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Resumo

No desenvolvimento de software moderno, espera-se que desenvolvedores forneçam testes
adequados para cobrir suas alterações de código. No entanto, contribuições nem sempre
incluem bons testes. Dessa forma, os revisores podem solicitar melhoria de testes nas
contribuições. Na prática, não está claro quais informações estão disponíveis para orientar
os colaboradores na implementação dos métodos de testes solicitados durante a revisão
de código. Portanto, entender melhor as práticas de revisão de testes seria importante
para orientar tanto os colaboradores quanto os revisores. Nesta dissertação, propomos
dois estudos. Primeiro, fornecemos um estudo empírico para avaliar as revisões de testes
no GitHub. Encontramos 11.836 avaliações de teste em 5.421 projetos de código aberto,
sugerindo que essa é uma prática comum. Também detectamos oito amplas categorias
de recomendações em revisões de testes: escopo do teste, suporte a ferramentas, cenários
de teste, objetivo/propósito, refatorações, más práticas, fixtures e miscellaneous. Por fim,
descobrimos que as revisões de testes com mais recomendações são mais propensas a
serem resolvidas. Em nosso segundo estudo, propomos uma ferramenta para avaliar a
qualidade de métodos de testes individuais por meio de testes de mutação. Esta ferramenta
estende uma framework de testes de mutação estado-da-arte para analisar métodos de
teste e relatar resultados de mutação a nível de método. Finalmente, com base em nossos
resultados, discutimos implicações para pesquisadores e profissionais.

Palavras-chave: Teste de Software, Revisão de código, Mineração de Repositórios de
Software, Manutenção de Software, Teste de Mutação, Qualidade de Software.



Abstract

In modern software development, developers are expected to provide proper tests to cover
their code changes. However, code contributions are not always attached to good tests.
This way, reviewers may request test changes to the contributions. In practice, it is not
clear what information is available to guide contributors in implementing the requested
test methods during the code review. Therefore, better understanding test review prac-
tices would be important to guide both contributors and reviewers. In this dissertation,
we propose two studies. First, we provide an empirical study to assess test reviews on
GitHub. We find 11,836 test reviews in 5,421 open-source projects, suggesting that this
is a common practice. We also detect eight broad categories of recommendations in test
reviews: test scope, tool support, test scenarios, goal/purpose, refactoring, bad practices,
fixtures, and miscellaneous. Lastly, we find that test reviews with more recommendations
are more likely to be solved. In our second study, we propose a tool to assess the quality of
individual test methods by relying on mutation testing. This tool extends a state-of-the-
art mutation testing framework to analyze test methods and report mutation results at
the method level. Finally, based on our results, we discussed implications for researchers
and practitioners.

Keywords: Software testing, Code Review, Software repository mining, Software main-
tenance, Mutation Testing, Code quality.
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Chapter 1

Introduction

1.1 Motivation

In modern software development, developers are expected to provide proper tests
to cover their code changes, like new features and bug fixes [1–3]. Some projects re-
quire tests and system-under-test (SUT) changes to be in the same commit,1 others are
more relaxed and just specify test-related goals.2 Those are two different approaches to
addressing the same concern: ensuring the reviewability of a contribution. Reviewabil-
ity is a desired contribution’s quality, especially on open source projects where external
contributions are frequent. Thus, higher is the relevance of contributions contextualiza-
tion [4–7]. The reason is that many projects adopt code review as an essential practice
to ensure contribution quality, code familiarity, and style conformance. Thus, an easy-to-
review contribution prevents change evaluation latency and speeds up the development
of a software project [8–11].

However, code contributions are not always attached to good tests. This way,
reviewers may request test changes to the contributions. For instance, Figure 1.1 shows a
code review in project matplotlib,3 whose reviewer asked for a specific test improvement.
Detecting uncovered lines in code contributions involves the commitment of the reviewers
and even code execution. Fortunately, there are some tools that provide useful information
for reviewers, including code coverage reports, and consequently, make the reviewing
process easier. These tools are possible due to CI/CD workflows automatically running
tests, static analysis tools, and code coverage reporters checks to ensure that the tests are
provided or that they have a certain level of coverage [11–14].

In practice, it is not clear what information is available to guide contributors in
implementing the requested test methods during the code review. On the one hand, all
required information should be provided to the contributor by the reviewer who asked for
such tests. On the other hand, some contributors may also get upset with vague, albeit

1For example, groupon/assertive ether/etherpad-lite, and bamthomas/aioimaplib
2solidusio/solidus ansible-collections/community.general, and cnrancher/octopus
3matplotlib/matplotlib#12431

https://github.com/groupon/assertive/blob/main/CONTRIBUTING.md#commits--commit-messages
https://github.com/ether/etherpad-lite/blob/develop/CONTRIBUTING.md#pull-requests
https://github.com/bamthomas/aioimaplib/blob/master/CONTRIBUTING.md
https://github.com/solidusio/solidus/blob/master/CONTRIBUTING.md#opening-pull-requests
https://github.com/ansible-collections/community.general/blob/main/CONTRIBUTING.md#creating-new-modules-or-plugins
https://github.com/cnrancher/octopus/blob/master/CONTRIBUTING.md#creating-pull-requests
https://github.com/matplotlib/matplotlib/pull/12431#discussion_r223432060
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Figure 1.1: Mandatory request for test addition in code review

excessive, test reviews: “Most of them already have some tests or are pretty well exercised
(...) So unless you have a specific test case in mind, I won’t add any.”4 Therefore, better
understanding test review practices would be important to guide both contributors and
reviewers when discussing the test changes to be implemented.

1.2 Proposed Work

In this dissertation, we propose an empirical study to assess test reviews on GitHub.
Specifically, we focus on test reviews that the reviewers ask the contributors to add or
change tests. We rely on the GHTorrent [15] dataset and analyze 11,836 test reviews. We
also manually analyze a sample 324 test reviews to better understand their content. To
support this study, we propose four research questions:

• RQ1 (overview): How frequently do reviewers ask contributors for tests?
In this research question, we search for test reviews in the GHTorrent in which the
reviewer asks for test addition or modification. We find 11,836 test reviews in 5,421
open-source projects, suggesting that this is a common practice.

• RQ2 (test requests): What do reviewers ask contributors for? We assess
the reviewers’ request content and identify two major categories. We find that add

4iTowns/itowns#792

https://github.com/iTowns/itowns/pull/792#issuecomment-403723151
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test is prevalent with 83.7%, while change existing test, only represents 16.3% of
the collected test reviews. In addition, we find sub-categories, including fix test,
refactor test, and improve test.

• RQ3 (request recommendations): Which recommendations are provided
in test requests? We manually analyzed the reviewers’ request to assess their rec-
ommendations. We find seven broad categories of recommendations: test scope, tool
support, test scenarios, goal/purpose, refactoring, bad practices, fixtures, and miscel-
laneous. Those broad categories are composed of 36 specific recommendations that
the contributors should focus to improve their tests, such as e2e test, parameterized
test, test double, edge case, setup, to name a few.

• RQ4 (test responses): How are the test reviews solved by contributors?
Finally, we explore the contributors’ response to assess the solved and unsolved test
reviews. Overall, we find that test reviews are likely to be solved. We find that
contributors solve test fixes and refactoring more frequently than other changes.
Moreover, reviews with more recommendations are more likely to be solved.

Overall, our results show that tests may change during test review to accommodate
the feedback of the community. Frequently, this may occur after a long discussion in the
test review process. After all, it is not clear how good are the implemented test methods,
thus, we are left unsure about their final quality.

To shed some light on this direction, we propose a tool to assess the quality of
individual test methods by relying on mutation testing. This tool extends a state-of-
the-art mutation testing framework [16] to analyze test methods and report mutation
results at the method level. We assess 18,321 test methods provided by five popular
open-source projects: RxJava, OkHttp, Retrofit, ZXing, and Apache Commons Lang.
We then propose research questions to assess test method quality:

• RQ5 (test quality): What are the code and evolutionary characteristics of
high-quality test methods? In this question, we rank test methods by mutation
score and extract the top-100 test methods comprising the best test methods group
and the bottom-100 to build the worst test methods group. We compute seven
metrics for each group and find no major difference between them.

• RQ6 (test smells): What test smells are prevalent in high-quality test
methods? In this final question, we detect the prevalent test smells in each group
from the previous RQ, i.e., best and worst. We find the worst test methods are
overconcentrated on critical test smells, while the best group is likely to contain test
smells related to maintainability.
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1.3 Contributions

The contributions of this research are sixfold:

• We provide empirical evidence that test is an essential part of a contribution to
open-source projects and reviewers request for test addition in case they perceive
insufficient code coverage.

• We provide a set of 36 recommendations extracted from test requests, each thor-
oughly discussed and demonstrated with several real-world examples.

• We propose a tool to assess mutation testing for test methods individually.

• We provide a dataset [17] of 11,836 test reviews from 5,421 open-source projects, of
which 373 were manually evaluated, categorized, and linked to their solving patch
if applicable. This can be used to build and improve existing tools for automatic
linkage [18–20].

• We provide a dataset [21] of 15,970 test methods from five popular open-source
projects with 5 dynamic quality metrics, 34 static quality metrics, and 7 evolution
metrics each.

• We discuss implications for practitioners and researchers working on software test-
ing, and implications for reviewers and contributors working on test review.

