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A B S T R A C T

The Brazilian Savannah, known as Cerrado, has the richest flora in the world among the savannas, with a high
degree of endemic species. Despite the global ecological importance of the Cerrado, there are few studies focused
on the modeling of the volume and biomass of this forest formation. Volume and biomass estimation can be
performed using allometric models, artificial intelligence (AI) techniques and mixed regression models. Thus, the
aim of this work was to evaluate the use of AI techniques and mixed models to estimate the volume and biomass
of individual trees in vegetation of Brazilian central savanna. Numerical variables (diameter at height of 1.30m
of ground, total height, volume and biomass) and categorical variables (species) were used for the training and
fitting of AI techniques and mixed models, respectively. The statistical indicators used to evaluate the training
and the adjustment were the correlation coefficient, bias and Root mean square error relative. In addition,
graphs were elaborated as complementary analysis. The results obtained by the statistical indicators and the
graphical analysis show the great potential of AI techniques and mixed models in the estimation of volume and
biomass of individual trees in Brazilian savanna vegetation. In addition, the proposed methodologies can be
adapted to other biomes, forest typologies and variables of interest.

1. Introduction

The savanna of Central Brazil, known locally as Cerrado, has the
richest flora among Earth's savannas, with a high number of endemic
species (Marris, 2005; Myers et al., 2000). However, severe deforesta-
tion occurs in the Brazilian Cerrado, being potentiated by the use of fire
to remove remaining vegetation, which is common due to its ease and
low cost; this expels carbon fixed in gases and contributes to the
greenhouse effect (Barni et al., 2016; Cunha et al., 2016; Günther et al.,
2018; Kuch, 2017; Ledo et al., 2018; Moon et al., 2013; Torres et al.,
2015; Tozer and Klenk, 2018; Yang et al., 2016).

Even though the global ecological importance of the Cerrado has
been acknowledged, there have been few studies focused on volume

and biomass quantification of this forest formation (Ribeiro et al., 2011;
Sales et al., 2007). One of the reasons for this lack of studies is the
specific growth characteristics of Brazilian Cerrado trees, such as the
tortuosity and irregularity of the stems from the base to the canopy,
which make it difficult to collect data and estimate volume and biomass
(Nunes and Görgens, 2016; Özçelik et al., 2010).

Volume and biomass estimation can be performed with allometric
models. In these models, the volume and biomass values are estimated
as a function of dendrometric variables obtained in the field, such as
diameter at a height of 1.30m from the ground (DBH) and total height
(H), or the basic density of wood (BD) (Ferraz et al., 2014; Koala et al.,
2017; Ratuchne et al., 2016; Somogyi et al., 2007).

Classical models that use only variables such as DBH and H, based
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on dendrometric prototypes, may not perform well in parameter ad-
justment because there is a low correlation between DBH and H with
the volume or biomass of Cerrado trees, due to the tortuosity of the
bole. Thus, a factor that can positively influence the accuracy of volume
and biomass estimates in the Cerrado is the use of techniques that allow
the insertion of other independent variables correlated with the vari-
able of interest.

Thereby, in order to minimize errors in volume and biomass esti-
mation within complex vegetation, such as the Brazilian savanna, the
application of artificial intelligence techniques, which are capable of
mapping input patterns and discovering hidden patterns in hetero-
geneous non-linear high-dimensional data (Aertsen et al., 2010;
Breiman, 2001; Cano et al., 2017; Görgens et al., 2015; Özçelik et al.,
2013, 2010; Reis et al., 2018; Siminski, 2017; Simões and Shaw, 2007),
and mixed regression models are alternatives with strong potential,
representing robust methods of data analysis that can increase the ac-
curacy of estimates (Xu et al., 2014).

Based on the above, it is believed that the classical models of re-
gression in the literature are not the most suited to estimating the vo-
lume and biomass of Cerrado trees. Thus, the objective of this work was
to evaluate the potential of artificial intelligence techniques and mixed
models to increase the accuracy of the estimation of the volume and
biomass of individual trees in Cerrado vegetation.

2. Materials and methods

2.1. Physical aspects of the study area

This research was conducted at 16° 41 ′south latitude and 43° 50′
west longitude in a legal reserve area (29.6 ha) of the Agricultural
Sciences Institute of the Federal University of Minas Gerais in the mu-
nicipality of Montes Claros (Fig. 1).

The climate of the region is Aw according to Köppen and Geiger
(1928), tropical semiarid, warm, and dry, with periods of concentrated
rainfall between October and March. The annual precipitation is
1060mm and the mean annual temperature is 24.2 °C (Instituto
Nacional de Meteorologia, 2013). The predominant vegetation is the
Cerrado sensu stricto (Scolforo et al., 2008).

