UNIVERSIDADE FEDERAL DE MINAS GERAIS

Instituto de Geociências

Programa de Pós-Graduação em Análise e Modelagem de Sistemas Ambientais

Vinícius Tavares Parreiras de Morais

UTILIZAÇÃO DE MODELOS DIGITAIS DE TERRENO COM DIFERENTES RESOLUÇÕES ESPACIAIS PROVENIENTES DE DADOS LIDAR NA SIMULAÇÃO DA RUPTURA DA BARRAGEM I EM BRUMADINHO – MINAS GERAIS

Belo Horizonte 2021 Vinícius Tavares Parreiras de Morais

UTILIZAÇÃO DE MODELOS DIGITAIS DE TERRENO COM DIFERENTES RESOLUÇÕES ESPACIAIS PROVENIENTES DE DADOS LIDAR NA SIMULAÇÃO DA RUPTURA DA BARRAGEM I EM BRUMADINHO – MINAS GERAIS

Versão final

Dissertação apresentada ao Programa de Pós-Graduação em Análise e Modelagem de Sistemas Ambientais da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de mestre em Análise e Modelagem de Sistemas Ambientais.

Orientador: Prof. Dr. Marcelo Antônio Nero

Belo Horizonte 2021

M827u 2021 Morais, Vinícius Tavares Parreiras de.

Utilização de modelos digitais de terreno com diferentes resoluções espaciais provenientes de dados LiDAR na simulação da ruptura da Barragem I em Brumadinho – Minas Gerais [manuscrito] / Vinícius Tavares Parreiras de Morais. – 2021.

132 f., enc.: il. (principalmente color.)

Orientador: Marcelo Antônio Nero.

Dissertação (mestrado) – Universidade Federal de Minas Gerais, Instituto de Geociências, 2021.

Bibliografia: f. 70-73.

Inclui anexos.

1. Modelagem de dados – Aspectos ambientais – Teses. 2. Barragens de rejeitos – Brumadinho (MG) – Teses. 3. Métodos de simulação – Teses. I. Nero, Marcelo Antônio. II. Universidade Federal de Minas Gerais. Instituto de Geociências. III. Título.

CDU: 911.2:519.6(815.1)

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ANÁLISE E MODELAGEM DE SISTEMAS AMBIENTAIS

FOLHA DE APROVAÇÃO

Utilização de Modelos Digitais de Terreno com Diferentes Resoluções Espaciais Provenientes de Dados LiDAR na Simulação da Ruptura da Barragem I em Brumadinho – Minas Gerais

VINÍCIUS TAVARES PARREIRAS DE MORAIS

Dissertação submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em ANÁLISE E MODELAGEM DE SISTEMAS AMBIENTAIS, como requisito para obtenção do grau de Mestre em ANÁLISE E MODELAGEM DE SISTEMAS AMBIENTAIS, área de concentração ANÁLISE, MODELAGEM E GESTÃO DE SISTEMAS AMBIENTAIS.

> Dr. Marcelo Antônio Nero Orientador – UFMG

Dr. Jorge Pimentel Cintra USP

Dr. Néstor Alonso Mancipe-Muñoz Universid Nacional de Colômbia

Dr. Marcos Antônio Timbó Elmiro UFMG

Dr. Ricardo Alexandrino Garcia UFMG

Belo Horizonte, 5 de novembro de 2021

Documento assinado eletronicamente por **Marcelo Antonio Nero**, **Professor do Magistério Superior**, em 10/11/2021, às 10:20, conforme horário oficial de Brasília, com fundamento no art.5º do <u>Decreto nº 10.543</u>, <u>de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Jorge Pimentel Cintra**, **Usuário Externo**, em 11/11/2021, às 10:36, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decretonº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Nestor Alonson Mancipe Munoz**, **Usuário Externo**, em11/11/2021, às 10:52, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decretonº 10.543</u>, <u>de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Marcos Antonio Timbo Elmiro**, **Professor do Magistério Superior**, em 08/11/2021, às 15:27, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Ricardo Alexandrino Garcia**, **Professor do Magistério Superior**, em 08/11/2021, às 15:28, conforme horário oficial de Brasília, com fundamento no art.5º do <u>Decreto nº 10.543</u>, <u>de 13 de novembro de</u> 2020.

A autenticidade deste documento pode ser conferida no site <u>https://sei.ufmg.br</u>/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo= 0,informando o código verificador **1057068** e o código CRC **32C69D6C**.

Processo nº 23072.256804/2021-56

SEI nº 1057068

DEDICATÓRIA

À minha família e amigos

AGRADECIMENTOS

À Deus pela vida, pela saúde e pela família.

Aos meus pais por me ensinar a perseverar na busca dos meus sonhos.

À minha família por se sacrificar junto comigo em prol deste objetivo.

Aos amigos por tornarem a caminhada mais segura e divertida.

Aos colegas de trabalho pela inspiração do tema.

Aos colegas do curso por compartilharmos essa jornada.

Aos professores pelos ensinamentos.

Ao meu orientador pela parceria desde o início.

Muito obrigado.

RESUMO

O estudo de ruptura hipotética de barragens tem o objetivo de investigar o escoamento pelo vale a jusante do volume liberado por uma barragem em colapso parcial ou total. O objetivo deste trabalho é verificar a influência da variação da resolução espacial do Modelo Digital de Terreno - MDT, como dado de entrada, nos resultados obtidos na simulação hidrodinâmica da ruptura da barragem B1, em Brumadinho, Minas Gerais.

Foram definidos 6 cenários de simulação em que os dados de entrada e a configuração do modelo hidrodinâmico permanecem idênticos, à exceção dos MDTs que sofreram variação na resolução espacial de um cenário para o outro. Os cenários, conforme a resolução espacial dos MDTs, são os seguintes: C01- 1 m, C05 - 5 m, C10 - 10 m, C15 - 15 m, C20 - 20 m e C25 - 25 m. Os MDTs foram gerados a partir de dados do levantamento LiDAR (*Light Detection And Ranging*) do vale a jusante da barragem B1. A acurácia de cada MDT foi avaliada através de métodos estatísticos de acordo com os padrões da norma brasileira vigente.

De cada cenário foram extraídos os resultados de área atingida, profundidade, velocidade e tempo de chegada da onda de inundação, assim como, os valores de pico de vazão da onda de ruptura, acompanhado do tempo de ocorrência. As informações conhecidas do evento ruptura real foram utilizadas como parâmetros de comparação dos resultados das simulações.

As áreas atingidas obtidas no modelo foram avaliadas por meio do indicador de desempenho F, que considera as áreas sub e superestimadas na definição do índice. Os demais resultados foram submetidos a uma análise de estatística descritiva, a fim de determinar o coeficiente de variação (Cv) e assim verificar a discrepância entre os valores de cada cenário.

De modo geral foi possível concluir que os cenários apresentaram desempenho bastante semelhante na explicação da ruptura da Barragem 1, e que a velocidade foi a variável mais sensível à alteração do terreno, sem, contudo, apresentar uma resposta muito discrepante em relação às demais métricas analisadas. Assim, escalas superiores a 1:10.000 são capazes de representar um evento da magnitude de B1.

Palavras-chave: Modelo Digital de Terreno. Ruptura de Barragem.

ABSTRACT

The study of hypothetical dam rupture aims to investigate the flood flow through the downstream valley of volume released by partially or total collapsed dam. The objective of this work is to verify the influence of the variation of the scale DTMs as input data, in the results obtained in the hydrodynamic simulation of the rupture of the B1 dam, in Brumadinho, Brazil.

Six scenarios of simulation have been defined in such way that the input data and the configuration of the hydrodynamic model remain identical in all of them, except for spatial resolution of MDTs that are different from one to another scenario. According to MDTs, the scenarios of simulation are as follows: C01- 1 m, C05 - 5 m, C10 - 10 m, C15 - 15 m, C20 - 20 m e C25 - 25 m.

The MDTs were generated from LiDAR data of the downstream valley. The quality and accuracy of each MDT generated were evaluated through statistical methods in order to relate the quality of the MDT according to the Brazilian standard.

From each scenario, the results of the area reached, depth, speed and time of arrival of the flood wave will be extracted, as well as the peak flow values of the rupture wave, accompanied by its time of occurrence. The known information of the actual rupture event will be used as a parameter of comparison with the results of the simulations.

The assessment of predicted areas has been done by F index wich account sub and over estimation areas. The results of each scenario were submitted to statistical analysis in order to determine the coefficient of variation (Cv) and thus, verify the discrepancy around the encountered values.

Eventually the scenarios presented very similar performance in explaining the rupture of Dam 1. The velocity is the most sensitive variable to terrain alteration, without, however, presenting a very discrepant response compared to the other metrics of this search. Thus, scales greater than 1:10,000 are able to represent an event of magnitude of dam break of B1.

Keywords: Digital Terrain Model. Dam Break.

LISTA DE ILUSTRAÇÕES

Figura 1- Estrutura da pesquisa bibliográfica	. 20
Figura 2 – Malha de cálculo e sub-malha de topografia	. 26
Figura 3 – Hidrograma Simplificado	. 29
Figura 4 – Aerolevantamento LiDAR	. 31
Figura 5 – Mecanismo de varredura do sensor LiDAR	. 32
Figura 6 – Localização e vias de acesso à área de estudo	. 38
Figura 7 – Caracterização da Área de Estudo	. 40
Figura 8 – Pontos notáveis 1 a 3	. 41
Figura 9 – Área administrativa Vale	. 41
Figura 10 – Pontos notáveis 5 e 6	. 42
Figura 11 – Pontos notáveis 7, 8 e 9	. 42
Figura 12 – Bairro Parque da Cachoeira	. 43
Figura 13 – Ponte Alberto Flores	. 43
Figura 14 – Brumadinho	. 44
Figura 15 – Serra do Funil	. 44
Figura 16 – Diagrama conceitual da metodologia do trabalho	. 46
Figura 17 – Metodologia de classificação do uso e cobertura do solo	. 49
Figura 18 – Controle de qualidade posicional altimétrica dos MDTs	. 51
Figura 19 – Mancha de Inundação Mapeada	. 54
Figura 20 – Hidrograma simplificado da ruptura da B1	. 55
Figura 21 – Classificação do uso e cobertura do solo	. 56
Figura 22 – Resolução espacial dos MDTs	. 57
Figura 23 – Pontos de controle da acurácia vertical	. 59
Figura 24 – Distribuição dos erros das amostras	. 60
Figura 25 – Modelo hidrodinâmico	. 62
Figura 26 – Gráficos dos indicadores de desempenho F	. 63
Figura 27 – Classificação das áreas de inundação dos cenários	. 64
Figura 28 – Profundidade máxima	. 65
Figura 29 – Velocidade máxima	. 66
Figura 30 - Tempo de chegada da inundação	. 67

Figura 31 – Distribuição temática dos títulos	74
Figura 32 – Distribuição dos erros amostrais do MDT 05	
Figura 33 – Distribuição dos erros amostrais do MDT 05 m	85
Figura 34 – Distribuição erros amostrais do MDT 10 m	91
Figura 35 – Distribuição dos erros amostrais do MDT 15 m	97
Figura 36 – Distribuição dos erros amostrais do MDT 20m	103
Figura 37 – Distribuição dos erros amostrais do MDT 25m	109
Figura 38 – C01 - Profundidade máxima	115
Figura 39 – C01 – Velocidade máxima	116
Figura 40 – C01 – Tempo de chegada	116
Figura 41 – C05 - Profundidade máxima	118
Figura 42 – C05 - Velocidade máxima	119
Figura 43 – C05 - Tempo de chegada da inundação	119
Figura 44 – C10 - Profundidade máxima	121
Figura 45 – C10 - Velocidade máxima	122
Figura 46 – C10 - Tempo de chegada da inundação	122
Figura 47 – C15 - Profundidade máxima	124
Figura 48 – C15 - Velocidade máxima	125
Figura 49 – C15 - Tempo de chegada da inundação	125
Figura 50 – C20 - Profundidade máxima	127
Figura 51 – C20 - Velocidade máxima	128
Figura 52 – C20 – Tempo de Chegada da Inundação	128
Figura 53 – C25 - Profundidade máxima	130
Figura 54 – C25 - Velocidade máxima	131
Figura 55 – C25 – Tempo de chegada da Inundação	131

LISTA DE TABELAS

Tabela 1 - Protocolo da revisão sistemática	21
Tabela 2 Classificação dos tipos de escoamento	28
Tabela 3 - Valores de erro médio (EM) e erro padrão (EP), em metros na pla	nimetria
e altimetria, para cartas topográficas em grandes escalas	35
Tabela 4 - Valores de erro médio (EM) e erro padrão (EP), em metros na pla	nimetria
e altimetria, para cartas topográficas em pequenas escalas	36
Tabela 5 - Formulações do Indicador F	37
Tabela 6 - Base de dados do estudo	45
Tabela 7 - Etapas de desenvolvimento da pesquisa	46
Tabela 8 - Coeficiente de Manning	49
Tabela 9 - Classificação de Manning	55
Tabela 10 – Resolução espacial dos MDTs	57
Tabela 11 – Resultados das análises de qualidade dos MDTs	58
Tabela 12 - Resultados dos indicadores de desempenho F	63
Tabela 13 – Quadro de área das classes dos indicadores de desempenho F.	64
Tabela 14 – Profundidade máxima	65
Tabela 15 – Velocidade máxima	66
Tabela 16 – Tempo de Chegada da Onda	67
Tabela 17 - Quantidade de títulos por eixo temático	74
Tabela 18 - Base bibliográfica da pesquisa	75
Tabela 19 - Síntese das análises estatísticas dos MDTs	77
Tabela 20 - Síntese das análises estatísticas do MDT do cenário C01	78
Tabela 21 - Memória de cálculo do PEC-PCD do MDT 1 m	79
Tabela 22- Síntese das análises estatísticas do MDT do cenário C05 m	84
Tabela 23 - Memória de cálculo do PEC-PCD do MDT 5m	85
Tabela 24- Síntese das análises estatísticas do MDT do cenário C10	90
Tabela 25 - Memória de cálculo do PEC-PCD do MDT 10m	91
Tabela 26 - Síntese das análises estatísticas do MDT do cenário C15	96
Tabela 27 - Memória de cálculo do PEC-PCD do MDT 15m	97
Tabela 28- Síntese das análises estatísticas do MDT do cenário C20 1	02

Tabela 29 - Memória de cálculo do PEC-PCD do MDT 20m	. 103
Tabela 30 - Síntese das análises estatísticas do MDT do cenário C25	. 108
Tabela 31 - Memória de cálculo do PEC-PCD do MDT 25m	. 109
Tabela 32 – C01 – Resultados nas seções representativas	. 115
Tabela 33 – C05 – Resultados nas seções representativas	. 118
Tabela 34 – C10 – Resultados nas seções representativas	. 121
Tabela 35 – C15 – Resultados nas seções representativas	. 124
Tabela 36 – C20 – Resultados nas seções representativas	. 127
Tabela 37 – C25 – Resultados nas seções representativas	. 130

LISTA DE ABREVIATURAS E SIGLAS

2D	Bidimensional
ANM	Agência Nacional de Mineração
B1	Barragem 1
B4	Barragem 4
B4A	Barragem 4A
B6	Barragem 6
CAPES	Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Cv	Concentração volumétrica
DNPM	Departamento Nacional de Produção Mineral
DSG	Diretoria de Serviço Geográfico
EM	Erro Máximo
EP	Erro Padrão
ET-CQDG	Especificação Técnica para Controle de Qualidade de Dados Geoespaciais
GNSS	Global Navigation Satellite System (Sistema Global de Navegação por Satélite)
HEC-RAS	Hidrologic Engineering Center (Centro de Engenharia Hidrológica)
IMU	Inertial Mesurment Unit (Unidade de Medição Inercial)
ITM	Instalação de Tratamento de Minério
Lidar	Light Detection And Ranging (Detecção e Medição Ótica)
MDT	Modelo Digital de Terreno
MDTs	Modelos Digitais de Terreno

MG	Minas Gerais
PAE	Plano de Ações Emergenciais
PAP-PCD	Padrão de Acurácia Posicional para Produtos Cartográficos Digital
PEC-PCD	Padrão de Exatidão Cartográfica para Produtos Cartográficos Digitais
PNSB	Política Nacional de Segurança de Barragens
SIG	Sistema de Informações Geográficas
SW	Shallow Water (Águas rasas)
UFMG	Universidade Federal de Minas Gerais
USACE	United States Army Corps of Engineers (Corpo de Engenheiros do Exército dos Estados Unidos da América)

SUMÁRIO

1	IN	TROI	DUÇÃO	16
2	O	BJET	IVOS	19
3	RE	EVISÂ	ÓO BIBLIOGRÁFICA	20
4	FL	JNDA	MENTAÇÃO TEÓRICA	23
	4.1	Leis	s e Normas	23
	4.2	Мо	delo Hidrodinâmico	24
	4.3	Hid	rograma	29
	4.4	Mo	delo Digital de Terreno - MDT	30
	4.5	Cor	ntrole de Qualidade dos MDTs	33
	4.6	Aná	alise de sensibilidade dos resultados da simulação	
5	CA	ARAC	TERIZAÇÃO DA ÁREA DE ESTUDO E BREVE DESCRIÇ	ÃO DA
R	UPT	URA.		38
6	M	ATER	IAIS E MÉTODOS	45
	6.1	Mat	eriais	45
	6.2	Mét	odos	45
	6.2	2.1	Dados do Evento Real	47
	6.2	2.2	Determinação do Hidrograma	47
	6.2	2.3	Determinação do Coeficiente de Manning	48
	6.2	2.4	Elaboração dos MDTs	50
	6.2	2.5	Determinação da Qualidade Posicional dos MDTs	50
	6.2	2.6	Modelo Hidrodinâmico	51
	6.2	2.7	Análise de Sensibilidade	52
	6.2	2.8	Representação Gráfica	52
7	RE	ESUL	TADOS	53
	7.1	Infc	rmações Sobre a Ruptura de B1	53
	7.2	Hid	rograma	54

7	.3	Ma	nning	55
7	.4	MD	DTs	56
	7.4	.1	Qualidade posicional dos MDTs	57
7	.5	Mo	delo Hidrodinâmico	61
7	.6	Cer	nários da simulação	62
	7.6	.1	Análise da Previsão de Áreas Inundadas	63
	7.6	.2	Análise dos Resultados de Profundidade, Velocidade e Tempo de	¢
	Che	egac	da da Onda	65
8	со	NCL	LUSÕES	68
REI	FER	ÊNC	CIAS BIBLIOGRÁFICAS	70
AN	EXC) -	Síntese da Revisão Sistemática de Bibliografia	74
AN	EXC) -	- Cálculos para a Determinação do PEC-PCD	77
AN	EXC) -	– Resultados dos cenários de simulação1	15

1 INTRODUÇÃO

Em janeiro de 2019 a barragem de rejeitos de mineração B1, da Mina Córrego do Feijão, pertencente à mineradora Vale, localizada no município de Brumadinho - MG, rompeu e provocou o maior acidente em termos de vítimas da história da mineração brasileira. A partir de então, muitos esforços têm sido direcionados na investigação dos vários aspectos referentes a este evento, de modo a contribuir para a evolução da segurança deste tipo de estrutura.

Neste sentido, diversas simulações hipotéticas da ruptura da B1 podem ser realizadas e comparadas ao evento real ocorrido. Os registros da ruptura permitem a calibração das variáveis de entrada do modelo hipotético e assim verificar o nível de assertividade dos resultados.

O estudo de ruptura hipotética tem o objetivo de investigar o escoamento do volume retido por uma barragem pelo vale a jusante, quando esta estrutura sofre algum tipo de falha que provoque o seu colapso parcial ou total.

Atualmente, estas simulações têm sido realizadas em modelos hidrodinâmicos 2D, onde o hidrograma de ruptura é propagado sobre o MDT (Modelo Digital de Terreno) do vale a jusante da barragem. Como resultado são fornecidas informações tais como, a área de inundação, profundidade, velocidade e tempo de chegada da onda de ruptura em formato de dados contínuos.

O hidrograma da onda provocada pela ruptura é obtido a partir da definição das características físicas da barragem e do material armazenado, modo de falha, da geometria e tempo de formação da brecha no maciço.

As feições do relevo podem exercer a função de controle hidráulico provocando, por exemplo, remanso ou espraiamento da onda. Assim, a confiabilidade dos resultados fornecidos pelo modelo está diretamente relacionada com a qualidade do MDT de entrada, o que leva vários pesquisadores a considerá-lo como o elemento de entrada mais importante da simulação, o que é apontado em Rocha (2015), Lima (2020) e Lima *et al.* (2021).

Apesar da relevância da topografia, um grande número de estudos acadêmicos dedicados à avaliação de incertezas nos modelos de simulação de ruptura hipotética de barragem, utiliza modelos digitais de terreno gratuitos, gerados a partir de dados esparsos. Outra análise geralmente realizada, é a comparação entre o uso de MDTs

gratuitos e de MDTs de melhor qualidade, abordados em Sanders (2007), Rocha (2015), Tschiedel (2017), Tshiedel e Paiva (2018), Lima (2020) e Lima *et al.* (2021).

O MDT proveniente do aerolevantamento a laser, apresenta melhor capacidade de resposta em relação aos MDTs gratuitos (LIMA, 2020). Porém, não há uma ideia clara sobre o efeito da variação da resolução espacial da malha dos MDTs, por meio de reamostragem e interpolação, nos resultados gerados por modelos hidrodinâmicos. Neste sentido, a partir do MDT original com resolução espacial de 1m foram gerados novos MDTS com aberturas de malhas maiores a fim de entender o efeito que a diminuição da escala de representação do terreno teria sobre os resultados apresentados nas simulações.

A hipótese investigada é o quanto as variações em escalas, regredindo gradualmente de níveis detalhados para padrões mais esparsos, dos dados de topografia influenciam nos resultados obtidos nas simulações em relação às aplicações que se destinam. Assim, a modelagem hidrodinâmica de ondas provenientes de rupturas de barragens tem sido alvo de muitos trabalhos científicos de forma que este estudo compreende esta linha de pesquisa.

Um evento como a ruptura da Barragem 1 impacta toda a sociedade, tornando as consequências sociais, ambientais e econômicas muito mais abrangentes do que a área diretamente afetada. Assim, o estudo pode ser de especial interesse dos agentes envolvidos na gestão e operação de barragens, pois a partir da análise dos resultados obtidos nestas simulações é que são elaborados os Planos de Ações Emergenciais, que determinam os procedimentos de emergência a serem adotados quando de um eventual colapso.

A área impactada, a profundidade, a velocidade e o tempo de chegada da onda, servem de base para o desenvolvimento de planos de ação de emergência e de gestão de crise. Logo, quanto mais assertiva for a modelagem, melhores serão as informações disponibilizadas para as condições de desenvolvimento dos planos de contingência que recaem sobre toda a sociedade e, principalmente, sobre a população habitante do vale a jusante de barragens. Tais resultados servem de base, por exemplo, para determinar a remoção de famílias de áreas potencialmente impactadas pela mancha de inundação.

Além disto, a resolução nº 32 da Agência Nacional de Mineração – ANM de 11 de maio de 2020 (BRASIL, 2020), estabelece que os mapas de inundação devem ser executados com base topográfica atualizada em escala apropriada, de acordo com as

Instruções Reguladoras das Normas Técnicas da Cartografia Brasileira que constem no Decreto Lei no 89.817 de junho de 1984 (BRASIL, 1984) ou norma que a suceda. Desta maneira, é possível se basear nas Especificações Técnicas publicadas pela Diretoria de Serviço Geográfico do Exército Brasileiro (DSG, 2016). Assim, é de suma importância saber qual o nível de detalhe necessário para os dados de entrada do modelo de simulação de ruptura de barragens para obtenção de resultados cada vez mais criteriosos, considerando-se melhores precisões e acurácias.

A hipótese de investigação aqui estabelecida busca responder se a variação proposta na representação da topografia implicará numa diferença significativa nos resultados obtidos pela simulação.

2 OBJETIVOS

O objetivo deste trabalho é verificar a influência da variação da escala da topografia nos resultados obtidos em um modelo hidrodinâmico de simulação de ruptura de barragens.

De forma mais específica, os objetivos desta pesquisa são:

- 1. Simular a ruptura da Barragem 1 em um modelo hidrodinâmico bidimensional.
- Determinar a resolução espacial adequada do MDT na representação do evento de ruptura da B1.
- 3. Determinar a sensibilidade dos resultados extraídos do modelo de simulação à variação da resolução espacial do MDT de entrada. Ou seja, a busca dos resultados comparativos com relação à área de inundação, profundidade, velocidade, tempo de chegada da onda, vazão de pico e tempo da vazão de pico de cada cenário.

3 REVISÃO BIBLIOGRÁFICA

A pesquisa possui um caráter exploratório no sentido de observar a resposta do modelo hidrodinâmico em relação à variação na resolução espacial do modelo digital de terreno, MDT, enquanto dado de entrada.

A revisão bibliográfica foi o primeiro procedimento realizado, com o objetivo de buscar fontes atuais de conhecimento no entorno das temáticas abordadas. A partir disso, foi possível posicionar este estudo em relação às demais pesquisas que vêm sendo realizadas, de modo a obter uma melhor clareza a respeito da contribuição para a ciência, no sentido da relevância e da inovação apresentada pelo tema proposto.

O desenvolvimento da revisão bibliográfica seguiu alguns passos que foram estruturados, baseados na metodologia de revisão sistemática proposta por Tranfield, Denyer e Smart (2003), que foi adaptada aos propósitos almejados. Desta maneira, a pesquisa bibliográfica foi estruturada de acordo com a Figura 1.

A partir de então, foi determinada, como proposta de busca, a ênfase em três eixos principais divididos entre representação topográfica, modelagem hidrodinâmica e ruptura de barragens. A intenção desta classificação temática, foi facilitar o direcionamento para materiais bibliográficos que inter-relacionem os eixos temáticos em seus conteúdos.

Na elaboração do protocolo de busca, Tabela 1, o Portal CAPES/MEC foi o escolhido por disponibilizar de forma integrada, publicações de diferentes bases de dados com diversidade temática que varia desde referências e resumos de trabalhos acadêmicos e científicos até normas técnicas, patentes, teses e dissertações dentre outros tipos de materiais, cobrindo todas as áreas do conhecimento (MEC, 2021).

Em relação à data de publicação, a preferência foi pelas publicações mais recentes, sendo classificadas em intervalos anuais, com o limite máximo de 3 anos, assim como os idiomas português, inglês e espanhol.

Foram estabelecidas palavras-chaves que, combinadas entre si com o uso de caracteres especiais e operadores booleanos, formaram as expressões de busca. A Tabela 1 apresenta os detalhes do protocolo de busca estabelecido.

Data Pesquisa	28/01/2021		
Local	Portal CAPES		
Idioma	Português, Inglês e	Espanhol	
Palavras- chaves	Brumadinho Disaste Hydrodynamic Mod	er – Digital Elevation Mode els	el – Dam Break –
	a) Brumadinho OR	"Córrego do feijão" OR "B	1 dam"
	b) dam (break* OR	fail* OR collaps* OR bread	ch*)
Expressões	c) DEM OR DTM O "digital elevation mo	R DTS OR terrain OR "terr odel" OR "digital terrain mo	rain model" OR odel"
de busca	d) disaster OR acci	dent OR event OR ocurrer	nce OR collapse
	e) evaluat* OR asse	ess* OR rat* OR compar* (OR quali*
	f) Stud* OR simulat	ion OR map*	
Forma de busca	a AND d	b AND f	c AND e
Motivação	Ruptura de B 1	Estudos de ruptura	Análise MDT
Data Publicação	2019 – 2021	2021	2021
Resultado	192	611	1.203
Seleção	5	2	3

Tabela 1 - Protocolo da revisão sistemática

* - Busca todas as variações dos sufixos da palavra

" " - Busca termo idêntico

() - Agrupamento de termos

A seleção do material ocorreu mediante análise da resposta das buscas e aplicação de eventuais filtros para melhor direcionar os resultados, e consequentemente, otimizar a escolha das referências bibliográficas que melhor se vinculam ao tema proposto. No final da Tabela 1 é possível ver os resultados alcançados e o número de títulos selecionados.

Também foram realizadas pesquisas complementares, em buscadores como Google Acadêmico que retornaram outros títulos que foram incluídos no banco de dados da pesquisa. A partir das citações encontradas nas publicações pesquisadas, novas referências foram incorporadas.

Outras fontes utilizadas, são as publicações da própria UFMG, que nos últimos anos vem desenvolvendo pesquisas no âmbito da simulação hidrodinâmica de fluidos. Neste sentido, além dos trabalhos de Lima (2020) e Lima *et al.* (2021), que são referências centrais dos eixos temáticos da revisão sistemática. Os trabalhos de Ribeiro (2015), Rocha (2015) e Machado (2017), também foram selecionados, sendo estes dedicados à avaliação de modelos hidrodinâmicos e à retro análise de rupturas de barragens. Além disso, completando o pacote de informação, algumas leis e normas, bem como manuais técnicos e livros foram fontes consultadas e consideradas no estudo.

A síntese da revisão bibliográfica e dos resultados alcançados é apresentada no ANEXO I.

4 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são apresentados os princípios fundamentais que orientam o desenvolvimento da pesquisa proposta.

4.1 Leis e Normas

Os estudos de simulação de colapso de barragens são orientados por leis e normas que definem as responsabilidades, a periodicidade e os critérios a serem considerados.

A lei nº 12.334, de 20 de setembro de 2010, estabelece a Política Nacional de Segurança de Barragens que, entre outras deliberações, cria o Plano de Segurança da Barragem em que se insere o PAE - Plano de Ação de Emergência (BRASIL, 2010).

A portaria DNPM nº 70.389 de 17 de maio de 2017, estabelece, entre outras questões, o conteúdo mínimo e o nível de detalhamento do Plano de Ação de Emergência para Barragens de Mineração (BRASIL, 2017). A resolução ANM nº 32, de 11 de maio de 2020, que altera a portaria nº 70.389, estabelece em seu artigo 6º que,

os mapas de inundação devem ser executados com base topográfica atualizada em escala apropriada, de acordo com as Instruções Reguladoras das Normas Técnicas da Cartografia Brasileira constantes do Decreto-lei nº 89.817, de 20 de junho de 1984 ou norma que a suceda, para a representação da tipologia do vale a jusante (ANM, 2020).

Outra norma considerada é a Especificação Técnica para Controle de Qualidade de Dados Geoespaciais – ET-CQDG, elaborada pelo Exército Brasileiro, que estabelece um valor de referência para avaliar a qualidade de produtos cartográficos dentro do território nacional (DSG, 2016).

4.2 Modelo Hidrodinâmico

Modelos hidrodinâmicos são capazes de mapear a inundação de um escoamento turbulento de forma bidimensional, por isso, são amplamente empregados em estudos de ruptura de barragens. O modelo escolhido para este estudo é o HEC-RAS, versão 6.0, desenvolvido pelo Centro de Engenharia Hidrológica do Corpo de Engenheiros do Exército dos Estados Unidos da América – HEC-USACE (USACE, 2020).

A base teórica para o cálculo do movimento dos fluidos, em termos de inundação, descrito de forma tridimensional, ocorre através da simplificação das equações de Navier-Stokes, sendo utilizadas as equações de Águas Rasas (*Shallow Water - SW*). Nestas simplificações o fluido é considerado incompressível, com densidade e pressão hidrostática constantes. Também é assumido que a escala de comprimento vertical é muito menor do que as escalas de comprimento horizontal, o que leva a uma velocidade vertical de pequena magnitude (USACE, 2020). A partir das considerações acima, tem-se a seguinte equação de continuidade:

$$\frac{\partial H}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} + q = 0$$
(1)

A equação de quantidade de movimento utilizada no modelo é descrita da seguinte forma:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -g\frac{\partial H}{\partial x} + \frac{1}{h}\frac{\partial}{\partial x}\left(v_{xx}h\frac{\partial u}{\partial x}\right) + \frac{1}{h}\frac{\partial}{\partial y}\left(v_{yy}h\frac{\partial u}{\partial y}\right) - c_fu + fv + \frac{\tau_{s,x}}{ph}$$
(2)

$$\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -g\frac{\partial H}{\partial y} + \frac{1}{h}\frac{\partial}{\partial x}\left(v_{xx}h\frac{\partial v}{\partial x}\right) + \frac{1}{h}\frac{\partial}{\partial y}\left(v_{yy}h\frac{\partial v}{\partial y}\right) - c_fv + fu + \frac{\tau_{s.y}}{ph}$$
(3)

Onde *H*= elevação da superfície do fluido (m); *t* = tempo (s); *h* = profundidade (m); u = velocidade na componente x (m/s);

v = velocidade na componente y (m/s);

q = perdas do sistema como infiltração, percolação, bombeamento (m³/s);

g = aceleração da gravidade (m/s²);

vxx = coeficiente de viscosidade turbulenta na componente x;

vyy = coeficiente de viscosidade turbulenta na componente y;

 τs = força do vento na superfície em Newton por metro cúbico (N/m³)

f = força de Coriolis referente a força centrífuga do movimento rotacional da terra (m/s²);

 c_f = coeficiente de atrito da superfície do fundo.

O coeficiente de atrito da superfície do fundo, c_f , é representado pelo coeficiente de rugosidade de Manning *n* obtido através da fórmula de Manning apresentada na Equação 4 (USACE, 2020):

$$C_f = \frac{n^2 g}{R^{\frac{4}{3}}} V \tag{4}$$

Onde

n = coeficiente de rugosidade de Manning;

g = aceleração da gravidade (m²);

R = raio hidráulico em metros (m);

V = velocidade (m/s).

A equação de continuidade, Equação 1, é aplicada na determinação da velocidade do fluido, com direcionamento do fluxo em cada célula, enquanto a equação de momento, Equações 2 e 3, determina a elevação do fluido das componentes X e Y. Na parte à esquerda da equação de momento estão os termos da aceleração do fluido. Enquanto a parte à direita representa o conjunto de forças internas e externas agindo sobre o fluido. Esta organização é derivada na segunda lei de Newton (CASULLI, 2008).

Todo o processo de cálculo do comportamento do fluido é realizado sobre a base topográfica. Contudo, os avanços no campo do sensoriamento remoto aerotransportado permitem fornecer dados topográficos com melhor resolução espacial, de modo que em muitos casos, são dados muito densos para serem usados

diretamente como malha de cálculo para o modelo numérico hidrodinâmico. Portanto, há uma barreira computacional que cria uma dificuldade em compatibilizar uma topografia altamente detalhada com o modelo matemático que se utiliza de uma malha de cálculo mais esparsa na simulação do fluido (USACE, 2020).

