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Resumo

Numerosos materiais, embora pareçam macroscopicamente homogêneos, geralmente

apresentam uma microestrutura heterogênea que influencia diretamente o compor-

tamento estrutural. A abordagem fenomenológica adotada na mecânica do cont́ınuo

clássica não contabiliza individualmente essa influência, especialmente nos casos

em que a estrutura em análise é pequena em comparação com sua microestru-

tura. Dentro do quadro da mecânica do cont́ınuo, as chamadas teorias de con-

t́ınuos generalizados são particularmente adequadas para lidar com as questões

acima incorporando o comportamento microestrutural em sua formulação. A teoria

micromórfica está inclúıda nesta classe geral de cont́ınuos generalizados e, mais

especificamente, no grupo que incorpora graus adicionais de liberdade às part́ıculas

materiais. Outro aspecto dos cont́ınuos generalizados é sua capacidade de lidar

com a questão da localização em materiais parcialmente frágeis modelados com

modelos de degradação elástica como resultado de seu caráter não-local. A fim de

permitir a representação de meios parcialmente frágeis com a teoria do cont́ınuo

micromórfico, este trabalho formula modelos de dano escalar-isotrópico para um

cont́ınuo micromórfico na estrutura de modelos constitutivos do sistema INSANE,

inicialmente concebido para o cont́ınuo clássico e depois expandido para o con-

t́ınuo micropolar. A fim de representar meios heterogêneos, o algoritmo take-and-

place para a geração da microestrutura heterogênea associado a uma estratégia

de homogeneização para a representação de meios heterogêneos é proposto. As

implementações computacionais são baseadas em um formato tensorial de uma

formulação unificada de modelos constitutivos propondo uma representação tensorial

compacta para o cont́ınuo micromórfico e uma técnica de homogeneização para

obter as relações constitutivas micromórficas. Foram realizadas simulaçẽs para

atestar os modelos constitutivos implementados, bem como para estudar a influência

no comportamento material e estrutural da introdução da heterogeneidade. Os

resultados obtidos verificam as hipóteses propostas e as implementações realizadas,
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fornecendo uma base para a análise não linear de meios micromórficos homogêneos

e não homogêneos e possibilitando posśıveis pesquisas futuras sobre o tema.

Palavras-Chave: Cont́ınuo micromórfico; Mecânica do dano cont́ınuo; modelos cons-

titutivos de degradação elástica; meios heterogêneos; materiais parcialmente frágeis;

sistema INSANE.
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Abstract

Numerous materials, although they appear macroscopically homogeneous, usually

presents a heterogeneous microstructure that directly influences the structural be-

havior. The phenomenological approach pursued in the classical continuum mechan-

ics does not individually accounts for this influence, specially in cases where the

structure or the specimen under analysis is small compared to its microstructure.

Within the framework of continuum mechanics, so-called generalized continuum

theories are particularly suited to deal with the above issues incorporating the

microstructural behavior on the formulation. The micromorphic theory is included

in this general class of generalized continua and, more specifically, in the group

that incorporates additional degrees of freedom to the material particles. Another

aspect of generalized continua is its ability to address the issue of localization in

quasi-brittle material modeled as elastic-degrading media as a result of its non-

local character. In order to allow the representation of quasi-brittle media with

the micromorphic continuum theory, this work formulates scalar-isotropic damage

models for a micromorphic continuum in the constitutive models framework of the

INSANE system, initially conceived for classic media and later expanded for the

micropolar continuum. In order to represent heterogeneous media, the take-and-

place algorithm for the microstructure generation associated to a homogenization

strategy is proposed. The computational implementations are based on a tensorial

format of a unified constitutive models formulation applying a compact tensorial

representation for the micromorphic continuum, and a homogenization technique

to obtain the micromorphic constitutive relations. Simulations were conducted in

order to attest the implemented constitutive models as well as for studying the

influence on the material and structural behavior of the heterogeneity introduction.

The obtained results verify the proposed hypotheses and the conducted implementa-

tions, providing the basis for non-linear analysis of homogeneous and inhomogeneous

micromorphic media and allowing possible further research on the topic.
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Chapter 1

Introduction

The modeling of damage and fracture in structures is and has always been an

important topic in the field of computational mechanics. As a consequence, there

is a growing demand for reliable material models which are capable of representing

all the phenomena involved in material failure. Concerning quasi-brittle materials, a

proper characterization of their behavior is of great importance taking into account

the large number of materials that falls into this category, e.g., concrete, rocks,

coarse-grained ceramics, and most fiber-reinforced materials.

As defined by Lemaitre and Desmorat (2005), a material “is considered quasi-

brittle when a dissipation prior to cracking exists with no or negligible permanent

strains” (p. 321). This macroscopic behavior of quasi-brittle materials is mainly

due to its characteristics at the micro scales1 and to defects that may exist at such

scales, such as grain and phase boundaries, inclusions, voids, and nucleation and

growth of microcracks. These features are closely related to the heterogeneity at the

micro scale. Figures 1.1 and 1.2 illustrate the heterogeneous microscopic structure

of concrete, wherein the features in the micro scale can be identified.

1In this study, the micro scale is considered as the observation level at a scale of around 10−3 m
where individual aggregate particles in the concrete are distinguished. However, other authors may
refer to this scale as the meso scale (see, e.g., Van Mier (1995); Krajcinovic and Lemaitre (1987)).

27
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Figure 1.1: Image of concrete at 70% aggregate volume (Wong et al., 2009)

Figure 1.2: Low-magnification image showing the microcracks on the microstructure of

concrete (Wong et al., 2009)

Therefore, the degradation of a quasi-brittle material is a complex phenomenon

strongly correlated to the heterogeneous character of its microstructure. Hence, a

detailed modeling of each individual process involved in failure proves to be compli-

cated and often not necessary, especially if only their overall impact in the material

behavior is of interest. For this reason, the discipline of Continuum Damage Models

(CDM) emerged, accounting for degrading effects in an average sense by incorpo-

rating damage variables into a standard continuum mechanics description. In other

words, applying this approach, a quasi-brittle medium is considered at the macro

scale as a continuum body throughout the loading process. One advantage of CDM

models is the modeling of crack initiation and propagation at the level of the con-

stitutive formulation, facilitating its implementation into standard non-linear finite

element codes.

In spite of the advantages, finite element computations based on continuum

damage models may suffer from a number of issues, e.g., strong mesh dependence.

These problems emerge from the softening behavior of such models, which is a
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characteristic of quasi-brittle materials. This softening phase is characterized by a

reduction in the load-carrying capacity of the material when a certain deformation

threshold is reached, leading to the concentration of the degrading phenomena in a

certain part of the body, process that called strain localization.

To overcome these shortcomings related to the problem of strain localization,

several methodologies were developed. Among the most efficient approaches are

those that introduce at the formulation level an internal material length based on

the non-local character of plasticity and damage. A valid alternative is represented

by the micromorphic continuum (Mindlin, 1964; Eringen and Şuhubi, 1964; Şuhubi

and Eringen, 1964), a generalized continuum theory in which the internal length is

related to an additional field that enriches the continuum kinematics with effects

connected to the microstructure of the material.

Considering the numerical modeling of heterogeneous materials, various concepts

have been developed regarding multiple scales. The theoretical concept of homoge-

nization primarily builds on the contributions of Hill (1963) and most homogeniza-

tion techniques have in common a procedure for determining the macroscopic overall

characteristics of a heterogeneous material (Hirschberger, 2008).

Taking into account the topics previously presented, this work proposes a formu-

lation for scalar-isotropic damage models specifically designed for the micromorphic

continuum implemented in the unified constitutive models framework of the soft-

ware INSANE (INteractive Structural ANalysis Environment)2. For the numerical

modeling of heterogeneous materials, the homogenization technique proposed by

Silva (2019) is applied to a heterogeneous microcontinuum, where the macroscopic

micromorphic constitutive relations are obtained through the solution of boundary

value problems at the micro scale according to the classical continuum theory.

The implementations were based on the tensorial format of a unified constitutive

models formulation that allows to implement different constitutive models indepen-

dently of the particular numerical method adopted for the problem solution.

2More information about the system and the studies developed on it are presented in Chapter
5.
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1.1 Objectives

1.1.1 General Objective

This work aimed to expand a unified formulation for elastic degradation based on

the micromorphic continuum, analogous to the existent ones based on the classical

and micropolar continua. Similar to the work of Gori (2018), peculiar efforts were

devoted to the extension and implementation of scalar-isotropic damage models for

the micromorphic theory. Furthermore, this work presents a multi-scale homoge-

nization technique to incorporate into the micromorphic theory the consideration of

a heterogeneous micro scale based on Silva (2019).

1.1.2 Specific Objectives

This study sought to achieve the following specific objectives:

1. Conduct a study of generalized continua in the literature focusing on the mi-

cromorphic theory;

2. Study the formulation and implementation in the INSANE system of the uni-

fied framework for elastic degradation for the classical and micropolar continua;

3. Carry out a study of scalar-isotropic damage models with focus on models

applied to generalized continua;

4. Expand the implementation of the unified framework to the micromorphic case

in the INSANE system;

5. Adapt the homogenization technique proposed by Silva (2019) to incorporate

heterogeneities at the micro scale;

6. Conduct a series of simulations in order to verify the implementations made.

1.2 Outline

This work is divided into eight chapters and one appendix. After this intro-

duction (Chapter 1), Chapter 2 presents some aspects related to the modeling of

quasi-brittle media. Basic concepts on the physics of quasi-brittle materials are

presented as well as on the analysis of such materials through continuum damage
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models, with focus on a unified framework for constitutive models. Chapter 2 also

briefly discusses the modeling of heterogeneous media.

Chapter 3 deals more specifically with the micromorphic continuum theory and

its formulation aspects, containing a brief summary of generalized continuum me-

chanics. It also presents an extension to micromorphic media of a unified formulation

for elastic degradation, where a tensorial formulation and scalar-isotropic damage

models are proposed.

The homogenization technique employed in this work is presented in Chapter 4

and also its extension for the homogenization of heterogeneous media. The compu-

tational implementations performed are detailed in Chapter 5 with a brief overview

of the INSANE system.

Chapter 6 illustrates the application of the damage models proposed for the

micromorphic continuum for the case of homogeneous media and also compares the

results here obtained with the formulation proposed by Silva (2019) that considers

damage at the micro scale.

For the case of heterogeneous media, Chapter 7 presents a study of the param-

eters required for the analysis and a non-linear problem characterized by induced

localization. Finally, Chapter 8 concludes this work and the complete results for the

study introduced in Chapter 7 are presented in Appendix A.



Chapter 2

Modeling of quasi-brittle and
heterogeneous media

2.1 Basic concepts

For the appropriate representation and modeling of a given media, the character-

ization of its mechanical behavior is essential as the structural response is directly

defined by the material performance under stress. According to this response, at a

macro scale, a material may be classified in ductile, brittle, and quasi-brittle.

Materials that are classified as ductile are those that under a uniaxial tensile state

are capable of sustaining large amounts of plastic deformation and, upon unloading,

follow a path parallel to the initial elastic phase and present a permanent deforma-

tion, i.e., a residual strain. Ductile materials generally have their static strength

limited by yielding, where a small increase in stress usually cause a relatively large

additional deformation, as seen in Figure 2.1(a).

Those materials that fracture without much plastic deformation and without

any dissipation prior to cracking (sudden failure) behave in a brittle manner (Figure

2.1(b)). For the case of a quasi-brittle material, there is a dissipation prior to

cracking but no or negligible permanent strains (Lemaitre and Desmorat, 2005). A

brittle-material presents a linear and a non-linear phase and, upon unloading, follows

a path with a smaller slope compared to the initial elastic one (Figure 2.1(c)).

32
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Figure 2.1: Material behavior: classification

The behavior of a material and its classification under the described categories

is strongly influenced by its characteristics at the atomic and micro scales.

On the atomic scale a solid represents an ensemble of atoms and molecules chains

where the properties of a material are determined by the bonding between these dis-

crete particles. At this level of observation, defects such as atomic vacancies and

dislocations can be observed. On a micro scale the solid is heterogeneous and the

features of its microstructure (e.g., grains and fibers) as well as defects (e.g., micro-

cracks), pores, and slips, are clearly recognizable. On the macro scale, mentioned

before, the solid is idealized as a continuous body and only defects such as macroc-

racks and shear bands can be identified (Krajcinovic and Sumarac, 1987; Van Mier,

1995; Krajcinovic, 1996). These three levels of observations and modeling are illus-

trated in Figure 2.2 (Van Mier, 1995).

Macro scale Micro scale Atomic scale

Figure 2.2: Material structure: macro, micro, and atomic scales

For the case of quasi-brittle materials, focus of this study, the deformation process

is dominated by the formation of microcracks that nucleate randomly over large parts

of the material without necessarily forming a macrocrack. This behavior is due to
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the heterogeneity observed at the micro scale of materials as concrete, rocks, and

coarse-grained ceramics. For the specific case of concrete, the heterogeneity induced

by aggregates seems to be responsible for most of the short-term inelastic behavior

of concrete (Shah and Slate, 1965).

The choice of the scale for modeling is directly correlated to the choice of analyt-

ical models and their structure. The preference for continuum models dealing with

homogeneous media is justified by their relative simple mathematical structure and

computational efficiency. However, the range for the application of such theories is

limited to solids that contain a large number of heterogeneities (e.g., defects and

grains) that directly influence the macroscopic behavior.

In view of the behavior of quasi-brittle materials here discussed, in the following

sections the modeling aspects of such media will be examined in view of a continuum

damage approach as well as its common issues.

2.2 Continuum damage models

As seen in the previous section, materials when loaded deform and this defor-

mation may be elastic or inelastic. After a certain deformation rupture occurs,

being either ductile, brittle or quasi-brittle. This deformation is influenced by the

material composition as well as by temperature and rate of loading. A complete

comprehension of the deformation behavior of a certain material would require a

deep understanding of its atomic structure in addition to great computational ca-

pacity. To work around this issue, constitutive equations based on micromechanical

or statistical considerations are used to describe the deformational process modeling

the solid as a continuum.

After a certain load, the structure of a given material may begin to deteriorate

with the formation of cracks weakening the solid and reducing its load carrying

capacity. By nature, these defects are discrete entities and an accurate analysis of

their influence would have to consider this disturbances of the material continuum.

Based on the same idea used for the formulation of constitutive equations,

Kachanov (1958) introduced the basis for the continuum damage theories where

the medium is modeled at the macro scale as a continuum body and the collec-

tive effect of damage is described by field variables denominated damage variables.

Therefore, a discrete process is modeled by a continuous variable and computational

simplicity is gained with loss of accuracy in modeling the deterioration.
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In the words of Hult (1987)

Continuum damage mechanics (CDM) has evolved as a mean to anal-

yse the effect of material deterioration in solids under mechanical or

thermal load. Whereas fracture mechanics deals with the influence of

macroscopic cracks, CDM deals with the collective effect of distributed

cracklike defects. The aim of CDM is to describe the influence of such

material damage on stiffness and strength of loaded structures.

A characteristic feature of CDM is the introduction into the consti-

tutive equations of one or more, scalar or tensorial, field quantities as

measures of the degradation of the material. (p. 1)

The hypotheses of a continuum body is based on the definition of a representative

volume element (RVE). The RVE is structurally entirely typical of the whole mixture

on average (Hill, 1963) and allows, in the transition from microscopic to macroscopic

variables, the averaging of certain tensor fields over the system (Hill, 1967). In other

words, as define by Nemat-Nasser and Hori (1993), the RVE for a material point of

a continuum mass is a material volume which is statistically representative of the

infinitesimal material neighborhood of that material point.

Figure 2.3 illustrates a continuum and identifies a material point P. When the

material point is magnified it may have its own complex microstructure composed by

grains, voids, cracks, and other heterogeneities. To be representative, the RVE must

include a considerable number of these microheterogenities in order to represent the

local properties by their mean values through continuous variables (Nemat-Nasser

and Hori, 1993). According to Lemaitre (1987), roughly speaking:

� 0.1 × 0.1 × 0.1 mm for metals;

� 1 × 1 × 1 mm for polymers and composites;

� 10 × 10 × 10 mm for wood;

� 100 × 100 × 100 mm for concrete.
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Figure 2.3: RVE as a material point with a possible microstructure (Nemat-Nasser and

Hori, 1993)

2.2.1 Continuum damage modeling: concepts

As previously mentioned, damage variables quantifies the material deterioration

in terms of continuous field variables. Physically, the damage variable is “defined by

the surface density of microcracks and intersections of microvoids lying on a plane

cutting the RVE of cross section δS” (Lemaitre and Desmorat (2005), p. 3). Hence,

this density, for a plane with normal n⃗, is defined as

D(n⃗) =
δSD
δS

(2.1)

where δSD is the area of the defects (microcracks and voids) contained in δS, as

depicted in Figure 2.4. The damage variable D(n⃗) goes from 0 for an undamaged

material to 1 where the material is completely damaged.

