

UNIVERSIDADE FEDERAL DE MINAS GERAIS

INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Rômulo Silva do Nascimento

EMPIRICAL EVALUATION OF API DEPRECATION IN JAVASCRIPT

Belo Horizonte

2021

Rômulo Silva do Nascimento

EMPIRICAL EVALUATION OF API DEPRECATION IN JAVASCRIPT

Dissertação apresentada ao Programa de Pós-

Graduação em Ciência da Computação do

Instituto de Ciências Exatas da Universidade

Federal de Minas Gerais como requisito parcial

para a obtenção do grau de Mestre em Ciência

da Computação.

Orientador: Prof. Dr. Eduardo Magno Lages

Figueiredo

Coorientador: Prof. Dr. André Cavalcante Hora

Belo Horizonte

2021

RÔMULO SILVA DO NASCIMENTO

EMPIRICAL EVALUATION OF API DEPRECATION IN JAVASCRIPT

Dissertation presented to the Graduate Program

in Computer Science of the Federal University

of Minas Gerais in partial fulfillment of the

requirements for the degree of Master in

Computer Science.

Advisor: Eduardo Magno Lages Figueiredo

Co-Advisor: André Cavalcante Hora

Belo Horizonte

2021

© 2021, Rômulo Silva Do Nascimento.

 Todos os direitos reservados

 Silva do Nascimento, Rômulo

S586e Empirical evaluation of API deprecation in JavaScript
 [manuscrito] / Rômulo Silva do Nascimento — 2021.
 57 f. il.

 Orientador: Eduardo Magno Lages Figueiredo.
 Coorientador: André Cavalcante Hora.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação
 Referências: f. 56-57.

 1. Computação – Teses. 2. –Teses. 3. APIs (Application
 Programing Interfaces) – Depreciação –Teses. 4. JavaScript
 (Linguagem de programação de computador) – Teses. 5.
 Qualidade de software – Teses I. Figueiredo, Eduardo Magno
 Lages. II. Hora, André Cavalcante. III. Universidade Federal de
 Minas Gerais, Instituto de Ciências Exatas, Departamento de
 Ciência da Computação. IV.Título.

CDU 519.6*82 (043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6/1510 – Insituto de Ciências Exatas da UFMG

RESUMO

Construir aplicações usando bibliotecas externas é uma prática comum no

desenvolvimento de software. Como qualquer outro tipo de software, bibliotecas de código e

suas APIs evoluem com o tempo. Para ajudar na migração entre versões e garantir a

compatibilidade com versões anteriores, uma prática recomendada durante o desenvolvimento

é depreciar APIs. Embora estudos tenham sido conduzidos para investigar depreciação em

linguagens de programação como Java e C, não há estudos detalhados sobre depreciação de

APIs em JavaScript. O objetivo desta dissertação é investigar a depreciação de APIs JavaScript.

Portanto, apresentamos os resultados de três estudos com desenvolvedores e projetos populares

em JavaScript. Primeiramente, relatamos os resultados de um estudo de survey com 109

desenvolvedores JavaScript. Então, analisamos 320 projetos JavaScript populares para

identificar ocorrências de API depreciadas. Por fim, analisamos a evolução de APIs depreciadas

em 50 pacotes populares JavaScript. Os resultados sugerem que não existe uma solução padrão

para depreciar APIs JavaScript. No geral, encontramos várias soluções, incluindo mensagem

de console, documentação externa, anotação JSDoc, comentário de código e elemento

prefixado. Além disso, os desenvolvedores podem usar várias soluções para depreciação no

mesmo projeto ou até mesmo no mesmo arquivo. Por fim, a maioria dos projetos apresenta

tendências de crescimento no número de APIs depreciadas.

Palavras-chave: Depreciação de API. JavaScript. Evolução de Software.

ABSTRACT

Building an application using third-party libraries is a common practice in software

development. As any other software system, code libraries and their APIs evolve over time. In

order to help version migration and ensure backward compatibility, a recommended practice

during development is to deprecate API. Although studies have been conducted to investigate

deprecation in some programming languages, such as Java and C#, there are no detailed studies

on API deprecation in the JavaScript ecosystem. The goal of this master dissertation is to

investigate deprecation of JavaScript APIs. Therefore, we report the results of three studies with

JavaScript developers and popular packages. We first report the results of a survey with 109

JavaScript developers. Afterwards, we mine 320 popular JavaScript projects to identify

deprecated API occurrences. Finally, we analyze the evolution of API deprecation in 50 popular

JavaScript packages. Results suggest that there is no standard solution to deprecate JavaScript

APIs. Overall, we find several solutions, including console message, project documentation,

JSDoc annotation, code comment, and prefixed element. Furthermore, developers may use

multiple deprecation solutions in the same project or even in the same file. Additionally, most

projects present upward trends in the number of deprecated APIs.

Keywords: API Deprecation. JavaScript. Software Evolution.

‌
‌

LIST‌ ‌OF‌ ‌FIGURES‌ ‌

‌

Figure‌ ‌1.1‌ ‌–‌ ‌The‌ ‌2020‌ ‌State‌ ‌of‌ ‌the‌ ‌Octoverse‌ ‌Report‌ ‌results‌ ‌for‌ ‌the‌‌top‌‌languages‌‌over‌‌the‌‌

years‌ …………………………………………………………………………………………‌ ‌12‌ ‌

Figure‌ ‌2.1‌ ‌–‌ ‌Stack‌ ‌Overflow‌ ‌answer‌ ‌in‌ ‌which‌ ‌the‌ ‌author‌ ‌recommends‌ ‌using‌ ‌JSDoc‌ ‌an‌‌

notation‌ ‌with‌ ‌a‌ ‌console‌ ‌warning‌ ‌message‌ ‌to‌ ‌indication‌ ‌deprecation‌………………………..‌ ‌19‌ ‌

Figure‌ ‌2.2‌ ‌–‌ ‌Web‌ ‌development‌ ‌blog‌ ‌article‌ ‌suggesting‌ ‌the‌ ‌use‌ ‌of‌ ‌JSDoc,‌ ‌comments‌ ‌on‌ ‌the‌‌

deprecation‌ ‌context‌ ‌and‌ ‌time‌ ‌frame,‌ ‌and‌ ‌console‌ ‌warnings.‌ ………………………………..‌ ‌19‌ ‌

Figure‌ ‌3.1‌ ‌–‌ ‌Survey‌ ‌study‌ ‌methodology‌ ‌steps.‌………………………………………………‌ ‌23‌ ‌

Figure‌ ‌4.1‌ ‌–‌ ‌Mining‌ ‌study‌ ‌methodology‌ ‌steps.‌………………………………………………‌ ‌34‌ ‌

Figure‌ ‌4.2‌ ‌–‌ ‌JavaScript‌ ‌packages‌ ‌characteristics:‌ ‌npm‌ ‌dependents‌ ‌and‌ ‌GitHub‌ ‌statistics.‌….‌ ‌35‌ ‌

Figure‌ ‌4.3‌ ‌–‌ ‌API‌ ‌deprecation‌ ‌mechanism‌ ‌occurrences‌ ‌in‌ ‌JavaScript‌ ‌packages.‌…………….‌ ‌40‌ ‌

Figure‌ ‌5.1‌ ‌–‌ ‌Survey‌ ‌study‌ ‌methodology‌ ‌steps‌………………………………………………‌ ‌43‌ ‌

Figure‌ ‌5.2‌ ‌–‌ ‌Analyzed‌ ‌JavaScript‌ ‌packages‌ ‌characteristics.‌ ………………………………..‌ ‌45‌ ‌

Figure‌ ‌5.3‌ ‌–‌ ‌Versions‌ ‌in‌ ‌packages.‌ ………………………………………………………….‌ ‌48‌ ‌

‌

‌ ‌

LIST OF TABLES

Table 3.1 – Summary of survey questions to JavaScript developers. 26

Table 3.2 – Survey closed-ended questions and answers. .. 27

Table 5.1 – List of selected packages and number of versions. ... 46

Table 5.2 – Mann-Kendall Trend Test results of deprecation occurrences on analyzed packages.

 .. 49

Table 5.3 – Mann-Kendall Trend Test results of deprecation occurrences on analyzed,

considering individual deprecation mechanisms. ... 50

Table 5.4 – List of selected projects and number of versions. ... 50

CONTENTS

 CHAPTER 1 ... 11

1 INTRODUCTION .. 11

1.1 Motivation ... 11

1.2 Proposed Work.. 13

1.3 Publications ... 14

1.4 Dissertation Outline .. 14

 CHAPTER 2 ... 16

2 BACKGROUND AND RELATED WORK .. 16

2.1 API Deprecation.. 16

2.2 API Deprecation in JavaScript .. 17

2.3 Related Work .. 19

2.4 Comparison to Other Languages .. 20

2.5 Final Remarks ... 22

 CHAPTER 3 ... 23

3 SURVEY WITH DEVELOPERS ON DEPRECATION PRACTICES 23

3.1 Goal and Research Questions ... 24

3.2 Study Design ... 24

3.3 Survey Results... 25

3.3.1 The API Consumer Perspective .. 27

3.3.2 The API Provider Perspective... 28

3.3.3 Developers’ Further Insights... 29

3.4 Threats to Validity .. 30

3.5 Final Remarks ... 31

 CHAPTER 4 ... 33

4 MINING API DEPRECATION IN JAVASCRIPT PACKAGES 33

4.1 Goal and Research Questions ... 33

4.2 Study Design ... 34

4.3 Study Results .. 38

4.4 Threats to Validity .. 41

4.5 Final Remarks ... 42

 CHAPTER 5 ... 43

5 ANALYSIS OF DEPRECATION EVOLUTION .. 43

5.1 Goal and Research Questions ... 43

5.2 Study Design ... 44

5.3 Results ... 47

5.4 Threats to Validity .. 51

5.5 Final Remarks ... 51

 CHAPTER 6 ... 53

6 FINAL CONSIDERATIONS ... 53

6.1 Work Overview... 53

6.2 Contributions... 54

6.3 Future Work .. 55

Bibliography ... 56

11

Chapter 1

1 Introduction

Building an application using third-party libraries is a common practice in software

development. Libraries provide reusable functionality to client applications through their

Application Programming Interfaces (APIs). API usage brings several advantages to a software

development project (Tourwé & Mens, 2003), such as cost and resources usage reduction. As

a result, developers can focus on business core requirements and software quality may increase

by relying on libraries that have been widely adopted, tested and documented (Moser &

Nierstrasz, 1996).