The data of the present work are part of a project whose main ob-
jective was to carry out the quantitative and qualitative inventory of the

forest, and later to carry out the total removal of the vegetation, in
order to accompany the dynamics of forest growth. The study area
comprises 1 ha (100×100m) within the area of 29, 6 ha (Fig. 1).
Within the study area, all woody trees with DBH equal to or greater
than 3.0 cm were selected. All of the trees were botanically identified
and labeled with their scientific names. The classification system
adopted for the family level was the APG III (2009). The total height of
all individuals was also measured using a telescopic measuring rod of
10m in length.

A total of 919 individuals were measured, covering 19 families, 45
genera, and 48 species. The Fabaceae family had the largest number of
species (23.72% of the total). The families that most stood out in terms
of the number of individuals were Fabaceae (218), Malpighiaceae
(184), and Anarcadiaceae (183), representing 63.65% of the total
sampled individuals.

The methodological procedure adopted is presented in Fig. 2 and is
divided into four steps: database; calculation of BD, volume, and bio-
mass; methodology processing; and analyzing solution strategies.

2.2. Processing inventory data

The study area, defined as 1 ha, contained 919 individuals. Of these,
504 trees belonging to 17 species were sampled (Table 1). The selected
trees were cut and measured respecting two criteria: to cut a minimum
of 8 trees per species with DBH ≥3 cm and not to cut trees of species
protected by current legislation. The value of importance [VI] was
calculated that characterizes the importance of each species in the
community. Theoretically, the species with the highest VI values are the
most successful in exploiting the habitat resource. The sum of the VI
(%) of the 17 species represented 61.70% of the total. Measured trees
had DBH (with bark) greater than 3 cm. The commercial height (HC),
the total height (H) and the volume of the tree branches were measured
up to the minimum diameter of 3 cm.

The first stage of the processing was to structure the database to
estimate volume and biomass. This was divided in 70% for the training/
adjustment and 30% for validation of the analyzed techniques. In this
proportion of 70/30 trees were selected randomly within five classes of
DAP, and the number of trees of each species.

Fig. 1. Location of the study area.

J.P. Martins Silva, et al. Journal of Environmental Management 249 (2019) 109368

2



2.3. Calculation of volume and biomass

The total volumes of the trees (Table 1) were obtained by summing
the bole and branch volumes using scaled diameter measurements,
applying the Huber method. (Kershaw et al., 2016). The Huber method
was chosen because of its greater practical ease compared to Newton's
method, and for being more accurate than the Smalian method, espe-
cially for trees that present tortuosity (Machado and Figueiredo Filho,
2009). Due to the species tortuosity of the Brazilian savanna, the
measurement procedure was adapted. Measurement heights were not
constant for all trees; the measurers sought to respect the straight
segments of the trunks. Thus, at the moment of the cubing, the mea-
surer identified, tree to tree, each segment rectilinearly, measuring its
length and diameter in half its length, then applied it to each segment of
Huber's formula. This same reasoning was used for both the main bole
and the branches, and the total volume of the tree was obtained by
adding the partial volumes.

To obtain the wood BD, the trees were cut and 5 wood discs of
approximately 3 cm thick were removed at the 0%, 25%, 50%, 75%,
and 100% HC positions. In the laboratory, the volume of the sample to
calculate the density was obtained based on the principle of
Archimedes, by means of water displacement, and the dry weight of
each sample was obtained after oven drying at 103 °C (American
Society for Testing and Materials, 2002). The wood BD at each sampled
position was obtained using the ratio of the dry weight to the volume of
the wood. Finally, the BD of the wood of each tree was obtained using
the arithmetic mean of the densities at each longitudinal position.

To obtain the dry biomass, the average BD per species was multi-
plied by the total volume of the tree, considering the bole and branches,
according to Brown and Lugo (1984) and Nogueira et al. (2008).

2.4. Application of volume and biomass estimation methods

Using the obtained data, four possible ways of estimating the

Fig. 2. Flowchart of the methodology used to evaluate volume and biomass estimation of Brazilian savannah trees.

Table 1
Species; total trees per species; and minimum, medium, and maximum values of the variables DBH (with bark), total height, commercial height, and importance
value.