For a scalar-isotropic damage model, the variable D(n⃗) does not depend on

the normal and the intrinsic variable is a scalar (Kachanov, 1958; Lemaitre and

Desmorat, 2005):

D =
δSD
δS

(2.2)
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Figure 2.4: Damage representation (Penna, 2011)

The progressive material degradation may be represented by the deterioration of

its elastic properties. In this case, for a uniaxial state, the original Young’s modulus

is progressively degraded passing from an initial value E0 to ES that represents the

modulus for the damaged material and evolves during the loading process (Figure

2.5):

D = 1− ES

E0
(2.3)

or

ES = (1−D)E0 (2.4)

For a more general case, the process is represented by the degradation of the

constitutive operator E0
ijkl and the relation between the initial and current secant

stiffness can be defined as

ES
ijkl = (1−D)E0

ijkl (2.5)

Such model is called an isotropic model since the damage variable impacts the

whole initial constitutive operator E0
ijkl and, therefore, does not compromise a pos-

sible isotropy of the tensor.
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Figure 2.5: Elastic degradation

For cases wherein the hypotheses of a scalar damage variable is not sufficient to

account for the damage dependence on the considered direction, tensorial damage

variables may be used (e.g., vector, and second and fourth order tensors) (see Kra-

jcinovic and Lemaitre (1987); Krajcinovic (1996); Lemaitre and Desmorat (2005)).

For brevity, this topic will not be covered in this work as it focus on scalar-isotropic

damage models to represent the degradation of micromorphic media (Section 3.3).

2.2.2 Unified framework for constitutive models

In this work, the modeling of the elastic degradation for micromorphic continua

is based on the unified framework for constitutive modeling presented in the work

of Penna (2011). This framework is able to enclose a large amount of constitutive

models (e.g., elasto-plastic, isotropic, orthotropic, and anisotropic elastic-degrading)

based on multiple loading functions.

A particularity of the system is the use of a tensorial format instead of a vectorial-

matricial one. The vectorial-matricial format strongly depends both on the analysis

model of the problem (i.e., three-dimensional, plane-stress, etc.) and on the numer-

ical method. When a implementation is based on the tensorial format instead, such

dependency is reduced, and the generality and possibility of expansion of a code

is greatly increased. In this case, an operation, such as the introduction of a new

constitutive method, requires modifications related solely to the constitutive model

that can be introduced in the code with a syntax as close as possible to their original

mathematical representation (Gori et al., 2017a).

The theoretical basis for a unified formulation for constitutive models has been
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developed in the last years by a number of authors (see, e.g., de Borst (1987); Carol

et al. (1994); de Borst and Gutiérrez (1999); Armero and Oller (2000a,b); Carol

et al. (2001a,b)). The unified framework here presented (Penna, 2011) proposed an

expansion based on the work of Carol et al. (1994). In the following, a brief summary

of its formulation is provided.

In a geometrically linear context, an elastic-degrading medium is characterized

by total stress-strain relations

σij = Eijklεkl and εij = Cijklσkl (2.6a,b)

where Eijkl and Cijkl are the components of the fourth-order stiffness and compliance

tensors, inverse of each other (i.e., C−1
ijkl = Eijkl and E

−1
ijkl = Cijkl). The equations

presented correspond to the assumption of an unloading-reloading process where

the stiffness remains equal to the current secant one, i.e., a full unload leads to no

permanent strains. It should also be emphasized that this formulation refers to the

classical continuum theory, then the tensors σij and εij are the stress and strain

tensors of a classical continuum. The time derivatives of (2.6) are

σ̇ij = Eijklε̇kl + Ėijklεkl and ε̇ij = Cijklσ̇kl + Ċijklσkl (2.7a)

Considering a stress-based approach, the strain rate ε̇ij is decomposed in one

part related to the current secant stiffness ε̇Sij and other to the stiffness degradation

ε̇dij (ε̇ij = ε̇Sij + ε̇dij), as seen in Figure 2.6.
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Figure 2.6: Elastic degradation: additive decomposition of the strain rate

Based on the incremental process, the following equation can be written

σ̇ij = Eijkl(ε̇kl − ε̇dkl) (2.8)

with

ε̇dkl = λ̇mmmkl (2.9)

where λ̇m are the inelastic multipliers, defining the degrading process magnitude, and

mmkl are the directions of degradation. The different phases of the loading process

are described by a loading function that can be expressed as F [σ,p], where p is

a vector of internal variables that control the deformation process. The linearized

form of the consistency condition can be written

Ḟn =
∂Fn
∂σij

∣∣∣∣
p

σ̇ij +
∂Fn
∂pq

∣∣∣∣
σ

ṗq = 0 (2.10)

Assuming that the parameters pq are functions of the degrading strains εdkl (i.e.,

ṗq =
∂pq
∂εdkl

ε̇dkl), (2.10) can be rewritten as

nnijσ̇ij −Hnmλ̇m = 0 (2.11)

with
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nnij =
∂Fn
∂σij

∣∣∣∣
p

(2.12)

and

Hnm = − ∂Fn
∂λm

∣∣∣∣
σ

= − ∂Fn
∂pq

∣∣∣∣
σ

∂pq
∂εdkl

mmkl (2.13)

In these expressions, m indicates the directions of degradation, n the directions

of the loading functions, and H the Hardening-Softening modulus. Once the “di-

rections” n and m are established, the combination of (2.8), (2.9) and (2.11) leads

to the format of the inelastic multiplier:

λ̇m =
nnijEijklε̇kl

Hnm + nnijEijklmmkl

(2.14)

By introducing (2.14) into (2.9) and (2.8), the tangential stiffness tensor can be

obtained:

σ̇ij = Et
ijklε̇kl (2.15)

where

Et
ijkl = Eijkl −

EijabmmabnncdEcdkl
Hnm + nnpqEpqrsmmrs

(2.16)

Similarly, for a strain-based formulation, the stress rate is decomposed (σ̇kl =

σ̇Skl + σ̇dkl) and the loading function is expressed as a function of strains and the

internal variables Fn(ε, p̄), where p̄ is the set of internal variables defined in the

strain domain. Hence,

ε̇ij = Cijkl(σ̇kl − σ̇dkl) (2.17)

with

σ̇dkl = λ̇mm̄mkl (2.18)

where, as in the stress-based formulation, λ̇m are the inelastic multipliers and m̄mkl

the directions of degradation.
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Following an analogous procedure to the previous case, the tangential stiffness

can be obtained

σ̇ij = Et
ijklε̇kl (2.19)

with

Et
ijkl = Eijkl +

1

H̄nm

m̄mijn̄nkl (2.20)

n̄nij =
∂Fn
∂εij

∣∣∣∣
p̄

(2.21)

and

H̄nm = − ∂Fn
∂λm

∣∣∣∣
ε

= − ∂Fn
∂p̄q

∣∣∣∣
ε

∂p̄q
∂εdkl

m̄mkl (2.22)

The stress- and strain-based formulations here presented may be considered as

equivalent dual formulations. The loading functions have in general different expres-

sions in terms of strain or stress, but both give the same value when evaluated for a

stress state or for it corresponding strain state. Under these conditions, the tensorial

gradient components of stress- and strain-based formulations can be related to each

other:

nnij = Cijkln̄nkl or n̄nij = Eijklnnkl (2.23a,b)

mmij = −Cijklm̄mkl or m̄mij = −Eijklmmkl (2.24a,b)

H̄nm = Hnm + nnijEijklmmkl or Hnm = H̄nm + n̄nijCijklm̄mkl (2.25a,b)
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2.2.2.1 Generalized degradation rule

Similarities can be noticed comparing the formulation here presented with that

of plasticity models1. However, important differences should be noted. Elastic-

degrading models adopt variable secant stiffness and compliance. Therefore, the

functions and parameters usually defined in plasticity (expressions for F , hardening-

softening laws and flow rule) are not sufficient to define the evolution of the degra-

dation model. To address this aspect, the degrading strain rate (ε̇dkl) should be

formulated as a function of the stiffness or the compliance rate. Comparing equa-

tions (2.7a) and (2.8), it can be obtained

Eijklε̇
d
kl = −Ėijklεkl (2.26)

By definition, E : C = I4. This equation may be differentiated as Ċ : E +C :

Ė = 0, and multiplied by E on the left or C on the right, yielding the relations

between the stiffness and compliance changes

Ėijkl = −EijpqĊpqrsErskl (2.27a)

or

Ċijkl = −CijpqĖpqrsCrskl (2.27b)

Equation (2.27a) can now be introduced in the right-hand side of (2.26), both

sides can be multiplied by Cpqij, and, using (2.6a), the following expression can be

obtained:

ε̇dij = Ċijklσkl (2.28)

This equation indicates a relationship between the increment of secant com-

pliance and the increment of degrading strain. Now, it is convenient to define a

“generalized flow rule” or degrading rule for the secant compliance

Ċijkl = λ̇mMmijkl (2.29)

1In this work, the formulation of plasticity models is not presented. For further reference, see
Chapter 2 of Penna (2011).
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where λ̇m defines the magnitude and Mmijkl the direction of the rate of change of

Cijkl. By replacing (2.29) and (2.9) in (2.28), and eliminating the multipliers from

both sides, one obtains

mmij =Mmijklσkl (2.30)

Summarizing, the constitutive description of elastic degradation becomes com-

plete after definition of F , the hardening-softening law H and the degradation rule

M . The final expression for the tangent stiffness tensor is obtained by direct sub-

stitution of (2.30) into (2.16)

Et
ijkl = Eijkl −

EijabMmabxyσxynncdEcdkl
Hnm + nnpqEpqrsMmrsuvσuv

(2.31)

The evolution of the secant compliance can be rewritten combining equations

(2.14) and (2.30), and applying it to (2.29):

Ċijkl =Mmijkl
nnabEabcdε̇cd

Hnm + nnpqEpqrsMmrsuvσuv
(2.32)

Similarly, the evolution of the secant stiffness may be obtained as

Ėijkl = M̄mijkl
n̄ncdCcdklσ̇kl

H̄nm

+ n̄npqCpqrsM̄mrsuvεuv (2.33)

with

Ėijkl = λ̇mM̄mijkl (2.34)

2.2.2.2 Damage variables in elastic degrading models

In the previous sections, the stiffness degradation was defined by the evolution of

the secant compliance and stiffness tensors through loading functions and degrading

rules. That is the most general way of approaching the problem, but usually not

the most simple, because it requires the definition of the evolution of each material
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parameter. If the media is characterized by an orthotropic behavior, for example,

there are 21 independent components of Cijkl and Eijkl.

It is reasonable to assume that exists a much more reduced set of parameters

able to characterize the state of degradation or damage achieved by the material

at any state of loading. This reduced set of descriptors is called the set of damage

variables, and is designated by the symbol D∗. The symbol “*” represents the set

of indexes, which depends on the problem nature, e.g., D is a scalar, Di is a vector,

and Dij is a second-order tensor.

Compliance-based formulation

In stress-based formulations, the degradation process is modeled by means of

some rules that describe the progressive increase of the secant compliance tensor

Cijkl. With the introduction of a set of damage variables D∗ that fully characterize

the state of degradation, the secant compliance tensor may be written as

CS
ijkl = Cijkl(C

0
pqrs,D∗) (2.35)

where C0
pqrs is the initial compliance. Differentiating (2.35):

ĊS
ijkl =

∂CS
ijkl

∂D∗
Ḋ∗ (2.36)

A flow rule for damage can now be written as

Ḋ∗ = λ̇mMm∗ (2.37)

in which, similar to the flow rules previously defined, λ̇m is a damage multiplier

defining the magnitude, and Mm∗ defines the direction of the rate of change of

the damage variables (Mm∗ has the same character and dimensions of D∗). By

substituting (2.29) and (2.37) in (2.36), one obtains

Mmijkl =
∂CS

ijkl

∂D∗
Mm∗ (2.38)

Since the partial derivatives are known functions, (2.38) means that once the damage

rule Mm∗ is established, the compliance rule Mmijkl follows automatically.
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Stiffness-based formulation

Similarly as presented for the compliance-based formulation, a set of damage

variables D̄∗ that fully characterize the state of degradation is introduced. In this

case, the process is described by the progressive reduction of the secant stiffness

tensor Eijkl, that can be written as

ES
ijkl = Eijkl(E

0
pqrs,

˙̄D∗) (2.39)

and

ĖS
ijkl =

∂ES
ijkl

∂D̄∗

˙̄D∗ (2.40)

Again, a damage rule M̄m∗ is assumed for D̄∗ and is related to the stiffness rule

M̄mijkl

˙̄D∗ = λ̇mM̄m∗ and M̄mijkl =
∂ES

ijkl

∂D̄∗
M̄m∗ (2.41a,b)

2.2.2.3 Scalar-isotropic damage models in the unified framework

The unified theory here presented can encompass many of the continuum damage

models proposed in the recent literature. In this section, standard scalar-isotropic

damage models (as defined by de Borst and Gutiérrez (1999)) will be presented in

the context of the unified framework in order to generalize common definitions and

identify the gradients of the unified theory.

As previously addressed, for scalar-isotropic damage models the degrading pro-

cess is characterized by a single scalar damage variable that impacts the whole initial

constitutive tensor (Eq. 2.5). Hence, the total stress-strain relation is defined as

σij = (1−D)E0
ijklεkl (2.42)

where D is the scalar damage variable (D̄∗ = D). The loading function can be

written as

F (εij, D) = εeq(εij)−K(D) (2.43)
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in which εeq(εij) can be defined as an equivalent strain andK(D) is a history variable,

which has the same nature as εeq(εij) and is written as a function of the damage,

being representative of the highest level of deformation reached during loading.

Based on (2.42), the same relation can be applied to define the relation between

initial and current secant stiffness

ES
ijkl = (1−D)E0

ijkl (2.44)

After differentiation of (2.44), one obtains

ĖS
ijkl = −ḊE0

ijkl (2.45)

Comparing (2.45) with (2.40) and (2.41a), one can identify

∂ES
ijkl

∂D
= −E0

ijkl; M̄ = 1; λ̇ = Ḋ (2.46a,b,c)

From the definition of the loading function, the gradient and the hardening-

softening law can be obtained

n̄kl =
∂F

∂ε̃
and H̄ =

∂K(D)

∂D
(2.47a,b)

where the term ∂K(D)
∂D

requires an explicit function of the history variable in terms

of damage. Usually, only an evolution law for damage in terms of the strain mea-

surement is available such as the following exponential law

D(εeq) = 1− K0

εeq

(
1− α + αe−β(εeq−K0)

)
(2.48)

where K0 is the threshold for the equivalent strain, and α and β define the maximum

allowed damage level and the damage evolution intensity, respectively. The influence

of each of the parameters in the damage evolution are illustrated in Figure 2.7 by

graphs relating the equivalent strain εeq and the damage variable D.
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Figure 2.7(a) illustrates the effect of the parameter K0 where, as K0 increases,

the equivalent strain limit from which damage occurs also increases. On the other

hand, the parameter β (Figure 2.7(b)) controls the velocity with which the material

achieves a completely damaged state. Therefore, with the decrease of β, the longer

it takes for the damage to reach D = 1. Lastly, α sets the limit for the damage level,

thus, with its increase, the closer the damage may get to the maximum damage

allowed D = 1 (Figure 2.7(c)).

The classic damage models of Mazars-Lemaitre (Mazars and Lemaitre, 1985),

Simo-Ju (Simo and Ju, 1987), Ju (Ju, 1989), and Marigo (Marigo, 1985; Lemaitre

and Desmorat, 2005) are defined by the different definitions for the equivalent strain

as presented

εeq =



√
εijεij (Mazars-Lemaitre)√
2ψ0 (Simo-Ju)

ψ0 (Ju)√
2ψ0/E (Marigo)

(2.49)

in which 2ψ0 = εijE
0
ijklεkl is the internal energy and E is the initial Young’s modulus.
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2.3 Modeling of heterogeneous media

As discussed in Section 2.1 the behavior of quasi-brittle materials is directly

related to its heterogeneous structure. To account for the effects provoked by the

heterogeneity, the material may be modeled considering the different materials that

compose it, introducing, in the analysis, parameters related to the microstructure.

Such models, called mesoscopic models, have proven to be a reliable approach for

studying the influence of the concrete composition on the macroscopic properties

(Wang et al., 1999) and have as working hypothesis the direct simulation of the

random structure of inhomogeneous materials.

Bažant et al. (1990) present a model for composite materials where the mi-

crostructure is generated by a random method and each particle is assumed to be

elastic and have only axial deformations, behaving as a truss element. Therefore,

the material is simulated using a truss model where each element links the centers of

adjacent circular particles generated. The interparticle contact layers of the matrix

are described by a softening stress-strain relation.

