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Resumo

Predição de mobilidade é uma tarefa importante, mas desafiadora. Fatores como a rotina

de um indiv́ıduo ou suas preferências por alguns lugares favoritos pode ajudar na hora de

predizer a próxima localização do indiv́ıduo. Por outro lado, vários fatores contextuais,

como variações nas preferências individuais, clima, trânsito, ou até mesmo pessoas com

as quais o indiv́ıduo se relaciona podem afetar seus padrões de mobilidade e tornar a

predição significativamente mais desafiadora.

Uma abordagem fundamental no estudo de mobilidade é avaliar quão previśıvel

esse tipo de comportamento (mobilidade) é, derivando limites teóricos na acurácia que

um modelo de predição pode atingir em um determinado conjunto de dados. Essa abor-

dagem foca na natureza inerente e nos padrões fundamentais de comportamento humano,

capturados nos dados, filtrando assim fatores que dependem das especificidades da es-

tratégia de predição adotada.

Entretanto, o método estado-da-arte para estimar previsibilidade em mobilidade

humana, proposto por Song et al., sofre de três grandes limitações. Ele possui baixa

interpretabilidade, o que torna dif́ıcil rastrear as causas de determinados valores de pre-

visibilidade, ou seja, é dif́ıcil saber o que faz a mobilidade de um indiv́ıduo ser menos ou

mais previśıvel. Segundo, esse método enxerga mobilidade humana como sendo uma en-

tidade indiviśıvel, dificultando o entendimento de diferentes componentes da mobilidade

de um indiv́ıduo. Terceiro, esse método possui pouca flexibilidade para incorporação de

fatores externos (informação de contexto) que sabidamente ajudam em predição de mo-

bilidade. Nesta tese de doutorado, nós revisitamos esta técnica estado-da-arte, com o

objetivo de sanar essas limitações e de discutir formas de usar informação de previsibili-

dade em aplicações práticas.

Palavras-chave: previsibilidade, entropia, mobilidade



Abstract

Predicting mobility-related behavior is an important yet challenging task. On one hand,

factors such as one’s routine or preferences for a few favorite locations may help in pre-

dicting their mobility. On the other hand, several contextual factors, such as variations

in individual preferences, weather, traffic, or even a person’s social contacts, can affect

mobility patterns and make its prediction significantly more challenging.

A fundamental approach to study mobility-related behavior is to assess how pre-

dictable such behavior is, deriving theoretical limits on the accuracy that a prediction

model can achieve given a specific dataset. This approach focuses on the inherent na-

ture and fundamental patterns of human behavior captured in that dataset, filtering out

factors that depend on the specificities of the prediction method adopted.

However, the current state-of-the-art method to estimate predictability in human

mobility, proposed by Song et al., suffers from three major limitations. First, it has low

interpretability, which makes it difficult to trace the causes of given predictability values.

Second, it views one’s mobility as one monolithic entity, thus preventing us from under-

standing the impact of one’s routine on predictability. And third, it lacks flexibility to

incorporate external factors which are known to help mobility prediction (i.e., contextual

information). In this thesis, we revisit this state-of-the-art predictability technique, aim-

ing at tackling these limitations as well as at providing techniques to use predictability

information in practical applications.

Keywords: human mobility, prediction, entropy, predictability
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Chapter 1

Introduction

Several services such as traffic control, ubiquitous computing, place recommendation, and

contextual advertisement depend on our ability to predict the whereabouts and mobility

patterns of individuals [72]. Despite the number of applications that benefit from it

and the various strategies to tackle the problem, human mobility prediction remains an

intrinsically challenging task, mainly due to the heterogeneity and complexity of human

behavior. For instance, both internal factors (the person’s individual preferences and

personality traits that govern her decision-making processes) and external factors (hour

of the day, weather, location of friends, etc.) may impact one’s decision to visit a particular

place.

The impact of such factors, which varies across individuals, implies that a max-

imum prediction accuracy of 100% may not be achievable for any given person. Yet,

current state-of-the-art mobility prediction models are not evaluated taking into account

such factors and how they affect the maximum accuracy that can be achieved for each

person.

In contrast, Song et al. [58] proposed to tackle that problem by studying pre-

dictability in individual human mobility. Predictability refers to the maximum accuracy

a prediction model can achieve when trying to foresee the next location a person will

visit, given a dataset of visited locations. Studying predictability is important because,

as we will explain later, it offers fundamental insights to understand patterns of human

mobility, to improve prediction models, and to enhance location-based systems.

Our goal in this thesis is to investigate the state-of-the-art technique for estimating

predictability, understand how it works, show some of its shortcomings, and then propose

ways to address these shortcomings.
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1.1 Overview of predictability

The state-of-the-art technique for estimating predictability was proposed by Song et

al. [58], and it exploits the concept of entropy as a measure of how complex (or, inversely,

how predictable) a person’s mobility patterns are.

In a nutshell, this technique estimates the entropy of the person’s mobility trace,

and subsequently uses this value to obtain a predictability estimate in the range [0, 1],

with 0 meaning completely unpredictable, and 1 meaning totally predictable. Thus, if

a person’s predictability is 0.8, it means that 20% of her mobility is considered to be

unpredictable, according to Song et al.’s technique.

The focus of predictability analysis is to detect patterns as they appear in the data.

In other words, this approach abstracts away from any specific prediction strategy and

concentrates instead on the inherent nature and fundamental patterns of human behavior,

as captured by the available data. Unlike particular comparisons of alternative prediction

models on different datasets, Song et al.’s approach is more fundamental: it does not

focus on any specific prediction technique but rather on human behavior, as captured by

the available data. It is thus an invaluable tool in human mobility studies and has direct

applications to mobility prediction.

For instance, Song et al.’s predictability technique can be used to solve two im-

portant problems in the evaluation of mobility prediction models. Usually, such models

are evaluated against a maximum accuracy of 100%, but this approach has two problems:

(i) given the complexity and heterogeneity of human behavior, a prediction accuracy of

100% may not be achievable for any given person, and (ii) different people exhibit different

behavior, which means that prediction models should be evaluated on a per-user basis,

instead of treating every person as equal. As mentioned, using each person’s predictability

to evaluate the performance of prediction models solves both of these problems, as every

person’s predictability is (likely) to be lower than an ideal value of 100% and tailored to

that person’s behavior.

Given the alleged benefits of using predictability to evaluate prediction models and

the more fundamental nature of the technique, one may be skeptical about whether pre-

dictability values are actually attainable or just another ideal target to aim for. Although

valid, this skepticism is unwarranted, given that Song et al.’s predictability values can

indeed be achieved, as shown in previous work [39].

Predictability also has many (still unexplored) applications of its own. For in-

stance, it can be used as a tool to assess the confidence in predictions, which is useful

in the analysis of highly unpredictable individuals, particularly when a misprediction has

a high cost. Let’s say, for example, that the predictability estimated for a user is 40%.

Then, a model will mispredict the user’s next location at least 60% of the time. That is,
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the confidence on the result of a prediction model can be considered low as the risk of

mispredictions is reasonably high.

Predictability can also be employed in outlier identification: in a particular dataset,

users who exhibit levels of predictability very different from the rest are likely to be

outliers, and therefore may deserve special attention. In a disease spreading scenario, less

predictable users may also be of interest since they tend to visit a large variety of distinct

locations, and therefore might exhibit higher risk of infection.

Predictability can also be used as a baseline to decide whether the cost of more

complex models is worth in a specific scenario. The motivation for this is that the max-

imum accuracy given by predictability is actually achievable by simpler models (such as

Markov-based models). Thus, it is only worth using a more complex model (such as

a neural network) if it offers higher accuracy. Additionally, in certain services such as

place recommendation, predictability can be used as a measure of the susceptibility of less

predictable users to novelty and diversity. In Chapter 7 we discuss how some of these

practical applications of predictability could be implemented and deployed.

1.2 Shortcomings of the state-of-the-art

predictability technique

Song et al.’s predictability technique is an invaluable tool for both theoretical and

practical studies, and it has been employed in several fields [71, 73, 16, 5, 39]. It does,

however, suffer from three shortcomings, which we discuss below and address in this thesis.

1.2.1 Low interpretability

Motivation The first shortcoming of Song et al.’s technique is its low interpretability.

As mentioned, Song et al.’s technique is able to capture patterns in a person’s mobility and

translate them to a value, i.e., the more predictable the person’s mobility the higher their

predictability value, and vice-versa. However, the knowledge of a person’s predictability

value does not give us insight into what resulted in that particular value.

This difficulty comes from how Song et al.’s technique works. This technique is

based on a sophisticated compression algorithm [35], which approximates the entropy
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of the sequence by the compression-rate of the input data. It is thus difficult to keep

track of what the compression algorithm is really capturing in terms of mobility patterns.

The end result is that it is hard to understand what types of mobility patterns make

one’s predictability higher or lower, that is, what makes one’s mobility easier or harder to

predict. While many previous studies relied on Song et al.’s technique, to our knowledge,

a thorough approach to understand and interpret predictability values is still lacking. In

light of the previous observations, the first research question this thesis aims to address

is the following.

Research Question 1 (RQ1) Would it be possible to trace a given predictability value

back to its causes, i.e., to interpret/explain predictability values and to understand what

makes a person’s predictability higher or lower?

Addressing RQ1 Our first goal is to tackle the low interpretability of Song et al.’s tech-

nique, by designing more robust, flexible and easy-to-interpret measures of predictability.

Ideally, a theoretical measure, such as predictability, should offer insights into

aspects of human mobility that have not been revealed before. It should help uncover new

patterns of mobility-related behavior that could be used to improve prediction strategies

and drive the design of more robust approaches. Yet, if we do not understand the patterns

it captures, it becomes harder to build prediction models that leverage such patterns.

Understanding what affects a person’s predictability can shed light into new avenues of

improvement for mobility prediction.

One of the approaches to understand what affects predictability is to try to untangle

mobility patterns from the output of the compression algorithm used by Song et al.’s

technique. Here we take a different approach: we propose the use of simple proxy metrics

that (i) are directly related to entropy/predictability, and (ii) allow us to to capture

mobility patterns in a more intuitive and easy to interpret way, thus allowing us to

understand what makes a person’s mobility easier or harder to predict.

1.2.2 Viewing human mobility as a single component

Motivation The second shortcoming in Song et al.’s technique is the difficulty to use

it to study different components of an individual’s mobility. Although previous work [57,

48, 3] modeled individual human mobility as consisting of two types of visits (explorations

and preferential returns), Song et al.’s work as well as subsequent studies derived from

it [39, 15, 56, 42, 60, 62] viewed individual human mobility as a whole, monolithic entity. It
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is therefore difficult to use Song et al.’s technique to study different components of human

mobility separately. Thus, the second research question this thesis aims to address is the

following.

Research Question 2 (RQ2) Would it be possible to use Song et al.’s technique to

study the predictability of different components of individual human mobility?

Addressing RQ2: In addition to trying to understand predictability as a whole, we

also take steps towards understanding the predictability of different components of an

individual’s mobility. As mentioned, Song et al.’s technique, as originally proposed, does

not allow us to do that, as it views human mobility as a single entity.

To tackle that, we propose a way to study predictability by splitting one’s mobility

into two distinct components: routine and novelty, where the novelty component consists

of visits to a place for the first time, and the routine component consists of every visit

that does not belong to the novelty component.

The motivation for these two components is that visits that occur in each of them

have different properties: one’s routine component is less influenced by some external

factors than one’s novelty component. For instance, one may go to work regardless of

the weather, but if it rains, one may decide to stay home instead of going to a new

restaurant. These different properties suggest that novelty and routine should be analyzed

and evaluated separately. We hypothesize that, by dividing human mobility into these

two components, the mobility patterns that affect each of them should become clearer,

compared to looking at human mobility as one, monolithic entity. Specifically, we focus

on studying predictability of the routine component, as that can lead to new insights for

prediction strategies that rely on the history of visited locations.

1.2.3 Lack of flexibility to incorporate contextual information

Motivation The third shortcoming in Song et al.’s predictability technique is the fact

that it does not allow for the use of external information which is known to help mobility

prediction (i.e., contextual information). As we will discuss in Section 2.1.5, mobility-

related behavior may be influenced by several factors (daily or weekly routine, traffic

conditions, weather, and so on), some of which have been shown to help prediction ac-

curacy [15]. However, Song et al.’s technique takes as input only the person’s mobility

trace, completely disregarding these factors.
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Although previous work has argued for the benefit of exploiting contextual infor-

mation on predictability [15], to our knowledge, no one has shown how to incorporate it

into predictability estimates nor effectively quantified its impact on predictability. Thus,

the third research question this thesis aims to address is the following.

Research Question 3 (RQ3) Would it be possible to take contextual information into

account when using Song et al.’s technique, as well as to investigate the pros/cons related

to the use of contextual information jointly with predictability?

Addressing RQ3 Song et al.’s technique [58] relies on a person’s history of visited

locations to estimate their predictability, and, by doing so, it is able to capture frequently

visited locations and trajectories. Fundamentally, the introduction of contextual infor-

mation leads to entropy measures based on a joint probability distribution of two random

variables, namely location and context. However, as we discuss in Chapter 5, Song et al.’s

technique does not explicitly consider a probability distribution as a component of its

algorithm, so adding context to it becomes a challenge.

In this thesis, we tackle that by devising ways to estimate predictability with

contextual information by using different entropy estimators—which allow for the use of

contextual information—, and also by devising strategies to incorporate such information

into compression-based entropy estimators. Additionally, we study the impact of context

on predictability when these strategies are employed.

1.3 Contributions of this thesis

Building on the motivation and directions presented in the previous section, we

describe below our contributions towards addressing each of our RQs as well as list the

results and publications we obtained for each RQ.

RQ1 Our results show that most of the variability in an individual’s predictability can be

explained by simple, easy to interpret proxy metrics: stationarity, regularity, and diversity.

Our decision to use metrics that capture a person’s predictability was motivated by the

fact that Song et al.’s predictability technique is based on a sophisticated compression

algorithm, which makes it hard to look at the output of the algorithm and reason what

caused such output. We validated our metrics by proposing regression models that use

them as proxies of one’s predictability. Our results, which encompass two prediction tasks
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(described in Section 2.1.3), show that our proposed metrics are able to capture up to

93.5% of the variability of a person’s predictability.

RQ2 Towards addressing RQ2, we devised a novel technique to isolate an individual’s

mobility into two components (called novelty and routine), so as to estimate the impact

of each of these components on predictability. We then used our technique to estimate

the impact of each component on predictability, and to zoom in on the routine com-

ponent, aiming at understanding what affects the predictability of one’s routine. Our

results, which extend and deepen the investigation started in RQ1, show that most of

the variability in the predictability of one’s routine can be explained by the amount of

distinct locations one visits (regular behavior), the amount of time one spends at pre-

ferred locations (stationary behavior), and the order in which one visits certain sequences

of locations (diverse behavior). Additionally, we show that these three types of behavior

account for up to 96% of the variability in one’s routine.

RQ3 We obtained two important results with respect to RQ3. First, we show that

by using different entropy estimators than the one used by Song et al., it is possible to

incorporate contextual information into predictability estimates. We propose two novel

techniques to incorporate contextual information directly into the entropy estimator used

in Song et al.’s work. Second, we evaluate the impact of contextual information both when

different entropy estimators are used, as well as when our two techniques are employed.

Our results show that contextual information does not always lead to higher predictability,

and we provide a few hypotheses to explain these results. Despite limitations related to

mobility sequence sizes and context availability, our findings in this RQ open up different

avenues for research in the topic of predictability.

The results listed above (and detailed in Chapters 4, and 5, and 6) are summarized

in the following publications:

• On Estimating the Predictability of Human Mobility: The Role of Routine. Douglas

Teixeira, Jussara M. Almeida, Aline C. Viana. EPJ Data Science. Under review.