Species Number of trees DBH (cm) H (m) HC (m) IV (%)

Min Mean Max Min Mean Max Min Mean Max

Luehea paniculata 8 3.50 5.02 10.50 3.35 4.75 6.95 1.55 2.95 5.72 1.17
Sclerolobium sp. 10 3.60 5.76 7.96 2.95 4.05 5.21 1.90 2.99 3.80 1.79
Terminalia fagifolia 30 3.34 5.13 9.33 3.30 4.95 13.49 1.79 3.19 5.40 4.31
Copaifera langsdorffii 31 3.02 8.42 17.83 3.23 6.29 9.90 1.80 4.59 8.02 6.84
Maytenus ilicifolia 8 3.02 5.69 8.21 3.75 4.95 5.90 1.77 3.20 4.44 0.74
Heteropteris byrsonimifolia 149 3.02 4.77 12.89 2.64 4.38 13.50 1.43 2.71 6.50 11.59
Tocoyena formosa 19 3.34 4.34 6.40 2.70 4.23 6.50 1.45 2.74 5.00 2.58
Machaerium opacum 86 3.34 7.14 16.23 1.94 4.26 9.70 1.53 3.36 8.60 10.52
Curatella americana 31 3.85 7.11 15.60 1.96 3.91 6.25 1.43 3.16 5.70 5.03
Alibertia edulis 12 3.18 4.20 7.48 2.95 4.27 6.65 1.32 2.42 5.09 1.47
Byrsonima heterophyla 16 3.02 5.96 10.38 3.22 4.56 6.20 1.39 3.04 5.20 1.85
Sebastiana brasiliensis 20 3.01 4.09 5.79 3.88 5.43 7.40 1.45 3.13 5.50 2.07
Combretum leprosum 26 3.06 5.20 14.48 3.00 5.12 8.81 1.40 3.19 6.93 2.15
Jacaranda braziliensis 21 3.02 6.07 10.70 3.11 5.26 7.34 1.43 3.36 5.72 2.54
Magonia pubescens 13 3.02 5.43 9.87 3.30 4.50 6.06 1.30 2.98 4.35 2.63
Acosmium dasycarpum 15 3.02 5.78 10.35 2.63 4.04 5.58 1.42 2.99 4.51 1.86
Plathymenia reticulata 9 4.90 12.10 18.27 4.82 7.10 9.60 3.40 5.87 8.60 2.56

Wherein Min.=minimum values, Mean=mean values, Max.=maximum values, DBH=diameter at a height of 1.30m from the ground, H=total height,
CH=commercial height, and IV=importance value.
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volume and biomass of individual trees were verified and described in
the sequence.

2.4.1. Data processing with Adaptative network-based fuzzy inference
systems (ANFIS)

The ANFIS (Fig. 3) is the combination of RNA and fuzzy logic, in
which the neural network generates rules or functions of pertinence for
the fuzzy systems (Simões and Shaw, 2007).

The output of the ANFIS system is modified according to the ante-
cedent and consequent parameters. In the present work, a hybrid ap-
proach was considered, in which the parameters of the antecedents
were adjusted using the descending gradient method and the con-
sequent ones using the least squares method (Akbarzadeh et al., 2014;
Mathur et al., 2016).

In layer 1 (Fig. 3), the fuzzification process occurs, in which the
universe of real numbers is mapped to the fuzzy domain (Mathur et al.,
2016). Each node of this layer creates an association degree (μi) for the
input variables (x1 e x2), which varies from 0 to 1, using pertinence
functions (Aj, Bk). The present study used the Gaussian-type function;
see Eq. (1) and Eq. (2) (Bilgehan, 2011).
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wherein ak, aj, ck, and cj are parameters of the antecedents to be esti-
mated by the descending gradient method (backpropagation);; μ x( )An 1
and μ x( )Bn 2 is the degree of association of the variables x1 e x2.

In layer 2, the nodes are fixed and labeled as O2, i. The output of
each node (ωi) is the product of all input signals; see Eq. (3)
(Akbarzadeh et al., 2014; Mathur et al., 2016).

= =O ϖ μ x μ x( ) ( )i i Ak Bk2, 1 2 (3)

In layer 3 (O i3, ), the values of ωi are normalized by means of Eq. (4):

= =
+
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ω ωi i

i
3,

1 2 (4)

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jenvman.2019.109368.

In layer 4 (O i4, ), the defuzzification occurs, which is the transfor-
mation of the fuzzy values to a real number; see Eq. (5) (Simões and
Shaw, 2007):

= = + +O ϖ f ϖ a x b x c( )i i i i i i i i4, 2 (5)

wherein the constants ai, bi e ci are parameters of consequents and can
be adjusted via linear regression analysis using the least squares
method.