A framework model was used by Schorn and Rode (1991) in order to simulate

crack propagation in concrete for three-dimensional models where the different prop-

erties of aggregate, interface and matrix were considered. Schlangen and van Mier

(1992), for simulating fracture in concrete, employ a triangular lattice model where

the spatial randomness of inhomogeneities are considered using two approaches.

First, the lattice model is projected on a grain structure randomly generated and

different material properties are assigned to the respective bar elements (matrix,

bond-zone or interface, and aggregates). Secondly, a distribution of bar strength or

stiffness is specified, for example a normal distribution, and each element is associ-

ated to a material according to the defined distribution.

Bažant et al. (1990), Schorn and Rode (1991), and Schlangen and van Mier

(1992) all proposed models that the constituents of the microstructure are mod-

eled using one-dimensional elements associated to a non-linear law to describe each

material behavior under tension. Another possibility developed by Wittmann and

co-workers (Wittmann et al., 1985; Roelfstra et al., 1985) is the modeling of mortar

and aggregates as continua using plane elements. In this process, the particles are

generated according to a specified particle size distribution and, following, a finite

elements mesh able to represent the generated particles (Figure 2.8) is constructed

and the properties for the different phases are associated to the respective elements.
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Figure 2.8: Finite element mesh proposed by Wittmann et al. (1985) to analyze concrete

built up of about 8000 finite elements representing rounded aggregates, interface and

mortar matrix

For micro scale analyzes of concrete, the generation of a random aggregate struc-

ture is necessary where shape, size, and distribution of coarse aggregates is repre-

sentative of real concrete from a statistical point of view. Generating this random

structure consists of an assembly of randomly distributed aggregate particles and

the mortar matrix in the space between particles (Wang et al., 1999).

Bažant et al. (1990), Schlangen and van Mier (1992) and Wittmann et al. (1985)

simulated size and spatial distributions of aggregate particles by the random sam-

pling principle of Monte Carlo’s where samples of particles are taken from a source

that follows a given grading curve and placed one by one into the analysis domain

with no overlapping with particles already placed. This process tries to achieve a

spatial distribution as macroscopically homogeneous as possible and is commonly

called the take-and-place method.

The take-and-place algorithm can be classified as a stochastic-heuristic process

considering its intrinsic randomness (each new simulation is a different problem

even with same input parameters) and the trial-error process to verify whether a

particle can be placed or not, evaluating if there is no overlapping and if all particles

are completely inside the domain and limiting distances (“particle-to-particle” and

“particle-to-boundary”) (Monteiro et al., 2017).

The take-process and the place-process are performed concurrently as each gen-

erated particle is immediately placed in the concrete2. This process begins with

2For a more detailed discussion of the take-and-place method and its steps, the reader may refer
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the largest size particles and goes on until all particles in that size range has been

placed, considering that this is generally the easiest manner to arrange particles into

the concrete (Wang et al., 1999).

The total amount of coarse aggregates to be included in the process is defined by

the volumetric ratio, calculated dividing the weight of coarse aggregates per volume

of concrete by the density of the aggregate. This ratio, herein called particle fraction

(PF) varies between 40% and 50% for most concrete (Wang et al., 1999). The sizes

for the aggregates are set as the width of the particle to conform with the defini-

tion used in sieving analysis, instead of providing an average diameter. Generally,

the particle size distribution is expressed in terms of cumulative percentage passing

through a series of sizes of sieve openings. One commonly used continuous distribu-

tion is given by Fuller, which can be described by the following equation (Wriggers

and Moftah, 2006)

P (d) = 100

(
d

dmax

)n

(2.50)

where P (d) is the cumulative percentage passing a sieve with size d, dmax is the

maximum size of aggregate particles, and n is the exponent of the equation (n =

0.45− 0.70 according to Wriggers and Moftah (2006)).

In order to guarantee that all aggregate particles are coated with a minimum

thickness of mortar film, a distribution factor (DF) is defined, where an offset on

the radius of the particle is set, enlarging the aggregate size prior to checking the

existence of overlapping.

Another aspect of the microstructure generator is the definition of the shape of

the particles, which is closely related to the aggregate type. Generally, grave aggre-

gates have a round shape while crushed rock aggregates present an angular shape

(Wang et al., 1999). For simulating both shapes, the aggregates can be modeled as

circular or polygonal/irregular particles, wherein, for the second option, the particle

characteristic dimension is taken as an average radius. For the case of polygonal

aggregates, the generation is based on an average circumference circumscribed to a

regular polygon with PS sides to which an angular deviation ∆α and radial deviation

∆R are applied.

To illustrate the capacity of the microstructure generator, Monteiro et al. (2017)

presented some distribution examples for a 10 cm× 20 cm section considering typical

to Wang et al. (1999) and Wriggers and Moftah (2006).
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particle fractions of concrete mixtures. For the aggregate size distribution, a Fuller

curve was used associated to the sieve sizes specified by ABNT NBR 7211 (2005)

(25.0 mm to 4.75 mm). Figures 2.9(a) and 2.9(b) show the generated structure for

circular particles and Figures 2.9(c) and 2.9(d) for polygonal particles obtained by

Monteiro et al. (2017).

2.3.1 Micromechanics considerations

As extensively discussed, concrete is a composite material with a number of in-

homogeneities. Determining the macroscopic mechanical behavior based on the mi-

croscopic deformation is of great interest. A method for obtaining such relation may

be referred to as homogenization, in which the heterogeneous material is replaced

by an equivalent homogeneous continuum considering a statistically representative

sample of material, the RVE (see Section 2.2)3.

A numerical method that has proven to be efficient is the FEM 4, whereby the

effective responses can be obtained by volumetrically averaging the internal fields

over an RVE of the heterogeneous material (Wriggers and Moftah, 2006). This

principle was applied in this work in order to obtain an equivalent microcontinuum

for a micromorphic media based on a heterogeneous RVE wherein the particles

where generated by the take-and-place method. More details on this procedure will

be given in Chapter 4.

3For a review of classical analytical micromechanics models proposed to estimate the effective
properties of heterogeneous media, the reader may refer to Christensen (1990).

4In this field, other numerical methods have been developed to account for the spatially variable
microstructure of heterogeneous materials as the finite-volume theory (Cavalcante et al., 2006a,b),
which, as FEM models, also involves the discretization of all the constituent phases, as well as
approaches based on Fast Fourier Transform (FFT) (Lages and Cavalcanti Marques, 2022).
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(a) PF = 40%;

DF = 0.1;

sieves 25− 19 mm

(b) PF = 50%;

DF = 0.02;

sieves 25− 4.75 mm

(c) PF = 30%;

DF = 0.03; PS = 5;

∆R = 0.7;

∆α = 0.05;

sieves25− 6.3 mm

(d) PF = 40%;

DF = 0.02; PS = 5;

∆R = 0.5;

∆α = 0.01;

sieves25− 4.75 mm

Figure 2.9: Random aggregate structures generated: circular and polygonal particles

(Monteiro et al., 2017)



Chapter 3

Micromorphic Media

3.1 Generalized Continua

In the study of material behavior based on the classical continuum mechanics

every point in the material is occupied by a small element of the solid, calledmaterial

particle. These particles can be idealized as mathematical points as its dimensions

are small compared to all characteristics lengths, but are nevertheless large compared

to atomic dimensions (Mal and Singh, 1991). In this context, the medium kinematics

is described by the translational degrees of freedom of the material particles and by

the consequent measures of deformation.

The idea here presented of classical continuum mechanics is based on the paradigm

constructed with the combinations of ideas from Leonard Euler (1707-1783), Joseph

L. Lagrange (1736-1813), and Augustin L. Cauchy (1789-1857), and the divergence

theory proposed by George Green (1793-1841) (Maugin, 2017). According to Mau-

gin (2014), the notion of stress in a general continuum was initially proposed in a

magisterial paper by Cauchy in 1822, but published only in 1828 (Cauchy, 1828).

In his work, Cauchy generalized Euler’s notion of pressure in the notion of stress

tensor.

When dealing with composite inhomogeneous materials in the classical contin-

uum the constitutive equations are developed using the concept of material particle

associated to the idea of a representative volume element (RVE), as discussed in

Section 2.2 (Hashin, 1983; Kröner, 1977; Willis, 1981).

In the classical continuum, the kinematics and statics descriptions of the medium

consider only average macroscopic characteristics, disregarding the microstructure

constituents behavior. In the analysis of usual structures in the engineering field the

hypotheses of the classical continuum are sufficient. However, in situations wherein

55
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the RVE concept does not represent satisfactorily all the phenomena related to the

influence of the substructure or the structural dimensions are small comparatively

to the microstructure, theories that incorporate information on the material mi-

crostructure are required.

In this context, generalized continuum mechanics were developed. In the work

of Voigt (1887) and Cosserat and Cosserat (1909) begins the generalization of stan-

dard continuum mechanics of Cauchy through the expansion of its basic working

hypotheses. These generalizations involve additional degrees of freedom (higher or-

der continua) or/and higher order gradients of the displacement fields (higher grade

continua) (Germain, 1973a,b; Forest, 1998; Hirschberger, 2008).

Remark 3.1.1. Kinematics of deformation

The motion of the material particle P in a continuously deforming body B

(Fig. 3.1) can be expressed by a mapping from the material configuration B0 to

the spatial configuration Bt developed in a Taylor series expansion as follows:

dx = ∇X x(X, t) · dX +
1

2
∇X [∇X x(X, t)] : [dX ⊗ dX] + O(dX3) (3.1)

Therein F = ∇X x(X, t) is a linear map, its gradient ∇X [∇X x(X, t)] repre-

sents the quadratic term, while O(dX3) corresponds to the terms of cubic or

higher grade.

P(X, t)

P (x, t)

B
0

B
t

dX
dx

F

Figure 3.1: Kinematics of deformation

In the classical continuum, only the linear term is considered in the deformation

map (3.1) and, consequently, the vicinity of the material particle P stays unconsid-

ered (local continuum theory):
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dx = ∇X x(X, t) · dX (3.2)

When the quadratic term (second-order gradient theory), as a special case of

the second gradient of strain theory of Mindlin (Mindlin, 1965), or even higher

grade terms are considered in the non-linear deformation mapping (3.1) a higher

grade continua is obtained. They are appropriated to the analysis of cases wherein

only the linear term is not sufficient to describe the media behavior as, with high

order terms, size effect can be take into account (Hirschberger, 2008). The classical

continuum can be considered a special case of a higher grade continuum with grade

one.

On the other hand, higher order continua are characterized by additional degrees

of freedom per material point instead of considering higher gradients of deformation.

From a microcoscopic point of view, each material point in the macrocontinuum is

a continuum of small extent, being its kinematics described by a linear deformation

map as in (3.2) (Germain, 1973b). Embedded in each point is assumed to be a micro-

continuum, whose kinematics defines the additional degrees of freedom (Germain,

1973b; Mindlin, 1964; Hirschberger, 2008). The micromorphic continuum, due to

the characteristics of its formulation, which will be approached in the next sections,

is able to capture size-effects and its particularly suited to account for materials

possessing a significant microstructure.

In the works of Germain (1973b) and Eringen (1966) higher order continua are

denominatedmicromorphic continua of order n. The practicality of continua of order

n > 1 is highly questionable, considering that the first order theory is complicated

enough for genuine physical applications. Moreover, considering the physical condi-

tions for which the theory is valid, the microcontinuum presents small dimensions

compared to the size of the macrocontinuum. Hence, if the continuum undergoes

small deformation, the second and higher terms considered in the kinematics descrip-

tion may be neglected similar to neglecting higher order displacements gradients in

the deformation of an elastic solid (Eringen, 1966).

For the first order theory of the micromorphic continuum, the kinematics of each

material particle is described by the mapping (Ξ
X,t−→ ξ) of its attached vector Ξ,

located at the centroid of the particle,

ξ = χ(X, t) ΞK (3.3)
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in which

χK(X, t) =
∂ξ

∂ΞK

∣∣∣∣
Ξ=0

(3.4)

As exposed in Eringen (1999), the second order tensor χ is called microdefor-

mation tensor (alternatively, deformable directors) and represents three deformable

directors related to the degrees of freedom arising from microdeformations of the

physical particle. Thus, the micromorphic continuum is none other than a classical

continuum endowed with nine additional degrees of freedom, being six related to

the micro deformations and three to the micro rotations. The kinematics of a point

can be illustrated with the deformable director triad as shown in Figure 3.2. A

more detailed explanation of the micromorphic theory for a small-strain framework

as developed by Eringen (1999) is presented in Section 3.2.

Remark 3.1.2. Microcontinuum theories (Eringen, 1999; Hirschberger, 2008)

According to the polar decomposition theorem, a matrix may be decomposed

as product of an orthogonal matrix and a symmetric matrix (Mal and Singh,

1991; Eringen, 1980). Hence, the tensor χ can be written as

χ = RU = V R (3.5)

where R represents the micro rotation tensor related to rigid rotations, and U

and V are called right and left stretch tensors for micro deformations.

Therefore, in a micromorphic continuum the particle may experience stretch-

ing/compression and rotation comprised in the tensor χ (Figure 3.2). Several

sub-theories can be derived from the general case applying constraints to the de-

formation of the microcontinuum, i.e., to the micro-deformation tensor χ. The

micromorphic theory and its sub-theories are grouped under the name micro-

continuum theories, being this classification and the corresponding continuum

frameworks well elaborated by Eringen (1999).

For instance, considering that the micropolar continuum (or Cosserat con-

tinuum) (Cosserat and Cosserat, 1909; Eringen, 1999) may only experience ro-

tation, it can be obtained by assuming χ = R, as illustrated in Figure 3.3

with the rigid director triad. If a scalar variable χ, besides the rotation R, is

incorporated to account for isotropic extension, i.e., χ = χR, the microstretch
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continuum (Eringen, 1999) is obtained, as depicted in Figure 3.4. For the case

in which only the stretch tensor U is considered and the rotation is neglected

(χ = U), as seen in Figure 3.5, the microstrain continuum, proposed by Forest

and Sievert (2006), may be derived.

Lastly, if both stretch and rotation are restrained, the classical continuum is

obtained, where the hypotheses of unalterable particles is considered. As seen in

Figure 3.6, for this case, χ = I, in which I is the second order identity tensor.

χ = R·U

B
0 B

t

Figure 3.2: Micromorphic micro deformation: deformable director triad

χ = R

B
0 B

t

Figure 3.3: Micropolar micro deformation: rigid director triad
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χ = χ R

B
0 B

t

Figure 3.4: Microstretch micro deformation: extensible director triad

χ = U

B
0 B

t

Figure 3.5: Microstrain micro deformation: stretchable director triad excluding rota-

tion

χ = I

B
0 B

t

Figure 3.6: Classical micro deformation: no director triad

3.2 Micromorphic Continuum Theory

As aforementioned, in the micromorphic continuum, additional degrees of free-

dom are considered at each material point or, as defined by Eringen (1999), “A



61

microcontinuum is a continuous collection of deformable point particles.” (p. 3)

In order to represent the intrinsic deformation of a point, each deformable particle

is replaced with a geometrical point P and some vectors attached to P that are

related to the orientations and deformations of its material points. In addition,

the vectors assigned to P also represent the additional degrees of freedom of each

particle. A particle P is defined by its position vector X (XK , K = 1, 2, 3) in the

reference state B and vectors attached to P , representing the inner structure of P

by Ξα, α = 1, 2, . . . , N . Both X and Ξα have their own motions

X
t−→ x, Ξα

X,t−→ ξα, α = 1, 2, . . . , N. (3.6)

Such a medium may be called microcontinuum of grade N. As pointed out by

Eringen (1999), there were not in his time a general theory of this magnitude. This

work is only concerned with the case of grade 1 (α = 1).

3.2.1 Kinematics of Deformation

A material point P (X,Ξ) ∈ B is characterized by its centroid C and vector Ξ

attached to C. The point C is identified by its rectangular coordinates XK (K =

1, 2, 3) and the vector Ξ by its components ΞK (K = 1, 2, 3). Under solicitation,

motion accompanied by deformation of the solid occurs and the point P (X,Ξ) is

carried to p(x, ξ, t) in a spatial frame of reference b, so that, XK −→ xk,ΞK −→
ξk(K = 1, 2, 3; k = 1, 2, 3) (Figure 3.7).

