experiments
	5.1 The Framework
	5.2 Comparing the Output of Tools
	5.3 Actionable Results
	5.4 Performance Comparison

	6 Conclusion
	6.1 Future Work

	Bibliography