(RQ2).

• The Impact of Stationarity, Regularity, and Context on the Predictability of Indi-

vidual Human Mobility. Douglas Teixeira, Aline C. Viana, Mário S. Alvim, Jussara

M. Almeida. ACM Transactions on Spatial Algorithms and Systems. 2021. (RQ1

& RQ3).

• Deciphering Predictability Limits in Human Mobility. Douglas Teixeira, Aline C.

Viana, Mário S. Alvim, Jussara M. Almeida. ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems. 2019. Best paper

candidate. (RQ1 & RQ3).
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• On the Predictability of a User’s Next Check-in Using Data from Different Social

Networks. Douglas Teixeira, Mário S. Alvim, Jussara M. Almeida. ACM SIGSPA-

TIAL Workshop on Prediction of Human Mobility. 2018. (RQ3).

• An Empirical Study of Human Mobility Patterns. Douglas Teixeira, Jussara M.

Almeida. Brazilian Symposium on Computer Networks and Distributed Systems

(SBRC). 2018. (RQ1).

We also obtained other results, not directly related (but still relevant) to this thesis:

• On Car-Sharing Usage Prediction with Open Socio-Demographic Data. Michele

Cocca, Douglas Teixeira, Luca Vassio, Marco Mellia, Jussara M Almeida, Ana Paula

Couto da Silva. Electronics. 2020.

1.4 Organization of this document

The rest of this document is organized as follows. In Chapter 2 we provide the necessary

background for this thesis, discussing human mobility, the two prediction tasks we target,

explaining the theoretical foundations of Song et al.’s technique, and positioning our work

with respect to the literature on predictability. Chapter 3 explains and characterizes the

datasets used in our experiments. In Chapters 4, 5 and 6 we discuss the results we obtained

for each of our research questions (RQs). Chapter 7 summarizes our contributions and

discusses future directions for predictability studies.
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Chapter 2

Background

In this chapter, we position this thesis with respect to the literature and provide the

necessary background for our work. We start by making a distinction between mobility

modeling and mobility prediction. We then move on to define the the individual human

mobility prediction problem (Section 2.1.2), as predictability is a measure of the maximum

accuracy that a model can obtain when predicting the next location someone will visit.

Subsequently, we explain the prediction tasks—ways to frame the mobility prediction

problem—targeted in this study (Section 2.1.3).

In order to describe how the mobility prediction problem is addressed in practice,

we provide a brief overview of several types of prediction strategies (Section 2.1.4) and

discuss factors that play a role on human mobility (Section 2.1.5). Subsequently, we pro-

vide the necessary background on predictability (Section 2.2.1), describing its theoretical

foundations, and then position our work with respect to the literature on predictability

(Section 2.2.2), highlighting the gaps in the literature and discussing how our work fills

some of those gaps.

2.1 Mobility Modeling and Prediction

In this section, we discuss the difference between mobility modeling and mobil-

ity prediction, and how prediction strategies rely on mobility modeling to infer people’s

mobility patterns. We start by explaining mobility modeling (here called explanatory

models), in Section 2.1.1. We briefly mention patterns of human mobility that have been

used to explain people’s movements, as well as several ways to categorize human mobility

in terms of mobility patterns. We then move on to discussing mobility prediction (in

Section 2.1.2), and how it relates to our work.
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2.1.1 Mobility Modeling

In human mobility, there are explanatory models and predictive models. Explana-

tory models try to derive statistical properties of human mobility, while predictive models

rely on existing mobility patterns (properties of human mobility) to predict the where-

abouts of individuals.

There are a number of studies that investigate explanatory models of human mo-

bility. For instance, Brockman et al. [8] try to model the dynamic spatial redistribution

of individuals as scale-free random walks known as Lévy flights. Gonzales et al. [21] argue

that human trajectories show a high degree of temporal and spatial regularity, and charac-

terize the mobility of individuals in terms of their radius of gyration, and the probability

of a person returning to a previously visited location. Other examples of explanatory

models are the gravity model and the radiation model [54], which try to explain the mi-

gration patterns of individuals. Wang et al. [67] nicely summarize classic explanatory

models and what properties of human mobility they capture.

Karamshuk et al. [32] also survey and categorize several statistical properties of

human mobility. These properties are divided into three categories: temporal, spatial,

and social. Temporal properties include the frequency with which people visit a given

location, their probability of returning to a previously visited location, or how much time

they spend in each visited location [21]. Spatial properties include how close to Lèvy

flight are human movements [8], the radius of gyration [21] of people’s movements. Social

properties include whether the users are considered isolated [21], in groups [70], or whether

contacts between users are considered [13].

Explanatory models have been categorized in several other dimensions. For in-

stance, Asgari et al. [4] survey data collection techniques and mobility patterns of indi-

viduals, classifying previous studies into three major types: trajectory-based, dynamic

proximity networks, and flow on networks. Other studies adopt different categorizations,

such as the one presented by Treurniet et al. [64], which focuses on the elements (spatial

constraints, pause time, motion, etc.) of human mobility that are captured by each model.

Yet another categorization is proposed by Hess et al. [27] to classify mobility models in

terms of features and general strategies (modeling view, evaluation method, and so on)

adopted by each model.

Explanatory models are important for mobility prediction because predictive mod-

els often rely on statistical properties of human mobility to make predictions. Having made

the distinction between explanatory and predictive models, we now proceed to explain

human mobility prediction, the prediction tasks we investigate in this study, and several

types of predictive models.
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2.1.2 Mobility prediction

Human mobility prediction is a research topic with broad and important appli-

cations in areas such as urban planning, traffic engineering, epidemiology, recommender

systems, and advertisement, to name a few [72, 40, 25]. For instance, knowing the amount

of people that routinely go to certain regions in a city can be used for better traffic fore-

cast and urban planning, and knowing a person’s next location can be used to offer better

route suggestions, to recommend places, and to provide location-aware advertising.

From these applications, one can infer that there are two types of mobility pre-

diction: volume (aggregate) and individual prediction. Aggregate prediction is a coarse-

grained approach: it works at a population level and focuses in predicting the direction

in which groups of people will flow. Examples of studies in this area include the work of

Brockman et al. [8], in which the authors investigate human travelling by analysing the

circulation of bank notes in the United States, and the work of Simini et al. [55], which

investigates migration flows between regions using the radiation model.

In individual prediction, the goal is to provide a fine-grained approach to human

mobility by focusing in forecasting the whereabouts of individuals. An example of indi-

vidual mobility prediction is the work of Gonzales et al. [21], which shows that human

trajectories exhibit spatiotemporal regularities, with frequent visits to a few preferred

locations interspersed with occasional visits to other locations. Throughout this docu-

ment, unless otherwise noted, whenever we mention mobility prediction, we are referring

to individual human mobility prediction, which is the focus of our study.

The individual human mobility prediction problem can be defined as follows.

Definition 2.1.1. Given a time-ordered sequence of locations X = (x1, x2, . . . , xn−1) that

a person visited in the past, we wish to predict the next location xn ∈ X.

Notice that the definition of the mobility prediction problem deals with symbols in

a sequence, but location data is usually collected as latitude/longitude pairs. Predicting

the exact latitude and longitude of users is rather challenging so, to simplify the problem,

the geographical area can be divided into a grid of square cells, and latitude/longitude

coordinates can be converted to cell identifiers. Thus, each xi in X becomes a unique

identifier of a cell in the grid. The mobility prediction problem is thus to guess the next

symbol (identifier) xn in X.

As mentioned, our focus in this doctoral thesis is on individual human mobility,

regardless of the mode of transportation the individual chooses to move among places. As

long as his or her mobility trace can be represented by a sequence of symbols in a given

alphabet, as described in Definition 2.1.1.
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2.1.3 Prediction tasks

The mobility prediction problem can be rendered under different prediction tasks,

depending on the properties of xn. In this study, we will focus on two particular prediction

tasks, namely next-cell and next-place prediction [28, 15].

Given a time-ordered sequence X = (x1, x2, . . . , xn−1) of observations of a person’s

location, these prediction tasks are defined as follows.

Definition 2.1.2. Next-cell prediction: Predict xn, the next location in sequence X.

Notice that here, location xn can be equal to xn−1 in case the person stays at her current

location for several consecutive observations (stationary period).

Definition 2.1.3. Next-place prediction: Predict the next location xn ∈ X, where

xn ̸= xn−1. Notice that here we wish to know the next (distinct) location the person will

visit. In other words, in this prediction task we ignore stationary periods.

There are two main options for carrying out these prediction tasks in a given

dataset. The first option is to work with the full dataset and adjust the predictions accord-

ingly. For instance, in the next-place prediction task, while performing predictions, one

would ignore every next location that is equal to the previous one. The second option is to

filter the dataset so as to eliminate stationary periods when performing next-place predic-

tion. For instance, consider an example sequence X = (A,B,A,A,A,D,B,B,B,C, F ).

For the next-cell prediction task, X would remain unchanged, whereas for the next place

prediction task, X would become X ′ = (A,B,A,D,B,C, F ).

Throughout the rest of this thesis, whenever we refer to a particular dataset for the

next-place prediction task, as we discuss in Section 3.2, we are referring to the dataset

after we filter out stationarity. Notice that, while filtering out stationary periods, we

remove symbols from the sequences, therefore producing smaller sequences compared to

the next-cell prediction task. As detailed in Chapter 5, the lack of stationarity and the

smaller size of the sequences makes this prediction task harder than next-cell prediction.

2.1.4 Prediction strategies

The study of human mobility prediction has received considerable attention in the

literature and many previous studies have proposed prediction strategies by employing

a plethora of different techniques. We note that a comprehensive review of the several
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types of mobility prediction models can be found elsewhere [67, 64]. For the purposes of

this thesis, we will provide a brief description of studies that are representative of some of

the main strategies used in mobility prediction. We will also make a distinction between

the type of model for which Song et al.’s technique applies and those in which it may not

apply.

Compression-based models Compression-based strategies try to infer sequences of

commonly visited locations in terms the sequences that appear often in an input, and can

in turn be used to compress the input sequence. This idea is used by Pulliyakode et al. [49]

to propose a compression-based model to predict people’s future location in small datasets.

Song et al. [59] compare the performance of Markov-based models with compression based

models, finding that Markov models outperform the compression-based strategies they

evaluated. Other compression-based strategies rely on more sophisticated algorithms,

such as the Lempel-Ziv [35] algorithm, to approximate a k-order Markov predictor.

Markov models In this type of prediction strategy, transitions between locations are

modeled as a Markov chain, and the frequencies of each transition are used to predict

where the person will go next. Markov models have been used in conjunction with pre-

dictability since Song et al.’s work [58], in which the authors build Markov models to try

to reach the maximum accuracy obtained by their technique. Subsequently, Xin Lu et

al. [39] use Markov chains to predict the next location of individuals based on their cur-

rent and past locations, and show that Markov models can indeed reach the predictability

limits devised in Song et al.’s work. Libo et al. [59] also evaluate Markov-based methods

for location prediction and compare their performance with other types of models.

Graph-based models This type of model views locations as nodes and transitions

between locations as edges in a graph. An example of the use of this strategy for mobility

prediction is Dong et al.’s work [18], in which the authors propose a structure called

leap graph, where an edge (or a leap) corresponds to actual user mobility. They also

evaluate a Markov-based model that uses the leap graph to predict users’ mobility in

a network. They show that their model can substantially improve the performance of

content prefetching and base station selection during handover. Silveira et al. [53] also

propose alternative prediction strategies and compare them to leap graph and another

strategy called SMOOTH [43] on heterogeneous data sources coming from social networks

and mobile phone usage, showing that their proposed strategies perform better and are

more robust than the baselines. Terroso et al. [63] also propose a graph-based model that

requires no prior training and evaluate its performance on geo-tagged data from a social

network.
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Time-series models Time-series models have also been used to perform mobility pre-

diction. The reasoning behind these models is to modify the input time-series, preserving

some its properties, while making it easier to predict the observations (locations) in the

sequence [67]. Several strategies can be used to obtain a stationary time-series. For in-

stance, auto-regressive (AR) models [65] identify periodicity in a time series in order to

make it more regular. Other strategies are based on computing a moving average (MA)

of the input time-series [67]. More sophisticated approaches, such as Autoregressive Mov-

ing Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) combine

these two strategies in order to obtain more regular, stable time-series on which patterns

can be inferred. Wang et al. [66] employ these strategies to build a higher-order time

series model to predict future visited locations.

Machine learning models Machine-learning models have several uses in mobility pre-

diction. For instance, Cuttone et al. [15] use logistic regression models that rely on the

users’ current and past locations as well as contextual information (hour of the day, day

of the week, the user’s home location, etc.) to predict their next location. Moon et al. [42]

use a Long Short-Term Memory (LSTM) network-based model to predict next locations

a person will visit in a period of up to six hours. Ozturk et al. [46] use deep learning for

mobility prediction in the context of 5G networks, and Ghouti et al. [20] use deep neural

networks to propose improvements in the quality of service in Mobile Ad-Hoc Networks.

Universal versus non-universal predictors To put it simply, a universal predictor

is a prediction model that does not require prior training and learns patterns on-the-fly as

it processes the input. An example will make things clearer. Suppose, for instance, that

one wishes to predict the next outcome in a sequence coin tosses. Because it is expected

that the number of 0s and 1s in an unbiased coin tend to be roughly the same as the

number of tosses goes to infinity, if the number of 0s is less than the number of 1s so far,

the model predicts that the outcome will be 0. Otherwise it predicts 1. As the number of

0s and 1s changes at each coin toss, the model adjusts these numbers on-the-fly and makes

predictions based on which of them is lower. In the case of human mobility prediction,

one could employ a very simple model that always predicts the user’s next location as

the location they visited more frequently in the past. As time goes on, the frequency

with which the user visits locations may change, and the model updates its predictions

accordingly.

Conversely, a non-universal predictor is a model that does require prior training.

For this type of predictor to work, several parameters have to be tuned, and to tune

a model’s parameters, we feed it with real data, compare its predictions with the actual

outcome (present in the input data) and then adjust its parameters so as to fit the desired
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output to the corresponding input data. Machine Learning (e.g., linear regression, logistic

regression, decision trees, neural networks, etc.) are representatives of this type of model.

In this study, we will focus on universal predictors because Song et al.’s technique

is valid only for this type of model, as we explain in Section 2.2.1. It is important to

note, however, that albeit simpler, this type of model presents remarkable performance

in mobility prediction (e.g., Xin Lu et al. [39] report accuracy values of up to 95% in

predicting people’s next locations). These models also have the advantage of being more

interpretable and less computationally intensive than other approaches such as neural

networks.

2.1.5 Factors that influence mobility prediction

A lot of factors play a role on mobility prediction. It is important to note that

all of these factors are captured by the data, which is central to mobility prediction and

predictability. We defer to Section 3.1 the discussion of the overall influence of different

data types on mobility prediction, and in this section we discuss other factors such as the

spatiotemporal resolution of the data and contextual information. While in this section

we provide a qualitative discussion of the impact of these factors on predictability, in

Chapter 4 and Chapter 6, we actually quantify their effect on predictability.

As explained in Section 2.1.3, in order to obtain a sequence of identifiers (instead

of dealing with latitude/longitude coordinates), we tessellate a grid onto the geographical

area, thus dividing it into square cells of a given size. As a result, the choice of the size

of the cells influences mobility prediction. If the area is broken into a grid of larger cells,

most of the user’s activity tends to be confined within fewer cells, with two opposing

effects. On one hand prediction accuracy, increases, since it becomes relatively easier to

correctly infer which cell the user will visit next. On the other hand, prediction utility

degrades, since the bigger the cell the user is predicted to visit, the less informative the

corresponding prediction is. In the extreme case of a grid with a single cell, prediction is

always trivially correct but it is also of little use. Hence, by adopting grids with higher

granularity (i.e., smaller cells), we increase prediction utility, but at the possible cost of

hurting accuracy. What are the trade-offs between these two dimensions?