From a physical (and practical) point of view, a visual benefit will result if the

vectors Ξ and ξ are considered to be the positions of the material points – contained

in the particle P – relative to the particle centroid C in the material (undeformed

state) and spatial (deformed state) configurations (Figure 3.7).
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e1

e2

e3

Macroscale

X, X’

x, x’

P(X, Ξ) p(x, ξ, t)

O

B: t = 0 b: t = t

Ξ ξ

Microscale
X

X’

x

x’
C

C’

c

c’

P(X, Ξ)
p(x, ξ, t)

Figure 3.7: Micromorphic continuum kinematics (Silva, 2019)

As aforesaid, Ξ and ξ have their own motions, expressed by

X −→ x = x(X, t) or xk = xk(XK , t) (3.7)

Ξ −→ ξ = ξ(X,Ξ, t) or ξk = ξk(XK ,ΞK , t) (3.8)

The mapping (3.7) is called macromotion (or simply, the motion) and (3.8) the

micromotion.

Considering that the material particles are of very small size (infinitesimally

small) as compared to macroscopic scales of the body, a linear approximation in Ξ

may be used and the micromotion (3.8) can be approximated by
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ξ = χK(X, t)ΞK or ξk = χkK(X, t)ΞK (3.9)

where χ is the microdeformation gradient (alternatively, deformable directors) pre-

sented in Section 3.1 and defined as

χK(X, t) =
∂ξ

∂ΞK

∣∣∣∣
Ξ=0

(3.10)

Note that Ξ = 0 is taken to be the centroid of P in the particle local system.

The motion of the material point C ′ ∈ P with coordinates X ′
K (K = 1, 2, 3) is,

thus, completely described by the macro-micromotion composition

x′ = x(X, t) + ξ(X,Ξ, t) (3.11)

Then, from (3.9),

x′ = x(X, t) + χK(X, t)ΞK (3.12)

Note that, by (3.9), ξ(X,Ξ, t)|Ξ=0 = 0, i.e., the motion of the centroid of P is,

by definition, entirely described in the macro-scale.

Definition 3.2.1. Micromorphic Continuum (Eringen, 1999)

A material body is called a micromorphic continuum of grade one (or simply

micromorphic continuum) if its motions are described by (3.7) and (3.8) which

possess continuous partial derivatives with respect to XK and t, and they are

invertible uniquely, i.e.,

XK = XK(x, t), K = 1, 2, 3, (3.13)

ΞK = XKk(x, t)ξk, K = 1, 2, 3, k = 1, 2, 3. (3.14)
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where X is the inverse microdeformation gradient tensor.

A material point in the body is now considered to possesses three deformable

directors (Xk −→ χK), as illustrated in Figure 3.8, which represent the degrees of

freedom arising from microdeformations of the physical particle.

e1

e2

e3

Macroscale

X

x

P p

O

χ1

χ2

χ3
𝖃1

𝖃2

𝖃3

B: t = 0 b: t = t

Figure 3.8: Deformable directors

3.2.2 Linear Elasticity

Based on the kinematics of deformation presented here briefly, Eringen and

Şuhubi (1964) and Şuhubi and Eringen (1964) constructed several sets of strain

tensors. One such set of strain measures is given by

CKL = xk,KXLk, CKL = χkKχkL = CLK , ΓKLM = XKkχkL,M (3.15)

where CKL is called the deformation tensor, CKL the microdeformation tensor, and

ΓKLM the wryness tensor.

In a linear approximation, the strain tensors (Eq. 3.15) can be rewritten as
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CKL−δKL ≈ ϵklδkKδlL, CKL−δKL ≈ 2eklδkKδlL, ΓKLM = γklmδkKδlLδmM (3.16)

in which ϵkl, ekl, and γklm are the linear strain tensors defined by

ϵkl = ul,k − ϕlk, 2ekl = ϕkl + ϕlk, γklm = ϕkl,m (3.17)

where ul is the displacement vector related to the particle centroid and ϕkl = χkl−δkl
is the micromotion gradient tensor.

Disregarding temperature variations the free energy density ψ is, then, approxi-

mated by

ψ ≈ ψ0 +
1

2
Aklmnϵklϵmn +

1

2
Bklmneklemn +

1

2
Cklmnpqγklmγnpq + Eklmnϵklemn+

+ Fklmnpϵklγmnp +Gklmnpeklγmnp
(3.18)

where ψ0 is the initial internal energy density; U0 = ψ−ψ0 is the strain energy den-

sity; and Aklmn, Bklmn, Cklmnpq, Eklmn, Fklmnp and Gklmnp are the constitutive moduli.

From these, Eringen (1999) observed the following symmetry regulations:

Aklmn = Amnkl, Bklmn = Bmnkl = Blkmn = Bnmkl,

Cklmnpq = Cnpqklm, Eklmn = Eklnm, Gklmnp = Glkmnp

(3.19)

From (3.18), the linear constitutive equations of micromorphic solids can be

obtained:

tkl ≈
∂Σ

∂ϵkl
= Aklmnϵmn + Eklmnemn + Fklmnpγmnp (3.20)

skl ≈
∂Σ

∂ekl
= Emnklϵmn +Bklmnemn +Gklmnpγmnp (3.21)

mklm ≈ ∂Σ

∂γlmk
= Fnplmkϵnp +Gnplmkenp + Clmknpqγnpq (3.22)
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where tkl is the stress tensor, skl is a symmetric stress tensor named micro-stress

average Eringen and Şuhubi (1964), and mklm is the stress moments tensor or, as

defined in Eringen and Şuhubi (1964), the first stress moments and represented by

the symbol λklm.

For an isotropic linear elastic micromorphic solid the constitutive equations

(3.20), (3.21) and (3.22) can be simplified applying the appropriated symmetries

and the constitutive moduli may be constructed by the product of the Kronecker

delta δkl, i.e.,

Aklmn = λδklδmn + (µ+ κ)δkmδln + µδknδlm,

Eklmn = (λ+ ν)δklδmn + (µ+ σ)(δkmδln + δknδlm)

Fklmnp = 0,

Bklmn = (λ+ 2ν + τ)δklδmn + (µ+ 2σ + η)(δkmδln + δknδlm),

Gklmnpq = 0,

Cklmnpq = τ1(δklδmnδpq + δkqδlmδnp) + τ2(δklδmpδnq + δkmδlqδnp)+

+ τ3δklδmqδnp + τ4δknδlmδpq + τ5(δkmδlnδpq + δkpδlmδnq)+

+ τ6δkmδlpδnq + τ7δknδlpδmq + τ8(δkpδlqδmn + δkqδlnδmp)+

+ τ9δknδlqδmp + τ10δkpδlnδmq + τ11δkqδlpδmn

(3.23)

wherein λ, µ, κ, ν, τ , η and τ1 . . . τ11 are 18 elastic parameters.

Hence, (3.20), (3.21) and (3.22) may be rewritten disregarding the constitutive

moduli of odd order:

tkl = Aklmnϵmn + Eklmnemn (3.24)

skl = Emnklϵmn +Bklmnemn (3.25)

mklm = Clmknpqγnpq (3.26)

Nevertheless, the micromorphic continuum presents two main drawbacks: the

definition of the additional constitutive equations and the determination of the high

number of constitutive parameters. For the case of a linear isotropic micromorphic
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material there are 18 elastic parameters, as seen in (3.23), in contrast to the two

Lamé parameters of a classical isotropic continuum. To overcome these limitations,

this work is based in the multiscale formulation proposed by Silva (2019) in order

to obtain the macroscopic micromorphic constitutive relations, techique discussed

in more details in Chapter 4.

3.3 A Unified Formulation for Elastic Degradation in

Micromorphic Continua

In the preceding chapter (Section 2.2.2) a unified formulation for constitutive

models has been presented, a framework able to represent a number of multidissipa-

tive elasto-plastic and elastic-degrading models with a tensorial formalism. Based on

the advantages presented by this unified formulation, an extension of this concept

to constitutive models for the micropolar continuum theory was proposed in the

work of Gori (2018) resulting in a theoretical and computational framework able to

model problems where the localization phenomena is an issue with scalar-isotropic

damage models (Gori et al., 2017b). In order to address the problem of consistency

(or compatibility) between the formulation proposed by Gori (2018) and the existing

analogous formulation for classical media previously discussed, a compact tensorial

representation was proposed by Gori et al. (2017c) based on the work of Eremeyev

(2005).

Following, the foundation for a unified formulation for the elastic degradation

based on the micromorphic continuum is presented, where peculiar efforts were de-

voted to the extension and implementation of scalar-isotropic damage models for

the micromorphic theory similar to the work of Gori (2018). A tensorial compact

formulation is also proposed for the micromorphic continuum, which enabled the

computational implementation of the proposed models into the existing framework

for classical continuum implemented by Penna (2011).

3.3.1 Elastic degradation in micromorphic media

Similar to a classical media, in a geometrically-linear context, a micromorphic

elastic-degrading medium is characterized by total stress-strain relations
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tkl = Aklmnϵmn + Eklmnemn (3.27)

skl = Emnklϵmn +Bklmnemn (3.28)

mklm = Clmknpqγnpq (3.29)

wherein Aklmn, Bklmn, Cklmnpq, and Eklmn are the constitutive moduli; tkl , skl, and

mklm are the stress measures; ϵmn, emn and γnpq the strain measures, as presented

in Section 3.2.2.

Considering the general equations of the classical formulation, there is only a

single total stress-strain relation σij = Eijklεkl (Eq. 2.6a) where Eijkl represents the

components of the fourth-order stiffness tensor, while a micromorphic formulation is

represented by three total stress-strain relations. To approach this consistency prob-

lem a compact tensorial formulation is proposed, in which the micromorphic total

stress-strain expressions may be condensed in a single generalized secant relation,

adopting the same formalism as Gori et al. (2017c):

Σβν = ESβνδψΓδψ, for β, ν, δ, ψ = 1, 2, ...9 (3.30)

where the generalized stress operator Σβν and the generalized strain operator Γδψ

represent second-order tensors with dimension nine, as defined

Σβν =


tβν 0 0

0 s(β−3)(ν−3) 0

m1βν m2(β−3)(ν−3) m3(β−6)(ν−6)

 (3.31)

Γδψ =


ϵδψ 0 0

0 e(δ−3)(ψ−3) 0

γ1δψ γ2(δ−3)(ψ−3) γ3(δ−6)(ψ−6)

 (3.32)

The generalized secant operator ESβνδψ gathers the four constitutive operators of

the micromorphic theory for isotropic linear elastic solids, i.e., Aklmn, Bklmn, Cklmnpq,

and Eklmn, in a fourth-order tensor with dimension nine, as follows:



69

ESβνδψ =



Aβν11 Aβν12 Aβν13 0 0 0 0 0 0

Aβν21 Aβν22 Aβν23 0 0 0 0 0 0

Aβν31 Aβν32 Aβν33 0 0 0 0 0 0

0 0 0 Eβν11 Eβν12 Eβν13 0 0 0

0 0 0 Eβν21 Eβν22 Eβν23 0 0 0

0 0 0 Eβν31 Eβν32 Eβν33 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, for β, ν = 1, 2, 3 (3.33)

ESβνδψ =



E11(β−3)(ν−3) E12(β−3)(ν−3) E13(β−3)(ν−3) 0 0 0 0 0 0

E21(β−3)(ν−3) E22(β−3)(ν−3) E23(β−3)(ν−3) 0 0 0 0 0 0

E31(β−3)(ν−3) E32(β−3)(ν−3) E33(β−3)(ν−3) 0 0 0 0 0 0

0 0 0 B(β−3)(ν−3)11 B(β−3)(ν−3)12 B(β−3)(ν−3)13 0 0 0

0 0 0 B(β−3)(ν−3)21 B(β−3)(ν−3)22 B(β−3)(ν−3)23 0 0 0

0 0 0 B(β−3)(ν−3)31 B(β−3)(ν−3)32 B(β−3)(ν−3)33 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, for β, ν = 4, 5, 6

(3.34)
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ESβνδψ =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

C(β−6)ν1111 C(β−6)ν1112 C(β−6)ν1113 C(β−6)ν1211 C(β−6)ν1212 C(β−6)ν1213 C(β−6)ν1311 C(β−6)ν1312 C(β−6)ν1313

C(β−6)ν1121 C(β−6)ν1122 C(β−6)ν1123 C(β−6)ν1221 C(β−6)ν1222 C(β−6)ν1223 C(β−6)ν1321 C(β−6)ν1322 C(β−6)ν1323

C(β−6)ν1131 C(β−6)ν1132 C(β−6)ν1133 C(β−6)ν1231 C(β−6)ν1232 C(β−6)ν1233 C(β−6)ν1331 C(β−6)ν1332 C(β−6)ν1333



for β = 7, 8, 9 and ν = 1, 2, 3 (3.35)

ESβνδψ =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

C(β−6)(ν−3)2111 C(β−6)(ν−3)2112 C(β−6)(ν−3)2113 C(β−6)(ν−3)2211 C(β−6)(ν−3)2212 C(β−6)(ν−3)2213 C(β−6)(ν−3)2311 C(β−6)(ν−3)2312 C(β−6)(ν−3)2313

C(β−6)(ν−3)2121 C(β−6)(ν−3)2122 C(β−6)(ν−3)2123 C(β−6)(ν−3)2221 C(β−6)(ν−3)2222 C(β−6)(ν−3)2223 C(β−6)(ν−3)2321 C(β−6)(ν−3)2322 C(β−6)(ν−3)2323

C(β−6)(ν−3)2131 C(β−6)(ν−3)2132 C(β−6)(ν−3)2133 C(β−6)(ν−3)2231 C(β−6)(ν−3)2232 C(β−6)(ν−3)2233 C(β−6)(ν−3)2331 C(β−6)(ν−3)2332 C(β−6)(ν−3)2333


for β = 7, 8, 9 and ν = 4, 5, 6

(3.36)

ESβνδψ =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

C(β−6)(ν−6)3111 C(β−6)(ν−6)3112 C(β−6)(ν−6)3113 C(β−6)(ν−6)3211 C(β−6)(ν−6)3212 C(β−6)(ν−6)3213 C(β−6)(ν−6)3311 C(β−6)(ν−6)3312 C(β−6)(ν−6)3313

C(β−6)(ν−6)3121 C(β−6)(ν−6)3122 C(β−6)(ν−6)3123 C(β−6)(ν−6)3221 C(β−6)(ν−6)3222 C(β−6)(ν−6)3223 C(β−6)(ν−6)3321 C(β−6)(ν−6)3322 C(β−6)(ν−6)3323

C(β−6)(ν−6)3131 C(β−6)(ν−6)3132 C(β−6)(ν−6)3133 C(β−6)(ν−6)3231 C(β−6)(ν−6)3232 C(β−6)(ν−6)3233 C(β−6)(ν−6)3331 C(β−6)(ν−6)3332 C(β−6)(ν−6)3333



, for β, ν = 7, 8, 9

(3.37)
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With the introduction of the generalized secant operator, (3.30) is formally identi-

cal to the one for the classical continuum (Eq. 2.6a), except for the tensor dimension.

Hence, the compatibility problem between both formulations is addressed enabling

the extension of elastic-degrading models to the micromorphic theory within the

same computational framework of classical models (implementation details discussed

in Chapter 5).

3.3.2 Scalar isotropic damage models

As detailed in Section 2.2.1, for scalar-isotropic damage models the degrading

process is characterized by a single scalar damage. Extending this principle to

micromorphic media and applying the generalized tensorial formulation presented

in the last section, the resulting generalized constitutive operator can be expressed

as

ESβνδψ(E0
βνδψ, D) = (1−D)E0

βνδψ (3.38)

where E0
βνδψ represents the initial elastic operator and D the damage variable,

which varies from 0 for undamaged material to 1 for completely damaged material.

Differentiating (3.38)

ĖSβνδψ =
∂ESβνδψ
∂D

Ḋ =
∂ESβνδψ
∂D

λ̇M̄ (3.39)

For a scalar-isotropic model

ĖSβνδψ = −ḊE0
βνδψ (3.40)

Comparing (3.39) and (3.40) the following terms can be identified

∂ESβνδψ
∂D

= −E0
βνδψ; M̄ = 1; λ̇ = Ḋ (3.41a)

M̄βνδψ =
∂ESβνδψ
∂D

M̄ = −E0
βνδψ (3.41b)

Hence, the directions of degradation can be represented by
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m̄βν = M̄βνδψΓδψ = −E0
βνδψΓδψ = −Σ0

βν (3.42)

Considering the following loading function

F (Γeq, D) = Γeq(ϵmn, emn, γnpq)−K(D) (3.43)

with Γeq defined as the generalized equivalent strain, the gradient and the hardening-

softening law can be obtained

n̄δψ =
∂F

∂Γeq
=
∂Γeq
∂Γδψ

and H̄ =
∂K(D)

∂D
=

(
∂D(Γeq)

∂Γeq

)−1

(3.44a,b)

where D(Γeq) is a damage law that describes the evolution of the damage variable.