Como forma de solucionar esta questão, o modelo HEC-RAS utiliza o método de cálculo de sub malha batimétrica, Figura 2, em que as informações de raio hidráulico, volume e área da seção das células da malha de cálculo (malha 2D), representada pelas linhas azuis, são calculadas previamente a partir da topografia, representada pela malha cinza. Neste pré-processamento, alguns detalhes topográficos são perdidos, contudo informações com precisão suficiente são preservadas para garantir que o método numérico esparso consiga explicar a influência do terreno através da conservação de massa (USACE, 2020).

Fonte: USACE (2020).

O intervalo de tempo em que a propagação do fluido é calculada é um elemento que deve ser configurado e que influencia diretamente a estabilidade do modelo assim como a qualidade dos resultados obtidos. A condição de Courant controla o intervalo de tempo da simulação, conforme mostrado na equação 5 (USACE, 2020).

$$C = V_w \frac{\Delta t}{\Delta x} \le 1 \tag{5}$$

Onde,

C = número de Courant, adimensional;

 V_w = velocidade no sentido longitudinal do escoamento (m/s);

 Δt = intervalo de tempo para cálculo, (s);

 Δx = intervalo de discretização do trecho para cálculo, (m)

As condições de contorno do modelo estão associadas aos locais de entrada e de saída de fluido no modelo. As condições de contorno de montante e de jusante são necessárias em função da onda de ruptura possuir natureza transiente e, por isso, ser representada pelo regime de escoamento não uniforme (MACHADO, 2017).

Outro fator que deve ser considerado no modelo diz respeito ao tipo de fluido a ser propagado, que é classificado conforme a concentração volumétrica dos sólidos existentes no reservatório (ROCHA, 2015).

Fluidos com perfil de escoamento aquoso, também chamado de fluxo Newtoniano, são aqueles que apresentam uma concentração de sólidos de até 20% de forma que a força da gravidade é única força atuante no fluido.

Assim, o material com concentração volumétrica acima de 20% é considerado um fluido hiperconcentrado ou não-newtoniano, passando a apresentar comportamento de materiais viscosos, apresentando certa resistência interna ao movimento (O'BRIEN e JULIEN, 1985). A classificação do tipo de escoamento em função da concentração volumétrica do material é apresentada na Tabela 2.

A reologia é o estudo de como os materiais se deformam sob tensão, de modo que modelos reológicos consideram a relação entre a tensão cisalhante e taxa de cisalhamento, sendo a viscosidade a razão entre tensão e deformação (USACE, 2020)

A concentração volumétrica, densidade e viscosidade do rejeito são variáveis essenciais na caracterização material e na definição do modelo reológico apropriado para descrever a propagação do fluido sobre a malha topográfica.

A versão 6.0 do HEC-RAS, incorporou alguns modelos de propagação de fluidos hiperconcentrados, dentre os quais é possível destacar a equação quadrática (O'BRIEN e JULIEN, 1985), que determina uma relação não linear entre tensão e deformação como função do quadrado da taxa de deformação conforme expresso na Equação 6. Este modelo combina as forças de coesão, do atrito interno entre fluido e sedimento, da turbulência e do impacto entre partículas soltas.

$$\tau = \tau_Y + \eta \left(\frac{\partial v}{\partial y}\right) + \varphi \left(\frac{\partial v}{\partial y}\right)^2 \tag{6}$$

Onde,

 τ = tensão cisalhante, em segundos Pascais (Pa*s);

 $\left(\frac{\partial v}{\partial y}\right)$ = taxa de cisalhamento;

 τ_Y = Tensão limite de escoamento, em segundos Pascais (Pa*s)

 η = viscosidade dinâmica, em Poise (P);

 φ = coeficiente de tensão cisalhante inercial, adimensional;

Escorrega- mento 0,53 - 0,90 Sem escoamento. 0,50 - 0,53 Deformações internas e movimento lento devido às tensões. Lama plástica 0,48 - 0,50 Deformações plásticas sem espraiamento sobre superfícies adjacentes. 0,45 - 0,48 Início de espraiamento, apesar da atuação de forças coesivas. Mistura-se com facilidade. Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. 0,40 - 0,45 Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida. Acentuada sedimentação. Corrida de lama 0,35 - 0,40 Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
mento0,50 - 0,53Deformações internas e movimento lento devido às tensões.Lama plástica0,48 - 0,50Escoamento evidente, porém, lento. Deformações plásticas sem espraiamento sobre superfícies adjacentes.0,45 - 0,48Início de espraiamento, apesar da atuação de forças coesivas.0,45 - 0,48Início de espraiamento, apesar da atuação de forças coesivas.0,40 - 0,45Mistura-se com facilidade. Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida.Corrida de lama0,35 - 0,40Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
Lama plástica0,48 - 0,50Escoamento evidente, porém, lento. Deformações plásticas sem espraiamento sobre superfícies adjacentes.0,45 - 0,48Início de espraiamento, apesar da atuação de forças coesivas.0,45 - 0,48Início de espraiamento, apesar da atuação de forças coesivas.0,40 - 0,45Mistura-se com facilidade. Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida.Corrida de lama0,35 - 0,40Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
plástica adjacentes. 0,45 - 0,48 Início de espraiamento, apesar da atuação de forças coesivas. 0,45 - 0,48 Início de espraiamento, apesar da atuação de forças coesivas. 0,40 - 0,45 Mistura-se com facilidade. 0,40 - 0,45 Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida. Acentuada sedimentação. Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
0,45 - 0,48 Início de espraiamento, apesar da atuação de forças coesivas. 0,40 - 0,45 Mistura-se com facilidade. 0,40 - 0,45 Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida. Corrida de lama 0,35 - 0,40 Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
Corrida de lama0,35 - 0,40Mistura-se com facilidade. Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida.Corrida de lama0,35 - 0,40Acentuada sedimentação. Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
0,40 - 0,45 Apresenta fluidez na deformação alastrando-se sobre superfícies horizontais. Durante movimento a superfície do fluido apresenta considerável declividade. Aparecimento de ondas com dissipação rápida. Corrida de lama 0,35 - 0,40 Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
Corrida de lama 0,35 - 0,40 Acentuada sedimentação. Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis. Separação do água no superfício.
Corrida de lama 0,35 - 0,40 Acentuada sedimentação. Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
Corrida de lama 0,35 - 0,40 Alastra-se quase por completo sobre superfícies horizontais. Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis. Separação de água no superfício
Corrida de lama Identificação de duas fases, a fase líquida fica evidente. Ondas se propagam por distâncias consideráveis.
Ondas se propagam por distâncias consideráveis.
Separação do água na suportícia
Separação de água na supernoie.
0,30 - 0,35 Ondas propagam-se com facilidade.
Decantação de partículas granulares.
Ação de ondas distinta.
0,20 - 0,30 superfície fluida.
Todas as partículas foram decantadas.
Água< 0,20Inundação provocada por propagação de onda no estado líquido com carga de sedimento suspensos

Tabela 2 - Classificação dos tipos de escoamento

4.3 Hidrograma

O hidrograma de ruptura é a representação gráfica da vazão defluente da barragem ao longo do tempo. Sendo a vazão de pico representada no topo do hidrograma em um determinado instante. A Figura 3 apresenta o exemplo de um hidrograma simplificado, que representa o escoamento em caso de colapsos instantâneos de barragens. Os hidrogramas podem ser construídos a partir dos valores de vazão de pico (Qp) e tempo de pico (Tb) (FARIA *et al.*, 2019).

De forma geral, os hidrogramas são obtidos por meio de formulações matemáticas concebidas a partir de dados estatísticos ou empíricos, considerando os princípios da mecânica dos solos e transporte de sedimentos e hidráulica. A geometria e material construtivo do maciço, o modo de construção, a susceptibilidade a falha e a curva cota volume do reservatório e as características físicas do fluido reservado são informações que precisam ser conhecidas para estimar o tempo de abertura da brecha no maciço e, assim, determinar a vazão de pico e o tempo em que ela ocorre (MACHADO, 2017).

A B1 era monitorada em tempo integral por câmeras de vídeo, de forma que o evento de ruptura foi capturado pelas câmeras. Assim, foi possível determinar o modo de falha, bem como o tempo de formação da brecha e o tempo de propagação do volume acumulado no reservatório.

Como o tipo de falha foi a liquefação, o pico do hidrograma defluente, responsável pela liberação da maior parte do volume retido, ocorre instantes após o início do colapso. Estas características podem ser representadas por um hidrograma de ruptura simplificado, obtido a partir da Equação 7 (FARIA *et al.*, 2019).

$$Q_p = \left(\frac{2V}{T_b}\right) \tag{7}$$

Onde: *Qp* = vazão de pico (m³/s); *V* = volume (m³); *Tb* = tempo de pico da vazão (s).

4.4 Modelo Digital de Terreno - MDT

A escala apropriada de um modelo digital de terreno na representação de um fenômeno de propagação de ondas de cheias provocadas por colapso de barragens depende da análise de alguns fatores, como as características do trecho de propagação da onda e o volume de fluido a ser propagado. Volumes muito grandes serão menos sensíveis a pequenas variações no terreno.

Desta maneira, a caracterização topográfica do vale a jusante é um fator que merece atenção especial. Segundo Rocha (2015), o modelo de terreno representa o dado mais relevante para o papel de controle hidráulico de uma onda de ruptura. Já Tschiedel e Paiva (2018) consideram que nem sempre a topografia é a variável de entrada com maior influência nos resultados, a depender das características geomorfológicas do vale de jusante.

A comparação entre as performances de MDTs de baixa, média e melhor resolução do vale de jusante da Barragem 1, em Brumadinho - MG, realizada por Lima (2020), constatou que ocorre uma maior correlação entre o simulado e o ocorrido quando considerado o MDT de melhor resolução, proveniente de levantamento topográfico aéreo com sensor a laser, LiDAR (*Light Detetection and Ranging*).

A tecnologia LiDAR apresenta uma elevada qualidade de resposta no mapeamento de terreno, com uma acurácia vertical submétrica, variando entre 5 e 20 cm. De modo geral, os sensores emitem pulsos ou feixes de luz que refletem nas superfícies e retornam à aeronave. O laser mede a distância entre a sua plataforma e

o alvo do mapeamento, e assim, determina o ponto dos elementos em solo, conforme ilustrado na Figura 4.

Em aerolevantamentos laser, há ainda a necessidade de se conhecer a posição da aeronave para a determinação correta da distância e posição do pulso emitido. Para tanto, a aeronave apropriada para este tipo de serviço deve estar equipada além do sensor LiDAR, de um receptor GNSS (*Global Navigation Satellite System* - Sistema de Satélite de Navegação Global) e de uma IMU (*Inertial Measurement Unit* - Unidade de Medição Inercial).

Fonte: Pinho, 2015

Existem algumas formas de varredura do terreno a depender da tecnologia embarcada no equipamento utilizado. No caso dos dados disponibilizados para este estudo pela mineradora Vale, o levantamento foi realizado utilizando um sensor LiDAR com amplitude do mapeamento angular entre 45º e 60º e espelho poligonal giratório como mecanismo de varredura. Este modo de dispersão do feixe de luz faz com que os pontos de varredura sejam gerados em uma única direção, o que apresenta uma distribuição mais uniforme no padrão de medição, como ilustrado na Figura 5 (FERREIRA, 2019) e (FERREIRA e CINTRA, 2021).

Figura 5 – Mecanismo de varredura do sensor LiDAR

Fonte: Adaptado de Ferreira (2019).

Os pontos mapeados pelo sensor são processados, sendo os ruídos eliminados, ou seja, pontos não representativos da realidade mapeada são apagados. Na sequência, os pontos relevantes são separados por classes, como por exemplo, terreno, vegetação, edificação, entre outras. O resultado deste procedimento é uma nuvem de pontos, composta com valores de X, Y e Z, expressos em metros, referenciados a um sistema de projeção cartográfica horizontal e vertical, com padrão de exatidão cartográfica definido, conforme as normas da cartografia nacional.

O produto final proveniente do aerolevantamento LiDAR, de interesse deste estudo, é o MDT, obtido a partir da interpolação da nuvem de pontos classificados como solo.

Muitas vezes o termo MDT se confunde a outros termos como o MDE e MDS que, embora sejam semelhantes, cada nomenclatura corresponde a um produto cartográfico digital com aplicação distinta. Neste sentido, conforme Höhle y Potuckova (2011), o MDE - Modelo Digital de Elevação que é um termo genérico para a representação matemática e digital de superfícies topográficas em malhas. O MDS – Modelo Digital de Superfície é uma representação topográfica que considera os elementos da superfície. Por fim, o MDT – Modelo Digital de Terreno é um modelo digital da superfície topográfica representado por pontos de altitude em malhas quadradas ou não, desconsiderando os elementos superficiais tais como edificações e vegetação.

É de suma importância determinar a escala e a qualidade de representação do MDT, assim como usualmente é realizado para nuvem de pontos. Inclusive, a PNSB,

lei 12.334/2010 (BRASIL, 2010), faz referência à qualidade dos dados cartográficos utilizados em simulações para a determinação de planos de emergência. É destacado que os dados geográficos devem apresentar escala compatível com a amplitude do estudo realizado (BRASIL, 2010).

4.5 Controle de Qualidade dos MDTs

O controle da qualidade do MDT de cada cenário da simulação foi realizado por meio da adaptação da norma brasileira (FERREIRA, 2019) e (FERREIRA e CINTRA, 2021), que é baseada no método de controle de qualidade posicional de mapas digitais (CINTRA e NERO, 2015). Esta metodologia adota um conjunto com grande número de amostras, por isso é considerada mais adequada para análise de dados contínuos. Nesta metodologia as amostras são submetidas a análises estatísticas que apontam erro, tendência e precisão.

Uma vez estabelecidos os pontos de controle, estes devem ser interpolados com os MDTs de entrada e de referência. Em seguida, a diferença altimétrica entre os MDTs de entrada e o MDT de referência são calculadas, conforme a Equação 8:

$$\Delta Z_i = Z_i - Z_{ci} \tag{8}$$

Onde:

 ΔZ_i = erro altimétrico no ponto i do conjunto amostral de *n* amostras;

 Z_i = Altimetria do ponto i no MDT sob análise;

 Z_{ci} = Altimetria do ponto i no MDT de referência (maior acurácia).

É esperado que os erros encontrados no conjunto amostral sejam aleatórios e que apresentem uma distribuição normal, de forma que não seja possível determinar o motivo de tal diferença. A probabilidade de erro superior a três vezes o desvio padrão é pequena, ainda que possível. Desta forma, na ocorrência destes valores, os pontos devem ser inspecionados e, em caso de confirmação de inconsistência, excluídos das análises por serem considerados erros grosseiros (CINTRA e NERO, 2015), (FERREIRA, 2019) e (FERREIRA e CINTRA, 2021).

Para completar a análise, as amostras são submetidas a dois testes estatísticos: o teste Z da Normal, que evidencia a ocorrência de erros sistemáticos, e

o teste Qui-quadrado (X²), que apresenta a precisão do conjunto amostral em relação à normativa brasileira (CINTRA e NERO, 2015).

O Teste de tendência Z é aplicado a um conjunto amostral com grande número de elementos e revela se existem erros sistemáticos no conjunto. Através da Equação 9:

$$z_H = \frac{1}{EP} * \mu * \sqrt{n} \tag{9}$$

Onde:

 z_H = o valor de Z calculado EP = S = σ = desvio padrão da amostra μ = média do conjunto amostral n = número de amostras

A tabela estatística $Z_{(1-\alpha/2)}$ a partir tamanho da amostra e da significância α adotada na análise, fornece um valor de Z teórico que, comparado ao valor de z_H , aponta a ocorrência ou não de erros sistemáticos nas amostras. No presente estudo foi adotado um nível de significância de 0,1.

Desta maneira temos o Z teórico:

$$Z_{(1-\alpha/2)} = Z_{0,95} = 1,6449$$

Logo, enquanto o valor do Z calculado, z_H , for maior que o Z teórico, $Z_{0,95}$, haverá erro sistemático na componente altimétrica dos MDTs.

O teste de precisão Qui-quadrado é realizado através da Equação 10 e revela se os dados analisados atendem os padrões de qualidade estabelecidos pela norma. Para tanto, o valor de $X_{H,n-1}^2$ do ponto amostral é comparado a um valor calculado $X_{n-1,\alpha}^2$ que depende do conjunto de amostras *n* e do nível de confiança.

$$X_{H,n-1}^2 = (n-1) * S_H^2 / \sigma_H^2$$
(10)

Onde:

 $X_{H,n-1}^2 = X^2$ calculado para a amostra;

n = número de amostras;

 S_{H}^{2} = o quadrado do desvio padrão da amostra;
σ_{H}^{2} = o quadrado do erro padrão da classe de precisão utilizada.

O valor calculado $X^2_{n-1,\alpha}$ é calculado pela Equação 11 devido ao número de amostras.

$$X_{n-1,\alpha}^2 = df * (1 - p + z * \sqrt{p})^3$$
(11)

Onde:

df = n - 1 = graus de liberdade;

 $p = \frac{2}{9} * df$ = variável auxiliar;

z = -1,645 = valor da curva normal com área de α = 0,1, à direita.

Assim, se $X_{H,n-1}^2 \leq X_{n-1,\alpha}^2$, então a amostra atende à precisão testada. Os conceitos utilizados podem ser melhor estudados em Cintra e Nero (2015), Cintra et al. (2017), Ferreira (2019) e Ferreira e Cintra (2021).

O parâmetro de qualidade adotado foi o Padrão de Exatidão Cartográfica para Produtos Cartográficos Digitais PEC-PCD, que estabelece 4 classes para enquadramento de dados geoespaciais, considerando a escala do dado. Para tanto, é preciso que 90% dos valores das amostras apresentem erro abaixo do valor estipulado no PEC-PCD e que a variação altimétrica entre dados sob análise e dados de referência apresente valores menores ou iguais ao Erro Máximo – EM e ao Erro Padrão – EP (DSG, 2016).

Conforme apresentado na ET-CQDG, a acurácia posicional absoluta para dados matriciais é obtida a partir do Erro Máximo (EM) e o Erro Padrão (EP). Estes valores aplicados às Tabela 3 e Tabela 4, estabelecem o Padrão de Exatidão Cartográfica para Produtos Cartográficos Digitais, PEC-PCD (DSG, 2016).

Tabela 3	 Valores de 	erro máximo (E	EM) e erro pao	drão (EP), e	em metros na
planim	netria e altime	tria, para cartas	topográficas	em grande	es escalas.

PEC-	1:10	000	1:20	000	1:5000		1:10000	
PCD	PEC (m)	EP (m)	PEC (m)	EP (m)	PEC (m)	EP (m)	PEC (m)	EP (m)
Α	0,27	0,17	0,27	0,17	0,54	0,34	1,35	0,84
В	0,5	0,33	0,5	0,33	1	0,66	2,5	1,67
С	0,6	0,4	0,6	0,4	1,2	0,8	3	2
D	0,75	0,5	0,75	0,5	1,5	1	3,75	2,5
nto: (DSC	2016)							

Fonte: (DSG, 2016)

PEC-	1:25	1:25.000		1:50.000		1:100.000		1:250.000	
PCD	PEC (m)	EP (m)	PEC (m)	EP (m)	PEC (m)	EP (m)	PEC (m)	EP (m)	
Α	2,7	1,67	5,5	3,33	13,7	8,33	27	16,67	
В	5	3,33	10	6,66	25	16,66	50	33,33	
С	6	4	12	8	30	20	60	40	
D	7,5	5	15	10	37,5	25	75	50	

Tabela 4 - Valores de erro máximo (EM) e erro padrão (EP), em metros na planimetria e altimetria, para cartas topográficas em pequenas escalas.

Fonte: (DSG, 2016)

Vale ressaltar diversos trabalhos que consideram a qualidade de MDTs em termos de precisão e acurácia, tais como Ferreira (2014), Nero *et al.* (2017), Ferreira (2019), Agüera-Vega *et al.* (2020), Mesa-Mingorance e Ariza-Lopez (2020) e Polidori e Hage (2020).

4.6 Análise de sensibilidade dos resultados da simulação

A mancha de inundação, a profundidade e a velocidade máximas e o tempo de chegada da onda são os resultados extraídos de cada cenário, sobre os quais foram realizadas as análises de sensibilidade do modelo, a partir das informações extraídas de seções transversais, localizadas em pontos estratégicos ao longo da mancha de inundação. Foram mensurados os valores máximos de profundidade e velocidade, assim como o tempo mínimo de chegada de uma onda de 50 centímetros de profundidade.

A área de inundação da onda foi analisada por meio do indicador F, amplamente utilizado em estudos de retro análise de rompimento de barragens (ROCHA, 2015), (MACHADO, 2017) e (LIMA, 2020). O indicador F faz uma comparação matricial entre a mancha de inundação simulada (Prevista) e a área impactada observada na ruptura de B1 (Observada). Como resultado têm-se três classificações possíveis:

- A. Observado / Previsto Conformidade entre o simulado e o ocorrido.
- B. Não observado / Previsto Área de inundação hipotética não observada no evento real.

C. Observado / Não Previsto – Área impactada pela onda de ruptura ocorrida, não considerada na mancha de inundação simulada.

As formulações para a obtenção do indicador são apresentadas na Tabela 5.

Nome Equação Intervalo Característica A + BA + CViés (0,∞) Balanço entre sub e superestimativa da inundação sucesso crítico A (CSI) ou F^{<2>} A + B + C(0,1)Reduz a influência do tamanho da área inundanda A - CF^{<3>} A + B + CPenaliza a subestimativa de cheia (-1,1) A - BF^{<4>} A + B + C(-1,1)Penaliza a superestimativa de cheia

Tabela 5 - Formulações do Indicador F

Fonte: (LIMA, 2020)

As informações obtidas através de seções transversais para avaliação dos resultados da simulação são:

- 1. Vazão de Pico do Hidrograma de Ruptura,
- 2. Tempo do Pico do Hidrograma de Ruptura,
- 3. Tempo de Chegada da Onda de Ruptura
- 4. Profundidade Máxima da Onda de Ruptura;
- 5. Velocidade Máxima da Onda de Ruptura;

As métricas extraídas em cada cenário de simulação serão submetidas a análise estatística descritiva a fim de determinar o coeficiente de variação Cv, Equação 12, e assim verificar a discrepância em torno dos valores obtidos.

$$Cv = \frac{\sigma}{\mu} \tag{12}$$

Onde,

Cv = coeficiente de variação;

 σ = desvio padrão;

 μ = média.

5 CARACTERIZAÇÃO DA ÁREA DE ESTUDO E BREVE DESCRIÇÃO DA RUPTURA

A área de estudo corresponde ao vale compreendido desde a cabeceira do Ribeirão Ferro-Carvão até sua confluência com o Rio Paraopeba e, a partir de então, seguindo este curso d'água até o trecho onde o rio atravessa a Serra do Funil, no limite dos municípios de Brumadinho, Mário Campos e São Joaquim de Bicas, Estado de Minas Gerais.

A Figura 6 apresenta a localização da área de estudo em relação ao município de Belo Horizonte – MG.

Figura 6 – Localização e vias de acesso à área de estudo

Na porção mais a montante do vale está localizada a Mina Córrego do Feijão, operada pela mineradora Vale. Entre as estruturas componentes, vale destacar as barragens B1 e B6 com capacidade de armazenamento de 11,7x106 m³ e 4x106 m³ respectivamente, implantadas na cabeceira do Ribeirão Ferro-Carvão. Imediatamente abaixo destas estruturas, temos a ITM – Instalação de Tratamento de Minério seguida da pêra ferroviária, pátio de carregamento de vagões para transporte do minério. Seguindo temos as edificações que compõem a parte administrativa da mina e, mais abaixo, duas barragens menores B4 e B4A, de contenção de sedimentos.

Seguindo, o curso do Ribeirão Ferro-Carvão passa pelo distrito de Córrego do Feijão, pela Pousada Rural Nova Estância, seguida de um pontilhão férreo. Na parte final do ribeirão há o bairro Parque da Cachoeira onde destaca-se a ponte Alberto Flores, já próxima à confluência com o Rio Paraopeba. No trecho considerado, o Rio Paraopeba é margeado pelo centro urbano do município de Brumadinho onde existe uma ponte da rodovia MG040. No trecho final da área de estudo, o rio atravessa a Serra do Funil.

Na sexta-feira do dia 25 de janeiro de 2019, a B1 entrou em colapso, após seu maciço sofrer o processo de liquefação, liberando o volume de lama de rejeito de minério de ferro contido em seu reservatório pelo vale a jusante, descrito anteriormente.

O modo de falha da barragem ocorreu por liquefação do maciço, o tempo de formação da brecha foi de 6 segundos e o tempo de propagação do volume do reservatório em torno de 5 minutos (ROBERTSON *et al.*, 2019).

Em sua propagação, a onda atingiu velocidade superior a 90 km/h e profundidade acima de 40 metros (RAGAZZI e ROCHA, 2019) e (ROBERTSON *et al.*, 2019) . Como consequência, a maior parte da área operacional da Mina do Córrego do Feijão foi destruída, assim como as estruturas e casas ao longo do vale do Ribeirão Ferro-Carvão, resultando em 259 pessoas mortas e 11 desaparecidas (CBMMG, 2021).

A onda atingiu a parte administrativa da mina em menos de 2 minutos. Em função das características geomorfológicas do vale a jusante e com a incorporação do material ao longo do caminho da onda, a velocidade diminuiu bastante, levando cerca de 30 minutos até alcançar a região da pousada Nova Estância. Por fim, por volta das 15:50h a onda atingiu o Rio Paraopeba, após mais de 3 horas do colapso da Barragem 1 (RAGAZZI e ROCHA, 2019).

A Figura 7 apresenta a área de estudo com os principais elementos observados. Da Figura 8 a Figura 15, cada ponto mapeado é apresentado detalhadamente, sendo apresentado o aspecto visual de partes da área de estudo antes e depois do rompimento da barragem.

Figura 7 – Caracterização da Área de Estudo

Figura 8 – Pontos notáveis 1 a 3.

Figura 9 – Área administrativa Vale

Figura 10 – Pontos notáveis 5 e 6.

Figura 11 – Pontos notáveis 7, 8 e 9.

Figura 12 – Bairro Parque da Cachoeira

Figura 13 – Ponte Alberto Flores

Figura 14 – Brumadinho

Figura 15 – Serra do Funil

6 MATERIAIS E MÉTODOS

Neste capítulo são apresentados os materiais e métodos utilizados na pesquisa proposta.

6.1 Materiais

As principais ferramentas para o desenvolvimento do estudo foram os softwares de sistema de informação geográfica (ArcGIS e QGis), de modelagem hidrodinâmica (HEC-RAS) e de planilha eletrônica (Excel).

O material básico da pesquisa consiste em informações geográficas na forma de arquivos matriciais e vetoriais que foram disponibilizadas pela mineradora Vale, como forma de apoio à pesquisa, e que são apresentados na Tabela 6.

Descrição	Formato	Data	Resolução
Modelo Digital de Terreno	raster	2016	1,0 m
Modelo Digital de Terreno	raster	2019	1,0 m
Ortofoto	raster	2016	0,35 m
Ortofoto	raster	2019	0,20 m

Tabela 6 - Base de dados do estudo.

6.2 Métodos

A metodologia proposta consiste na análise de 6 cenários simulação da ruptura da Barragem 1. Os dados de entrada e a configuração do modelo hidrodinâmico permanecem idênticos em todos os cenários, à exceção dos MDTs que sofreram variação no tamanho da célula de um cenário para o outro. O diagrama esquemático do modelo de simulação proposto é apresentado na Figura 16.

Cada elemento do modelo da Figura 16 necessita de uma modelagem individual para estar apto a desempenhar sua função na simulação hidrodinâmica de maneira que sejam alcançados resultados de forma satisfatória. Diante disso, todas as atividades necessárias foram incluídas em uma das etapas previstas no desenvolvimento deste trabalho, conforme apresentado na Tabela 7.

Figura 16 – Diagrama conceitual da metodologia do trabalho

Tabela 7 - Etapas de desenvolvimento da pesquisa

Etapa	Atividades				
Dadaa da	Classificação do uso e cobertura do solo e atribuição do coeficiente de Manning correspondente a cada classe.				
Entrada	Cálculo do volume escoado e determinação da geometria e do tempo de formação da brecha para gerar o hidrograma de ruptura.				
	Geração dos MDTs, conforme cada cenário de análise.				
Qualidade Posicional	Determinação da acurácia posicional altimétrica da topografia.				
	Configuração do sistema de projeção cartográfica.				
Madala	Dimensionamento da malha computacional de cálculo.				
IVIOCIEIO Hidrodinâmico	Passo de tempo da simulação.				
Thurounarrico	Determinação das condições de contorno.				
	Locação das seções representativas dos resultados.				
Popultodoo	Extração das manchas de inundação de cada cenário em arquivo shapefile.				
Resultados	Extração da profundidade máxima de cada cenário em arquivo raster.				

	Extração da velocidade máxima de cada cenário em arquivo <i>raster</i> . Extração do tempo de chegada da onda de cada cenário em arquivo <i>raster</i> . Determinação da vazão de pico do hidrograma nas seções representativas.
	Determinação do tempo para a vazão de pico do hidrograma nas seções representativas.
Dados Evento Real	Pesquisa sobre as informações da ruptura de B1 pertinentes ao estudo.
Análise de	Cálculo da discrepância entre os resultados de cada variável dos cenários considerados.
Sensibilidade	Cálculo da discrepância entre os dados observados e os dados obtidos na simulação dos cenários.
Dennesentesão	Elaboração de mapas com os resultados de cada cenário
Gráfica	Elaboração de gráficos descrevendo o comportamento da onda de ruptura.
Granda	Exposição em forma de tabela dos valores obtidos das variáveis estudadas.

6.2.1 Dados do Evento Real

Uma pesquisa a respeito da ruptura da Barragem 1 foi conduzida com o objetivo de entender o evento e buscar dados sobre o tempo de chegada, profundidade e velocidade da onda para servirem como parâmetro de referência para a análise dos resultados das simulações. Dentre os autores pesquisados vale ressaltar Robertson *et al.* (2019), Ragazzi e Rocha (2019), Porsani, Jesus e Stangari (2019), Lima *et al.* (2020) e Garcia e Tribist-Correa (2020).

A determinação da área impactada pela ruptura foi realizada por meio de fotointerpretação na escala 1:1.000 da imagem pós-evento, com 0,2 m de resolução espacial, datada de 28 de janeiro de 2019.

6.2.2 Determinação do Hidrograma

O volume escoado segundo as autoridades investigativas foi 11,3x10⁶ m³, com tempo de formação da brecha muito curto, apenas 6 segundos e escoamento de todo o volume armazenado em apenas 2 minutos (RAGAZZI e ROCHA, 2019). Já as informações de uma auditoria independente, contratada pela mineradora Vale, estimam um volume de 9,7x10⁶ m³ escoado ao longo de 5 minutos com tempo de formação da brecha de 6 segundos também (ROBERTSON *et al.*, 2019). Desta maneira estas informações serviram de referência para calibração das variáveis do hidrograma de ruptura.

A brecha se formou em toda a face do maciço em 6 segundos, como consequência da liquefação do material do maciço. Este tempo de formação da brecha pode ser desprezado diante da magnitude do evento e por este motivo a representação da passagem do fluxo pela brecha do maciço da barragem ao longo do tempo foi realizada por meio de um hidrograma simplificado, expresso matematicamente pela Equação 5 (FARIA *et al.*, 2019).

O volume do hidrograma foi determinado, calculando o volume entre as superfícies pré e pós ruptura do reservatório, com uso da ferramenta *Cut Fill,* do programa ArcGIS (ESRI, 2021).

O intervalo entre 2 e 5 minutos foi definido como tempo de propagação do volume a partir da sensibilidade do modelo de simulação a esta variável.

6.2.3 Determinação do Coeficiente de Manning

No cálculo do escoamento do material mobilizado na ruptura pelo vale a jusante, parte do estudo diz respeito à definição das forças de atrito que o terreno impõe ao fluxo. Essa componente é calculada a partir do coeficiente de rugosidade de Manning, *n*, o qual varia em função da cobertura do solo sobre o qual o fluido escoa.

A fórmula de Manning determina a resistência ao escoamento associada ao fundo do canal. Porém, a maior dificuldade do uso desta fórmula consiste justamente na definição do coeficiente de rugosidade *n* da Equação 4. Usualmente nos estudos de inundação, esta estimativa é feita de forma indireta, através do uso de tabelas com o valor de *n* equivalente às características da superfície de contato do fluido.

Assim, a classificação do uso e cobertura do solo do vale a jusante da barragem foi a referência utilizada para determinação dos valores de *n*. A imagem ortorretificada pré-ruptura foi classificada de forma supervisionada, com a utilização da ferramenta *Image Classification* do ArcGIS (ESRI, 2021). Devido à boa resolução da imagem, o procedimento precisou ser dividido em etapas de classificação até que fosse atingido um nível de representação satisfatório. Em um primeiro momento as áreas de maiores contrastes, área vegetada e não vegetada, foram classificadas. Em seguida, estas duas classes formadas sofreram uma nova análise, discretizando melhor os resultados obtidos na etapa anterior. A área vegetada foi dividida e classificada em: área cultivada, vegetação densa e vegetação esparsa. A área não vegetada, por sua vez, foi desmembrada em: área edificada, corpo hídrico e solo exposto. Foi necessário um maior refinamento dos resultados, de modo que algumas feições foram vetorizadas através da fotointerpretação da imagem. O diagrama da Figura 17 apresenta a metodologia utilizada na definição das classes de uso e cobertura do solo.

Figura 17 – Metodologia de classificação do uso e cobertura do solo

A cada classe mapeada foi associado um valor de rugosidade, obtido dos dados compilados de diversas publicações e apresentados por Baptista e Lara (2016), conforme a utilização ou o tipo de material. Desta forma, buscou-se uma correlação entre os valores de referência e as classes de uso e cobertura de solo. Os valores de coeficiente de Manning utilizados nesta pesquisa são apresentados na Tabela 8.

Classe	Rugosidade
Área Cultivada	0,040
Área Edificada	0,017
Corpo Hídrico	0,025
Solo Exposto	0,023
Vegetação Densa	0,070
Vegetação Esparsa	0,030

Tabela 8 - Coeficiente de Manning

O resultado deste processo é apresentado na forma matricial, sendo utilizado como um dos dados de entrada da simulação.