Temporal resolution has a similar effect on mobility prediction. It has been shown

that stationary periods, i.e., periods in which the individual stays in the same location,

lead to higher prediction accuracy [15, 62, 61], depending on the prediction task. If

the temporal resolution is high (more observations per time unit), there will be more

observations in the same location, which will lead to longer stationary periods. If, however,
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the temporal resolution is lower, the more likely the person is to change locations between

observations.

In general, we expect prediction accuracy to be inversely proportional to spatial

resolution (the smaller the cell size, the lower the accuracy of models), and directly pro-

portional to the temporal resolution (the more observations per time unit, the higher the

accuracy of models).

There are also other factors that influence mobility prediction. For instance, it has

been shown that context can play an important role in helping to forecast the whereabouts

of individuals [15, 62]. As an example, depending on whether it rains in a particular day,

one may decide to stay at home and watch a movie, or go out to visit a park. Similarly,

contextual information associated with one’s friends (e.g., their current locations) has

been shown to help predict one’s next location [13, 53]. Thus, whenever possible, several

types of contextual information (day of the week, hour of the day, the weather, the location

of a person’s friends, etc.) should be taken into account when predicting someone’s next

location.

The mobility prediction problem is thus affected by several factors. Predictability,

which is a measure of the maximum accuracy that a given prediction strategy can achieve

on a particular dataset, is also influenced by these factors.

2.2 Predictability in human mobility

In this section, we present the theoretical foundations of how to estimate pre-

dictability in human mobility. In particular, we revisit Song et al.’s technique in the light

of more fundamental theoretical concepts and well-established measures of complexity. To

the best of our knowledge, no previous work has summarized the roots of predictability—

tracing the equivalences between entropy and compressibility and showing why entropy

is a good approximation for the complexity of a sequence of symbols—as we do here. We

believe this effort brings insights into how predictability estimate works from a much more

fundamental perspective, which is valuable to understand its challenges and improve on

it.

We end this section with a discussion of relevant literature on predictability, posi-

tioning our study with respect to the literature gaps we aim to address.
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2.2.1 Foundations of predictability

In 2010, Song et al.. [58] proposed a technique to estimate the predictability of

a sequence of visited locations by relating predictability to the entropy of the sequence.

Concretely, estimating the predictability of an input sequence of locations is a multi-step

process: the entropy of the sequence is first estimated and then used, together with the

size of the sequence, to compute a value πmax, referred to as the predictability associated

with the input sequence. This process is illustrated in Figure 2.1.

X = (x1, x2, x3, . . . , xn−1) −→ Entropy Estimate −→ . . . −→ Πmax

Figure 2.1: The high-level process of estimating predictability.

As we can see, estimating the entropy of the sequence of locations is the crux

of the predictability technique. Thus, there is an assumption that entropy is related to

complexity, which in turn is related to predictability.1 In other words, the predictability of

a sequence of symbols (locations visited by someone, in the present case) is related to the

complexity of the sequence (less complex sequences are more predictable), and complexity

(randomness) is related to entropy.

There is another conceptual leap we need to make in order to understand Song et

al.’s technique, which is the fact that entropy is related to compressibility, i.e., to how

compressible the input sequence is [19, 35]. For instance, sequences with many repeated

symbols are highly compressible. Intuitively, if a sequence has many repeated symbols

it is highly compressible and thus it is relatively easy to predict its next symbol at a

given point. Similarly, in the case of mobility, if a person visits many repeated locations,

the sequence (mobility trace) will have many repeated symbols, which makes prediction

easier.

Furthermore, the entropy, which can be defined as the average uncertainty in

the outcomes of a random variable [14], is a good approximation for the complexity

of the sequence because the entropy of a sequence of symbols is a lower bound on its

compressibility [14, 36]. The intuition here is that if a sequence of symbols is highly

compressible, it means that there is little uncertainty in the order its symbols appear. As

a result of this equivalence between entropy and compressibility, one can use the entropy

of a sequence as a measure of how predictable the sequence is: the lower the entropy

the less complex and more predictable the sequence, and vice-versa. Thus, the problem of

estimating the predictability of a sequence reduces to the problem of estimating the entropy

of the sequence.

1We note that the theory behind predictability is valid for a sequence of symbols in general, which,
in the case of human mobility, are identifiers of the locations that someone visited.
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Song et al.. leveraged these theoretical connections and proposed to use three

increasingly accurate estimates for the entropy of a person’s mobility trace: one that

assumes the person visits every location the same number of times, another that takes into

account differences in the frequencies with which locations are visited, and a third, more

precise one, based on compression, that takes into account both frequency and temporal

patterns (dependencies among visits). This third, more robust entropy estimator was

originally proposed by Kontoyiannis et al. [33]. According to its definition, the entropy

Sreal of an input sequence of locations X of size n can be approximated by:

Sreal ≈
n log2(n)∑

i≤n

Λi

, (2.1)

where Λi is the length of the shortest time-ordered subsequence starting at position i

which does not appear from 1 to i−1 in sequence X.

The intuition behind this formula is that, given a sequence of size n, its entropy

is inversely proportional to the number and size of repeated substrings in the sequence.

Thus, for example, a sequence with a lot of repeated sub-sequences has a lot of redun-

dancy, and therefore has low entropy, i.e., it is more predictable. Throughout the rest of

this thesis, whenever we mention the approach proposed by Song et al., we are indeed

referring to the method that exploits the entropy estimator proposed by Kontoyiannis et

al., expressed in Equation 2.1.

To illustrate how Equation 2.1 works, consider the following example. Suppose that

a person visits a sequence of locations represented by the following sequence of symbols:

X = (H,W,H,W, S,H,W,H,W,R). In Table 2.1, we illustrate how the input sequence

X is processed and how each Λi, i.e., the length of the shortest sub-sequence starting at

position i which does not appear from 1 to i−1 in sequence X, is obtained. We illustrate

the process of computing each Λi by showing (i) the value of i, (ii) the sub-sequence X1:i

where the symbols from 1 to i− 1 appear in black and the rest of the symbols are shown

in gray, (iii) Li, the shortest shortest sub-sequence starting at position i which does not

appear from 1 to i−1 in sequence X, and (iiii) Λi, which is simply |Li|.
The sub-sequences Li are obtained via pattern-matching in the following way. For

a given value of i, we first obtain the longest sub-sequence li that does appear from 1 to

i− 1 in sequence X. Then, Li is just li followed by the next symbol in X. In Table 2.1,

the sub-sequences li are the underlined part of the sequences Li.

Applying Equation 2.1 to the example in Table 2.1, we have

Sreal ≈
n log2(n)∑

i≤n

Λi

=
10 log2(10)

23
= 1.44, (2.2)

where n = |X| = 10 is the size of the input sequence X, and
∑
i≤n

Λi = 23 is the sum of the

values in the last column of Table 2.1.
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i X[1:i] Li Λi

1 HWHWSHWHWR H 1
2 HWHWSHWHWR W 1
3 HWHWSHWHWR HWS 3
4 HWHWSHWHWR WS 2
5 HWHWSHWHWR S 1
6 HWHWSHWHWR HWHWR 5
7 HWHWSHWHWR WHWR 4
8 HWHWSHWHWR HWR 3
9 HWHWSHWHWR WR 2
10 HWHWSHWHWR R 1

Table 2.1: An example illustrating the innerworkings of Equation 2.1 on an input sequence
X = (H,W,H,W, S,H,W,H,W,R). The notation X[1:i] denotes the symbols in X from
1 to i− 1, Li denotes the sub-sequences that start at position i and do not appear from
1 to i− 1, and Λi is the length of each Li.

Delving deeper into the literature, we found that there are some caveats with

respect to the type of sequence on which we can expect Kontoyiannis et al.’s estimator

to work reliably. It assumes that the input sequence X is produced by a stationary

ergodic process. In the case of human mobility, this implies that statistical properties of

a person’s mobility patterns do not change over time and that these statistical properties

can be inferred from a single, sufficiently long random sample of the person’s mobility

trace. In other words, the input sequence has to be representative of the person’s actual

mobility, and there cannot be long-term changes in the patterns.

The assumption that individual human mobility is a stationary ergodic process also

has implications on the type of predictor for which Song et al.’s technique is expected to

work. In particular, Song et al.’s predictability estimate holds as an upper-bound on

prediction accuracy only for universal predictors.

A universal predictor is one that does not depend on the knowledge of the under-

lying process generating the input sequence and, as the sequence grows to infinity, it still

performs essentially as well as if the process were known in advance [19, 35, 41]. In more

practical terms, universal predictors are able to generalize to different datasets, provided

that the underlying processes producing these different datasets belong to the same class

(e.g., stationary ergodic processes). Markov-based models are examples of universal pre-

dictors. In contrast, non-universal predictors must be trained and therefore, are tailored

to a specific dataset, and thus may not generalize to other datasets. Examples of this type

of predictor are supervised machine learning algorithms (e.g., neural networks) [20, 46, 34]

that are specialized to a particular dataset.

Using Fano’s Inequality [14], which provides a way to compute error bounds for

certain phenomena, Song et al.. derived a formula to compute the predictability of a

sequence. This formula is based on the intuition that, if a user with entropy S moves
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between N locations, her predictability Πmax, which is a function of S and N , is given

by:

S = −H(Πmax) + (1− Πmax) log(N − 1), (2.3)

and H(Πmax) is given by:

H(Πmax) = Πmax log2(Πmax) + (1− Πmax) log2(1− Πmax).

A proof that these equations estimate the correct limits of predictability can be

found in related work [58, 56, 71]. In particular, Smith et al. [56] provided a detailed,

thorough derivation of the formula above.

We illustrate the computation of Πmax using our previously introduced toy exam-

ple. For an entropy value S and a given number of distinct locations N , we have to

implicitly solve Equation 2.3 to obtain Πmax. Plugging the formula for H(Πmax) into

Equation 2.3 and applying it to our toy example, where we have S = 1.44 and N = 4, we

obtain

−Πmax log2(Πmax)− (1−Πmax) log2(1−Πmax)+ (1−Πmax) log(4− 1)− 1.44 = 0, (2.4)

which gives us Πmax ≈ 0.669.2

Now, with the necessary background in place, we can more formally define the

problem of estimating predictability in human mobility:

Definition 2.2.1. Given a time-ordered sequence of locations X = (x1, x2, . . . , xn−1) that

a person visited in the past, and assuming that X is a stationary ergodic process, the

predictability task is to estimate Πmax, the maximum possible accuracy that a universal

predictor U could achieve when trying to predict xn ∈ X.

2.2.2 Literature on predictability

Song et al.’s technique has been extensively used to assess predictability in human

mobility as well as in other scenarios. In the domain of human mobility, Xin Lu et

al. [39] investigate whether the prediction accuracy obtained via Song et al.’s technique

is achievable. They propose and evaluate several Markov models to predict people’s next

2To see how Equation 2.4 is solved for our toy example, simply type solve 0 = -p log[2, p] -

(1 - p) log[2, 1 - p] + (1 - p) log[2, 4 - 1] - 1.44 for p in a computational engine such as
Wolfram Alpha (https://www.wolframalpha.com/).

https://www.wolframalpha.com/
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location and show that their models achieve Song et al.’s estimated predictability for their

dataset.

Smith et al. [56] evaluate Song et al.’s technique in a GPS dataset, showing that

users’s predictability are sensitive to the temporal and spatial resolution of the data.

Ikanovic et al. [28] use Song et al.’s technique to estimate predictability in different pre-

diction tasks, showing that predictability varies according to the particular prediction

task under consideration. Cuttone et al. [15] also show that prediction accuracy varies

depending on other factors in the data, such as contextual information (day of the week,

hour of the day, the weather, etc.) and suggest that context could impact predictability.

Song et al.’s predictability technique has also been used in other domains. For

instance, Li et al. [37]. build on Song et al.’s technique to assess spatiotemporal pre-

dictability in location-based social networks. Bagrow et al. [5] use Song et al.’s technique

to measure the predictability of the contents of a person’s tweets based on the content of

her friends’ tweets. Zhao et al. [71] use Song et al.’s technique to measure the predictabil-

ity of taxi demand per city block in New York City, and other work also use it in scenarios

such as travel time estimates [69], cellular network traffic [73], and radio spectrum state

dynamics [16].

Previous work also evaluated the robustness of Song et al.’s technique in several

aspects. For instance, Kulkarni et al.. evaluate the assumptions [34] made by Song et

al., showing that under certain conditions the limits established by Song et al.. could be

surpassed—see Sections 2.1.4 and 2.2.1 for more details on the type of model on which

Song et al.’s technique works. Some of its mathematical minutia have also been scruti-

nized [68], the argument being that some details in the formula to estimate predictability

could be improved. We have incorporated these improvements in our discussions and

implementations.

As we argue in Chapter 1, Song et al.’s technique has three major shortcomings.

First, because of the innerworkings of its entropy estimator, the technique has low inter-

pretability. Second, it views human mobility as a single entity, therefore making it hard

to study separate components of an individual’s mobility. Third, it does not allow for the

use of contextual information when estimating the predictability of a person’s mobility.

In this study, we focus on addressing these three shortcomings. We now discuss previous

work related to them.

Understanding predictability in human mobility

Earlier work examined how predictability varies according to features of the data, to

the prediction task under study, and how certain types of mobility patterns influence

predictability. In this section, we discuss these studies and position our contributions in

relation to theirs.
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Smith et al. [56], for instance, studied how predictability varies for different tem-

poral and spatial resolutions, showing that predictability is directly proportional to the

temporal sampling rate (the more frequent the rate at which the user’s locations are

recorded, the higher the predictability) and inversely proportional to the spatial resolu-

tion of the dataset (the smaller the cells in the spatial grid, the lower the predictability).

Previous work has also computed the limits of predictability for the two different

prediction tasks, namely next-cell and next-place prediction [28, 15], showing that the

predictability for the next-place prediction problem is lower than that of the next-cell

prediction problem. This shows, as the authors argue in their study, that the next-place

prediction problem is harder than the next-cell prediction problem.

Cuttone et al. [15] and Ikanovic et al. [28] also showed that predictability is af-

fected by stationary patterns, i.e., periods in which the person stays at his or her current

location for a long time. In their study, they argue that predictability is directly pro-

portional to the amount of stationarity present in the data. In this thesis, we confirm

these previous findings, namely the influence of spatiotemporal resolution on predictabil-

ity (Section 4.2.3), the effect of different prediction tasks (Section 4.2), and the impact of

stationarity on predictability.

We also argue that stationarity alone is not sufficient to explain predictability, and

propose alternative metrics that, together with stationarity, help us better understand

what affects predictability (Section 4.1). Additionally, we propose regression models that

use our proposed metrics to fit the entropy of the mobility patterns of individuals, showing

that our proposed metrics are able to explain the vast majority of the variability in

predictability for both next-cell and next-place prediction (Section 4.2).

Understanding predictability of components of human mobility

Although previous work [57, 48, 3] modeled individual human mobility as consisting of

two types of visits (explorations and preferential returns), previous studies on predictabil-

ity [58, 39, 15, 56, 42, 60, 62] viewed individual human mobility as a whole, monolithic

entity.

In Chapter 5, we propose a strategy to separate a person’s mobility into two compo-

nents: novelty and routine, which map explorations and preferential returns, respectively.