As any other software system, libraries and their APIs evolve over time (Granli et al.,

2017). Thus, functions and parameters might be renamed, updated, moved, or removed.

Consequently, client applications need to migrate to the latest stable versions of their

dependencies (Bogart et al., 2016). To help version migration and ensure backward

compatibility, a recommended practice in software development is to deprecate the API. In

other words, deprecation indicates that the use of a certain API should be avoided because it

will be changed, removed or discontinued in a future version (Robbes et al., 2012). Some of the

most popular programming languages, such as Java and C#, provide native support mechanisms

and tools to help developers explicitly deprecate their APIs (Sawant et al., 2018c). Indeed,

recently, there have been many research on deprecation practices and mechanisms mostly on

those languages (Robbes et al., 2012, Bogart et al., 2016, Brito et al., 2018, Sawant et al., 2018c,

Li et al., 2018, Sawant et al., 2018a, Sawant et al., 2018b, Sawant et al., 2019). However, to the

best of our knowledge, there are no detailed studies regarding API deprecation in the JavaScript

ecosystem.

1.1 Motivation

JavaScript has become extremely popular over the last years. According to the Stack

Overflow 2021 Developer Survey1, JavaScript is the most commonly used programming

language for the ninth consecutive year. As shown in Figure 1.1 chart, GitHub annual report,

The State of the Octoverse, also indicates that JavaScript is the most popular language in terms

1 https://insights.stackoverflow.com/survey/2021

12

of unique contributors to both public and private repositories2. The chart also shows TypeScript,

a superset language of JavaScript, coming next in the fourth position. The same report also

reveals that 94% of all active public repositories rely on open source software. There are over

3 million public repositories primarily written in JavaScript in GitHub. In terms of libraries,

ReactJS, for instance, is a dependency of approximately 2.5 million public projects in GitHub.

Despite the growth in the usage of JavaScript external libraries and APIs, little is known about

JavaScript API deprecation mechanisms and practices. Additionally, there are no detailed

studies related to this topic in the JavaScript ecosystem.

Figure 1.1 – The 2020 State of the Octoverse Report results for the top languages over the years.

Developers should have access to information regarding how and when deprecation in

JavaScript projects is addressed. Shedding light on JavaScript deprecation practices may

strongly benefit developers as they can be aware of deprecation strategies in the ecosystem.

Consequently, it might lead to a clear communication environment and improve the overall

quality of JavaScript projects. Furthermore, library maintainers might take advantage of this

study by making informed decisions when planning for deprecation in their packages and

improve communication with their clients. Ultimately, this work might identify problems and

lead to actionable insights in the JavaScript ecosystem, such as creating official rules for

deprecation, guidelines and conventions.

2 https://octoverse.github.com

13

1.2 Proposed Work

The more APIs being leveraged by JavaScript developers, the greater consequences the

deprecation of JavaScript APIs may lead to. Hence, there is a need to understand the current

state of practice of JavaScript API deprecation and quantify its impacts. In order to investigate

this topic, we analyze in this master dissertation the following factors:

▪ The API deprecation strategies adopted in JavaScript packages;

▪ Developers reactions to deprecated APIs in JavaScript;

▪ The consistency of adopted deprecation strategies within JavaScript packages;

▪ The evolution of deprecated APIs over time.

Our goal is to investigate the deprecation mechanisms in the JavaScript ecosystem and

analyze how they are adopted and maintained. Thus, we propose the following research

questions to support our study:

▪ RQ1: To what extent do developers see deprecated APIs and deprecate in JavaScript

packages? In these questions, we investigate how to what extent consumer developers

see deprecated APIs in packages they are working on, and API developers deprecate in

software packages;

▪ RQ2: What priority do developers give to deprecation issues? In this second questions

we analyze how consumer developers handle and react to deprecated APIs, if, for

instance, they consider deprecation an issue that requires immediate action or not;

▪ RQ3: What deprecation strategies do developers most commonly see and adopt in

JavaScript? In these questions we explore which deprecation strategies and mechanisms

do consumer developers encounter, and API developer most commonly adopt;

▪ RQ4: To what extent are deprecation strategies consistent in popular JavaScript

packages? In this question we analyze how deprecation mechanisms are consistently

adopted within and among JavaScript packages;

▪ RQ5: Do deprecated APIs increase or decrease overtime in JavaScript packages? In the

fourth question, we investigate how deprecated APIs evolve over time, if the amount

increases, decreases or maintains stable.

▪ RQ6: Are deprecated APIs usually introduced and removed in major or minor releases?

In this last question, we analyze when deprecated APIs are usually introduced and

removed, and the observed rate of deprecated API changes in major and minor releases.

14

1.3 Publications

This master dissertation produced the following publications, and, therefore, it contains

material of them:

▪ R. Nascimento, E. Figueiredo, A. Hora and A. Brito. JavaScript API Deprecation in the

Wild: A First Assessment. In 2020 IEEE 27th International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2020, pages 567-571.

▪ R. Nascimento, E. Figueiredo and A. Hora. JavaScript API Deprecation Land scape: A

Survey and Mining Study. In IEEE Software, 2021, vol. , no. 01, pages 0-0, 5555.

▪ R. Nascimento, E. Figueiredo, A. Hora and A. Brito. Exploring API Deprecation

Evolution in JavaScript. In 2022 IEEE 29h International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2022.

1.4 Dissertation Outline

The remaining portion of this Master dissertation is organized as follows:

▪ Chapter 2 provides background information related to this d issertation. We introduce

concepts regarding Application Programming Interfaces (APIs), depreciation and

briefly present the JavaScript language. Additionally, we discuss past related work and

compare deprecation strategies on different popular programming languages;

▪ Chapter 3 describes our empirical study, a survey with developers aiming at

understanding how they deal with deprecated APIs in JavaScript packages. We start by

presenting the survey design and the and detail the questions that comprise it. Then, we

summarize the answers we received and discuss the results and threats to validity;

▪ Chapter 4 presents a quantitative mining study that investigates API deprecation

occurrences in popular JavaScript packages. The goal is to provide an understanding of

which deprecation strategies are most commonly adopted and to what extent they are

consistent among and within JavaScript packages. We first describe our mining and

classification approaches. Afterwards, we discuss the study results and threats to

validity;

▪ Chapter 5 provides a study aiming at investigating how deprecated APIs evolve over the

lifetime of a JavaScript package library and analyze how the number of deprecated APIs

change between version releases. We start by describing the study design, including our

source code mining strategy and history analysis algorithm. Finally, we report and

discuss the study results and present some threats to validity;

15

▪ Chapter 6 concludes this Master dissertation, presenting an overview of this work, main

contributions, and insights for future work.

16

Chapter 2

2 Background and Related Work

A thorough understanding of deprecation practices and strategies adopted in the

JavaScript ecosystem is relevant as insights can be used by library maintainers and consumer

developers to better communicate and handle deprecated APIs. In addition, the software

engineering community may define new research directions based on the comprehension of the

JavaScript API deprecation landscape.

In this chapter, we present information regarding API deprecation, which is the main

focus of our studies, and discuss previous related works and common strategies in other popular

programming languages. Section 2.1 defines API deprecation and its role in software

engineering. Section 2.2 discusses where JavaScript stands when it comes to deprecating APIs.

Section 2.3 presents past studies related to API deprecation. Section 2.4 compares deprecation

mechanisms in other programming languages. Finally, Section 2.5 concludes this chapter.

2.1 API Deprecation

Application Programming Interfaces (APIs) are defined as interfaces used by client

software components to communicate with a software provider entity (Tourwe and Mens,

2003). JavaScript, for instance, provides standard built-in objects3 that expose APIs to help

developers with common tasks. Date.now() and Math.random() are examples of such built -in

APIs. Browsers also provide their own APIs4 to allow hosted applications to interact with some

of the browser’s mechanisms, such as the Console API, History API and Storage API.

Most industry level JavaScript applications rely on third-party library APIs to obtain

reusable functionalities and tackle a wide variety of common problems. Listing 2.1 shows API

examples of axios5, an extremely popular JavaScript library that provides functions to make

HTTP requests in a simpler way. In the example, we make a HTTP get request to a /resource

endpoint. Once the request returns a response, we print it to the developer console. Listing 2.2

shows how we can execute the same task using pure JavaScript. The code is considerably longer

and is not as straightforward to understand as the previous example.

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/GlobalObjects
4 https://developer.mozilla.org/en-US/docs/Web/API
5 https://axios-http.com/

17

Listing 2.1 – Example of an HTTP GET request using the axios API.

Listing 2.2 – Example of an HTTP GET request using JavaScript native code.

However, as any other type of software system, third-party libraries, such as axios,

evolve over time, either by adding new functionalities or improving aspects of existing ones.

