JOURNAL OF CLINICAL ONCOLOGY

CORRESPONDENCE

Age-Associated Mortality Risk in Papillary Thyroid Cancer: Does *BRAF* Make a Real Difference?

To THE EDITOR: The study by Shen et al¹ recently published in *Journal of Clinical Oncology*, together with the accompanying editorial by Haymart,² described the results of a large multicentric series of patients with papillary thyroid carcinoma (PTC). Shen et al tested whether age at diagnosis, a well-recognized predictor of poor outcome, especially disease-specific mortality, maintains its predictive value after controlling for the most frequent genetic alteration in PTC, the *BRAF* V600E mutation. They found that the age-associated mortality risk was present only in patients with tumors harboring the *BRAF* mutation, and they claimed that these findings will have a major impact on the clinical management of patients with PTC. Considering that the overall frequency of this mutation is 45% and the disease-specific mortality is quite low in the group of patients with wild-type *BRAF*, older patients with wild-type *BRAF* tumors could be spared from aggressive treatment procedures.¹

The results are relevant and deserve a thoughtful analysis because the molecular landscape of PTC in older patients is known to be different from that in their younger counterparts,³ and this difference was not taken into account. Furthermore, PTC mortality rates in both cohorts (1.0% in wild-type *BRAF* and 3.8% in *BRAF* V600E)¹ are low, which raises the question of whether a *BRAF*-modulated age stratification per se will be valuable in clinical practice.

The editorial by Haymart² stresses that the major limitation of the study is that only BRAF mutations were analyzed despite recognition that the genetic landscape of tumors is influenced by patients' age. TERT promoter (*TERTp*) mutations frequently coexist with BRAF mutations, and both TERT and BRAF mutations are more frequent in older patients.^{1,3,4} Until now, these biomarkers were consistently associated with poorer outcome in patients with PTC. TERTp mutations were found to be a stronger predictor of diseasespecific mortality than BRAF in most published series,⁴⁻⁷ with the exception of the data previously published by the corresponding author's group.⁸ Unfortunately, when discussing their results, Shen et al¹ disregarded all of the data available to the scientific community about the relationship between TERTp mutations (with or without coexisting BRAF mutations) and mortality.⁴⁻⁷ Considering that TERTp mutations frequently coexist with BRAF mutations and may be a stronger predictor of disease-specific mortality, it may well be that the major factor driving mortality in patients with BRAF-mutated PTC is their TERTp status.

The association of age with poorer prognosis is also valid for follicular thyroid carcinoma,³ a differentiated thyroid carcinoma in which *BRAF* mutations are not present. *TERTp* mutations are also associated with older age at diagnosis and with disease-specific mortality in follicular thyroid carcinoma.⁴ These findings support

our hypothesis that *TERTp* mutations may be a major molecular mediator of the relationship between age and mortality in thyroid carcinoma.

As Shen et al¹ mention, the frequency of *BRAF* mutation in PTC is higher in older patients. Considering that the overall frequency of *BRAF* mutation in PTC is approximately 45%, the frequency can be above 50% in older patients. This contradicts the authors' assumption that a *BRAF*-based therapeutic strategy in older patients may avoid a more aggressive treatment in the majority of the patients because most of the patients may indeed have *BRAF*-mutated PTC.

At variance with the limited importance of finding a BRAF mutation, we agree that, from the clinical standpoint, the negative predictive value of *BRAF* has the most relevant added value when stratifying patients' prognosis.¹ This should be emphasized because the proposed risk assessment tools still focus on the positive predictive value of finding a *BRAF*-mutated PTC,⁹ which can be low.

We think it would have been helpful to have data on the causes of death. *BRAF* mutation has been associated with local but not distant metastases; some series even show a lower frequency of distant metastases in *BRAF*-mutated PTC,¹⁰ whereas *TERTp* mutations have consistently been associated with distant metastases.⁴ Because distant metastases are a major cause of diseasespecific mortality, knowledge regarding the cause of death would improve our understanding of the mechanisms beyond the putative *BRAF*-modulated prognostic effect of age.

In summary, we agree that the negative predictive value of *BRAF* mutation (wild-type *BRAF*) for prognostic stratification of mortality may be of value for clinicians, particularly in older patients with PTC. In addition, it should be emphasized that mortality is quite low regardless of *BRAF* genotype. Therefore, we suggest adding *TERTp* status to the prognostic equation. *TERTp* status should be included with *BRAF* in the prognostic algorithm for PTC.

Miguel Melo

Instituto de Investigação e Inovação em Saúde, University of Porto, Porto; Centro Hospitalar e Universitário de Coimbra, University of Coimbra, Coimbra, Portugal

Adriana Gaspar da Rocha

Instituto de Investigação e Inovação em Saúde, University of Porto, Porto; ACeS Baixo Mondego, Coimbra, Portugal

Gustavo Cancela e Penna

Federal University of Minas Gerais; Hospital Mater Dei, Belo Horizonte, Minas Gerais; Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Manuel Sobrinho-Simões

Instituto de Investigação e Inovação em Saúde, University of Porto, Hospital S. João, Porto, Portugal

Paula Soares

Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

REFERENCES

1. Shen X, Zhu G, Liu R, et al: Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol 36:438-445, 2018

 Haymart MR: Is BRAF V600E mutation the explanation for age-associated mortality risk in patients with papillary thyroid cancer? J Clin Oncol 36:433-434, 2018
 Haymart MR: Understanding the relationship between age and thyroid

cancer. Oncologist 14:216-221, 2009
4. Melo M, da Rocha AG, Vinagre J, et al: TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99:E754-E765, 2014

5. Kim TH, Kim YE, Ahn S, et al: TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer 23:813-823, 2016

6. Bullock M, Ren Y, O'Neill C, et al: TERT promoter mutations are a major indicator of recurrence and death due to papillary thyroid carcinomas. Clin Endocrinol (Oxf) 85:283-290, 2016 7. George JR, Henderson YC, Williams MD, et al: Association of TERT promoter mutation, but not BRAF mutation, with increased mortality in PTC. J Clin Endocrinol Metab 100:E1550-E1559, 2015

8. Liu R, Bishop J, Zhu G, et al: Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: Genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol 10.1001/jamaoncol.2016.3288 [epub ahead of print on September 1, 2016]

9. Haugen BR, Alexander EK, Bible KC, et al: 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26:1-133, 2016

10. Sancisi V, Nicoli D, Ragazzi M, et al: BRAFV600E mutation does not mean distant metastasis in thyroid papillary carcinomas. J Clin Endocrinol Metab 97: E1745-E1749, 2012

DOI: https://doi.org/10.1200/JCO.2018.77.8571; published at jco.org on March 23, 2018.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Age-Associated Mortality Risk in Papillary Thyroid Cancer: Does BRAF Make a Real Difference?

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Miguel Melo

Consulting or Advisory Role: Bial, Genzyme, Shire, Boehringer Ingelheim **Speakers' Bureau:** Bial, Boehringer Ingelheim, Eli Lilly, Sanofi, AstraZeneca

Adriana Gaspar da Rocha No relationship to disclose

Gustavo Cancela e Penna No relationship to disclose

Manuel Sobrinho-Simões

Consulting or Advisory Role: Eisai, Diaxonhit

Paula Soares

Patents, Royalties, Other Intellectual Property: Patent pending for Method for the Detection of the Mutations -124 C>T and -146 C>T in the Gene HTERT