1.4 Publication

This master dissertation produced the following publication, and, therefore, it
contains its material:

• Victor Veloso, Andre Hora. Characterizing High-Quality Test Methods: A First
Empirical Study. In 19th IEEE/ACM International Conference on Mining Software
Repositories (MSR), pages 1-5, 2022.
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1.5 Outline of the Dissertation

The remaining of this dissertation is organized as follows:

• Chapter 2 presents the related work and explains the related fundamental concepts.
Then, we present Modern Code Review, its particularities, and associated tooling
and techniques. Next, we introduce the test review concept, the main concept this
dissertation is built upon, and exhibit some real-world examples of its usage. Finally,
we characterize mutation testing, a powerful test quality measurement technique,
and demonstrate some of its limitations.

• Chapter 3 describes our empirical study, in which we assess code reviews taking
place on the GitHub platform that are indexed by the GHTorrent dataset. First,
we detail the study design and four research questions. Next, we reveal the results.
Lastly, we present discussion, implications, and threats to validity.

• Chapter 4 introduces the tool we designed to measure the quality of test methods
individually. We detail the design of our technique and present its advantages
through an example. Then, we proceed to the study design of an exploratory study
focused on showing how this technique relates to many other static-analysis metrics.
Next, we present the results of our two extra research questions. Finally, we discuss
the results, implications, and threats to validity.

• Chapter 5 concludes this master dissertation by covering the overview of our find-
ings, the main contributions, and the intended future work.
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Chapter 2

Background and Related Work

This chapter provides the background for this dissertation. First, in Section 2.1, we
introduce some aspects of code review. Second, in Section 2.2, we discuss how code
review evolved to Modern Code Review. Next, in Section 2.3, we present test review and
examples from GitHub. Finally, in Section 2.4, we introduce mutation testing, which is
one of the most thorough approaches to measure test quality.

2.1 Code Review in a Nutshell

Software development is a collaborative task and, as such, it involves code famil-
iarity, level of agreement, team effectiveness [22], design and style conformance [23–29],
and contribution quality assurance [30–36]. In this context, code review is a practice used
by many companies [37–40] and communities [7, 35, 36, 41, 42] to promote all or some of
those goals. It includes two roles [43, 44]: the contributor and the reviewer, also called
integrator by some authors [45]. The contributor, who is the author of the code being
reviewed, answers the review questions and fixes the identified issues. The reviewer iden-
tifies whether the contributed code contains bugs, design problems, mismatched style, or
bad quality. Next, the reviewer can reject, accept, or even conditionally accept a contri-
bution, requesting changes on faulty fragments of code. Traditionally, code review was
based on email exchange [46, 47], then on specialized software. Afterwards, the code re-
view practice evolved to Modern Code Review [48], following the fast-pacing and dynamic
flow of modern software development.
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2.2 Modern Code Review

By definition, Modern Code Review combines four characteristics: informal, asyn-
chronous, tool-based, and frequent [48, 49]. The adoption of informality replaces inspec-
tion’s inconvenience by lack of traceability, which can be further mitigated by introducing
specialized tooling that assists reviewers [49]. Being asynchronous, Modern Code Review
allows reviewers to prioritize the contributions with which they are more familiarized
and more interested, thus increasing review productivity. Tools also help to deal with
the asynchronous aspects of the Modern Code Review process, by assisting developers to
explore contributions and follow a structured review flow. For instance, Google has its
own modern code review tool, called CRITIQUE, that supports a five-step flow similar to
those usually found in tool-based reviews: creating, previewing, commenting, addressing
feedback, and approving [37]. Modern Code Review is frequent, which means it is fast,
continuous, and “often has more similarities with pair programming than with inspec-
tion” [49]. Besides, it is commonly advised to have multiple reviewers for each contribu-
tion [33, 34]. In those cases, the final acceptance is conditioned upon the consensus of
all assigned reviewers. In addition, some projects set up bots [50, 51] to act as reviewers,
judging whether the contribution should be accepted, by running the test suite [11–14,
52] and static analysis [53, 54].

As evidenced by the literature [55, 56], most projects hosted on GitHub adopt the
Pull-based development model. This model brings communication to a higher level of
contribution granularity, thus it enables visualizing the contribution’s big picture [56]. In
this context, studies investigated pull requests and their interested parties’ expectations
and perspectives, and found analogies to other tool-based code reviews [45, 57]. The pull-
based development model is also known as a Modern Code Review practice that takes
place on GitHub repositories, specifically, in their pull requests section [37]. Currently,
GitHub supports four types of comments: line comments, review comments, issue com-
ments, and commit comments. The first two are specific to pull requests because they are
pinned to a line change of the contribution. While line comment is the simplest, review
comments are tied to the code review verdict of one reviewer. For instance, a review com-
ment can be either associated with an acceptance, a rejection, or a conditional acceptance
(i.e., a request for change). Commit comment, as the name suggests, belongs to a single
commit in the commit history. Issue comment is, despite the name, supported by both
issues and pull requests.

Figure 2.1 presents an example of Modern Code Review from an open-source
project hosted on GitHub.1 The specific pull request has two reviewers (benlesh and

1ReactiveX/rxjs#4115

https://github.com/ReactiveX/rxjs/pull/4115
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cartant) and three bots (AppVeyor, Travis CI, and coveralls). Given the project’s guide-
lines, a pull request may require a consensus between all reviewers and bots. That means
the reviewers must be satisfied as well as the contribution’s tests must pass on Windows,
pass on Linux, and at least maintain the code coverage rate.

Figure 2.1: Code review in RxJS’ pull request #4115

Next, Figure 2.2a presents the reviewers’ verdict and Figure 2.2b displays the de-
tails of checks made by bots for the merge commit of that pull request. Lastly, Figure 2.2c
shows an example of a coverage report posted by a bot.

(a) Reviewers verdict (Pull request accepted)

(b) Bots’ checks report (All checks passed)

(c) Coveralls bot’s post about code coverage of the pull request

Figure 2.2: Reviewers verdict, checks, and bot’s post
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2.3 Test Review

(a) Test review to cover specific cases

(b) Vague test review

Figure 2.3: Test reviews of different specificity levels

Code review can target either production code, test code, or both. At Google, code
review introduction was explained by three benefits: “checking the consistency of style
and design; ensuring adequate tests; and improving security.” [37] Indeed, that perceived
relationship between code review and test code emerges as a research line [58]. The
more automated tests become ubiquitous, the more compelling the ability to distinguish
general code review and test-specific code review, especially in research. Therefore, we
call hereafter code reviews targeting test code as test reviews.

A test review may address uncovered code of different granularities or even not
mention any SUT. Next, we compare two examples of test reviews that are opposites in
their specificity. The first example,2 in Figure 2.3a, shows a test review whose reviewer
pinned a change in line 30 of the update.go file, enumerated two inputs, asked whether

2edgexfoundry/device-sdk-go#51

https://github.com/edgexfoundry/device-sdk-go/pull/51#discussion_r217372727
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(a) Context from a previous discussion

(b) Context is the pinned line of code

Figure 2.4: Test reviews with different context sources

they are properly handled by the production code, and requested the contributor to add
test cases in the test suite to exercise such scenarios. In contrast, Figure 2.3b shows an
example3 of a vague test review, in which the reviewer pinned the first line of an YAML
file and requested for test addition, but mentioned neither the input nor the SUT.

Furthermore, test reviews may have different context sources or even a combina-
tion of multiple sources (i.e., the line and name of the pinned file, previous discussions,
other issues/pull requests/commits, names of code structures, and code comments). The
context plays an important role in one’s ability (or inability) to understand what is being
requested, hence sudden context can lead to confusion [59–61]. For example, Figure 2.4a
shows a test review whose discussion is self-explanatory, whereas it still has links to exter-
nal resources. On the other hand, the example of Figure 2.4b depends on the pinned file
line information to fully understand it. Fortunately, GitHub’s user interface allows con-
tributors to peek at the file’s content around the pinned line and it solves the challenges
that context-dependency imposes.

Finally, the example of Figure 2.5 shows a test review that is motivated by a
change in the SUT. In this specific case, the reviewer is concerned about the referenced
change being major since it breaks the existing behavior. Then, the reviewer suggests the

3demisto/content#2753

https://github.com/demisto/content/pull/2753#discussion_r245480723
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Figure 2.5: Test review about API breaking change

implementation of a test for this case, so the test will detect when the change is applied.

2.4 Mutation Testing

Our proposed tool to assess test method quality relies on mutation testing. There-
fore, we provide here an overview of this technique to facilitate understanding.

The mutation testing technique assesses test effectiveness in four major steps (illus-
trated in Figure 2.6). First, the project test suite is executed and the results are stored as
the expected output. Then, a mutation testing engine (e.g., PIT [16]) parses the code and
applies mutation operators on code structures generating a set of mutants. The mutants
are separately tested by the test suite and the results form the obtained output. Lastly,
each obtained output is compared to the expected output. A mutant is killed when at least
one of the test results differs between both sets, i.e., when at least one of the test methods
run on the mutants failed, meaning they properly detected the code mutations. Finally,
a mutation score is computed: higher scores mean the test suite is better in catching real
bugs [62].
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Figure 2.6: Traditional mutation testing approach

2.4.1 Mutation score computation

The mutation score is defined as the ratio of killed mutants and the number of
generated mutants (which includes the killed, survived, and uncovered sets). A mutant is
killed in three scenarios: failure, error, or time-out. A failure happens when the test fails,
i.e., an assertion detected the modification. An error occurs when an exception is raised.
Lastly, a time-out happens when the test execution takes considerably longer, possibly
leading to an infinite loop. Survived happens when the test passes, i.e., no assertion
detected the modification. Uncovered mutations cannot be killed, because no test run
reached them, hence PIT skips their execution.