6.2.4 Elaboração dos MDTs

O MDT de 2016, com 1 metro de resolução espacial, foi o dado que deu origem aos novos MDTs com diferentes aberturas de malha, obtidos a partir do processo de interpolação bilinear, onde é realizada a interpolação polinomial linear nos eixos das abcissas e ordenadas. Esta técnica pode ser entendida como uma média ponderada em função da distância entre pontos.

6.2.5 Determinação da Qualidade Posicional dos MDTs

O controle da qualidade do MDT de cada cenário da simulação foi realizado conforme item 4.5. A Figura 18 apresenta o diagrama do método de controle da qualidade posicional altimétrica dos MDTs.

O MDT pós ruptura foi considerado o de melhor acurácia e, portanto, escolhido como o elemento de controle da qualidade altimétrica dos MDTs de entrada da simulação. Ainda que a área de incidência da onda de propagação do material reservado na barragem I tenha sido desconsiderada da análise, a região não atingida apresenta uma excelente representação do terreno.

A demarcação dos pontos de controle obedeceu a premissa de buscar locais onde pouco sujeitos à alteração ao longo do tempo. Neste sentido, os acessos rodoviários e ferroviários atendem esta condição, além de estarem espacialmente distribuídos no entorno da área de interesse do estudo.

Figura 18 – Controle de qualidade posicional altimétrica dos MDTs

6.2.6 Modelo Hidrodinâmico

O modelo computacional hidrodinâmico utilizado neste estudo é o programa HEC-RAS, versão 6.0 (USACE, 2020). A referência planimétrica adotada foi o sistema de projeção cartográfica UTM – Universal Transversa de Mercartor, fuso 23 Sul, datum SIRGAS2000. O intervalo de tempo da representação da vazão do hidrograma adotado foi determinado de modo a satisfazer a condição de Courant.

A malha 2D foi demarcada de modo a cobrir todas as áreas possíveis de serem inundadas, tomando cuidado para que o fluido propagado não atinja os limites espaciais estabelecidos para a simulação.

Condições de contorno foram alocadas nos locais que representam a entrada e saída do fluxo. A condição de contorno de entrada do modelo é o hidrograma de ruptura e, como condição de contorno de saída foi adotada a declividade equivalente do trecho do rio. Seções representativas foram alocadas ao longo do trecho de propagação para que, através delas, fossem extraídos valores máximos e mínimos das variáveis explicativas do fenômeno analisado.

Os dados da reologia do rejeito armazenado estimados no modelo foram extraídos de publicações de autores neste campo da ciência, dentre os quais destacem-se Robertson *et al.* (2019), Lima *et al.* (2020) e Garcia e Tribist-Correa (2020).

6.2.7 Análise de Sensibilidade

A análise de sensibilidade dos resultados obtidos do modelo em função da variação do MDT de entrada foi desenvolvida pela aplicação do coeficiente de variação conforme item 4.6.

6.2.8 Representação Gráfica

Os mapas de inundação de cada cenário apresentam a amplitude da mancha simulada em contraste com a mancha ocorrida, além das seções representativas com a tabela dos resultados obtidos. Os mapas encontram-se no ANEXO III.

7 RESULTADOS

Neste capítulo são apresentados os resultados obtidos nas etapas de desenvolvimento da pesquisa.

7.1 Informações Sobre a Ruptura de B1

De acordo com Lima *et al.* (2020), o volume propagado foi 9 x 10⁶ m³. Já Robertson *et al.* (2019) considerou o valor de 9,7 x 10⁶ m³.

O material contido na barragem apresentava textura areno-siltosa e concentração de minério de ferro acima de 50% e de quartzo menos de 10%. Assim, o peso específico do material era de aproximadamente 26 quilo newtons por metro cúbico (kN/m³) (ROBERTSON *et al.*, 2019) e (LIMA *et al.*, 2020). Ensaios em amostras do rejeito apontam para um índice de vazios de 1, o que significa que 50% do volume do rejeito era composto por vazio, sendo grande parte deste preenchido por água, algo em torno de 5 x 10^6 m³ (ROBERTSON *et al.*, 2019) e (LIMA *et al.*, 2019) e (LIMA *et al.*, 2020).

Os valores da viscosidade e tensão limite de escoamento do fluido, 10 Pascal (Pa) e 1200 Pascal segundos (Pa*s) respectivamente, foram extraídos de Garcia e Tribist-Correa (2020).

A região atingida foi delimitada conforme especificado no item 6.2.1 e apresenta uma área 275 hectares ao longo do trajeto de 11 km do talvegue principal da onda de propagação da lama de rejeito. A Figura 19 apresenta a mancha de inundação mapeada do colapso da B1.

O colapso provocou uma onda inicial entre 30 e 40 metros de profundidade (RAGAZZI e ROCHA, 2019) e (ROBERTSON *et al.*, 2019).

Informações sobre o momento em que a onda atinge pontos conhecidos no trecho de propagação foram extraídas de gravações de vídeos que auxiliaram no cálculo das velocidades além de permitir estimar a profundidade da onda em alguns pontos (LIMA *et al.*, 2020).

Nos primeiros 500 metros a onda atingiu velocidades entre 90 e 99 km/h. Após aproximadamente 1.000 metros a velocidade calculada foi de 66 km/h (LIMA *et al.*, 2020). Já no trecho final de propagação, das proximidades do bairro Parque das Cachoeiras até o encontro com o Rio Paraopeba a velocidade variou entre 8 e 18 km/h (LIMA *et al.*, 2020)

7.2 Hidrograma

O volume propagado foi determinado pelo cálculo do volume entre as superfícies pré e pós ruptura, que forneceu o valor 10,24 x 10⁶ m³ de rejeito mobilizado.

Pelo método de elaboração do hidrograma apresentado no item 6.2.2, a vazão de pico (Qp) é de 75,33 x 10³ m³/s. A representação gráfica do hidrograma é mostrada na Figura 20.

7.3 Manning

A base para a determinação do coeficiente de rugosidade de Manning foi o mapeamento do uso e cobertura do solo da área de estudo, realizado conforme previsto no item 6.2.3. O resultado é apresentado na Tabela 9 e na Figura 21.

Classe	Manning	Área (km²)
Água	0,025	1,4
Área Cultivada	0,033	2,06
Área Edificada	0,030	3,69
Solo Exposto	0,025	4,03
Vegetação Densa	0,070	20,14
Vegetação Esparsa	0,030	12,82

Tabela 9 - Classificação de Manning

7.4 MDTs

Cada cenário da simulação é caracterizado por um MDT com uma abertura de malha diferente dos demais. O MDT do cenário C01 foi submetido à interpolação bilinear em programa SIG para alterar o espaçamento da malha e assim gerar MDTs com diferentes tamanhos do elemento de malha, conforme apresentado na Tabela 10. A diferença na representação do terreno é mostrada na Figura 22, onde está destacada a pêra ferroviária da Mina Córrego do Feijão.

Cenário	Resolução MDT (m)
C01	1
C05	5
C10	10
C15	15
C20	20
C25	25

Tabela 10 – Resolução espacial dos MDTs

Figura 22 – Resolução espacial dos MDTs

7.4.1 Qualidade posicional dos MDTs

Na localização dos pontos amostrais foram considerados locais que não sofreram alterações em função da ruptura de B1 e que tiveram menor probabilidade de alteração de suas características morfológicas ao longo do tempo, desta maneira foi dada a preferência pela demarcação de pontos de controle em áreas de servidão, estradas de acesso e ferrovias, identificadas nas ortofotos utilizadas neste estudo.

Ao todo foram estabelecidos 247 pontos para controle da acurácia vertical dos MDTs elaborados conforme mostra a Figura 23. Os pontos amostrais foram interpolados apara a obtenção do valor altimétrico em cada MDT de entrada e no MDT de referência, proveniente do levantamento LiDAR.

Na busca de erros grosseiros, 7 pontos foram retirados das amostras. A distribuição dos erros em cada grupo amostral é mostrada na A síntese da estatística descritiva dos dados, os testes de tendência e precisão e o padrão de qualidade são mostrados na Tabela 11. A Figura 24 mostra a distribuição dos erros amostrais de cada MDT. A análise da qualidade dos MDTs é apresentada de forma mais detalhada no ANEXO II.

Amostra	∆H MDT 1 m	∆H MDT 5 m	∆H MDT 10 m	∆H MDT 15 m	∆H MDT 20 m	∆H MDT 25 m
Média	0,052	0,069	0,099	0,141	-0,121	-0,153
Mediana	0,123	0,099	0,044	0,094	-0,047	-0,097
Moda	-0,491	-0,503	-0,765	-1,597	1,917	0,250
Erro Padrão	0,027	0,028	0,032	0,042	0,048	0,059
Desvio Padrão	0,419	0,431	0,494	0,651	0,747	0,908
Variância da amostra	0,176	0,186	0,244	0,424	0,559	0,824
Curtose	2,264	1,412	1,025	2,660	0,873	2,030
Média + 3*Desvio Padrão	1,309	1,362	1,581	2,095	2,121	2,571
Média - 3*Desvio Padrão	-1,205	-1,224	-1,382	-1,813	-2,363	-2,876
Assimetria	-0,483	-0,288	0,200	0,503	-0,233	0,228
Intervalo	3,518	3,324	3,724	5,181	4,543	6,800
Mínimo	-2,181	-2,051	-1,953	-1,666	-2,626	-3,443
Máximo	1,337	1,273	1,771	3,515	1,917	3,357
Soma	12,542	16,579	23,781	33,835	-29,057	-36,614
Nº de amostras	240	240	240	240	240	240
Teste Z (tendencia)	1,619	1,622	1,535	1,308	-1,123	-1,415

Tabela 11 – Resultados das análises de qualidade dos MDTs

Z(1-α/2) ou Z0,95	1,645	1,645	1,645	1,645	1,645	1,645
EP (PEC-PCD)	0,500	0,660	1,000	1,670	1,670	1,670
Teste Precisão (X ² z,n- 1)	167,867	101,911	58,286	36,369	47,877	70,625
X²n-1, α	267,412	267,412	267,412	267,412	267,412	267,412
PEC PCD	D	В	D	В	В	В
Escala	1:2.000	1:5.000	1:5.000	1:10.000	1:10.000	1:10.000
Erro Máximo (m)	0,75	1	1,5	2,5	2,5	2,5

Figura 23 – Pontos de controle da acurácia vertical

Figura 24 – Distribuição dos erros das amostras

7.5 Modelo Hidrodinâmico

Uma vez que os dados de entrada foram determinados, foi possível proceder a modelagem da propagação do hidrograma de ruptura sobre os MDTs. Na elaboração da malha 2D foi considerado um raio de 1.000 metros no entorno da mancha com impacto real, até o limite estabelecido para a pesquisa. A área de estudos resultante abrange 24 km² e perímetro de 111,82 km. O tamanho de célula escolhido, 10 metros, resultou num total de 246.913 células componentes da malha de cálculo.

O intervalo computacional para efeitos de cálculo hidrodinâmico adotado foi de 1 segundo. Já o tempo de mapeamento das variáveis explicativas da propagação do fluido através das células da malha de cálculo 2D foi realizado no intervalo de tempo de 1 minuto.

A condição de contorno de montante considerada, o hidrograma de ruptura, foi posicionada na base do maciço da barragem B1. Já, como condição de contorno de jusante foi considerada a declividade equivalente do trecho do rio, obtida no MDT de referência.

As seções representativas foram definidas a partir dos critérios apresentados no item 6.2.6, totalizando a quantidade de 15 seções. A Figura 25 apresenta o arranjo do modelo hidrodinâmico deste estudo.

Figura 25 – Modelo hidrodinâmico

7.6 Cenários da simulação

Os resultados obtidos na simulação dos cenários foram compilados e são apresentados nos tópicos abaixo por meio da análise de desempenho do indicador F aplicado às áreas de inundação, e da determinação do coeficiente de variação para os resultados de profundidade e tempo de chegada da onda. A apresentação dos resultados de cada cenário simulado de forma independente pode ser encontrada no ANEXO III.

7.6.1 Análise da Previsão de Áreas Inundadas

O indicador de desempenho F foi obtido por meio da comparação entre a área inundada mapeada na ortofoto pós ruptura e as áreas de inundação calculadas nos cenários simulados, conforme item 4.6. Os resultados exibidos nas Tabela 12 e Tabela 13, e nas Figura 26 e Figura 27.

Os valores do viés acima de 1,0 demonstram que os cenários tenderam a superestimar a cheia de inundação, como comprovam os índices de penalização de superestimativas, F⁴, com valores em torno de 0,6. O índice F² acima de 0,8 indica o sucesso crítico alcançado por todos os cenários na previsão das manchas de inundação

	C01	C05	C10	C15	C20	C25
Viés	1.169	1.173	1.167	1.162	1.155	1.134
F ²	0.822	0.819	0.821	0.822	0.824	0.828
F ³	0.804	0.802	0.802	0.802	0.801	0.799
F⁴	0.662	0.657	0.662	0.665	0.670	0.685

Tabela 12 - Resultados dos indicadores de desempenho F

	C01 (ha)	C05 (ha)	C10 (ha)	C15 (ha)	C20 (ha)	C25 (ha)
Α	264,49	264,56	263,98	263,56	262,97	260,78
В	51,52	52,55	51,29	50,31	49,14	45,12
С	5,86	5,73	6,24	6,58	7,17	9,04
Total	321,87	322,83	321,51	320,45	319,27	314,95

Tabela 13 – Quadro de área das classes dos indicadores de desempenho F

Figura 27 – Classificação das áreas de inundação dos cenários

7.6.2 Análise dos Resultados de Profundidade, Velocidade e Tempo de Chegada da Onda

O fluido simulado nos cenários não percorreu toda a extensão da malha de cálculo, atingindo a condição de estabilidade logo após a seção representativa ST-10. Os resultados de profundidade, velocidade e tempo de chegada da onda nas seções representativas são apresentados nas Tabela 14, Tabela 15, e Tabela 16, e nas Figura 28, Figura 29 e Figura 30 respectivamente.

Seção	Distância da	Profundidade máxima (m)						Mádia	Desvio	Coeficiente
	Barragem (km)	C01	C05	C10	C15	C20	C25	ivieula	Padrão	Variação
ST-01	0,01	24,84	24,37	23,74	24,16	23,04	21,60	23,63	1,16	4,93%
ST-02	0,78	25,03	25,00	24,73	24,91	24,91	25,42	25,00	0,23	0,92%
ST-03	1,27	15,28	15,42	15,07	15,61	15,34	16,20	15,49	0,39	2,54%
ST-04	1,89	16,90	16,15	15,69	16,68	17,20	16,24	16,48	0,55	3,36%
ST-05	3,03	19,83	19,83	19,33	20,01	19,45	19,21	19,61	0,32	1,65%
ST-06	4,13	16,88	16,76	16,51	16,42	16,76	16,76	16,68	0,18	1,07%
ST-07	5,09	14,04	13,54	13,57	12,62	13,98	12,65	13,40	0,63	4,67%
ST-08	7,07	10,70	10,73	10,93	9,75	10,00	9,85	10,33	0,52	5,01%
ST-09	9,31	5,71	6,08	5,57	6,01	6,20	5,03	5,77	0,43	7,46%
ST-10	10,80	7,85	8,07	8,24	8,66	9,01	9,03	8,48	0,50	5,89%

Tabela 14 – Profundidade máxima

Figura 28 – Profundidade máxima

Em relação às profundidades máximas, a maior variação ocorreu na seção transversal inicial, ST-01, e nas finais, a partir da ST-07, já na metade final do trecho de propagação da onda. Em relação à velocidade as seções finais, ST-09 e ST-10, apresentaram maior sensibilidade à variação da escala de terreno.

Seção	Distância da Barragem (km)		١	/elocida	ade (m/	Mádia	Desvio	Coeficiente		
		C01	C05	C10	C15	C20	C25	Ineula	Padrão	de Variação
ST-01	0,01	86,32	85,63	84,75	83,00	81,14	79,34	83,36	2,72	3%
ST-02	0,78	70,70	72,14	72,47	73,84	70,81	75,55	72,58	1,86	3%
ST-03	1,27	58,04	58,05	58,57	59,32	59,41	60,06	58,91	0,82	1%
ST-04	1,89	61,33	61,44	60,65	61,32	61,06	61,80	61,27	0,39	1%
ST-05	3,03	44,38	44,89	45,32	49,47	45,68	47,22	46,16	1,89	4%
ST-06	4,13	27,36	27,76	27,09	29,37	28,98	28,94	28,25	0,96	3%
ST-07	5,09	26,07	25,64	27,32	25,83	26,01	25,72	26,10	0,62	2%
ST-08	7,07	14,80	14,91	15,09	15,05	14,77	15,07	14,95	0,14	1%
ST-09	9,31	10,14	11,13	11,66	11,57	13,61	13,11	11,87	1,28	11%
ST-10	10,80	3,89	4,12	4,71	4,50	3,69	3,33	4,04	0,51	13%

Tabela 15 – Velocidade máxima

Figura 29 – Velocidade máxima

Os tempos de chegada da onda nos primeiros 3 quilômetros do trajeto não sofreram variação, passando a apresentar diferenças a partir da ST-06. A velocidade

máxima foi a métrica que apresentou maior variação entre cenários com média de 4,2%, seguida da profundidade máxima com 3,75% e por fim, o tempo de chegada da onda com 2%.

Socão	Distância da	Tem	ipo de (Chegad	a da Or	Mádia	Desvio	Coeficiente		
Seçau	Barragem (km)	C01	C05	C10	C15	C20	C25	Media	Padrão	de Variação
ST-01	0,01	00:01	00:01	00:01	00:01	00:01	00:01	00:01:00	00:00:00	0,00%
ST-02	0,78	00:01	00:01	00:01	00:01	00:01	00:01	00:01:00	00:00:00	0,00%
ST-03	1,27	00:02	00:02	00:02	00:02	00:02	00:02	00:02:00	00:00:00	0,00%
ST-04	1,89	00:03	00:03	00:03	00:03	00:03	00:03	00:03:00	00:00:00	0,00%
ST-05	3,03	00:05	00:05	00:05	00:05	00:05	00:05	00:05:00	00:00:00	0,00%
ST-06	4,13	80:00	00:07	00:07	00:07	00:07	00:07	00:07:10	00:00:17	3,88%
ST-07	5,09	00:11	00:11	00:10	00:10	00:10	00:10	00:10:20	00:00:27	4,30%
ST-08	7,07	00:20	00:20	00:20	00:20	00:19	00:19	00:19:40	00:00:27	2,26%
ST-09	9,31	00:39	00:39	00:38	00:37	00:37	00:37	00:37:50	00:00:50	2,20%
ST-10	10,80	00:53	00:51	00:50	00:49	00:47	00:47	00:49:30	00:01:50	3,70%

Tabela 16 – Tempo de Chegada da Onda

Figura 30 - Tempo de chegada da inundação

8 CONCLUSÕES

Os MDTs elaborados alcançaram padrões de qualidade estabelecidos no PEC-PCD, compatíveis com as escalas de 1:2.000 até 1:10.000, com erros máximos variando entre 0,75 e 2,5 metros.

Dentre as métricas analisadas, a velocidade máxima nas seções foi a variável que apresentou maior sensibilidade com uma variação de 4,21%, seguida da profundidade com 3,75% e por fim, o tempo de chegada da onda que apresentou 2,07% de variação.

Em relação ao tempo de chegada, ao se analisar os resultados das seções transversais de maneira mais específica, percebe-se que no terço inicial do trecho, até a seção ST-05, não há alteração do tempo de chegada. A mudança mais sensível ocorre na última seção, já no Rio Paraopeba, onde o tempo de chegada apresentou uma diferença máxima de 1 minuto e 50 segundos em relação à média do tempo dos cenários. Quando comparado com o evento real, pode-se afirmar que o modelo não conseguiu representar a cronologia real do evento. Um dos possíveis motivos para isso, deve-se ao fato de apesar do HEC-RAS versão 6.0 contemplar a propagação de fluidos viscosos, ele ainda não possui a capacidade de variar a concentração volumétrica deste fluido no tempo-espaço, à medida que a onda vai incorporando o material revolvido ao longo de seu trajeto.

Os resultados de profundidade apresentaram um desvio padrão médio de 50 centímetros, sendo a maior diferença de profundidade encontrada na ST-01, 1,16 metros em torno da média. Esta diferença ocorre justamente no cenário C25 onde o terreno apresenta pior resolução espacial.

Em relação aos resultados de velocidade máxima, é notável que a grande diferença nos valores ocorre no trecho final de simulação, atingindo uma variação acima dos 10%. Ao comparar os valores das seções representativas e os valores observados percebe-se uma certa coerência entre o ocorrido e o simulado.

A área impactada definida em cada cenário foi analisada por meio do indicador de desempenho F que demonstra que os resultados obtidos não estão enviesados, e que alcançaram sucesso crítico superior a 80% conforme F². As áreas superestimadas foram as responsáveis pela maior parte dos erros, como demostram os indicadores F³ e F⁴, que penalizam áreas de inundação subestimadas e superestimadas, respectivamente. De certa maneira as áreas superestimadas possuem um efeito

menos nocivo do que uma área impactada em um evento de ruptura real e não prevista em um evento simulado, uma vez que são as manchas de inundação simuladas que vão subsidiar o desenvolvimento de planos de ações emergenciais de evacuação e resgate.

De modo geral, é possível afirmar que os cenários apresentaram desempenho bastante semelhante na explicação da ruptura da Barragem 1, e que a velocidade foi a variável mais sensível à alteração do terreno, sem, contudo, apresentar uma resposta muito discrepante em relação as demais métricas analisadas. Assim, escalas mais detalhadas que 1:10.000 são capazes de representar um evento da magnitude de B1.

Contudo, os resultados demonstram uma necessidade de aprofundar as análises de escala de representação de terreno para simulação de eventos de ruptura de barragens. Neste sentido, pesquisas semelhantes aplicadas a outras barragens com características distintas e vales a jusante diferentes podem ajudar na elucidação de uma escala mínima compatível para o desenvolvimento de estudos de ruptura.

Os resultados podem ainda servir de base para definição de diretrizes para mapeamento de vales a jusante de barragens otimizando recursos sem perder em termos de qualidade da informação.

REFERÊNCIAS BIBLIOGRÁFICAS

AGÜERA-VEGA, F. *et al.* Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level. **International Journal of Remote Sensing**, n. 41, 2020.

ÁLVAREZ, M.; PUERTAS, J.; BERMÚDEZ, M. Two-Dimensional Dam-Break Flood Analysis in Data-Scarce Regions: The Case Study of Chipembe Dam, Mozambique. **Water**, n. 9, p. 432, 2017.

ARUN, R.; LIU, F. **An investigation of the Brumadinho Dam Break Simulation**. New Jersey West Windsor. [S.I.], p. 16. 2019.

ATIF, I.; CAWOOD, F. T.; MAHBOOB, M. A. Modelling and analysis of the Brumadinho tailings disaster using advanced geospatial analyticst. **The Southern African Institute of Mining and Metallurgy**, 2020. ISSN 2225-6253.

AZEEZ, O. *et al.* Dam break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia. **Natural Hazards**, 2020.

BAPTISTA, M.; LARA, M. Fundamentos de Engenharia Hidráulica. 4. ed. Belo Horizonte: UFMG, 2016.

BRASIL. Decreto n°89.817 de junho de 1984 - Estabelece as Instruções Reguladoras das NormasTécnicas da Cartografia Nacional. Diário Oficial da União. Brasília. 1984.

BRASIL. Lei nº 12.334, de 20 de setembro de 2010. Estabelece a Política Nacional de Segurança de Barragens (PNSB) e cria o Sistema Nacional de Informações sobre Segurança de Barragens (SNISB). Poder Executivo. Brasília. 2010.

BRASIL. Portaria nº 70.389, de 17 de maio de 2017. Política Nacional de Segurança de Barragens - PNSB. DNPM – Departamento Nacional de Produção Mineral. Brasília. 2017.

BRASIL. Norma nº 32, de 11 de maio de 2020. Altera a Portaria nº 70.389, de 17 de maio de 2017 e dá outras providências. ANM - Agência Nacional de Mineração. Brasília. 2020.

CASULLI, V. A high-resolution wetting and drying algorithm for free-surface. **International Journal for Numerical Methods in Fluids**, [S.L.], v. 60, n. 4, p. 391-408, 2008.

CBMMG. Tragédia em Brumadinho completa dois anos e é marcada por homenagens às vítimas. **Corpo de Bombeiros Militar de Minas Gerais**, 2021. Disponivel em: https://www.bombeiros.mg.gov.br/tragedia-em-brumadinho-completa-dois-anos-e-e-marcada-por-homenagens-as-vitimas. Acesso em: 04 out. 2021.

CINTRA, J. P.; NERO, M. N. New Method for Positional Cartographic Quality Control in Digital Mapping. **Journal of Surveying Engineering**, v. 141, n. 3, 2015.
DSG. **ET-CQDG - Norma da Especificação Técnica para Controle de Qualidade de Dados Geoespaciais**. Exército Brasileiro. [S.I.], p. 94. 2016. (EB80-N-72.004).

ESRI. ArcGIS Desktop. **Cut Fill**, 2021. Disponivel em: https://desktop.arcgis.com/en/arcmap/10.6/tools/3d-analyst-toolbox/cut-fill.htm. Acesso em: 04 out. 2021.

ESRI. ArcGIS Desktop. Image classification using the ArcGIS Spatial Analyst extension, 2021. Disponivel em: https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification-using-spatial-analyst.htm. Acesso em: 04 out. 2021.

FARIA, F. L. F. *et al.* Metodologia para obtenção do hidrograma de ruptura de barragens. Revista Militar de Ciência e Tecnologia. **Revista Militar de Ciência e Tecnologia**, Resende, v. 36, n. 3, p. 31-37, Dezembro. 2019. ISSN 0102-3543.

FEMA. Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures. Federal Emergency Management Agency. [S.I.], p. 946. 2013.

FERREIRA, F. R. **Proposta para a avaliação da acurácia altimétrica dos dados LiDAR**. USP. São Paulo, p. 201. 2019.

FERREIRA, G. F. Emprego de simulação no controle de qualidade em cartografia aplicado a modelos digitais de superfícies oriundos de sensores orbitais segundo foco PEC-PCD. UFPE. Recife, p. 121. 2014.

FERREIRA, L. F.; CINTRA, J. P. Quantificação de Discrepâncias entre Feições Lineares por Retângulos Equivalentes. **Revista Brasileira de Cartografia**, [S.L.], v. 51, p. 1 - 8, 1999.

GARCIA, R.; TRIBIST-CORREA, A. Avaliação da ruptura da barragem de rejeitos em Brumadinho, Brasil, por aplicação de modelagem 2D, Belo Horizonte, 2020. Disponivel em: https://register.gotowebinar.com/recording/2616443351628438529. Acesso em: 13 set. 2021.

GOSCIEWSKI, D.; GERUS-GOSCIEWSKA, M. Adjusting the Regular Network of Squares Resolution to the Digital Terrain Model Surface Shape. International Journal of Geo-Information. [S.I.]. 2020.

HÖHLE, J.; POTUCKOVA, M. Assessment of the Quality of Digital Terrain Models. **European Spatial Data Research**, Amsterdam, n. 60, p. 92, 2011.

LIDBERG, W.; NILSSON, M.; LUNDMARK, T. Evaluating preprocessing methods of digital elevation models for hydrological modelling. **Hydrological Processes**, p. 4660-4668, 2017.

LIMA, R. E. D. *et al.* An anthropogenic flow type gravitational mass movement: the Córrego do Feijão tailings dam disaster, Brumadinho, Brazil. **Landslides**, Berlim, p. 12, 2020.

LIMA, R. P. *et al.* ASSESSMENT OF DIGITAL TERRAIN MODELS IN DAM BREAK SIMULATION STUDIES. **Boletim de Ciências Geodésicas**, Curitiba, v. 27, Janeiro. 2021. ISSN 1982-2170.

LIMA, R. P. AVALIAÇÃO DO USO DE MODELOS DIGITAIS DE TERRENO NOS ESTUDOS DE SIMULAÇÃO DE RUPTURA DE BARRAGENS. UFMG. Belo Horizonte, p. 73. 2020.

LUMBROSO, D. *et al.* Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced. **Natural Hazards and Earth System Sciences**, p. 21-37, 2021. ISSN 1684-9981.

MACHADO, N. C. RETROANÁLISE DA PROPAGAÇÃO DECORRENTE DA RUPTURA DA BARRAGEM DO FUNDÃO COM DIFERENTES MODELOS NUMÉRICOS E HIPÓTESES DE SIMULAÇÃO. UFMG. Belo Horizonte, p. 159. 2017.

MEC. **Portal de Periódicos CAPES/MEC**, 2021. Disponivel em: https://www-periodicos-capes-gov-

br.ezl.periodicos.capes.gov.br/index.php?option=com_pcontent&view=pcontent&alia s=missao-objetivos&Itemid=109. Acesso em: 03 fev. 2021.

MESA-MINGORANCE, J. L.; ARIZA-LÓPEZ, F. J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sensing. **Remote Sensing**, v. 12, n. 16, p. 2630, 2020.

MUHADI, N. A. *et al.* The Use of LiDAR-Derived DEM in Flood Applications: A Review. **Remote Sensing**, v. 2308, n. 12, p. 20, 2020.

NERO, A. *et al.* A COMPUTACIONAL TOOL TO EVALUATE THE SAMPLE SIZE IN MAP POSITIONAL ACCURACY, n. On-Line version, p. 16, 2017. ISSN 1982-2170.

O'BRIEN, J. S.; JULIEN, P. Y. **Physical properties and mechanics hyperconcentrated sediment**. Utah State University. Utah, p. 206-279. 1985.

POLIDORI, L.; HAGE, M. E. Digital Elevation Model Quality Assessment Methods: A Critical Review. **Remote Sensing**, n. 12, 2020.

PORSANI, J. L.; JESUS, F. A. N. D.; STANGARI, M. C. GPR Survey on an Iron Mining Area after the Collapse of the Tailings Dam I at the Córrego do Feijão Mine in Brumadinho-MG, Brazil. **Remote Sensing**, 2019. ISSN 2072-4292.

RAGAZZI, L.; ROCHA, M. **BRUMADINHO A ENGENHARIA DE UM CRIME**. Belo Horizonte: Letramento, 2019.

RAMAN, A.; LIU, F. **An investigation of the Brumadinho Dam Break with HEC RAS simulation**. Cornel university. [S.I.]. 2019.

RIBEIRO, V. Q. F. **PROPOSTA DE METODOLOGIA PARA AVALIAÇÃO DO EFEITO DE RUPTURAS DE ESTRUTURAS DE CONTENÇÃO DE REJEITOS**. UFMG. Belo Horizonte, p. 292. 2015.

ROBERTSON, P. K. *et al.* Report of the expert panel on the technical causes of the failure of Feijão Dam I. Painel de especialistas VALE. [S.I.]. 2019.

ROCHA, F. F. RETROANÁLISE DA RUPTURA DA BARRAGEM SÃO FRANCISCO – MIRAÍ, MINAS GERAIS, BRASIL. UFMG. Belo Horizonte, p. 174. 2015.

SALEKIN, S. *et al.* A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation. **International Journal of Geo-Information**, p. 15, 2018.

SANDERS, B. F. Evaluation of on-line DEMs for flood inundation modeling. **Advances in Water Resources**, n. 30, p. 1831-1843, Fevereiro. 2007.

TRANFIELD, D.; DENYER, D.; SMART, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. **British Journal of Management**, v. 14, n. 3, p. 207-222, Setembro. 2003. ISSN 1045-3172.

TSCHIEDEL, A. D. F. AVALIAÇÃO DE FONTES DE INCERTEZA EM ESTUDOS DE ROMPIMENTOS DE BARRAGENS. UFRGS. Porto Alegre, p. 138. 2017.

TSCHIEDEL, A. D. F.; PAIVA, R. C. D. D. Uncertainty assessment in hydrodynamic modeling of floods generated by dam break. **Brazilian Journal of Water Resources**, Porto Alegre, v. 23, n. 30, 2018.

USACE. HEC-RAS – River Analysis System – 2D Modeling User's manual, Version 6.0 Beta. U.S. Army Corps of Engineers. Davis, p. 283. 2020.

USACE. HEC-RAS – River Analysis System – 2D Modeling User's manual, Version 6.0 Beta. U.S. Army Corps of Engineers. Davis, p. 283. 2020.

VALETTE, R. *et al.* Viscoplastic dam-breaks. Journal of Non-Newtonian Fluid Mechanics, 2020.

VENTURA. Sediment/Debris Bulking Factors and Post-fire Hydrology for Ventura-County. Final Report. Ventura County Watershed Protection District; WEST Consultains. Ventura, p. 184. 2011.

ZHANG, Y. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth. **Journal of Geographical Sciences**, v. 30, p. 1649–1663, 2020.

ANEXO I – Síntese da Revisão Sistemática de Bibliografia

Aqui são apresentados todos os títulos pesquisados conforme descrito no item 3. A Tabela 17 e a Figura 31 mostram a distribuição dos títulos em função do tema abordado. Já a Tabela 18 mostra os temas abordados por cada título presente nas referências bibliográficas da pesquisa.