The tangent stiffness presented for the classical continuum (Eq. 2.19) can now be

rewritten

Σ̇βν = E tβνδψΓ̇δψ (3.45)

with

E tβνδψ = (1−D)E0
βνδψ −

(
∂D(Γeq)

∂Γeq

)
Σ0

βν
∂Γeq
∂Γδψ

(3.46)

Applying the general formulation proposed, different damage models for the mi-

cromorphic continuum can be obtained when specific equivalent strain measures

are defined. In the next sections the scalar-isotropic damage models proposed are

presented as well as their application in Chapter 6.

3.3.2.1 Mazars-Lemaitre micromorphic model

This model is an extension to the micromorphic continuum of the classical model

proposed by Mazars and Lemaitre (1985), which adopts the concept of effective stress

that relates to the usual stress by a scalar damage variable as proposed by Kachanov

(1958). Hence, the loading function is defined as (3.43) with the following equivalent

strain
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Γeq =
√

ΓδψΓδψ =
√
ϵmnϵmn + emnemn + γnpqγnpq (3.47)

The gradient is then defined

n̄δψ =


ϵδψ
Γeq

0 0

0
e(δ−3)(ψ−3)

Γeq
0

γ1δψ
Γeq

γ2(δ−3)(ψ−3)

Γeq

γ3(δ−6)(ψ−6)

Γeq

 (3.48)

3.3.2.2 Simo-Ju micromorphic model

Simo and Ju (1987) developed an isotropic damage model within two possible

frameworks, either strain or stress based, considering a free energy potential to define

the damage variable. Considering the strain based formulation, the equivalent strain

associated to a micromorphic model can be defined as

Γeq =
√

2ψ0 (3.49)

with

ψ0 =
1

2
E0

βνδψΓβνΓδψ

=
1

2
A0

klmnϵklϵmn +
1

2
B0

klmneklemn +
1

2
C0

klmnpqγklmγnpq + E0
klmnϵklemn

(3.50)

Based on the loading function, the gradient is obtained:

n̄δψ =
E0

βνδψΓβν
Γeq

(3.51)

3.3.2.3 Ju micromorphic model

This model is an extension of the classical formulation of Ju (1989) where the au-

thor, reconsidering the Simo-Ju model (Simo and Ju, 1987), proposed a formulation

based on the free energy of Helmholtz. For the micromorphic continuum

Γeq = ψ0 (3.52)
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where the free energy is defined as (3.50). Then, it follows

n̄δψ = E0
βνδψΓβν = Σ0

δψ (3.53)

3.3.2.4 Marigo micromorphic model

The model proposed by Marigo (1985), based on strain energy, is here extended

to the micromorphic continuum where the following equivalent strain is written

Γeq =

√
2ψ0

E
(3.54)

with ψ0 as defined in (3.50) and E being the material Young’s modulus used to con-

struct an equivalent micromorphic continuum through the homogenization technique

presented in Chapter 4. As previously discussed, for the micromorphic continuum,

there are 18 elastic parameters where there is no equivalence between one of the

parameters and the Young’s modulus of a classical continuum. Hence, in this work

the Marigo model is only applied associated to the homogenization technique, where

E is clearly defined. The gradient can be obtained as

n̄δψ =
E0

βνδψΓβν
EΓeq

=
Σ0

EΓeq
(3.55)



Chapter 4

Homogenization of a Classical
continuum towards a micromorphic
continuum

The analytical and discrete formulations of the micromorphic theory are well

established in the literature, however the identification of the corresponding consti-

tutive laws and the determination of the high number of constitutive parameters

limit its practical application. As an alternative to circumvent these limitations,

the micromorphic homogenization strategy proposed by Silva (2019) and based on

Hütter (2017) is here employed, which consists in a multiscale formulation for the

construction of macroscopic micromorphic constitutive relations in terms of homoge-

nized microscopic quantities obtained from the solution of boundary value problems

at the microscale according to the classical continuum theory. This strategy be-

gins with models of the classical continuum on the microscale, without making any

constitutive assumptions on the macroscale. Consequently, the necessary material

parameters are those of the classical theory.

For this formulation, the graphical representation of a micromorphic continuum

should be retrieved, as seen in Figure 4.1, where the domain V is divided into small

but finite volumes ∆V (X).
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e1

e2

e3

Macroscale
X, X’

P

O

Ξ

Microscale
X

X’

C

C’ ΔV (X )

V

Figure 4.1: Micromorphic continuum (Hütter, 2017; Silva, 2019)

Briefly, for the construction of the constitutive moduli, the material particles are

subjected to Cauchy stress states resulting from elementary states of strain, which

consist of the successive application of component by component of macroscopic

micromorphic strain with unit value, while the others components are kept as zero.

To obtain the Cauchy stress states σij at the microscale, (4.1) and (4.2) are employed,

which approximates the microscale stress based on a micromorphic stress state at

the macroscale:

u,l,k =
(
Kpk + J−1

αp δαkmnΞmΞn
)
ϵ̄pl + ϕ̄lk +H−1

mkin Ξmγ̄lin ∴ (4.1)

σij = Dijkl

[(
Kpk + J−1

αp δαkmnΞmΞn
)
ϵ̄pl + ϕ̄lk +H−1

mkin Ξmγ̄lin
]

(4.2)

where Kpk, Jαp and Hmkin are geometric parameters; δαkmn is a fourth order Kro-

necker delta; Ξm is a position vector (see Figure 4.1); ϵ̄pl, ϕ̄lk and γ̄lin are the

micromorphic strains obtained by homogenization (where 2ekl = ϕkl+ϕlk as defined

in (3.17)); Dijkl is the classical constitutive module (σij = Dijklεkl = Dijklu
,
l,k).
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Based on this approximation, the micromorphic stress tensors at the macroscale

are obtained by homogenization applying (4.3), (4.4) and (4.5):

t̄kl =
1

∆V (X)

∫
∂∆V (X)

Ξkσilnids(X’) (4.3)

m̄klm =
1

∆V (X)

∫
∂∆V (X)

ΞkσilΞmnids(X’) (4.4)

s̄kl =
1

∆V (X)

∫
∆V (X)

σkl dv(X’) (4.5)

in which n is an unitary vector normal to ∂∆V . Then, rewriting the constitutive

equations (3.24) to (3.26)

t̄kl = Āklmnϵ̄mn + Ēklmnϕ̄mn (4.6)

s̄kl = Ēmnklϵ̄mn + B̄klmnϕ̄mn (4.7)

m̄klm = C̄lmknpqγ̄npq (4.8)

the components of macroscopic micromorphic stress are determined, which, as a re-

sult of elementary states of strain, consist of the terms of macroscopic micromorphic

constitutive relations.

In this work, this formulation is applied so the initial elastic tensor E0
βνδψ is

obtained only for the first step of the first iteration of a non-linear analysis and

the micromorphic scalar-isotropic damage models presented in Section 3.3.2 may be

employed without the definition of the 18 elastic parameters of the micromorphic

theory 1. For the subsequent iterations and steps, the initial constitutive relations are

degraded through the investigation of the degraded state of the material based on the

specified damage model. In the next section, the association of the homogenization

formulation here presented with a heterogeneous microcontinuum at the micro scale

is discussed.

1Both possibilities of simulating micromorphic media using the homogenization technique or
entering the elastic parameters were implemented.
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4.1 Homogenization of heterogeneous media

As previously discussed, in the micromorphic theory the domain V is divided

into small but finite elements ∆V (X), here called microcontinuum. In order to

incorporate the particle heterogeneity, a square microcontinuum is then considered

as heterogeneous with a microscale model generated by the take-and-place algorithm

described in Section 2.3. Then a finite elements mesh is associated to the generated

structure, where material properties for the aggregates are set to each element whose

position coincides with a particle and the remained elements are set as having mortar

matrix properties, as illustrated in Figure 4.2. The material properties at the micro

scale are defined as for a linear elastic classical medium, as only the parameters for

the micro scale are necessary for the homogenization process.

Generated 
particles

Microcontinuum 
mesh

Association 
particles-mesh

Heterogeneous 
microcontinuum

Figure 4.2: Construction of the heterogeneous microcontinuum based on the particles

generated by the take-and-place process

For the micro scale mesh, triangular and quadrilateral elements can be used for

the microcontinuum discretization (Figure 4.2). The mesh and the microcontin-

uum size should be defined based on the associated microstructure as, a sample,

to be statistically representative, ought to be large compared to the scales of the

microstructure, but small compared to the entire body (Wriggers and Moftah, 2006)

(Figure 4.3).
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Macroscale Microscale Particle

l1

l2

l3

l1≫l2≫l3

Figure 4.3: Size requirements

After the microstructure generation and the mesh definition, a heterogenous mi-

crocontinuum or RVE is associated to each integration point of the model under

analysis. Then, the homogenization technique described in the previous section is

processed for each element that composes the RVE where (4.3), (4.4) and (4.5) are

rewritten as a sum over n that represents the number of elements per microcontin-

uum:

t̄kl =
1

∆V (X)

n∑
1

∫
∂∆V ’(X)

Ξkσ’iln’ids’(X’) (4.9)

m̄klm =
1

∆V (X)

n∑
1

∫
∂∆V ’(X)

Ξkσ’ilΞmn’ids’(X’) (4.10)

s̄kl =
1

∆V (X)

n∑
1

∫
∆V ’(X)

σ’kl dv’(X’) (4.11)

where ∂∆V ’, ∆V ’ and σ’il represents the contour, the volume and the stress for

each element in the microcontinuum respectively, and n’i the normal to ∂∆V ’.

Hence, the macro scale micromorphic constitutive equations are obtained for

an equivalent micromorphic homogeneous material. As previously discussed, this

approach is only used to obtain the initial elastic tensor E0
βνδψ, which is degraded

according to the specified damage model. This process is illustrated in Figure 4.4

and its implementation details are discussed in Chapter 5.
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Figure 4.4: Homogenization strategy for a heterogeneous microcontinuum



Chapter 5

Computational implementation

The generalized tensorial format and the micromorphic scalar-isotropic damage

models presented in Sections 3.3.1 and 3.3.2 as well as the homogenization strat-

egy described in Chapter 4 were implemented in the INSANE system (INteractive

Structural ANalysis Environment), an open-source software developed at the Struc-

tural Engineering Department of the Federal University of Minas Gerais. Devel-

oped for computational mechanics, this software is basically composed by a set of

three interactive graphical applications that enables pre-processing, processing and

post-processing, being the second its numerical core, responsible for the analysis of

discrete models. Its abstractness and generality enable the simultaneous collabo-

ration of different researchers, responsible for the current state of the system, as

well as facilitates its expansion1. Penna (2011), who implemented the constitutive

framework for the classical continuum briefly discussed in Section 2.2.2, Silva (2019),

responsible for the micromorphic homogenization strategy described in Chapter 4,

and Monteiro et al. (2017), who dealt with the implementation of the take-and-place

algorithm (Section 2.3), are the works most related to this study. Following, the im-

portant aspects related to the implementations here proposed are presented with the

aid of UML diagrams (Unified Modeling Language), where the color code depicted

in Figure 5.1 is used.

Unaltered class Modified class New class

Figure 5.1: UML color code

1The reader may refer to the project website (https://www.insane.dees.ufmg.br/) where all
the publications related to its development are available for consultation.

81

https://www.insane.dees.ufmg.br/


82

5.1 Constitutive models framework

In the INSANE system, for the non-linear analysis of a discrete model the fol-

lowing system of equations must be solved:

[K]{X} = {R} (5.1)

where [K] is the global stiffness matrix, {X} the nodal displacements vector, and

{R} the nodal forces vector. For a non-linear analysis, [K] = [K]({X}) and the

system is solved through an incremental-iterative process. Hence, (5.1) may be

rewritten for the iteration n and step k

[Kt]kn−1{∆X}kn = ∆λkn{P}+ {Q}kn−1 (5.2)

in which [Kt] is the tangent stiffness matrix, {∆X} the vector of incremental dis-

placements, ∆λ an incremental load factor, {P} the vector of the nodal reference

loads, and {Q} the residual forces vector ({Q}kn−1 = λkn−1{P}−{F}kn−1, where {F}
is the vector of nodal forces equivalent to the internal stresses).

For the FEM, the matrix [Kt] and the vector {F} are assembled with the con-

tribution of each finite element based on

[Kt]el =

∫
Vel

[B]T [E]t[B]dVel (5.3)

{F}el =
∫
Vel

[B]T{σ}dVel (5.4)

where {σ} is the stress in each element and [B] the matrix that correlates strains

and displacements.

In this process, the constitutive models framework is responsible for obtaining the

constitutive operator (initial, secant or tangent) and the vector of internal stresses.

As initially implemented for a classical media (see, e.g., Penna (2011)), the abstract

class ConstitutiveModel enclosures the methods able to calculate the constitutive

operators and the internal stresses when all the information related to the model is

defined. The main activities of the class are represented in the methods mountC()

(initial operator), mountCs() (secant operator), mountCt() (tangent operator), and
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mountDualInternalVariableVector(), where the variables are calculated for each

integration point.

For this work, the class UnifiedConstitutiveModel and its inherited class UCM-

SingleLoadingFunction are of particularly importance. The class UnifiedConsti-

tutiveModel extends the methods mountC(), mountCs() and mountDualInternal-

VariableVector() of the class ConstitutiveModel, while the second extends the

method mountCt(). The class UnifiedConstitutiveModel possesses an instance of

the class UnifiedConstitutiveModelFilter, the superclass of a family of classes

called filters, where each filter represents a specific constitutive model. The pro-

cess of how to assemble the constitutive operators are defined in the class UCMS-

ingleLoadingFunction and the parameters that allow this process are provided

by the class UnifiedConstitutiveModelFilter. This class, as illustrated in Fig-

ure 5.2, possesses the methods responsible for defining the loading function and its

gradient (getLoadingFunctionPotential() and getHardeningSofteningPoten-

tial()), the directions of degradation (getInelasticPotential()) and the secant

constitutive operator (getSecantTensor()).

UnifiedConstitutiveModelFilter

+getSecantTensor(. . . )
+getInelasticPotential(. . . )
+getLoadingFunctionPotential(. . . )
+getHardeningSofteningPotential(. . . )
+update()

Figure 5.2: Class UnifiedConstitutiveModelFilter

As this framework for constitutive models has a tensorial formalism (see Section

2.2.2), it acquires great modularity and expandability, where the introduction of new

constitutive models does not requires changes in the existing framework. Applying

the compact tensorial formulation presented in Section 3.3.1, this framework can also

be made independent of the adopted continuum model, as concluded Gori (2018) for

the micromorpolar continuum model. Hence, for calculating the tangent constitutive

operator, no changes were required in the class UCMSingleLoadingFunction as the

expressions for a classical continuum and a micromorphic one are formally identical,

differing only in the dimension of the involved tensors. The constitutive models

proposed for a micromorphic media can, then, be introduced using the inherited
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classes of UnifiedConstitutiveModelFilter.

The isotropic models presented in Section 3.3.2 are illustrated in Figure 5.3 within

the partial structure of the filters classes:

«abstract class»
ConstitutiveModelFilter

UnifiedConstitutiveModelFilter

IsotropicConstitutiveModelFilter

SlfiCmMicromorphicJu

SlfiCmMicromorphicMarigo SlfiCmMicromorphicMazarsLemaitre

SlfiCmMicromorphicSimoJu

Figure 5.3: Structure of the filter classes with the inclusion of the micromorphic filters

5.2 Mesostructure generator

For the consideration of a heterogeneous microcontinuum, the package mesostruc-

ture was created in the project model.mesh responsible for the construction of

meshes for discrete models. The classes enclosured in this package are depicted in

Figure 5.4.

The classes HeterogeneitySetuper, NonConformMeshMultiphaseElementTreat-

TypeSetuper, Particle, SphericalParticle, IrregularParticle, MesoModelT-

ags, and ParticleDataManager are existing classes implemented in previous works

developed at the INSANE system. In this work, the relocation of this classes was

made with the consequential changes due to this relocation.
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br.ufmg.dees.insane.model.mesh.mesostructure

<<interface>>
HeterogeneitySetuper

NonConformMeshMultiphaseElementTreatTypeSetuper

<<abstract class>>
Particle

IrregularParticle SphericalParticle

<<interface>>
MesoModelTags

MesostructureFactory Sieves ParticleDataManager

Figure 5.4: Structure of mesostructure package

The implemented class MesostructureFactory controls the creation of the mi-

crostructure of a heterogeneous material and contains the object ParticleData-

Manager, which generates the particle distribution through the take-and-place algo-

rithm, and the method generateMesostructure that constructs the discretization

of the microcontinuum based on parameters such as the RVE and element sizes,

and the element type. For this work, the hypotheses of a square microcontinuum is

adopted. The method generateMesostructure also initiates the ParticleData-

Manager providing information on the particle distribution (e.g., sieves sizes (class

Sieves), particle type (class Particle), distribution factor, and particle fraction)

and sets the distribution of particles generated using the interface Heterogeneity-

Setuper and its inherited class NonConformMeshMultiphaseElementTreatTypeSe-

tuper into the data structure, which contains the microcontinuum discretization.