Figure 2.7 exemplifies the execution of mutation testing based on three mutation
operators. The target system has a production class (SUT) with two methods, sum() and
triangle(). It also has nine test methods: three cover sum() and six cover triangle().
For simplicity, we do not show the code of the test methods, but their asserts (column
“Assertion”). The four generated mutants are annotated in the SUT source code and
detailed in the boxes. For example, Mutation 1 replaces the “+” (sum) operator with
“-” (subtraction). Also, for each test method, Figure 2.7 shows its related mutants, the
obtained result, and the status of the mutant. At last, the mutation score for the target
system is 100% because testSum1() kills mutants 1 and 2, while testTriangle1() kills
mutants 3 and 4.
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SUT TM TM Assertion Covered Obtained StatusMethod Name Score Mutants Result

sum

testSum1 100% assertEquals(sum(4,5),9) (1) -1 killed
(2) 0 killed

testSum2 100% assertEquals(sum(6,-5),1) (1) 11 killed
(2) 0 killed

testSum3 100% assertEquals(sum(-2,-4),-6) (1) 2 killed
(2) 0 killed

triangle

testTriangle1 100% assertEquals(triangle(1,2,2),“Is”) (3) “Eq” killed
(4) null killed

testTriangle2 50% assertEquals(triangle(1,2,3),“Sc”) (3) “Sc” survived
(4) null killed

testTriangle3 100% assertEquals(triangle(1,1,1),“Eq”) (3) “Is” killed
(4) null killed

testTriangle4 50% assertNotEquals(triangle(1,2,2),“Eq”) (3) “Eq” killed
(4) null survived

testTriangle5 0% assertNotEquals(triangle(1,2,3),“Eq”) (3) “Sc” survived
(4) null survived

testTriangle6 0% assertNotEquals(triangle(1,1,1),“Sc”) (3) “Is” survived
(4) null survived

Test Suite Mutation Score: 100%

Figure 2.7: Score computation example in mutation testing inspired by [62] (“TM”: Test
Method)

2.4.2 Limitation of Test Suite Mutation Testing

Although test suite mutation testing is ideal for gathering the overall test quality in
a system, it has three limitations: (1) the overall system mutation score overshadows the
quality of individual test methods; (2) the quality of a contribution (e.g., a pull request
with code and tests) can be unnoticed in a large system because its score may be unaffected
by small code changes (due to existing tests outnumbering the contributed tests); (3)
existing test methods may kill mutants within a contribution and hinder assessing the
quality of the contributed tests. For instance, in the previous example, testTriangle5()
and testTriangle6() kill no mutant, suggesting they are the most fragile contributed
test methods. However, the system score is unaffected because their mutants are killed
by other tests. Thus, the 100% mutation score neglects the quality difference between the
test methods, from the mutation analysis perspective.

2.5 Related Work

2.5.1 Code Review

Spadini et al. [58] assessed the particularities of code reviews targeting automated
test code rather than production source code. The authors found no association between
future defects and the type of code (i.e., production or test). Furthermore, they found
reviews are more likely to discuss production code than test code when both are present.
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However, test-only code reviews have more comments and reviewers. Also, the most
discussed topics during reviews are path coverage (especially corner cases), testing prac-
tices, complexity, maintainability, and readability of tests. Also, the authors classified the
comments in five out of eight categories from prior studies [48] and further extracted finer-
grained information for each. Despite the three missing categories, the others (i.e., code
improvements, understanding, social communication, defect finding, and knowledge trans-
fer) were similarly frequent. In this study, we find requests for change in existing tests
whose sub-categories partially intersects those outcomes, e.g., refactor test and improve
test relate to code improvements, and fix test relates to defect finding.

Spadini et al. [58] also interviewed practitioners to study whether tests should be
reviewed first and the results were further expanded in another study [63]. Four argu-
ments about reviewing tests before production code were extracted from the interviewees’
responses from the first study: two in favor (i.e., “understand the API first” and “check
SUT does only what is tested for”) and two against (i.e., “tests are usually very bad” and
“prior understanding of what should be tested is faster”) [58]. The second study involved
an experiment to assess the influences of the review order on the review effectiveness.
The results demonstrated no statistical difference between test-first and production-first
review effectiveness. However, they found that test-first reviews led to more bugs found in
test code and fewer maintainability issues in production code. The authors conclude some
practitioners see tests as less important than production, thus they have limited time to
spend reviewing tests [58, 63]. Also, tests are harder to review than production code be-
cause of their lower quality. Nevertheless, developers perceive Test-Driven Code Review
“helps teams being more testing-oriented, hence improving the overall test quality” [63].

The definition of Modern Code Review is threefold [48]: informal, tool-based,
and regularly practiced. Bacchelli and Bird inspected Modern Code Review comments of
sixteen product teams at Microsoft and surveyed 165 managers and 873 programmers [48].
They found practitioners’ motivations and expectations for reviewing code did not match
its actual outcomes. Although finding defects was the leading motivation to review code,
it was only the fourth most common comment subject (behind social communication,
understanding, and code improvements). Furthermore, the authors present challenges to
“understand the reason of a change” as the main reason for that difference.

Wen et al. [64] studied the changes of code review over time in Dell EMC and
OpenStack, which are respectively a big proprietary organization and a solid open-source
community. The authors created a model using LDA to identify discussion topics, grouped
the topics into seven high-level groups, and analyzed the prevalence of each group in terms
of both the overall community maturity and the individual experience of developers. They
found both projects present similar trends over time and reviewers tend to stabilize in
some topics according to their communities’ needs.

Sadowski et al. [37] presented a case study of the Modern Code Review practices
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adopted at Google. They qualitatively and quantitatively analyzed data from several dis-
tinct sources (i.e. Interviews, surveys, and logging history) and identified five key themes
during code reviews at Google: Education, maintaining norms, gatekeeping, accident
prevention, and tracking history. Also, the authors found review themes depend on the
relationship between the author and the reviewer. The paper expands on prior knowledge
regarding how Modern Code Review speeds up feedback and requires fewer reviewers, as
evidenced by Google taking significantly less time (4 hours vs. 14.7 hours [65]) and only
involving half the amount of reviewers on average (1 vs. 2s [65]).

McIntosh et al. [66] analyzed three open-source projects (ITK, VTK, Qt) that
adopt Gerrit as a code review tool and have many reviewed patches. The analysis sug-
gested that, for some open-source projects, low review coverage, no discussion, and lacking
subject matter experts contribute to a higher defect-proneness. Nevertheless, the authors
did not find a consistent relationship between post-release defects and discussion length
throughout the studied projects. In this study, we assess code review discussions’ content
and measured how information richness contributes to a pull request acceptance rate.

Studies suggest Pull-Based Development is the next trend in the software industry
due to the increase in popularity of platforms supporting that development model [45,
57]. Gousios et al. searched pull requests on the GHTorrent dataset and assessed both the
integrator’s and contributor’s perspectives. They observed most integrators (80%) use pull
requests for code review, use the web interface to integrate patches without losing commit
metadata, and inspect code quality, code style, project fit, testing, and documentation
(in this order). In this study, we further assess one of these aspects, testing, which
is also the main mechanism applied by contributors to ensure the quality of their own
contribution [57]. Whereas the integrators examine quality in terms of style and design
conformance, code quality, and test coverage. While CI’s adoption is substantial (75%),
dedicated software quality tools are rarely adopted. The authors also found integrators
and contributors share social challenges, e.g., responsiveness and reaching consensus.

Ebert et al. [67] analyzed 499 questions in Android’s code reviews from Gerrit and
classified them into five communicative intentions types, of which request for action was
the prevalent, followed by ask for clarification of the reviewer’s understanding. Com-
municative intention and lack of rationale, context, documentation, familiarity (with the
code), and tests are reasons for confusion in code review and their outcomes are delays,
blind approval, confidence loss, and contribution abandonment [61]. In this study, we
assess unsolved test requests, which highlight other aspects of contribution abandonment
by its author. Nonetheless, Alami et al. found open-source communities embrace rejection
as part of the contribution review process [7]. Lastly, beyond code review, an experiment
showed that task granularity assists novice developers in building complete solutions us-
ing TDD [68]. Our results support that finding is expandable to requests within a code
review discussion.
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2.5.2 Mutation Testing

We recall that in our second study we propose a tool that relies on mutation testing
to measure the quality of the finest grained unit in testing, the test method. Furthermore,
measuring test suite effectiveness through mutation testing is a largely studied topic with
well-defined benefits and constraints [69]. Addressing those points, Jia and Harman [69]
summarize 390 studies in a public repository. On the other hand, Grano et al. [70] found
that researchers and practitioners perceive existing metrics assist in detecting low-quality
test suites, but do not guarantee the high quality of a test suite [70].. Catolino et al. [71]
find assertion density correlation with developer’s experience and class-related factors.

Test smells are associated with several factors in software development, for exam-
ple, code smells [72], change-proneness, defect-proneness [73], and post-release defects [74].
Despite the richness of the test smell research topic, practitioners do not perceive test
smells as actual problems [72, 74], 90% of test smells are never fixed, and fixing takes, on
average, 100 days [72].

Hilton et al. assess the impact of finer granularity reports on some test coverage
limitations. They describe how non-code changes impact test coverage and how finer
granularity reports lead to better understanding of the quality of a specific change [75].
Despite being considerably cheaper than mutation testing, test coverage still has chal-
lenges when adopted in large-scale projects [76]. Challenges aggravated by the monorepo
settings at Facebook, where test prioritization usage reduced infrastructure overhead [76].