Temas	Referências
Revisão Bibliográfica	2
SIG	13
MDT	20
Lidar	15
Modelo Hidrodinâmico	31
Reologia	15
Barragem	23
Córrego do Feijão	13
Total	132

Tabela 17 - Quantidade de títulos por eixo temático

Autores	Revisão Bibliográfica	SIG	MDT	Lidar	Modelo Hidrodinâmico	Reologia	Barragem	Córrego do Feijão
(AGUERA-VEJA et al., 2020)			Х					
(ÁLVAREZ, 2017)		Х	Х	Х				
(ARUN, 2019)		Х			Х		Х	Х
(ATIF et al., 2020).		Х			Х			Х
(AZEEZ et al., 2020)		Х			Х		Х	
(BAPTISTA e LARA, 2016)					Х			
(BRASIL, 1984)		Х	Х					
(BRASIL, 2010)							Х	
(BRASIL, 2017)							Х	
(BRASIL, 2020)							Х	
(CASULLI, 2008)					Х			
(CINTRA e NERO, 2015)			Х					
(DSG, 2016)		Х	Х	Х				
(FARIA <i>et al.</i> , 2019)					Х		Х	
(FEMA, 2013)					Х		Х	
(FERREIRA, 2014)		Х	Х					
(FERREIRA, 2019)			Х	Х				
(FERREIRA e CINTRA, 1999)				Х				
(GARCIA e TRIBIST-CORREA, 2020)					Х	Х	Х	х
(GLOBO, 2021)								Х
(GOSCIEWSKI e GERUS- GOSCIEWSKA, 2020)		Х	Х					
(HÖHLE e POTUCKOVA, 2011)			Х					
(LIDBERG, NILSSON e LUNDMARK, 2017)		Х	Х		Х			
(LIMA, 2020)					Х	Х	Х	Х
(LIMA <i>et al</i> ., 2020)					Х	Х		Х
(LIMA <i>et al.</i> , 2021)					Х	Х	Х	Х
(LUMBROSO et al., 2021)					Х		Х	Х
(MACHADO, 2017)			Х		Х	Х	Х	
(MEC, 2021)	Х							
(MESA-MINGORANCE e ARIZA LOPEZ, 2020)			Х	Х				
(MUHADI <i>et al.</i> , 2020)		Х	Х	Х	Х			
(NERO et al., 2017)			Х	Х	Х			

Tabela 18 - Base bibliográfica da pesquisa

(NERO, 2021)		Х	Х	Х			
(O'BRIEN e JULIEN, 1985)				Х	Х		
(POLIDORI, 2020)		Х					
(PORSANI et al., 2019)	Х		Х				Х
(RAGAZZI e ROCHA, 2019)						Х	Х
(RAMAN e LIU, 2019)				Х		Х	Х
(RIBEIRO, 2015)					Х	Х	
(ROBERTSON et al., 2019)					Х		Х
(ROCHA, 2015)		Х		Х	Х	Х	
(SALEKIN <i>et al.</i> , 2018)							
(SANDERS, 2007)		Х	Х	Х			
(TRANFIELD, DENYER e SMART, X 2003)							
(TSCHIEDEL, 2017)			Х	Х		Х	
(TSCHIEDEL e PAIVA, 2018)			Х	Х		Х	
(USACE, 2014)	Х	Х	Х	Х		Х	
(USACE, 2020)	Х	Х	Х	Х	Х	Х	
(USACE, 2020)				Х	Х		
(VALE, 2019)				Х	Х	Х	Х
(VALETTE et al., 2020)				Х	Х		
(VENTURA, 2011)				Х	Х	Х	
(VIANINI NETO, 2016)				Х		Х	
(ZHANG, 2020)			Х	Х			
(ZORZAN <i>et al.</i> , 2019)					Х		

ANEXO II – Cálculos para a Determinação do PEC-PCD

A memória dos cálculos realizados conforme a metodologia apresentada no item 6.2.5 é apresentada abaixo. A Tabela 19 apresenta a síntese das análises estatísticas aplicadas nos modelos digitais de terreno com o objetivo de determinar o PEC-PCD.

Amostra	∆H MDT 1 m	∆H MDT 5 m	∆H MDT 10 m	∆H MDT 15 m	∆H MDT 20 m	∆H MDT 25 m
Média	0,052	0,069	0,099	0,141	-0,121	-0,153
Mediana	0,123	0,099	0,044	0,094	-0,047	-0,097
Moda	-0,491	-0,503	-0,765	-1,597	1,917	0,250
Erro Padrão	0,027	0,028	0,032	0,042	0,048	0,059
Desvio Padrão	0,419	0,431	0,494	0,651	0,747	0,908
Variância da amostra	0,176	0,186	0,244	0,424	0,559	0,824
Curtose	2,264	1,412	1,025	2,660	0,873	2,030
Média + 3*Desvio Padrão	1,309	1,362	1,581	2,095	2,121	2,571
Média - 3*Desvio Padrão	-1,205	-1,224	-1,382	-1,813	-2,363	-2,876
Assimetria	-0,483	-0,288	0,200	0,503	-0,233	0,228
Intervalo	3,518	3,324	3,724	5,181	4,543	6,800
Minimo	-2,181	-2,051	-1,953	-1,666	-2,626	-3,443
Máximo	1,337	1,273	1,771	3,515	1,917	3,357
Soma	12,542	16,579	23,781	33,835	-29,057	-36,614
Nº de amostras	240	240	240	240	240	240
Teste Z (tendencia)	1,619	1,622	1,535	1,308	-1,123	-1,415
Z(1-α/2) ou Z0,95	1,645	1,645	1,645	1,645	1,645	1,645
EP (PEC-PCD)	0,500	0,660	1,000	1,670	1,670	1,670
Teste Precisão (X ² z,n- 1)	167,867	101,911	58,286	36,369	47,877	70,625
X²n-1, α	267,412	267,412	267,412	267,412	267,412	267,412
PEC PCD	D	В	D	В	В	В
Escala	1:2.000	1:5.000	1:5.000	1:10.000	1:10.000	1:10.000
Erro (m)	0,75	1	1,5	2,5	2,5	2,5

Tabela 19 - Síntese das análises estatísticas dos MDTs.

A Tabela 20 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C01 com resolução espacial de 1 metro, com o objetivo de determinar o PEC-PCD.

Amostra	Δ H MDT 1 m
Média	0,052
Mediana	0,123
Moda	-0,491
Erro Padrão	0,027
Desvio Padrão	0,419
Variância da amostra	0,176
Curtose	2,264
Média + 3*Desvio Padrão	1,309
Média - 3*Desvio Padrão	-1,205
Assimetria	-0,483
Intervalo	3,518
Mínimo	-2,181
Máximo	1,337
Soma	12,542
Nº de amostras	240
Teste Z (tendência)	1,619
Z(1-α/2) ou Z0,95	1,645
EP (PEC-PCD)	0,50
Teste Precisão (X ² z,n-1)	167,9
X²n-1, α	267,412
PEC PCD	D
Escala	1:2.000

Tabela 20 - Síntese das análises estatísticas do MDT do cenário C01

A Figura 32 mostra a distribuição dos erros nas amostras apresentadas na Tabela 21 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C01 com resolução espacial de 1 metro.

Figura 32 – Distribuição dos erros amostrais do MDT 01 m

Tabela 21 - Memória de cálculo do PEC-PCD do MDT 1 m.

FID	N (m)	E (m)	H pós (m)	H 1m (m)	H 1m - H pós	(∆H - media H)²
0	7775261,260	591239,306	955,925	956,099	0,174	0,015
1	7773971,286	592286,328	856,359	856,778	0,419	0,134
2	7774055,830	591020,771	907,287	907,513	0,225	0,030
3	7774949,395	591352,515	903,177	903,533	0,356	0,092
4	7774343,498	591216,254	889,486	889,791	0,305	0,064
5	7774116,327	591275,785	878,006	878,681	0,675	0,388
6	7775370,216	591861,018	944,733	945,250	0,517	0,216
8	7775137,448	591587,055	895,953	896,424	0,471	0,175
9	7775083,870	591487,175	895,360	895,811	0,451	0,159
10	7771855,286	588308,001	804,105	804,278	0,173	0,015
11	7771939,291	588510,408	793,898	794,209	0,312	0,067
12	7771825,520	588548,111	788,195	788,475	0,280	0,052
13	7771742,837	588347,689	785,427	785,861	0,434	0,146
14	7771811,629	588203,490	814,834	815,071	0,237	0,034
15	7771716,379	588593,752	781,902	782,226	0,323	0,074
16	7771783,848	588727,366	788,108	788,662	0,554	0,252
17	7771625,759	588379,439	768,692	769,380	0,688	0,404
18	7771827,504	588860,981	794,349	794,519	0,170	0,014
19	7771615,837	588023,573	797,738	798,187	0,449	0,157
20	7771724,317	588012,329	796,754	797,380	0,626	0,329
21	7771895,635	588402,590	799,988	800,218	0,230	0,031
22	7772070,260	588750,518	802,139	802,638	0,500	0,200
23	7771893,650	588692,971	786,816	787,249	0,433	0,145
24	7771969,057	588865,612	805,566	806,133	0,567	0,265
25	7772164,187	588809,387	819,594	819,960	0,367	0,099
26	7772020,650	588992,612	803,700	803,952	0,253	0,040
27	7772256,130	588864,289	827,539	827,932	0,393	0,116
28	7772105.317	589193.034	788,462	789.003	0.541	0.239

29 7771912,171 589021,055 786,674 786,992 0,319 0,071 30 7771524,556 588112,209 781,935 782,212 0,276 0,050 31 7774656,364 59280,231 892,713 893,010 0,297 0,060 33 7774135,429 592198,442 840,080 840,660 0,580 0,278 34 7771525,255 588440,407 782,112 -0,033 0,007 35 7770827,337 588489,910 789,204 789,650 0,446 0,155 36 7770847,848 588410,226 807,658 807,432 -0,227 0,078 37 7698955,806 588417,476 799,313 800,111 0,198 0,021 41 7769852,806 588417,476 799,313 80,311 0,198 0,120 41 7769852,806 588417,476 799,313 80,311 0,138 0,114 43 769153,072 586974,917 740,079 740,456 -0,							
30 7771524,556 588112,209 781,935 782,212 0.276 0.050 31 7774064,825 592362,705 855,539 856,067 0.527 0.226 33 777455,344 592480,231 892,113 893,010 0.297 0.060 34 7771523,37 58489,910 782,244 789,650 0.446 0.155 35 7770738,437 588136,691 742,211 742,480 0.269 0.047 37 7769845,806 588440,226 804,596 804,820 0.455 0.162 38 7769865,806 588410,226 804,596 804,995 0.398 0.120 40 7769855,806 588410,226 804,596 804,995 0.341 0.083 41 776987,221 755,517 87377,217 755,547 752,349 0.225 0.114 43 7769153,072 588276,889 752,534 752,499 0.281 0.115 44 777247,813 582786,489 752,544	29	7771912,171	589021,055	786,674	786,992	0,319	0,071
31 7774064,825 592362,705 855,539 856,067 0.527 0.226 32 7774555,364 59280,231 892,713 893,010 0.297 0,060 34 7771435,429 592198,442 840,060 840,660 0.560 0.278 34 7771852,325 588449,910 789,204 789,650 0,446 0,155 35 7770827,337 588489,910 789,224 789,650 0,446 0,162 37 7769845,847 807,754 808,209 0,455 0,162 37 7769855,806 58814,926 799,913 800,111 0,198 0,021 40 7769855,806 588314,976 799,913 800,111 0,198 0,021 41 776985,806 58974,991 756,561 765,544 0,493 0,194 43 7769153,072 568974,991 756,965 59,358 0,391 0,115 44 777237,015 58237,017 740,079 740,056 -0,224	30	7771524,556	588112,209	781,935	782,212	0,276	0,050
32 7774555,364 592188.442 892,713 893,010 0.297 0.060 33 7774155,429 592198.442 840,080 840,660 0.580 0.278 34 7771253,295 58849.010 789,204 789,650 0.446 0.155 36 777038,437 588480,510 742,211 742,400 0.269 0.047 37 7769845,806 588445,205 807,658 807,432 -0.227 0.078 38 7769855,806 588410,226 804,596 804,995 0.398 0,120 40 7769855,806 588410,226 804,596 804,995 0.398 0,121 41 776985,306 58841,976 799,913 800,111 0,198 0,021 42 7768955,806 58841,976 799,913 800,111 0,198 0,021 43 7769153,072 56874,991 759,567 759,358 0,391 0,114 46 7772427,813 582740,817 740,056 -0,228	31	7774064,825	592362,705	855,539	856,067	0,527	0,226
33 7774135,429 582198,442 840,080 840,660 0.580 0.278 34 7771253,295 588449,910 782,145 782,112 -0.033 0,007 37 7769847,869 588479,547 807,554 808,290 0.455 0,162 38 7769855,806 588470,226 804,596 804,995 0.398 0,120 40 7769855,806 588410,226 804,596 804,995 0,398 0,120 40 7769855,806 588410,226 804,596 759,533 0,341 0,083 41 7769852,617 58737,291 765,061 765,544 0,493 0,194 43 7769153,072 56874.991 759,564 752,349 0,285 0,114 44 777247,813 58276,868 752,544 752,494 0,285 0,114 45 777247,813 58287,1867 761,782 761,534 0,177 0,055 47 7772342,154 582815,001 747,105 746,9	32	7774555,364	592880,231	892,713	893,010	0,297	0,060
34 7771253,295 588944,047 782,145 782,112 -0.033 0,007 35 7770827,337 588489,910 789,204 789,650 0,446 0,155 36 7770738,437 58816,669 742,211 742,400 0,269 0,047 37 7769855,806 588410,226 807,658 807,432 -0.227 0,078 39 7768955,806 588410,226 804,596 604,995 0,398 0,120 41 7769857,806 588414,947 799,013 800,111 0,198 0,021 41 7768952,617 58737,291 765,051 765,544 0,493 0,194 43 7769153,072 568274,091 74,0079 740,056 -0,023 0,006 45 7772427,813 582941,670 747,222 74,041 -0,163 0,046 48 777240,367 58293,3811 770,130 -0,177 0,052 7772340,567 58293,381 764,321 766,321 0,139	33	7774135,429	592198,442	840,080	840,660	0,580	0,278
35 7770827,337 588439,910 789,024 789,650 0,446 0,155 36 7770738,437 588136,691 742,211 742,480 0,269 0,455 0,162 38 7769855,806 588479,547 807,754 808,299 0,455 0,162 39 7769855,806 588419,476 799,913 800,111 0,198 0,021 40 7768955,806 588314,976 799,913 800,111 0,198 0,021 41 7768955,807 58274,919 758,966 759,358 0,331 0,016 42 7768952,617 582740,917 740,079 740,056 -0,023 0,006 44 777250,608 582491,670 747,222 747,041 -0,182 0,055 47 7772342,154 58293,614 769,377 -0,177 0,052 48 777240,670 58293,751 776,341 776,139 -0,224 0,091 50 7772310,275 583247,186 761,782 761,	34	7771253,295	588944,047	782,145	782,112	-0,033	0,007
36 7770738,437 588136,691 742,211 742,480 0,269 0,047 37 7769847,869 588479,547 807,754 808,209 0,455 0,162 38 7769855,806 588410,226 807,558 807,432 -0,227 0,078 39 7769855,806 588314,976 799,913 800,111 0,198 0,021 40 7769855,806 588314,976 799,913 800,111 0,198 0,021 41 7769852,517 58737,291 765,051 765,544 0,493 0,194 43 7769153,072 58074,991 740,079 740,056 -0,023 0,006 45 777247,135 582451,600 747,222 747,041 -0,182 0,055 47 7772342,154 582936,048 769,554 769,377 -0,177 0,052 49 7772340,575 58293,751 776,648 777,638 -0,220 0,066 51 777249,935 583024,022 777,927 7	35	7770827,337	588489,910	789,204	789,650	0,446	0,155
37 7768847,869 588479,547 807,754 808,209 0,455 0,162 38 7769855,806 588410,226 807,658 807,432 -0,227 0,078 39 7769855,806 588410,226 804,596 804,995 0,398 0,120 40 7769855,806 588410,226 795,012 795,353 0,341 0,083 42 7768953,025 58877,291 756,966 759,358 0,391 0,115 44 7772539,600 582740,917 740,079 740,056 -0,023 0,006 45 7772447,133 582768,889 752,534 752,249 -0,285 0,114 46 777234,154 582815,001 747,105 746,942 -0,163 0,046 48 7772403,670 582936,048 761,782 761,534 -0,229 0,091 50 777234,154 582817,517 776,268 777,606 -0,321 0,139 51 777230,927 58327,3751 776,314 762,752 -0,160 0,045 57 777249,6935 58392,374	36	7770738,437	588136,691	742,211	742,480	0,269	0,047
38 7769855,806 588455,205 807,658 807,932 -0,227 0,078 39 7769855,806 588314,976 799,913 800,111 0,198 0,021 41 7769855,806 588215,492 799,012 795,353 0,341 0,083 42 7768955,806 58874,991 756,966 759,358 0,391 0,115 44 777253,600 58276,889 752,534 752,249 -0,285 0,114 46 777257,688 582941,670 747,222 747,041 -0,182 0,065 47 7772342,154 582871,886 769,554 769,377 -0,177 0,652 49 777230,927 582871,886 761,782 761,534 -0,249 0,091 50 777242,935 58293,811 770,268 770,130 -0,138 0,036 51 777230,927 582871,387 764,281 764,024 -0,227 0,065 52 7777230,265 583247,275 762,912 76	37	7769847,869	588479,547	807,754	808,209	0,455	0,162
39 7769855,806 588410,226 804,596 804,995 0,398 0,120 40 7769855,806 588314,976 799,913 800,111 0,198 0,021 41 7768952,517 587377,291 765,051 765,544 0,493 0,194 43 7769153,072 586974,991 758,966 759,358 0,391 0,115 44 7772539,600 582740,917 740,079 740,056 -0,023 0,006 45 7772427,813 582786,889 752,534 752,249 -0,182 0,046 46 7772342,154 582815,001 747,105 746,942 -0,163 0,046 47 777242,935 58293,841 761,524 70,130 -0,177 0,052 49 7772342,935 58293,811 770,626 770,130 -0,138 0,036 51 7772342,056 58293,871 764,281 764,024 -0,227 0,065 52 777234,703 583263,879 764,281 7	38	7769855,806	588455,205	807,658	807,432	-0,227	0,078
40 7769855,806 588314,976 799,913 800,111 0,188 0,021 41 7768973,268 588215,492 795,012 795,353 0,341 0,083 42 7768952,517 586374,991 765,051 765,544 0,493 0,194 43 7769153,072 586974,991 740,056 -0,023 0,006 45 7772427,813 582766,889 752,534 752,249 -0,285 0,114 46 777250,688 582941,670 747,222 747,041 -0,182 0,055 47 7772403,670 58293,6,048 769,377 -0,177 0,052 49 777230,927 582871,886 761,782 761,534 -0,249 0,091 50 777230,656 582973,751 776,341 776,139 -0,202 0,066 51 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772496,935 583024,022 7779 -0,292 0,119	39	7769855,806	588410,226	804,596	804,995	0,398	0,120
41 7769873,269 588215,492 795,012 795,353 0,341 0,083 42 7769953,072 586974,991 756,966 759,358 0,391 0,115 43 7769153,072 58674,991 756,966 759,358 0,023 0,006 45 7772427,813 582740,917 740,079 740,056 -0,285 0,114 46 777250,688 582941,670 747,222 747,041 -0,182 0,055 47 7772342,154 582815,001 747,105 746,942 -0,163 0,046 48 777240,670 582936,048 769,554 769,377 -0,177 0,052 49 7772370,927 582871,886 761,782 761,534 -0,249 0,091 50 777240,925 583223,879 764,281 764,024 -0,267 0,096 54 7772409,935 583605,114 749,279 -0,292 0,119 56 7772409,935 583602,067 753,876 763,314 <t< td=""><td>40</td><td>7769855,806</td><td>588314,976</td><td>799,913</td><td>800,111</td><td>0,198</td><td>0,021</td></t<>	40	7769855,806	588314,976	799,913	800,111	0,198	0,021
42 7768952,517 587377,291 765,051 765,544 0,493 0,194 43 7769153,072 566974,991 758,966 759,358 0,391 0,115 44 7772539,600 582760,917 740,079 740,056 -0,023 0,006 45 7772427,813 582766,889 752,534 752,249 0,285 0,114 46 7772342,154 582815,001 747,105 746,942 -0,163 0,046 47 7772342,154 582815,001 747,105 746,942 -0,163 0,046 48 7772403,670 582936,048 769,377 -0,177 0,052 50 7772442,935 582923,811 776,130 -0,202 0,065 51 777240,929 583605,114 746,024 -0,257 0,096 54 777249,935 583605,114 749,279 -0,242 0,088 55 777249,935 583605,114 749,279 -0,213 0,070 58 7772496,935	41	7769873,269	588215,492	795,012	795,353	0,341	0,083
43 7769153,072 586974,991 758,966 759,358 0,391 0,115 44 7772539,600 582740,917 740,075 740,056 -0,023 0,006 45 7772427,813 582786,889 752,534 752,249 -0,182 0,055 47 7772342,154 582815,001 747,122 747,041 -0,182 0,046 48 7772342,154 582936,048 769,554 769,377 -0,177 0,052 49 777230,927 582871,886 761,782 761,534 -0,249 0,091 50 7772310,927 582871,871 776,631 776,139 -0,202 0,065 51 7772312,055 583024,022 777,927 777,606 -0,244 0,088 55 777249,935 583605,114 749,279 -0,222 0,119 56 777230,045 58374,604 780,585 767,314 -0,221 0,076 58 7772120,526 583818,766 753,576 753,576	42	7768952,517	587377,291	765,051	765,544	0,493	0,194
44 7772539,600 582740,917 740,079 740,056 -0,023 0,006 45 7772427,813 582786,889 752,534 752,249 -0,285 0,114 46 777250,688 582941,670 747,222 747,041 -0,182 0,046 47 7772403,670 582936,048 769,554 769,377 -0,177 0,052 49 777230,927 58281,886 761,782 761,534 -0,249 0,091 50 7772310,927 58293,811 770,268 770,130 -0,138 0,036 51 7772312,057 583253,879 764,281 764,024 -0,257 0,096 53 7772312,057 583260,5114 749,279 -0,292 0,119 56 7772409,392 583805,114 749,571 749,279 -0,292 0,119 56 7772409,393 58360,514 749,571 749,279 -0,220 0,074 57 777230,806 583817,566 753,876 753,456	43	7769153,072	586974,991	758,966	759,358	0,391	0,115
45 7772427,813 582786,889 752,534 752,249 -0,285 0,114 46 7772570,688 582941,670 747,222 747,041 -0,163 0,046 48 777240,3670 582936,048 769,554 769,377 -0,177 0,052 49 777230,927 582871,886 761,782 761,534 -0,249 0,091 50 7772242,935 582923,811 770,268 770,130 -0,138 0,036 51 7772320,656 582973,751 776,341 776,139 -0,202 0,065 52 7772312,057 583253,879 764,281 764,024 -0,257 0,098 54 777249,939 58365,114 749,571 749,279 -0,222 0,119 56 777249,6935 58365,114 749,571 749,279 -0,222 0,119 56 7772300,813 583754,604 780,058 779,846 -0,213 0,070 59 7772105,825 58416,290 794,535	44	7772539,600	582740,917	740,079	740,056	-0,023	0,006
46 7772570,688 582941,670 747,222 747,041 -0,182 0,055 47 7772342,154 582815,001 747,105 746,942 -0,163 0,046 48 777230,927 58293,048 769,554 769,377 -0,177 0,052 49 7772370,927 582831,886 761,782 761,534 -0,249 0,0065 50 7772320,656 582973,751 776,341 776,139 -0,220 0,065 51 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 777230,806 583927,576 762,912 762,752 -0,160 0,045 57 777230,808 583692,096 753,876 753,656 -0,220 0,074 60 777206,802 584116,290 794,433 -0,213 0,070 58 7772105,682 583692,053 749,151 749,050	45	7772427,813	582786,889	752,534	752,249	-0,285	0,114
47 7772342,154 582815,001 747,105 746,942 -0,163 0,046 48 7772403,670 582936,048 769,554 769,377 -0,177 0,052 49 7772370,927 582871,886 761,782 761,534 -0,249 0,091 50 7772342,935 582923,811 770,688 770,130 -0,138 0,036 51 7772314,703 583024,022 777,927 777,606 -0,321 0,139 53 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772409,292 583321,348 752,601 752,356 -0,244 0,088 55 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 777230,813 58375,460 780,585 767,314 -0,221 0,075 57 7772105,682 58416,200 753,876 753,856 -0,220 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 7772259,319 5845	46	7772570,688	582941,670	747,222	747,041	-0,182	0,055
48 7772403,670 582936,048 769,554 769,377 -0,177 0,052 49 7772370,927 582871,886 761,782 761,534 -0,249 0,091 50 7772242,935 582973,811 770,268 770,130 -0,138 0,036 51 7772312,055 583024,022 777,927 777,606 -0,321 0,139 53 7772496,935 5830253,879 764,281 764,024 -0,257 0,066 54 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 7772496,935 583692,096 753,876 753,656 -0,213 0,070 58 7772125,526 583818,766 767,535 767,314 -0,221 0,074 60 777205,642 584502,053 749,151 749,050 -0,101 0,023 61 777202,157 584341,319 758,349	47	7772342,154	582815,001	747,105	746,942	-0,163	0,046
49 7772370,927 582871,886 761,782 761,534 -0,249 0,091 50 7772242,935 582923,811 770,268 770,130 -0,138 0,036 51 7772320,656 582973,751 776,341 776,139 -0,202 0,065 52 7772314,703 583024,022 777,927 777,606 -0,321 0,139 53 7772406,935 583253,879 764,281 764,024 -0,257 0,096 54 7772406,935 583251,348 752,601 752,356 -0,244 0,088 55 7772496,935 583051,11 749,279 -0,292 0,119 56 7772496,935 583054,604 780,058 779,846 -0,213 0,070 58 7772125,526 583818,766 767,535 767,314 -0,221 0,074 60 777205,862 58492,096 753,876 753,656 -0,220 0,074 61 777202,157 584341,319 758,349 758,186	48	7772403,670	582936,048	769,554	769,377	-0,177	0,052
50 7772242,935 582923,811 770,268 770,130 -0,138 0,036 51 7772320,656 582973,751 776,341 776,139 -0,202 0,065 52 7772314,703 583024,022 777,927 777,606 -0,321 0,139 53 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772409,929 5833605,114 749,571 749,279 -0,292 0,119 56 7772300,813 583754,604 780,058 779,846 -0,213 0,070 58 7772105,682 583692,096 753,876 753,656 -0,220 0,074 60 777206,802 584116,290 794,535 794,323 -0,212 0,070 51 777206,802 584116,290 794,535 794,323 -0,212 0,070 61 777229,157 584341,319 758,449 758,186 -0,163 0,046 62 777229,159 584391,325 747,631	49	7772370,927	582871,886	761,782	761,534	-0,249	0,091
51 7772320,656 582973,751 776,341 776,139 -0,202 0,065 52 7772314,703 583024,022 777,927 777,606 -0,321 0,139 53 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 7772330,86 583927,576 762,912 762,752 -0,160 0,045 57 7772300,813 583754,604 780,058 779,846 -0,221 0,070 58 7772125,526 583818,766 767,535 767,314 -0,221 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 777202,144 584391,325 747,631 749,050 -0,101 0,023 63 7772002,144 584208,762 798,536 798,939 0,403 0,123 65 7772063,659 583973,415 793,145	50	7772242,935	582923,811	770,268	770,130	-0,138	0,036
52 7772314,703 583024,022 777,927 777,606 -0,321 0,139 53 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772409,292 583321,348 752,601 752,356 -0,244 0,088 55 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 7772300,813 583754,604 780,058 779,846 -0,213 0,070 58 7772125,526 583818,766 767,535 767,314 -0,221 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 7772259,319 584502,053 749,151 749,050 -0,101 0,023 63 7772063,659 58397,3415 793,261 793,145 -0,116 0,028 64 777184,4584 584208,762 798,536 798,939 0,403 0,123 65 7772063,659 583591,620 754,912	51	7772320,656	582973,751	776,341	776,139	-0,202	0,065
53 7772312,057 583253,879 764,281 764,024 -0,257 0,096 54 7772409,292 583321,348 752,601 752,356 -0,244 0,088 55 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 777230,813 583754,604 780,058 779,846 -0,213 0,070 58 7772105,682 583692,096 753,876 753,656 -0,220 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 777229,157 584341,319 758,349 758,186 -0,163 0,046 62 777202,144 584391,325 747,631 747,963 0,332 0,078 64 7777202,144 584397,3415 793,261 793,145 -0,116 0,028 65 777202,169 58341,679 733,742 733,501 -0,241 0,086 68 7772253,505 583591,620 754,912	52	7772314,703	583024,022	777,927	777,606	-0,321	0,139
54 7772409,292 583321,348 752,601 752,356 -0,244 0,088 55 7772496,935 583605,114 749,571 749,279 -0,292 0,119 56 7772393,086 583927,576 762,912 762,752 -0,160 0,045 57 7772300,813 583754,604 780,058 779,846 -0,213 0,070 58 7772105,682 583692,096 753,876 753,656 -0,220 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 7772259,319 584502,053 749,151 749,050 -0,101 0,023 63 7772002,144 584391,325 747,631 747,963 0,332 0,078 64 7771844,584 584208,762 798,536 798,939 0,403 0,123 65 777202,169 58397,3,415 793,145 -0,116 0,028 66 7772255,550 583591,620 754,912 754,721	53	7772312,057	583253,879	764,281	764,024	-0,257	0,096
557772496,935583605,114749,571749,279-0,2920,119567772393,086583927,576762,912762,752-0,1600,045577772300,813583754,604780,058779,846-0,2130,070587772125,526583818,766767,535767,314-0,2210,075597772105,682583692,096753,876753,656-0,2200,074607772068,025584116,290794,535794,323-0,2120,070617772229,157584341,319758,349758,186-0,1630,046627772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583619,402741,214740,901-0,3130,134697772661,75158323,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,81858315,0691758,113757,699-0,4140,21874777352,541582985,194735,639735,512-0,1270,032 <t< td=""><td>54</td><td>7772409,292</td><td>583321,348</td><td>752,601</td><td>752,356</td><td>-0,244</td><td>0,088</td></t<>	54	7772409,292	583321,348	752,601	752,356	-0,244	0,088
56 7772393,086 583927,576 762,912 762,752 -0,160 0,045 57 7772300,813 583754,604 780,058 779,846 -0,213 0,070 58 7772125,526 583818,766 767,535 767,314 -0,221 0,075 59 7772105,682 583692,096 753,876 753,656 -0,220 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 7772299,157 584341,319 758,349 758,186 -0,163 0,046 62 7772002,144 584391,325 747,631 747,963 0,332 0,078 64 7771844,584 584208,762 798,536 798,939 0,403 0,123 65 7772063,659 583973,415 793,261 793,145 -0,116 0,028 66 7772255,550 583591,620 754,912 754,721 -0,191 0,059 67 7772661,751 583232,051 739,038	55	7772496,935	583605,114	749,571	749,279	-0,292	0,119
577772300,813583754,604780,058779,846-0,2130,070587772125,526583818,766767,535767,314-0,2210,075597772105,68258492,096753,876753,656-0,2200,074607772068,025584116,290794,535794,323-0,2120,070617772259,319584502,053749,151749,050-0,1010,023627772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773186,818583150,691758,113757,699-0,4140,218747773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,03558349,088739,414739,100-0,3140,134787772504,58058379,747744,199744,091-0,1080,026 <tr< td=""><td>56</td><td>7772393,086</td><td>583927,576</td><td>762,912</td><td>762,752</td><td>-0,160</td><td>0,045</td></tr<>	56	7772393,086	583927,576	762,912	762,752	-0,160	0,045
58 7772125,526 583818,766 767,535 767,314 -0,221 0,075 59 7772105,682 583692,096 753,876 753,656 -0,220 0,074 60 7772068,025 584116,290 794,535 794,323 -0,212 0,070 61 777229,157 584341,319 758,349 758,186 -0,163 0,046 62 7772202,144 584391,325 747,631 747,963 0,332 0,078 64 7771844,584 584208,762 798,536 798,939 0,403 0,123 65 7772063,659 583973,415 793,261 793,145 -0,116 0,028 66 7772255,350 583619,402 741,214 740,901 -0,313 0,134 69 7772661,751 583232,051 739,038 738,699 -0,233 0,081 72 7773043,149 582989,957 750,493 750,260 -0,233 0,081 72 7773109,030 582960,588 737,845	57	7772300,813	583754,604	780,058	779,846	-0,213	0,070
597772105,682583692,096753,876753,656-0,2200,074607772068,025584116,290794,535794,323-0,2120,070617772229,157584341,319758,349758,186-0,1630,04662777202,144584391,325747,631749,050-0,1010,023637772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772661,751583232,051739,038738,699-0,3390,15370777234,802582873,275754,800754,571-0,2290,079717773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773323,035583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767777355,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134 <t< td=""><td>58</td><td>7772125,526</td><td>583818,766</td><td>767,535</td><td>767,314</td><td>-0,221</td><td>0,075</td></t<>	58	7772125,526	583818,766	767,535	767,314	-0,221	0,075
607772068,025584116,290794,535794,323-0,2120,070617772229,157584341,319758,349758,186-0,1630,046627772259,319584502,053749,151749,050-0,1010,023637772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772566,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767772323,035583439,088739,414739,100-0,3140,134	59	7772105,682	583692,096	753,876	753,656	-0,220	0,074
617772229,157584341,319758,349758,186-0,1630,046627772259,319584502,053749,151749,050-0,1010,023637772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772566,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,03277777323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094<	60	7772068,025	584116,290	794,535	794,323	-0,212	0,070
627772259,319584502,053749,151749,050-0,1010,023637772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,00973777347,553583131,244753,882753,555-0,3260,143767773220,591583131,244753,639735,512-0,1270,03277777323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	61	7772229,157	584341,319	758,349	758,186	-0,163	0,046
637772002,144584391,325747,631747,9630,3320,078647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,08668777256,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773520,591583131,244753,882753,555-0,3260,143767773520,591583131,244735,639735,512-0,1270,03277777332,035583439,088739,414739,100-0,3140,134787772504,580583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	62	7772259,319	584502,053	749,151	749,050	-0,101	0,023
647771844,584584208,762798,536798,9390,4030,123657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772566,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767777355,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	63	7772002,144	584391,325	747,631	747,963	0,332	0,078
657772063,659583973,415793,261793,145-0,1160,028667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772556,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767777355,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	64	7771844,584	584208,762	798,536	798,939	0,403	0,123
667772255,350583591,620754,912754,721-0,1910,059677772329,169583431,679733,742733,501-0,2410,086687772556,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767777355,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	65	7772063,659	583973,415	793,261	793,145	-0,116	0,028
677772329,169583431,679733,742733,501-0,2410,086687772556,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	66	7772255,350	583591,620	754,912	754,721	-0,191	0,059
687772556,579583619,402741,214740,901-0,3130,134697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	67	7772329,169	583431,679	733,742	733,501	-0,241	0,086
697772661,751583232,051739,038738,699-0,3390,153707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,03558349,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772883,199583542,752748,937748,543-0,3930,198	68	7772556,579	583619,402	741,214	740,901	-0,313	0,134
707772934,802582873,275754,800754,571-0,2290,079717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	69	7772661,751	583232,051	739,038	738,699	-0,339	0,153
717773043,149582989,957750,493750,260-0,2330,081727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	70	7772934,802	582873,275	754,800	754,571	-0,229	0,079
727773109,030582960,588737,845737,804-0,0410,009737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	71	7773043,149	582989,957	750,493	750,260	-0,233	0,081
737773186,818583150,691758,113757,699-0,4140,218747773347,553583164,185752,881752,672-0,2090,068757773520,591583131,244753,882753,555-0,3260,143767773755,541582985,194735,639735,512-0,1270,032777773323,035583439,088739,414739,100-0,3140,134787772504,580583795,747744,199744,091-0,1080,026797772477,063583711,080749,810749,556-0,2540,094807772883,199583542,752748,937748,543-0,3930,198	72	7773109,030	582960,588	737,845	737,804	-0,041	0,009
74 7773347,553 583164,185 752,881 752,672 -0,209 0,068 75 7773520,591 583131,244 753,882 753,555 -0,326 0,143 76 7773755,541 582985,194 735,639 735,512 -0,127 0,032 77 7773323,035 583439,088 739,414 739,100 -0,314 0,134 78 7772504,580 583795,747 744,199 744,091 -0,108 0,026 79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	73	7773186,818	583150,691	758,113	757,699	-0,414	0,218
75 7773520,591 583131,244 753,882 753,555 -0,326 0,143 76 7773755,541 582985,194 735,639 735,512 -0,127 0,032 77 7773323,035 583439,088 739,414 739,100 -0,314 0,134 78 7772504,580 583795,747 744,199 744,091 -0,108 0,026 79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	74	7773347,553	583164,185	752,881	752,672	-0,209	0,068
76 7773755,541 582985,194 735,639 735,512 -0,127 0,032 77 7773323,035 583439,088 739,414 739,100 -0,314 0,134 78 7772504,580 583795,747 744,199 744,091 -0,108 0,026 79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	75	7773520,591	583131,244	753,882	753,555	-0,326	0,143
77 7773323,035 583439,088 739,414 739,100 -0,314 0,134 78 7772504,580 583795,747 744,199 744,091 -0,108 0,026 79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	76	7773755.541	582985.194	735.639	735.512	-0.127	0.032
78 7772504,580 583795,747 744,199 744,091 -0,108 0,026 79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	77	7773323.035	583439.088	739,414	739,100	-0,314	0,134
79 7772477,063 583711,080 749,810 749,556 -0,254 0,094 80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	78	7772504.580	583795,747	744,199	744,091	-0,108	0,026
80 7772883,199 583542,752 748,937 748,543 -0,393 0,198	79	7772477.063	583711.080	749.810	749.556	-0.254	0.094
	80	7772883,199	583542,752	748,937	748,543	-0,393	0,198