In layer 5 (O i5, ), the sum ϖ fi i occurs, which provides the final output
(Eq. (6)).
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For ANFIS implementation, it is necessary to provide a data matrix
containing the input (independent variables) and output (dependent
variable). After loading this data, the fuzzy inference system (FIS) is
generated. Two clustering algorithms were tested fuzzy C-means (FCM)
(Bezdek, 1981) and subtractive cluster [(SC)] (Chiu et al., 1994) were
used to optimize the amount of rules generated in the training. The
clustering consists of finding data points with greater similarity in the
same cluster and less similarity between different cluster data (Su and
Zhao, 2017).

The FCM finds the centers of the clusters ( j), minimizing the dis-
tance of xk and vi, using the objective function represented by Equations
(7)–(9):

∑ ∑= −
= =

j μ x v‖ ‖
k

n

i

c

ik
m

k i
1 1

2

(7)

=
∑
∑

=

=
v

μ x x
μ x

[ ( )]
[ ( )]i

k
n

i k k

k
n

i k
m

1
2

1 (8)

=
∑ =

−
−

−( )
μ 1

ik

i
c x v

x v
m

1
‖ ‖
‖ ‖

1
1k i

k J (9)

Wherein n=number of observations, c=number of clusters,
xk=k-th observation, vi=i-th center of cluster, vj= j-th center of
cluster, m=exponential constant with a value greater than 1, and
μik=degree of the association function that initially occurs randomly.

The FCM algorithm requires three parameters: the number of clus-
ters, the exponent value, and the number of iterations. In this work, the
cluster number ranging from 2 to 17 was analyzed in intervals of 1, the
value of the exponent ranged from 1.10 to 3.10 in intervals of 0.10, and
the number of iterations was equal to 100.

The SC algorithm considers each data point as having the potential
to be the center of the cluster; this was calculated according to Equation

Fig. 3. Structure of a neuro-fuzzy system.
Source: Adapted from Haznedar and Kalinli (2018).
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(10):

⇐ − −−( )P P P e x x‖ ‖i i k
ηr i k

⁎ 4 ⁎ 2a (10)

wherein =PK
⁎ potential of the points that are already centers of the

clusters, xi =candidate point to be the cluster center =xk
⁎ centers of

clusters formed, ra=radius of influence of the cluster, =η squash factor.
To group the data to estimate the volume and biomass using SC,

four parameters had to be specified: a) squash factor, which reduces the
probability of peripheral points being considered part of a cluster. The
analyzed values varied between 0.60 and 2.70, in intervals of 0.30; b)
radius of influence, which is the range that the center of the cluster has
under the neighboring points. Points with distances smaller than the
radius range are grouped in the same cluster. The analyzed values
varied between 0.20 and 0.90, in intervals of 0.10; c) acceptance rate,
which considers only points with potential to be centers of the cluster.
Their value varied from 0.45 to 0.60, in intervals of 0.05; and d) re-
jection rate. Points with values below the potential of the first cluster
are rejected. Their value varied between 0.10 and 0.25, in intervals of
0.05.

Data processing with ANFIS was performed using to toolbox logic
fuzzy of Software Matlab R2016a (MATHWORKS INC, 2018a). This
toolbox has the ANFIS module, as proposed by Jang (1993).

The functions of association of the clusters were of the Gaussian
type and the linear function was the output. The training algorithm was
a hybrid that combined the backpropagation method with the least
squares method. The number of training times ranged from 1 to 20. The
stopping criterion for the training was an error equal to zero or early
stopping. Early stopping is used to improve generalization and avoid
data overfitting. The moment the training database error began to de-
crease and the validation database error began to increase, training
stopped.

2.4.2. Data processing with an artificial neural network (ANN)
An ANN of the multilayer perceptron (MLP) type has great potential

for function approximation studies (Görgens et al., 2015; Nunes and
Görgens, 2016; Reis et al., 2018; Vieira et al., 2018), and therefore one
was used in this study. They are composed of an input layer, where the
variables are presented to the network; intermediate or hidden layers,
where the processing is done; and an output layer, where the result is
presented. The intermediate layer is responsible for identifying the non-
linear patterns of the data through the use of activation functions
(Braga, 2007).

In this study, the hyperbolic and logistic tangent functions were
tested in the intermediate layer and the linear function in the output
layer. When using MLP (Fig. 4) in the estimation of the volume and
biomass of Brazilian savanna species, it was necessary to adjust the
synaptic weights of the connections between the processing units. These
were adjusted in an iterative process commonly called learning or
training (Braga, 2007). The training algorithms analyzed were the Le-
venberg-Marquardat and the resilient backpropagation (Haykin, 2003;
Braga, 2007).