2.6 Final Remarks

In this chapter, we presented key concepts related to this dissertation. Specifically,
we detailed the concepts of code review, Modern Code Review, test review, and mutation
testing. Finally, we present work related to the major themes of this dissertation, involving
test reviews and mutation testing.
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Chapter 3

How Developers Review Tests on
GitHub

In this chapter, we present the main study of this dissertation, which evaluates how
developers review tests on GitHub. This chapter is organized as follows: Section 3.1
details the study design, Section 3.2 reveals the results, Section 3.3 features discussions
and implications, and Section 3.4 discusses this study’s threats to validity.

3.1 Study Design

3.1.1 Collecting Test Reviews

We aim to study relevant software projects and test reviews on GitHub. For this
purpose, we rely on the GHTorrent [15] dataset to collect projects and their respective test
reviews. First, we need to search for pull requests with evidence of test reviews. Hence, we
aim to find pull requests that include sentences like “could you please add tests” and their
corresponding discussions. For example, Figure 3.1 shows a test review for the contribu-
tion from pull request #155 of project theforeman/hammer-cli on GitHub.1 The reviewer
tstrachota pinned line 33 of file utils.rb and asked for test addition to the contribution
acceptance. The contributor mbacovsky replied positively, stating he implemented a test
covering the function located at that specific changed line of code.

1github.com/theforeman/hammer-cli/pull/155

https://github.com/theforeman/hammer-cli/pull/155#discussion_r21525021


3.1. Study Design 32

Figure 3.1: Request for tests covering a specific function

To find test reviews, we query the GHTorrent dataset for projects with pull requests
with the following regular expression: can|could|please|should|would|consider, followed
by a word related to an addition add|adding, and ending with the word test. We find
11,836 candidate test reviews in 5,421 projects. Figure 3.2a presents the distribution of
the number of stars, forks, issues, and pull requests for those projects. On the median,
the selected projects have 151 stars, 61 forks, 132 issues, and 417 pull requests. Fig-
ure 3.2b presents the distribution of the number of followers for both test contributors
and reviewers. On the median, the contributors have 15 followers and the reviewers have
17 followers

(a) Projects
(b) Reviewers and contribu-
tors

Figure 3.2: Overview of projects’, contributors’, and reviewers’ social metrics
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3.1.2 Manual Evaluation of the Test Reviews

In the previous section, we found 11,836 candidate test reviews. Next, we describe
our process to assess and evaluate those test reviews.

Figure 3.3 presents an overview of our filtering steps. First, we start with 11,836
candidate test reviews, which are explored in RQ1. Second, we apply random sampling
with a 95% confidence level and 5% confidence interval, resulting in a sample of 373
test reviews with 324 (86.9%) true positives, which we further explore in RQ2 and RQ3.
Finally, we filter out the unsolved requests, assessing the remaining 252 test reviews in
RQ4. In the following subsections, we detail each step.

Figure 3.3: Overview of the study design

Query Validation

To create and validate our query, we set a fair precision goal of 85%, meaning that at
least 4/5 out of the examined test reviews should be valid ones. Figure 3.4 summarizes
this process, which includes five steps (from A to E). Next, we detail each step.

(A) Given the current version of the search query, we execute it in the Google Cloud
Big Query in the GHTorrent latest public dataset.2 (B) We apply random sampling with a
95% confidence level and 5% confidence interval. (C) We carefully manually evaluate each
sample set and compute its precision in detecting true test reviews. (D) If the obtained

2https://twitter.com/ghtorrent/status/1222529377629605889

https://twitter.com/ghtorrent/status/1222529377629605889


3.1. Study Design 34

precision does not satisfy our goal (i.e., 85%), we search for new patterns to improve our
search query. (E) Finally, we improve our query by incorporating the patterns in it. This
process was repeated five times until we end up with a reasonable precision of 86.9%.

Figure 3.4: Query Validation Steps

Request/Response Classification

We represent the classification step in Figure 3.6. First, we collect 324 out of 373 true
positive test reviews from the validation dataset. We classify the test reviews into two
categories regarding their request: add test or change existing test. Figure 3.5a shows an
example of the category add test, in which there is a request to add three specific cases.
Figure 3.5b presents an example of change existing test, in which there is a request to
move the unit test to another file.
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(a) Add Test (Edge Cases: -Inf, Inf, and NaN)

(b) Change Existing Test (Move Method Refac-
toring)

Figure 3.5: Examples of test review

To better understand the feedback provided in the test reviews, we manually assess
each test request looking for testing recommendations provided by the reviewers. For
example, a reviewer may suggest adding a mock to isolate the test or a cache to improve
its performance. In Figure 3.5a, for instance, the test review is suggesting to cover an
edge case.

Finally, we verify whether the test review was solved or unsolved. Solved means
that the requested test was implemented and unsolved means that that the test review
was rejected or ignored. For this purpose, we manually inspect the test reviewers to find
the test code and the corresponding system-under-test (SUT). We find that 252 out of
324 (77.7%) test reviews were solved, while 72 out of 324 were unsolved (22.2%).
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Figure 3.6: Discussion’s content analysis and classification steps

3.1.3 Research Questions

RQ1: Test Review Extension

To better understand the extension of test reviews on GitHub, in this first research ques-
tion, we explore the 11,836 test reviews described in Section 3.1.1. Specifically, we assess
their frequency per project, the prevalent programming languages, and the project popu-
larity. Rationale: We aim to discover to what extent test reviews are performed in the
GitHub ecosystem.

RQ2: Test Request Types

In this second research question, we assess the reviewer’s request in the test review.
Specifically, we explore what are the types of test requests in the 324 test reviews described
in Section 3.1.2. In this process, we find two types of test requests: add test and change
existing test. Add test represents cases in which the reviewers ask for the implementation
of non-existent tests. Change existing test includes cases in which existing tests should
either be refactored, fixed, or improved. Rationale: We aim to find what are the common
limitations of the tests present in the process of test review. For example, are there more
requests to add or change tests? What types of changes are more common?
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RQ3: Test Request Recommendations

In this research question, we continue to assess the reviewer’s request in the test review.
Here, we focus on exploring what specifically the reviewers suggest to the contributors
so that they can improve their tests. For simplicity, we call those suggestions test rec-
ommendations. Here, we also rely on the 324 test reviews described in Section 3.1.2.
To analyze the test requests qualitatively, we apply thematic analysis [77] on each test
request. The analysis seeks to identify and record themes in textual documents, using
the following steps: (1) initial reading of the test requests, (2) generating a first code for
each test request, (3) searching for themes among the proposed codes, (4) reviewing the
themes to find opportunities for merging, and (5) defining and naming the final themes.
The first three steps were carried out by the first author of this dissertation, while steps 4
and 5 were developed by the consensus of the two authors through several meetings and
discussions. Rationale: We aim to find what reviewers commonly suggest to improve the
tests in test reviews. This information is important to elaborate on the usual limitations
of the tests in test reviews as well as the usual recommendations of reviewers.

RQ4: Test Responses

Finally, in our last research question, we study the contributors’ response to a test request.
Specifically, we assess whether the request is solved or unsolved. We rely on the 252 solved
and 70 unsolved described in Section 3.1.2. Rationale: We aim to explore what requests
are easier and harder to solve.

3.2 Results

3.2.1 RQ1: How frequently do reviewers ask contributors for
tests?

We find 11,836 test reviews in 5,421 GitHub repositories. Figure 3.7 presents the
number of test reviews per programming language. Here, we filter out programming
languages with less than 300 test reviews. The most common language is Python, which
contains 2,187 test reviews. Next, we have Java and JavaScript with 1,674 and 1,644
cases, respectively. The other six programming languages are Go (1,304 test reviews),
TypeScript (737), C++ (717), C# (624), Ruby (601), and PHP (356). Notice that ranking
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does not reflect the popularity of such languages on GitHub. For instance, JavaScript is
the most popular programming language on GitHub, while we find JavaScript is the third
language most discussed in test reviews. Therefore, there may be some social features
impacting how likely a community address test code during code reviews.

Figure 3.7: Distribution of test reviews per programming language

Table 3.1 summarizes the top-10 projects with the majority of the test reviews.
Those are relevant projects, with thousands of stars and pull requests (PRs). Pandas is the
top-1, with 132 test reviews (1.1%). Next, we have Roslyn and Kubernetes, with 120 and
114 respectively. The top-10 comprises several important projects, such as ElasticSearch
(111), mypy (73), and Presto (57), and represents 7.2% of the entire dataset. In addition,
we add the total of test reviews for the top-100 (2,784 or 23.5%), top-1000 (6,812 or
57.6%), and for the whole dataset (11,836).

Summary: Test reviews are indeed performed on popular programming languages and
projects. We find 11,836 test reviews in 5,421 open-source repositories.
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Table 3.1: Top repositories

Repository Language Stars PRs Test reviews

pandas-dev/pandas Python 31K 23K 132
dotnet/roslyn C# 15K 29K 120
kubernetes/kubernetes Go 82K 66K 114
elastic/elasticsearch Java 57K 51K 111
dotnet/corefx C# 18K 25K 108
python/mypy Python 11K 5K 73
prestodb/presto Java 12K 12K 57
ampproject/amphtml JS 15K 23K 52
envoyproxy/envoy C++ 18K 12K 47
edx/edx-platform Python 6K 30K 43

Top-10 - - - 857
Top-100 - - - 2,784
Top-1000 - - - 6,812
Total - - - 11,836

3.2.2 RQ2: What do reviewers ask contributors for?

In this research question, we start to analyze the content of the test reviews. In
our manual analysis, we find two types of test reviews: (1) with request to add tests and
(2) with request to change existing tests. Table 3.2 summarizes the frequency of each test
request. We detect nine categories of test requests: six related to add test (272, 83.7%)
and three related to change existing test (53, 16.3%).