In order to store the information related to the heterogeneous microstructure

as well as the microcontinuum data structure, the classes GranularMaterial and

HomogenizedMaterial were created extending the abstract superclass Material,

responsible for representing different material objects in the system, as illustrated

in Figure 5.5. The class HomogenizedMaterial correlates the macro scale material,

which defines the damage law for the macro scale, and the micro scale granular

material.
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<<abstract class>>
Material

HomogenizedMaterial

- macroscaleMat:Material
- microscaleMat:GranularMaterial

GranularMaterial

- granularDataStructure:HalfEdgeDataStructure
- rveSize:double
- distributionType:String
- mappingType:String
- minSieveSize:double
- maxSieveSize:double
- elementSize:double
- fullerExp:double
- particleFraction:double
- distributionFactor:double
- particleType:String
- particleMaterial:String
- matrixMaterial:String

+ generateGranularStructure()

1-microscaleMat

Figure 5.5: Structure of the classes created for the representation of a heterogeneous

material

For the homogenization process, the class GranularSquareMicrocontinuum was

created extending the class Microcontinuum, which, in turn, extends the class De-

generation, as seen in Figure 5.6. The abstract class Degeneration represents

the degeneration of a certain solid model into a point where the integration point

itself with its coordinates and weigh is represented by the object Representation.

Numerous classes extend Degeneration for different degenerations with specific pa-

rameters. The class PrescribedDegeneration is one of those, which represents a

cross-section whose properties are defined by the user, such as area, thickness, and

moment of inertia.

The Degeneration is responsible for returning the contribution of each integra-

tion point for the assembly of the constitutive operators (mountC(), mountCs(), and

mountCt()) referring to its Representation, which stores the constitutive model to

which is associated.

Therefore, to introduce the homogenization strategy for a micromorphic media,

a different Degeneration, named Microcontinuum, was required in order to extend

the methods mountC(), mountCs(), and mountCt() for the specific case where this

operators are calculated through the process briefly described in Chapter 4. For
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a homogeneous microcontinuum, the classes CubicMicrocontinuum (for solid mod-

els) and SquareMicrocontinuum (for plane models) are responsible for this task

and were implemented in Silva (2019). Following the same procedure, in this work,

the class GranularSquareMicrocontinuum was created to represent a plane square

microcontinuum with a heterogenous microstructure in which the operations in Sec-

tion 4.1 are carried out and each column of the constitutive module is obtained and

returned to Microcontinuum that assembles the constitutive operators.

PrescribedDegeneration

<<abstract class>>
Microcontinuum

CubicMicrocontinuum GranularSquareMicrocontinuum SquareMicrocontinuum

<<abstract class>>
Degeneration

- representation:Representation
- materialPoints:ArrayList<MaterialPoint>

+ mountC():IMatrix
+ mountCt():IMatrix
+ mountCs():IMatrix

MaterialPoint

Representation

0..*-materialPoints

1 -representation

Figure 5.6: Structure of the classes responsible for the homogenization strategy



Chapter 6

Application of the proposed
scalar-isotropic damage models

In this chapter, in order to illustrate the application of the scalar-isotropic dam-

age models proposed for the micromorphic continuum, different examples are here

presented. First, all scalar-isotropic damage models proposed are presented with

a uniaxial stress state example. Following, a problem where the numerical strain

localization problem occurs is modeled to illustrate the regularization capacity of

the micromorphic continuum. After, a shear band formation under compression

loads and an infinitive shear layer problem are modeled where the localization phe-

nomenon is induced by a weakened zone and the results are compared to analysis

where the damage is considered at the micro scale.

6.1 Implemented constitutive models: uniaxial stress

state

The implemented constitutive models discussed in Section 3.3.2 are here illus-

trated considering the model in Figure 6.1: a square panel in a plane-stress state

with unitary thickness composed of one plane element and loaded in the x direction.

This example is well suited for the presentation of the implemented models due to

its simplicity, where all models present a similar behavior.
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Figure 6.1: Uniaxial stress state

For obtaining the initial elastic tensor necessary for isotropic damage models, the

homogenization strategy (Chapter 4) was applied with a square homogeneous mi-

crocontinuum of dimension 0.05 m. The equivalent isotropic homogeneous material

is characterized by a Young’s modulus of 20000 MPa and a Poisson’s ratio of 0.2.

The appropriated parameters for each constitutive model were adopted considering

an exponential damage law described by (6.1) and equivalent to the classical law

presented in (2.48):

D(Γeq) = 1− K0

Γeq

(
1− α + αe−β(Γeq−K0)

)
(6.1)

in which K0 is the threshold for the equivalent strain, and α and β define the max-

imum damage level allowed and the damage evolution intensity, respectively. The

equivalent strain measures for each model here employed were detailed in Subsection

3.3.2 Hence, it follows:

Mazars-Lemaitre micromorphic model: α = 0.999, β = 2000.0, K0 = 0.0001049;

Simo-Ju micromorphic model: α = 0.999, β = 30.0, K0 = 0.0148;

Ju micromorphic model: α = 0.999, β = 15.0, K0 = 0.00011;

Marigo micromorphic model: α = 0.999, β = 4000.0, K0 = 0.0001049.

The parameters presented for each model vary as the conceptual differences be-

tween the models preclude the exact correspondence between the parameters even

for the same damage law and were determined in order to obtain a similar behav-

ior. The loading process is driven by the displacement control method assuming an

increment of 5× 10−6 m for the horizontal displacement of the loaded face in order
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to better describe the peak load behavior, and a tolerance for the convergence of

10−4 in load. The results for the analysis are presented in Figure 6.2 wherein the

relation between the horizontal displacement for node 2 (Figure 6.1(b)) and the load

factor is given. Consistent results for all the models are obtained, attesting that the

implemented models for the micromorphic continuum are working properly.
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Figure 6.2: Uniaxial stress state: load factor versus horizontal displacement
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6.2 Uniaxial stress state: numerical strain localization

problem

Quasi-brittle materials are characterized by a softening behavior, where the load-

carrying capacity is reduced after a certain strain is reached. In discrete models,

the representation of this behavior may lead to mesh-dependent solutions where

strains tend to concentrate in an infinitesimal region, compromising the analysis.

This phenomenon, named numerical localization, originates from an approximation

error associated to small differences at the integration points in the model variables,

what triggers a solution distinct from the expected one as a small part of the mesh

controls the material behavior in the softening phase. Figure 6.3 illustrates this phe-

nomenon using a uniaxial stress state problem in which, for each mesh discretization,

a different equilibrium path is obtained due to the localization of strains in a certain

part of the mesh where they should be uniform. If these strains concentrate in the

highlighted regions in Figure 6.3, the behavior for these regions is described by the

descending branch of the stress (σ) × strain (ε) curve, while the remaining parts

of the mesh undergo unloading. This process leads to different responses for each

mesh, as the ratio between the loaded zones and the unloaded zones is distinct.

Figure 6.3: Numerical localization phenomenon (Fuina, 2009)



92

This phenomenon is related to the local character of classical continuum. Hence,

the micromorphic continuum, due to its non-local character and its consequent reg-

ularization capacity, may present a solution to deal with this problem. Therefore,

in this section, a uniaxial stress state problem, similar to the previous example, is

simulated to illustrate the capacity of the micromorphic media to provide consistent

results regardless of the adopted mesh. The model geometry is depicted in Figure

6.4(a). A square homogeneous and isotropic microcontinuum of dimension 0.05 mm

was adopted with Young’s modulus E = 20000 N/mm2 and Poisson’s ratio ν = 0.30.

The Marigo damage model (Eq. (2.49) for the classical continuum and Eq. (3.54) for

the micromorphic continuum) was employed associated to an exponential damage

law (Eq. (2.48) and Eq. (6.1)) with α = 0.999, β = 500, and K0 = 5×10−5, leading

to the constitutive behavior shown in Figure 6.4(b).
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Figure 6.4: Numerical localization: uniaxial stress state model

In this example, three meshes were considered, as seen in Figure 6.5, composed

by 36, 156 and 616 triangular linear elements with average side size of 0.25 mm,

0.125 mm and 0.0625 mm, respectively.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.5: Numerical localization: meshes

For the non-linear analysis, the generalized displacement control method was

adopted with an initial load factor of 5 × 10−3 and a tolerance for convergence

of 10−4 in displacement. The simulations here presented considered the tangent

approximation of the constitutive operator. The results for the classical continuum

are presented in Figure 6.6 in terms of the horizontal displacement of the loaded

face versus the load factor. For the coarsest mesh the exhibited result reproduces

the constitutive behavior depicted in Figure 6.4(b). For the second mesh, there

is a deviation from the expected behavior and, the most refine mesh, presents an

instability as soon as damage initiates due to numerical localization.
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Figure 6.6: Numerical localization: equilibrium paths for the classical continuum
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The micromorphic continuum, as it can be seen in the obtained equilibrium paths

illustrated in Figure 6.7, was able to replicate the predicted constitutive behavior

with all three meshes.

For the second mesh, which presented a divergent solution for a classical con-

tinuum, the numerical localization affects the distribution of the state variables, as

illustrated in Figure 6.8, which depicts the values for the scalar damage for the last

step of the analysis in the classical continuum and in the micromorphic continuum.

As it can be noted, the damage tends to concentrate in a part of the square panel

for the classical continuum and in others parts tends to zero. This same behavior

is not seen for the micromorphic continuum, where the damage remains constant

throughout the analysis.
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Figure 6.7: Numerical localization: equilibrium paths for the micromorphic continuum



95

(a) Classical continuum (b) Micromorphic continuum

Figure 6.8: Numerical localization: damage

Another option for non-linear analysis of micromorphic media was proposed by

Silva (2019), where, by means of the homogenization strategy described in Chapter

4, the damage is evaluated at the micro scale, which is described by a classical

continuum. Hence, considering the damage at the micro scale, does no require

the definition of specific damage models for the micromorphic continuum and the

classical models can be used.

In order to compare the approaches, the same problem depicted in Figure 6.4,

which was previously modeled with the consideration of damage at the macro scale,

was simulated considering the damage at the micro scale with identical parameters.

The results for the horizontal displacement of the loaded face versus the load factor

are presented in Figure 6.9 and they converge with the ones obtained for the damage

considered at the macro scale. Therefore, both strategies are able to solve the lo-

calization phenomenon due to the non-local nature of the micromorphic continuum,

however the processing time greatly increased when the damage was evaluated at

the micro scale as the homogenization is done for each step of the analysis. For the

simulations here presented, the processing time for damage at the micro scale is, in

average, 10 times greater than for the damage at the macro scale.
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Figure 6.9: Numerical localization: equilibrium paths for the micromorphic continuum

with damage in the micro scale

6.3 Shear band

Shear band formation under compression loads was investigated by numerous

researches as it may configures a bifurcation problem where the localization phe-

nomenon can occur. For the specific case of studies considering generalized con-

tinua theories, Mühlhaus and Vardoulakis (1987), de Borst (1990, 1991, 1993), de

Borst and Sluys (1991), Sluys (1992), Steinmann (1994, 1995), Ristinmaa and Vecchi

(1996), Lages (1997), and Fuina (2009) can be cited.

A compression test where the formation of the shear band occurs is simulated

in order to demonstrate the capacity of the micromorphic continuum to represent

the strain localization with no mesh dependency. Figure 6.10 illustrates the adopted

model analyzed under plain strain conditions with dimensions 60 mm by 120 mm

subjected to a compression load q. As it simulates a compression test where all

the points in the loaded face present the same displacement, the strategy master-

slave available in the INSANE system was employed. In this strategy, a node is

selected as the master and the other nodes are assigned as slaves, conditioning their
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displacement to that of the master node.

q 
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m
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Figure 6.10: Shear band: geometry

A square homogeneous microcontinuum with dimension 1.25 mm was used as-

sociated to a Young’s modulus E = 12000 MPa and a Poisson’s ratio ν = 0.35.

The Mazars-Lemaitre damage model (Eq. (2.49) for the classical continuum and

Eq. (3.47) for the micromorphic continuum) is employed with a linear damage law

defined, for the classical continuum, as

D(εeq) =
Kf

Kf −K0

(
1− K0

εeq

)
(6.2)

or, rewritten for the micromorphic continuum, as

D(Γeq) =
Kf

Kf −K0

(
1− K0

Γeq

)
(6.3)

where, similar to the exponential law, K0 and Kf are threshold values for the equiv-

alent strain. To simulate an elastoplastic behavior, the following parameters were

adopted: K0 = 0.0017 and Kf = 0.325. This study was conducted for the three

meshes depicted in Figure 6.11 composed of quadrilateral elements with nine nodes

and nine integration points. To induce the localization phenomenon a less resis-

tant region was introduced, as highlighted in Figure 6.11, adopting K0 = 0.0016 for

the respective elements, which implies an approximated 5% reduction in the stress

corresponding to the elastic limit.
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(a) Mesh 1: 32

elements

(b) Mesh 2: 128

elements

(c) Mesh 3: 512

elements

Figure 6.11: Shear band: meshes

For the loading process, the generalized displacement control method was em-

ployed with an initial load factor of 0.02 and a tolerance for convergence of 10−4 in

load. For the classical continuum, Figure 6.12 illustrates the obtained curves for the

load factor versus the vertical displacement of the loaded face for the three meshes.

With the mesh refinement, the results diverge from the expected one, pointing to

the mesh dependency of the classical model.
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Figure 6.12: Shear band: load factor versus vertical displacement (classical continuum)

Such mesh dependency is not perceived in the results for the micromorphic media,
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presented in Figure 6.13.
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Figure 6.13: Shear band: load factor versus vertical displacement (micromorphic contin-

uum)

The divergence in the results obtained for the classical continuum and the mi-

cromorphic continuum is due to the localization phenomenon that, with the mesh

refinement, tends to concentrate in an infinitesimal region for a classical media. This

localization is noted in the shear band presented for the three meshes in Figure 6.14

for the last step of the nonlinear process. For the micromorphic continuum, the lo-

calization phenomenon is well described with no mesh dependency, as seen in Figure

6.15.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.14: Shear band: damage (classical continuum)
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.15: Shear band: damage (micromorphic continuum)

As discussed in the previous example, for a non-linear analysis with the micro-

morphic continuum the damage can be computed at the micro scale instead of at

the macro scale, as proposed in this work. In order to compare both strategies,

the same model with the same parameters was simulated considering damage at

the micro scale. The equilibrium path and the shear band obtained are presented

in Figures 6.16 and 6.17, and the results converge with the ones obtained for the

macro-damage with a description of the localization phenomenon with no mesh de-

pendency. As mentioned, the most prominent difference between both techniques

resides in the computational time, that tends to be greater for the micro-damage

consideration.
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Figure 6.16: Shear band: load factor versus vertical displacement (micromorphic contin-

uum with micro-damage)
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.17: Shear band: damage (micromorphic continuum with micro-damage)

In order to study the influence on the structural behavior of the relation between

the size of the considered microcontinuum and the size of the macroscale problem,

the model illustrated in Figure 6.10 was modeled with the increased proportional

dimensions presented in Figure 6.18. As the previous analysis, a microcontinuum

of 1.25 mm was employed with the same material parameters: Mazars-Lemaitre

damage model associated to a linear damage law; E = 12000 MPa; ν = 0.35; K0 =

0.0017 and K0 = 0.0016 for the weakened elements (see Figure 6.11); Kf = 0.325.