The inputs were normalized, by means of internal MATLAB

procedure, in intervals of −1 to 1 and 0 to 1, respectively, for the ac-
tivation function hyperbolic and logistic tangent. After normalization,
the inputs were entered into the network and passed to the intermediate
layer (aj), where the weighted sum was calculated according to Eq.
(11), which is the value of the variable (xi) times the weight of the
variable (wij) plus the bias of the variable (bi). The product of this
calculation was transmitted to the activation functions of the hyper-
bolic (Cjh) (Eq. (12)) and logistic (Cjl) (Eq. (13)) tangents. Finally, the
calculations of the intermediate neurons served as input (x x x, , ... n1 2 ) the
DBH, HT and species, to the output neurons (YK) volume and biomass
(Eqs. (14) and (15)).
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For the adjustment of the parameters of the ANNs, the toolbox ar-
tificial neural networks of the software Matlab R2016a (MATHWORKS
INC, 2018b) were used. Ten networks were trained by altering the
number of neurons in the intermediate layer, which varied from 1 to 19,
seeking to investigate the application of a simpler structure to a more
complex one. According to Braga (2007), it is best to use the simplest
structure, as long as it provides accurate estimates. Four criteria for
stopping ANN training were established. During training, the criterion
that was reached first established the end of the processing. The criteria
analyzed were maximum number of times equal to 1,000, maximum
training time equal to 300 s, maximum error of 0.01, and early stop-
ping.

2.4.3. Data processing with random forest
Random forest (RF) is a machine learning method that uses a

bootstrap approach to construct multiple decision trees. In addition, the
trees have a resource selection system in their structure, using only the
variables that actually influence the response (Cano et al., 2017).

The RF training mechanism creates several regression trees using
the classification and regression tree (CART) algorithm. These trees are
generated from bootstrap samples. The bootstrap is a statistical ap-
proach used to quantify the uncertainty associated with a given esti-
mator (James et al., 2013).

Data processing with RF was performed using the statistics and
machine learning toolbox of Matlab R2016a. In order to estimate the
volume and biomass of native Brazilian savanna species using RF
(Fig. 5), it was necessary to define the number of trees, the number of
variables chosen to start the division, and the number of leaves for each
tree formed. The number of trees used as standard was 500 (Wang

Fig. 4. Structure of an artificial neural network.
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et al., 2016). In this work, 50 to 1000 trees were trained, with a range of
50 trees. The number of variables selected to begin dividing was 1/3 of
the number of independent variables and the number of observations
per sheets was 5–35, with intervals of 5 sheets. The choice of the best
RF configuration was made based on the square root of the relative
mean error (rRMSE) of the training and validation data set.

2.4.4. Data processing with regression models
The regression model used in the volume and biomass estimation

was that by Schumacher and Hall (1933) (Eq. (16)). This model was
adjusted in fixed (MNL) and mixed (NLME) form, in order to check if
the inclusion of the random effect (species) would bring gains in terms
of the accuracy of the estimation.

= +Y β DAP H εβ β
0 1 2 (16)

All possible combinations for the inclusion of the random effect in

Fig. 5. Structure of a random forest.
Source: Adapted from Ibrahim and Khatib (2017).

Table 2
Statistics used to evaluate the performance of the techniques used to estimate
the volume and biomass of Brazilian savannah trees.

Statistics Formulas Nº

Correlation coefficient
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MAE i
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1 ˆ (20)

Residual prediction deviation =RPD SD
RMSE

(21)

Table 3
Basic density in different positions and means of the 17 species analyzed.

Species Number of trees Position in the commercial bole Mean VC%

% 5% 0% 5% 100%

Basic density g cm3−1

Luehea paniculata 8 0.55 0.58 0.57 0.57 0.58 0.57 2.15
Sclerolobium sp. 10 0.62 0.62 0.59 0.55 0.58 0.59 4.98
Terminalia fagifolia 30 0.67 0.63 0.62 0.61 0.65 0.64 3.79
Copaifera langsdorffii 31 0.65 0.63 0.60 0.59 0.59 0.61 4.38
Maytenus ilicifolia 8 0.66 0.63 0.66 0.62 0.58 0.63 5.26
Heteropteris byrsonimifolia 149 0.66 0.64 0.64 0.63 0.63 0.64 1.91
Tocoyena formosa 19 0.71 0.72 0.72 0.71 0.70 0.71 1.18
Machaerium opacum 86 0.62 0.65 0.63 0.61 0.65 0.63 2.83
Curatella americana 31 0.55 0.54 0.53 0.53 0.53 0.54 1.67
Alibertia edulis 12 0.72 0.70 0.69 0.68 0.68 0.69 2.41
Byrsonima heterophyla 16 0.58 0.53 0.53 0.56 0.45 0.53 9.34
Sebastiana brasiliensis 20 0.60 0.58 0.57 0.55 0.58 0.58 3.15
Combretum leprosum 26 0.69 0.68 0.66 0.66 0.66 0.67 2.11
Jacaranda braziliensis 21 0.60 0.57 0.57 0.58 0.52 0.57 5.19
Magonia pubescens 13 0.72 0.69 0.69 0.70 0.80 0.72 6.44
Acosmium dasycarpum 15 0.45 0.42 0.42 0.48 0.41 0.43 6.61
Plathymenia reticulata 9 0.71 0.66 0.63 0.63 0.72 0.67 6.42