81	7773082,431	583376,064	737,943	737,840	-0,103	0,024
82	7773232,979	583718,700	737,742	738,272	0,530	0,228
83	7773052,268	583587,202	756,961	756,682	-0,279	0,110
84	7772809,380	583214,668	730,112	730,057	-0,055	0,012
85	7772975,962	583223,558	728,918	728,779	-0,139	0,037
86	7772865,260	583152,438	730,261	730,118	-0,143	0,038
87	7773178,528	583487,718	737,362	737,164	-0,198	0,063
88	7772900,637	583453,400	733,248	732,993	-0,255	0,094
89	7772932,412	584025,284	777,792	777,386	-0,406	0,210
90	7773214,792	584189,392	792,188	791,688	-0,500	0,305
91	7773911,618	583654,227	760,524	761,221	0,696	0,415
92	7773808,099	583765,022	780,854	780,598	-0,257	0,095
93	7773855,394	583733,602	776,699	776,996	0,297	0,060
94	7773544,177	584023,322	796,255	796,064	-0,191	0,059
95	7773921,920	581963,908	737,294	738,425	1,131	1,164
99	7773673,917	581781,681	734,553	734,458	-0,095	0,022
102	7774052,483	582033,141	739,538	737,357	-2,181	4,989
103	7774131,859	582019,594	744,625	745,029	0,404	0,124
104	7774212,213	581986,601	744,375	745,120	0,745	0,480
105	7776322,699	582823,347	750,068	749,600	-0,468	0,271
106	7776351,803	582869,385	752,999	752,724	-0,275	0,107
107	7776484,095	582723,864	728,023	727,532	-0,491	0,295
108	7776680,946	582750,851	732,324	731,857	-0,467	0,269
109	7776978,867	582842,926	749,302	748,810	-0,491	0,295
110	7776978,867	582842,926	749,302	748,810	-0,491	0,295
111	7776873,033	582824,406	742,973	742,473	-0,500	0,305
112	7777097,930	582702,168	755,754	755,237	-0,516	0,323
114	7777042,367	582788,951	753,087	752,697	-0,390	0,195
115	7776796,833	582792,126	738,754	738,238	-0,516	0,323
116	7776569,820	582725,980	727,823	727,354	-0,469	0,271
117	7776638,612	582737,622	730,417	729,889	-0,528	0,337
118	7776414,774	582704,814	729,592	729,414	-0,178	0,053
119	7776185,115	582768,843	732,315	731,863	-0,452	0,254
120	7775793,531	583192,706	726,470	726,134	-0,337	0,151
121	7773052,284	581636,096	734,245	734,725	0,480	0,183
122	7773113,561	581759,127	728,109	728,598	0,490	0,191
123	7773221,869	581648,429	730,593	731,019	0,426	0,139
124	7772814,806	582164,500	756,649	756,920	0,272	0,048
125	7772855,824	582154,102	756,523	756,976	0,453	0,161
126	7772985,036	582013,242	743,393	743,730	0,337	0,081
127	7772491,322	582176,755	737,111	737,639	0,529	0,227
128	7772303,997	581732,254	762,221	762,692	0,471	0,175
129	7772311,934	582214,855	739,407	739,809	0,403	0,123
130	7772181,759	582530,239	751,533	751,944	0,412	0,129
131	7772110,851	582742,436	778,389	778,184	-0,206	0,067
132	7772288,122	582717,565	759,406	759,206	-0,200	0,064
133	7772081,746	582837,157	789,674	789,372	-0,301	0,125
134	7772010,309	582889,544	796,644	796,311	-0,333	0,148
135	7772406,602	585430,872	732,440	732,294	-0,146	0,039
136	7772423,785	585282,112	741,944	741,665	-0,279	0,110
137	7772504,112	585033,986	764,528	764,253	-0,275	0,107
138	7772529,036	584784,589	774,979	774,752	-0,227	0,078
	, -					

139	7772681,129	584364,710	735,567	735,519	-0,048	0,010
140	7772879,170	584315,101	746,650	746,080	-0,570	0,387
141	7772284,651	585841,882	734,717	734,534	-0,183	0,055
142	7772149,713	585874,426	745,864	745,708	-0,157	0,044
143	7771897,697	586001,823	755,179	755,511	0,332	0,078
144	7771680,209	586220,898	751,382	751,727	0,345	0,086
145	7771612,343	586453,468	750,849	751,179	0,331	0,078
146	7771605,993	586619,759	743,169	743,483	0,315	0,069
147	7771455,577	586956,309	747,055	747,443	0,388	0,113
148	7771719,896	587219,835	761,725	761,999	0,274	0,049
149	7771715,531	587502,807	776,121	776,462	0,341	0,084
150	7771447,639	587682,989	761,022	761,291	0,269	0,047
151	7771528,602	587631,395	765,151	765,410	0,259	0,043
152	7771634,965	587556,782	771,597	771,775	0,177	0,016
153	7768438,056	590429,708	790,956	791,139	0,182	0,017
154	7768517,431	590430,502	793,965	794,010	0,044	0,000
155	7768473,775	590606,715	771,004	771,171	0,167	0,013
156	7768267,400	590453,521	771,712	771,652	-0,060	0,013
157	7768509,494	590280,483	778,819	779,139	0,320	0,072
158	7768352,331	590164,595	772,367	772,726	0,360	0,095
159	7769092,901	589763,750	805,929	806,227	0,298	0,061
160	7769077,238	589379,045	760,926	761,103	0,177	0,016
161	7768797,727	588658,085	764,689	764,925	0,236	0,034
162	7768312,877	588767,226	784,709	784,985	0,275	0,050
163	7768348,596	588543,653	750,277	750,653	0,376	0,105
164	7768668,687	587561,385	744,498	745,015	0,516	0,215
165	7777150,860	582360,548	761,682	762,599	0,917	0,747
166	7776972,266	582392,298	829,068	829,695	0,626	0,330
167	7776826,745	582372,455	813,033	813,968	0,935	0,780
168	7776584,651	582343,350	775,105	775,642	0,537	0,235
169	7776417,963	582324,830	783,476	784,813	1,337	1,651
170	7776349,171	582318,215	799,935	800,211	0,276	0,050
171	7776309,483	582294,402	791,653	792,248	0,595	0,295
172	7776959,037	582609,257	728,941	729,662	0,721	0,448
173	7776603,172	582556,340	729,372	730,048	0,676	0,390
174	7776273,765	582494,163	729,471	729,577	0,107	0,003
175	7776103,108	582545,757	729,479	729,804	0,325	0,075
176	7775863,660	582728,320	729,098	728,489	-0,609	0,437
177	7775741,951	582815,633	729,451	729,216	-0,235	0,082
178	7775461,492	582781,237	731,007	730,626	-0,381	0,188
179	7774916,449	582558,986	732,992	732,682	-0,311	0,132
180	7774103,516	582886,409	764,591	764,177	-0,413	0,217
181	7774141,219	582969,091	762,583	762,080	-0,503	0,308
182	7773884,572	582657,544	752,015	751,780	-0,235	0,083
183	7773979,823	582787,190	761,159	761,091	-0,067	0,014
184	7774184,875	583147,685	777,791	777,664	-0,127	0,032
185	7774163,047	583336,201	782,491	782,582	0,091	0,002
186	7774213,979	583361,337	784,469	784,720	0,251	0,039
187	7773547,228	582594,705	786,869	787,552	0,683	0,398
188	7772983,664	582571,554	759,326	759,907	0,582	0,280
189	7772910,904	582576,846	747,627	748,095	0,468	0,173
190	7773384,632	584216,040	804,585	804,133	-0,452	0,254

191	7772577,122	584584,340	755,730	755,632	-0,098	0,022
192	7771641,554	587138,104	761,016	761,343	0,327	0,075
193	7771982,019	584860,788	732,102	732,392	0,290	0,056
194	7772141,431	584566,438	735,702	735,597	-0,105	0,025
195	7772004,840	585268,247	738,191	738,497	0,306	0,064
196	7771951,261	585358,867	738,714	738,989	0,275	0,050
197	7772019,392	585212,023	736,668	736,877	0,209	0,025
198	7771836,498	585448,164	742,093	742,490	0,397	0,119
199	7771729,011	585577,810	740,441	740,843	0,402	0,122
200	7771730,995	585670,414	732,737	733,101	0,364	0,097
201	7771673,779	585565,904	739,563	740,010	0,447	0,156
202	7771550,417	585807,336	739,471	739,902	0,431	0,143
203	7771398,281	586524,689	739,717	740,128	0,412	0,129
204	7771373,807	586672,195	739,463	739,842	0,379	0,107
205	7771285,502	586888,492	739,401	739,903	0.502	0,202
206	7771189,591	587105,451	739,472	739,925	0,452	0,160
207	7771060.606	587233.443	739.571	740.031	0.460	0.166
208	7770984.538	587301.243	739.670	740.172	0.502	0.203
209	7770868.452	587482,152	739.538	739.866	0.328	0.076
210	7770816,197	587673.645	739.337	739.608	0.271	0.048
211	7770751.043	587812.221	739.393	739.715	0.322	0.073
212	7770648.847	587888.619	738,985	739,243	0.258	0.042
213	7770583 032	587924 338	739 105	739 421	0.317	0.070
214	7772014 166	585981 953	762 096	762 436	0.340	0.083
215	7771882 933	586113 187	770.398	770 737	0.339	0.082
216	7771764 399	586358 720	774 839	775 178	0.340	0.083
217	7771667.032	586534 404	761 545	761 880	0.334	0,080
218	7771556 965	586741 838	750.056	750 344	0.288	0.056
219	7772401 517	585486 652	742 990	743 042	0.051	0,000
220	7772352 834	585598 835	751 913	752 051	0.138	0.007
221	7772501.001	585222.068	758 848	758 468	-0.380	0 187
222	7772583 551	585040 034	781 194	780 526	-0.669	0.520
223	7772803 684	584752 167	778.379	778 285	-0.094	0.021
224	7772928 568	584576 483	754 886	754 570	-0.316	0,021
225	7773751 953	583903 382	795 608	794 803	-0.806	0,736
226	7774027 120	583829 299	771 687	771 555	-0 132	0.034
227	7775944 339	583123.014	731 968	731 614	-0.353	0 164
228	7776132 194	583105 816	726 565	726 244	-0.322	0 140
229	7776300 204	583089 941	760 755	760,375	-0.380	0 187
230	7776489 382	583039.670	762 740	762 130	-0.609	0.438
231	7776735 445	582992 045	739 122	738 779	-0.343	0,156
232	7776895 518	582988.076	772 088	771 812	-0.276	0.108
233	7776981 508	583019 826	793 768	793 424	-0.344	0 157
234	7777107 185	583088 618	821 307	820 919	-0 388	0,194
235	7777193 175	583119.045	848 641	847 917	-0 724	0,603
236	7777252 706	583124 337	866 196	865 822	-0.374	0.181
230	7776603 153	583003 951	737 /68	736 777	-0,574	0,101
238	7776638 872	583075 389	7// 038	7/3 566	-0.472	0,000
230	7776211 560	582953 010	753 326	752 012	-0 414	0.213
239	7776103 700	582893 /88	753 /37	753 015	-0 422	0.225
240	7776211 440	582862 060	753 206	752 877	-0,722	0,220
241	77758/7 10/	583130 200	726 546	726 125	-0,420	0.225
242	1113041,104	303130,280	120,040	120,100	-0,411	0,210

243	7775898,698	583053,561	726,173	725,729	-0,444	0,247
244	7775978,735	582948,389	727,944	727,533	-0,411	0,214
245	7776052,818	582861,737	730,652	730,070	-0,582	0,402
246	7775755,162	583253,322	727,077	726,703	-0,374	0,181

C05 - MDT 05 m

A Tabela 22 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C05 com resolução espacial de 5 metro, com o objetivo de determinar o PEC-PCD.

Amostra	Δ H MDT 5 m
Média	0,069
Mediana	0,099
Moda	-0,503
Erro Padrão	0,028
Desvio Padrão	0,431
Variância da amostra	0,186
Curtose	1,412
Média + 3*Desvio Padrão	1,362
Média - 3*Desvio Padrão	-1,224
Assimetria	-0,288
Intervalo	3,324
Mínimo	-2,051
Máximo	1,273
Soma	16,579
Nº de amostras	240
Teste Z (tendência)	1,622
Z(1-α/2) ou Z0,95	1,6449
EP (PEC-PCD)	0,66
Teste Precisão (X ² z,n-1)	101,910506
X²n-1, α	267,412
PEC PCD	В
Escala	1:5.000

Tabela 22- Síntese das análises estatísticas do MDT do cenário C05 m

A Figura 33 mostra a distribuição dos erros nas amostras apresentadas na Tabela 23 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C05 com resolução espacial de 5 metros.

Figura 33 – Distribuição dos erros amostrais do MDT 05 m

Tabela 23 - Memória de cálculo do PEC-PCD do MDT 5m.

FID	N (m)	E (m)	H pós (m)	H 5m (m)	H 5m - H pós	(∆H - media H)²
0	7775261,260	591239,306	955,925	956,586	0,662	0,351
1	7773971,286	592286,328	856,359	856,867	0,508	0,193
2	7774055,830	591020,771	907,287	907,669	0,382	0,098
3	7774949,395	591352,515	903,177	903,561	0,384	0,099
4	7774343,498	591216,254	889,486	889,823	0,336	0,072
5	7774116,327	591275,785	878,006	878,669	0,663	0,353
6	7775370,216	591861,018	944,733	945,416	0,683	0,377
8	7775137,448	591587,055	895,953	896,300	0,346	0,077
9	7775083,870	591487,175	895,360	895,728	0,367	0,089
10	7771855,286	588308,001	804,105	804,341	0,236	0,028
11	7771939,291	588510,408	793,898	794,247	0,350	0,079
12	7771825,520	588548,111	788,195	788,488	0,293	0,050
13	7771742,837	588347,689	785,427	785,960	0,533	0,215
14	7771811,629	588203,490	814,834	815,186	0,352	0,080
15	7771716,379	588593,752	781,902	782,221	0,318	0,062
16	7771783,848	588727,366	788,108	788,649	0,541	0,222
17	7771625,759	588379,439	768,692	769,369	0,677	0,369
18	7771827,504	588860,981	794,349	794,535	0,186	0,014
19	7771615,837	588023,573	797,738	798,164	0,426	0,127
20	7771724,317	588012,329	796,754	797,342	0,588	0,269
21	7771895,635	588402,590	799,988	800,313	0,325	0,066
22	7772070,260	588750,518	802,139	802,685	0,547	0,228
23	7771893,650	588692,971	786,816	787,226	0,410	0,116
24	7771969,057	588865,612	805,566	806,126	0,560	0,241
25	7772164,187	588809,387	819,594	819,942	0,348	0,078
26	7772020,650	588992,612	803,700	803,942	0,242	0,030
27	7772256,130	588864,289	827,539	827,934	0,395	0,106
28	7772105,317	589193,034	788,462	789,045	0,584	0,265

29	7771912,171	589021,055	786,674	787,138	0,465	0,156
30	7771524,556	588112,209	781,935	782,254	0,318	0,062
31	7774064,825	592362,705	855,539	856,047	0,507	0,192
32	7774555,364	592880,231	892,713	892,972	0,259	0,036
33	7774135,429	592198,442	840,080	840,891	0,811	0,551
34	7771253,295	588944,047	782,145	782,115	-0,029	0,010
35	7770827,337	588489,910	789,204	789,597	0,393	0,105
36	7770738.437	588136.691	742.211	742.452	0.241	0.029
37	7769847.869	588479.547	807.754	808,905	1.151	1.171
38	7769855.806	588455.205	807.658	808.002	0.344	0.076
39	7769855.806	588410.226	804.596	805.515	0.919	0.723
40	7769855.806	588314.976	799.913	800.780	0.867	0.636
41	7769873.269	588215.492	795.012	795.351	0.339	0.073
42	7768952.517	587377,291	765.051	765.514	0.463	0.155
43	7769153 072	586974 991	758 966	759 385	0 419	0 122
44	7772539 600	582740 917	740 079	740.030	-0.049	0.014
15	7772427 813	582786 889	752 534	752 246	-0.288	0.128
46	7772570 688	5829/1 670	7/7 222	7/7 031	-0,200	0,120
40	7772342 154	582815 001	747 105	746 802	-0,132	0,000
47	7772402 670	592026 049	760 554	740,032	-0,213	0,080
40	7772270.027	502930,040	709,004	761 496	-0,107	0,000
49	7772242.025	592022 911	701,702	701,400	-0,290	0,133
50	7772242,935	562923,611	770,200	770,141	-0,127	0,038
51	7772320,656	582973,751	776,341	776,129	-0,212	0,079
52	7772314,703	583024,022	777,927	777,607	-0,320	0,151
53	7772312,057	583253,879	764,281	764,059	-0,223	0,085
	7772409,292	583321,348	752,601	752,338	-0,262	0,110
55	7772496,935	583605,114	749,571	749,234	-0,337	0,165
56	7772393,086	583927,576	762,912	762,756	-0,156	0,051
57	7772300,813	583754,604	780,058	779,825	-0,233	0,091
58	7772125,526	583818,766	767,535	767,328	-0,207	0,076
59	7772105,682	583692,096	753,876	753,609	-0,267	0,113
60	7772068,025	584116,290	794,535	794,284	-0,251	0,103
61	7772229,157	584341,319	758,349	758,201	-0,148	0,047
62	7772259,319	584502,053	749,151	749,071	-0,080	0,022
63	7772002,144	584391,325	747,631	747,876	0,245	0,031
64	7771844,584	584208,762	798,536	798,928	0,392	0,104
65	7772063,659	583973,415	793,261	793,139	-0,122	0,036
66	7772255,350	583591,620	754,912	754,739	-0,172	0,058
67	7772329,169	583431,679	733,742	733,515	-0,227	0,088
68	7772556,579	583619,402	741,214	740,847	-0,367	0,190
69	7772661,751	583232,051	739,038	738,728	-0,310	0,144
70	7772934,802	582873,275	754,800	754,568	-0,232	0,091
71	7773043,149	582989,957	750,493	750,254	-0,239	0,095
72	7773109,030	582960,588	737,845	737,913	0,068	0,000
73	7773186,818	583150,691	758,113	757,691	-0,422	0,241
74	7773347,553	583164,185	752,881	752,744	-0,138	0,043
75	7773520,591	583131,244	753,882	753,603	-0,278	0,121
76	7773755,541	582985,194	735,639	735,525	-0,115	0,034
77	7773323,035	583439,088	739,414	739,086	-0,328	0,158
78	7772504,580	583795,747	744,199	744,256	0,057	0,000
79	7772477,063	583711,080	749,810	749,574	-0,236	0,093
80	7772883,199	583542,752	748,937	748,662	-0,275	0,118

81	7773082,431	583376,064	737,943	737,855	-0,089	0,025
82	7773232,979	583718,700	737,742	738,260	0,518	0,202
83	7773052,268	583587,202	756,961	756,599	-0,362	0,186
84	7772809,380	583214,668	730,112	730,076	-0,036	0,011
85	7772975,962	583223,558	728,918	728,780	-0,138	0,043
86	7772865,260	583152,438	730,261	730,130	-0,131	0,040
87	7773178,528	583487,718	737,362	737,215	-0,146	0,046
88	7772900,637	583453,400	733,248	732,971	-0,276	0,119
89	7772932,412	584025,284	777,792	777,373	-0,419	0,238
90	7773214,792	584189,392	792,188	791,730	-0,459	0,278
91	7773911,618	583654,227	760,524	761,186	0,661	0,351
92	7773808,099	583765,022	780,854	780,603	-0,251	0,102
93	7773855,394	583733,602	776,699	777,130	0,432	0,132
94	7773544,177	584023,322	796,255	796,072	-0,182	0,063
95	7773921,920	581963,908	737,294	738,341	1,048	0,958
99	7773673,917	581781,681	734,553	734,326	-0,227	0,087
102	7774052,483	582033,141	739,538	737,487	-2,051	4,495
103	7774131.859	582019.594	744.625	744,961	0.336	0.071
104	7774212.213	581986.601	744.375	745.212	0.838	0.591
105	7776322.699	582823.347	750.068	749,739	-0.328	0.158
106	7776351,803	582869.385	752,999	752,754	-0.245	0.099
107	7776484.095	582723,864	728.023	727,539	-0.484	0.306
108	7776680.946	582750,851	732.324	731,865	-0.459	0,278
109	7776978 867	582842 926	749 302	748 799	-0.503	0.327
110	7776978 867	582842 926	749 302	748 799	-0.503	0.327
111	7776873.033	582824 406	742 973	742 570	-0.403	0.223
112	7777097 930	582702 168	755 754	755 250	-0.504	0.328
114	7777042 367	582788 951	753 087	752 619	-0.468	0.289
115	7776796 833	582792 126	738 754	738 236	-0.518	0 345
116	7776569 820	582725 980	727 823	727 324	-0.499	0 323
117	7776638 612	582737 622	730 417	729 887	-0.530	0,359
118	7776414 774	582704 814	729 592	729,007	-0.176	0,060
110	7776185 115	582768 843	732 315	731 862	-0.453	0,000
120	7775793 531	583192 706	726 470	726 198	-0 273	0,273
120	7773052 284	581636.096	734 245	734 670	0,275	0,117
121	7773113 561	581759 127	728 100	728 572	0,423	0,127
122	7773221 860	581648 420	720,103	730.007	0,403	0,133
120	7772814 806	582164 500	756 640	756 012	0,404	0,112
125	7772855 824	582154 102	756 523	756 770	0,203	0,030
120	7772095 026	592012 242	742 202	7/2 7/7	0,247	0,032
120	7772401 222	592176 755	743,333	727 590	0,334	0,001
127	7772202.007	581722.254	762 221	762 700	0,478	0,107
120	7772211 024	592214 955	702,221	702,790	0,309	0,250
129	7772191 750	592520 220	759,407	759,715	0,309	0,037
121	7772110 951	592742 426	731,333	701,979	0,440	0,142
101	112110,001	592717 565	750 400	750.204	-0,204	0,075
132	777004 740	502/11,505	790 674	790 275	-0,202	0.125
100	7772010 200	502031,131	706 644	706 205	-0,233	0,135
134	7772406 602	595420 970	722 440	722 204	-0,330	0,100
130	7772422 705	595292 442	741 044	741 604	-0,130	0,042
100	7770504 440	505202,112	764 500	764 202	-0,200	0,100
137	7770500.000	505033,986	774,528	704,293	-0,235	0,092
138	1112529,036	584784,589	114,919	114,182	-0,197	0,071

139	7772681,129	584364,710	735,567	735,628	0,061	0,000
140	7772879,170	584315,101	746,650	746,180	-0,470	0,291
141	7772284,651	585841,882	734,717	734,537	-0,181	0,062
142	7772149,713	585874,426	745,864	745,737	-0,127	0,039
143	7771897,697	586001,823	755,179	755,498	0,319	0,063
144	7771680,209	586220,898	751,382	751,733	0,350	0,079
145	7771612,343	586453,468	750,849	750,997	0,149	0,006
146	7771605,993	586619,759	743,169	743,475	0,306	0,056
147	7771455,577	586956,309	747,055	747,430	0,375	0,094
148	7771719,896	587219,835	761,725	761,977	0,252	0,034
149	7771715,531	587502,807	776,121	776,480	0,359	0,084
150	7771447,639	587682,989	761,022	761,313	0,292	0,050
151	7771528,602	587631,395	765,151	765,476	0,325	0,065
152	7771634,965	587556,782	771,597	771,782	0,184	0,013
153	7768438,056	590429,708	790,956	791,130	0,173	0,011
154	7768517,431	590430,502	793,965	794,015	0,050	0,000
155	7768473,775	590606,715	771,004	771,173	0,168	0,010
156	7768267,400	590453,521	771,712	771,652	-0,061	0,017
157	7768509,494	590280,483	778,819	779,184	0,365	0,087
158	7768352,331	590164,595	772,367	772,758	0,391	0,104
159	7769092,901	589763,750	805,929	806,223	0,294	0,051
160	7769077,238	589379,045	760,926	760,842	-0,084	0,023
161	7768797,727	588658,085	764,689	764,915	0,226	0,025
162	7768312,877	588767,226	784,709	784,992	0,282	0,045
163	7768348,596	588543,653	750,277	750,702	0,425	0,127
164	7768668,687	587561,385	744,498	745,153	0,654	0,343
165	7777150,860	582360,548	761,682	762,637	0,955	0,785
166	7776972,266	582392,298	829,068	829,740	0,672	0,363
167	7776826,745	582372,455	813,033	813,970	0,937	0,753
168	7776584,651	582343,350	775,105	775,648	0,543	0,225
169	7776417,963	582324,830	783,476	784,749	1,273	1,449
170	7776349,171	582318,215	799,935	800,253	0,319	0,062
171	7776309,483	582294,402	791,653	792,266	0,614	0,297
172	7776959,037	582609,257	728,941	729,576	0,635	0,320
173	7776603,172	582556,340	729,372	729,931	0,559	0,240
174	7776273,765	582494,163	729,471	729,570	0,099	0,001
175	7776103,108	582545,757	729,479	729,765	0,286	0,047
176	7775863,660	582728,320	729,098	728,520	-0,578	0,418
177	7775741,951	582815,633	729,451	729,130	-0,320	0,152
178	7775461,492	582781,237	731,007	730,630	-0,377	0,199
179	7774916,449	582558,986	732,992	732,730	-0,262	0,110
180	7774103,516	582886,409	764,591	764,218	-0,373	0,195
181	7774141,219	582969,091	762,583	761,960	-0,622	0,478
182	7773884,572	582657,544	752,015	751,888	-0,127	0,039
183	7773979,823	582787,190	761,159	761,217	0,058	0,000
184	7774184,875	583147.685	777,791	777,666	-0,124	0,037
185	7774163.047	583336,201	782,491	782,537	0,046	0,001
186	7774213.979	583361,337	784,469	784,664	0,195	0,016
187	7773547.228	582594,705	786.869	787,541	0.673	0,364
188	7772983.664	582571.554	759,326	760,164	0,838	0,591
189	7772910.904	582576.846	747.627	748.045	0.418	0.122
190	7773384 632	584216.040	804.585	804.201	-0.385	0.206
		50.210,010		001,201	3,000	0,200

191	7772577,122	584584,340	755,730	755,634	-0,096	0,027
192	7771641,554	587138,104	761,016	761,339	0,323	0,064
193	7771982,019	584860,788	732,102	732,585	0,483	0,171
194	7772141,431	584566,438	735,702	735,607	-0,094	0,027
195	7772004,840	585268,247	738,191	738,497	0,307	0,056
196	7771951,261	585358,867	738,714	738,997	0,283	0,046
197	7772019,392	585212,023	736,668	736,897	0,229	0,026
198	7771836,498	585448,164	742,093	742,481	0,388	0,102
199	7771729,011	585577,810	740,441	740,770	0,329	0,068
200	7771730,995	585670,414	732,737	733,155	0,418	0,121
201	7771673,779	585565,904	739,563	740,302	0,739	0,449
202	7771550,417	585807,336	739,471	739,668	0,196	0,016
203	7771398,281	586524,689	739,717	740,129	0,413	0,118
204	7771373,807	586672,195	739,463	739,868	0,405	0,113
205	7771285,502	586888,492	739,401	739,886	0,484	0,172
206	7771189,591	587105,451	739,472	740,004	0,531	0,213
207	7771060,606	587233,443	739,571	739,956	0,385	0,100
208	7770984,538	587301,243	739,670	740,122	0,452	0,147
209	7770868,452	587482,152	739,538	739,879	0,341	0,074
210	7770816,197	587673,645	739,337	739,437	0,100	0,001
211	7770751,043	587812,221	739,393	739,660	0,266	0,039
212	7770648,847	587888,619	738,985	739,226	0,241	0,029
213	7770583,032	587924,338	739,105	739,408	0,303	0,055
214	7772014,166	585981,953	762,096	762,436	0,340	0,073
215	7771882,933	586113,187	770,398	770,689	0,291	0,049
216	7771764,399	586358,720	774,839	775,167	0,328	0,067
217	7771667,032	586534,404	761,545	761,615	0,069	0,000
218	7771556,965	586741,838	750,056	750,259	0,203	0,018
219	7772401,517	585486,652	742,990	743,170	0,180	0,012
220	7772352,834	585598,835	751,913	752,012	0,100	0,001
221	7772501,001	585222,068	758,848	758,468	-0,380	0,202
222	7772583,551	585040,034	781,194	780,443	-0,751	0,673
223	7772803,684	584752,167	778,379	778,238	-0,141	0,044
224	7772928,568	584576,483	754,886	754,597	-0,289	0,128
225	7773751,953	583903,382	795,608	794,815	-0,793	0,743
226	7774027,120	583829,299	771,687	771,570	-0,118	0,035
227	7775944,339	583123,014	731,968	731,627	-0,341	0,168
228	7776132,194	583105,816	726,565	726,230	-0,336	0,164
229	7776300,204	583089,941	760,755	760,378	-0,378	0,200
230	7776489,382	583039,670	762,740	762,123	-0,617	0,471
231	7776735,445	582992,045	739,122	738,803	-0,320	0,151
232	7776895,518	582988,076	772,088	771,815	-0,273	0,117
233	7776981,508	583019,826	793,768	793,474	-0,295	0,132
234	7777107,185	583088,618	821,307	820,908	-0,399	0,219
235	7777193,175	583119.045	848,641	847,934	-0,707	0,602
236	7777252.706	583124.337	866,196	865.823	-0,373	0,196
237	7776603.153	583003,951	737,468	736,753	-0.715	0.615
238	7776638.872	583075.389	744.038	743.501	-0.538	0.368
239	7776211.569	582953.019	753,326	752.918	-0,407	0,227
240	7776193.709	582893,488	753,437	753,019	-0,418	0.237
241	7776311.449	582863.060	753.296	752.892	-0.404	0.224
242	7775847.104	583130,290	726.546	726,170	-0.377	0,199
	, , ,	-,	,	, 2	,	,

243	7775898,698	583053,561	726,173	725,730	-0,444	0,263
244	7775978,735	582948,389	727,944	727,530	-0,414	0,233
245	7776052,818	582861,737	730,652	730,100	-0,552	0,385
246	7775755,162	583253,322	727,077	726,698	-0,379	0,200

C10 - MDT 10 m

A Tabela 24 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C10 com resolução espacial de10 metros, com o objetivo de determinar o PEC-PCD.

Amostra	Δ H MDT 10 m
Média	0,099
Mediana	0,044
Moda	-0,765
Erro Padrão	0,032
Desvio Padrão	0,494
Variância da amostra	0,244
Curtose	1,025
Média + 3*Desvio Padrão	1,581
Média - 3*Desvio Padrão	-1,382
Assimetria	0,200
Intervalo	3,724
Mínimo	-1,953
Máximo	1,771
Soma	23,781
Nº de amostras	240
Teste Z (tendência)	1,535
Z(1-α/2) ou Z0,95	1,6449
EP (PEC-PCD)	1,0
Teste Precisão (X ² z,n-1)	58,286
X²n-1, α	267,412
PEC PCD	D
Escala	1:5.000

Tabela 24- Síntese das análises estatísticas do MDT do cenário C10

A Figura 34 mostra a distribuição dos erros nas amostras apresentadas na Tabela 25 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C10 com resolução espacial de 10 metros.

Figura 34 – Distribuição erros amostrais do MDT 10 m

Tabela 25 - Memória de cálculo do PEC-PCD do MDT 10m.