Thus, methods, functions, fields, parameters and types might change. For instance, they might

be renamed, moved or removed. Those sorts of API changes might imply breaking impacts on

client systems (Robbes et al., 2012). In order to mitigate these impacts and help version

migration, a recommended practice in software development is to deprecate APIs. In other

words, deprecation indicates that the use of a certain API should be avoided because it will be

changed, removed or discontinued in a future version.

2.2 API Deprecation in JavaScript

JavaScript (or JS, for short) is a versatile programming language that conforms to the

ECMAScript specification6. It has been primarily designed and known as a language for

rendering dynamic content on the client-side of Web applications. More recently, JavaScript

has also been used as a server-side language through the use of the Node.js environment7.

Software reuse has become a key factor for a cost and time efficient software

development project (Uddin et al., 2011). This scenario has led to the emergence of software

repositories, such as npm, that provide a centralized and simplified management and

distribution of software components. The npm registry serves as a base for JavaScript Web

applications, frameworks and library ecosystems. On June 4th, 2019, npm reached one million

hosted JavaScript packages, making it the largest software repository to date (Tal and Maple,

6 https://www.ecma-international.org/
7 https://nodejs.org/en/

18

2019). Those libraries hosted in npm provide reusable functionality to client applications

through their Application Programming Interfaces.

Unlike other popular programming languages, such as Java and C#, JavaScript provides

neither native deprecation mechanisms. In adittion, there are no recommendations from ECMA

International or TC398 on how to properly deprecate JavaScript written code. Google brings

only a few relevant results when we search for “how to deprecate JavaScript”. There is a

popular answer to a Stack Overflow question. Presented in Figure 2.1, this answer recommends

the use of JSDoc9 deprecation annotation, possibly along with a console warning message

indicating the deprecation10. In addition, Figure 2.2 shows a Web blog that also endorses the

use of JSDoc – with comments on the deprecation context and time frame – and console

warnings. The same blog also suggests that a deprecation utility, such as a helper function,

might be suitable11. These recommendations are among the top results provided by a Google

search. Listing 2.3 show an example of a function written in JavaScript with an indication of

deprecation, using the JSDoc annotation. However, from our ad hoc searches, we observed that

there is no standard way for API deprecation in JavaScript.

Listing 2.3 – Example of a function written in JavaScript

8 https://www.ecma-international.org/technical-committees/tc39/
9 https://jsdoc.app/
10 https://stackoverflow.com/questions/19412660/how-should-i-mark-a-method-as-obsolete-in-js
11 https://css-tricks.com/approaches-to-deprecating-code-in-javascript/

19

Figure 2.1 – Stack Overflow answer in which the author recommends using JSDoc an notation with a console

warning message to indication deprecation.

Figure 2.2 – Web development blog article suggesting the use of JSDoc, comments on the deprecation context

and time frame, and console warnings.

2.3 Related Work

Previous work investigated Java API deprecation practices (Sawant et al., 2018b,

Sawant et al., 2019). These works assessed the impacts, the needs, the reasons, and the patterns

of API deprecation. They observed that the Java deprecation mechanism does not address all

developer needs when it comes to deprecation (Sawant et al., 2018a).

20

Previous work also detected that Javadoc is not sufficient to understand the reasons

behind deprecation occurrences. By mining other data sources, such as source code, issue

tracker data, and commit history, they identified 12 reasons that trigger developers to deprecate

API (Sawant et al., 2018b). They verified that most API client applications do not react to

deprecation. Thus, they applied a survey to gather qualitative data from developers and try to

explain this behavior (Sawant et al., 2019). Robbes at al. (2012) studied deprecation in the

context of the Smalltalk ecosystem. Brito et al. (Brito et al., 2018) investigated the use of

deprecation messages in Java and C#. These studies describe that 66.7% and 77.8% of Java and

C# API, respectively, are deprecated with deprecation messages and that this rate does not

evolve over time. Li et al. (2018) performed an exploratory study on Android API deprecation

and identified that the Android framework is regularly cleaned-up from deprecated API and

their maintainers ensure that deprecated APIs are commented to provide replacement messages.

However, those APIs are not consistently annotated and documented and the existing

documentation is not frequently updated. Wang et al. (Wang et al., 2020) conducted an

exploratory study on Python library API deprecation and observed that API deprecation is

poorly handled by library contributors and the usage of deprecated APIs is rarely changed.

Yasmin et al. (Yasmin et al., 2020) proposed a framework to investigate RESTful API

deprecation and revealed that 87.3% of breaking changes were not deprecated on previous

versions. Many other researchers study how API evolves, measure breaking changes, and

analyze their impact on client systems (Brito et al., 2020, Xavier et al., 2017). We notice that

none of these cover the JavaScript ecosystem.

2.4 Comparison to Other Languages

The analysis of deprecation mechanisms and practices have been the main focus of

previous studies on different programming languages, such as Java (Brito et al., 2018, Li et al.,

2018, Sawant et al., 2016, Sawant et al., 2019), Python (Wang et al., 2020), C# (Brito et al.,

2018) and Pharo/Smalltalk (Robbes et al., 2012). We first note that, different from JavaScript,

Java, C# and Pharo/Smalltalk have built-in deprecation mechanisms. However, they implement

different features to handle deprecation. Java provides two main ways to handle deprecated

elements. Developers can annotate an element with @Deprecation to mark an obsolete API. It

accepts two options to indicate the version the element was deprecated and specify whether or

not the element will be removed in a future release. This mechanism automatically triggers

21

compilers to warn when the deprecated element is being used. Additionally, Javadoc12 also

provides an @deprecated annotation that helps generate API documentation. However, Java

does not provide means to provide the deprecation severity or indicate what parts of a certain

API is deprecated. Other studies have shown that code comments and documentation notes are

also common deprecation strategies in the Java ecosystem (Sawant et al., 2018a). Also, Java

API consumers do not appear to react to deprecation (Sawant et al., 2016).

Pharo/Smalltalk implements a deprecated method in which users can provide a message

to be outputted at run-time as a warning. Also, after an API deprecation is introduced, a

considerable number of projects do not update to newer versions (Robbes et al., 2012). C# has

an ObsoleteAttribute that can be used to mark an attribute or method as deprecated. It can

receive a message to be thrown by the compiler in compile-time. A second option can also be

passed to treat the deprecation as an error. This option might be useful to indicate the severity

of a deprecation (Brito et al., 2018). While there is no deprecation mechanism built-in in

Python, developers can rely on the deprecation decorator13 project hosted on PyPI, the official

third-party software repository for Python. This decorator also logs deprecation warnings to

consumers. However, library maintainers use different decorators or adopt ad -hoc local

solutions. Alternative strategies, such as hard-coded warnings and comments, are common as

well. Also, the usage of deprecated APIs is not usually addressed by developers during the

evolution of Python projects (Wang et al., 2020).

The JavaScript deprecation strategies we found in our web research seem to be strongly

influenced by deprecation mechanisms and features of other popular programming languages

such as Java and C#. The JSDoc @deprecated annotation, for instance, is equivalent to the one

defined by the Javadoc specification. Other mechanisms, such as warning messages and code

comments, are also very similar to built-in features and code conventions found in other

programming languages. Although Python is similar to JavaScript in terms of native

deprecation mechanisms, since both have none, the Python community seems to be more

inclined to build official deprecation tools.

12 https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
13 https://pypi.org/project/Deprecated/

22

2.5 Final Remarks

In this chapter, we presented important information that is necessary to better understand

this work. We first detailed the concepts of Application Programming Interfaces (APIs) and

API deprecation, along with some examples and an explanation of why deprecation is an

important practice for the software engineering research community and industry. Furthermore,

we discussed the JavaScript role in the software development industry and how little discussion

has been presented so far on JavaScript API deprecation. In addition, we presented previous

works related to API deprecation and breaking changes. We also compared deprecation

mechanisms commonly available in other popular programming languages. Unlike all previous

studies discussed in this chapter, in this Master thesis we aim at providing a detailed

understanding of depreciation practices in the JavaScript ecosystem. To the best of our

knowledge, this is the first exploratory research to investigate the state of practice of API

deprecation in JavaScript.

23

Chapter 3

3 Survey with Developers on Deprecation Practices

Libraries provide reusable functionality to consumer applications through their APIs.

However, APIs evolve over time and might be discontinued. In such cases, deprecation is

recommended to indicate that the use of a certain API should be avoided. Unlike other popular

programming languages, such as Java and C#, JavaScript provides no native deprecation

mechanisms. In addition, we observed that there is no standard way for API deprecation in

JavaScript.

In this chapter, we present a survey study aiming at understanding how developers deal

with deprecated APIs in JavaScript packages. The goal is to provide a more thorough

comprehension of which deprecation strategies are the most common among developers. In our

study, we first investigate to what extent developers encounter deprecated APIs and deprecate

them. We argue that a detailed study of commonly adopted deprecation strategies may

contribute to the software engineering community by understanding the current state of practice

of API deprecation in the JavaScript ecosystem.

In our study, we survey 109 developers who contributed to JavaScript open source

projects in GitHub. We investigate what deprecation strategies they often see and preferably

adopt. Section 3.1 presents our main goal and the research questions we designed. Section 3.2

details the strategy used to collect and identify eligible participants. Section 3.3 presents the

survey design. Section 3.4 reports the results. We discuss the threats to validity in Section 3.5

and conclude this chapter in Section 3.6.

Figure 3.1 – Survey study methodology steps.

24

3.1 Goal and Research Questions

In order to better understand what deprecation strategies JavaScript developers often see

and preferably adopt on their projects, and how they react to deprecation, we investigate three

research questions:

▪ RQ1: To what extent do developers see deprecated APIs and deprecate in JavaScript

packages?

▪ RQ2: What deprecation strategies in JavaScript do developers most commonly see and

adopt?

▪ RQ3: What priority do developers give to deprecation issues?

