Id.: EN-21

UMA ABORDAGEM HISTÓRICA DOS REATORES RÁPIDOS E O DESENVOLVIMENTO DO MODELO GFR NO SÉCULO XXI

Macedo A. A. P.¹, Clarysson A. M. da Silva^{1,2}, Claubia Pereira^{1,2}

¹Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901, Brasil, Phone/Fax: 55-31-34096662 ²Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil macedo@nuclear.ufmg.br; clarysson@nuclear.ufmg.br; claubia@nuclear.ufmg.br

RESUMO

Este trabalho aborda de forma resumida o desenvolvimento histórico dos reatores rápidos, apontando para a possibilidade de utilização das tecnologias de reprocessamento não proliferantes. O alto desempenho destes sistemas em espectros mais endurecidos contribui com a manutenção e queima dos Actinídeos Menores (AM) dentro do ciclo do combustível, apontando para uma tecnologia realmente sustentável. Dentro da concepção dos reatores rápidos, destaca-se o GFR (Gas-cooled Fast Reactor), cujas possibilidades se sobrepõem aos problemas técnicos a serem enfrentados. Dentro desta perspectiva, nasce o projeto ALLEGRO de um GFR de 75 MWt programado para entrar em operação em dez anos. Juntando-se a dezenas de pesquisadores ao redor do mundo, que tem investigado e estudado este modelo, o DEN-UFMG agrega conhecimento, dando sua contribuição à pesquisa mundial. Uma proposta de um modelo GFR de 100 MWt foi ampliada a partir de um estudo sobre uma possível utilização de TRU (tranurânicos) e tório no combustível. O trabalho apresenta então alguns resultados alcançados relativos ao desempenho neutrônico de três concepções de combustíveis, (U, Pu)C, (U, TRU)C e (Th, TRU)C, avaliando a evolução de k_{inf} e a formação de nuclídeos importantes durante a queima. Também foram realizados alguns testes relativos à inserção de um absorvedor e a avaliação do coeficiente de temperatura.

Palavras-Chave: GFR, ALLEGRO, TRU, tório, reprocessamento

1. INTRODUÇÃO

Os reatores de nêutrons rápidos diferenciam-se basicamente pelo tipo de fluido refrigerante e pela ausência de um moderador de nêutrons [1, 2]. Os fluidos podem ser o chumbo ou o sódio líquidos, sais fundidos, gás carbônico ou hélio. Sua principal característica está na maior probabilidade de fissão dos isótopos fissionáveis e de actinídeos menores, podendo alcançar, do ponto de vista teórico, um rendimento que pode superar em 11% um reator térmico convencional do tipo PWR [1, 2]. A possibilidade de sua utilização também na co-produção de hidrogênio e dessalinização são características que se somam à necessidade urgente de utilização de métodos de reprocessamento não proliferantes, neste caso, o UREX + [1, 10]. Este levantamento histórico propõe-se a mostrar alguns aspectos na evolução alcançada em testes reais e simulações, no que diz respeito a novos materiais, sobretudo àqueles que, num futuro próximo, deverão ser utilizados nos reatores rápidos. Este estudo então será encerrado mostrando resultados neutrônicos alcançados no DEN-UFMG ao modelar um núcleo GFR abastecido com TRU e tório.

Terceira Semana de Engenharia Nuclear e Ciências das Radiações - SENCIR 2016 Belo Horizonte, 4 a 6 de outubro de 2016 Escola de Engenharia - Universidade Federal de Minas Gerais

2. METODOLOGIA

O trabalho foi desenvolvido tendo como base a pesquisa histórica do assunto disponível em livros e em artigos eletrônicos. Alguns dos resultados neutrônicos aqui apresentados fazem parte dos artigos que foram pesquisados. Outros, dizem respeito a resultados obtidos em uma dissertação de mestrado [10], onde o SCALE 6.0 é usado para cálculos neutrônicos em estado estacionário e durante a queima. Os dados para as seções de choque são obtidos diretamente do programa pela biblioteca V7-238. Os gráficos apresentados foram construídos pela utilização dos programas ORIGIN 7.0 e MATLAB 8.0 e com o auxílio do sistema NJOY, quando foi necessário gerar bibliotecas de seções de choque em temperaturas distintas.