Table 3.2: Test request classes, their categories, and frequencies

Category Classes Frequency

Add Test 272 (83.7%)
Cover a case 140
Unspecified SUT 47
Cover a method 43
Cover a class 17
Cover a statement 13
Cover a branch 12

Change Existing Test 53 (16.3%)
Refactor test 20
Improve test 20
Fix test 13
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The six add test categories are based on the SUT granularity, as follows:

• Statement is the finest grained and is a single line in the source code.

• Branch is coarser than a statement and is a code block that belongs to a loop or
conditional.

• Method is even coarser, i.e., it may contain one or more branches and statements.

• Class is the coarsest grained SUT.

• Case is a special classification for requests specifying the test case’s input or setting.

• Unspecified contains all added tests without an explicit SUT.

Likewise, we study three change existing test categories, as follows:

• Refactor test requests present test changes without affecting its observable behavior.

• Improve test requests are opinionated and ask for changes on correct but poorly
designed test code.

• Fix test requests objectively target well-known bad practices revision or minor mis-
takes correction.

Next, we explore the number of recommendations provided by the reviewers on
each request. We recall that the recommendations are further explored in RQ3.

In Figure 3.8, we present the distribution of recommendations for add test. The
number of recommendations ranges from 0 to 1, on the first quartile, and from 1 to
2, on the third quartile. This shows that recommendations are more frequent on case,
unspecified, and statement than on method, class, and branch. Moreover, on the median,
all add test categories have one recommendation, except branch which has 0.5.

Lastly, Figure 3.9 presents the distribution of recommendations for change existing
test. Overall, this distribution is more homogeneous than the add test. For instance, all
three categories have approximately two as the third quartile, one as the median, and one
as the first quartile.

Summary: Test reviews contains requests to add tests and change existing tests. We
find that both contains recommendations for guide developers. Requests to add test
frequently present distinct level of SUT granularity, from branch to class.
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Figure 3.8: Distribution of recommendations in add tests

Figure 3.9: Distribution of recommendations in change existing tests

3.2.3 RQ3: Which recommendations are frequently found in
test requests?

In this research question, we manually analyze the reviewers’ request to assess
their recommendations. As presented in Table 3.3, we find seven broad categories of
recommendations: test scope, tool support, test scenarios, goal/purpose, refactoring, bad
practices, fixtures, and miscellaneous. Those broad categories are composed of 36 specific
recommendations that the contributors should focus to improve their tests. Next, we
describe each broad category with real examples.
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Table 3.3: Recommendations within a test request, their categories, and frequencies

Category Recommendations Description #

Test Scope 81
Unit Tests a single unit 42
End-to-end The test crosses all system’s layers 31
Integration Tests the integration between components 8

Tool Support 39
Parameterized test Test reused for multiple cases 16
Test double Relies on mocks/stubs/spies/fakes 12
Async Targets asynchronous design challenges 4
Threading Concerns multi-threading/thread-safety/delays 4
Cache Tests cache structures’ behaviour 3

Test Scenarios 118
Specific snippet Specify test code fragment 40
Edge case Uncommon case requiring special handling 26
Expected exception Expects SUT to throw an exception 25
Negative case Verify unexpected or false outputs 12
Positive case Relies on positive assertions 8
Corner case Tests edges of input’s equivalence partitions 4
Compilation check Tests cases that only exercises static checks 3

Goal/Purpose 13
Reproduce issue Guarantees the solved issue does not regress 5
Prevent regression Acknowledge regression concerns 4
Prevent inconsistency Detects broken contracts/naming conventions 4

Refactoring 26
Increase testability Simplify SUT’s for testing 6
Rename test Replace test case’s name or description 6
Improve assert message Add/polish assertion’s explanation parameter 4
Move test Reposition a test case within a test suite 4
Extract member Extract method or field for reuse purpose 3
Merge test Brings code from multiple test cases together 3

Bad Practices 15
Unneeded test Internal/deprecated/unneeded API testing 7
Generic test Tests should be more specific and stricter 5
Empty test Delete or populate empty tests 3

Fixture 27
Setup Informs required pre-conditions 20
External resource Involves external files or databases 7

Misc. 51
Filepath Informs a path for the test case 20
Type checking Type support in dynamically-typed source code 9
Archetype test Example test provided for inspiration 8
Event test Triggers or listens to events 5
Dependency Asks for dependency or environment changes 4
Modifier Involves annotation or access modifier changes 3
Increase readability Facilitate comprehension of the test code 2

Test Scope (25%)

Test scope represents the three layers in the test pyramid: unit, integration, and end-to-
end tests). The prevailing recommendation is related to unit test, with 42 occurrences.
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For example, a reviewer requested a unit test in BaGet’s repository at pull request #162
states: “Also, please add a unit test in FileStorageServiceTests.cs” (BaGet#162).
The coarsest grained test scope, end-to-end, comes afterward with 36 occurrences. Due
to different project settings and software architecture, the concept of end-to-end may
vary from project to project. Indeed, in Mymove’s repository, there is a test review (my-
move#199) whose reviewer reinforced the importance of keeping the test scope consistent:
“This test no longer tests the award queue ‘end to end...’ We should either rename it or
add that functionality to this test.” End-to-end tests may also be called Karma tests by
the JavaScript (and TypeScript) community, as seen at oppia#5724: “Probably should
add karma tests to check this.” Surprisingly, integration test is the least requested test
scope by a wide margin, and its frequency adds up to eight.

Tool Support (12%)

Tool support represents suggestions of popular technologies to be used in the test im-
plementation. Test frameworks provide many features to support test development with
enhanced isolation and reusability. The most commented one is the parameterized test
with 16 occurrences, like the one we find at runtimes-common#210: “Perhaps you can
add an additional parameter to your test cases, shoulderror and you can try to test
some of the error cases for your code as well.”. The next one is test double, e.g., mocks,
stubs, spies, and fakes, which appears 12 times. An example of a test request with test
double recommendation is: “can we add a test with spies, for each of these branches, to
ensure it’s called both once, and in the proper order?” (found at gutenberg#6231). Then,
two categories, async and threading, have the same frequency: four times, each. Their
frequency is not the only thing they have in common, both techniques are lightweight
alternatives to multi-processing and offer challenges to be faced during testing. For in-
stance, at react-component-variations#15 the reviewer’s concern refers to improper use of
async in production, while at synapsePythonClient#661 the reviewer emphasizes possible
differences in infrastructure between test and production environments that may lead to
challenges with parallelism. Lastly, cache is the least frequently mentioned tool support
with only three occurrences.

Test Scenarios (36.4%)

The second most frequent category is test scenarios and it is the category with most recom-
mendations (seven). Here, reviewers ask contributors to focus on specific scenarios when
creating their tests. The most frequent, specific snippet, is also the most specific scenario
as it involves test requests containing code snippet like “expect(page.current_path).to
eq(organization.user_admin_path)”, which is found at caseflow#9288. The next one
is edge case, which is normally a specific scenario the developers did not consider yet.

http://github.com/loic-sharma/BaGet/pull/162#discussion_r239554587
http://github.com/transcom/mymove/pull/199#discussion_r172382971
http://github.com/transcom/mymove/pull/199#discussion_r172382971
http://github.com/oppia/oppia/pull/5724#discussion_r232436754
http://github.com/GoogleCloudPlatform/runtimes-common/pull/210#discussion_r124132706
http://github.com/WordPress/gutenberg/pull/6231#discussion_r182289835
http://github.com/airbnb/react-component-variations/pull/15#discussion_r259206124
http://github.com/Sage-Bionetworks/synapsePythonClient/pull/661#discussion_r255676084
http://github.com/department-of-veterans-affairs/caseflow/pull/9288#discussion_r255144933
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It can be either specified like at stitch-android-sdk#90 or be a general demand like
at Python#794 in which the reviewer said: “Also, you may consider to add a few more
test cases, like edge cases.” And the latter, expected exception, tests throw statements to
evaluate whether production code handles expected failures. It is commonly addressed by
test developers in open-source projects [78, 79] and we find two examples of test requests
with this recommendation in the manageiq-api project: #313 and #245. Among the least
frequent test scenarios, there are two representing opposite assertion types negative case,
with 12 mentions, and positive case, with 8 mentions, that were named after studies in the
literature [80, 81]; corner case, that occurs four times and is actually a common strategy
to reduce the number of tests; and finally, the weakest and most infrequent (with three
occurrences) is the compilation check.

Goal/Purpose (4%)

We also find recommendations in which reviewers make it clear their goal or purpose. The
primary externalized motivation for a test request is reproduce issue. Although reproduce
issue and prevent regression are common testing goals [82, 83], reviewers seldom explicitly
mention them (respectively, 5 and 4). “Great, can you add some test for the bug you fixed?
thanks.” ng-zorro-antd#2136 and “LGTM, can you add this test case I wrote to reproduce
the issue?” (interop#133) are examples of requests to reproduce issue. Furthermore,
reviewers explicitly ask tests to prevent inconsistency as often as they do so to prevent
regression (four times), and sometimes both goals are identified: “Since this is a primary
key for joining across data sets, you could add a consistency test. Should be easy, and
would catch breakage of this in future.” (gocd#468).