3.2 Study Design

This section describes the methodology we followed to answer the research questions

presented in the previous section. Figure 3.1 presents the steps we followed in the study. First,

mine and filter developers do participate in the survey. Afterwards, we construct the survey and

conduct a pilot to validate the proposed questions. Then, we run the survey to collect data for

later analysis. Sections 3.2.1 and 3.2.2 describe those steps.

Mining Developers: We were interested in surveying active developers with recent

contributions to JavaScript projects. We then mined GitHub users to obtain developer emails

that match that specific profile. We started by using GitHub search API14 to search for and

randomly select developers with contributions to JavaScript projects on GitHub. We filtered

out developers with less than 50 commits in the last year, as we could not ensure they have been

actively working with JavaScript recently. We also removed developers with more than 100

followers, as very popular developers could be less likely to respond to surveys. We ended up

with a list of 14,480 email addresses of active developers of GitHub projects.

Survey Design: Since we find little academic literature on JavaScript API deprecation,

we relied on blogs, forums, and Q&A websites such as StackOverflow to get initial information

on how developers deprecate JavaScript APIs. This initial research revealed common

approaches and discussions that helped us create the survey questions. We also found third-

party libraries specifically built to aid API deprecation in JavaScript, such as depd 15. From these

results, we created several questions targeting two perspectives: the API consumer (developers

14 https://docs.github.com/en/rest/reference/searchsearch-users
15 https://www.npmjs.com/package/depd

25

who use deprecated APIs) and the API provider (developers who maintain libraries and might

deprecate APIs). We were interested in investigating what developers know about deprecation

in JavaScript, which strategies they most commonly see or use, what priority do they give to

deprecation issues and what are their thoughts in general related to deprecation practices in

JavaScript.

As a result of several iterations, we formulated five closed-ended questions to capture

both perspectives. We restricted the survey to five questions since we believed a small survey

would encourage participants to respond more readily. Additionally, we added an open-ended

question to encourage the respondents to add any thoughts, experiences, or suggestions

regarding API deprecation in JavaScript.

We first conducted a pilot survey with nine developers to validate the proposed

questions and evaluate if they are adequate and clear. That helped us minimize the risk of

sending the survey to a large number of developers with unclear or ambiguous questions. After

the pilot survey was conducted, we made minor copy adjustments to the questions’ statements.

We also added a “Documentation” option to Questions 2 and 5. This option was not initially

considered and appeared in four answers. The pilot answers were not considered in the final

results. Table 3.1 presents all survey questions. The five columns detail, respectively, the

question number, the question statement, the type of the question, the options for the closed -

ended questions, and the reasoning behind the question. Note that some questions are skipped

depending on the answers of previous questions.

3.3 Survey Results

We sent 100 survey emails daily to developers until we reached at least 100 responses.

We reached the goal when we sent the 1,400th email and had 109 responses, which corresponds

to about 8% response rate. Table 3.2 summarizes the answers to the five closed -ended

questions.

26

Table 3.1 – Summary of survey questions to JavaScript developers.

The table is divided in two major columns, presenting the survey results related to API

consumers and as API providers, respectively. Within each major column, the first two sub-

columns present the question number, the question statement and the options. The last two sub-

columns present the results in absolute numbers and percentages. We discuss the main results

in Sections 3.3.1 and 3.3.2. Note that RQ1 results relate to survey questions 1 and 4 (Q1 and

Q4), while RQ2 results relate to survey questions 2 and 5 (Q2 and Q5). Finally, RQ3 results

relate to survey question 3 (Q3).

27

Table 3.2 – Survey closed-ended questions and answers.

3.3.1 The API Consumer Perspective

This section discusses the main results of our survey study focusing on the first three

questions, related to the API consumer perspective.

Q1. How often do developers see deprecated APIs in JavaScript projects?

Only 4.6% of the respondents always see deprecated APIs during development

activities, while 19.3% notice them often. In contrast, 31.2% of the respondents see deprecated

API only sometimes and 37.6% occasionally. Lastly, 7.3% have never seen deprecated APIs in

JavaScript. From this result, it is interesting to observe that about 75% of developers do not see

deprecated APIs very often, either sometimes, occasionally, or never. We argue that deprecated

APIs in JavaScript are not common, or not informed by maintainers, or deprecation messages

are not being perceived by developers. If the last one is true, it might imply that library

maintainers need to communicate deprecation more effectively.

Q2. What deprecation mechanisms developers have seen before?

In our survey, the most common deprecation solutions mentioned by the developers

were console messages (88.1%) and project documentation (74.3%). Also, 48.5% of the

28

developers have seen deprecated elements annotated with the JSDoc annotation @deprecated

and 24.8% have noticed them in single code comments. Moreover, 22.8% have seen APIs

prefixed with any sort of deprecation prefixes, such as deprecated__. Finally, six developers

revealed other solutions: four developers mentioned they have seen deprecation console

messages specifically during the package/library installation, one respondent indicated

deprecation error messages at runtime, and one added the usage of the custom Deprecated<T>

type in TypeScript. Overall, this result sug gests that, from the consumer perspective,

deprecation messages delivered via console messages and project documentation are more

likely to be perceived by developers. Deprecation communicated via code comments, including

the JSDoc annotation as well, might be more appropriate for internal APIs.

Q3. How fast developers fix deprecation problems?

24.8% of the respondents state they fix deprecation issues as soon as possible, 33.7%

fix only when they have time, and 36.6% fix only if necessary. Lastly, a minority of the

developers (5%) do not usually fix deprecation issues. From this result, we observe that only

24.8% of developers treat deprecation issues urgently. This suggests that developers might not

think that deprecation in JavaScript is important or worth migrating.

3.3.2 The API Provider Perspective

Q4. How often developers deprecate APIs in JavaScript projects?

Only 2.8% of the developers always deprecate APIs, while 7.3% often deprecate. While

16.5% deprecate sometimes, over a half (53.2%) deprecate APIs occasionally. Lastly, 20.2%

have never deprecated APIs. Overall, 90% of developers do not deprecate APIs very often. We

observe that most developers do not maintain external APIs in the JavaScript ecosystem or do

not have the need to deprecate them.

Q5. What deprecation mechanisms developers use to deprecate API?

The majority of the API providers (50.6%) use the project documentation to inform

about deprecated APIs. Next, we find three categories with similar ratios: 48.3% annotate

deprecate elements with the JSDoc annotation @deprecated; 46% use console messages to warn

about deprecated API; and 42.5% add code comments next to API to indicate deprecation.

Moreover, 16.1% of the developers use utilities to aid API deprecation and 16.1% prefix API

elements to indicate they have been deprecated. Lastly, 3.4% maintain, somewhere within the

project, a list/object of deprecated elements, while 3.4% state they remove deprecated APIs on

29

major releases, following the Semantic Versioning specification16. One developer added they

rely on the npm-deprecate17 npm CLI command to deprecate the whole package and another

one indicated the usage of the custom Deprecated<T> TypeScript type.

Deprecation communicated via documentation and console messages seem to be

similarly popular in both consumer and provider perspectives. However, we observe JSDoc

annotation and code comment are similarly common strategies among provider developers, but

not seen as often by consumer developers. This reinforces our argument that JSDoc annotation

and code comment might not be very effective to inform consumers about deprecated APIs.

3.3.3 Developers’ Further Insights

In the last question, we encourage participants to share thoughts on JavaScript

deprecation. In this part, we received 20 answers.

Overall, three developers argued that excessive deprecation logging can annoy

developers while working. One developer claimed that when a deprecation occurrence does not

look critical, they tend to perceive it as unnecessary. The current state of practice of deprecation

in which maintainers tend to retain deprecated APIs in favor of clients was criticized by three

developers. In this case, one developer noted: “the current practice/implementation of

deprecation in JS breeds a culture of complacency on top of old and dangerous systems”,

causing an endless backward compatibility effort that degrades code health. As a solution to

this problem, three developers advised to deprecate more often and retain less deprecated APIs.

It was noted that breaking changes should not be avoided if the project is following Semantic

Versioning best practices.

One developer stated that some deprecation messages come from transitive

dependencies. In such cases, there is no direct action to address the deprecation. Moreover, one

developer indicated that, with the fast and ever-evolving JavaScript ecosystem, “deprecation of

API is time-consuming and laborious”, but it is nevertheless beneficial. Also, the more visible

and persistent a deprecation warning is, the more likely developers are to address it. Developers

also emphasized that deprecation communication does not necessarily need to happen at the

API level, since major releases are expected to bring breaking changes. For example, one

developer stated: “when we roll out a new major version of a library, the changes are always

16 https://semver.org
17 https://docs.npmjs.com/cli/deprecate

30

breaking”. In those cases, any required upgrade should preferably be communicated on release

notes.

As package maintainers, two developers suggested that console messages are the most

efficient way to communicate deprecation since they believe developers always have their eyes

on the console while coding. However, as package consumers, developers presented that they

would like to be able to suppress deprecation messages as they wish, even if temporarily.

Additionally, three developers emphasized the importance of clear and constant communication

about deprecated APIs. For example, one developer stated: “for any consumed APIs, as much

deprecation communication as possible is preferred”, either with an internal team member or

with client systems. Finally, four developers suggested a cohesive deprecation strategy as an

appropriate way to approach deprecation on a project: “your versioning strategy is the way you

inform your consumers what is the scope of a change via the version number”.

To conclude, we present five deprecation best practices suggested by a developer:

1. Plan a deprecation strategy and make clients aware of it;

2. Release a minor version with the deprecated API;

3. Inform clients about upcoming changes via project documentation and console logs,

preferably with a message containing a target date and release and a link to a migration

guide;

4. Release a major version with breaking changes, along with a release note containing a

link to the migration guide;

5. Though it is not recommended, if a deprecated API needs to be retained, either add a

UNSAFE__ or similar prefix or provide them through an opt-in flag, such as –legacy or

–insecure.