3. RESULTADOS

Os modelos de reatores rápidos apresentados neste breve histórico informativo têm como principal referência àquelas apontadas em [1, 2] da lista de referências.

SFR: Apresenta alta eficiência termodinâmica e grande experiência de operação. Em contrapartida, o sódio apresenta baixo ponto de fusão (< 90°C). A reação de transmutação do ²³Na em ²⁴Na implica na necessidade de um sistema secundário. Ainda apresenta a possibilidade de aumento local na reatividade. LFR: Também apresenta alta eficiência termodinâmica e alguma experiência de operação por russos e americanos. Em contrapartida, a reação entre Pb e aço produz corrosão neste material. A alta densidade do refrigerante requer altas taxas de bombeamento e também apresenta baixo ponto de fusão (<330 °C). MSFR: Dispensa a fabricação do elemento combustível. Sua viabilidade foi demonstrada pelos americanos nos anos 1970. Os americanos demostraram esta possibilidade, os custos desta concepção, porém, são elevadíssimos.

GFR: Apesar de este modelo nunca ter sido construído, existe uma boa experiência de operação com o refrigerante gasoso He em reatores térmicos como o HTTR. Além disso, o He é um gás inerte e monofásico e possui alta eficiência térmica. Apresenta, no entanto, a necessidade de se manter o He a alta pressão e em alta vazão. Historicamente, todos os reatores rápidos refrigerados a sódio sofreram vazamento deste fluido. Mesmo assim, os modelos BN-350 e BN-600 russos foram considerados confiáveis, cada um deles apenas com um vazamento. França, Estados Unidos, Japão, Índia e Inglaterra são os outros países que possuem experiência com os reatores rápidos. Estados Unidos e Rússia construíram os modelos refrigerados a chumbo e apenas os Estados Unidos construíram um único modelo refrigerado a sais fundidos. A Tab. 1 apresenta o estado da arte.

Tab. 1. Resumo dos principais estudos sobre o GFR publicados no século XXI.

Trabalho/autor(es)/ano	Principais resultados
Core Design and Reactor	Modelaram dois núcleos GFR de 2400 e 3400 MWt, apresentando resultados
Physics of a Breed and Burn	neutrônicos, térmicos, de segurança e custos. As simulações foram feitas no
Gas-cooled Fast Reactor -	MCNPX utilizando dois combustíveis, UC e UN (carbeto e nitreto de urânio)
Peter Yarsky - MIT, 2004	[3].
GEN-IV International	Estabeleceram metodologias e estipularam metas de trabalho em grupo com o
Forum-Anual Reports 2007 e	objetivo de iniciar pesquisas teóricas e práticas nas concepções de reatores
2008	inovadores [2].
GEN-IV International	Os seis modelos de reatores de 4ª geração apresentados nos fóruns anteriores
Forum-Anual Report 2009	da GEN-IV são estabelecidos com informações mais consistentes [2].

Terceira Semana de Engenharia Nuclear e Ciências das Radiações - SENCIR 2016

Belo Horizonte, 4 a 6 de outubro de 2016 Escola de Engenharia - Universidade Federal de Minas Gerais