Wherein VC (%)= variation coefficient as a percentage.
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the NLME were tested: i.e., effects associated with the DBH and H
constant coefficients and their combinations. To adjust the model, the
maximum likelihood algorithm was used in the R software (R Core
Team, 2017).

2.5. Solution strategies

Volume and biomass were estimated using the ANFIS, ANN, RF, and
regression models with fixed and mixed effects. The training/fitting
strategy had as independent variables DBH, H, and species, and as the
dependent variables volume and biomass. Thus, two training/fitting
strategies were adopted, varying the inclusion of the independent
species variable, in which Strategy 1 for the volume and biomass esti-
mation used DBP, H, and species, and Strategy 2 only DBP and H.

2.6. Methods for assessing the accuracy of estimates

The ANFIS, RNA, RF, and mixed effects regression models for

training/adjustment and validation were evaluated based on the fol-
lowing statistics: the linear correlation coefficient between the observed
and estimated values (rYŶ ), relative bias [B (%)], RMSE(%), mean ab-
solute error (MAE), and residual prediction deviation (RPD)
(Table 2).Wherein =Yi dependent variable observed, =Ŷi dependent
variable estimated, =Y‾i mean of the observed dependent variable, =Ŷm
mean of the estimated dependent variable, =n number of observations,
SD= standard deviation of measured values, and RMSE= root mean
square error.

In order to complement the statistics, graphs were drawn up that
related the values observed and estimated by the techniques, and
graphs of percent residuals were made. The error of each observation
was calculated as a percentage (Eq. (22)).

= −E Y Y
Y

(%)
ˆ

100i i

i (22)

wherein E (%) =error of each observation.

3. Results

3.1. Values of the basic wood density of the species studied

Table 3 shows the mean values of the densities per sampled posi-
tion, the mean value per species, and the variation coefficient (VC%) of
the means at the collection positions. The VC% of the means was low in
relation to the 17 species that were collected, and the Byrsonima het-
erophyla species presented the highest VC value (9.34%). The species
Acosmium dasycarpum had the lowest BD (0.43 g cm-3) and Magonia
pubescens the highest BD (0.72 g cm-3). The overall mean densities were
0.61 g cm-3 and the mean variation coefficient was 4.11%.

The mean BD of the species of the Brazilian savanna fragment stu-
died was 0.612 g cm−3, similar to the wood BD of Cerrado tree species
in the state of Tocantins (Silva and Miguel, 2015), with a value of
0.650 g cm−3. Jati et al. (2014) also found results close to the present
study with a mean BD of 0.592 g.cm-3 in eight species of the Savana de
Roraima in the northern Brazilian Amazon. However, Goulart et al.
(2012) found that the species Stryphnodendron adstringens (barbatimão)
had an average BD of 0.469 g.cm-3. For all species, the variation in
density along the bole did not exceed 10%, varying in average at
around 4.10%, which can be considered a low variation along the bole.

Table 4
Configurations of selected techniques used to estimate volume and biomass.

Technical Strategies Variable Parameters

Algorithm Cluster
number

Exponent

ANFIS 1 Volume FCM 3 1.2
Biomass 3 1.3

2 Volume 9 1.5
Biomass 10 1.2

Algorithm Activation
function

Neuron
number

ANN 1 Volume Levenberg-
Marquadt

Hyperbolic
tangent

19
Biomass 6

2 Volume 5
Biomass 4

RF 1 Volume Algorithm Number of
trees

Number of
obs/tree

CART 50 5
Biomass 950 5

2 Volume 50 5
Biomass 450 5

Wherein FCM= fuzzy C-means, CART= classification and regression tree.

Table 5
Training and validation statistics for ANFIS, ANN, RF, NLME, and MNL volume estimation in Strategies 1 and 2.

Group Technique rYŶ rRMSE (%) B (%) MAE RPD

Strategy 1

Vol./Bio. Vol./Bio. Vol./Bio. Vol./Bio. Vol./Bio.