3.4 Threats to Validity

The qualitative study presented in this chapter has some limitations that could

potentially threaten our results, as we explain next. The first threat to validity of this study is

related to target developers. This survey study findings cannot be directly generalized since the

participants might not be representative of the general population of JavaScript developers

outside of GitHub. However, GitHub is the most popular software development platform, for

both public and private projects. Future work replications on this topic should address these

issues.

31

Second, the survey questions might have been unclear or ambiguous for participants. To

minimize this thread we conducted several iterations of reviews when formulating the

questions. We also conducted a pilot survey to collect feedback and improve the survey. Third,

developers might have provided unreliable or unrealistic answers. For example, the provided

deprecation strategies or reactions might deviate from reality. To minimize this threat, we did

our best to send a short and focused survey to developers. We also informed participants that

the research had academic purposes only.

Furthermore, the deprecation mechanism options used in the survey might bias

respondents by limiting their ideas of what deprecation looks like. However, three researchers

verified the categories and we also provided an “other” option to encourage respondents to add

other solutions. Also, the experiment observations and analysis were conducted by the author

manually and therefore they may contain misunderstandings. However, the results were

evaluated by the first author and validated by the co-authors.

Finally, the experimental observations and analyses were manually conducted by the

authors of the paper, therefore, the results might be subjective to authors’ bias. To mitigate this

threat, we adopted thematic analysis to analyze survey results.

3.5 Final Remarks

In this chapter, we described a survey study with developers to understand what API

deprecation strategies are most commonly present in JavaScript projects and libraries. We

found that there is no standard preferable strategy to deprecate JavaScript APIs. Overall, the

most commonly adopted deprecation mechanisms are console message, project documentation,

JSDoc annotation, and code comment. Developers usually learn about deprecated JavaScript

APIs via console message and project documentation. Additionally, most JavaScript developers

(70%) only address deprecation issues if necessary or if time permits. Furthermore, we

presented an extensive analysis of developers general thoughts on the current state of practice

of JavaScript deprecation, along with recommended approaches for deprecating APIs.

Developers suggested that planning a deprecation strategy and making client aware of it is an

efficient way to handle deprecation in a JavaScript project. Additionally, as much clear and

consistent depreciation communication as possible is preferred, either via deprecation messages

or project documentation. Furthermore, respondents advised to retain less deprecated APIs in

favor of code health. However, if they need to be maintained, either add UNSAFE__ or similar

prefix to a deprecated API or provide them through an opt-in flag, such as –legacy or –insecure.

32

In the next chapter of this dissertation, we investigate API deprecation practices in the

JavaScript ecosystem by means of a mining study. We turn our attention to popular JavaScript

libraries and analyze which deprecation mechanisms are most commonly present on their

source code. We also analyze to what extent those mechanisms are consistent among and within

JavaScript packages.

33

Chapter 4

4 Mining API Deprecation in JavaScript Packages

Software packages expose APIs to provide reusable functionality. However, APIs

evolve over time and might be discontinued or promote breaking changes to their consumer

applications. In such cases, it is recommended that package maintainers communicate via

deprecation messages that the use of a certain API should be avoided or updated. Unlike other

popular programming languages, such as Java and C#, JavaScript provides no native

deprecation mechanisms. In the previous chapter, we conducted a survey study that suggested

that there is no standard approach to deprecate APIs in JavaScript. However, participant

developers indicated four mechanisms that are most commonly used: deprecation utility, code

comment, JSDoc annotation and console message.

In this chapter, we present a quantitative mining study aiming at analyzing API

deprecation occurrences in popular JavaScript libraries. The goal is to provide a deeper

understanding of which deprecation mechanisms are most commonly present in popular

JavaScript packages and to what extent deprecation strategies are consistent among and within

JavaScript libraries. In our study, we mine the source code of the 320 most dependent upon

JavaScript packages on npm and search for deprecation occurrences that match one of the top

four mechanisms developers indicated on the survey. Section 4.1 presents our main goal and

the research questions we designed for this study. Section 4.2 details the study design, including

our source code mining strategy. Section 4.3 reports the results. We discuss the threats to

validity in Section 4.4 and conclude this chapter in Section 4.5.

4.1 Goal and Research Questions

In order to better understand which deprecation mechanisms are most commonly present

in popular JavaScript packages, and to what extent deprecation mechanisms are consistent

among and within JavaScript packages, we investigate two research questions:

▪ RQ1: What deprecation API mechanisms are the most common in popular JavaScript

packages? We investigate four common deprecation mechanisms, according to

developers, and analyze how they are actually implemented in the source code of

popular JavaScript packages.

34

▪ RQ2: To what extent are deprecation strategies consistent in popular JavaScript

packages? We analyze if the deprecation mechanisms mined are consistently adopted

in a package or among all packages, and if they are used alone or combined.

4.2 Study Design

This section describes the methodology we followed to answer the research questions

presented in Section 4.1. Figure 4.1 presents the steps we followed in the study. First, we present

how we selected the JavaScript packages to compose the data set we used. Then, we

downloaded the selected packages. Afterwards, we describe the search strategies we adopted to

find API deprecation occurrences in the target libraries. Next, we detail how we identified

deprecation occurrences through abstract syntax trees. Then, we classified all deprecation

occurrences found into one of four deprecation mechanisms. Finally, we conducted the

collected data analysis.

Selecting Candidate JavaScript Packages: In order to answer our research questions, we

were interested in analyzing popular JavaScript libraries and investigating which deprecation

mechanisms they used to deprecate their APIs.

Figure 4.1 – Mining study methodology steps.

Thus, we first selected the top-320 most depended upon packages according to the npm

registry18 to compose our library data set. npm is the largest and most popular package manager

and repository for JavaScript applications. Therefore, the npm registry website is an indicator

of package popularity and their amount of client applications. To identify characteristics of

these JavaScript packages, we also collected metrics from their GitHub repositories: stars,

forks, contributors, and commits.

Figure 4.2 shows those statistics about these packages based on npm and GitHub data

retrieved in July, 2021. In particular, it presents box plots with the number of dependent clients,

stars, forks, GitHub contributors and commits. We collected the first metric from npm, while

18 https://www.npmjs.com/browse/depended

35

the others were obtained from GitHub. As can be observed in this figure, the selected packages

are not only highly popular (e.g., median of 8.6K stars), but also forked a lot. They are also

active and have thousands of dependent clients. For example, the top-3 libraries have 280K,

235K, and 172K dependents, respectively.

Figure 4.2 – JavaScript packages characteristics: npm dependents and GitHub statistics.

Searching for Deprecation Occurrences: We downloaded the source code of the 320

selected packages, considering their latest stable version in March 2021. We then searched for

all occurrences of the substring deprecat on JavaScript files to find possible deprecation

candidates. We also tried to find deprecation occurrences by using the keyword obsolete, but

we only found it in 18 files and none of them were deprecation occurrences. Thus, we focus our

research on the most used term for depreciation (deprecat). While navigating through package

files, we only considered main source code files, excluding test, minified, and non-JS files (e.g.,

CSS and HTML). Next, we use Flow19, a well-known JavaScript code parsing library

maintained by Facebook, to parse each file containing deprecation candidates, and to generate

their corresponding abstract syntax trees. An abstract syntax tree (AST) is a tree representation

of the source code structure written in a programming language. Each node of the tree has a

type and represents a language syntax occurring in the source code. By analyzing ASTs, we are

able to programmatically detect, for instance, code comments and their content, function

declarations and their identifier names, expression calls and their components, and many other

components of code structure and language syntax. Listing 4.1 shows an example of an AST.

19 https://flow.org

36

If we look at lines 5 to 15, we can note that a function named power is being declared with one

parameter named base. In addition, lines 41 to 45 describes a code comment, of type line,

starting and ending on line 1, containing Returns the base to the power of two. From this tree

structure, we are able to programmatically detect JavaScript constructs and determine

deprecation occurrences.

Based on the most common mechanisms indicated by developers in our survey study

(Chapter 3), we focused on finding and automatically categorizing deprecation occurrences of

4 types. Listing 4.2 presents code snippets of each one of those deprecation solutions:

deprecation utility, code comment, JSDoc annotation, and console message. We used the ASTs

obtained from the analyzed JavaScript files to automatically find occurrences of deprecation,

based on the matching rules for each category described as follows:

1. Deprecation utility: any function declaration or call in which the function identifier

name matches the substring deprecat, as demonstrated in Listing 4.2;

2. Code comment: any type of code comment includes matches the substring deprecat, as

demonstrated in Listing 4.2, excluding occurrences of JSDoc annotations;

3. JSDoc annotation: the exact usage of the JSDoc @deprecated annotation inside a

comment, as demonstrated in Listing 4.2;

4. Console messages: calls of any console function - such as warn, log, error - in which

the message argument is a string literal that matches the substring deprecat, as

demonstrated in Listing 4.2.

We manually evaluated samples of each category to measure the precision of our script

to correctly identify API deprecation (each sample size ensured a confidence level of 95% and

a confidence interval of 5%). Each deprecation case was evaluated by the author of the

dissertation and validated by the supervisors. In case of conflict, all researchers discussed until

an agreement was reached. In this preliminary evaluation, we find a precision of 98% for

deprecation utility, 81% for code comment, 100% for JSDoc comment, and 100% for console

message. This way, our tool can be used with a good level of confidence.

37

Listing 4.1 – Example of AST generated from code snippet.

38

Listing 4.2 – Examples of JavaScript deprecation approaches.

4.3 Study Results

We observed deprecation occurrences on 122 (38%) out of the 320 analyzed packages.