Refactoring (8%)

Refactoring comprises test-related refactoring. One of the most frequently requested refac-
torings targets the SUT instead of the test code itself, occurs six times in our validation
set, and aims to increase the SUT’s testability. For example, at fusor#1223 the reviewer
asked to expose some methods by setting them up as static (by prefixing self. to their
definition’s name) and extracting an utility class with them: “I would’ve put all of this
logic in a utility class fusor/server/app/lib/utils/fusor Seems like it could be gen-
erally useful in other places if need be. And it would be easy to add a unit test around
it, and makes the deployment_controller smaller.” Another refactoring as frequent as
increase testability is rename test, that is a testing variation of Fowler’s rename method
refactoring. The same applies to move test, extract member, and merge test, which happen
4, 3, and 3 times respectively. Lastly, we identify improve assert message as a test-specific
refactoring targeting readability that occurs four times in our validation set.

http://github.com/mongodb/stitch-android-sdk/pull/90#discussion_r249853441
http://github.com/TheAlgorithms/Python/pull/794#discussion_r283092729
http://github.com/ManageIQ/manageiq-api/pull/313#discussion_r169094507
http://github.com/ManageIQ/manageiq-api/pull/245#discussion_r157089845
http://github.com/NG-ZORRO/ng-zorro-antd/pull/2136#discussion_r217999295
https://github.com/auvsi-suas/interop/pull/133#discussion_r67451311
http://github.com/gocd/gocd/pull/468/files#r17470969
http://github.com/fusor/fusor/pull/1223#discussion_r78250000
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Bad Practices (4.6%)

Bad Practices include recommendations advising against bad test smells, such as test-
ing internal/deprecated/unneeded API and badly written tests. Test reviewers revealed
concerns about unneeded tests, such as testing internal, deprecated, or trivial API. For
instance, at refined-github#1255, when the reviewer asked about the motivation for such
fine-grained methods, the contributor answered: “Someone might need to use it,” and
the reviewer rebutted: “They’ll add it if they’ll need it. Currently two of these new is
aren’t tested. It can just be renamed (or you can add the tests).” Moreover, generic tests
represent one-third of the mentioned bad practices in test requests and 1.5% of all the rec-
ommendations occurrences. An example of generic test was committed at odoo#25047:
“Also, I would add more assert in this test, because it may easily pass successfully even
though there’s nothing that has been tested (...). That way, you have more confidence that
the data are correctly configured.” Besides, empty tests is the least discussed bad practice
(20% of the bad practices and 0.92% of all recommendations).

Fixture (8.4%)

Fixture involves solely fixture located warnings. The setup fixture recommendation is con-
siderably more frequent than external resource. Among its 20 occurrences, we emphasize
a case (pertax-frontend#220) in which the reviewer suggested extracting a common local
variable as a field initialization at setup. On the other hand, external resource happens
seven times (e.g., centraldogma-go#9) and it is associated with the file system usage
(e.g., file generation, file validation, and database usage).

Misc. (15.7%)

The frequency of the remaining recommendations varies a lot (from two to twenty),
whereas there are three leading ones: Twenty test requests include a filepath, e.g., support-
frontend#366 in which the reviewer asked “Can you please add test for this case in
bundlesLandingReducersTest.js?” Nine test requests, such as pandas#23262, explic-
itly verify for type support in dynamically typed languages. Other eight mention exam-
ples of tests the contributor should use for inspiration, we call them archetype tests. One
example, whose reviewer asked for a test based on IndexShardTestCase, is found at elas-
ticsearch#24858. At last, four less frequent recommendations are: event test, dependency,
modifier, and increase readability.

http://github.com/sindresorhus/refined-github/pull/1255#discussion_r181666286
https://github.com/odoo/odoo/pull/25047#discussion_r192740513
http://github.com/hmrc/pertax-frontend/pull/220#discussion_r235402310
https://github.com/line/centraldogma-go/pull/9#discussion_r238551687
http://github.com/guardian/support-frontend/pull/366#discussion_r151080863
http://github.com/guardian/support-frontend/pull/366#discussion_r151080863
http://github.com/pandas-dev/pandas/pull/23262#discussion_r234423188
http://github.com/elastic/elasticsearch/pull/24858#discussion_r119034064
http://github.com/elastic/elasticsearch/pull/24858#discussion_r119034064
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Summary: We find seven broad categories of recommendations: test scope, tool sup-
port, test scenarios, goal/purpose, refactoring, bad practices, fixtures, and miscellaneous.
Those broad categories are composed of 36 specific recommendations that the contrib-
utors should focus to improve their tests. The most frequent specific recommendations
are: unit test, specific snippet, end-to-end test, edge case, and expected exception.

3.2.4 RQ4: How are the test reviews solved by contributors?

Table 3.4 presents that solved test reviews are rather frequent, especially those
not involving any kind of doubts (related to the request or the implementation). When
responding to a test review, a contributor, i.e., the pull request author, might implement
the requested test, ask for help, reject the request, or ignore/abandon it. We group those
responses based on whether the contributor solved the request, and assess the frequency
of both solved and unsolved cases.

Table 3.4: Contributor’s feedback, their categories, and frequencies

Category Classes Frequency

Solved 252
Solved without doubts 223
Solved with discussion 29

Unsolved 72

In addition, we compare those frequencies taking into account the different test
request categories, i.e., add test and change existing test. Figure 3.10 illustrates the
prevalence of solved cases and presents in ascending order the request categories most
frequently solved. The least solved add test requests have classes as their SUT (55% of
the cases are unsolved). Second, we have the improve existing tests which are unsolved in
42% of the cases. Next, we find cover a method, cover a branch, unspecified SUT, cover
a statement, and cover a case ranging from 63% to 81% solved cases respectively. Lastly,
requests for refactoring are the second most frequently solved change existing test (92%)
and fix is completely solved (100%).
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Figure 3.10: Solved ratio per request category (“c”: change existing tests; “a”: add test)

Finally, we assess the relationship between the number of recommendations in a
request and the presence of a solving response. In Figure 3.11, we see that 75% of the
unsolved requests have at most one recommendation and at least 25% have no recom-
mendations. Furthermore, we find that 75% of the solved requests have at least one
recommendation and 25% have more than two recommendations. Nevertheless, solved
and unsolved test reviews have one recommendation on the median. Moreover, we ap-
ply both the Mann-Whitney test and the Cohen’s d effect-size and we find a statistical
difference between both groups and a low effect-size (-0.28).

Figure 3.11: Distribution of recommendations among unsolved (left) and solved (right)
test reviews
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Summary: Overall, we find that test reviews are likely to be solved. We find that con-
tributors solve test fixes and refactoring more frequently than other changes. Moreover,
reviews with more recommendations are more likely to be solved.

3.3 Discussion and Implications

Novel empirical data on test review. In RQ1, we find that test reviews are indeed
performed on popular programming languages and projects. Overall, we detect 11,836 test
reviews in 5,421 open-source repositories. In RQ2, we detect that test reviews contains
requests to add tests and change existing tests. In RQ3, we find seven broad categories of
recommendations: test scope, tool support, test scenarios, goal/purpose, refactoring, bad
practices, fixtures, and miscellaneous. Those broad categories are composed of 36 specific
recommendations that the contributors should focus to improve their tests. Lastly, in
RQ4, we detect that test reviews are likely to be solved. Moreover, reviews with more
recommendations are more likely to be solved.

Test reviews with fine-grained details are more likely to be solved. We find that
80% of test reviews with fine-grained details, like single statement and cases, are solved,
while less than half of the test reviews with class-level SUT are solved. In contrast, reviews
targeting a coarse-grained SUT, like a class or method, are less likely to receive a test
contribution. Thus, instead of one large SUT, reviewers should split and make multiple
test reviews with smaller SUTs. Also in this context, we find that contributors solve test
fixes and refactoring more frequently than other changes.

Focus on test scope and test scenarios. When providing recommendations, reviewers
are more likely to focus on test scope and test scenarios (199 out of 370 recommendations
belong to those categories). And, even though academia reached a consensus on the
distribution of tests in the test scope range (unit tests, followed by integration tests, and
then end-to-end tests3), that is not what we see in test reviews. While, as expected, unit
test is the most commonly asked test scope, integration is surprisingly the least requested
test scope representing less than 10% of their occurrences.

Just like any source code, tests are refactored. We find more than one-third of
the test reviews that ask to change existing tests aim for refactoring. We also identi-
fied six commonly requested refactoring types in test reviews. Two of them target the
SUT (i.e., increase testability and extract member) while the others target the test code
(i.e., rename test, improve assert message, move test, and merge test).

3https://martinfowler.com/articles/practical-test-pyramid.html

https://martinfowler.com/articles/practical-test-pyramid.html
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Not only why, but what and how. Recent studies found absent rationale in pull re-
quests and code reviews leads to higher rejection rate, confusion, and evaluation latency [8,
60, 61, 84], thus change requests should be properly motivated for a higher probability of
being solved. Besides, we assess how reviewers use recommendations to better describe
what is being requested and how to implement it. We find contributors are more willing to
solve a test review when it contains at least one recommendation. Therefore, researchers
should take into account the combination of both motivation and the level of detail of
test reviews to better understand the reasons behind developer turnover.

3.4 Threats to Validity

Classification: Given the nature of a request recommendation and how we catalog it,
it is expected that our list does not comprehend all existing test recommendations, but
the most common ones. To mitigate that effect, we collected a great amount of data by
choosing the latest version of the GHTorrent and making a statistically representative
sample of it.