Training/Fitting ANFIS 0.984/0.985 13.22/13.05 0.00/0.00 0.0004/0.2447 5.68/5.80
ANN 0.986/0.986 12.33/12.47 −0.06/0.17 0.0004/0.2410 6.09/6.07
RF 0.979/0.978 16.82/17.86 0.39/0.16 0.0004/0.3018 4.46/4.24
NLME 0.984/0.985 13.55/13.15 −0.03/-0.10 0.0003/0.1890 5.54/5.75

Validation ANFIS 0.981/0.982 13.16/12.99 −1.24/-1.10 0.0001/0.2303 5.10/5.22
ANN 0.981/0.982 13.02/12.88 −1.34/-0.89 0.0004/0.2303 5.16/5.27
RF 0.977/0.971 14.87/16.92 −3.56/-3.20 0.0005/0.3332 4.52/4.00
NLME 0.981/0.981 12.95/13.28 1.17/0.77 0.0004/0.2846 5.18/5.11

Strategy 2
Vol./Bio. Vol./Bio. Vol./Bio. Vol./Bio. Vol./Bio.

Training/Fitting ANFIS 0.981/0.979 14.55/15.35 0.00/0.00 0.0004/0.2788 5.14/4.90
ANN 0.981/0.979 14.86/15.17 0.00/-0.04 0.0004/0.2726 5.03/4.95
RF 0.983/0.982 13.94/14.83 0.11/0.31 0.0003/0.2384 5.37/5.07
MNL 0.979/0.974 15.07/17.00 0.17/-0.30 0.0004/0.2564 4.96/4.42

Validation ANFIS 0.974/0.969 16.12/17.95 −0.10/-0.21 0.0004/0.3187 4.33/3.96
ANN 0.975/0.970 15.64/17.34 0.00/0.01 0.0004/0.3123 4.46/4.09
RF 0.968/0.957 17.63/20.49 −0.58/0.01 0.0005/0.3625 3.96/3.47
MNL 0.972/0.969 16.94/16.63 0.57/-0.10 0.0005/0.2752 4.12/4.27

Wherein r= correlation coefficient, rRMSE (%)= square root correlation coefficient of the mean error in percentage, B (%)=Bias, MAE=mean absolute error,
RPD= residual prediction deviation, Vol./Bio.= values obtained from volume and biomass estimation.
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In absolute values, the mean difference between the highest and lowest
densities was 0.059 g.cm-3, with an emphasis on the Tocoyena formosa
and Byrsonima heterophyla species, which had the lowest and highest
variations, respectively (Table 3).

3.2. Strategies 1 and 2 results for the estimation of the volume of trees in the
Brazilian savanna

Parameter variations resulted in a total of 1,402, 760, and 700
combinations for the ANFIS, ANN, and RF techniques, respectively. The
best configuration of each technique was selected based on training and
validation errors. The parameters obtained are presented in Table 4.

In NLME, all possible combinations for the inclusion of the random
effect in the model—i.e., effects associated with the DBH and H con-
stant coefficients and their combinations—were tested. The model with
a random effect in the H variable presented the best performance in
terms of accuracy in estimating both volume and biomass. For the
Schumacher and Hall nonlinear (MNL) models, all coefficients were
significant (p < 0.05). The values of the fixed and random effects
coefficients and of model nonlinear Schumacher and Hall model are

given in Appendix A of Supplementary data.
In Strategies 1 and 2, the statistics used to evaluate the accuracy of

the methods studied, rRMSE (%) and V (%), did not show great varia-
tion between the methodologies used to estimate volume and biomass
(Table 5).

Among the techniques studied, NLME, ANN, and ANFIS were more
accurate in estimating volume and biomass, in the training and vali-
dation sets, in the two strategies when compared to RF. The inclusion of
the species variable (Strategy 1) prompted an improvement in the
performance of the techniques studied when analyzing the statistics rYŶ ,
rRMSE (%), and MAE (Table 5).

Regarding B statistics (%), the ANN showed a better performance in
Strategies 1 and 2, but the NLME obtained a better result for the vali-
dation data set (1.17%) in Strategy 1. RPD was greater than 2.5 in all
techniques, regardless of the strategy used, indicating excellent pre-
dictions, according to Viscarra Rossel et al. (2006).