Considering those 122 packages, we found 2,501 deprecation occurrences in 681 (˜2%) out of

35,318 files.

Figure 4.3a presents the deprecation occurrences by category. The most frequent

deprecation mechanism is deprecation utility (41.7% of the cases), which represents any sort

of code function specially written to support deprecation. This category is followed by code

comment (34.5%) and JSDoc annotation (18.8%). Lastly, the direct usage of console messages

is the least common (4.7%). It is important to note that, although deprecation utility accounts

for almost half of deprecation occurrences present in subject packages, fewer packages adopt

this strategy when compared to code comments. For instance, package @alifd/next comprises

41.4% (432) of the 1,044 deprecation utility occurrences. We believe that this explains why

fewer developers indicated the usage of deprecation utilities as opposed to other strategies in

our survey results described in Chapter 3.

Figure 4.3b presents the distribution of the deprecation per package. The median values

range from 2 (console message) to 6 (deprecation utility). Notice that a small number of

39

packages concentrate a large number of occurrences, particularly in the case of deprecation

utilities. Indeed, packages that adopt deprecation utility tend to have more deprecation

occurrences and may have specific deprecation needs that are not satisfied by other simpler

mechanisms.

RQ1: What deprecation API mechanisms are the most common in popular JavaScript

packages? There is no standard approach to deprecate JavaScript APIs. However, we find

that deprecation utility is the most frequent solution (41.7%), followed by code comment

(34.5%), JSDoc annotation (18.8%) and console message (4.7%).

Next, Figure 4.3c summarizes the combination of deprecation strategies per package.

Around 52% of the analyzed packages adopt only one deprecation mechanism, while 28.7%

combine two deprecation mechanisms. As we increase the number of combined mechanisms,

the number of packages decreases. For example, we only found the occurrence for the four

studied mechanisms in 6 (4.9%) packages. Figure 4.3d presents a detailed view of these data: a

Venn diagram showing the intersection of deprecation mechanisms. This detailed view is

presented in two levels of granularity: package and file level. In both package and file levels,

the most adopted single strategy is code comment (38 packages and 216 files). The most

common combination is deprecation utility and code comment, which is present in 16 packages

and 39 files. Although they are not adopted by many packages, deprecation utility and JSDoc

annotation are highly used at the file level, with 174 and 123 occurrences, respectively. This

suggests that packages that adopt those two strategies tend to use those mechanisms very

frequently. Also, similarly to what occurs at the package level, most files implement a single

deprecation mechanism. The two most frequent combinations at file level are deprecation utility

and code comment (39 files) and code comment and JSDoc annotation (28 files).

40

Figure 4.3 – API deprecation mechanism occurrences in JavaScript packages. (a) Deprecation occurrences by

category. (b) Occurrences distribution by category. (c) Number of packages by the number of deprecation

strategies adopted. (d) Number of packages and files that adopt mechanism combinations.

41

In summary, we find no standard solution to deprecate JavaScript APIs. Moreover, we

observe that the four studied deprecation strategies (deprecation utility, code comment, JSDoc

annotation, and console message) are used both standalone or combined at package and file

levels.

RQ2: To what extent are deprecation strategies consistent in popular JavaScript

packages? JavaScript deprecation mechanisms might be used alone or combined at packages

and file levels. Over half of the analyzed packages (52.5%) adopt only one deprecation

mechanism, while the remaining part combines two or more deprecation strategies. The most

adopted single strategy is code comment, whereas the most common combination is

deprecation utility and code comment.

4.4 Threats to Validity

The quantitative study presented in this chapter has some limitations that could

potentially threaten our results, as we explain next. First, we focused the analysis on 320

JavaScript open-source packages hosted in npm, the most popular JavaScript package manager.

Despite these observations, our findings cannot be generalized to other systems implemented

in other languages or closed-source packages. Additionally, we analyzed packages with a large

number of dependent clients, as we expect them to be examples of well-maintained packages

and representative case studies of open-source packages with many dependent clients.

However, their maintainers may not represent the whole population of JavaScript developers.

However, GitHub is the most popular software development platform, for both public and

private packages. Future replication work on this topic could be conducted to address these

issues.

Second, to identify deprecation occurrences, we only searched for matches of deprecat.

We tried to find other occurrences by using the keyword obsolete, but only 18 out of 35,318

files were found and none of them indicated deprecation. Thus, we focused on deprecat

occurrences. Although being deliberate, this choice might have caused us to miss cases in which

other terms are used. Furthermore, since we mine all JavaScript files, the deprecation strategies

we analyzed might also be related to internal APIs that are not visible to consumers. Future

studies that select only external APIs should address this issue. Moreover, the JavaScript tool

for the mining study was implemented upon Flow, a well-known JavaScript code parsing library

maintained by Facebook and, thus, the risk of errors is reduced. Additionally, we have manually

42

inspected its output (each sample with a confidence level of 95% and a confidence interval of

5%). We find a precision of 98% for deprecation utility, 81% for code comment, 100% for

JSDoc comment, and 100% for console message. Thus, our script can be used with a good level

of confidence. Finally, the categorization of the deprecation occurrences we mined is subjected

to the author/interpreter bias, although other members of our group verified the categories.

4.5 Final Remarks

In this chapter, we presented an empirical mining study regarding API deprecation in

the JavaScript ecosystem. This work can help developers better understand JavaScript API

deprecation approaches and offer guidance on which mechanisms are more appropriate to a

certain package context.

We downloaded the top 320 popular JavaScript packages on npm and analyzed their

source code to identify API deprecation occurrences. After investigating API deprecation

occurrences on those packages, our results suggest that there is no standard approach to

deprecate JavaScript APIs and there is no consistency in implementing a deprecation strategy.

However, we find that deprecation utility is the most frequent solution (41.7%), followed by

code comment (34.5%), JSDoc annotation (18.8%) and console message (4.7%). Additionally,

we find that those deprecation mechanisms might be used alone or combined at packages and

file levels. Over half of the analyzed packages (52.5%) adopt only one deprecation mechanism,

while the remaining part combines two or more deprecation strategies. The most adopted single

strategy is code comment, whereas the most common combination is deprecation utility and

code comment.

In the next chapter of this dissertation, we take a step further on this investigation and

analyze how API deprecation evolves overtime. We continue analyzing popular JavaScript

libraries and discuss how API deprecation mechanisms change between releases. As a result,

we identify increasing and decreasing trends and investigate when deprecation is usually

introduced.

43

Chapter 5

5 Analysis of Deprecation Evolution

Software packages expose APIs to provide reusable functionality. However, as software

systems evolve, APIs evolve as well, and thus might be discontinued or promote breaking

changes to client applications. In such cases, it is recommended that package maintainers

communicate via deprecation messages that the use of a certain API should be avoided or

updated. Unlike other popular programming languages, such as Java and C#, JavaScript

provides no native deprecation mechanisms.

In the previous chapter, we conducted a mining study to analyze API deprecation

occurrences in popular JavaScript packages. Results suggest that there is no standard approach

to deprecate JavaScript APIs and there is no consistency in implementing a deprecation

strategy. Additionally, we find that the analyzed deprecation mechanisms (deprecation utility,

code comment, JSDoc annotation, and console message) might be used alone or combined at

package and file levels. In this chapter, we investigate how deprecated APIs evolve over the

lifetime of third-party packages. We mine the source code of the 50 most-dependent upon

JavaScript packages on Libraries.io and analyze how the number of deprecated APIs increase

and decrease between version releases. Section 5.1 presents our main goal and the research

questions we propose for this study. Section 5.2 details the study methodology, including our

source code mining strategy and history analysis algorithm. Then, section 5.3 reports the results.

Finally, we discuss the threats to validity in Section 5.4 and conclude this chapter in Section

5.5.

5.1 Goal and Research Questions

In order to better understand how deprecated APIs in JavaScript evolve over time in

third-party packages, and when those APIs are added or removed, we investigate two research

questions:

Figure 5.1 – Survey study methodology steps.

44

▪ RQ1: Do deprecated APIs increase or decrease overtime in JavaScript packages? We

investigate common deprecation mechanisms in JavaScript and analyze how deprecated

API changes over the lifetime of popular packages, i.e, if they present upward or

downward trends.

▪ RQ2: Are deprecated APIs usually introduced and removed in major or minor releases?

Study results from Chapter 3 suggest that deprecation should be introduced on minor

releases and removed on major breaking releases. We investigate to what extent this

recommendation is followed in popular JavaScript packages.

5.2 Study Design

This section describes the study design we followed to answer the research questions

presented in the previous. Figure 5.1 presents the steps we followed in the study. We first

present how we selected the JavaScript packages and their eligible versions to compose the data

set for the study. Next, we describe the deprecation search and classification strategies through

abstract syntax trees. Afterwards, we detail how we use the Mann-Kendall Trend Test to

determine if there is an upward, downward or no deprecation trend between packages versions.

Finally, we analyze the data collected to answer the study research questions.

Selecting Candidate JavaScript Package Versions: In order to answer the research

questions proposed in this study, we were interested in analyzing popular JavaScript packages

and investigating how deprecation evolved over time and when deprecated APIs are usually

introduced or removed. We start by selecting the top-50 JavaScript packages sorted by the

number of dependents on Libraries.io. Libraries.io20 is a popular discovery service that indexes

data from several package managers. They track package releases, project’s code, dependencies

and other useful information about open-source projects from a wide variety of programming

languages. Thus, Libraries.io is a good data source for highly dependent JavaScript packages.

We used the RESTful API provided by Libraries.io to list the top-50 JavaScript packages with

the most dependents count thought the endpoint

https://libraries.io/api/search?api_key=API_KEY&languages=JavaScript&order=desc&sort=

dependents_count&per_page=50&page=1.