Precision goal: Before querying the GHTorrent dataset we set a fair precision goal of 85%.
Then we incrementally built our query until its output exceeded the desired goal. Lastly,
our final regular expression is the result of five iterations of this process, followed by a
manual evaluation. Nevertheless, there might be missing cases as a consequence of our
inability to measure the query recall, due to the lack of similar studies or datasets.

Offline context: Beyond the GitHub pull requests, some teams may use other communi-
cation means [85, 86] or even meet in person, which limits our capability of identifying
request recommendations and response types. In practice, this may lead to over-counting
ignored test requests and losing contextual information (references to unavailable knowl-
edge or discussions). Since other platforms may have ad-hoc, thus hard to inspect, associ-
ation with the code review discussion, we opted to only distinguish between ignored and
rejected test requests in our public dataset. We acknowledge the importance of further
developing that association study by considering test reviews to better understand the
frequency they are ignored.

Generalizability: We analyzed hundreds of test reviews provided by open-source projects.
Such projects are diverse, except they are all public on GitHub, indexed by GHTor-
rent [15], and contain at least one test review. In addition, although the stakeholders
could be socially diverse, such characteristics, e.g., gender [87, 88], ethnic group [89], cul-
ture [90], and personality trait [91], may not be available in their GitHub profile, which
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imposes challenges to measuring social bias. Therefore, our findings — as usual in empir-
ical software engineering — may not be directly generalized to other contributors, that
belong to social minorities, or to other systems, such as commercial ones with closed
source, hosted in other open-source repositories (other than GitHub), and not indexed by
GHTorrent.

3.5 Final Remarks

In this chapter, we presented the main study of this dissertation to explore how
developers review tests on GitHub. We provided an empirical study to assess 11,836 test
reviews from 5,421 open-source projects on GitHub. We also manually analyzed a sample
324 test reviews to better understand their content. Finally, based on our results, we
discussed implications for researchers and practitioners.
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Chapter 4

A Tool to Characterize Test Method
Quality

In this chapter, we propose a tool for measuring the quality of individual test methods.
We explain and validate the tool with an empirical study. This chapter is organized as
follows: Section 4.1 presents our tool’s approach, Section 4.2 details the study design,
Section 4.3 reveals the results, Section 4.4 features discussions and implications, and
Section 4.5 discusses this study’s threats to validity.

4.1 Mutation Testing at Method Level

4.1.1 Test Method Mutation

To address the discussed limitations, we propose a five steps approach, as detailed
in Figure 4.1. The first three steps are similar to traditional mutation testing: (1) run
the test suite and collects the expected output; (2) parse the project and apply mutation
operators; (3) the resulting mutants are separately tested by the test suite; (4) the result of
each executed test method on each covered mutant is collected as the obtained output; and
(5) the obtained output is compared to the expected result and the scores are computed
for each test method. This approach is implemented by extending the mutation testing
tool PIT tool [16] and is publicly available at https://github.com/victorgveloso/
Detailed-CSV-Report-PITest.

https://github.com/victorgveloso/Detailed-CSV-Report-PITest
https://github.com/victorgveloso/Detailed-CSV-Report-PITest
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Figure 4.1: Overview of our approach

The score for a test method test is the ratio of mutants killed by the test and the
total number of mutants the test covers. Given a test method, its survived mutants set is
formed by the successful runs and its killed mutants by failures and errors. Notice that
we do not include the time-out set to avoid noise in the collected output, which degrades
the ability to define test methods quality.

4.1.2 Example: Computing Test Method Scores

In Figure 4.2 (which is repeated for simplicity), we note that 5 out of the 9 test
methods have a mutation score of 100% (column “TM Score”), two have a score of 50%,
and two have a score of 0%. Both testTriangle5() and testTriangle6() scores are
0%, suggesting they have less quality. Indeed, their assertions (i.e., assertNotEquals)
are the weakest in the test suite.
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SUT TM TM Assertion Covered Obtained StatusMethod Name Score Mutants Result

sum

testSum1 100% assertEquals(sum(4,5),9) (1) -1 killed
(2) 0 killed

testSum2 100% assertEquals(sum(6,-5),1) (1) 11 killed
(2) 0 killed

testSum3 100% assertEquals(sum(-2,-4),-6) (1) 2 killed
(2) 0 killed

triangle

testTriangle1 100% assertEquals(triangle(1,2,2),“Is”) (3) “Eq” killed
(4) null killed

testTriangle2 50% assertEquals(triangle(1,2,3),“Sc”) (3) “Sc” survived
(4) null killed

testTriangle3 100% assertEquals(triangle(1,1,1),“Eq”) (3) “Is” killed
(4) null killed

testTriangle4 50% assertNotEquals(triangle(1,2,2),“Eq”) (3) “Eq” killed
(4) null survived

testTriangle5 0% assertNotEquals(triangle(1,2,3),“Eq”) (3) “Sc” survived
(4) null survived

testTriangle6 0% assertNotEquals(triangle(1,1,1),“Sc”) (3) “Is” survived
(4) null survived

Test Suite Mutation Score: 100%

Figure 4.2: Score computation example in mutation testing inspired by [62] (“TM”: Test
Method)

4.2 Study Design

4.2.1 Selecting the Software Systems

We collect the top 15 Java repositories from GitHub (in terms of the star metric [92,
93]) and the Apache Commons Lang. Next, for each project, we clone the latest master
branch version and manually configure the extended PIT [16] via their build configuration
file. We discard some projects due to PIT accusing their test suite of not being green,
i.e., some test cases did not pass during the test coverage evaluation phase. In addition,
we detect that some of the projects are multi-module, i.e., Okhttp, Retrofit, and ZXing.
That is, they can be seen as a set of sub-projects (each one with its configuration files,
build files, etc.) In those cases, we restrict the analysis to the core module and we discard
the projects that do not explicitly specify a core module.1 The five remaining projects are
highly active and their size ranges from 35.9KLOC (Retrofit) to 310.8KLOC (RxJava).

4.2.2 Running the Mutation Testing Tool

After selecting the target projects and enabling all mutation operators supported
by PIT, we start the mutation testing execution phase. Table 4.1 summarizes this analysis:
in total, PIT detected 18,321 test cases in the five projects. Overall, it generated 55,427
mutants, which resulted in 16,149,383 mutant executions. The mutation scores are overall

1Core modules are the ones named with core or the project’s name.
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high, ranging from 73% (Okhttp) to 86% (Commons Lang). For comparison purposes, we
also present the coverage values in the last column. As expected [62], the coverage values
are frequently higher than the mutation score.

Table 4.1: Projects test quality overview

Project Tests Mutants TM Runs Score Cov.

Commons Lang 3,668 13,517 1.243M 86% 95%
RxJava 12,145 22,342 6.368M 85% 100%
ZXing 408 11,918 1.121M 75% 94%
Retrofit 337 883 0.154M 75% 51%
Okhttp 1,763 6,767 7.261M 73% 86%

4.2.3 Selecting the Test Methods

The next step is to select the test methods to be analyzed. To be selected for
this study, test methods must: (1) contain a @Test annotation or a name prefixed by
test, (2) not rely on anonymous classes, (3) not contain neither @Ignore nor @Disabled
annotations, and (4) have a mutation score computable by PIT, i.e., it covers at least
one mutant. Next, we collect the mutation score of the test methods individually, extract
the top-100 methods and bottom-100 methods in terms of mutation score, and randomly
select 100 methods.

4.2.4 Research Questions

RQ5 (Quality)

In this RQ, we investigate high and low-quality test methods’ code and evolution by
computing six metrics: three evolutionary metrics (from PyDriller [94]) and three test-
related (from tsDetect [95]). Those are largely adopted tools in the testing and software
mining literature [71, 96–99].
Test Size. We assess the size of the test methods in terms of source lines of code (SLOC).
Big test methods are heavy and hard to read [95].
Test Quality. We assess three metrics specific to test methods [95]. Number of exceptions
measures the amount of exception-related code structures. We compute the number of
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bad asserts (i.e., asserts without an explanation) present in test methods [99]. Lastly,
magic numbers are direct references to numbers in the tests.
Contributors. We assess developers’ expertise as the ratio of commits they authored in
the target project and number of contributors is how many distinct developers changed
each test method.
Modifications. Evolution is an important aspect of any source code and tests are not
different. We analyze the number of changes (commits) in the test methods to understand
their stability.
Rationale. Assessing to what extent high and low-quality test methods are associated
with code evolution and static metrics is relevant for both practitioners and researchers.
Practitioners may consider using static metrics which are cheaper in terms of space and
time as a proxy of test quality. On the research side, this may support the prediction of
test method quality [100] based on both metrics.