By doing so, we aim to simplify the understanding of the predictability of a person’s

mobility, to assess the effects of novelty on predictability estimates, and consequently, to

be able to identify routine-related behavior that is hard to predict. To our knowledge, we

are the first to propose a strategy to investigate the predictability of different components

of human mobility. We direct our focus to the study of the predictability of the routine

component of human mobility, as discussed in Section 5.1.

Our approach is different from previous work about predictability [15, 38] in two

important aspects. First, our goal is different from that of those prior studies, where the
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authors investigated how the exploration (or novelty) part of a person’s mobility trace

impacts predictability. In contrast, we here focus primarily on the routine component with

the goal of showing that there are patterns in one’s routine that are also hard to predict,

and therefore affect predictability. In other words, we look at a person’s mobility trace

from a different perspective, being thus complementary to those prior studies. Rather

than quantifying predictability for various sizes of the novelty component (as previous

work), we here take this component “as is”, and look instead at how much the person’s

routine deviates from a baseline routine which is completely predictable.

To do that, we propose to create a baseline sequence, as explained in Section 5.1,

which has the same size, and the same number of exploration visits as the original se-

quence. Since the baseline sequence has a completely predictable routine component,

by comparing it with the person’s actual mobility trace, we can assess how much the

person’s routine deviates from this completely predictable one. One of the contributions

of our work is a closed-formula that allows us to compute the entropy of the baseline

sequence, which is in turn used to compute the predictability gap, the difference between

the predictability of the baseline sequence and the original sequence.

Second, given that our goal is different from that of previous work, our findings

are also different. Previous work stressed the fact that exploration is hard to predict and

therefore its amount in a given mobility trace impacts predictability. In contrast, we here

show that one’s routine also contains behavior that is hard to predict, according to the

state-of-the-art predictability technique. This hard-to-predict behavior in one’s routine is

reflected in the predictability gap, as shown in Section 5.2.1.

Furthermore, we conduct a thorough analysis of routine-related mobility, using the

metrics proposed in Chapter 4: regularity, stationarity, and diversity. As we show in

Section 5.2.3, these metrics help us to understand what affects the predictability of the

routine component of a person’s mobility, providing insights into the type of patterns that

make one’s routine easier or harder to predict.

Predictability and contextual information

In this section, we discuss previous attempts to examine the role of external factors, which

we here call contextual information, e.g., day of the week, hour of the day, the weather,

the location of a person’s friends, etc., on predictability, as well as how to measure the

impact of such information on predictability estimates. We also discuss how our work

complements and expands on previous studies.

Previous work has showed that context is useful for prediction. For instance, Cho et

al. [13] show that social relationships can explain 10% to 30% of people’s movements.

Jeong et al. [29] use the locations of other users in a network to predict a particular user’s

locations, showing that this technique significantly outperforms existing predictors, and

in particular those that only exploit individual past trajectories.
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Cuttone et al. [15] also show that context is useful for prediction by building a pre-

diction strategy that considers context which performs better than a baseline which does

not consider such information. They therefore claimed that context should be useful for

predictability, but they do not show how to evaluate the role of context on predictability.

In fact, to evaluate the impact of context on predictability estimates one would first have

to know how to incorporate context into predictability estimates.

Indeed, to our knowledge, there have been very few attempts to do so. One such

attempt was Smith et al.’s work [56]. Smith et al.’s work showed that the limits of

predictability can be refined by excluding from locations that are far away from the

user’s current position from the set of possible next locations. Thus, they do not directly

incorporate this information into Song et al.’s technique, but apply prior filtering to the

set of next locations so as to eliminate those that are unlikely to be visited next.

Another attempt to use context to help predictability is recent work by Bagrow et

al. [5], where the authors estimated how much knowing the contents of the tweets of a

person’s friends helps in predicting the contents of this person’s tweets. Although in a

different domain, this work is relevant because it shows a way to use context with Song et

al.’s technique without having to filter the data.

In the case of human mobility, their strategy would be equivalent to estimating the

predictability of a person’s locations based on the predictability of her friends locations.

The drawback of their approach is that it works only for some types of context. For

instance, when estimating the predictability of a person’s locations based on her friends

locations, we are only dealing with locations. Thus, both the target sequence (the person’s

locations) and the context (her friends locations) are of the same type.

As we will argue in Chapter 5, it is quite challenging to extend Song et al.’s method

to directly incorporate other types of contextual information (e.g., weather, time of the

day). In Sections 6.3.1 and 6.3.2, we propose two strategies to do that and evaluate the

impact of context when using these strategies to estimate predictability. Additionally,

we evaluate alternative ways to use context with predictability by investigating different

entropy estimators and showing how context can be incorporated to them.

2.3 Summary

In this chapter, we provided the necessary background to understand predictabil-

ity in human mobility as well as provided a brief overview of individual human mobility.

We first explained and defined the mobility prediction problem. We then explained the

two prediction tasks we target in this study, as well as the several types of prediction



2.3. Summary 33

models proposed in the literature. We also explained how entropy, compressibility and

predictability are related as well as the type of predictor for which Song et al.’s pre-

dictability technique works.

In the next chapter, we discus the impact of different data sources on predictability

as well as explain and characterize the datasets used in this thesis.
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Chapter 3

Datasets

Recall from Chapter 2 that the predictability Πmax of a sequence X of locations is com-

puted based solely on the data from which X is extracted. As such, Πmax is an expression

of human behavior, as revealed by the data. Thus, properties of the data are of key

concern to understanding Πmax values. In this chapter, we discuss the role of data on

predictability estimates (Section 3.1) and explain the datasets used in this doctoral dis-

sertation (Section 3.2).

3.1 Predictability and Data

As explained in Section 2.2.1, Song et al.’s predictability technique disregards

particular prediction strategies and focuses rather on the data to obtain an upper bound

on the prediction accuracy that can be achieved for a given dataset. Mobility datasets

have thus great impact on predictability estimates, and different types of dataset capture

different aspects of a person’s mobility. In this section, we review some of the most

popular types of mobility datasets as well as describe the impact of different data features

on predictability estimates. We also discuss the advantages and disadvantages of each

type of dataset for studying predictability and explain the limitations that they impose

on predictability estimates.

Indirectly Collected Mobility Data

In this section, we discuss a broad category of mobility data that we call indirect

data, in the sense that a person’s mobility is not measured directly (there is no device

attached to person’s body recording their position), but rather through an indirect ar-
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tifact. Examples of this type of data are census data, tax revenue data, travel surveys,

and bank notes, among others [6]. We here describe one of the representatives of this

category, namely census data.

Census data was one of the first types of data used to perform mobility predic-

tion [47]. It is collected periodically and usually contains nation-wide data. The data

is usually collected by government employees who go door to door with surveys contain-

ing questions about the socio-demographic and economic status of household members.

Examples of mobility-related information collected through this process are: location of

current residence, previous residence, and workplace, as well as means of transportation

from the person’s home to their workplace.

In the U.S., this data is compiled and made available by the United States Census

Bureau1 in the form of aggregate commuting flows that indicate the counties of origin

and destination of people’s commute [6]. Two of the biggest drawbacks of census data

are (i) the fact that the data collection process is expensive and time-consuming, and

(ii) the long periodicity with which the data is collected (typically every 10 years) [67].

Additionally, because the data is made available on an aggregate level, it is not possible

to use it to predict human mobility at the user level.

Impact on predictability As a consequence of its granularity (aggregate), census

data is not well-suited for studying predictability as we do here, i.e., at the user level.

In order to study human mobility at the individual level, it is necessary to collect (or

simulate) user level mobility data. Before the popularization of smartphones and other

cheap sensors, which allow for direct data collection at the user level, researchers relied on

synthetic mobility data, which simulate human mobility using synthetic traces generated

according to some pattern [44, 9, 43]. This type of data, although useful for studying

predictability, suffers from the obvious fact that it does not truly reflect a real person’s

mobility. Therefore, it is difficult to draw meaningful conclusions about human mobility

based on synthetic data.

Call Detail Records (CDRs)

Call Detail Records (CDRs) are data related to mobile phone calls and text-

messages, and they are one of the most used types of mobility datasets [58, 39, 53, 27],

and they are collected as follows. Whenever a user makes or receives a call, the phone

company relays the call to the nearest phone tower and registers the user’s activity in a

1http://www.census.gov/hhes/commuting/data/commutingflows.html

http://www.census.gov/hhes/commuting/data/commutingflows.html
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record that has roughly the following format: caller-id, caller-cell-id, datetime,

duration. There can also be additional fields, depending on the CDR. Common extra

features are the type of the activity being registered (call or text message) and also the

identifier of the user at the other end of the interaction. Thus, a CDR dataset consists of

several records in the above format, for each user.

One of the features that make CDRs attractive for mobility studies is the fact

that they provide a fine-grained view of the mobility of users. They also have some

disadvantages, which are mainly due to their temporal and spatial resolution. The number

of phone towers in an area is usually proportional to the number of people who live in that

area, thus there may be an uneven distribution of phone towers in urban and rural areas,

which may hinder one’s ability to study mobility patterns in rural areas. Furthermore,

even in urban areas, some areas have many more towers per square kilometer than others,

and even in the areas with many towers, each tower covers a large area (typically more than

1km2), therefore not allowing a fine-grained spatial view of people’s mobility patterns.

Aside from that, because each call detail record is only generated when the user

receives or makes a call, CDRs are dependent on user activity, and the records are not

sampled at a uniform temporal rate. The dependence on user activity can generate

biases [50] and as sometimes users can stay for long periods without placing or receiving

a call, CDRs usually do not allow for a fine-grained view of people’s mobility in time.

Impact on predictability These characteristics can have impacts on predictability

estimates. For instance, as CDRs depend on user activity to log their mobility, what

is revealed in the data may not offer a realistic picture of the user’s mobility. In other

words, the data may not constitute a good sample of the user’s mobility, which will result

in distorted predictability values. The time between each location record can also be an

issue for predictability estimates, as the user may have moved to many locations between

two calls, but those locations would not be taken into account for predictability purposes.

Social Media Data

Social media is another popular source of mobility data [31, 60, 25, 52]. When

a user posts something on a social network such as Twitter, Facebook, Instagram, or

Foursquare, there is usually an option to associate a location to the content of the post.

These posts typically consist of a picture or text, and a location where the activity was

recorded. This information usually assumes the following format: user-id, lat, lon,

timestamp, content.
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The ability to have access to people’s locations when they use social media also

makes this type of data attractive to mobility studies, and the large number of users in

these services contributes to the usefulness of social media data for understanding mobility

patterns. It has been shown that social media data can indeed be used to infer certain

mobility patterns [25]. Unlike CDRs, social media data provides a more accurate location

of the users’ activities, as it is registered by the GPS system in the user’s mobile device.

There are, however, a couple of issues with using social media data for studying

human mobility and, more specifically, predictability. The first is that, as in the case of

CDRs, social media data is activity-dependent because a record is generated only when

the user posts something on social media. Furthermore, it has been argued that social

media data is biased for studying mobility because the sampling pattern is skewed (people

do not post content from every location they visit), and because there might be a bias in

what type of people use the social network [31].

In an attempt to circumvent some of the problems with social media datasets,

some people have tried using data from multiple sources so as to reduce the irregular

sampling rate of this type of data [60, 31, 25]. Nowadays, people use their credentials in

one social media website to register for other websites, and when they do so, their activity

is registered in multiple places.

For instance, people often use their Twitter account to register on Foursquare

or Instagram, and when doing so, they allow their posts on these services to be also

registered on Twitter. Thus, by collecting a user’s feed, it is possible to gather their

information in other social networks as well. We have already shown [60], however, that

in some cases data from different social networks does not reinforce mobility patterns,

but rather captures different patterns that were not present in the original data. As a

consequence, we have shown that using different data sources does not necessarily lead to

higher predictability.

Although this strategy of capturing a user’s mobility in different data sources is

sound, it is difficult to apply it to datasets of different types. For instance, one may wish

to capture a user’s mobility patterns on CDRs and on social media at the same time,

but the major problem is how to identify the same user in both datasets. As explained,

it is relatively easy to identify a user in different social networks, but it is much more

challenging to do so in datasets of different nature.

Impact on predictability The limitations of the use of social media data for studying

predictability are similar to those of CDR datasets. First, as the record of one’s mobility

depends on one performing an action (posting on social media), the locations that are

recorded are only those posted on social media. Furthermore, the biases associated to

the type of location where people usually post on social media are also reflected on their

predictability estimates. Second, as people only tend to post on social media from a few
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selected locations, the data may not constitute a good sample of their mobility, could lead

to distorted predictability estimates. Additionally, as people tend to post less frequently

from places they visit often, this type of dataset is not well-suited for capturing people’s

routine.

Global Positioning System Data (GPS)

A GPS dataset typically consists of location samples from a set of users, and this

data type solves some of the problems with CDRs and Social Media data. The location of

each user is obtained from the device’s GPS system at a uniform temporal rate, usually

every couple of minutes. As the user’s position is precise (up to the accuracy of the

device’s GPS system) and the temporal sampling rate is uniform, GPS datasets usually

provide a fine-grained spatiotemporal view of users’ mobility patterns.

The problem with GPS data is that it is usually hard to get such data for a

large volume of users. For instance, recent studies [56, 1, 15, 28] that used GPS datasets

consist of a few thousand users, at most. Given the other advantages of GPS data (regular

sampling rate, and accurate locations) this type of data is very attractive for studying

predictability.

Impact on predictability For the purposes of studying predictability, GPS datasets

have many desired characteristics, as we highlight in Table 3.1. The only drawback of

this type of dataset is that it is usually hard to get such data for many users over a long

period of time.

Ideal Dataset for Studying Predictability

The ideal type of dataset i.e., the one that would allow for a more comprehensive

and nuanced study of human mobility would have: high temporal and spatial resolution

of a large number of users over a long period of time. In practice, however, this type of

dataset is hard to find. Some types of dataset have some of those attributes, but lack

others. In other words, mobility datasets provide only a window to a person’s mobility.

Table 3.1 lists some attributes of the types of mobility datasets we have described and

also lists the characteristics of the ideal dataset for mobility studies.
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Dataset User-Level Regular High Temporal High Spatial Long Period Many
Type Mobility Sampling Resolution Resolution Covered Users

Indirect Data ✗ ✓ ✗ ✗ ✓ ✓
Social Media ✓ ✗ ✗ ✓ ✓ ✓

CDR ✓ ✗ ✓ ✓ ✓ ✓
GPS ✓ ✓ ✓ ✓ ✓ ✗

Ideal Dataset ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: A summary of the most popular types of mobility datasets and a comparison
with the Ideal Dataset of mobility datasets. We consider a dataset high temporal resolu-
tion if it usually contains many observations per day, and we consider a dataset as having
many users if it usually has thousands of users.

In this dissertation, we use a GPS and a CDR dataset, as we will discuss in

Section 3.2. We chose these two datasets for two main reasons. The first one is that,

by looking at Table 3.1, they are the ones which have most of the desired attributes for

studying predictability. Second, they do not have the same drawbacks, which reduces the

possibility of some type of behavior not being shown in the data. Our CDR dataset has an

additional shortcoming compared to what is shown in Table 3.1: its period of observation

is rather short (two weeks), as we will describe in Section 3.2. However, it tends to be less

biased than social media data, for the reasons described in Section 3.1, therefore we chose

to use it instead of using social media data. On the flip side, our CDR dataset does not

suffer from a common drawback in this type of data, as it has a regular sampling rate,

which is another desired attribute for studying predictability.

3.2 Our Datasets

Our study is composed and driven by a series of analyses performed on two different

mobility datasets, of distinct temporal and spatial resolutions, which allow us to study

the impact of spatiotemporal factors on Song et al.’s technique. These datasets, which

are summarized in Table 3.2 and discussed below, are representatives of two categories

of datasets often used in mobility studies (GPS and CDR datasets), as mentioned in

Section 3.1.