Similarly, the analysis was conducted with all three meshes shown in Figure 6.11.

q 

96
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Figure 6.18: Shear band with increased dimensions: geometry

For the non-linear process, the generalized displacement control method was also

employed with an initial load factor of 0.05 and a tolerance for convergence of 10−4
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in load. The equilibrium paths obtained for the analysis with the classical contin-

uum and with the micromorphic continuum considering macro-damage and micro-

damage are illustrated in Figures 6.19, 6.20, and 6.21, respectively. The equilibrium

paths obtained for the classical continuum again demonstrates the occurrence of

the localization phenomenon, what led to mesh-dependent results. However, for the

case of the micromorphic continuum considering damage at the macro-scale and at

the micro-scale, the results were not completely mesh-independent, i.e., the micro-

morphic theory was not able to fully solve the numerical localization. As for the

processing time, for the most refined mesh the analysis considering micro-damage

was around six times higher than the one for the macro-damage analysis.
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Figure 6.19: Shear band with increased dimensions: load factor versus vertical displace-

ment (classical continuum)



103

0 10 20 30 40 50 60
0

5

10

15

20

25

Vertical displacement of the loaded face (mm)

L
oa

d
fa
ct
or

Mesh 1
Mesh 2
Mesh 3

Figure 6.20: Shear band with increased dimensions: load factor versus vertical displace-

ment (micromorphic continuum with macro-damage)
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Figure 6.21: Shear band with increased dimensions: load factor versus vertical displace-

ment (micromorphic continuum with micro-damage)

Following, the same analysis was carried out for a square homogeneous micro-

continuum of size 100 mm in order to accommodate heterogeneity at the micro scale

with aggregates varying from 19 mm to 9.5 mm, characterizing a possible concrete

mixture. This study was conducted to analyze the impact of the microcontinuum

increase for a homogeneous micro scale, i.e., with no influence of the heterogeneous

material. The results for this analysis are illustrated in Figure 6.22 for the macro-

damage consideration and in Figure 6.23 for the micro-damage.
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With the increase in the microcontinuum dimension, the micromorphic theory is

able to provide mesh-independent results when damage is considered at the macro

scale. However, for the micro-damage consideration, the analysis for the more refined

meshes (mesh 2 and 3) presented numerical instability and it was not able to fully

described the loading process. Similarly to the previous analysis, for the most refined

mesh when micro-damage is considered the processing time was around nine times

higher than the one for the macro-damage analysis.
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Figure 6.22: Shear band with increased dimensions: load factor versus vertical displace-

ment (micromorphic continuum with macro-damage and microcontinuum with dimension

of 100 mm)
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Figure 6.23: Shear band with increased dimensions: load factor versus vertical displace-

ment (micromorphic continuum with micro-damage and microcontinuum with dimension

of 100 mm)

Considering the results obtained for the three analysis conducted, it may be

concluded that, for the case where the structural dimensions are comparable to the

ones of the micro scale, the additional parameters introduced by the micromorphic

theory are significant and its non-local character is able to regularize the localization

phenomenon and solve the mesh-dependency problem. When there is a reduction

in the size of the microcontinuum and the structural dimensions are not more com-

parable to those of the microstructure, the micromorphic theory tends to the same

behavior as that of the classical theory and the induced localization process occurs,

leading to mesh-dependent results.

For the last analysis, where the microcontinuum size is also increased and struc-

tural and microstructural dimensions are again comparable, the considerable size

of the microcontinuum may not observe the hypotheses involved in the formulation

of the micromorphic theory as well as of the homogenization technique, where the

material particles are considered as small, leading to numerical instability when the

damage is considered at the micro scale. However, for the macro-damage consider-

ation, in this case, no such instability is noted and the micromorphic continuum is

able to represent the structural behavior with no mesh-dependency, dealing with the

induced localization phenomenon. It is important to note that these are preliminary

conclusions and further studies should be carried out to verify their veracity.
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6.4 Infinite shear layer

The infinite shear layer problem was employed for a number of authors to explore

the regularization capacity of generalized continua specially for elasto-plastic models

with strain softening (see, e.g., de Borst (1990, 1991, 1993), de Borst and Sluys

(1991), Lages (1997), Fuina (2009), Gori (2018), and Hütter (2019)).

The problem, as illustrated in Figure 6.24(a), consists of a layer with an infinite

dimension in the horizontal direction and height H under a shear load. Considering

the symmetry condition due to the infinite extension assumption, this problem may

be modeled as a thin strip with width w assuming no vertical displacement. In

this section, the layer presents H = 100 mm and w = 2 mm (Figure 6.24(b)) being

analyzed under a plane strain state with unitary thickness.

A square homogeneous microcontinuum was adopted with size 1 mm, Young’s

modulus E = 30000 MPa and Poisson’s ratio ν = 0.2. The Marigo damage model

is employed with an exponential damage law (Eq. (2.48) and Eq. (6.1)) with the

parameters as follows: α = 0.950, β = 750, and K0 = 1 × 10−5.

q = 1.0 N/mm 

q = 1.0 N/mm 

(a) Geometry

q 
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 =
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00
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(b) Model

Figure 6.24: Infinite shear layer: geometry and model

Four meshes, as illustrated in Figure 6.25, composed of 5, 10, 20, and 40 quadri-

lateral elements with four nodes are considered in this study and four integration

points. The bottom of the layer is constrained in both directions and each point of

the layer is restrained in order to prevent displacement in the vertical direction.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.25: Infinite shear layer: meshes

To induce the localization phenomenon, a weakened region is introduced, located

at the center of the strip, as highlighted in Figure 6.25. For the elements in this

region, K0 = 0.95 × 10−5 was adopted. The extension of this weakened region was

chosen accordingly with the considered discretization. For mesh 1 (Figure 6.27(a))

this zone enclosures the central element, while, for the other meshes (Figures 6.27(b),

6.27(c), and 6.27(d)), it occupies the two middle elements. Hence, meshes 1 and 2

present the same height for the weakened zone, and meshes 3 and 4 a reduced height.

The loading process is driven by the displacement control method assuming an

increment of 10−5 for the horizontal displacement of the top of the layer and tolerance

for convergence in load of 10−4.

The equilibrium paths obtained for the classical continuum are displayed in Fig-

ure 6.26 and the mesh-dependency is clearly noticed. For meshes 1 and 2, which

present a weakened zone with same height, the equilibrium paths coincide, while

for the more refined meshes (meshes 3 and 4) a stronger softening in the post-peak

branch is perceived. The influence of the weakened zone height is also noted in the

damaged and deformed configurations presented in Figure 6.27 for the last step of

the loading process. It can be observed that, as the degradation process is initiated,

the damage was confined to the weakened elements, and this zone did not expand

during the loading process. Observing the deformed configuration, it is noticeable
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that the deformations tend to concentrate in the weakened zone, while the remaining

elements exhibited rigid displacements. These results converge with other studies,

as de Borst (1991), Gori (2018), and Silva (2019).
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Figure 6.26: Infinite shear layer: load factor versus horizontal displacement (classical

continuum)

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.27: Infinite shear layer: damage and deformed configurations (classical contin-

uum)

For the micromorphic continuum with damage considered at the macro-scale, the
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results are presented in Figure 6.28 where the strong mesh-dependency noted for the

classical continuum is not perceived. This behavior is also noticeable in the damaged

and deformed configurations illustrated in Figure 6.29 due to the regularization

capacity of the micromorphic continuum, as discussed in the previous examples.
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Figure 6.28: Infinite shear layer: load factor versus horizontal displacement (micromorphic

continuum with macro-damage)

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.29: Infinite shear layer: damage and deformed configurations (micromorphic

continuum with macro-damage)
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Adopting damage at the micro scale, the behavior is similar to the one observed

for the macro-damage consideration, as illustrated in Figures 6.30 and 6.31. How-

ever, the analysis with macro-damage presented a more significant softening behavior

for the more refined mesh at the end of the post-peak branch, where the damaged

zone reduces in length (see Figures 6.29(d) and 6.31(d)). This behavior may be due

to the influence of the microcontinuum size, however more studies are required for

proving this hypotheses.
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Figure 6.30: Infinite shear layer: load factor versus horizontal displacement (micromorphic

continuum with micro-damage)
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.31: Infinite shear layer: damage and deformed configurations (micromorphic

continuum with micro-damage)



Chapter 7

Non-linear analysis of heterogeneous
media

In the previous chapter (Chapter 6) examples for the application of the scalar-

isotropic models proposed in this work were presented for the case of a homogeneous

microcontinuum in order to validate the equivalent strains proposed as well as the

implementation of the respective constitutive models. In this chapter, the focus is

the analysis of a heterogeneous microcontinuum with a microstructure generated by

the take-and-place algorithm and an equivalent homogeneous material obtained by

means of the homogenization strategy.

7.1 Study of the homogenization technique

In order to model non-linear problems with the micromorphic theory associated

to a heterogenous microcontinuum, an initial study of the proposed homogenization

strategy was conducted in order to evaluate the influence on the constitutive relations

of the type and size of the elements that compose the mesh for the microcontinuum

as well as the impact of the microcontinuum size. The results for both the analysis

(mesh study and microcontinuum size and distribution study) are presented in the

following sections.

7.1.1 Mesh study

To evaluate the impact on the homogenized constitutive operator of the type and

size of the element that composes the microcontinuum discretization, the meshes

illustrated in Figure 7.1 for quadrilateral elements and in Figure 7.2 for triangular

elements were studied. A square heterogeneous microcontinuum of size 50 mm was

112
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considered for all the meshes and, for the microstructure, the following parameters:

maximum sieve size dmax = 19 mm; minimum sieve size dmin = 9.5 mm; continuous

particle distribution; spherical particles; particle fraction PF = 30%; distribution

factor DF = 0.2; n = 0.5 for the Fuller’s distribution (Eq. 2.50); Young’s modulus for

the aggregates Eparticle = 300 GPa; Poisson’s ratio for the aggregates νparticle = 0.2;

Young’s modulus for the matrix Ematrix = 30 GPa; Poisson’s ratio for the matrix

νmatrix = 0.2.

(a) Mesh 1:

quadrilateral elements

25 mm× 25 mm

(b) Mesh 2:

quadrilateral elements

10 mm× 10 mm

(c) Mesh 3:

quadrilateral elements

5 mm× 5 mm

(d) Mesh 4:

quadrilateral elements

2.5 mm× 2.5 mm

(e) Mesh 5:

quadrilateral elements

1 mm× 1 mm

(f) Mesh 6:

quadrilateral elements

0.5 mm× 0.5 mm

Figure 7.1: Mesh study: quadrilateral microcontinuum meshes
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(a) Mesh 1: triangular

elements with average

size 25 mm

(b) Mesh 2: triangular

elements with average

size 10 mm

(c) Mesh 3: triangular

elements with average

size 5 mm

(d) Mesh 4: triangular

elements with average

size 2.5 mm

(e) Mesh 5: triangular

elements with average

size 1 mm

Figure 7.2: Mesh study: triangular microcontinuum meshes

Due to the randomness of the take-and-place algorithm, different particle distri-

butions can be obtained for the same input parameters, as seen in Figure 7.3 for a

microcontinuum of size 50 mm as previously defined for the present example. To

avoid the influence of the distribution on this study, a fixed particle distribution for

the aggregates was used for all meshes.

Figure 7.3: Mesh study: random generation of particles with same input parameters for a

microcontinuum of size 50 mm
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For each discretization, a heterogeneous microstructure was associated following

the process illustrated in Figure 4.2 in order to obtain a heterogeneous microcon-

tinuum. Subsequently, the homogenization process was carried out and the elastic

constitutive operator for the micromorphic continuum obtained containing Āklmn,

Ēklmn, Ēmnkl, B̄klmn, and C̄lmknpq (Eqs. 4.6, 4.7, and 4.8). For a plane model, this

constitutive operator is organized in a matrix with 16 rows and 16 columns, as im-

plemented for a FEM representation. This representation is presented in Figure 7.4

with the expected non-zero components of each constitutive tensor considering the

uncoupling for isotropic linear elastic media 1 and the corresponding stress/strain

components in Voigt notation. The values obtained for each component of the con-

stitutive tensors versus the element size are presented in Figures 7.5 through 7.9.

1In this study, only expected non-zero components were considered. For a heterogeneous mi-
crocontinuum, values supposed to be zero for a plane analysis for a homogeneous microcontinuum
presented non-zero values due to the heterogeneity. However, they were disregarded in this analysis
and further analysis is needed to understand their behavior.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ε11 ε22 ε12 ε21 e11 e22 e12 e21 γ111 γ221 γ122 γ212 γ222 γ112 γ211 γ121

t11 A1111 A1122 A1112 A1121 E1111 E1122 E1112 E1121

t22 A2211 A2222 A2212 A2221 E2211 E2222 E2212 E2221

t12 A1211 A1222 A1212 A1221 E1211 E1222 E1212 E1221

t21 A2111 A2122 A2112 A2121 E2111 E2122 E2112 E2121

s11 E1111 E2211 E1211 E2111 B1111 B1122 B1112 B1121

s22 E1122 E2222 E1222 E2122 B2211 B2222 B2212 B2221

s12 E1112 E2212 E1212 E2112 B1211 B1222 B1212 B1221

s21 E1121 E2221 E1221 E2121 B2111 B2122 B2112 B2121

m111 C111111 C111221 C111122 C111212

m122 C221111 C221221 C221122 C221212

m212 C122111 C122221 C122122 C122212

m221 C212111 C212221 C212122 C212212

m222 C222222 C222112 C222211 C222121

m211 C112222 C112112 C112211 C112121

m121 C211222 C211112 C211211 C211121

m112 C121222 C121112 C121211 C121121

Figure 7.4: Grouped micromorphic constitutive matrix - plane state
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Figure 7.5: Mesh study: components of the constitutive operator Aijkl
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Figure 7.6: Mesh study: components of the constitutive operator Eijkl
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Figure 7.7: Mesh study: components of the constitutive operator Eklij
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Figure 7.8: Mesh study: components of the constitutive operator Bijkl
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Figure 7.9: Mesh study: components of the constitutive operator Cijkl - rows and columns 9 to 12 of the constitutive matrix
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Figure 7.10: Mesh study: components of the constitutive operator Cijkl - rows and columns 13 to 16 of the constitutive matrix
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As the results obtained for each constitutive tensor shown, there is a convergence

in the values for element sizes smaller than 5 mm for quadrilateral and triangular

elements. In order to define the preferable element type, the processing time for each

mesh in the study was taken into account. Figure 7.11 presents the time processing

in milliseconds versus the element size. For more refined meshes the quadrilateral

element presents a lower time for obtaining the constitutive tensor by the homog-

enization technique due to the presence of fewer elements in the mesh. Therefore,

for the following examples that employs the homogenization strategy in heteroge-

neous particles, the microcontinuum is discretized with quadrilateral elements of size

5 mm.

It is important to note that the results for this study apply for a heterogeneous

microstructure with the parameters previously specified, as particle fraction, dis-

tribution factor, and sieve sizes. For other distributions, another study should be

conducted to determine the element type and size that yield better results with the

lowest processing time.
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Figure 7.11: Mesh study: processing time versus element size

7.1.2 Microcontinuum size and distribution study

After the definition of the appropriate size and type of the element for the mi-

crostructure discretization, a study of the microcontinuum size associated with an

analysis of the influence on the constitutive operator of the distribution randomness

was conducted.

Adopting quadrilateral elements with dimension 5 mm, square RVE’s with sizes

varying from 20 mm up to 120 mm were studied. For each microcontinuum size, 200

particle distributions were generated to evaluate the variation of the components of
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the constitutive operator due to the randomness of the take-and-place algorithm.

Figure 7.12 shows some examples for the microstructure generated for the same

input parameters considering a microcontinuum of size 100 mm, and Figures 7.13

through 7.18 illustrate the values for each component obtained for a microcontinuum

of size 100 mm for the 200 distributions generated2.

Figure 7.12: Distribution study: random generation of particles with same input param-

eters for microcontinuum of size 100 mm

The behavior of the tensors Aijkl, Eijkl, Eklij, and Bijkl is similar, where com-

ponents with indexes 1111, 1122, 2211, 2222, 1212, 1221, 2112, and 2121 tend to

an average value and the remaining components oscillate around zero. This cor-

responds to the expected behavior of these tensors for a plane analysis due to the

uncoupling of the corresponding stress-strain measures. The components of the ten-

sor Cijkl present a tendency to fluctuate around a average value, what also fits with

the anticipated behavior for this type of analysis.

Considering all the microcontinuum sizes analyzed, the average value for each

component for each RVE size was calculated. The results are presented in Figures

7.19 through 7.24 for the average values obtained versus the microcontinuum size3.

The results for the tensors Aijkl, Eijkl, Eklij, and Bijkl are similar, where non-zero

components tend to a certain value with the increase in the microcontinuum size,

probably due to the better representation of the microstructure and its particles. For

tensors Aijkl and Eijkl components that were expected as null presented a negligible

fluctuation around zero values. The average values obtained for the tensor Cijklmn

present an exponential growth as the microcontinuum increases, with no convergence

to a value. These results may be correlated to the formulation of the micromorphic

theory where the tensor Cijklmn is more significant with the increase of the size of

2For a better text organization, the complete results obtained for all microcontinuum sizes are
presented in Appendix A.

3The standard deviation for each component for each microcontinuum size was also determined
and the results are shown in Appendix A, Figures A.61 through A.66.
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the material particle, but further studies are necessary to attest this hypotheses.

Another possible explanation is related to the integral solved in order to obtain the

tensor Cijklmn through the homogenization process, presented in (4.4). As it can

be noted, the integer for defining the stress tensor m̄klm used for constructing its

corresponding constitutive tensor, presents the highest order among the integrals

defined in the homogenization strategy ((4.3) and (4.5)), which may lead to a higher

sensibility to the size of the material particle.