FID	N (m)	E (m)	H pós (m)	H 10m (m)	H 10m - H pós	(∆H - media H)²
0	7775261,260	591239,306	955,925	956,633	0,709	0,371
1	7773971,286	592286,328	856,359	856,847	0,488	0,151
2	7774055,830	591020,771	907,287	907,632	0,344	0,060
3	7774949,395	591352,515	903,177	903,464	0,286	0,035
4	7774343,498	591216,254	889,486	889,905	0,418	0,102
5	7774116,327	591275,785	878,006	878,025	0,019	0,006
6	7775370,216	591861,018	944,733	945,126	0,393	0,086
8	7775137,448	591587,055	895,953	895,865	-0,088	0,035
9	7775083,870	591487,175	895,360	895,425	0,065	0,001
10	7771855,286	588308,001	804,105	804,408	0,303	0,042
11	7771939,291	588510,408	793,898	794,413	0,515	0,173
12	7771825,520	588548,111	788,195	788,747	0,552	0,205
13	7771742,837	588347,689	785,427	785,977	0,550	0,204
14	7771811,629	588203,490	814,834	814,992	0,158	0,003
15	7771716,379	588593,752	781,902	782,179	0,277	0,032
16	7771783,848	588727,366	788,108	788,604	0,496	0,157
17	7771625,759	588379,439	768,692	769,422	0,730	0,398
18	7771827,504	588860,981	794,349	794,582	0,233	0,018
19	7771615,837	588023,573	797,738	798,290	0,552	0,205
20	7771724,317	588012,329	796,754	797,560	0,807	0,501
21	7771895,635	588402,590	799,988	800,480	0,492	0,155
22	7772070,260	588750,518	802,139	802,989	0,850	0,564
23	7771893,650	588692,971	786,816	787,411	0,595	0,246
24	7771969,057	588865,612	805,566	806,551	0,985	0,784
25	7772164,187	588809,387	819,594	819,981	0,388	0,083
26	7772020,650	588992,612	803,700	803,994	0,294	0,038
27	7772256,130	588864,289	827,539	828,151	0,612	0,263
28	7772105,317	589193,034	788,462	789,009	0,547	0,201

29	7771912,171	589021,055	786,674	787,122	0,449	0,122
30	7771524,556	588112,209	781,935	782,315	0,379	0,079
31	7774064,825	592362,705	855,539	855,943	0,404	0,093
32	7774555,364	592880,231	892,713	893,300	0,588	0,239
33	7774135,429	592198,442	840,080	840,813	0,733	0,402
34	7771253,295	588944,047	782,145	782,232	0,087	0,000
35	7770827,337	588489,910	789,204	789,546	0,342	0,059
36	7770738,437	588136,691	742,211	742,310	0,099	0,000
37	7769847,869	588479,547	807,754	809,525	1,771	2,795
38	7769855,806	588455,205	807,658	808,581	0,923	0,679
39	7769855,806	588410,226	804,596	806,189	1,592	2,230
40	7769855,806	588314,976	799,913	801,495	1,582	2,199
41	7769873,269	588215,492	795,012	795,438	0,426	0,107
42	7768952,517	587377,291	765,051	765,433	0,383	0,080
43	7769153,072	586974,991	758,966	759,387	0,421	0,104
44	7772539.600	582740.917	740.079	740.064	-0.015	0.013
45	7772427.813	582786.889	752.534	752.242	-0.292	0.153
46	7772570.688	582941.670	747.222	747.042	-0,181	0.078
47	7772342 154	582815.001	747 105	746.922	-0 183	0.080
48	7772403 670	582936.048	769 554	769.375	-0 178	0.077
49	7772370 927	582871 886	761 782	761 256	-0.527	0.392
50	7772242 935	582923 811	770 268	769.973	-0 295	0.155
51	7772320,656	582973 751	776 341	776 132	-0.209	0.095
52	7772314 703	583024 022	777 927	777 541	-0.386	0.235
53	7772312 057	583253 879	764 281	764.036	-0 246	0,235
54	7772409 292	583321 3/8	752 601	752 370	-0.231	0,119
55	7772/06 035	583605 114	7/0 571	7/9 212	-0,251	0,109
56	7772303 086	583027 576	762 012	743,212	-0,339	0,209
57	7772300 813	583754 604	790.059	702,070	-0,243	0,117
59	7772125 526	592919 766	767 525	767 404	-0,192	0,005
50	7772105 682	583692 096	753 876	753 725	-0,151	0,055
60	7772068.025	584116 200	704 525	704 211	-0,131	0,003
61	7772000,023	594241 210	759 240	794,311	-0,224	0,104
62	7772250.210	584502.052	730,349	730,201	-0,000	0,020
62	7772002 144	584302,053	749,101	740,930	-0,220	0,102
64	7771944 594	584391,325	747,031	747,645	0,214	0,013
04	7771044,364	564206,762	790,000	796,760	0,244	0,021
65	7772063,659	583973,415	793,201	793,067	-0,194	0,086
60	7772255,350	583591,620	754,912	754,734	-0,178	0,077
67	7772529,169	563431,679	733,742	733,234	-0,508	0,369
68	7772556,579	583619,402	741,214	740,714	-0,500	0,358
69	7772661,751	583232,051	739,038	738,903	-0,135	0,055
70	7772934,802	582873,275	754,800	754,503	-0,297	0,157
71	7773043,149	582989,957	750,493	750,211	-0,282	0,145
72	/773109,030	582960,588	737,845	737,969	0,124	0,001
73	7773186,818	583150,691	758,113	757,524	-0,589	0,474
74	7773347,553	583164,185	752,881	752,721	-0,160	0,067
75	7773520,591	583131,244	753,882	753,598	-0,284	0,147
76	7773755,541	582985,194	735,639	735,491	-0,149	0,061
77	7773323,035	583439,088	739,414	739,065	-0,349	0,201
78	7772504,580	583795,747	744,199	744,202	0,004	0,009
79	7772477,063	583711,080	749,810	749,645	-0,165	0,070
80	7772883,199	583542,752	748,937	748,684	-0,252	0,123

81	7773082,431	583376,064	737,943	737,847	-0,096	0,038
82	7773232,979	583718,700	737,742	738,145	0,403	0,092
83	7773052,268	583587,202	756,961	756,641	-0,320	0,176
84	7772809,380	583214,668	730,112	730,042	-0,070	0,029
85	7772975,962	583223,558	728,918	728,788	-0,130	0,052
86	7772865,260	583152,438	730,261	730,154	-0,107	0,042
87	7773178,528	583487,718	737,362	738,060	0,699	0,360
88	7772900,637	583453,400	733,248	733,033	-0,214	0,098
89	7772932,412	584025,284	777,792	777,380	-0,412	0,261
90	7773214,792	584189,392	792,188	792,174	-0,014	0,013
91	7773911,618	583654,227	760,524	761,209	0,685	0,343
92	7773808,099	583765,022	780,854	780,612	-0,243	0,117
93	7773855,394	583733,602	776,699	777,785	1,086	0,974
94	7773544,177	584023,322	796,255	796,047	-0,208	0,094
95	7773921,920	581963,908	737,294	738,180	0,886	0,620
99	7773673,917	581781,681	734,553	733,952	-0,601	0,490
102	7774052.483	582033,141	739,538	737.585	-1.953	4.213
103	7774131.859	582019.594	744.625	745,136	0.511	0.170
104	7774212.213	581986.601	744.375	745.099	0.725	0.391
105	7776322,699	582823.347	750.068	749,708	-0.360	0.210
106	7776351,803	582869.385	752,999	752,760	-0.239	0.114
107	7776484.095	582723.864	728.023	727,474	-0.549	0.420
108	7776680 946	582750 851	732 324	731 813	-0.510	0.371
109	7776978,867	582842.926	749.302	748.537	-0.765	0.746
110	7776978,867	582842.926	749.302	748.537	-0,765	0.746
111	7776873 033	582824 406	742 973	742 424	-0 549	0.420
112	7777097,930	582702,168	755,754	755.605	-0,149	0.062
114	7777042.367	582788.951	753.087	752,753	-0.333	0.187
115	7776796 833	582792 126	738 754	738 624	-0 130	0.052
116	7776569 820	582725,980	727 823	727 340	-0 484	0.340
117	7776638 612	582737 622	730 417	729 887	-0.530	0.396
118	7776414 774	582704 814	729 592	729 429	-0 163	0,069
119	7776185 115	582768 843	732 315	731 942	-0.373	0.222
120	7775793 531	583192 706	726 470	726.080	-0.391	0.240
121	7773052 284	581636.096	734 245	734 724	0.478	0 144
122	7773113 561	581759 127	728 109	728 546	0.438	0.115
123	7773221 869	581648 429	730 593	731 008	0.415	0,100
120	7772814 806	582164 500	756 649	756 942	0 293	0.038
125	7772855 824	582154 102	756 523	756 637	0 114	0,000
126	7772985.036	582013 242	743 393	743 793	0 399	0,090
120	7772491 322	582176 755	737 111	737 621	0,510	0,000
128	7772303 997	581732 254	762 221	762 873	0,652	0,105
120	7772311 934	582214 855	730 /07	739 758	0.352	0,064
120	7772181 759	582530 239	751 533	751,886	0,353	0,004
131	7772110 851	582742 436	778 380	778 166	-0 223	0,000
122	7772288 122	582717 565	750 /06	750 227	_0 170	0.077
122	7772081 7/6	582837 157	780 67/	780 522	-0,179	0.062
12/	7772010 200	582880 511	706 644	706 306	-0,100	0,002
134	7772406 602	585/20 972	732 //0	732 350	-0,000	0,191
130	7772/22 725	585282 112	7/1 0//	7/1 682	-0,001	0,032
137	777250/ 112	585032 086	764 528	764 521	-0,201	0,130
138	7772520 026	584784 580	774 070	774 070		0.010
.00		001104,000			0,000	0,010

139	7772681,129	584364,710	735,567	735,567	0,000	0,010
140	7772879,170	584315,101	746,650	746,498	-0,152	0,063
141	7772284,651	585841,882	734,717	734,342	-0,375	0,225
142	7772149,713	585874,426	745,864	745,811	-0,053	0,023
143	7771897.697	586001.823	755,179	755.759	0.580	0.231
144	7771680,209	586220,898	751,382	751.507	0.125	0.001
145	7771612 343	586453 468	750 849	751 239	0.391	0.085
146	7771605 993	586619 759	743 169	743 399	0.230	0.017
1/7	7771455 577	586956 309	7/7 055	747.614	0,559	0.212
1/8	7771710 806	587210 835	761 725	761 863	0,339	0,212
140	7771715 521	597502 907	701,723	776 805	0,139	0.342
149	7771447 620	507502,007	761 022	761 402	0,004	0,342
150	7771529 602	507002,909	701,022	761,492	0,471	0,136
151	7771526,602	567631,395	700,101	705,655	0,704	0,365
152	7771634,965	587556,782	771,597	771,683	0,086	0,000
153	7768438,056	590429,708	790,956	790,936	-0,021	0,014
154	7768517,431	590430,502	793,965	794,004	0,039	0,004
155	7768473,775	590606,715	771,004	771,123	0,119	0,000
156	7768267,400	590453,521	771,712	771,698	-0,014	0,013
157	7768509,494	590280,483	778,819	779,509	0,689	0,348
158	7768352,331	590164,595	772,367	772,673	0,307	0,043
159	7769092,901	589763,750	805,929	806,131	0,202	0,011
160	7769077,238	589379,045	760,926	760,106	-0,820	0,845
161	7768797,727	588658,085	764,689	764,903	0,214	0,013
162	7768312,877	588767,226	784,709	785,062	0,352	0,064
163	7768348,596	588543,653	750,277	750,915	0,638	0,290
164	7768668,687	587561,385	744,498	745,412	0,913	0,663
165	7777150,860	582360,548	761,682	762,717	1,035	0,876
166	7776972,266	582392,298	829,068	829,824	0,755	0,431
167	7776826,745	582372,455	813,033	813,932	0,900	0,641
168	7776584,651	582343,350	775,105	775,580	0,475	0,141
169	7776417,963	582324,830	783,476	784,639	1,163	1,132
170	7776349.171	582318.215	799,935	800.950	1.016	0.840
171	7776309.483	582294.402	791.653	792.277	0.624	0.276
172	7776959.037	582609.257	728,941	729.694	0.753	0.427
173	7776603.172	582556.340	729.372	729.995	0.623	0.274
174	7776273.765	582494.163	729,471	729.509	0.039	0.004
175	7776103.108	582545.757	729,479	729.891	0.412	0.098
176	7775863.660	582728.320	729.098	728.679	-0.419	0.269
177	7775741.951	582815.633	729,451	729.286	-0.165	0.070
178	7775461.492	582781.237	731.007	730.428	-0.579	0.460
179	7774916.449	582558.986	732.992	732.716	-0.276	0.141
180	7774103.516	582886,409	764,591	764,272	-0.318	0.174
181	7774141 219	582969 091	762 583	762 088	-0 495	0.353
182	7773884 572	582657 544	752,000	751 849	-0 166	0.071
183	7773070 822	582787 100	761 150	761 402	0.243	0.021
19/	777/10/ 075	5831/7 695	777 701	777 804	0.013	0.021
104	777/162 0/7	583336 204	782 /01	782 542	0,013	0,007
199	777/010 070	583261 227	78/ /60	784 590	0,032	0,002
100	7772547 220	582504 705	786 960	787 540	0,119	0,000
10/	7772092 664	502394,703	750 226	760 526	1 01 9	1.000
100	7770010 001	502571,554	747 607	740 475	0.540	0.200
109	7772204 000	504010,040	141,021	140,170	0,049	0,202
190	1113384,632	004210,040	004,085	004,109	-0,416	0,200

191	7772577,122	584584,340	755,730	755,667	-0,063	0,026
192	7771641,554	587138,104	761,016	761,204	0,188	0,008
193	7771982,019	584860,788	732,102	732,438	0,336	0,056
194	7772141,431	584566,438	735,702	735,497	-0,204	0,092
195	7772004.840	585268.247	738,191	738.604	0.413	0.099
196	7771951,261	585358,867	738,714	739,103	0.388	0.084
197	7772019 392	585212 023	736 668	737 423	0 755	0.430
198	7771836 498	585448 164	742 093	742 681	0.589	0.240
199	7771729.011	585577 810	740 441	740 456	0.016	0.007
200	7771730 995	585670 414	732 737	732 981	0 244	0.021
200	7771673 779	585565 904	730 563	740 373	0,244	0,505
201	7771550 /17	585807 336	730 /71	740,070	0,007	0,806
202	7771308 281	586524 689	730 717	739 895	0,337	0,000
203	7771373 807	586672 105	730 /63	730 852	0,170	0,000
204	7771295 502	596999 402	739,403	739,052	0,309	0,004
205	77711205,502	597105 451	739,401	739,737	0,550	0,000
200	7771189,591	567 105,451	739,472	739,977	0,505	0,164
207	7771060,606	587233,443	739,571	739,726	0,155	0,003
208	7770984,538	587301,243	739,670	739,994	0,324	0,050
209	7770868,452	587482,152	739,538	739,770	0,232	0,018
210	7770816,197	587673,645	739,337	739,422	0,085	0,000
211	7770751,043	587812,221	739,393	739,747	0,354	0,065
212	7770648,847	587888,619	738,985	739,243	0,258	0,025
213	7770583,032	587924,338	739,105	739,448	0,344	0,060
214	7772014,166	585981,953	762,096	762,810	0,714	0,378
215	7771882,933	586113,187	770,398	770,660	0,262	0,027
216	7771764,399	586358,720	774,839	775,274	0,436	0,113
217	7771667,032	586534,404	761,545	761,564	0,019	0,006
218	7771556,965	586741,838	750,056	750,075	0,019	0,006
219	7772401,517	585486,652	742,990	743,050	0,060	0,002
220	7772352,834	585598,835	751,913	751,962	0,049	0,003
221	7772501,001	585222,068	758,848	758,466	-0,382	0,231
222	7772583,551	585040,034	781,194	780,438	-0,756	0,732
223	7772803,684	584752,167	778,379	778,168	-0,210	0,096
224	7772928,568	584576,483	754,886	754,622	-0,264	0,132
225	7773751,953	583903,382	795,608	794,813	-0,796	0,801
226	7774027,120	583829,299	771,687	771,472	-0,215	0,098
227	7775944,339	583123,014	731,968	731,700	-0,268	0,135
228	7776132,194	583105,816	726,565	726,261	-0,304	0,162
229	7776300,204	583089,941	760,755	760,379	-0,377	0,227
230	7776489,382	583039,670	762,740	762,102	-0,637	0,543
231	7776735,445	582992,045	739,122	738,785	-0,337	0,190
232	7776895,518	582988,076	772,088	771,676	-0,412	0,261
233	7776981.508	583019.826	793,768	793.446	-0.322	0.177
234	7777107.185	583088.618	821.307	820.842	-0.465	0.318
235	7777193.175	583119.045	848.641	847.938	-0.703	0.643
236	7777252,706	583124,337	866,196	865,918	-0.278	0.142
237	7776603 153	583003.951	737,468	736,911	-0.557	0.431
238	7776638 872	583075.389	744.038	743.362	-0.676	0.601
239	7776211 569	582953,019	753.326	752,997	-0.329	0.183
240	7776193 709	582893,488	753.437	753,141	-0.296	0.156
241	7776311 449	582863.060	753,296	752,995	-0.301	0.160
242	7775847.104	583130.290	726.546	726.164	-0.383	0.232
_	- ,	,=	-,	-,		, -

243	7775898,698	583053,561	726,173	725,760	-0,414	0,263
244	7775978,735	582948,389	727,944	727,300	-0,644	0,552
245	7776052,818	582861,737	730,652	730,206	-0,446	0,297
246	7775755,162	583253,322	727,077	726,527	-0,550	0,422

C15 - MDT 15 m

A Tabela 26 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C15 com resolução espacial de 15 metro, com o objetivo de determinar o PEC-PCD.

Amostra	Δ H MDT 15 m
Média	0,141
Mediana	0,094
Moda	-1,597
Erro Padrão	0,042
Desvio Padrão	0,651
Variância da amostra	0,424
Curtose	2,660
Média + 3*Desvio Padrão	2,095
Média - 3*Desvio Padrão	-1,813
Assimetria	0,503
Intervalo	5,181
Mínimo	-1,666
Máximo	3,515
Soma	33,835
Nº de amostras	240
Teste Z (tendência)	1,308
Z(1-α/2) ou Z0,95	1,6449
EP (PEC-PCD)	1,670
Teste Precisão (X ² z,n-1)	36,3685818
X²n-1, α	267,412
PEC PCD	В
Escala	1:10.000
Erro (m)	2,50

Tabela 26 - Síntese das análises estatísticas do MDT do cenário C15

A Figura 35 mostra a distribuição dos erros nas amostras apresentadas na Tabela 27 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C15 com resolução espacial de 15 metros.

Figura 35 – Distribuição dos erros amostrais do MDT 15 m

Tabela 27 - Memória de cálculo do PEC-PCD do MDT 15m.

FID	N (m)	L (m)	H pós (m)	H 15m (m)	H 15m - H pós	(∆H - media H) ²
0	7775261,260	591239,306	955,925	956,771	0,846	0,497
1	7773971,286	592286,328	856,359	857,125	0,766	0,391
2	7774055,830	591020,771	907,287	908,139	0,852	0,505
3	7774949,395	591352,515	903,177	903,876	0,699	0,312
4	7774343,498	591216,254	889,486	889,825	0,339	0,039
5	7774116,327	591275,785	878,006	878,049	0,043	0,010
6	7775370,216	591861,018	944,733	945,782	1,050	0,826
8	7775137,448	591587,055	895,953	894,853	-1,100	1,540
9	7775083,870	591487,175	895,360	895,409	0,049	0,008
10	7771855,286	588308,001	804,105	804,424	0,319	0,032
11	7771939,291	588510,408	793,898	794,385	0,487	0,120
12	7771825,520	588548,111	788,195	788,713	0,517	0,142
13	7771742,837	588347,689	785,427	786,480	1,053	0,832
14	7771811,629	588203,490	814,834	815,309	0,475	0,112
15	7771716,379	588593,752	781,902	782,184	0,281	0,020
16	7771783,848	588727,366	788,108	788,627	0,519	0,143
17	7771625,759	588379,439	768,692	769,288	0,597	0,208
18	7771827,504	588860,981	794,349	794,471	0,122	0,000
19	7771615,837	588023,573	797,738	798,249	0,511	0,137
20	7771724,317	588012,329	796,754	797,606	0,852	0,506
21	7771895,635	588402,590	799,988	800,635	0,647	0,256
22	7772070,260	588750,518	802,139	803,156	1,017	0,767
23	7771893,650	588692,971	786,816	787,709	0,892	0,565
24	7771969,057	588865,612	805,566	805,981	0,415	0,075
25	7772164,187	588809,387	819,594	820,108	0,514	0,139
26	7772020,650	588992,612	803,700	804,044	0,345	0,041
27	7772256,130	588864,289	827,539	827,951	0,412	0,073

28	7772105,317	589193,034	788,462	789,179	0,718	0,333
29	7771912,171	589021,055	786,674	787,673	1,000	0,737
30	7771524,556	588112,209	781,935	782,325	0,390	0,062
31	7774064,825	592362,705	855,539	856,033	0,494	0,125
32	7774555,364	592880,231	892,713	893,346	0,633	0,242
33	7774135,429	592198,442	840,080	840,832	0,752	0,374
34	7771253,295	588944,047	782,145	782,734	0,589	0,201
35	7770827,337	588489,910	789,204	789,691	0,487	0,120
36	7770738,437	588136,691	742,211	742,020	-0,191	0,110
37	7769847,869	588479,547	807,754	809,590	1,836	2,872
38	7769855,806	588455,205	807,658	808,683	1,024	0,780
39	7769855,806	588410,226	804,596	806,206	1,609	2,156
40	7769855,806	588314,976	799,913	800,839	0,926	0,617
41	7769873,269	588215,492	795,012	795,469	0,457	0,100
42	7768952,517	587377,291	765,051	765,661	0,610	0,220
43	7769153,072	586974,991	758,966	759,445	0,479	0,114
44	7772539,600	582740,917	740,079	739,510	-0,569	0,504
45	7772427,813	582786,889	752,534	752,087	-0,447	0,346
46	7772570,688	582941,670	747,222	746,280	-0,942	1,173
47	7772342,154	582815,001	747,105	746,857	-0,249	0,152
48	7772403,670	582936,048	769,554	769,352	-0,201	0,117
49	7772370,927	582871,886	761,782	761,143	-0,640	0,609
50	7772242,935	582923,811	770,268	770,175	-0,093	0,055
51	7772320,656	582973,751	776,341	776,269	-0,072	0,045
52	7772314,703	583024,022	777,927	777,647	-0,280	0,177
53	7772312,057	583253,879	764,281	763,990	-0,291	0,187
54	7772409,292	583321,348	752,601	752,392	-0,209	0,122
55	7772496,935	583605,114	749,571	749,373	-0,198	0,115
56	7772393,086	583927,576	762,912	762,782	-0,130	0,074
57	7772300,813	583754,604	780,058	779,792	-0,267	0,166
58	7772125,526	583818,766	767,535	767,762	0,227	0,007
59	7772105,682	583692,096	753,876	753,871	-0,005	0,021
60	7772068,025	584116,290	794,535	794,121	-0,414	0,308
61	7772229,157	584341,319	758,349	758,163	-0,186	0,107
62	7772259,319	584502,053	749,151	748,188	-0,962	1,217
63	7772002,144	584391,325	747,631	747,936	0,305	0,027
64	7771844,584	584208,762	798,536	798,646	0,110	0,001
65	7772063,659	583973,415	793,261	793,117	-0,143	0,081
66	7772255,350	583591,620	754,912	754,767	-0,145	0,082
67	7772329,169	583431,679	733,742	733,641	-0,101	0,059
68	7772556,579	583619,402	741,214	740,635	-0,579	0,519
69	7772661,751	583232,051	739,038	738,852	-0,186	0,107
70	7772934,802	582873,275	754,800	754,564	-0,236	0,142
71	7773043,149	582989,957	750,493	750,278	-0,215	0,127
72	7773109,030	582960,588	737,845	738,340	0,495	0,125
73	7773186,818	583150,691	758,113	757,572	-0,540	0,464
74	7773347,553	583164,185	752,881	752,896	0,014	0,016

75	7773520,591	583131,244	753,882	753,708	-0,174	0,099
76	7773755,541	582985,194	735,639	735,557	-0,083	0,050
77	7773323,035	583439,088	739,414	738,942	-0,472	0,376
78	7772504,580	583795,747	744,199	744,383	0,184	0,002
79	7772477,063	583711,080	749,810	749,467	-0,343	0,235
80	7772883,199	583542,752	748,937	748,665	-0,272	0,171
81	7773082,431	583376,064	737,943	737,837	-0,107	0,061
82	7773232,979	583718,700	737,742	738,323	0,581	0,194
83	7773052,268	583587,202	756,961	756,562	-0,398	0,291
84	7772809,380	583214,668	730,112	730,127	0,015	0,016
85	7772975,962	583223,558	728,918	728,795	-0,123	0,069
86	7772865,260	583152,438	730,261	730,222	-0,039	0,032
87	7773178,528	583487,718	737,362	737,382	0,021	0,015
88	7772900,637	583453,400	733,248	733,353	0,106	0,001
89	7772932,412	584025,284	777,792	777,301	-0,491	0,399
90	7773214,792	584189,392	792,188	792,472	0,284	0,020
91	7773911,618	583654,227	760,524	761,000	0,475	0,112
92	7773808,099	583765,022	780,854	780,611	-0,243	0,148
93	7773855,394	583733,602	776,699	777,280	0,581	0,194
94	7773544,177	584023,322	796,255	795,924	-0,330	0,222
95	7773921,920	581963,908	737,294	738,177	0,883	0,551
99	7773673,917	581781,681	734,553	734,131	-0,422	0,317
102	7774052,483	582033,141	739,538	738,024	-1,514	2,740
103	7774131,859	582019,594	744,625	745,118	0,493	0,124
104	7774212,213	581986,601	744,375	745,246	0,871	0,533
105	7776322,699	582823,347	750,068	750,076	0,009	0,018
106	7776351,803	582869,385	752,999	752,761	-0,238	0,143
107	7776484,095	582723,864	728,023	727,321	-0,701	0,710
108	7776680,946	582750,851	732,324	732,120	-0,204	0,119
109	7776978,867	582842,926	749,302	747,705	-1,597	3,019
110	7776978,867	582842,926	749,302	747,705	-1,597	3,019
111	7776873,033	582824,406	742,973	743,428	0,455	0,099
112	7777097,930	582702,168	755,754	757,096	1,342	1,443
114	7777042,367	582788,951	753,087	752,530	-0,557	0,487
115	7776796,833	582792,126	738,754	739,425	0,671	0,281
116	7776569,820	582725,980	727,823	727,298	-0,525	0,443
117	7776638,612	582737,622	730,417	729,650	-0,767	0,824
118	7776414,774	582704,814	729,592	729,406	-0,186	0,107
119	7776185,115	582768,843	732,315	731,455	-0,860	1,002
120	7775793,531	583192,706	726,470	726,195	-0,275	0,173
121	7773052,284	581636,096	734,245	734,690	0,445	0,092
122	7773113,561	581759,127	728,109	728,589	0,480	0,115
123	7773221,869	581648,429	730,593	731,190	0,597	0,208
124	7772814,806	582164,500	756,649	756,649	0,001	0,020
125	7772855,824	582154,102	756,523	756,699	0,175	0,001
126	7772985,036	582013,242	743,393	743,769	0,375	0,055
127	7772491,322	582176,755	737,111	737,591	0,481	0,115

128	7772303,997	581732,254	762,221	763,571	1,350	1,461
129	7772311,934	582214,855	739,407	739,526	0,119	0,000
130	7772181,759	582530,239	751,533	752,108	0,575	0,188
131	7772110,851	582742,436	778,389	777,882	-0,507	0,420
132	7772288,122	582717,565	759,406	759,272	-0,134	0,076
133	7772081,746	582837,157	789,674	789,788	0,114	0,001
134	7772010,309	582889,544	796,644	796,131	-0,513	0,427
135	7772406,602	585430,872	732,440	732,366	-0,074	0,046
136	7772423,785	585282,112	741,944	741,658	-0,286	0,182
137	7772504,112	585033,986	764,528	764,210	-0,317	0,210
138	7772529,036	584784,589	774,979	775,054	0,074	0,004
139	7772681,129	584364,710	735,567	735,559	-0,008	0,022
140	7772879,170	584315,101	746,650	746,688	0,038	0,011
141	7772284,651	585841,882	734,717	733,286	-1,431	2,470
142	7772149,713	585874,426	745,864	745,843	-0,022	0,026
143	7771897,697	586001,823	755,179	756,001	0,822	0,464
144	7771680,209	586220,898	751,382	751,821	0,439	0,089
145	7771612,343	586453,468	750,849	750,593	-0,255	0,157
146	7771605,993	586619,759	743,169	743,635	0,466	0,106
147	7771455,577	586956,309	747,055	747,533	0,478	0,114
148	7771719,896	587219,835	761,725	762,106	0,381	0,057
149	7771715,531	587502,807	776,121	777,192	1,071	0,866
150	7771447,639	587682,989	761,022	761,547	0,525	0,148
151	7771528,602	587631,395	765,151	765,968	0,817	0,457
152	7771634,965	587556,782	771,597	771,977	0,380	0,057
153	7768438,056	590429,708	790,956	790,778	-0,179	0,102
154	7768517,431	590430,502	793,965	793,730	-0,235	0,142
155	7768473,775	590606,715	771,004	771,186	0,182	0,002
156	7768267,400	590453,521	771,712	771,609	-0,103	0,060
157	7768509,494	590280,483	778,819	779,727	0,907	0,587
158	7768352,331	590164,595	772,367	772,671	0,304	0,027
159	7769092,901	589763,750	805,929	806,209	0,280	0,019
160	7769077,238	589379,045	760,926	759,983	-0,943	1,175
161	7768797,727	588658,085	764,689	764,810	0,121	0,000
162	7768312,877	588767,226	784,709	785,156	0,446	0,093
163	7768348,596	588543,653	750,277	750,806	0,529	0,151
164	7768668,687	587561,385	744,498	745,745	1,247	1,222
165	7777150,860	582360,548	761,682	763,316	1,634	2,229
166	7776972,266	582392,298	829,068	829,599	0,531	0,152
167	7776826,745	582372,455	813,033	813,381	0,348	0,043
168	7776584,651	582343,350	775,105	775,655	0,550	0,167
169	7776417,963	582324,830	783,476	785,057	1,581	2,074
170	7776349,171	582318,215	799,935	801,206	1,272	1,279
171	7776309,483	582294,402	791,653	792,469	0,816	0,456
172	7776959,037	582609,257	728,941	729,545	0,604	0,214
173	7776603,172	582556,340	729,372	729,808	0,437	0,087
174	7776273,765	582494,163	729,471	729,261	-0,209	0,123

175	7776103,108	582545,757	729,479	730,363	0,884	0,552
176	7775863,660	582728,320	729,098	728,610	-0,488	0,395
177	7775741,951	582815,633	729,451	729,794	0,343	0,041
178	7775461,492	582781,237	731,007	729,968	-1,039	1,392
179	7774916,449	582558,986	732,992	732,873	-0,120	0,068
180	7774103,516	582886,409	764,591	764,402	-0,189	0,109
181	7774141,219	582969,091	762,583	761,969	-0,614	0,570
182	7773884,572	582657,544	752,015	751,706	-0,309	0,202
183	7773979,823	582787,190	761,159	761,695	0,537	0,157
184	7774184,875	583147,685	777,791	777,685	-0,106	0,061
185	7774163,047	583336,201	782,491	781,962	-0,529	0,450
186	7774213,979	583361,337	784,469	784,554	0,085	0,003
187	7773547,228	582594,705	786,869	787,315	0,446	0,093
188	7772983,664	582571,554	759,326	760,484	1,158	1,034
189	7772910,904	582576,846	747,627	747,819	0,193	0,003
190	7773384,632	584216,040	804,585	804,148	-0,437	0,334
191	7772577,122	584584,340	755,730	755,338	-0,392	0,284
192	7771641,554	587138,104	761,016	761,227	0,211	0,005
193	7771982,019	584860,788	732,102	732,775	0,673	0,283
194	7772141,431	584566,438	735,702	735,683	-0,019	0,025
195	7772004,840	585268,247	738,191	738,939	0,748	0,369
196	7771951,261	585358,867	738,714	739,055	0,340	0,040
197	7772019,392	585212,023	736,668	738,054	1,385	1,548
198	7771836,498	585448,164	742,093	743,151	1,059	0,842
199	7771729,011	585577,810	740,441	741,491	1,051	0,828
200	7771730,995	585670,414	732,737	732,787	0,050	0,008
201	7771673,779	585565,904	739,563	743,078	3,515	11,383
202	7771550,417	585807,336	739,471	740,853	1,382	1,540
203	7771398,281	586524,689	739,717	740,629	0,913	0,595
204	7771373,807	586672,195	739,463	740,434	0,971	0,689
205	7771285,502	586888,492	739,401	740,008	0,606	0,217
206	7771189,591	587105,451	739,472	740,474	1,002	0,741
207	7771060,606	587233,443	739,571	739,349	-0,222	0,132
208	7770984,538	587301,243	739,670	739,973	0,303	0,026
209	7770868,452	587482,152	739,538	740,214	0,676	0,286
210	7770816,197	587673,645	739,337	739,600	0,264	0,015
211	7770751,043	587812,221	739,393	739,973	0,580	0,193
212	7770648,847	587888,619	738,985	739,257	0,272	0,017
213	7770583,032	587924,338	739,105	739,407	0,303	0,026
214	7772014,166	585981,953	762,096	763,134	1,038	0,805
215	7771882,933	586113,187	770,398	770,416	0,018	0,015
216	7771764,399	586358,720	774,839	775,239	0,400	0,067
217	7771667,032	586534,404	761,545	761,677	0,132	0,000
218	7771556,965	586741,838	750,056	749,540	-0,516	0,432
219	7772401,517	585486,652	742,990	743,094	0,104	0,001
220	7772352,834	585598,835	751,913	751,858	-0,055	0,038
221	7772501,001	585222,068	758,848	758,527	-0,321	0,213

222	7772583,551	585040,034	781,194	780,365	-0,829	0,941
223	7772803,684	584752,167	778,379	778,192	-0,186	0,107
224	7772928,568	584576,483	754,886	754,696	-0,190	0,110
225	7773751,953	583903,382	795,608	794,803	-0,805	0,896
226	7774027,120	583829,299	771,687	771,465	-0,222	0,132
227	7775944,339	583123,014	731,968	731,740	-0,227	0,136
228	7776132,194	583105,816	726,565	726,184	-0,382	0,273
229	7776300,204	583089,941	760,755	760,335	-0,420	0,315
230	7776489,382	583039,670	762,740	762,380	-0,360	0,251
231	7776735,445	582992,045	739,122	738,647	-0,476	0,380
232	7776895,518	582988,076	772,088	771,547	-0,541	0,465
233	7776981,508	583019,826	793,768	793,455	-0,313	0,206
234	7777107,185	583088,618	821,307	820,884	-0,423	0,318
235	7777193,175	583119,045	848,641	848,197	-0,444	0,343
236	7777252,706	583124,337	866,196	865,941	-0,255	0,157
237	7776603,153	583003,951	737,468	736,888	-0,580	0,520
238	7776638,872	583075,389	744,038	743,373	-0,665	0,649
239	7776211,569	582953,019	753,326	752,917	-0,409	0,303
240	7776193,709	582893,488	753,437	753,047	-0,390	0,282
241	7776311,449	582863,060	753,296	752,888	-0,408	0,301
242	7775847,104	583130,290	726,546	726,094	-0,453	0,352
243	7775898,698	583053,561	726,173	725,910	-0,263	0,163
244	7775978,735	582948,389	727,944	726,278	-1,666	3,266
245	7776052,818	582861,737	730,652	730,284	-0,368	0,259
246	7775755,162	583253,322	727,077	726,488	-0,589	0,533

C20 - MDT 20 m

A Tabela 28 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C20 com resolução espacial de 20 metros, com o objetivo de determinar o PEC-PCD.