As discussed in Section 3.1, GPS data has many desired properties for studying

predictability: regular sampling rate, precise location records, and in the case of our

dataset, the period of observation is also long. Our CDR dataset offers us another view

of mobility data: it has many users, and unlike other CDR datasets, it offers a regular

sampling rate (one observation every two hours, on average). It also has a period of obser-
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vation shorter than our GPS dataset, which allows us to study short-term predictability.

We believe that these characteristics make these two datasets of great importance and

relevance for studying predictability. We now proceed to discuss them in more details.

GPS dataset CDR dataset

Number of users 67 2,780

Period covered 18 months 2 weeks

Temporal resolution 5 minutes 1 hour

Spatial resolution 200 meters 200 meters

Table 3.2: Summary of our GPS and CDR datasets.

3.2.1 GPS Dataset

The first dataset is a high temporal and spatial resolution dataset consisting of GPS

traces. This dataset was obtained through an Android mobile phone application, called

MACACOApp2. Users who volunteered to install the app allowed it to collect data such

as uplink/downlink traffic, available network connectivity, and visited GPS locations from

their mobile devices. These activities are logged with a fixed periodicity of 5 minutes,

making it a high temporal resolution dataset, and the precision in the acquisition of

GPS coordinates from mobile devices makes it a high spatial resolution dataset as well.

The regular sampling in this data provides a more comprehensive overview of a user’s

movement patterns. The dataset contains a total of 132 volunteers distributed among six

countries located in two different continents: 67 are from the same country and represent

students, researchers, and administrative staff in two universities where lectures were held.

To filter out potential cross-country effects, we decided to focus on users from the same

country, that is, 67 users, in all of our analyses.

3.2.2 CDR dataset

The second dataset consists of Call Detail Records (CDRs), provided by a major

cellular operator in China. It spans a period of two weeks in 2015 and contains call detail

2http://macaco.inria.fr/macacoapp/

http://macaco.inria.fr/macacoapp/
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records (CDRs) at the rate of one location per hour during that period. This dataset is

collected from 642K fully anonymized mobile phone subscribers. Here, a CDR is logged

every time a subscriber initiates or receives a voice call. An entry in the dataset contains

the subscriber’s identifier, the call start time, and the location of the subscriber at this

time. Unlike traditionally analyzed CDR datasets, the locations here represent the users’

centroid of the hour, within a 200 meter radius, according to the instruction of the data

provider, and does not contain the area covered by each tower. Hence, the accuracy of

positioning is higher than that of traditionally analyzed CDR datasets. As some users

do not have data covering the whole period, we focused on those who have at least one

location registered each 2 hours, on average. This filtering criterion is the same adopted

by Song et al. After this filtering process, we ended up with 3,349 users, which we use in

our study.

3.2.3 Data preprocessing

The fundamental task regarding mobility prediction is to guess the next item in a

sequence of symbols, but mobility data usually consists of latitude and longitude pairs,

so it is necessary to preprocess the data to make it fit the expected format. For our

purposes, it is also necessary to record location measurements at fixed time intervals. In

order to do that, we discretized the time into bins of a given duration, and divided the

geographical area into a grid of non-overlapping, uniformly spaced squares of equal sizes.

We then distribute the activity records into the cells of the grid according to the location

in which they were registered. Thus, the sequence of locations that a person visited

becomes a sequence of integers containing the identifiers of the cells that correspond to

those locations at each time bin.

Additionally, our preprocessing methodology for the GPS dataset is similar to that

of Song et al.’s work, where the authors overlay a grid of square cells onto the geographical

region, and consider every cell as a distinct location. Observations of a user’s position

that happen inside the same cell are considered to be the same location. This strategy is

different from other strategies [24, 15] which identify movements and stop locations, and

then consider as actual locations only those labeled as stops.

This preprocessing strategy also has implications on the next-place prediction task,

which was originally defined [15] taking into account movements and stops. In our case,

we consider every distinct location that appears in a user’s mobility trace as an actual

visit, and not only stop locations. In practice, this makes mobility traces larger in the

next-place prediction task, which is important for predictability purposes, as entropy
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estimators tend to yield more reliable estimates for longer sequences.

Unless otherwise noted, we will use a temporal resolution of one observation every

5 minutes for each user in the GPS dataset, and we ensure that there is at least one

observation per user every 2 hours for the CDR dataset. In both datasets, the size of the

side of each square grid is 200 meters.

3.2.4 Data Characterization

In this section, we discuss properties of our datasets that are relevant to our study

of predictability by showing relevant data for both next-cell and next-place prediction,

which, as mentioned in Section 2.1.3, are the prediction tasks that we focus on throughout

this dissertation.

As mentioned in Section 2.1.3, whenever we talk about a dataset for next-place

prediction, we are referring to the dataset after we filter out stationary periods. Thus, we

expect that the number of locations to be lower in the next-place datasets, as evidenced

in Figures 3.3 and 3.4.

In Figure 3.1 we show the distributions of total number of locations and total

number of unique locations visited by a user. Recall that entropy and predictability are

strongly dependent on these two metrics, as defined in (Equations 2.1 and 2.3). The

total number of locations is important because the entropy estimator used by Song et

al. converges to the actual entropy of the sequence as the length of the sequence goes to

infinity. As shown in Figure 3.1(a), at least 50% of the users in our GPS dataset visited

more than 2,000 locations. The variability in the number of locations is due to the fact

that different users in our GPS dataset were active in the data for different periods of

time.

As we will discuss in Section 4.1.2, the number of unique locations is also important

for predictability. In general, we expect that the more unique locations a user visits,

the higher the entropy of her mobility and the lower her predictability. As shown in

Figure 3.1(b), most of the users in our GPS dataset have less than 400 unique locations

in their mobility trace.

In Figure 3.2, we show distributions of the total number of locations and number

of unique locations visited by a user for our CDR dataset, in the next-cell prediction

task. In this dataset, we have low temporal resolution (fewer observations per time unit)

and a shorter period of observation (two weeks only), according to Table 3.2. As a

consequence, the total number of visited locations and the number of unique locations

are smaller when compared to the GPS dataset. These differences in the total number
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Figure 3.1: Cumulative distribution of the total numbers of visited locations and unique
locations in the GPS dataset for the next-cell prediction task.

of locations and unique locations in our two datasets allow us to conduct our analyses in

different scenarios. Specifically, we can evaluate how Song et al.’s technique as well as

our proposed techniques work for different types of datasets with distinct spatiotemporal

resolutions.
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Figure 3.2: Cumulative distribution of the total number of visited locations and unique
locations in the CDR dataset for the next-cell prediction task.

We now turn our attention to distributions of total number of locations and total

number of unique locations visited by a user in the next-place prediction task. Figure 3.3
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shows the cumulative distributions for the total number of visited locations and unique

locations for the GPS dataset. We note that the total number of visited locations is smaller

in this prediction task, compared to the values in Figure 3.1(a). Thus, the removal of

stationarity from our dataset results in fewer total locations, but the number of unique

locations seems to remain unchanged (Figures 3.1(b) and 3.3(b)). The same phenomenon

can be observed in Figure 3.4, which shows the distributions of total number of locations

and number of unique locations for the CDR dataset, in the next-cell prediction task.
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Figure 3.3: Cumulative distribution of the total number of visited locations and unique
locations in the GPS dataset for the next-place prediction task.

The number of locations in a person’s mobility trace raises important issues, as we

will discuss in more details in Chapter 4 and Chapter 6. Specifically, the predictability

technique is greatly impacted by the size of the input sequence, as shown in Equation 2.1.

This is an issue that permeates several of our discussions about predictability, as it impacts

predictability estimates. For instance, it is hard to obtain a robust predictability estimate

for small input sequences. Throughout this thesis, we made significant efforts to identify

these cases, and we discuss their impact on our results. This is an issue that appears

more in our CDR dataset, as our GPS dataset has significantly longer input sequences.

However, as we will discuss later, studying predictability of small input sequences

also reveals important properties of the state-of-the-art predictability technique, and sheds

some light on the types of mobility patterns that can be uncovered with small and large

input sequences. For instance, previous work [48] has shown that the number of unique

locations visited is higher in small sequences. Conversely, one’s routine becomes more

apparent as the number of places visited grows.
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Figure 3.4: Cumulative distribution of the total number of visited locations and unique
locations in the CDR dataset for the next-place prediction task.

3.3 Summary

In this chapter, we described several types of mobility data sources, discussing

their properties and how these properties relate to predictability estimates. We also

characterized both of our datasets, showing that they cover distinct time periods (18

months versus 2 weeks), have different temporal resolutions, and different number of

users. These differences, allied with the fact that we are targeting two distinct prediction

tasks, poses quite a challenge to our analyses and techniques. On the flip side, these same

differences allow us to draw more general conclusions, i.e., ones that apply to different

data types, temporal resolutions, and for users with short or large mobility traces.

In the next chapter, we describe our investigation of the first research goal of this

dissertation: understanding and interpreting predictability estimates in human mobility.
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Chapter 4

Understanding Predictability in

Human Mobility

In this chapter, our goal is to understand what affects the predictability of a person’s

mobility. To that end, we propose to use three simple metrics (regularity, stationarity,

and diversity) that capture important aspects of human mobility (Section 4.1). We then

use the proposed metrics as proxies to predictability. Specifically, we build regression

models that use these metrics to fit the entropy of a person’s mobility in the next-cell and

next-place prediction tasks (Sections 4.2.1 and 4.2.2, respectively).

Recall that Song et al.’s technique [58] estimates the predictability of a sequence

of locations based on the entropy of the sequence. Specifically, their work established

limits on the predictability of a sequence of locations based on three estimates of the

entropy of the sequence. The first estimate is the Shannon entropy [51] of a uniform

distribution on possible locations, shown in Equation 4.1. This estimate is known to yield

the highest possible entropy value for an input sequence, thus establishing a lower bound

on predictability.

Suniform(X) = log2(n), (4.1)

where n is the total number of locations in the input sequence.

The entropy bound of Equation 4.1, however, can be refined if a non-uniform

probability distributions on locations, which take into account the relative frequency with

which a user visits each region, is considered. In fact, prior work has shown that people

often visit a few places and occasionally go to previously unvisited locations [21, 30]. Thus,

we consider the distribution pfreq on X in which, for each xi ∈ X, pfreq(xi) is the frequency

with which location xi was visited in the observed time frame. The corresponding entropy

Sfreq is obtained as follows:

Sfreq = −
∑
xi∈X

pfreq(xi) log2 pfreq(xi). (4.2)

Despite being more general than the first approach, Sfreq is still not a completely

adequate estimation of the “real” entropy of a sequence of visited locations. This occurs
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because Sfreq does not capture the full temporal patterns of people’s location history. For

instance, if a person visits the sequence of locations A, B, and C several times, Sfreq would

only consider the number of times each location was visited, but not the fact the the

sequence ABC appears multiple times—a fact that is useful if the person is at locations

A or B and we are trying to predict her next location.

Yet, it is possible to derive a probability distribution on locations that captures such

temporal correlations, which is done in the third, more precise variation of entropy used in

Song et al.’s work, which estimates the entropy using a distribution that accounts for both

the frequency of visitations as well as temporal patterns. The third estimator, described

by Kontoyiannis et al. [33], is related to the Lempel-Ziv compression algorithm [35] and to

the Lempel-Ziv measure of the complexity of a sequence [35]. According to its definition,

the entropy Sreal of an input sequence of locations X of size n can be approximated by:

Sreal ≈
n log2(n)∑

i≤n

Λi

, (4.3)

where Λi is the length of the shortest time-ordered subsequence starting at position i

which does not appear from 1 to i−1 in sequence X.

For ergodic, stationary processes, this estimator is said to converge to the entropy

rate of the source as the size of the input goes to infinity [14]. This estimator does

not require the underlying probability distribution of the symbols of the source. As

such, it is suitable for computing the entropy of mobility traces, for which we may never

know the true underlying probability distribution. Note that different values of entropy

yield different limits of predictability: while the first two variations of the entropy work

by directly manipulating the underlying probability distribution of the locations, the

third, more precise one, leverages the relation between entropy and compressibility to

estimate the entropy of the input sequence, which poses challenges to interpretability of

predictability values.

As argued in Section 2.2.1, predictability is directly related to a good estimate

of the entropy, therefore we need to understand what affects the entropy of an individ-

ual’s mobility. However, it is hard to do so only by looking at the estimator shown

in Equation 4.3. In this chapter, we propose indirect ways to understand what affects

predictability, and we show that these indirect ways, while being simpler and easier to

interpret, explain most of the variability in the entropy of one’s mobility.
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4.1 Proxy Metrics

In this section, we present three metrics that capture key aspects of mobility pat-

terns and show that they can effectively be used as proxies to understand predictability

estimates. We start by arguing that analyzing the entropy estimate itself, particularly the

more precise one based on compressibility, which is focus of our study, is quite challenging,

as the result of the method is hard to interpret.

Thus, we look for simpler and easier to understand proxy metrics, which can be

used in its place to understand predictability in human mobility. Specifically, we employ

three simple metrics that help explain what affects predictability in a sequence of locations

visited by a user, as captured by Song et al.’s estimate.

4.1.1 Stationarity

The first metric, called the stationarity of a sequence of locations, is related to

the number of observations for which the person stays continuously in the same location.

Given a time-ordered sequence X = (x1, x2, . . . , xi, xi+1, . . . , xn) of observations of a per-

son’s location, we say that a stationary transition occurs at time i if xi = xi+1. Thus, the

stationarity of sequence X is the ratio of stationary transitions over the total number of

transitions in X. More formally, we can define the stationarity of a sequence as follows:

Definition 4.1.1. Stationarity: Given a time-ordered sequence X = (x1, x2, . . . , xn)

of locations visited by a person, the stationarity of the sequence is given by: st(X) =

sttrans/(n − 1), where sttrans is the number of stationary transitions in X. A stationary

transition is one where the previous location is equal to the next one, i.e., the location

xi−1 is the same as xi. Clearly, stationarity is not defined for the next-place prediction

task.

For example, sequenceX = (1, 1, 2, 2, 3, 3, 4, 4) contains a total of seven transitions,

four of which are stationary. Therefore, the stationarity of the sequence st(X) is st(X) =

4/7 = 0.57. Intuitively, if a person stays at the same location for a long period of time,

there will be many consecutive repeated symbols in the sequence. Sequences with many

consecutive repeated symbols are easier to compress, therefore the higher the stationarity

of a sequence, the lower its entropy.

Yet, stationarity alone does not explain predictability. Consider, for instance, two

input sequences X1 = (1, 2, 3, 4, 1, 2, 3, 4) and X2 = (1, 2, 1, 2, 1, 2, 1, 2). Both have the
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same length and the same stationarity, but X2 has lower entropy than X1: the entropy

of X2 is equal to 1.33, whereas the entropy of X1 is 1.71.

4.1.2 Regularity

In order to capture the aforementioned phenomenon, we introduce another metric,

called regularity, that also helps explain the entropy of a person’s observed location history.

The regularity of a sequence captures the preferences of a person to return to previously

visited locations. It is defined as one minus the ratio between the number of unique

symbols and the length of the sequence.

Definition 4.1.2. Regularity: Given a time-ordered sequence X = (x1, x2, . . . , xn) of

locations visited by a person, the regularity of the sequence is given by: reg(X) = 1 −
nunique/n, where nunique is the number of distinct locations in X.

For instance, the regularity of input sequence X = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4) is given

by reg(L) = 1 − 4/10 = 0.6. If we compute the regularity of the two aforementioned

example sequences (X1 and X2), we obtain reg(X1) = 1 − 4/8 = 0.5 and reg(X2) =

1 − 2/8 = 0.75, which helps explain why X2 has lower entropy than X1 (X2 is more

regular than X1). Intuitively, the more regular a sequence, the fewer distinct symbols it

has, and sequences with few distinct symbols are easy to compress. Therefore, the higher

the regularity, the lower the entropy of a sequence.