When analyzing the graphs of the relationship between the observed
and estimated values of volume and biomass by the techniques in
Strategies 1 and 2 (Figs. 6–9), it was observed that the ANFIS, ANN, and
NLME techniques presented points closer to the 45° line (red line) when
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Fig. 6. Graphical analysis of the volume (V) estimated versus the volume (V) observed and graph of the residual, in percentage, versus values observed for Strategy 1.
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compared to RF.
There was no trend of overestimating or underestimating the vo-

lume and biomass for the set of training and validation data of the
ANFIS, ANN, and NLME techniques. The residual graphs presented, on
average, 94.02% of the error contained in the range of± 20%. RF
showed inferior performance to the other techniques, with a tendency
to underestimate the larger volumes and biomasses of trees; in addition,
approximately 87.29% of the error was concentrated in the range
of± 25%.

4. Discussion

The artificial intelligence techniques employed in this study pre-
sented good statistical indicators in the estimation of the volume and
biomass of Brazilian savanna trees (Table 5). This result can be attrib-
uted to the ability of artificial intelligence techniques to capture the
nonlinearity present in the data, as they can approximate complex
functions. According to Vieira et al. (2018), this is an important char-
acteristic for the modeling of forest biological problems, since they do
not usually present linear behavior.

When analyzing the statistical indicators (rYŶ , rRMSE (%), B (%)
MAE and RPD) (Table 5) was possible to observe that the ANFIS and
ANN techniques were superior to the RF technique. This result may
have been influenced by the learning method. The ANFIS and ANN
techniques are trained by error-back-propagation algorithms, which
makes them able to perform input-output mapping for problems of any
kind (Haykin, 2003).

In the mechanism of RF operation, the response is given by the
mean of the observed values. In this case, it may lead to overestimations
in the lower values and underestimations in the larger ones (Nunes and
Görgens, 2016). This can be observed in the graphical analyses of the
estimates (Figs. 6–9). This trend was also observed in the works of
Nunes and Görgens (2016) and Zhang and Lu (2012).

The mixed models provided individual estimates of volume and
biomass for each species and allowed for the introduction of variance
and covariance structures into the random variable (species). These
advantages make mixed models a good alternative in estimating the
volume and biomass of woody vegetation with complex growth, such as
in the Cerrado.

The use of Schumacher and Hall (1933) model in the estimation of
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Fig. 7. Graphical analysis of the volume (V) estimated versus the volume (V) observed graph of the residuals in percentage versus values observed for Strategy 2.
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volume and biomass for Brazilian savanna species resulted in accurate
estimates. The use of species as a random effect provided a reduction in
rRMSE of 8.90% for volume and 20.00% for biomass. Research like that
of Gouveia et al. (2015) obtained superior performance in the NLME
compared to the traditional model of Schumacher and Hall (1933), with
a reduction in the residual standard error of 0.0591 to 0.0023.

In the Brazilian savanna, sampling of volume through scaling
measurements is an exhausting activity, due to the typology of the
vegetation and climate of the region. In addition, identifying species
further burdens this activity. However, considering the good results of
Strategy 2, which does not consider species as an independent variable,
it is possible to accurately estimate the volume of Brazilian savanna
trees even without considering the species sampled. However, the gain
in terms of accuracy in estimating biomass with the use of the species
was considerable.

In many studies, the superiority of AI techniques is reported to
provide more accurate estimates than classical regression models
(Nunes and Görgens, 2016). It can be seen from the results of the
present study that more accurate regression techniques, such as mixed
models, provide comparable or even better estimates than AI

techniques, such as the values of rRMSE (%) and bias (%) showed in the
validation group data (Table 5).

The artificial intelligence techniques and mixed regression models
evaluated in this study presented superior results than the results found
in other studies. Ribeiro et al. (2011) found a coefficient of determi-
nation of 89.80% for the best allometric regression model that included
DBH and density as independent variables. Rezende et al. (2006) ob-
tained a coefficient of determination of 98.01% and a standard error of
25.00% for volume estimation and a determination coefficient of
98.64% and standard error of 25.66% for biomass estimation using
models of regression.

5. Conclusion

Because the modeling of forest resources commonly presents com-
plex relationships among the variables, artificial intelligence techniques
such as ANFIS, ANN, RF, and NLME may be good alternative modeling
techniques. These techniques were able to estimate the volume and
biomass of different species in the Brazilian savanna. Although the
superiority of the ANFIS, ANN, and NLME techniques over RF was
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Fig. 8. Graphical analysis of the biomass (B) estimated versus biomass (B) observed and graph of errors (%) of Strategy 1.
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observed, the four techniques have great potential for use as auxiliary
tools in forest measurement and management; they can estimate vari-
ables that contribute to the knowledge and planning of the use of forest
resources. In addition, the proposed methodologies can be adapted to
other biomes, forest typologies, and variables of interest.
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