Tabela 28- Síntese das análises estatísticas do MDT do cenário (C20
--	-----

Amostra	Δ H MDT 20 m
Média	-0,121
Mediana	-0,047
Moda	1,917
Erro Padrão	0,048
Desvio Padrão	0,747
Variância da amostra	0,559
Curtose	0,873
Média + 3*Desvio Padrão	2,121
Média - 3*Desvio Padrão	-2,363

Assimetria	-0,233
Intervalo	4,543
Minimo	-2,626
Máximo	1,917
Soma (Delta_Z_1m)	-29,057
Nº de amostras	240
Teste Zн (tendencia)	-1,123
Z(1-α/2) ou Z0,95	1,645
EP (PEC-PCD)	1,67
Teste Precisão (X ² z,n-1)	47,9
X²n-1, α	267,412
PEC	В
Escala	1:10.000
Erro (m)	2,50

A Figura 36 mostra a distribuição dos erros nas amostras apresentadas na Tabela 29 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C20 com resolução espacial de 20 metros.

Figura 36 – Distribuição dos erros amostrais do MDT 20m.

Tabela 29 - Memória de cálculo do PEC-PCD do MDT 20m.

FID	N (m)	L (m)	H pós (m)	H 20m (m)	H 20m - H pós	(∆H - media H)²
0	7775261,260	591239,306	955,925	957,401	-1,476	1,837
1	7773971,286	592286,328	856,359	857,248	-0,889	0,590
2	7774055,830	591020,771	907,287	907,397	-0,109	0,000
3	7774949,395	591352,515	903,177	903,239	-0,062	0,003
4	7774343,498	591216,254	889,486	889,784	-0,298	0,031
5	7774116,327	591275,785	878,006	876,606	1,400	2,313

	6	7775370,216	591861,018	944,733	946,243	-1,510	1,930
	8	7775137,448	591587,055	895,953	894,178	1,775	3,594
	9	7775083,870	591487,175	895,360	894,664	0,697	0,669
	10	7771855,286	588308,001	804,105	804,650	-0,545	0,180
	11	7771939,291	588510,408	793,898	794,469	-0,571	0,203
	12	7771825,520	588548,111	788,195	788,652	-0,457	0,113
	13	7771742,837	588347,689	785,427	786,118	-0,691	0,325
	14	7771811,629	588203,490	814,834	815,418	-0,584	0,214
	15	7771716,379	588593,752	781,902	782,116	-0,214	0,009
	16	7771783,848	588727,366	788,108	788,392	-0,284	0,026
	17	7771625,759	588379,439	768,692	769,564	-0,872	0,564
	18	7771827,504	588860,981	794,349	794,847	-0,497	0,142
	19	7771615,837	588023,573	797,738	798,622	-0,884	0,582
	20	7771724,317	588012,329	796,754	797,525	-0,771	0,423
	21	7771895,635	588402,590	799,988	800,546	-0,558	0,191
	22	7772070,260	588750,518	802,139	802,808	-0,669	0,301
	23	7771893,650	588692,971	786,816	787,349	-0,533	0,170
	24	7771969,057	588865,612	805,566	806,241	-0,675	0,307
	25	7772164,187	588809,387	819,594	820,154	-0,561	0,193
	26	7772020,650	588992,612	803,700	803,970	-0,270	0,022
	27	7772256,130	588864,289	827,539	828,346	-0,806	0,470
	28	7772105,317	589193,034	788,462	788,728	-0,267	0,021
	29	7771912,171	589021,055	786,674	787,687	-1,014	0,797
	30	7771524,556	588112,209	781,935	782,192	-0,256	0,018
	31	7774064,825	592362,705	855,539	855,893	-0,354	0,054
	32	7774555,364	592880,231	892,713	893,415	-0,702	0,337
	33	7774135,429	592198,442	840,080	841,165	-1,085	0,928
	34	7771253,295	588944,047	782,145	782,968	-0,823	0,493
	35	7770827,337	588489,910	789,204	789,624	-0,421	0,090
	36	7770738,437	588136,691	742,211	742,003	0,208	0,109
	37	7769847,869	588479,547	807,754	809,428	-1,674	2,413
	38	7769855,806	588455,205	807,658	808,432	-0,773	0,425
	39	7769855,806	588410,226	804,596	806,084	-1,488	1,868
	40	7769855,806	588314,976	799,913	800,689	-0,776	0,429
	41	7769873,269	588215,492	795,012	795,537	-0,525	0,163
	42	7768952,517	587377,291	765,051	764,606	0,444	0,320
	43	7769153,072	586974,991	758,966	759,404	-0,438	0,101
	44	7772539,600	582740,917	740,079	739,749	0,330	0,203
	45	7772427,813	582786,889	752,534	751,950	0,584	0,497
	46	7772570,688	582941,670	747,222	746,585	0,637	0,575
	47	7772342,154	582815,001	747,105	747,104	0,002	0,015
	48	7772403,670	582936,048	769,554	769,536	0,017	0,019
	49	7772370,927	582871,886	761,782	761,588	0,195	0,100
	50	7772242,935	582923,811	770,268	769,798	0,470	0,349
	51	7772320,656	582973,751	776,341	776,106	0,235	0,127
	52	7772314,703	583024,022	777,927	777,627	0,300	0,177
	53	7772312,057	583253,879	764,281	764,103	0,178	0,089
	54	7772409,292	583321,348	752,601	752,262	0,339	0,211
	55	7772496,935	583605,114	749,571	749,341	0,229	0,123
	56	7772393,086	583927,576	762,912	762,796	0,116	0,056
	57	7772300,813	583754,604	780,058	779,650	0,408	0,280
	58	7772125,526	583818,766	767,535	767,625	-0,090	0,001
-							

	59	7772105,682	583692,096	753,876	753,761	0,115	0,056
	60	7772068,025	584116,290	794,535	794,324	0,211	0,110
	61	7772229,157	584341,319	758,349	758,154	0,195	0,100
	62	7772259,319	584502,053	749,151	748,663	0,487	0,370
	63	7772002,144	584391,325	747,631	748,151	-0,520	0,159
	64	7771844,584	584208,762	798,536	798,635	-0,099	0,000
	65	7772063,659	583973,415	793,261	793,086	0,175	0,088
	66	7772255,350	583591,620	754,912	754,948	-0,036	0,007
	67	7772329,169	583431,679	733,742	733,503	0,239	0,130
	68	7772556,579	583619,402	741,214	740,631	0,583	0,495
	69	7772661,751	583232,051	739,038	738,498	0,540	0,437
	70	7772934,802	582873,275	754,800	754,383	0,417	0,289
	71	7773043,149	582989,957	750,493	750,249	0,244	0,133
	72	7773109,030	582960,588	737,845	737,888	-0,043	0,006
	73	7773186,818	583150,691	758,113	757,640	0,473	0,352
	74	7773347,553	583164,185	752,881	752,188	0,693	0,663
	75	7773520,591	583131,244	753,882	753,761	0,121	0,059
	76	7773755,541	582985,194	735,639	735,569	0,070	0,037
	77	7773323,035	583439,088	739,414	738,649	0,765	0,784
	78	7772504,580	583795,747	744,199	744,607	-0,408	0,082
	79	7772477,063	583711,080	749,810	749,646	0,165	0,082
	80	7772883,199	583542,752	748,937	748,757	0,179	0,090
	81	7773082,431	583376,064	737,943	738,340	-0,397	0,076
	82	7773232,979	583718,700	737,742	737,999	-0,257	0,018
	83	7773052,268	583587,202	756,961	756,274	0,687	0,652
	84	7772809,380	583214,668	730,112	730,141	-0,029	0,008
	85	7772975,962	583223,558	728,918	728,798	0,120	0,058
	86	7772865,260	583152,438	730,261	730,130	0,131	0,064
	87	7773178,528	583487,718	737,362	738,330	-0,968	0,718
	88	7772900,637	583453,400	733,248	733,748	-0,500	0,144
	89	7772932,412	584025,284	777,792	777,336	0,456	0,333
	90	7773214,792	584189,392	792,188	791,781	0,408	0,280
	91	7773911,618	583654,227	760,524	762,136	-1,611	2,221
	92	7773808,099	583765,022	780,854	780,595	0,259	0,145
	93	7773855,394	583733,602	776,699	777,266	-0,568	0,200
	94	7773544,177	584023,322	796,255	795,896	0,358	0,230
	95	7773921,920	581963,908	737,294	737,758	-0,464	0,117
	99	7773673,917	581781,681	734,553	733,374	1,179	1,690
	102	7774052,483	582033,141	739,538	737,860	1,679	3,239
	103	7774131,859	582019,594	744,625	745,109	-0,484	0,132
	104	7774212,213	581986,601	744,375	745,158	-0,783	0,438
	105	7776322,699	582823,347	750,068	749,922	0,146	0,071
	106	7776351,803	582869,385	752,999	752,731	0,268	0,151
	107	7776484,095	582723,864	728,023	727,358	0,665	0,618
	108	7776680,946	582750,851	732,324	731,821	0,502	0,389
	109	7776978,867	582842,926	749,302	747,385	1,917	4,152
	110	7776978,867	582842,926	749,302	747,385	1,917	4,152
	111	7776873,033	582824,406	742,973	743,064	-0,090	0,001
	112	7777097,930	582702,168	755,754	757,548	-1,795	2,801
	114	7777042,367	582788,951	753,087	752,513	0,574	0,484
	115	7776796,833	582792,126	738,754	738,746	0,007	0,017
-	116	7776569,820	582725,980	727,823	727,082	0,741	0,743

117	7776638,612	582737,622	730,417	729,808	0,608	0,532
118	7776414,774	582704,814	729,592	729,315	0,277	0,159
119	7776185,115	582768,843	732,315	731,189	1,126	1,554
120	7775793,531	583192,706	726,470	726,153	0,317	0,192
121	7773052,284	581636,096	734,245	734,642	-0,397	0,076
122	7773113,561	581759,127	728,109	728,528	-0,419	0,089
123	7773221,869	581648,429	730,593	731,179	-0,586	0,216
124	7772814,806	582164,500	756,649	756,927	-0,278	0,025
125	7772855,824	582154,102	756,523	756,909	-0,385	0,070
126	7772985,036	582013,242	743,393	743,971	-0,577	0,208
127	7772491,322	582176,755	737,111	737,552	-0,442	0,103
128	7772303,997	581732,254	762,221	763,838	-1,617	2,239
129	7772311,934	582214,855	739,407	739,491	-0,085	0,001
130	7772181.759	582530.239	751.533	751.824	-0.291	0.029
131	7772110.851	582742.436	778.389	778.226	0.164	0.081
132	7772288.122	582717.565	759.406	759.279	0.127	0.061
133	7772081 746	582837 157	789 674	789 772	-0 099	0,000
134	7772010 309	582889 544	796 644	796 231	0.413	0.285
135	7772406 602	585430 872	732 440	732 282	0 158	0.078
136	7772423 785	585282 112	741 944	741 288	0,656	0.604
137	7772504 112	585033 986	764 528	763 972	0,050	0,004
138	7772529.036	584784 589	77/ 979	775.031	-0.052	0,430
130	7772681 120	584364 710	735 567	735.848	-0,032	0,005
140	7772879 170	58/315 101	746 650	747 000	-0,201	0,020
140	7772284 651	5858/1 882	734 717	734 035	0,440	0,102
141	7772140 712	595974 426	74,717	7/6 159	0,002	0,040
142	7771907 607	586001 822	745,004	740,138	-0,293	0,030
143	7771690,097	500001,023	755,179	750,244	-1,000	0,692
144	7771680,209	506220,898	751,362	751,139	0,243	0,133
145	7771612,343	586453,468	750,849	751,678	-0,829	0,501
140	7771605,993	586619,759	743,169	743,440	-0,272	0,023
147	7771455,577	586956,309	747,055	747,726	-0,671	0,303
148	7771719,896	587219,835	761,725	762,061	-0,336	0,046
149	7771715,531	587502,807	776,121	777,568	-1,447	1,758
150	7771447,639	587682,989	761,022	762,132	-1,110	0,979
151	7771528,602	587631,395	765,151	765,359	-0,207	0,007
152	7771634,965	587556,782	//1,59/	772,738	-1,140	1,039
153	7768438,056	590429,708	790,956	791,148	-0,192	0,005
154	7768517,431	590430,502	793,965	794,104	-0,139	0,000
155	7768473,775	590606,715	771,004	770,891	0,113	0,055
156	7768267,400	590453,521	771,712	771,651	0,062	0,033
157	7768509,494	590280,483	778,819	779,875	-1,055	0,873
158	7768352,331	590164,595	772,367	772,644	-0,278	0,025
159	7769092,901	589763,750	805,929	805,906	0,023	0,021
160	7769077,238	589379,045	760,926	759,268	1,658	3,164
161	7768797,727	588658,085	764,689	764,677	0,012	0,018
162	7768312,877	588767,226	784,709	785,188	-0,478	0,128
163	7768348,596	588543,653	750,277	751,399	-1,122	1,002
164	7768668,687	587561,385	744,498	745,054	-0,556	0,189
165	7777150,860	582360,548	761,682	764,308	-2,626	6,275
166	7776972,266	582392,298	829,068	829,084	-0,016	0,011
167	7776826,745	582372,455	813,033	813,427	-0,395	0,075
168	7776584,651	582343,350	775,105	775,562	-0,457	0,113
169	7776417,963	582324,830	783,476	785,728	-2,253	4,543
-----	-------------	------------	---------	---------	--------	-------
170	7776349,171	582318,215	799,935	802,193	-2,258	4,566
171	7776309,483	582294,402	791,653	792,724	-1,071	0,903
172	7776959,037	582609,257	728,941	730,615	-1,674	2,413
173	7776603,172	582556,340	729,372	729,392	-0,020	0,010
174	7776273,765	582494,163	729,471	729,228	0,242	0,132
175	7776103,108	582545,757	729,479	730,564	-1,085	0,929
176	7775863.660	582728.320	729.098	729.219	-0.121	0.000
177	7775741,951	582815,633	729,451	729,241	0,209	0,109
178	7775461,492	582781.237	731.007	729.741	1,266	1.923
179	7774916,449	582558,986	732,992	732,180	0,813	0,872
180	7774103,516	582886,409	764,591	764,232	0,359	0,230
181	7774141,219	582969,091	762,583	761,733	0,850	0,942
182	7773884,572	582657,544	752,015	752,035	-0,019	0,010
183	7773979,823	582787,190	761,159	760,583	0,576	0,486
184	7774184.875	583147.685	777.791	777.199	0.592	0.508
185	7774163.047	583336.201	782.491	782.047	0.444	0.319
186	7774213,979	583361.337	784.469	783,756	0.713	0,696
187	7773547,228	582594,705	786.869	786,776	0.093	0.046
188	7772983 664	582571 554	759,326	759 780	-0 454	0 111
189	7772910 904	582576 846	747 627	748.002	-0.375	0.064
190	7773384 632	584216.040	804 585	804 536	0.049	0.029
100	7772577 122	584584 340	755 730	756 205	-0.475	0.125
192	7771641 554	587138 104	761 016	760,200	0,475	0.039
192	7771982 019	584860 788	732 102	732 904	-0.802	0.463
10/	77721/1 /31	584566 438	735 702	735.614	0,002	0.044
105	7772004 840	585268 247	738 101	738 553	-0.362	0,044
106	7771051 261	585358 867	738 71/	730,333	-0,302	0,038
190	7771951,201	595313,007	736,669	739,107	-0,472	1,620
197	7774926 409	505212,023	730,000	730,009	-1,421	0,765
190	7771700,490	505440,104	742,093	743,000	-0,990	0,705
199	7771729,011	585577,810	740,441	741,037	-0,596	0,220
200	7771730,995	585670,414	732,737	733,174	-0,437	0,100
201	7771673,779	585565,904	739,563	740,922	-1,359	1,533
202	7771550,417	585807,336	739,471	739,700	-0,229	0,012
203	7771398,281	586524,689	739,717	741,803	-2,087	3,863
204	7771373,807	586672,195	739,463	739,824	-0,361	0,058
205	7771285,502	586888,492	739,401	740,074	-0,672	0,304
206	7771189,591	587105,451	739,472	741,169	-1,696	2,481
207	7771060,606	587233,443	/39,5/1	739,094	0,477	0,358
208	7770984,538	587301,243	739,670	740,320	-0,650	0,280
209	7770868,452	587482,152	739,538	739,699	-0,160	0,002
210	7770816,197	587673,645	739,337	740,367	-1,030	0,827
211	7770751,043	587812,221	739,393	739,373	0,020	0,020
212	7770648,847	587888,619	738,985	740,086	-1,101	0,961
213	7770583,032	587924,338	739,105	740,151	-1,047	0,857
214	7772014,166	585981,953	762,096	763,423	-1,327	1,454
215	7771882,933	586113,187	770,398	770,312	0,087	0,043
216	7771764,399	586358,720	774,839	775,200	-0,361	0,058
217	7771667,032	586534,404	761,545	761,679	-0,133	0,000
218	7771556,965	586741,838	750,056	749,160	0,896	1,035
219	7772401,517	585486,652	742,990	742,128	0,862	0,967
220	7772352,834	585598,835	751,913	752,200	-0,287	0,027

221	7772501,001	585222,068	758,848	758,548	0,300	0,178
222	7772583,551	585040,034	781,194	780,222	0,972	1,195
223	7772803,684	584752,167	778,379	778,029	0,349	0,221
224	7772928,568	584576,483	754,886	754,626	0,261	0,146
225	7773751,953	583903,382	795,608	794,826	0,782	0,816
226	7774027,120	583829,299	771,687	771,593	0,094	0,046
227	7775944,339	583123,014	731,968	731,701	0,267	0,151
228	7776132,194	583105,816	726,565	726,854	-0,289	0,028
229	7776300,204	583089,941	760,755	760,428	0,328	0,201
230	7776489,382	583039,670	762,740	762,183	0,557	0,459
231	7776735,445	582992,045	739,122	738,927	0,195	0,100
232	7776895,518	582988,076	772,088	771,607	0,481	0,363
233	7776981,508	583019,826	793,768	793,158	0,611	0,535
234	7777107,185	583088,618	821,307	820,726	0,581	0,492
235	7777193,175	583119,045	848,641	848,169	0,472	0,352
236	7777252,706	583124,337	866,196	865,980	0,216	0,114
237	7776603,153	583003,951	737,468	737,232	0,236	0,128
238	7776638,872	583075,389	744,038	742,435	1,603	2,974
239	7776211,569	582953,019	753,326	753,007	0,319	0,193
240	7776193,709	582893,488	753,437	753,313	0,123	0,060
241	7776311,449	582863,060	753,296	753,214	0,082	0,041
242	7775847,104	583130,290	726,546	726,098	0,448	0,324
243	7775898,698	583053,561	726,173	725,786	0,387	0,258
244	7775978,735	582948,389	727,944	726,328	1,616	3,018
245	7776052,818	582861,737	730,652	731,238	-0,586	0,216
246	7775755,162	583253,322	727,077	726,146	0,931	1,106

C25 - MDT 25 m

A Tabela 30 apresenta a síntese das análises estatísticas aplicadas no MDT do cenário C25 com resolução espacial de 25 metros, com o objetivo de determinar o PEC-PCD.

Tabela 30 -	Síntese	das a	análises	estatísticas	do	MDT	do cenári	o C2
1 45014 00	Chinoboo	auo	ananooo	oolallououo	au		ao oonan	0 020

Amostra	Δ H MDT 25 m
Média	-0,153
Mediana	-0,097
Moda	0,250
Erro Padrão	0,059
Desvio Padrão	0,908
Variância da amostra	0,824
Curtose	2,030
Média + 3*Desvio Padrão	2,571
Média - 3*Desvio Padrão	-2,876
Assimetria	0,228
Intervalo	6,800

Mínimo	-3,443
Máximo	3,357
Soma	-36,614
Nº de amostras	240
Teste Z (tendência)	-1,415
Z(1-α/2) ou Z0,95	1,6449
EP (PEC-PCD)	1,670
Teste Precisão (X ² z,n-1)	70,62512086
X²n-1, α	267,412
PEC PCD	В
Escala	1:10.000

A Figura 37 mostra a distribuição dos erros nas amostras apresentadas na Tabela 31 que contém a memória de cálculo para estabelecimento do PEC-PCD do MDT do cenário C25 com resolução espacial de 25 metros.

Figura 37 – Distribuição dos erros amostrais do MDT 25m.

Tabela 31 - Memória de cálculo do PEC-PCD do MDT 25m.

FID	N (m)	E (m)	H pós (m)	H 25m	H 25m - H pós	(∆H - media H)²
0	7775261,260	591239,306	955,925	957,550	-1,626	2,170
1	7773971,286	592286,328	856,359	856,989	-0,630	0,228
2	7774055,830	591020,771	907,287	906,404	0,884	1,074
3	7774949,395	591352,515	903,177	903,904	-0,727	0,330
4	7774343,498	591216,254	889,486	889,473	0,013	0,028
5	7774116,327	591275,785	878,006	875,116	2,891	9,261
6	7775370,216	591861,018	944,733	945,254	-0,521	0,136

8	7775137,448	591587,055	895,953	893,108	2,845	8,986
9	7775083,870	591487,175	895,360	893,702	1,658	3,278
10	7771855,286	588308,001	804,105	804,942	-0,837	0,469
11	7771939,291	588510,408	793,898	794,524	-0,626	0,224
12	7771825,520	588548,111	788,195	788,570	-0,375	0,049
13	7771742,837	588347,689	785,427	786,169	-0,742	0,347
14	7771811,629	588203,490	814,834	815,342	-0,508	0,126
15	7771716,379	588593,752	781,902	782,129	-0,227	0,005
16	7771783,848	588727,366	788,108	788,590	-0,482	0,109
17	7771625,759	588379,439	768,692	769,317	-0,625	0,224
18	7771827,504	588860,981	794,349	794,258	0,092	0,060
19	7771615,837	588023,573	797,738	798,933	-1,195	1,087
20	7771724,317	588012,329	796,754	797,340	-0,587	0,188
21	7771895,635	588402,590	799,988	800,480	-0,492	0,115
22	7772070,260	588750,518	802,139	803,405	-1,266	1,240
23	7771893,650	588692,971	786,816	787,477	-0,661	0,259
24	7771969,057	588865,612	805,566	806,088	-0,522	0,137
25	7772164,187	588809,387	819,594	820,677	-1,083	0,867
26	7772020,650	588992,612	803,700	803,865	-0,166	0,000
27	7772256,130	588864,289	827,539	828,011	-0,472	0,102
28	7772105,317	589193,034	788,462	788,828	-0,366	0,046
29	7771912,171	589021,055	786,674	788,048	-1,374	1,492
30	7771524,556	588112,209	781,935	782,323	-0,388	0,055
31	7774064,825	592362,705	855,539	855,756	-0,217	0,004
32	7774555,364	592880,231	892,713	894,096	-1,383	1,514
33	7774135,429	592198,442	840,080	841,347	-1,267	1,241
34	7771253,295	588944,047	782,145	782,909	-0,764	0,374
35	7770827,337	588489,910	789,204	789,855	-0,651	0,248
36	7770738,437	588136,691	742,211	742,012	0,199	0,123
37	7769847,869	588479,547	807,754	809,639	-1,885	3,002
38	7769855,806	588455,205	807,658	808,533	-0,875	0,521
39	7769855,806	588410,226	804,596	806,098	-1,501	1,819
40	7769855,806	588314,976	799,913	800,832	-0,919	0,588
41	7769873,269	588215,492	795,012	795,268	-0,256	0,011
42	7768952,517	587377,291	765,051	764,837	0,214	0,134
43	7769153,072	586974,991	758,966	759,440	-0,474	0,103
44	7772539,600	582740,917	740,079	739,674	0,405	0,311
45	7772427,813	582786,889	752,534	752,091	0,443	0,355
46	7772570,688	582941,670	747,222	747,071	0,151	0,092
47	7772342,154	582815,001	747,105	747,155	-0,050	0,010
48	7772403,670	582936,048	769,554	769,214	0,340	0,242
49	7772370,927	582871,886	761,782	761,325	0,457	0,372
50	7772242,935	582923,811	770,268	769,755	0,513	0,443
51	7772320,656	582973,751	776,341	776,084	0,257	0,168
52	7772314,703	583024,022	777,927	777,183	0,744	0,804
53	7772312,057	583253,879	764,281	764,157	0,124	0,077
54	7772409,292	583321,348	752,601	752,235	0,365	0,268
55	7772496.935	583605,114	749,571	749,457	0,114	0,071
56	7772393,086	583927,576	762,912	763,128	-0,216	0,004
57	7772300,813	583754,604	780,058	779,683	0,375	0,278
58	7772125,526	583818,766	767,535	767,573	-0,038	0,013
59	7772105,682	583692,096	753,876	754,467	-0,590	0,192

.

60	7772068,025	584116,290	794,535	794,221	0,314	0,218
61	7772229,157	584341,319	758,349	758,397	-0,048	0,011
62	7772259,319	584502,053	749,151	748,291	0,859	1,024
63	7772002,144	584391,325	747,631	747,585	0,046	0,039
64	7771844,584	584208,762	798,536	798,350	0,186	0,115
65	7772063,659	583973,415	793,261	793,141	0,120	0,074
66	7772255,350	583591,620	754,912	754,825	0,087	0,057
67	7772329,169	583431,679	733,742	733,571	0,171	0,105
68	7772556,579	583619,402	741,214	740,798	0,416	0,324
69	7772661,751	583232,051	739,038	738,897	0,141	0,086
70	7772934,802	582873,275	754,800	754,386	0,414	0,321
71	7773043,149	582989,957	750,493	750,309	0,184	0,113
72	7773109,030	582960,588	737,845	738,520	-0,675	0,273
73	7773186,818	583150,691	758,113	757,057	1,056	1,461
74	7773347,553	583164,185	752,881	752,833	0,049	0,040
75	7773520,591	583131,244	753,882	753,562	0,320	0,223
76	7773755,541	582985,194	735,639	735,422	0,218	0,137
77	7773323,035	583439,088	739,414	738,969	0,445	0,357
78	7772504,580	583795,747	744,199	744,873	-0,674	0,272
79	7772477,063	583711,080	749,810	749,500	0,311	0,215
80	7772883,199	583542,752	748,937	749,422	-0,485	0,111
81	7773082,431	583376,064	737,943	738,296	-0,353	0,040
82	7773232,979	583718,700	737,742	738,056	-0,314	0,026
83	7773052,268	583587,202	756,961	756,409	0,551	0,496
84	7772809,380	583214,668	730,112	730,181	-0,069	0,007
85	7772975,962	583223,558	728,918	728,820	0,098	0,063
86	7772865,260	583152,438	730,261	729,327	0,934	1,181
87	7773178.528	583487.718	737.362	737.486	-0.125	0.001
88	7772900.637	583453.400	733.248	732.927	0.321	0.224
89	7772932.412	584025.284	777.792	777.331	0.462	0.377
90	7773214.792	584189.392	792,188	791.802	0.386	0.290
91	7773911.618	583654.227	760.524	761.322	-0.797	0.416
92	7773808.099	583765.022	780.854	780.624	0.231	0.147
93	7773855.394	583733.602	776.699	778,586	-1.887	3,009
94	7773544,177	584023.322	796,255	796.029	0.225	0,143
95	7773921.920	581963.908	737,294	737,829	-0.535	0.146
99	7773673 917	581781 681	734 553	733 321	1 232	1,916
102	7774052 483	582033 141	739 538	738.047	1 492	2 704
103	7774131 859	582019 594	744 625	744 875	-0.250	0.009
104	7774212 213	581986 601	744 375	745 758	-1.383	1 514
105	7776322.699	582823 347	750.068	750.086	-0.019	0.018
106	7776351 803	582869,385	752 999	752 601	0.398	0.303
107	7776484 095	582723 864	728 023	727 182	0.841	0.987
107	7776680 946	582750 851	732 324	732 016	0,307	0,307
100	7776978 867	5828/2 926	7/0 302	7/0 052	0,307	0,212
110	7776078 867	582842 026	749,302	749,052	0,250	0,162
110	7776873 033	582824 406	749,302	743,032	-0.916	0,102
110	7777007 020	582702 169	755 751	755 10/	0,550	0,502
114	7777042 267	582789 051	753 097	752 675	0,009	0,307
114	7776706 922	582702 126	738 754	7/0 02/	-1 280	1 070
110	7776560 000	582725 000	707 000	725 700	2 022	/ 779
117	7776629 612	582737 622	730 /17	720 674	0.742	0 802
117	1110000,012	JUZI JI ,UZZ	100,411	123,014	0,740	0,002

.