[
GEN-IV International Forum-Anual Report 2010	São estabelecidos estudos de segurança e custos, bem como parcerias com órgãos internacionais [2].
GEN-IV International	Os seis modelos são confirmados estabelecendo-se estudos que apontam
Forum-Anual Report 2010	características dos principais componentes dos núcleos [2].
Contributions to the neutronic	Pesquisadores da UAM (Universidad Altónoma del México) modelaram um
analysis of a gas-cooled fast	elemento combustível GFR. Foram realizados testes da evolução do
reactor/Martín del Campo et	combustível (U, Pu)C e de alguns nuclídeos. As simulações foram feitas nos
al/2010	programas MCNPX e TRIPOLI [3, 4, 5].
Fuel Depletion Modeling of a	Apresentaram basicamente os mesmos estudos dos pesquisadores mexicanos
GFR Using the SCALE6.0/ R.	utilizando o SCALE 6.0 [7].
JEČMENICA et al/2010	
GEN-IV International	Apresentaram testes relacionados às temperaturas do combustível metálico (U,
Forum-Anual Report 2011	PU)C e de saída do refrigerante para o GFR. Apontou uma possível eficiência termodinâmica de 45% para este sistema [2].
GEN-IV International	Apresentaram estudos que confirmam a necessidade de que os modelos
Forum-Anual Report 2012	utilizem métodos não proliferantes para reprocessamento. Mostra mais
	detalhes de um modelo GFR de 2400 MWt [2].
Contributions to the neutronic	Evoluiu de seu modelo de elemento combustível para um núcleo GFR de 100
analysis of a gas-cooled fast	MWt. Estabeleceu a melhor geometria para o núcleo [3, 4,5].
reactor/ Martín del Campo et	
al/2012	
GEN-IV International	Apresentaram testes reais com o revestimento SiC do combustível (U, Pu)C no
Forum-Anual Report 2013	modelo GFR-2400 Mwt [2].
1 orum 1muai Report 2013	modelo GIR 2400 WW [2].
Validation of simplified	Realizaram os mesmos testes do elemento combustível, desta vez para o
methods for fuel depletion	núcleo em uma queima mais estendida [3, 4, 5].
calculations in gas-cooled	
fast reactors/ Martín del	
Campo et al/2013	
GEN-IV International	Ampliaram testes com o composto SIC para revestimento. Foram apresentados
Forum-Anual Report 2014	resultados para exposição a altas temperaturas e para testes de porosidade no
10. mil IIImm Report 2011	composto [2].
Sensitivity Studies os	Apresentou um modelo GFR-75 MWt. Alguns resultados neutrônicos foram
ALEGRO GFR	apresentados para um núcleo abastecido com MOX e com seis elementos de
Demonstrattor/ INPh/ Lenka	testes abastecidos com (U, PU)C em um sistema "plate type fuel" [7].
D. et al/2015	()) many m L mm AL, my F. T.
GEN-IV International	Apresentaram alguns resultados da proposta ALLEGRO-75 Mwt, tais como
Forum-Anual Report 2015	características de um possível trocador de calor intermediário e um possível
2 3. min Thimmat Report 2013	sistema para purificação do He [2].
Neutronic Performance of (U,	Apresentaram testes para o elemento combustível GFR com resultados para
Pu)C Fuel of GFR using	quatro diferentes bibliotecas [8].
SCALE 6.0 /Macedo A. A. P	
et al/2015	
Neutronic Analysis of	Introduziram dois novos combustíveis (U, TRU)C e (Th, TRU)C e realizaram
Reprocessed Fuel in a Lattice	os mesmos testes do artigo anterior [9]. Os resultados com o combustível
of a GFR/Macedo A. A. P et	baseado em tório apresentaram as peculiaridades esperadas pela formação do
al/2016	²³³ U.
Proposta de um Reator	A dissertação apresentou testes neutrônicos para elemento e o núcleo GFR de
Rápido Refrigerado a Gás e	100 Mwt abastecido com os combustíveis (U, Pu)C, (U, TRU)C e (Th, TRU)C
impido itolligorado a Gas C	100 11 acaseciae com os comeastreis (0,1 a/c, (0, 1 ke/c c (11, 1 ke/c

Utilizando Transurânicos/ Macedo A. A. P/dissertação 2016	juntamente com diversos testes relacionados à performance e caracterização do núcleo [10].	
Trabalhos futuros	Apresentar os testes neutrônicos obtidos na dissertação, desta vez para o núcleo GFR. Modelar o núcleo ALLEGRO usando "pin tipe fuel". Estabelecer um modelo GFR próprio baseado nas experiências anteriores. Realizar testes relacionados à termoidráulica do modelo proposto.	