20 https://libraries.io/platforms

45

Figure 5.2 – Analyzed JavaScript packages characteristics.

Figure 5.2 shows some statistics about the selected packages, retrieved in July, 2021,

from Libraries.io. It presents box plots with the number of npm dependents in figure 5.2a,

GitHub stars in figure 5.2b, and GitHub forks in figure 5.2c. As can be observed in this figure,

the selected projects are very popular (e.g., median of 15.7K stars) and forked many times. In

terms of dependent clients, the top-3 libraries have 280K, 235K, and 172K dependents,

respectively.

For each package, we downloaded all versions, considering their latest patch releases.

We also removed unstable versions, such as those made available from alpha and beta releases.

We took this approach to remove possible inconsistencies on the number of deprecated APIs

between releases. Table 5.1 details all selected packages for this study, their names and number

of versions. Note that they are all very popular packages and most of them have a considerable

amount of releases.

Searching for Deprecation Occurrences: We downloaded the source code of all versions

from the 50 selected packages, up to their latest stable version in July 2021.

46

Table 5.1 – List of selected packages and number of versions.

Next, we searched for all occurrences of the substring deprecated JavaScript files to find

possible deprecation candidates in all package versions. We only considered main source code

files, excluding test, minified, and non-JS files (e.g., CSS and HTML). Next, we use Flow21, a

well-known JavaScript code parsing library maintained by Facebook, to parse each file

containing deprecation candidates, and to generate their corresponding abstract syntax trees

(ASTs). Based on the most common strategies indicated by developers on our survey study

(Chapter 3), we focused on finding and automatically categorizing, from the generated ASTs,

deprecation occurrences of 4 types: deprecation utility, code comment, JSDoc annotation, and

console message. For each package, we count how many deprecated APIs each version has.

Additionally, we check if the amount of deprecated APIs increase or decrease between releases

and, if either case happens, in which type of release it occurred (major or minor). Identifying

Deprecation Trends: Afterwards, using the historical amount of deprecated APIs for each

package, we use the Mann-Kendall Trend Test (MK Test) to verify if there is any upward or

downward trend on the deprecation occurrences for each package. The MK Test evaluates

whether a set of historical values tend to increase or decrease over time. It is based on a non-

parametric form of monotonic trend regression analysis. To perform a MK test, we compute

21 https://flow.org

47

the difference between a later value and all earlier values, (yj − yi), where j>i, and assign 1, 0,

or –1 to positive differences, no differences, and negative differences, respectively. Then,

calculate the statistical test, S, from the sum of all those integers, as follows:

A large positive S suggests an upward trend, while a large negative S suggests a

downward trend. When S is small, no trend is indicated. The statistical test τ, which has a range

of –1 to +1, can be computed as:

The null hypothesis of no trend is rejected when S and τ are significantly different from

zero. To perform the trend test, we used the pymannkendall Python package, which implements

the MK Test (Hussain and Mahmud, 2019).

5.3 Results

We observed deprecation occurrences on 32 (64%) out of the 50 analyzed packages.

Additionally, we analyzed 1918 versions. Figure 5.3 presents two box plots represent ing the

distribution of the amount of versions per package. Boxplot 5.3a shows the distributions of the

amount of versions from all analyzed packages. Moreover, boxplot 5.3b shows the distributions

of the amount of versions from packages with deprecation occurrences. We observe that

packages with deprecation occurrences tend to have more releases.

Table 5.2 presents the deprecation trend results of the analyzed packages. The first

column indicates the trend results for each package. The second and third columns describe the

package names and the number of analyzed releases. In the last column, we display line plots

representing the evolution in the number of deprecated APIs. We found 18 packages (36%), out

of 50, with no deprecation occurrences (shown as No Deprec.). From 32 packages with

deprecation occurrences, 22 (69%) packages present statistically significant trends (p-value >

0.05): 19 (59.4%) suggest an upward trend, while 3 (9.4%) packages indicate a downward trend.

Finally, 10 (31.2%) packages present no statistically significant trend.

48

In addition to the overall number of deprecated over time, we also investigated how

specific deprecation mechanisms evolve. In particular, we consider the deprecation

mechanisms code comment, JSDoc annotation, console message, and deprecation occurrence.

As summarized in Table 5.3, the first column presents the deprecation mechanisms, while the

second, third, and fourth columns present the trend results. The total of packages in the last row

is greater than the sum of packages with deprecated APIs (32) because the same package might

adopt more than one mechanism.

Figure 5.3 – Versions in packages.

Considering the deprecation code comment, we found 29 packages with deprecation

occurrences. From those, 17 packages (58.7%) present an increasing trend in the usage of this

mechanism, while 5 (17.2%) show a decreasing trend. Regarding the deprecation JSDoc

annotation, we detected 8 packages with deprecation occurrences: 5 (62.5%) with an upward

trend and 1 (12.5%) with a downward trend. For console messages, there were 17 packages

with deprecation occurrences: 4 (23.5%) with an upward and 5 (29.4%) with a downward trend.

Finally, we detected 20 packages with deprecation utility: 14 (70%) with an upward trend.

49

Table 5.2 – Mann-Kendall Trend Test results of deprecation occurrences on analyzed packages.

50

Table 5.3 – Mann-Kendall Trend Test results of deprecation occurrences on analyzed, considering individual

deprecation mechanisms.

RQ1: Do deprecated APIs increase or decrease overtime in JavaScript packages:

Close to 60% of the analyzed packages present an increase in the number of deprecated APIs,

while only 9.4% show decreasing trends. In particular, 70% of the packages with deprecation

utility present upward trends. On the other hand, the deprecation mechanism with higher

downward trends is console message (29.4% of the packages).

Study results from Chapter 3 emphasized recommendations for introducing depreciation

on minor releases and removing them on major breaking releases, following Semantic

Versioning. Table 5.4 presents the number of major and minor releases launched among the

analyzed packages, and the number of increased and decreased deprecated APIs. In total, we

identified 127 major releases. In those releases, packages increased their number of deprecated

APIs 57 times and decreased in 19 cases. Thus, we have an increase ratio of 0.45 and a decrease

ratio of 0.15 deprecated API by major release. When we look at minor releases, we observe

1,357 launches. In those minor releases, they increased their number of deprecated APIs 1,246

times and decreased 718 times. Hence, we have an increase ratio of 0.92, and a decrease ratio

of 0.53 deprecated API by a minor release. These results reveal that different from what the

JavaScript community recommends, popular JavaScript packages usually add and remove

deprecated APIs on minor releases instead of removing them on major releases.

Table 5.4 – List of selected projects and number of versions.

51

RQ2: Are deprecated APIs usually introduced and removed in major or minor

releases? Popular JavaScript packages usually add and remove deprecated APIs on minor

releases instead of removing them on major releases.

5.4 Threats to Validity

The study presented in this chapter has some limitations that could potentially threaten

our results, as we explain next. First, we focused the historical analysis on 50 popular JavaScript

open-source packages, according to Libraries.io. As a result of our decisions, our find ings

cannot be generalized to other systems implemented in other languages or closed -source

packages. Additionally, we analyzed packages with a large number of dependent clients, as we

expect them to be examples of well-maintained packages and representative case studies of

open-source packages with many dependent clients. However, their maintainers may not

represent the whole population of JavaScript developers. However, GitHub is the most popular

software development platform, for both public and private packages. Future replication work

on this topic could be conducted to address these issues.

Second, to identify deprecation occurrences, we only searched for matches of deprecat.

Although being deliberate, this choice might have caused us to miss cases in which other terms

are used. Furthermore, since we mine all JavaScript files, the deprecation strategies we analyzed

might also be related to internal APIs that are not visible to consumers. Future studies that select

only external APIs should address this issue. Moreover, the JavaScript tool for the mining study

was implemented upon Flow, a well-known JavaScript code parsing library maintained by

Facebook and, thus, the risk of errors is reduced. Additionally, we have manually inspected its

output (each sample with a confidence level of 95% and a confidence interval of 5%). We find

a precision of 98% for deprecation utility, 81% for code comment, 100% for JSDoc comment,

and 100% for console message. Thus, our script can be used with a good level of confidence.

Finally, the categorization of the deprecation occurrences we mined is subjected to the

author/interpreter bias, although other members of our group verified the categories.

5.5 Final Remarks

In this chapter, we presented an historical analysis of API deprecation in popular

JavaScript packages. This work can help the software engineering community better understand

how JavaScript deprecated APIs are maintained over time.

52

We downloaded the top-50 popular JavaScript packages, according to Libraries.io, and

analyzed their source code from different versions to analyze how deprecated APIs evolve.

After investigating deprecation trends on those packages, our results suggest that most packages

(59.4%) indicate increasing trends of deprecated APIs. When we look at specific deprecation

strategies, we observe that 70% of packages with the deprecation utility type present upward

trends. Additionally, we note that the deprecation mechanism with higher downward trends is

console message, in which the usage has gone down in 29.4% of the analyzed packages.

Furthermore, our results indicate that the number of deprecated APIs, in general, tend to

increase at a higher rate than they decrease. We also investigated when deprecated APIs are

usually introduced and removed. As a result, we observed that most deprecation occurrences

are both added and removed on minor releases, contradicting what was recommended in the

survey study in Chapter 3.

In the next chapter of this dissertation, we present the final considerations by concluding

the dissertation, presenting the main contributions and limitations of this work and introducing

insights for future work.