118	7776414,774	582704,814	729,592	729,202	0,389	0,294
119	7776185,115	582768,843	732,315	731,369	0,946	1,207
120	7775793,531	583192,706	726,470	726,890	-0,419	0,071
121	7773052,284	581636,096	734,245	734,977	-0,731	0,335
122	7773113,561	581759,127	728,109	728,516	-0,407	0,065
123	7773221.869	581648.429	730.593	730.846	-0.253	0.010
124	7772814.806	582164.500	756.649	756.689	-0.040	0.013
125	7772855.824	582154,102	756.523	756,751	-0.228	0.006
126	7772985.036	582013 242	743 393	743 935	-0 542	0 152
120	7772491 322	582176 755	737 111	737 527	-0.417	0.070
127	7772303 997	581732 254	762 221	763 898	-1 677	2 323
120	7772311 034	582214 855	730 /07	730 151	0.256	0.167
120	7772181 750	582530 230	751 533	752 306	-0.863	0,107
130	7772110 951	582742 426	779 290	777 954	-0,005	0,303
131	7772008 400	582742,430	770,309	777,004	0,000	0,473
132	7772004 740	562717,565	759,406	759,609	-0,203	0,003
133	7772081,746	582837,157	789,674	789,414	0,259	0,170
134	7772010,309	582889,544	796,644	796,001	0,643	0,633
135	7772406,602	585430,872	732,440	/31,/56	0,684	0,699
136	7772423,785	585282,112	741,944	741,486	0,459	0,373
137	7772504,112	585033,986	764,528	765,213	-0,685	0,284
138	7772529,036	584784,589	774,979	775,274	-0,295	0,020
139	7772681,129	584364,710	735,567	735,977	-0,410	0,066
140	7772879,170	584315,101	746,650	747,494	-0,844	0,478
141	7772284,651	585841,882	734,717	733,001	1,716	3,490
142	7772149,713	585874,426	745,864	746,767	-0,902	0,562
143	7771897,697	586001,823	755,179	756,496	-1,317	1,357
144	7771680,209	586220,898	751,382	752,249	-0,867	0,510
145	7771612,343	586453,468	750,849	751,533	-0,684	0,282
146	7771605,993	586619,759	743,169	743,470	-0,302	0,022
147	7771455,577	586956,309	747,055	747,855	-0,800	0,419
148	7771719,896	587219,835	761,725	762,059	-0,334	0,033
149	7771715,531	587502,807	776,121	777,765	-1,643	2,223
150	7771447,639	587682,989	761,022	762,210	-1,189	1,074
151	7771528,602	587631,395	765,151	766,229	-1,078	0,856
152	7771634,965	587556,782	771,597	772,112	-0,515	0,131
153	7768438,056	590429,708	790,956	791,128	-0,171	0,000
154	7768517,431	590430,502	793,965	793,948	0,017	0,029
155	7768473,775	590606,715	771,004	771,417	-0,412	0,068
156	7768267,400	590453,521	771,712	771,396	0,316	0,220
157	7768509,494	590280,483	778,819	779,987	-1,167	1,030
158	7768352,331	590164,595	772,367	772,843	-0,476	0,105
159	7769092,901	589763,750	805,929	806,371	-0,443	0,084
160	7769077,238	589379,045	760,926	758,703	2,223	5,643
161	7768797,727	588658,085	764,689	764,818	-0,129	0,001
162	7768312.877	588767.226	784,709	784,660	0.050	0,041
163	7768348.596	588543.653	750.277	751.525	-1,248	1,201
164	7768668.687	587561.385	744,498	745,385	-0.887	0.539
165	7777150 860	582360.548	761.682	764,186	-2.504	5.532
166	7776972 266	582392,298	829.068	828.894	0.174	0.107
167	7776826 745	582372 455	813,033	812,989	0.044	0.039
168	7776584 651	582343 350	775 105	774 543	0.563	0.511
160	7776417 963	582324 830	783 476	786 918	-3 443	10 825
103		552527,000	100,710	100,010	0,770	10,020

170 7776349,171 582314,215 799,935 801,224 -1,289 1,292 171 7776309,483 582294,402 791,653 793,098 -1,445 1,671 173 7776603,172 582566,340 729,372 731,607 -2,235 4,336 174 7776603,172 582566,340 729,372 731,607 -2,235 4,336 175 777610,3108 582456,577 729,497 730,393 -1,451 1,666 176 77775461,492 58271,237 731,007 729,180 1,827 3,917 177 777419,51 58286,409 764,591 764,437 0,153 0,994 181 777410,516 58286,7190 761,159 761,684 0,526 0,139 184 777418,4875 583147,685 777,791 777,260 0,631 0,467 187 777384,645 58594,705 786,869 765,300 0,430 0,314 187 777284,645 58147,645 759,326							
171 7776309.483 \$82294.402 791,653 793,098 -1,445 1,671 172 7776605,037 \$82609.257 728,941 731,714 -2,774 6,870 173 7776603,172 \$82563.40 729,372 731,607 -2,235 4,336 175 7776103,108 \$82545,757 729,479 730,930 -1,451 1,686 176 7775661,495 \$82161,533 729,487 0,411 0,317 177 777741,951 \$8258,986 732,992 732,985 0,007 0,026 180 7774103,516 \$82866,409 764,591 764,501 -0,153 0,094 181 7774141,219 \$82969,091 762,683 761,706 0,877 1,060 182 7774184,875 \$82147,685 777,91 777,260 0,531 0,467 183 777397,923 \$8278,133 784,469 784,060 0,409 0,316 184 7774163,047 \$8336,201 782,491 782,059 0,432 0,342 186 7774213,975 \$8336,1755 <td< td=""><td>170</td><td>7776349,171</td><td>582318,215</td><td>799,935</td><td>801,224</td><td>-1,289</td><td>1,292</td></td<>	170	7776349,171	582318,215	799,935	801,224	-1,289	1,292
172 7776059.037 \$82609.257 728.941 731.714 -2.774 6.870 173 777605.3172 \$82556.340 729.372 731.607 -2.235 4.336 174 777627.3765 \$8249.4163 729.471 728.980 0.621 0.598 175 7776103.108 \$82545.757 729.471 728.930 0.411 0.317 177 777564.92 \$82815.33 729.981 729.300 0.121 0.075 178 7774641.492 \$82556.986 732.992 732.985 0.007 0.026 180 7774105.16 \$82656.7544 752.015 753.031 -1.016 0.746 183 7777397.823 \$82147.685 777.791 777.7260 0.531 0.442 184 777418.4875 \$83147.685 777.791 777.7260 0.531 0.447 187 777280.946 \$8257.54 753.65 759.867 0.541 0.161 187 777281.646 \$8277.55 785.869 786.366 0.503 0.432 184 7772140.364 \$8336	171	7776309,483	582294,402	791,653	793,098	-1,445	1,671
173 7776603,172 582546,340 729,372 731,607 -2,235 4,336 174 7776103,108 582545,757 729,471 728,850 0,621 0,598 175 7776103,108 582545,757 729,098 728,687 0,411 0,317 177 77756103,108 582545,757 729,098 728,687 0,411 0,075 178 7775461,495 58278,1237 731,007 729,180 1,827 3,917 177 7774103,516 582865,986 732,927 73,985 0,007 0,026 180 7774104,495 582565,744 752,015 753,031 -1,016 0,746 181 777384,572 582657,154 752,015 753,031 -1,016 0,746 185 777413,979 583361,337 784,469 784,060 0,409 0,316 187 777394,823 58254,705 786,869 786,366 0,503 0,430 188 777291,932 58254,705 786,869 786,366 0,503 0,430 188 7772948,463 582	172	7776959,037	582609,257	728,941	731,714	-2,774	6,870
174 7776273,765 582494,163 729,471 728,850 0,621 0,598 175 7776103,108 582545,757 729,479 730,930 -1,451 1,866 176 7775863,660 582728,320 729,048 728,687 0,411 0,317 177 777541,951 582815,633 729,451 729,330 0,121 0,075 178 7777416,449 582568,966 732,992 0,007 0,026 180 7774141,219 582687,544 752,015 753,031 -1,016 0,746 183 777397,9823 582787,190 761,159 761,684 -0,526 0,139 184 7774148,75 58336,201 782,491 782,059 0,432 0,342 186 7772,228 58336,201 782,489 784,660 0,000 0,466 0,381 187 777384,852 582571,554 759,326 759,867 -0,541 0,151 189 777284,722 58264,734 755,730 755,990 -0,260 0,012 197 7775741,454 5871,81	173	7776603,172	582556,340	729,372	731,607	-2,235	4,336
175 7776103,108 582545,757 729,479 730,930 -1,451 1,686 176 7775863,660 582728,320 729,088 728,687 0,411 0,317 177 777541,951 582856,333 729,451 729,330 0,121 0,075 178 7775441,425 582781,237 731,007 729,180 1,827 3,917 179 7774161,449 582558,986 732,992 732,985 0,007 0,026 180 7774103,516 582869,091 762,583 761,706 0,877 1,060 181 7774143,475 582657,544 752,015 753,031 -1,016 0,746 183 7773979,823 582787,190 761,159 761,684 -0,526 0,139 184 7774163,047 58336,201 782,491 782,060 0,409 0,316 187 7773647,28 58254,705 759,867 -0,541 0,100 198 7772948,04 58257,154 759,307 755,900 -0,260 0,012 198 777199,04 582576,846	174	7776273,765	582494,163	729,471	728,850	0,621	0,598
176 7775863,660 582728,320 729,098 728,887 0,411 0,317 177 7775461,492 582781,237 731,007 729,180 1,827 3,917 178 7775461,492 582781,237 731,007 729,180 1,827 3,917 178 7774103,516 582886,409 764,591 764,437 0,153 0,094 181 777384,572 582657,544 752,015 753,031 -1,016 0,746 182 777384,572 582657,544 752,015 753,031 -1,016 0,746 185 77774163,047 583366,201 782,491 782,059 0,432 0,342 186 777421,379 583366,201 786,869 786,366 0,503 0,430 188 7772910,904 582571,554 759,326 759,867 -0,541 0,151 197 777241,431 584564,387 732,730 755,990 -0,260 0,012 192 7771982,019 584566,788 732,102	175	7776103.108	582545.757	729.479	730,930	-1.451	1.686
177 777541,951 582815,633 729,451 729,330 0,121 0,075 178 777541,951 582781,237 731,007 729,180 1,827 3,917 179 7774916,449 58256,986 732,992 732,985 0,007 0,026 180 7774103,516 58286,099 762,583 761,706 0,877 1,060 181 7774141,219 582969,091 762,583 761,706 0,877 1,060 182 777397,9823 58278,7190 761,159 761,684 -0,526 0,139 184 7774148,475 583147,685 777,77177,777,771 777,260 0,531 0,467 185 7772983,664 582547,105 768,689 786,366 0,503 0,430 186 7772983,664 582571,554 759,326 759,867 -0,541 0,151 189 777291,090 582571,854 747,627 747,463 0,164 0,100 190 7771547,722 584584,340 755,730 755,990 -0,260 0,012 197 771641,554	176	7775863.660	582728.320	729.098	728.687	0.411	0.317
17 10 10<	177	7775741.951	582815.633	729,451	729.330	0.121	0.075
110 110 <td>178</td> <td>7775461 492</td> <td>582781 237</td> <td>731.007</td> <td>729 180</td> <td>1 827</td> <td>3 917</td>	178	7775461 492	582781 237	731.007	729 180	1 827	3 917
113 114 114 113 114 114 113 114 114 114 114 114 114 114 <td>179</td> <td>7774916 449</td> <td>582558 986</td> <td>732 992</td> <td>732 985</td> <td>0.007</td> <td>0.026</td>	179	7774916 449	582558 986	732 992	732 985	0.007	0.026
100 1771203 100 100 100 100 100 181 77714141,219 562266,091 762,583 761,706 0,877 1,060 182 7773884,572 582266,091 762,583 761,706 0,637 1,060 183 7773979,823 582787,190 761,159 761,664 -0,526 0,139 184 7774163,047 583361,337 784,469 786,060 0,409 0,316 185 7774163,047 583361,337 784,469 786,366 0,503 0,430 188 7772983,664 582571,554 759,326 759,867 -0,541 0,151 189 777291,394 58256,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 777241,341 58456,438 732,102 735,212 0,489 0,412 192 7771441,431 58456,487 738,191 739,057	180	7774103 516	582886 409	764 591	764 437	0,007	0.094
101 7774141,213 302363,244 752,015 753,031 -1,016 0,746 183 7773979,823 582787,190 761,159 761,684 -0,526 0,139 184 7774184,875 583147,685 777,717 777,260 0,531 0,467 185 777413,979 583361,337 784,469 786,060 0,430 0,342 186 7772547,222 582594,705 786,869 786,366 0,503 0,430 188 7772983,664 582576,846 747,627 747,463 0,164 0,100 190 777384,632 58428,604 804,585 804,120 0,465 0,381 191 772577,122 584586,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771951,261 584586,477 738,191 739,151 -0,436 0,509 195 77771951,261 585576,844 742,033	181	7774141 210	582060,400	762 583	761 706	0,100	1,060
102 1773034,372 502:073 153,051 1,010 0,139 184 7774184,875 582787,190 761,159 761,684 -0,526 0,139 184 7774184,875 583147,685 777,791 777,260 0,531 0,467 185 7774163,047 583361,337 784,469 784,060 0,409 0,316 187 777283,664 582571,554 759,326 759,367 70,641 0,151 188 7772910,904 582571,554 759,326 759,360 -0,541 0,161 190 777384,632 584216,040 804,585 804,120 0,465 0,381 191 7772212 584584,340 755,730 755,990 -0,260 0,012 192 7771441,431 584566,438 735,702 735,212 0,489 0,412 195 777204,840 585288,247 738,111 739,151 -0,436 0,081 197 777204,840 58557,840 739,473 742,616 <	182	7773884 572	582657 544	752,005	753 031	-1.016	0.746
153 177393,023 502707,133 170,739 177,260 0,531 0,467 184 7774163,047 58336,201 782,491 782,059 0,432 0,342 186 7774163,047 58336,1337 784,469 784,060 0,409 0,316 187 7774163,047 583361,337 784,469 786,366 0,503 0,430 188 777291,090 582576,846 747,627 747,463 0,164 0,101 189 7772910,904 582576,846 747,627 747,463 0,164 0,101 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 777257,122 58458,430 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771951,261 58568,427 738,191 739,057 -0,866 0,523 0,137 194 7771951,261 58567,810	102	7772070 822	592797 100	761 150	761 694	0.526	0,740
164 1774164,075 355147,055 177,19 177,200 0,351 0,467 185 7774163,047 58336,201 782,491 782,059 0,432 0,342 186 7774213,979 583361,337 784,469 786,366 0,503 0,430 187 7773547,228 582594,705 786,869 786,366 0,503 0,430 188 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 777384,632 584216,040 804,585 804,120 0,465 0,381 191 7772577,122 58458,430 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771982,019 584586,327 738,191 739,057 -0,866 0,503 196 7771914,341 58568,867 738,714 739,151 -0,436 0,081 197 777204,849 585248,164 742,033	103	7774194 975	502107,190	701,159	701,004	-0,520	0,139
188 7774185,047 883336,201 782,491 782,053 0,432 0,342 186 7774213,979 583361,337 784,469 784,060 0,409 0,316 187 7773547,228 582594,705 786,869 786,366 0,503 0,430 188 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 7771982,019 584586,340 755,730 755,990 -0,260 0,012 192 7771482,019 584586,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 77719204,840 58528,867 738,714 739,151 -0,436 0,081 197 7771182,041 58557,810 740,441 740,388 0,052 0,249 201 7771763,9395 58567,941 739,457	104	7774164,675	563147,065	702 404	702.050	0,531	0,467
186 7774213,979 583361,337 784,469 784,060 0,409 0,316 187 7773547,228 582594,705 786,869 786,366 0,503 0,430 188 7772910,904 58257,1554 759,326 759,867 -0,541 0,151 189 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 7772577,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 58713,8104 761,016 761,030 -0,014 0,019 193 7771941,431 584566,438 735,702 735,212 0,489 0,412 194 7772141,431 58458,667 738,714 739,151 -0,436 0,081 197 7771204,840 585242,023 736,668 737,826 -1,158 1,010 198 7771730,392 58547,810 740,441	185	7774163,047	583336,201	782,491	782,059	0,432	0,342
187 777384,728 582994,705 786,869 786,366 0,503 0,430 188 7772983,664 582571,554 759,326 759,867 -0,541 0,111 189 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 7772577,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771982,019 584860,788 732,102 732,839 -0,737 0,342 194 777201,930 58568,247 738,191 739,057 -0,866 0,509 196 7771951,261 58558,867 738,714 739,151 -0,436 0,081 197 777201,9,392 585670,414 732,737 733,389 -0,652 0,249 201 7771730,958 585670,414 732,737 733,389 -0,652 0,249 201 777138,9,21	186	7774213,979	583361,337	784,469	784,060	0,409	0,316
188 7/72983,664 58257,554 759,867 -0,541 0,151 189 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 7772577,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771982,019 584860,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 777204,840 58528,247 738,191 739,057 -0,866 0,509 196 7771515,1261 585578,104 742,093 742,616 -0,523 0,137 197 777129,011 585577,810 740,441 740,388 0,053 0,042 200 7771730,985 58567,044 732,737 733,389 -0,652 0,249 201 7771673,779 58565,904	187	7773547,228	582594,705	786,869	786,366	0,503	0,430
189 7772910,904 582576,846 747,627 747,463 0,164 0,100 190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 777257,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 777192,019 584860,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 7772004,840 585268,247 738,191 739,057 -0,866 0,509 196 7771951,261 585358,667 738,714 739,151 -0,436 0,081 197 777204,849 585448,164 742,093 742,616 -0,523 0,137 198 7771730,995 58567,0414 732,737 733,389 -0,652 0,249 200 7771763,779 58565,944 739,463 740,079 -0,616 0,215 200 7771398,281	188	7772983,664	582571,554	759,326	759,867	-0,541	0,151
190 7773384,632 584216,040 804,585 804,120 0,465 0,381 191 7772577,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771982,019 584860,788 732,102 732,839 -0,737 0,342 194 777204,840 585268,247 738,191 739,057 -0,866 0,509 196 7771951,261 585358,867 738,714 739,151 -0,436 0,081 197 777204,840 585242,023 736,668 737,826 -1,158 1,010 198 7771836,498 58547,810 740,441 740,388 0,053 0,042 200 7771729,011 58557,810 740,441 740,388 0,052 0,249 201 777163,075 58565,904 739,563 740,669 -1,106 0,909 202 777139,8281 586524,689 739,471	189	7772910,904	582576,846	747,627	747,463	0,164	0,100
191 7772577,122 584584,340 755,730 755,990 -0,260 0,012 192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 7771982,019 584860,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 777204,840 585268,247 738,191 739,057 -0,436 0,081 197 7772019,392 585212,023 736,668 737,826 -1,158 1,010 198 777185,498 585448,164 742,093 742,616 -0,523 0,137 199 7771720,011 58557,810 740,441 740,388 0,053 0,042 200 7771730,995 58565,904 739,563 740,669 -1,106 0,909 202 7771550,417 58567,2195 739,463 740,074 -1,047 0,801 204 777139,8281 586524,689 739,717 <td>190</td> <td>7773384,632</td> <td>584216,040</td> <td>804,585</td> <td>804,120</td> <td>0,465</td> <td>0,381</td>	190	7773384,632	584216,040	804,585	804,120	0,465	0,381
192 7771641,554 587138,104 761,016 761,030 -0,014 0,019 193 77771982,019 584860,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 7772004,840 585268,247 738,191 739,057 -0,866 0,509 196 7771951,261 58558,867 738,714 739,151 -0,436 0,081 197 7772019,392 585212,023 736,668 737,826 -1,158 1,010 198 7771836,498 585448,164 742,093 742,616 -0,523 0,137 199 7771729,011 58557,810 740,441 740,388 0,053 0,042 200 777150,417 58567,316 739,471 740,669 -1,106 0,909 202 777153,807 586672,195 739,463 740,079 -0,616 0,215 205 7771285,502 586888,492 739,471 <td>191</td> <td>7772577,122</td> <td>584584,340</td> <td>755,730</td> <td>755,990</td> <td>-0,260</td> <td>0,012</td>	191	7772577,122	584584,340	755,730	755,990	-0,260	0,012
193 7771982,019 584860,788 732,102 732,839 -0,737 0,342 194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 7772004,840 585268,247 738,191 739,057 -0,866 0,509 196 7771951,261 58558,867 738,714 739,151 -0,436 0,081 197 7772019,392 585212,023 736,668 737,826 -1,158 1,010 198 7771836,498 585484,614 742,093 742,616 -0,523 0,137 199 7771729,011 58557,810 740,441 740,388 0,053 0,042 200 7771730,995 585670,414 732,737 733,389 -0,652 0,249 201 7771733,807 586672,195 739,463 740,669 -1,106 0,909 202 777138,807 586672,195 739,463 740,079 -0,616 0,215 205 777185,502 586888,492 739,471 <td>192</td> <td>7771641,554</td> <td>587138,104</td> <td>761,016</td> <td>761,030</td> <td>-0,014</td> <td>0,019</td>	192	7771641,554	587138,104	761,016	761,030	-0,014	0,019
194 7772141,431 584566,438 735,702 735,212 0,489 0,412 195 7772004,840 585268,247 738,191 739,057 -0,866 0,509 196 7771951,261 585358,867 738,714 739,151 -0,436 0,081 197 7772019,392 585212,023 736,668 737,826 -1,158 1,010 198 7771730,992 58577,810 740,441 740,388 0,053 0,042 200 7771730,995 58567,041 732,737 733,389 -0,652 0,249 201 7771673,779 58565,904 739,633 740,669 -1,106 0,909 202 777139,821 586524,689 739,717 740,764 -1,047 0,801 204 777133,807 586672,195 739,463 740,079 -0,616 0,215 205 7771285,502 58688,492 739,471 741,313 -1,840 2,848 209 777086,652 58730,1,243 739,677	193	7771982,019	584860,788	732,102	732,839	-0,737	0,342
1957772004,840585268,247738,191739,057-0,8660,5091967771951,261585358,867738,714739,151-0,4360,0811977772019,392585212,023736,668737,826-1,1581,0101987771836,498585448,164742,093742,616-0,5230,1371997771729,01158557,810740,441740,3880,0530,0422007771730,99558567,0414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,41758567,336739,471740,640-1,1691,033203777138,82158662,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,515587105,451739,472741,313-1,8402,848207777086,452587482,152739,537740,986-1,3161,354208777088,452587482,152739,537740,986-1,3161,354209777086,45258748,152739,337740,859-1,5221,875211777051,043587673,645739,337740,859-1,5221,875211777051,043587924,338739,105740,436-1,3321,391214777058,032587924,338739,105740,436-1,3321,391 <td>194</td> <td>7772141,431</td> <td>584566,438</td> <td>735,702</td> <td>735,212</td> <td>0,489</td> <td>0,412</td>	194	7772141,431	584566,438	735,702	735,212	0,489	0,412
1967771951,261585358,867738,714739,151-0,4360,0811977772019,392585212,023736,668737,826-1,1581,0101987771836,498585448,164742,093742,616-0,5230,1371997771729,011585577,810740,441740,3880,0530,0422007771730,995585670,414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,471739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077771060,60658723,343739,670740,986-1,3161,3542087770984,53858742,152739,538741,464-1,9263,1452107770868,452587482,152739,337740,859-1,5221,875211777051,043587812,221739,333740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,332	195	7772004,840	585268,247	738,191	739,057	-0,866	0,509
1977772019,392585212,023736,668737,826-1,1581,0101987771836,498585448,164742,093742,616-0,5230,1371997771729,011585577,810740,441740,3880,0530,0422007771730,995585670,414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771388,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077770868,452587482,152739,670740,986-1,3161,3542097770846,19758763,645739,337740,859-1,5221,8752117770816,19758763,645739,337740,859-1,5221,8752117770846,3758613,420762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771766,7032586534,404761,545760,3801,1651,7372187772401,517585486,652742,990743,226-0,2360,	196	7771951,261	585358,867	738,714	739,151	-0,436	0,081
1987771836,498585448,164742,093742,616-0,5230,1371997771729,011585577,810740,441740,3880,0530,0422007771730,9955856670,414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,417739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,848207777086,6452587482,152739,538741,464-1,9263,145210777084,538587301,243739,670740,986-1,3161,3542097770816,197587673,645739,337740,859-1,5221,875211777051,043587812,221739,393740,124-0,7310,3342127770648,84758788,619738,985739,430-0,4460,0862137770583,03258613,187770,398770,3110,0880,0582167771764,39958635,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7	197	7772019,392	585212,023	736,668	737,826	-1,158	1,010
1997771729,011585577,810740,441740,3880,0530,0422007771730,995585670,414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,848207777066,606587233,443739,571737,6671,9044,230208777084,538587301,243739,670740,986-1,3161,3542097770868,452587673,645739,337740,859-1,5221,875211777051,043587673,645739,337740,859-1,5221,8752117770648,84758788,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147771667,032586534,404761,545760,3801,1651,737218777156,965586741,838750,056749,9690,0870,0572197772401,51758548,652742,990743,226-0,2360,007<	198	7771836,498	585448,164	742,093	742,616	-0,523	0,137
2007771730,995585670,414732,737733,389-0,6520,2492017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,848207777066,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,337740,859-1,5221,875211777051,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771766,7032586534,404761,545760,3801,1651,7372187771250,805586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360	199	7771729,011	585577,810	740,441	740,388	0,053	0,042
2017771673,779585565,904739,563740,669-1,1060,9092027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077771060,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,337740,859-1,5221,875211777051,043587673,645739,337740,859-1,5221,8752117770583,032587812,221739,933740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771867,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,236	200	7771730,995	585670,414	732,737	733,389	-0,652	0,249
2027771550,417585807,336739,471740,640-1,1691,0332037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077771060,606587233,443739,571737,6671,9044,2302087770868,452587482,152739,337740,986-1,3161,3542097770868,45258763,645739,337740,859-1,5221,875211777051,043587612,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,05821677717667,032586534,404761,545760,3801,1651,7372187771250,665586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140	201	7771673,779	585565,904	739,563	740,669	-1,106	0,909
2037771398,281586524,689739,717740,764-1,0470,8012047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077771060,60658723,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,337740,859-1,5221,875211777051,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,05821677717667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,	202	7771550,417	585807,336	739,471	740,640	-1,169	1,033
2047771373,807586672,195739,463740,079-0,6160,2152057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,848207777066,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,05821677717667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	203	7771398,281	586524,689	739,717	740,764	-1,047	0,801
2057771285,502586888,492739,401739,576-0,1740,0002067771189,591587105,451739,472741,313-1,8402,8482077771060,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,05821677717667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	204	7771373,807	586672,195	739,463	740,079	-0,616	0,215
2067771189,591587105,451739,472741,313-1,8402,8482077771060,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,875211777051,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,73721877712401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	205	7771285,502	586888,492	739,401	739,576	-0,174	0,000
2077771060,606587233,443739,571737,6671,9044,2302087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	206	7771189,591	587105,451	739,472	741,313	-1,840	2,848
2087770984,538587301,243739,670740,986-1,3161,3542097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772501,001585222,068758,848758,6330,2150,135	207	7771060,606	587233,443	739,571	737,667	1,904	4,230
2097770868,452587482,152739,538741,464-1,9263,1452107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,73721877712401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	208	7770984,538	587301,243	739,670	740,986	-1,316	1,354
2107770816,197587673,645739,337740,859-1,5221,8752117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	209	7770868,452	587482,152	739,538	741,464	-1,926	3,145
2117770751,043587812,221739,393740,124-0,7310,3342127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	210	7770816,197	587673,645	739,337	740,859	-1,522	1,875
2127770648,847587888,619738,985739,430-0,4460,0862137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	211	7770751,043	587812,221	739,393	740,124	-0,731	0,334
2137770583,032587924,338739,105740,436-1,3321,3912147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,737218777156,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	212	7770648,847	587888,619	738,985	739,430	-0,446	0,086
2147772014,166585981,953762,096763,762-1,6662,2892157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	213	7770583,032	587924,338	739,105	740,436	-1,332	1,391
2157771882,933586113,187770,398770,3110,0880,0582167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771566,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	214	7772014,166	585981,953	762,096	763,762	-1,666	2,289
2167771764,399586358,720774,839775,550-0,7110,3122177771667,032586534,404761,545760,3801,1651,7372187771556,965586741,838750,056749,9690,0870,0572197772401,517585486,652742,990743,226-0,2360,0072207772352,834585598,835751,913752,027-0,1140,0022217772501,001585222,068758,848758,6330,2150,135	215	7771882,933	586113,187	770,398	770,311	0,088	0,058
217 7771667,032 586534,404 761,545 760,380 1,165 1,737 218 7771556,965 586741,838 750,056 749,969 0,087 0,057 219 7772401,517 585486,652 742,990 743,226 -0,236 0,007 220 7772352,834 585598,835 751,913 752,027 -0,114 0,002 221 7772501,001 585222,068 758,848 758,633 0,215 0,135	216	7771764.399	586358,720	774,839	775,550	-0,711	0,312
218 7771556,965 586741,838 750,056 749,969 0,087 0,057 219 7772401,517 585486,652 742,990 743,226 -0,236 0,007 220 7772352,834 585598,835 751,913 752,027 -0,114 0,002 221 7772501,001 585222,068 758,848 758,633 0,215 0,135	217	7771667.032	586534.404	761.545	760.380	1.165	1.737
219 7772401,517 585486,652 742,990 743,226 -0,236 0,007 220 7772352,834 585598,835 751,913 752,027 -0,114 0,002 221 7772501,001 585222,068 758,848 758,633 0,215 0,135	218	7771556 965	586741,838	750.056	749,969	0.087	0.057
220 7772352,834 585598,835 751,913 752,027 -0,114 0,002 221 7772501,001 585222,068 758,848 758,633 0,215 0,135	219	7772401 517	585486 652	742,990	743,226	-0.236	0.007
221 7772501,001 585222,068 758,848 758,633 0,215 0,135	220	7772352.834	585598.835	751,913	752.027	-0.114	0.002
	221	7772501.001	585222.068	758.848	758,633	0.215	0.135
			300222,000	,	. 00,000	0,210	5,100

222	7772583,551	585040,034	781,194	780,028	1,166	1,740
223	7772803,684	584752,167	778,379	778,356	0,023	0,031
224	7772928,568	584576,483	754,886	754,593	0,293	0,199
225	7773751,953	583903,382	795,608	794,781	0,827	0,959
226	7774027,120	583829,299	771,687	771,768	-0,081	0,005
227	7775944,339	583123,014	731,968	733,236	-1,268	1,244
228	7776132,194	583105,816	726,565	727,222	-0,657	0,254
229	7776300,204	583089,941	760,755	760,230	0,526	0,460
230	7776489,382	583039,670	762,740	761,768	0,971	1,263
231	7776735,445	582992,045	739,122	739,257	-0,135	0,000
232	7776895,518	582988,076	772,088	771,760	0,328	0,231
233	7776981,508	583019,826	793,768	792,824	0,944	1,202
234	7777107,185	583088,618	821,307	820,919	0,388	0,292
235	7777193,175	583119,045	848,641	848,089	0,552	0,496
236	7777252,706	583124,337	866,196	866,440	-0,244	0,008
237	7776603,153	583003,951	737,468	736,984	0,484	0,405
238	7776638,872	583075,389	744,038	740,681	3,357	12,316
239	7776211,569	582953,019	753,326	753,272	0,054	0,043
240	7776193,709	582893,488	753,437	753,175	0,262	0,171
241	7776311,449	582863,060	753,296	753,020	0,276	0,183
242	7775847,104	583130,290	726,546	726,180	0,366	0,269
243	7775898,698	583053,561	726,173	725,841	0,332	0,235
244	7775978,735	582948,389	727,944	726,081	1,863	4,064
245	7776052,818	582861,737	730,652	730,434	0,218	0,137
246	7775755 162	583253 322	727 077	726 678	0.399	0.305

ANEXO III – Resultados dos cenários de simulação

Cenário C01: Os resultados das seções representativas do cenário C01 de simulação são expressos na Tabela 32. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 38, Figura 39 e Figura 40 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	24.84	86.32	00:01	0:02	51820.45
ST-02	0.78	25.03	70.70	00:01	0:02	51820.45
ST-03	1.27	15.28	58.04	00:02	0:03	39248.57
ST-04	1.89	16.90	61.33	00:03	0:03	26372.31
ST-05	3.03	19.83	44.38	00:05	0:07	13018.30
ST-06	4.13	16.88	27.36	00:08	0:12	7684.91
ST-07	5.09	14.04	26.07	00:11	0:13	6118.99
ST-08	7.07	10.70	14.80	00:20	0:27	1960.23
ST-09	9.31	5.71	10.14	00:39	0:48	605.50
ST-10	10.80	7.85	3.89	00:53	0:56	79.46

Tabela 32 – C01 – Resultados nas seções representativas

Figura 38 – C01 - Profundidade máxima

Cenário C05: Os resultados das seções representativas do cenário C05 de simulação são expressos na Tabela 33. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 41, Figura 42 e Figura 43 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	24.37	85.63	00:01	0:02	51966.30
ST-02	0.78	25.00	72.14	00:01	0:02	51966.30
ST-03	1.27	15.42	58.05	00:02	0:03	39477.06
ST-04	1.89	16.15	61.44	00:03	0:03	26416.33
ST-05	3.03	19.83	44.89	00:05	0:07	13117.22
ST-06	4.13	16.76	27.76	00:07	0:12	7759.09
ST-07	5.09	13.54	25.64	00:11	0:13	6151.71
ST-08	7.07	10.73	14.91	00:20	0:27	2011.16
ST-09	9.31	6.08	11.13	00:39	0:47	640.92
ST-10	10.80	8.07	4.12	00:51	0:55	89.44

Tabela 33 – C05 – Resultados nas seções representativas

Figura 42 – C05 - Velocidade máxima

Figura 43 – C05 - Tempo de chegada da inundação

Cenário C10: Os resultados das seções representativas do cenário C10 de simulação são expressos na Tabela 34. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 44, Figura 45 e Figura 46 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	23.74	84.75	00:01	0:02	52020.70
ST-02	0.78	24.73	72.47	00:01	0:02	52020.70
ST-03	1.27	15.07	58.57	00:02	0:03	39765.25
ST-04	1.89	15.69	60.65	00:03	0:03	27024.41
ST-05	3.03	19.33	45.32	00:05	0:07	13321.99
ST-06	4.13	16.51	27.09	00:07	0:12	7832.82
ST-07	5.09	13.57	27.32	00:10	0:14	6205.67
ST-08	7.07	10.93	15.09	00:20	0:27	2058.20
ST-09	9.31	5.57	11.66	00:38	0:47	676.40
ST-10	10.80	8.24	4.71	00:50	0:54	94.67

Tabela 34 - C10 - Resultados nas seções representativas

Figura 44 – C10 - Profundidade máxima

Figura 45 - C10 - Velocidade máxima

Figura 46 - C10 - Tempo de chegada da inundação

Cenário C15: Os resultados das seções representativas do cenário C15 de simulação são expressos na Tabela 35. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 47, Figura 48 e Figura 49 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	24.16	83.00	00:01	0:02	51954.41
ST-02	0.78	24.91	73.84	00:01	0:02	51954.41
ST-03	1.27	15.61	59.32	00:02	0:03	40109.70
ST-04	1.89	16.68	61.32	00:03	0:03	27547.90
ST-05	3.03	20.01	49.47	00:05	0:07	13471.01
ST-06	4.13	16.42	29.37	00:07	0:12	7974.54
ST-07	5.09	12.62	25.83	00:10	0:13	6327.97
ST-08	7.07	9.75	15.05	00:20	0:27	2129.24
ST-09	9.31	6.01	11.57	00:37	0:46	723.67
ST-10	10.80	8.66	4.50	00:49	0:52	100.57

Tabela 35 – C15 – Resultados nas seções representativas

Figura 47 – C15 - Profundidade máxima

Figura 48 – C15 - Velocidade máxima

Figura 49 – C15 - Tempo de chegada da inundação

Cenário C20: Os resultados das seções representativas do cenário 5 de simulação são expressos na Tabela 36. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 50, Figura 51 e Figura 52 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	23.04	81.14	00:01	0:02	52464.42
ST-02	0.78	24.91	70.81	00:01	0:02	52464.42
ST-03	1.27	15.34	59.41	00:02	0:03	40247.00
ST-04	1.89	17.20	61.06	00:03	0:03	27605.05
ST-05	3.03	19.45	45.68	00:05	0:07	13634.66
ST-06	4.13	16.76	28.98	00:07	0:12	8064.90
ST-07	5.09	13.98	26.01	00:10	0:13	6469.42
ST-08	7.07	10.00	14.77	00:19	0:26	2208.77
ST-09	9.31	6.20	13.61	00:37	0:45	788.51
ST-10	10.80	9.01	3.69	00:47	0:58	120.15

Tabela 36 – C20 – Resultados nas seções representativas

Figura 50 – C20 - Profundidade máxima

Figura 51 – C20 - Velocidade máxima

Figura 52 – C20 – Tempo de Chegada da Inundação

Cenário C25: Os resultados das seções representativas do cenário 5 de simulação são expressos na Tabela 37. Os gráficos de profundidade, velocidade e tempo de chegada da onda são apresentados na Figura 53, Figura 54 e Figura 55 respectivamente.

Seção	Distância da Barragem (km)	Profundidade Máxima (m)	Velocidade Máxima (km/h)	Tempo de Chegada da Inundação (hh:mm)	Tempo para o Pico do Hidrograma (hh:mm)	Vazão de Pico do Hidrograma (m³/s)
ST-01	0.01	21.60	79.34	00:01	0:02	52237.59
ST-02	0.78	25.42	75.55	00:01	0:02	52237.59
ST-03	1.27	16.20	60.06	00:02	0:03	40471.10
ST-04	1.89	16.24	61.80	00:03	0:03	28360.41
ST-05	3.03	19.21	47.22	00:05	0:07	13646.78
ST-06	4.13	16.76	28.94	00:07	0:12	8065.10
ST-07	5.09	12.65	25.72	00:10	0:13	6460.65
ST-08	7.07	9.85	15.07	00:19	0:26	2234.86
ST-09	9.31	5.03	13.11	00:37	0:45	781.59
ST-10	10.80	9.03	3.33	00:47	0:58	120.14

Tabela 37 - C25 - Resultados nas seções representativas

Figura 53 – C25 - Profundidade máxima

Figura 54 – C25 - Velocidade máxima