3.1 Alguns resultados do DEN-UFMG

O projeto GFR modelado é essencialmente o mesmo proposto pelos pesquisadores da UAM [3, 4, 5]. Sua geometria e composições foram desenvolvidas tendo como base as recomendações do GEN-IV [1]. As principais características para a célula, o elemento combustível e o núcleo, são apresentadas na Tab. 2. A Fig. 1 mostra a evolução de k_{inf} ao longo de 300 dias de queima. A Fig. 2 apresenta o erro percentual relativo referente a cada programa utilizado.

Tab. 2. Características e dados geométricos. Fonte: [3, 4, 5] (adaptado)

Parâmetro	Combustível	Gap	Gap Revestin		Refrigerante		
Material	(U, Pu)C	Не	SiC		Не		
Comp. (% massa)	(64/16/20)	100	(50/50)		100		
Dens. (g/cm ³)	6,04	0,01	2,889		0,01		
Geometria	cilíndrica	cilíndrica	cilíndrica		hexagonal		
Características gerais							
Altura ativa	N° de el. comb.	N° de	N° de el. ref.		de el. controle		
100 cm	78	8	4		7		

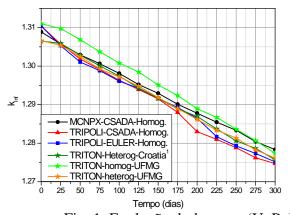


Fig. 1. Evolução de k_{inf} para (U, Pu)C.

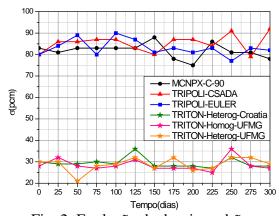


Fig. 2. Evolução de desvio padrão.

Note que o TRITON do SCALE 6.0 apresenta um erro cerca de três vezes menor que os programas MCNPX e TRIPOLI. Os tempos de processamento dos programas também são bastante diferentes, sendo que o SCALE apresenta um tempo bem inferior.

A Tab. 3 mostra os resultados para a queima do (U, Pu)C em 300 dias. Mesmo considerando as maiores diferenças, estas não são significativas e podem ser justificadas pela utilização de diferentes modelos (homogêneo/heterogêneo) e diferentes bibliotecas de seção de choque.

Tempo	UAM (México) [3, 4 5]			FEEC-DAP	DEN	- UFMG
(dias)				Croatia [6]		
	MCNPX	TRIPOLI	TRIPOLI	TRITON	TRITON	TRITON
	CSADA	CSADA	EULER	HETEROG	HOMOG	HETEROG
0	1,30882	1,31041	1,31042	1,30651	1,31101	1,30660
300	1,27833	1,27472	1,27517	1,27571	1,27737	1,27404

Tab. 3. Evolução de k_{inf} para os três combustíveis estudados.

3.2 Inserção de TRU e Tório no Combustível

Os TRU dos combustíveis (U, TRU)C e (Th, TRU)C foram obtidos do reprocessamento UREX+ com material proveniente do reator Angra-I. A Fig. 3 mostra a evolução na soma final das concentrações dos TRU.

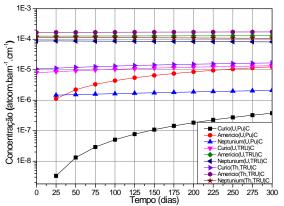
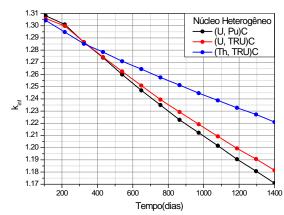
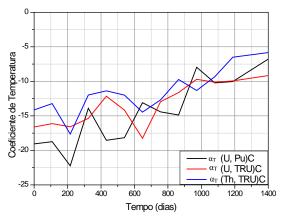


Fig. 3. TRU durante a queima.




Fig. 4. k_{inf} em 1400 dias de queima.