4.1.3 Diversity

Although useful, regularity and stationarity do not fully explain the predictability

of a person’s mobility. Consider, for instance, the following two sequencesX1 = (1, 2, 3, 1, 2, 3, 1, 2, 3, 1)

and X2 = (1, 3, 2, 1, 2, 3, 1, 3, 2, 1), which represent two mobility traces. These two se-

quences have the same regularity, as the total number of symbols and the number of

unique symbols are the same in both of them. That is, reg(X1) = reg(X2) = 0.7. They

also have the same stationarity st(X1) = st(X2) = 0, as there are no consecutive rep-

etitions of symbols—no stationary transitions—in them. However, due to the recurring

pattern 123 in X1, X1 is more predictable than X2, where there is greater variation in
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the order of visited locations. Indeed, the entropy of X1, computed using Equation 2.1,

is 1.50 whereas the entropy of X2 is 2.18.

To capture additional patterns affecting the entropy (and thus predictability) as-

sociated with a given mobility trace, we introduce another metric, called diversity of

trajectories. This metric helps us identify the mixture of patterns within the sequences—

such as the pattern 123 in sequence X1 and the varying patterns in X2—which can make

them easier or harder to predict. We here define the diversity of trajectories as follows:

Definition 4.1.3. Diversity: Given a time-ordered sequence X = (x1, x2, . . . , xn) of

locations visited by a person, the diversity of trajectories associated with X, div(X), is

given by the number of distinct trajectories in X. More specifically, if we see X as a

string, the diversity of trajectories is the number of distinct substrings in X.

Notice that this definition gives us an important measure of a person’s mobility,

and it is also related to how the entropy estimator in Equation 2.1 works. According

to this estimator, the entropy of the sequence is proportional to the number of distinct

subsequences in the original sequence. Thus, it is expected that the more diverse a

person’s routine is, the higher its entropy (and consequently lower predictability). Indeed,

considering the aforementioned sequences X1 and X2, we find that div(X1) = 0.49, and

div(X2) = 0.76.

To compute diversity, we count the number of distinct substrings of size 1 ≤
i ≤ n, where n is the size of the input string, and divide that number by the total

number of substrings in the input string. For a string of size n, there are a total of∑n
i=1 = n(n + 1)/2 substrings. Given that there is a closed-formula for computing the

total number of substrings in a given string, the challenge is computing the number of

distinct substrings in it. The naive solution is to generate all substrings and count the

number of distinct ones. Unfortunately, this solution is slow for large input strings, as

its asymptotic complexity is O(n2). More efficient solutions rely on the longest common

prefix (LCP) array or the suffix array of the input string [22].

We note that our choice of metrics (regularity, stationarity and diversity) comes

from experimental observations of how Song et al.’s technique works. Intuitively, such

metrics capture three key and complementary components of a person’s mobility patterns:

the ratio between previously visited places and new places, the amount of time spent in each

place (stationary transitions), and the number of distinct sequences of locations visited

(diversity). Although the importance of stationarity to predictability has been noted

before [15], using regularity and diversity to help understand predictability and thoroughly

evaluating the three metrics in two different prediction tasks is a novel contribution of

our work. These results are discussed next.
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4.2 Discussion of results

In this section, we explain the relationship between the three metrics–regularity,

stationarity, and diversity–and entropy as well as how they can be used as proxies to

understand predictability in the next-cell and next-place prediction tasks.

4.2.1 Next-cell prediction

In this section, we evaluate the extent to which regularity helps understand and

interpret predictability results in the next-cell prediction task. Recall from Section 2.1.3

that in next-cell prediction, given a sequence X = (x1, x2, . . . , xn−1), we are interested in

estimating the maximum achievable accuracy when trying to predict xn, the next symbol

in sequence X.

We begin our discussion by first illustrating the relationship between entropy and

each of our proposed metrics. Figure 4.1-(a) shows scatter plots with the relationship

between regularity and entropy for the GPS and CDR datasets, respectively. Similar

plots for stationarity and entropy are shown in Figure 4.1-(b), and for diversity and

entropy in Figure 4.1-(c).

In Figure 4.1, we observe that the three metrics have different relationships with

entropy. While the relationship between regularity and entropy is more varied, both

stationarity and diversity have a clearer relationship with entropy: stationarity seems to

vary linearly with entropy, and diversity exhibits a non-linear relationship.

The next step in our analyses is to investigate the relationship between the metrics

among themselves, as well as the correlation between the metrics and entropy. To do

that, we show, in Table 4.1, the Spearman correlation coefficient between each of our

three metrics. In practice a correlation greater than 0.5 in absolute value indicates a

strong correlation between two variables.

GPS CDR

Regularity Stationarity Diversity Entropy Regularity Stationarity Diversity Entropy

Regularity 1 0.50 -0.25 -0.55 1 0.63 -0.72 -0.74
Stationarity 0.50 1 -0.75 -0.88 0.63 1 -0.95 -0.94
Diversity -0.25 -0.75 1 0.69 x -0.72 -0.95 1 0.99

Entropy -0.55 -0.88 0.69 1 -0.74 -0.94 0.99 1

Table 4.1: Pairwise Spearman’s correlation coefficient between each proxy metric as well
as between each metric and the entropy, computed for each user’s mobility trace.
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Figure 4.1: Relationship between our three metrics and entropy. Notice that the plots
are at different scales. Notice also that users have similar values for one of the metrics,
but very different entropy values, indicating that one of the metrics alone is not able to
fully explain entropy.

From Table 4.1, we observe that the metrics are themselves reasonably well corre-

lated, but as illustrated in Figure 4.1, none of them is fully able to explain the entropy.

Indeed, a visual inspection of Figure 4.1 reveals that there are several users who, despite

having similar values of one of the metrics, have very different entropy values. This sug-



4.2. Discussion of results 53

gests that each metric, in isolation, cannot explain entropy. Investigating such cases, we

found that large differences in entropy for users with similar regularity could often be

explained by great differences in stationarity or diversity, and vice-versa.

In order to verify the hypothesis that each metric alone cannot reasonably explain

predictability, we analyzed the extent to which each metric alone versus the three in

conjunction can explain the predictability of a sequence of locations. To that end, we

employed a regression analysis by fitting the entropy H(X) of a sequence X as a function

of: (i) regularity reg(X) alone, (ii) stationarity st(X) alone, (iii) diversity div(X) alone,

and (iv) as a function of the three metrics in conjunction, for all users in each dataset.

For the latter, we experimented with different regression functions and the one that led

to the best fitted model is given by:

H(X) ≈ α · reg(X) + β · st(X) + γ · div(X) + δ · reg(X) · st(X) · div(X) + ϵ, (4.4)

where α, β, γ, and delta are the coefficients of regression and ϵ is the regression error. Fur-

thermore, it was necessary to consider the interaction between the three metrics because

there is a confounding effect between them—the correlation among them is non-negligible.

This function was chosen to illustrate that, together, the three proposed metrics can rea-

sonably explain most of the variation observed in the entropy values and, as such, can be

used as proxies for understanding the entropy of a person’s location history. Among all

regression models we tested with the three variables, this was the one that produced the

best fittings.

This model, albeit simple, is able to explain a large fraction of the total variation in

the entropy values in both datasets. It also shows better entropy fittings when compared

to three other models that employ only regularity or stationarity or diversity, as shown

by the adjusted R2 of the models listed in Table 4.2. Additionally, as we further discuss

in Section 4.2.3, we experimented with different spatial resolutions. We found that the

model in Equation 4.4 also performed well for other spatial resolutions that we tested.

reg(X) st(X) div(X) reg(X), st(X) and div(X)

GPS dataset 0.322 0.763 0.180 0.770

CDR dataset 0.566 0.903 0.492 0.935

Table 4.2: Adjusted R2 of four different regression models, each of which using a com-
bination of our metrics, for both the GPS and CDR datasets in the next-cell prediction
task.

Figure 4.2 shows scatter plots of the actual entropy (x-axis) versus entropy es-

timated by Equation 4.4 (y-axis) for all users in both datasets. Notice that most dots

(users) lie close to the diagonal, especially in the larger CDR dataset. Therefore, our
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three metrics can indeed be used as proxies for the purpose of studying predictability in

human mobility.
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Figure 4.2: Entropy (in bits per symbol) predicted by the regression model (y-axis) versus
actual entropy (x-axis), in bits per symbol, for the next-cell prediction task. The green,
dashed line shows the regression model (Equation 4.4) and the gray area shows the con-
fidence interval. As there are many more data points in the CDR dataset, the confidence
interval area is narrower and almost invisible in the plot.

It is important to note that, as shown in Table 4.2, the model that uses only

stationarity performed almost as well as the one that uses the three metrics, in both

datasets. This fact illustrates the importance of stationarity for the next-cell prediction

task, and suggests that most of the predictability (i.e., achievable prediction accuracy)

stems from stationary behavior in the next-cell prediction task, in the two datasets that

we evaluated here. In the next section, we will discuss what happens when stationarity

is taken out of the equation, i.e., in the next-place prediction task.

4.2.2 Next-place prediction

In this section, we evaluate the extent to which regularity helps understand and

interpret predictability results in the next-place prediction task. Recall from Chapter 3

that in the next-place prediction task, there is no stationarity. In other words, given a

sequence X = (x1, x2, . . . , xn−1), we are interested in estimating the maximum achievable

accuracy when trying to predict xn, where xn is different from xn−1.
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In the last section, we showed that stationarity plays a central role in explaining

predictability in the next-cell prediction task. In this section, we evaluate how the role of

regularity changes when there is no stationarity involved. Specifically, we would like to

answer the following questions: Does the importance of regularity and diversity increase

in the next-place prediction task when compared to next-cell prediction? Does this increase

make up for the lack of stationarity?

To answer the first of these questions, we examine the Spearman correlation coef-

ficient between regularity, diversity entropy in the next-place prediction task. We found

that the correlation is between regularity and entropy is -0.80 and -0.79, for the GPS

and CDR dataset, respectively. And the correlation between diversity and entropy is 0.88

and 0.98 for the GPS and CDR dataset, respectively. Contrast these values with the

corresponding values for regularity in the next-cell prediction task: -0.55 and -0.74 for

the GPS and CDR dataset, respectively, and for diversity: 0.69, and 0.99, for the GPS

and CDR dataset, respectively. Thus, regularity indeed plays a larger role in next-place

prediction than it does in next-cell prediction. And diversity plays a larger role in the

GPS dataset and a similar role in the CDR dataset.

To answer the second question, we build a regression model that uses regularity and

diversity to fit the entropy of next-place prediction. Our regression model is as follows:

H(X) ≈ α · reg(X) + β · div(X) + γ · reg(X) · div(X) + ϵ, (4.5)

where α and beta are the coefficients of regression and ϵ is the regression error.

We evaluate this model in both of our datasets and discover that the adjusted R2

is 0.855 and 0.913 for the GPS and CDR datasets, respectively. Figure 4.3 shows the

entropy fittings for the resulting model.

From the R2 of the model as well as from Figure 4.3, we observe that regularity

and diversity can also explain most of the variability in the entropy of the next-prediction

task. Indeed, the importance of these metrics increase in the next-place prediction task

(as evidenced by their stronger correlation with the entropy), and they are able to capture

most mobility patterns in the next-place prediction task.

4.2.3 Metrics and Dataset Characteristics

Previous studies [56, 15, 11] have shown that the estimate of predictability in

mobility is influenced by the temporal and spatial resolutions of the data. Specifically,

greater predictability is expected as temporal resolution increases (more observations per

time period) or spatial resolution decreases (larger cells). We now revisit and expand this
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Figure 4.3: Entropy (in bits per symbol) predicted by the regression model (y-axis) versus
actual entropy (x-axis), in bits per symbol, for the next-place prediction task. The green,
dashed line shows the regression model (Equation 4.5) and the gray area shows the con-
fidence interval. As there are many more data points in the CDR dataset, the confidence
interval area is narrower and almost invisible in the plot.

discussion by looking into how both factors affect regularity, stationarity, and diversity,

as well as by examining how data sparsity can affect the metrics.

Temporal resolution

Our experiments show that a decrease in temporal resolution makes the average station-

arity decrease as well. This occurs because longer time intervals between measurements

make it more likely for those measurements to occur at different locations—there is a

higher chance that the user moved in a longer time interval. The decrease in stationar-

ity leads to an increase in entropy and thus, lower predictability (on average). In our

experiments, we observed an decrease in stationarity of about 6% when the temporal

varied from one observation every five minutes to one observation every hour, in the GPS

dataset.

The same logic can be applied to the relation between diversity and entropy. Longer

time intervals between measurements tend to increase diversity, as there is a higher chance

that the user moved in a longer time interval. Thus, we observe that, intuitively, station-

arity and diversity vary in opposite ways with respect the temporal resolution.

A less obvious observation is that a decrease in temporal resolution reduces average

regularity. This is due to the fact that lower temporal resolution means fewer observations

being made overall, which leads to shorter sequences. Recall that regularity is related to

the ratio between the number of unique symbols and the size of the sequence. Therefore,
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a reduction in the size of the sequence will cause a decrease in regularity. In our experi-

ments, by varying the temporal resolution from one observation every five minutes to one

observation every hour, the regularity of the GPS dataset decreased by around 17% and

5% for the next-cell and next-place prediction tasks, respectively. In general, less regular

sequences will have larger entropy, as Figure 4.1 shows.

Spatial resolution

We now turn our attention to the relation among spatial resolution, regularity, station-

arity, and diversity. As with the temporal resolution, it is only possible to perform this

analysis on the GPS dataset: as it has high spatial resolution, we can tesselate grids of

arbitrary size on the target geographical area.

A decrease in spatial resolution means that the cells in the spatial grid are larger,

which means that more measurements are going to be made inside the same cell, thus

increasing average stationarity and decreasing diversity, as shown in Table 4.3. A decrease

in spatial resolution also causes an increase in regularity, as it will be less likely that a

person moves outside a larger cell.

Given that more observations of the person’s location are going to be made inside

the same cell, there will be more repetition of symbols in the person’s mobility trace.

More repetitions means more compressibility, which results in lower entropy, and therefore

higher predictability.

Spatial Average Average Average
Resolution (m) Stationarity (%) Regularity (%) Diversity (%)

200 96.0 88.5 90.7
300 96.5 88.9 90.4
400 96.9 89.7 90.2
500 97.2 92.2 89.0
600 97.4 92.5 88.5
700 97.7 92.7 87.7
800 97.9 93.6 87.2
900 98.0 93.7 87.1
1000 98.1 94.0 86.8

Table 4.3: Variation of regularity, stationarity, and diversity according to the spatial
resolution of the data for the GPS dataset, in the next-cell prediction task.

Data sparsity

Another important aspect of the interplay among our three metrics is data sparsity. In

both of our datasets, the current location of users is measured in a fixed time interval

(five minutes for the GPS dataset, and one hour for the CDR dataset). This gives us a

uniform way of observing people’s locations.
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However, as mentioned in Section 3.2, some mobility dataset such as social media

data are activity dependent, which means users’ locations are only measured when the

user takes specifc actions (post on social media, for instance). This type of dataset

does not exhibit the same uniformity in measuring users’ locations as our datasets. As

a result, activity dependent datasets may not be able to capture important aspects of

users’ routines. This type of dataset will exhibit less stationarity, less regularity, and

more diversity, when compared to datasets with observations in a fixed time interval.