53

Chapter 6

6 Final Considerations

Understating JavaScript deprecation practices is important as insights can be provided

about how developers are actually handling deprecated APIs. Additionally, it might also benefit

developers in several ways, such as revealing common deprecation strategies in the ecosystem,

endorse a clear communication environment in the community, improve the overall quality of

JavaScript packages, and ease maintenance work. In this chapter, we present the final

considerations regarding this dissertation. We first conclude our work by summarizing our

motivation, goals, methodological procedures, results and contributions. Then, we discuss the

main contributions of this dissertation. Finally, we give directions for future work.

6.1 Work Overview

JavaScript has become extremely popular over the last few years, and has been reported

as the most commonly used programming language for several consecutive years. Furthermore,

software reuse has become a key factor for a cost and time efficient software development

package (Uddin et al., 2011). npm has reached over one million hosted JavaScript packages,

making it the largest software repository to date (Tal and Maple, 2019). Despite the growth on

the usage of JavaScript external libraries and APIs, little is known about JavaScript API

deprecation mechanisms and practices. Additionally, there are no detailed studies related to this

topic in the JavaScript ecosystem.

To fill these research gaps, we proposed three empirical studies. First, we conducted a

survey study with developers to understand what API deprecation strategies are most commonly

present in JavaScript packages and libraries. Results suggest that there is no standard or

preferable strategy to deprecate JavaScript APIs. In general, the most common deprecation

mechanisms are console message, project documentation, JSDoc annotation, and code

comment. Additionally, developers learn about deprecated JavaScript APIs primarily via

console message and project documentation. Also, most JavaScript developers (70%) only

address deprecation issues if necessary or if time permits. Furthermore, we presented an

extensive analysis on the current state of practice of JavaScript deprecation, along with

approaches recommended by developers for deprecating APIs. In summary, developers

suggested that planning a deprecation strategy and making clients aware of it is an efficient way

54

to handle deprecation in a JavaScript project. Furthermore, respondents advised to retain less

deprecated APIs in favor of code health. However, if they need to be maintained, either add

UNSAFE__ or similar prefix to a deprecated API or provide them through an opt-in flag, such

as –legacy or –insecure.

In the second study, we proposed a mining study aiming at analyzing API deprecation

mechanisms in popular JavaScript libraries. To achieve this goal, we downloaded the top 320

popular JavaScript packages on npm and analyzed their source code to identify and classify

API deprecation occurrences. After analyzing those packages, results suggest that there is no

standard approach to deprecate JavaScript APIs and there is no consistency in implementing a

deprecation strategy. Still, we find that deprecation utility is the most frequent solution (41.7%),

followed by code comment (34.5%), JSDoc annotation (18.8%) and console message (4.7%).

Additionally, we find that those deprecation mechanisms might be used alone or combined at

package and file levels. Over half of the analyzed packages (52.5%) adopt only one deprecation

mechanism, while the remaining part combines two or more deprecation strategies. The most

adopted single strategy is code comment, whereas the most common combination is deprecation

utility and code comment.

Lastly, our third study investigates how deprecated APIs evolve over the lifetime of

JavaScript packages. This time, we downloaded the top 50 popular JavaScript packages,

according to Libraries.io, and analyzed their source code among 1918 different versions. After

investigating deprecation trends on those packages, our results indicate that most packages

(59.4%) present increasing trends of deprecated APIs. Looking at deprecation strategies

separately, we note that 70% of packages with deprecation occurrences of the deprecation utility

type present upward trends. Additionally, we note that the deprecation mechanism with higher

downward trends is console message, in which the usage has gone down in 29.4% of the

analyzed packages. Furthermore, our results suggest that the number of deprecated APIs, in

general, tend to increase at a higher rate than they decrease. Additionally, we observed that

most deprecation occurrences are usually both added and removed on minor releases rather than

on major ones.

6.2 Contributions

We believe this dissertation has important contributions to the software engineering

research community and industry. Next, we present our main contributions.

55

▪ We provide a novel large-scale study on JavaScript API deprecation practices and

strategies adopted by developers and popular JavaScript packages;

▪ We present insights and thoughts regarding the current state of JavaScript depreciation

provided by actual developers. We believe that information can contribute to future

work;

▪ We provide a set of recommendations and good practices for deprecating APIs in

JavaScript, also supplied by actual developers;

▪ We show the most common deprecation strategies adopted on popular JavaScript open-

source packages, and how they are combined together. This can support other

professionals during API design processes, and make consumer developers more aware

of deprecation mechanisms;

▪ We present an overview of how deprecated APIs evolve over time in popular JavaScript

packages, revealing historical trends and change rates. Additionally, we show when

deprecated APIs are usually added and removed.

6.3 Future Work

As future work, we plan to go further and interview library maintainers to understand

their rationale behind the adoption of multiple deprecation strategies or ad -hoc local solutions.

Furthermore, our survey study brought to our attention the practice of introducing breaking

changes communicated by other means, such as Semantic Versioning, project documentation

and social media, in preference to API deprecation. We hypothesize that the fast -moving

JavaScript community might prefer such approaches in favor of package publication speed.

However, we wonder to what extent JavaScript developers are aware of Semantic Versioning

to update project dependencies. That also remains a future work plan.

As future work, we plan to investigate other characteristics of API deprecation, such as

replacement messages and their structure, external documentation and API evolution. We also

plan to extend this research by creating a tool to automatically identify deprecation, suggest

replacement messages, and alert developers about deprecated APIs. We plan to implement this

tool and make it available for developers. Finally, based on our findings, we plan to propose

guidelines on JavaScript API deprecation best practices that help and improve developers’

experience.

56

BIBLIOGRAPHY

Bogart, C., Kästner, C., Herbsleb, J., & Thung, F. (2016). How to break an api: cost

negotiation and community values in three software ecosystems. In Proceedings of the 2016

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp.

109-120).

Brito, A., Valente, M. T., Xavier, L., & Hora, A. (2020). You broke my code:

Understanding the motivations for breaking changes in APIs. Empirical Software Engineering,

25(2), 1458-1492.

Brito, G., Hora, A., Valente, M. T., & Robbes, R. (2018). On the use of replacement

messages in API deprecation: An empirical study. Journal of Systems and Software, 137, 306-

321.

Granli, W., Burchell, J., Hammouda, I., & Knauss, E. (2017). The driving forces of API

evolution. In Proceedings of the 14th International Workshop on Principles of Software

Evolution (pp. 28-37).

Hussain, M. & Mahmud, I. (2019). pymannkendall: a python package for non-

parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556.

Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X., & Klein, J. (2018). Characterising

deprecated android apis. In International Conference on Mining Software Repositories (pp.

254-264).

Moser, S. & Nierstrasz, O. (1996). The effect of object-oriented frameworks on

developer productivity. Computer, 29(9), 45-51.

Robbes, R., Lungu, M., & Röthlisberger, D. (2012). How do developers react to api

deprecation? The case of a Smalltalk ecosystem. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering (pp. 1-11).

Sawant, A. A., Robbes, R., & Bacchelli, A. (2016). On the reaction to deprecation of

25,357 clients of 4+1 popular java APIs. In 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp. 400-410).

Sawant, A. A., Aniche, M., van Deursen, A., & Bacchelli, A. (2018a). Understanding

developers’ needs on deprecation as a language feature. In 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE) (pp. 561-571).

Sawant, A. A., Huang, G., Vilen, G., Stojkovski, S., & Bacchelli, A. (2018b). Why are

features deprecated? An investigation into the motivation behind deprecation. In 2018 IEEE

International Conference on Software Maintenance and Evolution (ICSME) (pp. 13-24).

57

Sawant, A. A., Robbes, R., & Bacchelli, A. (2018c). On the reaction to deprecation of

clients of 4 + 1 popular java apis and the jdk. Empirical Software Engineering, 23(4), 2158-

2197.

Sawant, A. A., Robbes, R., & Bacchelli, A. (2019). To react, or not to react: Patterns of

reaction to API deprecation. Empirical Software Engineering, 24(6), 3824-3870.

Tal, L. & Maple, S. (2019). npm passes the 1 millionth package milestone! what can we

learn? In https://snyk.io/blog/npm-passes-the-1-millionth package-milestone-what-can-we-

learn. Last access: Nov, 2019.

Tourwe, T. & Mens, T. (2003). Automated support for framework-based software. In

International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings. (pp. 148-

157).

Uddin, G., Dagenais, B., & Robillard, M. P. (2011). Analyzing temporal API usage

patterns. In 2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2011) (pp. 456-459).

Wang, J., Li, L., Liu, K., & Cai, H. (2020). Exploring how deprecated python library

apis are (not) handled. In Proceedings of the 28th acm joint meeting on European Software

Engineering Conference and Symposium on The Foundations of Software Engineering (pp.

233-244).

Xavier, L., Brito, A., Hora, A., & Valente, M. T. (2017). Historical and impact analysis

of API breaking changes: A large scale study. In 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER) (pp. 138-147).

Yasmin, J., Tian, Y., & Yang, J. (2020). A first look at the deprecation of restful APIs:

An empirical study. In 2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME) (pp. 151-161).

	ae34650c648dcd970fc67a4b974a40089ae736d44eaaf59fc6ecea1f8e6c7a58.pdf
	51ef6600df939d174aca8359ffbd067bf185900ee4ec302995018a6b4b067a14.pdf

	ca26f84fd50281cf179a67553f29b2db6ed6977345fa88ac3237123581e19735.pdf
	7c80a2e10c6cb4b1dd5d0eb1f8b3f0bdcd8f742dd86beda7340650fec34f5086.pdf
	ae34650c648dcd970fc67a4b974a40089ae736d44eaaf59fc6ecea1f8e6c7a58.pdf
	811159929c9b97045cb042fb2a192ee456c7c05be2ec35ffe6eb5b8e32c2fca4.pdf
	51ef6600df939d174aca8359ffbd067bf185900ee4ec302995018a6b4b067a14.pdf