A Fig. 4 refere-se ao estudo feito para o núcleo em uma queima mais estendida e identifica o comportamento característico da queima de um combustível baseado em tório, evidenciando os efeitos da criação do ²³³U. Na queima estendida, os três combustíveis apresentaram comportamento esperado, como mostram todos os valores negativos do coeficiente de temperatura, como se pode observar na Fig. 5. A Fig. 6 mostra a resposta dos três combustíveis à inserção de absorvedores.

Para o teste com o absorvedor B₄C, sendo ¹⁰B (wt 90%), o combustível tradicional (U, Pu)C alcançou a subcriticalidade com pouco mais de 90 cm da altura dos elementos inserida. Já para os dois novos combustíveis, o resultado ideal somente pôde ser alcançado após acréscimo de cerca de 40% na massa do absorvedor, o que foi possível depois do aumento de 1.0 mm no raio das varetas.

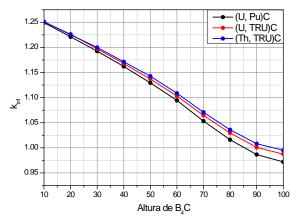


Fig. 5. Evolução do coeficiente de temperatura.

Fig. 6. k_{inf} com absorvedor B₄C.

4. CONCLUSÃO

Após apresentar um resumo do retrospecto para o modelo GFR, o trabalho apresenta alguns dos principais resultados da pesquisa realizada no DEN-UFMG. A inserção de TRU e tório em um combustível reprocessado foi avaliada a fim de se fazer comparações com os resultados já conhecidos para o combustível (U, Pu)C. Com a avaliação neutrônica proposta e para este modelo de reator, os resultados foram absolutamente compatíveis e esperados, não produzindo alterações consideradas indesejadas. Estes e outros resultados também mostraram total compatibilidade com o modelo que foi oportunamente validado. O DEN-UFMG prossegue os estudos tendo como objetivo principal para o próximo ano, propor e modelar um núcleo GFR de concepção própria.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Annual Report "Gen-Iv International Forum" (2007 to 2015).
- [2] Thomas B. Cochan, et al. "Fast Breeder Reactor Programs: History and Status" A research report of the International Panel on Fissile Materials, February, (2010).
- [3] P. Yasky, "Core design and reactor physics of a breed and burn gascooled fast reactor Massachusetts Institute of Technology". Dept. of Nuclear Engineering. MIT. (2002).
- [4] R. Reyes-Ramírez, et al. "Comparison of MCNPX-C-90 and TRIPOLI-4-D Ffor Fuel Depletion Calculations of a Gas-cooled Fast Reactor". Annals of Nuclear Energy 37, 1101-1106, (2010).
- [5] C. Martín-del-Campo et al. "Contributions to the Neutronic Analysis of a Gas-cooled Fast Reactor". Annals of Nuclear Energy 38, 1406-141,(2011).
- [6] C. Martín-del-Campo et al. "Validation of simplified Methods for Fuel Depletion Calculations in Gas-cooled Fast Reactors". Annals of Nuclear Energy 60, 218-225, (2013).
- [7] R. Ječmenica, et al. "Sensitivity Studies of ALLEGRO GFR Demonstrator" Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19, Bratislava, Slovakia, EU.

Terceira Semana de Engenharia Nuclear e Ciências das Radiações - SENCIR 2016

Belo Horizonte, 4 a 6 de outubro de 2016 Escola de Engenharia - Universidade Federal de Minas Gerais

- [8] Macedo A. A. P, et al. "Neutronic Performance of (U, Pu)C Fuel of GFR Using Scale 6.0. MRS Proceedings, Volume 1814, January 2016, imrc2015sim28-abs016.
- [9] Macedo A. A. P. et al. "Neutronic Analysis of Reprocessed Fuel in A Lattice of a GFR", International Congress on Advances in Nuclear Power Plants ICAPP 2016, 17 20 April 2016 San Francisco, California, USA (2016).
- [10] Macedo A. A. P. "Proposta de um Reator Rápido Refrigerado a Gás Utilizando Transurânicos". Dissertação de mestrado DEN-UFMG, 2016