Previous work [12] proposed strategies to try to reconstruct the users’ mobility

trace from sparse data. This type of approach will rely on well-known mobility patterns

to try to infer where a given person was at a moment for which her location is unknown in

the dataset. This type of strategy is also useful because, as previous work argued [58], as

data sparsity increases, entropy estimates (and therefore predictability) start to degrade.

4.3 Summary

In this chapter, we investigated proxy metrics (regularity, stationarity, and diver-

sity) that help us make sense of, i.e., interpret, predictability values. Our results show

that these metrics capture most of the variability in one’s mobility. We also argued that

the reduction in entropy (and corresponding increase in predictability) seen as the spatial

resolution increases comes at a cost, i.e., there is a trade-off between prediction accuracy

and utility, as previously mentioned in Section 2.1.5.

As shown in this chapter, stationarity, regularity, and diversity can be used to

study human mobility as a whole, but as discussed in Section 1.2.2, previous studies

proposed to view human mobility in terms of different components. In the next chapter,

we investigate the predictability of different components of human mobility by splitting

one’s mobility into two components and using these metrics to study the predictability of

an individual’s routine. We validate our results by employing regression models that use

these three metrics to fit the predictability of one’s routine-related mobility.
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Chapter 5

Understanding Predictability of

Mobility Components

In this chapter, we continue our efforts towards understanding predictability by investi-

gating the predictability of different components of human mobility. Specifically, we here

study predictability by viewing human mobility in terms of two components (routine and

novelty) and study their impact on predictability. We then conduct a thorough investi-

gation of the predictability of the routine component of human mobility, as that can lead

to new insights for prediction strategies that rely on the history of visited locations.

Although previous work [57] analyzed individual human mobility in terms of ex-

ploration and preferential returns, Song et al.’s work and subsequent studies derived from

it [39, 56, 15, 60, 62] studied the predictability of a person’s mobility considering one’s

mobility as a single monolithic entity. In this thesis, we propose to study predictability

in terms of two components, and we argue that separately studying such components can

reveal important insights into the predictability of one’s mobility.

Previous work [57] considered an individual’s mobility as a collection of visits,

each of which being qualified as an exploration (visits to new places), or preferential re-

turn (visits to previously visited places). We here adopt the same strategy, and group

all exploration visits into what we call the novelty component of an individual’s mobil-

ity. Similarly, all visits related to preferential returns are grouped into what we call the

routine component of an individual’s mobility. Thus, the novelty component consists of

locations that the person visited for the first time, and all other visits belong to the rou-

tine component. Note that this definition is different from our usual definition of routine

(places frequently visited), as it considers every visit except the first one as being part of

the routine component.

The division of human mobility into these components highlights important prop-

erties about them. As we will discuss in Section 5.1.1, the novelty component is re-

markably unpredictable, mainly because the vast majority of mobility prediction mod-

els [27, 53, 13, 7] rely on the history of visited locations, as captured in the input dataset,

to predict future visits. Therefore, those models have a hard time deciding whether a

person will go to a previously unseen location, and an even harder time trying to guess
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what location that will be.

In contrast, the routine component is the part of a person’s mobility where there

is more potential for improving prediction accuracy as every location in this component

has been visited at least twice (that is, there is visitation history to be exploited by pre-

diction models). However, despite such greater potential, predicting visits in the routine

component is still by itself a challenge, as there can be a high degree of unpredictability

even if we focus only on previously visited locations. For instance, the mere change in the

order in which people visit specific locations, even those they visit more frequently, poses

difficulties for prediction models.

Having defined the routine and novelty components, we set up the goal of isolating

their effects on the predictability of one’s mobility. Specifically, in Section 5.1, we show

how to isolate the effect of the novelty component on predictability, thus allowing us to

quantify the effect of routine on a person’s mobility predictability. Then in Section 5.2,

we zoom in on the routine component to try to understand what makes a person’s routine

easier or harder to predict. To do that, we rely on our previously proposed metrics,

namely regularity, stationarity and diversity, to try to understand what affects a person’s

routine. We evaluate these three metrics by building regression models that use them

as proxies to understand the predictability of an individual’s routine. Our study relies

on the analysis of two datasets, described in Chapter 3, of different spatial and temporal

granularities, as these properties have been shown to influence predictability [56, 62].

5.1 Components of human mobility

As mentioned, previous predictability studies looked at individual human mobil-

ity as one monolithic entity consisting of a collection of locations that a person visited

during a certain period. In this thesis, we propose to break one’s mobility into two key

components—novelty and routine—as follows.

Given an input sequence X = (x1, x2, . . . , xn) of locations visited by an individual,

the novelty component of X consists of all visits to previously unseen locations, whereas

its routine component includes all other visits, that is, visits to locations that appeared

at least once before in X. Figure 5.1 shows an example input sequence X representing

a person’s history of visited locations (each letter represents a location). The figure

distinguishes the routine and novelty components by presenting the latter in gray.

C A B A B A C B D A E   X = 

Figure 5.1: Novelty (in gray) and routine (in white) components of input sequence X.
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This separation between routine and novelty is a facet of human behavior that

appears not only on mobility-related decisions, but also in other scenarios [17]. For

instance, in the area of Reinforcement Learning, many algorithms explore the decision

space early on, and then exploit paths that lead to a maximum target value. Similarly,

in human mobility, the amount of novelty visits in a person’s mobility trace tends to

decrease over time, as argued in previous work [57].

The difficulty in predicting a person’s mobility comes, mainly, from one of two

sources: (1) unpredictable behavior due to visits to novel (previously unseen) locations,

and (2) unpredictable behavior in the sequence of visits to previously visited locations,

due to spatio-temporal changes. In this thesis, we argue that in order to better understand

how predictable an individual’s mobility patterns are, we must isolate these two sources

of unpredictability and study them separately. By doing so, we can estimate the effect

of novelty on predictability, and then zoom in on what affects the predictability of the

routine component alone.

We argue that novelty visits contribute to reducing the predictability of a person’s

mobility. The vast majority of mobility prediction models exploit the history of visited

locations, as captured in the input sequence X, to predict future visits (e.g., [39, 53, 15,

28]). Thus, the absence of such history in the novelty component (by definition) challenges

prediction. Predicting novelty visits requires different approaches, that may exploit other

types of (external) information such as mobility patterns of closely related individuals

such as friends and family [13, 29], which are outside our present scope.

The routine component, on the other hand, has a greater potential for prediction

accuracy as previous visitation history is available. However, as mentioned above, changes

in the sequence of visitations, triggered by a plethora of factors (weather, special events,

one’s own will, etc.) can introduce a great deal of unpredictability to this component as

well.

In this thesis, we study the predictability of one’s mobility focusing on the routine

component. We do so while still using the state-of-the-art predictability technique. How-

ever, that technique views one’s mobility as a whole, i.e., processes the complete input se-

quence X. By doing so it hardens the understanding of what part of the (un)predictability

of a person’s mobility, expressed in X, is due to visits in the novelty component and what

part is due to changes in the sequence of routine-related visits.

Thus, as a key step towards understanding predictability, we here propose a tech-

nique that filters out the effect of other factors that impact predictability, allowing us

focus on routine-related mobility captured in the input sequence. Specifically, our ap-

proach consists of building a comparable reference sequence, here called simply baseline

sequence, which differs from the original sequence only in the routine component. Specifi-

cally, the routine component of the baseline sequence consists of the same symbol repeated

multiple times, thus having maximum predictability (for fixed routine size). By measur-
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ing the gap between the (real) predictability of the original sequence to the predictability

of this baseline sequence, we are able to estimate the effect of the routine component on

predictability estimates.

In the following, we first discuss the impact of one such effect, notably the visits in

the novelty component (Section 5.1.1). We then present our proposed approach to capture

the effect of routine-related mobility on the predictability of one’s mobility (Section 5.1.2).

5.1.1 Assessing the effect of novelty on predictability

Despite the challenges associated with predicting visits in the novelty component,

we here claim that it is possible to estimate the impact of this component on the pre-

dictability of an individual’s mobility. In this section, we explain how to do so.

Recall from Equation 2.1 that the entropy of a given sequence X of size n is

inversely proportional to the sizes of the distinct subsequences in X. For a given size n

the larger the sizes of the subsequences, the fewer subsequences, and vice-versa. Thus, the

entropy is proportional to the number of distinct subsequences of the original sequence.

Symbols in the novelty component have a direct impact on entropy estimates because every

time a previously unseen symbol appears in the sequence, it will generate a previously

unseen subsequence, which in turn will contribute to increase the entropy estimate of the

sequence as a whole.

Specifically, from Equation 2.1 (reproduced below to facilitate the explanation):

Sreal ≈
n log2(n)∑

i≤n

Λi

,

we notice that, for a sequence of size n, its entropy will be inversely proportional to∑
i≤n Λi, i.e., the sum of the lengths of all subsequences. In the extreme case of a sequence

whose symbols are all unique, every symbol in the sequence will produce a new (previously

unseen) subsequence (of length one). In that case, each Λi will be equal to 1, and thus

the denominator in Equation 2.1 will be equal to n. In general, for a sequence of size

n with m ≤ n distinct symbols, these symbols, taken together, will contribute to the

denominator of Equation 2.1 with a value of m.

Consider, as an example, the input sequence X = (H,W,H,W, S,H,W,H,W,R).

The entropy estimate, as explained, has to account for every symbol that appears in the

sequence for the first time. Table 5.1 illustrates the effect of these symbols on the entropy

by showing the computation of each Λi – the size of the shortest subsequence Li starting

at position i that does not appear in positions 1 to i − 1 in sequence X. To facilitate
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following the example, the table shows, for increasing values of i from 1 to n = 10, the

subsequence Li as well as its corresponding Λi. Note that for i = 3, we have Λ3 = 3,

which is the size of HWS, the shortest subsequence starting at position 3 that does not

appear before in the input sequence, since S does not appear in the earlier positions of X.

In contrast, for i = 5, we have Λ5 = 1, since the fifth location visited, S, is novel, it has

not appeared before in the sequence. The same happens for all visits to new locations:

Λi = 1 for i = 1,2,5, and 10.

i X[1:i] Li Λi new symbol? new subsequence?

1 HWHWSHWHWR H 1 ✓ ✓

2 HWHWSHWHWR W 1 ✓ ✓

3 HWHWSHWHWR HWS 3 ✓ ✓

4 HWHWSHWHWR WS 2 ✗ ✗

5 HWHWSHWHWR S 1 ✗ ✗

6 HWHWSHWHWR HWHWR 5 ✓ ✓

7 HWHWSHWHWR WHWR 4 ✗ ✗

8 HWHWSHWHWR HWR 3 ✗ ✗

9 HWHWSHWHWR WR 2 ✗ ✗

10 HWHWSHWHWR R 1 ✗ ✗

Table 5.1: An example illustrating the innerworkings of Equation 2.1 on an input sequence
X = (H,W,H,W, S,H,W,H,W,R). The notation X[1:i] denotes the symbols in X from
1 to i − 1, Li denotes the shortest subsequences that starts at position i and does not
appear from 1 to i − 1 in the original sequence, and Λi is given by | Li |. We note that
every time a new (previously unseen) symbols appears, a new subsequence is generated,
as shown in the last two columns of the table.

In more general terms, we note that every time a new (previously unseen) symbol

appears in the sequence, a new (previously unseen) subsequence also appears, each new

symbol contributes the value of 1 to its correspondent Λi. Furthermore, as shown in

Appendix A, changing the order or positions of the symbols that consitute the novelty

component does not affect their contribution to the entropy estimate. Thus, we can isolate

the symbols in the novelty component, as described in Section 5.1, in order to focus on

understanding the routine of one’s mobility.

Given that we are viewing human mobility in terms of two components, and that

we have identified the impact of the symbols in the novelty component on the denominator

of Equation 2.1, we can rewrite that equation as follows:

Sreal ≈
n log2(n)∑

i≤n−m

Λroutine
i +

∑
i≤m

Λnovelty
i

=
n log2(n)∑

i≤n−m

Λroutine
i +m

, (5.1)

where n is the size of the sequence, m is the number of symbols in its novelty compo-

nent, Λnovelty
i = m is the contribution of the symbols in the novelty component to the
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denominator of Equation 2.1, and Λroutine
i is the effect of routine on the denominator of

Equation 2.1.

In the following section, we explore these insights to propose a technique that

allows us to estimate the effect of the routine component on the predictability of an input

sequence X. Our technique relies on the fact that we are able to isolate the effect of

the novelty component on the entropy (Equation 5.1), thus facilitating our study of the

predictability of the routine component. In isolating the effect of novelty of predictability,

we highlight the role of routine and thus are able to focus on what affects the predictability

of this component.

5.1.2 Assessing the effect of routine on predictability

In order to estimate the predictability of a person’s routine, captured in an input

sequence X, using the technique proposed by Song et al., we must be able to filter out

from the computation, the effects of other unrelated factors present in X. One such factor

is the novelty component, which, as argued in the previous section, contributes to reduce

predictability. Another factor is the size of the input sequence, given by parameter n,

which, as shown in Equation 2.1, also affects the predictability estimate of X.

Having identified these two factors, we proceed to describe our approach to estimate

the effect of the routine component on the predictability of an input sequence X. In a

nutshell, our proposed approach works as follows. Given the input sequence X, with size

n, our technique consists in creating another sequence, named baseline sequence, based

on the original, in such a way that this new sequence:

(i) has the same size n as the original sequence;

(ii) has the same number of visits in the novelty component;

(iii) its routine component is completely predictable, i.e., it consists of a single location

visited as many times as determined by the size of the routine component.

We note that steps (i) and (ii) are required so as to filter out the effects due to the

size of the input sequence (notably the size of its routine component) and to isolate the

effects of the novelty component on the predictability estimate.

By doing so, we guarantee that the two sequences, the original one and the baseline

one, created as described, are comparable in terms of the impact of the novelty and the

size of the sequence on the predictability estimate. As such, any difference between the

estimates of the predictability of both sequences must highlight the effect of the routine
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in the original sequence. In other words, our approach allows us to assess how much a

person’s routine deviates from a completely predictable baseline routine.

Figure 5.2 exemplifies how the baseline sequence is built. For the sake of clarity,

we refer to the original (input) sequence of visited locations as Xreal and to the baseline

sequence as Xbaseline. Consider the sequence Xreal in Figure 5.2(a), and assume it consists

of locations (each identified by a letter). The first step to build Xbaseline is to identify visits

that constitute the novelty component, which are highlighted in gray in Figure 5.2(a).

C A B A B A C B D A EX’
real = Xtemp = C A BA B A C B DA E

(a) Isolating symbols in the novelty component: Xtemp

Xtemp = C A BA B A C B DA E
Xbaseline = C A BA A A A A DA E

baseline routine novelty

(b) Baseline sequence of locations: Xbaseline

Figure 5.2: Example of construction of a baseline sequence of locations.

In order to isolate the novelty component, we first move to the back of the sequence

all symbols that are part of it. Recall that, as argued in Section 5.1.1 and shown in

Appendix A, changing the positions of the symbols that compose the novelty component

does not impact their contribution to the entropy estimate. Thus, by moving them to the

back of the sequence we do not alter its effect on the predictability of the sequence. The

result is a temporary sequence Xtemp shown in Figure 5.2(b), where visits that constitute

the novelty component are isolated. We then consider the following question: If the

routine component of the original sequence were completely predictable, what would be the

predictability of the whole sequence?

To tackle this question, we change sequence Xtemp by creating a routine component

that is completely predictable, i.e., it consists of only a single symbol repeated multiple

times. The resulting sequence constitutes the baseline sequence Xbaseline , illustrated in

Figure 5.2(b). Notice that, both Xbaseline and Xreal have the same size and the same

number of symbols in the novelty component, therefore the effects of size and novelty on

predictability are the same for both sequences.