Based on these conclusions the shear band problem presented in Section 6.3 is

modeled in the next section with a heterogeneous microstructure associated to a mi-

crocontinuum of size 100 mm in order to satisfactorily represent the aggregates with

no large losses in computational efficiency, as, with larger RVE’s, the homogenization

process takes more time.
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Figure 7.13: Distribution study: components of the constitutive operator Aijkl (microcontinuum 100 mm)
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Figure 7.14: Distribution study: components of the constitutive operator Eijkl (microcontinuum 100 mm)
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Figure 7.15: Distribution study: components of the constitutive operator Eklij (microcontinuum 100 mm)
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Figure 7.16: Distributionstudy: components of the constitutive operator Bijkl (microcontinuum 100 mm)
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Figure 7.17: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 100 mm)
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Figure 7.18: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix
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Figure 7.19: Distribution study: average of the components of the constitutive operator Aijkl versus microcontinuum size
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Figure 7.20: Distribution study: average of the components of the constitutive operator Eijkl versus microcontinuum size
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Figure 7.21: Distribution study: average of the components of the constitutive operator Eklij versus microcontinuum size
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Figure 7.22: Distribution study: average of the components of the constitutive operator Bijkl versus microcontinuum size
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Figure 7.23: Distribution study: average of the components of the constitutive operator Cijklmn versus microcontinuum size
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Figure 7.24: Distribution study: average of the components of the constitutive operator Cijklmn versus microcontinuum size
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7.2 Shear band with a heterogeneous media

For the study of the homogenization process applied to a non-linear analysis,

the shear band problem presented in Section 6.3 with the geometry illustrated in

Figure 6.18 and the meshes depicted in Figure 6.11 is modeled with a heterogeneous

microstructure. The parameters for the construction of the microcontinuum are

similar to the ones employed in the homogenization study presented in the previous

section: maximum sieve size dmax = 19 mm; minimum sieve size dmin = 9.5 mm;

continuous particle distribution; spherical particles; particle fraction PF = 30%;

distribution factor DF = 0.2; n = 0.5 for the Fuller’s distribution (Eq. 2.50);

Young’s modulus for the aggregates Eparticle = 9000 MPa; Poisson’s ratio for the

aggregates νparticle = 0.35; Young’s modulus for the matrix Ematrix = 3000 MPa;

Poisson’s ratio for the matrix νmatrix = 0.35.

The Mazars-Lemaitre micromorphic damage model (Eq. (3.47)) is employed

with a linear damage law (Eq. (6.3)) and the following parameters: K0 = 0.0017

and Kf = 0.325; K0 = 0.0016 and Kf = 0.325 for the elements highlighted in Figure

6.11 in order to induce the localization phenomenon. The generalized displacement

control method is used for the non-linear process with an initial load factor of 0.2

and tolerance for convergence of 10−4 in load.

To study the influence of the randomness of the take-and-place algorithm in the

structural behavior, ten analysis were performed for each mesh in order to obtain

an average result and, after, an analysis where the initial constitutive operator was

obtained from the average of 200 different microstructures, following the idea of the

previous study (Section 7.1.2). The results for the three meshes are presented in

Figures 7.25, 7.26, and 7.27.

The behavior obtained for the three meshes is similar to the one observed for

a homogeneous microcontinuum proving the proper functioning of the homogeniza-

tion strategy proposed. The equilibrium path for the different tests present small

variations due to the random generation of particles. The use of an average of differ-

ent non-linear analysis is a possible solution for dealing with this variation, however

time consuming as each non-linear analysis has high processing times specially for

more refined meshes. An option that proved to be similar is the use of an average

constitutive tensor constructed by a significant number of distributions, that, for

this study, proved to be more computationally efficient4.

4In this study, obtaining the average constitutive operator for 200 distributions required around
10% of the processing time of a complete non-linear analysis for the most refined mesh.
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Figure 7.25: Heterogeneous shear band: load factor versus vertical displacement - mesh 1
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Figure 7.26: Heterogeneous shear band: load factor versus vertical displacement - mesh 2
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Figure 7.27: Heterogeneous shear band: load factor versus vertical displacement - mesh 3



Chapter 8

Conclusions

The main aim of the present work was to provide a basis for the modeling of

heterogeneous quasi-brittle media by means of continuum damage models, more

specifically scalar-isotropic models, with use of the micromorphic continuum theory

in view of its ability to incorporate the microstructural behavior in the continuum

formulation and, hence, address the strain localization phenomenon.

In order to incorporate the heterogeneity at the micro scale, the take-and-place

algorithm for the particles generation associated to the homogenization technique

proposed by Silva (2019) was used, allowing non-linear analysis of heterogeneous

media with the micromorphic theory using only material parameters of the classical

continuum.

The computational implementation was held in the INSANE system within a

unified constitutive framework first proposed for classical media. To solve the com-

patibility problem, a compact tensorial formulation was proposed allowing the in-

clusion of damage models for the micromorphic theory with minimum intervention

in the code.

The numerical simulations here presented attested the micromorphic continuum

capacity to regularize problems where the numerical localization phenomenon oc-

curs. In these analysis the homogenization strategy was employed for homogeneous

and heterogeneous material particles associated to the damage models here proposed

for the micromorphic continuum, verifying their proper functioning.

This work presents multiple possibilities for the study of the influence of the

heterogeneous microstructure in the structural behavior with the use of the micro-

morphic theory.

140
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8.1 Future research topics

Here some topics regarding the possible future research topics are presented,

what could give continuity to this work, as some points were not well studied due

to the time limit of this study:

1. Study the influence of the microcontinuum size in the formulation of the mi-

cromorphic theory and its constitutive tensors;

2. Adequate the microstructure generator to allow the inclusion of voids in the

microcontinuum;

3. Perform mesh and distribution studies for other aggregate distributions;

4. Model other non-linear problems that present heterogeneous media applying

the concepts here proposed.
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Kröner, E., 1977. ‘Bounds for effective elastic moduli of disordered materials’. Jour-

nal of the Mechanics and Physics of Solids, vol. 25(2), pp. 137–155.

Lages, E. N., 1997. Modelagem de Localização de Deformações com Teorias de

Cont́ınuo Generalizado. Tese de Doutorado, Pontif́ıcia Universidade Católica do
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Appendix A

Microcontinuum size and distribution
study: complete results

Chapter 7 discusses some of the results obtained for the study in which the

microcontinuum size and the randomness of the particle distribution were consid-

ered to verify their influence in the micromorphic constitutive tensor obtained by

the homogenization strategy exposed in Chapter 4. As presented in Section 7.1.2,

square RVE’s with sizes varying from 20 mm up to 120 mm were studied adopting

quadrilateral elements with dimension 5 mm for the microstructure discretization.

To evaluate the impact of the random generation of aggregates, 200 particle distribu-

tions were considered for each microcontinuum size and the respective components

of the initial constitutive tensor computed. Furthermore, besides evaluating the

average for the studied cases, the standard deviation was also calculated.

In this appendix, the results for the remaining simulations are presented, as

only the variation obtained for a microcontinuum of size 100 mm was illustrated in

Section 7.1.2. The standard deviation computed for each component is also here

presented (for the average values see Figures 7.19 through 7.24).

The observed behavior for the components values of each distribution is similar

to the one previously discussed for a microcontinuum of size 100 mm. Observing

the results obtained for the standard deviation, it may be perceived that, with the

increase in the size of the microcontinuum, there is a reduction in the standard

deviation except for the tensor Cijklm that experiences an increase in the values.

The same conclusion as presented in Section 7.1.2 can be drawn, but further studies

should be conducted to verify the hypotheses.
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A.1 Microcontinuum of size 20 mm
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Figure A.1: Distribution study: components of the constitutive operator Aijkl (microcontinuum 20 mm)
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Figure A.2: Distribution study: components of the constitutive operator Eijkl (microcontinuum 20 mm)
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Figure A.3: Distribution study: components of the constitutive operator Eklij (microcontinuum 20 mm)
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Figure A.4: Distribution study: components of the constitutive operator Bijkl (microcontinuum 20 mm)
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Figure A.5: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix
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A.2 Microcontinuum of size 30 mm
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Figure A.7: Distribution study: components of the constitutive operator Aijkl (microcontinuum 30 mm)
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Figure A.8: Distribution study: components of the constitutive operator Eijkl (microcontinuum 30 mm)
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Figure A.9: Distribution study: components of the constitutive operator Eklij (microcontinuum 30 mm)
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Figure A.10: Distribution study: components of the constitutive operator Bijkl (microcontinuum 30 mm)
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Figure A.11: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 30 mm)
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Figure A.12: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 30 mm)
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A.3 Microcontinuum of size 40 mm
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Figure A.13: Distribution study: components of the constitutive operator Aijkl (microcontinuum 40 mm)
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Figure A.14: Distribution study: components of the constitutive operator Eijkl (microcontinuum 40 mm)
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Figure A.15: Distribution study: components of the constitutive operator Eklij (microcontinuum 40 mm)
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Figure A.16: Distribution study: components of the constitutive operator Bijkl (microcontinuum 40 mm)
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Figure A.17: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 40 mm)
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Figure A.18: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 40 mm)
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A.4 Microcontinuum of size 50 mm
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Figure A.19: Distribution study: components of the constitutive operator Aijkl (microcontinuum 50 mm)



169

100

110

120

130
C
o
m
p
o
n
en

t
v
a
lu
e

E1111

20

22

24

26

E1122

−4
−2
0
2
4

·10−14

E1112

−4
−2
0
2
4

·10−14

E1121

20

22

24

26

C
o
m
p
o
n
en

t
v
a
lu
e

E2211

100

110

120

130

E2222

−2

0

2

4
·10−14

E2212

−2

0

2

4
·10−14

E2221

−1
−0.5

0
0.5
1

·10−14

C
o
m
p
o
n
en

t
v
a
lu
e

E1211

−5

0

5
·10−14

E1222

80

90

100

E1212

80

90

100

E1221

−4
−2
0
2
4

·10−14

C
o
m
p
o
n
en

t
v
a
lu
e

E2111

−0.5
0

0.5

1
·10−14

E2122

80

90

100

E2112

80

90

100

E2121

Figure A.20: Distribution study: components of the constitutive operator Eijkl (microcontinuum 50 mm)
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Figure A.21: Distribution study: components of the constitutive operator Eklij (microcontinuum 50 mm)
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Figure A.22: Distribution study: components of the constitutive operator Bijkl (microcontinuum 50 mm)
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Figure A.23: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 50 mm)
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Figure A.24: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 50 mm)
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A.5 Microcontinuum of size 60 mm
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Figure A.25: Distribution study: components of the constitutive operator Aijkl (microcontinuum 60 mm)
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Figure A.26: Distribution study: components of the constitutive operator Eijkl (microcontinuum 60 mm)
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Figure A.27: Distribution study: components of the constitutive operator Eklij (microcontinuum 60 mm)
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Figure A.28: Distribution study: components of the constitutive operator Bijkl (microcontinuum 60 mm)
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Figure A.29: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 60 mm)
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Figure A.30: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 60 mm)
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A.6 Microcontinuum of size 70 mm
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Figure A.31: Distribution study: components of the constitutive operator Aijkl (microcontinuum 70 mm)
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Figure A.32: Distribution study: components of the constitutive operator Eijkl (microcontinuum 70 mm)
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Figure A.33: Distribution study: components of the constitutive operator Eklij (microcontinuum 70 mm)
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Figure A.34: Distribution study: components of the constitutive operator Bijkl (microcontinuum 70 mm)
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Figure A.35: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 70 mm)
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Figure A.36: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 70 mm)
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A.7 Microcontinuum of size 80 mm
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Figure A.37: Distribution study: components of the constitutive operator Aijkl (microcontinuum 80 mm)
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Figure A.38: Distribution study: components of the constitutive operator Eijkl (microcontinuum 80 mm)
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Figure A.39: Distribution study: components of the constitutive operator Eklij (microcontinuum 80 mm)
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Figure A.40: Distribution study: components of the constitutive operator Bijkl (microcontinuum 80 mm)
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Figure A.41: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 80 mm)
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Figure A.42: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 80 mm)
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A.8 Microcontinuum of size 90 mm
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Figure A.43: Distribution study: components of the constitutive operator Aijkl (microcontinuum 90 mm)
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Figure A.44: Distribution study: components of the constitutive operator Eijkl (microcontinuum 90 mm)
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Figure A.45: Distribution study: components of the constitutive operator Eklij (microcontinuum 90 mm)
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Figure A.46: Distribution study: components of the constitutive operator Bijkl (microcontinuum 90 mm)
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Figure A.47: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 90 mm)
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Figure A.48: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 90 mm)
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A.9 Microcontinuum of size 110 mm
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Figure A.49: Distribution study: components of the constitutive operator Aijkl (microcontinuum 110 mm)



199

110

115

120
C
o
m
p
o
n
en

t
v
a
lu
e

E1111

22

23

24

E1122

−1

0

1

·10−13

E1112

−1

0

1

·10−13

E1121

22

23

24

C
o
m
p
o
n
en

t
v
a
lu
e

E2211

110

115

120

E2222

−1
0
1
2

·10−13

E2212

−1
0
1
2

·10−13

E2221

−4

−2

0

2

·10−14

C
o
m
p
o
n
en

t
v
a
lu
e

E1211

−1

0

1

·10−13

E1222

90

95

E1212

90

95

E1221

−2

0

2

·10−13

C
o
m
p
o
n
en

t
v
a
lu
e

E2111

0

5
·10−14

E2122

90

95

E2112

90

95

E2121

Figure A.50: Distribution study: components of the constitutive operator Eijkl (microcontinuum 110 mm)
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Figure A.51: Distribution study: components of the constitutive operator Eklij (microcontinuum 110 mm)
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Figure A.52: Distribution study: components of the constitutive operator Bijkl (microcontinuum 110 mm)
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Figure A.53: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 110 mm)
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Figure A.54: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 110 mm)
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A.10 Microcontinuum of size 120 mm
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Figure A.55: Distribution study: components of the constitutive operator Aijkl (microcontinuum 120 mm)
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Figure A.56: Distribution study: components of the constitutive operator Eijkl (microcontinuum 120 mm)
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Figure A.57: Distribution study: components of the constitutive operator Eklij (microcontinuum 120 mm)
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Figure A.58: Distribution study: components of the constitutive operator Bijkl (microcontinuum 120 mm)
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Figure A.59: Distribution study: components of the constitutive operator Cijklmn - rows and columns 9 to 12 of the constitutive matrix

(microcontinuum 120 mm)
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Figure A.60: Distribution study: components of the constitutive operator Cijklmn - rows and columns 13 to 16 of the constitutive matrix

(microcontinuum 120 mm)



210

A.11 Standard deviation results
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Figure A.61: Distribution study: standard deviation of the components of the constitutive operator Aijkl versus microcontinuum size
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Figure A.62: Distribution study: standard deviation of the components of the constitutive operator Eijkl versus microcontinuum size
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Figure A.63: Distribution study: standard deviation of the components of the constitutive operator Eklij versus microcontinuum size
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Figure A.64: Distribution study: standard deviation of the components of the constitutive operator Bijkl versus microcontinuum size
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Figure A.65: Distribution study: Standard deviation of the components of the constitutive operator Cijklmn versus microcontinuum size
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Figure A.66: Distribution study: standard deviation of the components of the constitutive operator Cijklmn versus microcontinuum size


	Acknowledgements
	Resumo
	Abstract
	List of figures
	List of abbreviations and acronyms
	List of symbols
	Table of contents
	Introduction
	Objectives
	General Objective
	Specific Objectives

	Outline

	Modeling of quasi-brittle and heterogeneous media
	Basic concepts
	Continuum damage models
	Continuum damage modeling: concepts
	Unified framework for constitutive models

	Modeling of heterogeneous media
	Micromechanics considerations


	Micromorphic Media
	Generalized Continua
	Micromorphic Continuum Theory
	Kinematics of Deformation
	Linear Elasticity

	A Unified Formulation for Elastic Degradation in Micromorphic Continua
	Elastic degradation in micromorphic media
	Scalar isotropic damage models


	Homogenization of a Classical continuum towards a micromorphic continuum
	Homogenization of heterogeneous media

	Computational implementation
	Constitutive models framework
	Mesostructure generator

	Application of the proposed scalar-isotropic damage models
	Implemented constitutive models: uniaxial stress state
	Uniaxial stress state: numerical strain localization problem
	Shear band
	Infinite shear layer

	Non-linear analysis of heterogeneous media
	Study of the homogenization technique
	Mesh study
	Microcontinuum size and distribution study

	Shear band with a heterogeneous media

	Conclusions
	Future research topics

	Bibliography
	Microcontinuum size and distribution study: complete results
	Microcontinuum of size 20  mm
	Microcontinuum of size 30  mm
	Microcontinuum of size 40  mm
	Microcontinuum of size 50  mm
	Microcontinuum of size 60  mm
	Microcontinuum of size 70  mm
	Microcontinuum of size 80  mm
	Microcontinuum of size 90  mm
	Microcontinuum of size 110  mm
	Microcontinuum of size 120  mm
	Standard deviation results