RQ6 (Test Smells)

This RQ assesses the impact of test smells (i.e., sub-optimal design choices made when
developing tests [101]) on test methods in terms of mutation score. Like RQ5, we rely
on tsDetect [95] and analyze the latest version of the repositories’ master branch. We
assess ten test smells [95, 102]: Assertion Roulette, Duplicate Assert, Conditional Test
Logic, Dependent Test, Sleepy Tests, Sensitive Equality, General Fixture, Magic Number
Test, Exception Catching Throwing, and Unknown Tests. We select the top 10 most
consolidated test smells and discard the ones: unrelated to test methods (e.g., Constructor
Initialization), debatable in the literature (e.g., Mystery Guest), and infrequent in our
dataset (e.g., Default Test).
Rationale. Recent studies focus on test smells [74], their impact on defect and change-
proneness [73], and co-occurrence with code smells [72]. Still, their relationship with
mutation score is unclear.
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4.3 Results

4.3.1 RQ5: What are the code and evolutionary characteristics
of high-quality test methods?

Table 4.2 summarizes the metric values for the best (top-100), random (100-
random), and worst (bottom-100) methods. We apply the Mann-Whitney test at alpha
value = 0.05 and the Cohen’s d effect size between the best and worst test methods (col-
umn “Best vs. Worst”). We find a statistically significant difference in all metrics, with
at least a very small effect. Next, we highlight some differences.
Number of lines of code. The best test methods are only slightly smaller than the
worst ones (9 vs. 10, very small effect size).
Number of bad asserts. As most asserts are written without any explanation, this
metric can be seen as a proxy of number of asserts. High-quality test methods have, on
average, more asserts (3.7) than low-quality ones (1.6), but the difference is only small.
Number of modifications. The best test methods are only slightly less modified than
the worst ones (mean 3.3 vs. 3.9, small effect).

Summary: There is no major difference between the worst group and the best group.
The maximum effect-size is small and five out of seven metrics yield the same median.

Table 4.2: Metrics overview (η̄: median; Rnd: Random; N: Negligible; VS: Very Small;
S: Small; H: Huge)

Metric Best Rnd Worst Best vs. Worst
η̄ η̄ η̄ p-value effect-size

No of lines of code 10 10 9 < 0.05 VS

No of bad asserts 2 1 1 < 0.05 S
No of exceptions 0 0 0 < 0.05 S
No of magic numbers 0 0 0 < 0.05 VS

No of contributors 2 2 2 < 0.05 VS
No of modifications 3 3 3 < 0.05 S
Developer expertise 0.1 0.1 0.2 < 0.05 VS

Score 0.9 0.6 0 < 0.05 H
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4.3.2 RQ6: What test smells are prevalent in high-quality test
methods?

Figure 4.3 compares the presence of test smells on both high and low-quality test
methods. Sleepy Tests, often related to non-determinism and flaky tests [103, 104], only
occur in the worst group. Next, we see that 76% of General Fixture cases affect low-quality
test methods. Moreover, 68% of Unknown Test happen in low-quality test methods.
Finally, Conditional Test Logic and Exception Catching Throwing are also more likely
to happen in low-quality test methods, however, the difference is smaller (58% vs. 42%
and 54% vs. 46%, respectively). On the other hand, we see some test smells occurring
more often in the best test methods, e.g., Magic Number Test, Assertion Roulette, and
Duplicate Assert. Those test smells are very controversial, for instance, Assertion Roulette
represents test methods with more than one assert without explanation/message, which
is a common practice in software testing. Indeed, those test smells are more related to
test readability and do not directly affect the ability of the test to catch bugs.

Summary: Critical test smells are overconcentrated in the worst group, while
maintainability-related are prevalent in the best group.

Figure 4.3: Prevalence of test smells
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4.4 Discussion and Implications

Code and evolutionary characteristics. It is conventional wisdom that test methods
should be small and non-complex to improve their maintainability [105]. However, we
lack empirical data showing the real benefits of having those factors. We find no major
differences between high-quality and low-quality test methods in terms of size, number of
asserts, and modifications. This opens room for novel research to better understand the
differences between high and low-quality test methods.
Test smells. Recent studies show that test smells may decrease the understandability
and maintainability of the test suites [72, 73, 106, 107], despite practitioners do not
perceive test smells as actual problems [72, 74]. In this study, we find that low-quality
test methods are more likely to include critical test smells. For example, low-quality test
methods are over-concentrated on Sleepy Test, General Fixture, and Unknown Test. On
the other hand, high-quality test methods have less critical test smells, which are related
to test readability, like Magic Number Test and Assertion Roulette. Thus, practitioners
in charge of maintaining test suites should be aware that the presence of some test smells
is associated with the test suite’s ability in catching real bugs.

4.5 Threats to Validity

Timed out tests. PIT implements heuristics to identify mutants suffering from infinite
loops. We discarded time-out occurrences from the test method score’s formula to prevent
noise in the score.

Failing test suite. Mutations to static members [108] and tests depending on a specific
execution order may be falsely accused of having a non-green test suite. Solved by forcing
PIT to execute mutants in separate processes and discarding the failing projects.

Anonymous classes. We discard test methods using anonymous classes, due to tsDetect
tool [95] incompatibility.

Generalization. We analyzed thousands of test methods provided by open-source Java
projects. However, our findings may not be directly generalized to other systems, as
commercial ones with closed source and implemented in other languages.
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4.6 Final Remarks

In this chapter, we proposed an empirical study to assess the quality of test methods
by relying on our extension of PIT that achieves mutation testing at the method level.
We show empirical evidence that there are no major differences between high-quality and
low-quality test methods in terms of size, number of asserts, and modifications. Low-
quality test methods are over-concentrated on critical test smells, while high-quality test
methods are likely to contain less important ones.
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Chapter 5

Conclusion

This chapter provides the final remarks of this master dissertation. In Section 5.1, we
present the overview of our two studies and their contributions. And in Section 5.2, we
propose future works.

5.1 Overview and Contributions

In this master dissertation, we presented an empirical study on test reviews where
reviewers request contributors to add or change test methods. Specifically, we investigated
four main questions: (1) How frequently do reviewers ask contributors for tests? (2)
What do reviewers ask contributors for? (3) Which recommendations are frequently
found in test requests? (4) How are the test reviews solved by contributors? In addition,
we extended PIT, the state-of-the-art mutation testing framework enabling method-level
reports. Then, we conducted an exploratory study to determine how mutation testing at
the method level relates to static test quality metrics, such as number of lines of code,
number of asserts, and test smells. For that we proposed two extra research questions:
(5) What are the code and evolutionary characteristics of high-quality test methods? (6)
What test smells are prevalent in high-quality test methods? We summarize the results
and the major contributions of this master dissertation in the following subsections.

5.1.1 How Developers Review Tests on GitHub

We conducted an empirical study to analyze 11,836 test reviews on GitHub in
which reviewers ask contributors to add and change tests within pull request discussions
from 5,421 open-source projects. We assessed a sample of 324 test reviews, relying on a
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set of 36 extracted recommendations, to learn what information is available when contrib-
utors implement the required tests. Furthermore, we studied the contributors’ responses,
whether they further contribute to the pull request or not, and what factors influenced
them. Based on our results, we provided a list of implications for researchers and prac-
titioners. We presented empirical evidence that testing is an essential practice when
contributing to open-source projects as reviewers usually request test development in case
they perceive insufficient code coverage. In this context, the main findings of this study
are as follows:

• Most contributors facing challenges completing the requested tasks do not reply to
the reviewer and abandon the contribution, while a few others ask for the request
clarification.

• Contributors are more willing to solve a test review that contains at least one rec-
ommendation.

• Coarse-grained SUT, e.g., classes, are less likely to receive test contribution.

• Refactoring comprises more than one-third of the test reviews requesting changes to
existing tests, particularly refactoring that targets the SUT and test-specific ones.

• The prevailing test reviews target the test scope and the test scenario.

• Integration test is the least mentioned test scope, comprising only 10% of the test
reviews mentioning a test scope.

5.1.2 A Tool to Characterize Test Method Quality

We proposed an empirical study to assess the quality of test methods by relying
on our extension of PIT that achieves mutation testing at the method level. We show
empirical evidence that there are no major differences between high-quality and low-
quality test methods in terms of size, number of asserts, and modifications. Low-quality
test methods are over-concentrated on critical test smells, while high-quality test methods
are likely to contain less important ones.
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5.2 Future Work

Assess the quality of requested test methods. Even though the majority of test
reviews are solved, we are not sure about the quality of the added or changed test methods.
In this context, researchers can use the tool proposed in this study to compare the quality
of spontaneous testing to requested testing.
Other sources of asynchronous and synchronous communications. GitHub is the
most popular Git platform that includes social features, such as starring, following, issue
tracking, and pull requests. On the other hand, there are many other social platforms
extensively studied in the literature, e.g., Gerrit, Gitter, Slack, GitLab, and SourceForge.
And some teams may use multiple platforms simultaneously, so requests we interpreted
as ignored in a platform could have been addressed in another one. Hence, our test review
dataset can be further expanded by introducing projects from those platforms.
Consider more static and dynamic quality metrics. We found no major differ-
ence between high-quality and low-quality test methods in terms of the selected metrics
(e.g., size, number of asserts, and modifications). However, there are many other static
metrics (e.g., assertion types, input type, distance between test and SUT, cohesion, cou-
pling, complexity, code smells, and many social metrics) and dynamic metrics (e.g., stack-
trace, dependency hierarchy, and all metrics from the code coverage family of metrics)
that are candidates for analysis in future research.
Assess how test method quality relates to defect presence. Mutation testing is
traditionally used to measure the quality of test suites. Many studies applied mutation
testing on test suites affected with real defects to validate that technique and others eval-
uated whether mutation testing can positively impact test code readability. Extracting
test methods from known defects datasets and applying our method-level mutation testing
approach can highlight its ability to detect defects.
Survey on how perceived test method quality relates to our metric. Beyond the
association of low test-method score and test smell occurrence, one can assess whether
testers perceive a lack of maintainability on low-quality test methods. Surveying testers
about their perception of either test methods identified as low-quality or high-quality, by
our metric, can shed even more light on the relationship between test thoroughness and
test maintainability.
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