Our goal at this point is to: (i) estimate the entropy Sbaseline of sequence Xbaseline,

and (ii) compare Sbaseline with Sreal, the entropy of the original sequence Xreal so as to

measure how much the routine component of Sreal deviates from the baseline routine. We

take this relative measure as an estimate of the effect of the routine on the predictability

of the original sequence Xreal. The greater the gap between Sreal and Sbaseline, the less pre-

dictable the routine component of Xreal is, and the greater its effect on the predictability

of the complete sequence.

To tackle the problem of estimating the entropy of the baseline sequence, we will
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revisit Equation 5.1. In Section 5.1.1, we established that the value of
∑

Λnovelty
i is m,

where m is the number of symbols in the novelty component of the sequence. We will

now explain how to compute
∑

Λroutine
i for our baseline sequence, which has the distinct

property that all of its symbols are the same.

Let’s start with the example shown in Figure 5.2(d), where the routine component

of Xbaseline is AAAAAA, i.e., has size 6. Table 5.2 shows the computation of each Λroutine
i ,

with i varying from 1 to 6.

i X[1:i] Li Λi

1 AAAAAA A 1
2 AAAAAA AA 2
3 AAAAAA AAA 3
4 AAAAAA AAA 3
5 AAAAAA AA 2
6 AAAAAA A 1

Table 5.2: An example illustrating the innerworkings of Equation 2.1 on an example input
sequence X = (A,A,A,A,A,A). The notation X[1:i] denotes the symbols in X from 1 to
i− 1, Li denotes the shortest subsequences that starts at position i and does not appear
from 1 to i− 1 in the original sequence, and Λi is given by | Li |.

Notice that, in line 4, even though the string AAA appears before, Λi is still 3, as

we have reached the end of the sequence, and therefore cannot add more characters to

Li. In practice, this example follows how the Lempel-Ziv compression algorithm encodes

substrings, and Λi is simply the size of the next substring that would be encoded by the

Lempel-Ziv compression algorithm for each i.

From Table 5.2, we notice that the sum of all Λroutine
i can be written as 1 + 2 + 3

+ 3 + 2 + 1 = 12. More generally, if Xbaseline has a routine component of size k, we can

state that:

∑
Λroutine

i = 1 + 2 + · · ·+ k

2
+

k

2
+

k

2
− 1 +

k

2
− 2 + · · ·+ 1 =

⌈
k2

4
+

k

2

⌉
,

where k is the total number of symbols in the routine component of the sequence.

Thus, we can rewrite Equation 5.1 to compute the entropy of the baseline sequence

as follows:

Sbaseline ≈
n log2(n)⌈

(k+1)2

4
+ k+1

2

⌉
+m

, (5.2)

where n is the size of original the sequence, m is the number of symbols in its novelty

component, and k is the number of symbols in its baseline routine. In the equation above,

we have to add one to the size of the routine component to account for the fact that one
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of the symbols in the sequence appears both in its baseline routine and in its novelty

component, i.e., for practical purposes, it is as if the routine component had an extra

symbol.

It is also important to highlight that applying Equation 5.2 to an input sequence X

yields the same entropy value as using Equation 2.1 to compute the entropy of a sequence

Xbaseline such as the one in Figure 5.2(d), i.e.a baseline sequence obtained from an input

sequence X. In other words, Equation 5.2 is a closed-formula for the entropy of a baseline

sequence.

Having determined how to estimate the entropy of the baseline sequence, we can

finally tackle the problem of estimating the effect of the routine component on the pre-

dictability of an individual’s mobility expressed in an input sequence Xreal. To that end,

given the entropy Sreal of the original sequence and the entropy Sbaseline of the baseline

sequence, we can estimate the deviation of routine component on Sreal from the baseline

routine as follows:

∆Sroutine
= Sreal − Sbaseline, (5.3)

In other to better exemplify this perspective, consider as an example the sequence

X = (C,A,B,B,A,D,C,B,A,A,E,D), also shown in Figure 5.2(a). The entropy Sreal

of this sequence is given by:

Sreal(X) ≈ n log2(n)∑
i≤n

Λi

=
12 log2(12)

19
= 2.00.

In turn, we can calculate the entropy Sbaseline of the corresponding baseline se-

quence Xbaseline = (A,A,A,A,A,A,C,A,B,D,E), which is given by:

Sbaseline(X) ≈ 12 log2(12)(
72

4
+ 7

2

)
+ 5

=
12 log2(12)

21
= 1.81.

Here, the effect of routine on the entropy ofXreal can be estimated as 2.00− 1.81 = 0.19.

We argue that this entropy gap, i.e., deviation from the baseline routine, concerns behav-

ior in the routine component that is hard to predict.

Having defined our technique to assess the effect of the routine component on the

predictability of one’s mobility, we use it in the following sections to understand what

makes routine-related mobility easier or harder to predict.
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5.1.3 Characterizing components of human mobility

In this section, we analyze the novelty and routine components of a user’s mobility

in our two datasets. We do so by describing how much each of these components represent

in terms of the total mobility trace of each user. Specifically, we compute, for each user

in each dataset, the fractions of n, the total number of visited locations, that correspond

to visits of the routine and novelty components1, as defined in Section 5.1. Figure 5.3

shows the cumulative distributions of these fractions for both datasets, considering both

next-cell and next-place analyses.

Overall, the routine component dominates the locations visited, as expected. Yet,

we can observe some users with a large fraction of novel visits, especially in the CDR

dataset (up to 22% of all visits, in the next-place analysis). Notice also that the novelty

component tends to be smaller in the next-cell prediction tasks as stationary results in

a larger routine component. Furthermore, we note that the routine component is larger

in the GPS dataset (which encompasses a larger period of time compared to the CDR

dataset), agreeing with previous work [57] which showed that the number of novelty visits

decreases over time.

Conversely, the size of the novelty component tends to be larger for next-place

analyses. As such, the impact of novelty on the overall predictability will also be larger in

these cases. These results corroborate previous arguments that the next-place prediction

task is harder than next-cell prediction [15, 62]. As shown in the figure, we can indeed

expect the next-place prediction to be harder because (i) there is no stationarity involved,

so prediction is more challenging, and (ii) the size of the novelty component is larger,

which also makes prediction more challenging.

5.2 Investigating the predictability of the routine

component

In this section, we study the predictability of the routine component of human

mobility. We start by showing the predictability gap between users’ actual routine and

their baseline routine (Section 5.2.1), and then zoom in on the routine component to

understand what affects its predictability.

Our study is composed and driven by a series of analyses targeting both prediction

1Note that, for a given user, these two fractions sum up to 1.
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(a) GPS dataset (Next-Cell)
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(b) GPS dataset (Next-Place)
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(c) CDR dataset (Next-Cell)
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(d) CDR dataset (Next-Place)

Figure 5.3: Cumulative distributions of the size of the routine and novelty components in
our two datasets.

tasks, namely next-cell and next-place. Recall that for the next-cell prediction task we

consider the whole dataset, including stationary periods, but in the next-place prediction

task we remove stationarity from the user’s history of visited locations.
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5.2.1 Predictability gap

Focusing on the routine component, our main interest in this chapter, we now assess

the extent to which there is unpredictable behavior in people’s routine. To that end, we

apply Equation 5.3 to the mobility trace of each user to estimate ∆Sroutine
, that is the gap

between the predictability of the user and the predictability of the corresponding baseline

sequence (which has a completely predictable routine component). In the following we

refer to this measure as simply predictability gap.
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(b) CDR dataset

Figure 5.4: Cumulative distributions predictability gap ∆Sroutine
(Equation 5.3) for both

datasets (next-cell and next-place predictions).

Figure 5.4 shows cumulative distributions of the predictability gap for users in both

datasets and both next-cell and next-place prediction tasks. Note that the predictability

gap varies considerably for users in our two datasets, showing once again great diversity

of user behavior, for both prediction tasks.

Moreover, the gap tends to be smaller for next-cell prediction. For example, for

next-cell prediction, the gap is on average only 2.6% and 13.0% in the GPS and CDR

datasets, respectively. For next-place prediction, in turn, the average gap reaches 13.5%

and 22.2% for the same tasks, respectively. Once again, the stationary periods make

the users’ routine easier to predict, which is reflected by the smaller difference between

the actual predictability of the user and the predictability of the corresponding baseline

sequence. As for the next-place prediction problem, because the stationary periods are

removed from the users’ location trace, the predictability gap is wider, indicating that the

routine component is harder to predict in this case.
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5.2.2 Using proxy metrics to study routine

In order to better understand the predictability of the routine component of an

individual’s mobility, we propose to use simple and easy-to-interpret proxy metrics that

capture different factors related to a person’s mobility to help us understand the pre-

dictability of the routine component of human mobility. We employ the three metrics,

described in Chapter 4 (regularity, stationarity and diversity). In the next section, we

show that these metrics can indeed be used to explain the entropy (and thus the pre-

dictability) of one’s routine-related mobility by building regression models and showing

that they fit reasonably well our data. By doing so, we offer valuable tools to interpret

and understand the predictability of routine-related mobility.

In order to illustrate that these three metrics capture important aspects of the

predictability of one’s routine, we compute the Spearman’s rank correlation coefficient

between each metric and the entropy associated with the routine component of each

mobility trace in our datasets. The results are shown in Table 5.3, columns 6 and 10. Note

the absence of correlations between stationarity and entropy for the next-place prediction,

since this metric is not defined for that task.

As these results show, there is a strong correlation between each of the metrics and

the entropy of one’s routine: whereas both regularity and stationarity are negatively cor-

related with entropy, diversity of trajectories if positively correlated. Moreover, note that

the latter is even more strongly correlated with entropy than regularity in all scenarios.

We also measured the pairwise correlation between the three metrics. Table 5.3

shows the Spearman’s correlation coefficient for each pair of metric, for both datasets

and prediction tasks. As we can see, there is a strong correlation between stationarity

and diversity in the next-cell prediction task in both datasets, and additionally, there

is a strong correlation between regularity and stationarity in the CDR dataset. We also

observe some complementarity between the metrics, especially in the next-place prediction

task.

GPS CDR

Regularity Stationarity Diversity Entropy Regularity Stationarity Diversity Entropy

Next-Cell

Regularity 1 0.35 -0.17 -0.46 1 0.58 -0.66 -0.70
Stationarity 0.35 1 -0.74 -0.78 0.58 1 -0.95 -0.94
Diversity -0.17 -0.74 1 0.54 -0.66 -0.95 1 0.98
Entropy -0.46 -0.78 0.54 1 -0.70 -0.94 0.98 1

Next-Place

Regularity 1 — 0.25 -0.41 1 — -0.16 -0.53
Stationarity — — — — — — — —
Diversity 0.25 — 1 0.15 -0.16 — 1 0.84
Entropy -0.41 — 0.15 1 -0.53 — 0.84 1

Table 5.3: Pairwise Spearman’s correlation coefficient between each proxy metric as well
as between each metric and the entropy, computed for the routine component of each
user’s mobility trace.
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5.2.3 Discussion of results

In this section, we present our experimental evaluation of the use of the metrics

previously described to explain the predictability associated with routine-related mobility

(Section 5.2.3). Throughout this chapter, whenever we refer to a sequence of visited loca-

tions, we are indeed considering the extracted routine component of an original complete

sequence (i.e., the subsequence with symbols in white background in Figure 5.2-(b)).

Concretely, we build regression models of increasing complexity, each of which

uses some of the metrics discussed in Section 4.1 as proxies to the entropy of a person’s

routine. We use these models to fit the entropy of a person’s routine using the proxy

metrics described in Section 4.1. We then compare the fitted entropy with the actual

entropy of a person’s routine and show that our metrics can indeed explain most of the

variability in the entropy associated with it. We also evaluate the importance of each of

the metrics to the entropy (and thus predictability) of one’s routine. Collectively these

results offer a fundamental knowledge to help explain the predictability associated with

a person’s routine and, by doing so, understand what makes one’s routine more or less

predictable.

We present our results first for the next-cell prediction task (Section 5.2.3) and

then for the next-place prediction task (Section 5.2.3).

Next-cell prediction

In this section, we evaluate several regression models that rely on the metrics described

in Section 4.1 to fit the entropy of a person’s routine in the next-cell prediction problem.

Our first model uses only the two previously proposed metrics, namely, the regu-

larity reg and the stationarity st of the input sequence) to fit the entropy of one’s routine.

The resulting model, called RS model, is given by:

H(X) ≈ α + β × reg + γ × st + ν × µ+ ϵ, (5.4)

where α is the intercept of the regression line and ϵ is the regression error, and µ is a

variable that accounts for the interaction between highly correlated variables, according

to Table 5.3, and is given by the produc of those variables.

Our second model, called RSD model, uses, in addition to regularity and station-

arity, the diversity of trajectories div as third predictor variable, leading to the following

formula:

H(X) ≈ α + β × reg + γ × st + δ × div + ν × µ+ ϵ, (5.5)
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GPS dataset CDR dataset

Model Adjusted R2 Adjusted R2

RS 0.786 0.939

RSD 0.783 0.960

Table 5.4: Variation in entropy explained by each of the proposed regression models
(adjusted R2) for both of our datasets, in the next-cell prediction task. The RS model
is the model that uses regularity and stationarity, and the RSD model is the one where
diversity of trajectories is also used, along with regularity and stationarity.

We evaluate the quality of each model for each dataset by the adjusted coefficient

of determination (adjusted R2). As shown in Table 5.4, both models fit the data quite

well, especially for the CDR dataset which is much larger.

Moreover, adding the diversity of trajectories as a predictor in the RSD model does

not improve model accuracy, for neither dataset, as both models have the same R2 for

both datasets. This suggests that, at least for the next-cell prediction task, the diversity

of trajectory plays a less important role on entropy (thus predictability), and any impact

it may have on it is captured by regularity and stationarity. Indeed, from Table 5.3, we

observe that the diversity of trajectories is highly correlated with stationarity in the GPS

dataset, and with both regularity and stationarity in the CDR dataset.

To better understand the role of each metric in explaining the entropy of the

routine-related mobility, we zoom in on our RSD model, and analyze the coefficients of

the regression. We start our investigation with the GPS dataset, for which our RSD model

is shown in Equation 5.6:

H(X) ≈ 6.87− 8.44× reg + 1.54× st+ 3.98× div ×−3.96µ (5.6)

From Table 5.4, we observe that, for the GPS dataset, the model with diversity of

trajectories did not produce better fittings in terms of the adjusted coefficient of determi-

nation (adjusted R2) than the simpler RS model. In fact, the p-value for the diversity of

trajectories indicates that this variable is not significant (p-value = 0.34) for the model.

We conjecture that this behavior is due to the fact that diversity of trajectories is strongly

correlated with stationarity, and thus stationarity alone might be providing enough infor-

mation for the model to fit the entropy of one’s routine.

To illustrate the interplay between stationarity and diversity, consider a stationary

periodXs = (A,A,A,A,A,A) in one’s routine. The diversity of trajectories for this period

would be 6/21 = 0.28, corresponding to the subsequences A, AA, AAA, AAAA, AAAAA,

and AAAAAA, but all of those trajectories correspond to a stationary period. As the

temporal resolution of our GPS dataset is high (one observation every five minutes) there

are many stationary periods in it, thus highlighting this overlap in the behavior captured

by stationarity and diversity.
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Indeed, a simpler model (the RS model which does not use diversity of trajectories),

shown in Equation 5.7, produced equivalent results:

H(X) ≈ 10.2− 7.80× reg − 2.42× st (5.7)

We note that the p-value for both coefficients in the model depicted by Equation 5.7

are significant (p-value < 1× 10−5). A comparison of the results of models RS and RSD

suggests that, for the next-cell prediction task in the GPS dataset, a simpler model that

uses only regularity and stationarity might be enough.

The situation is different for our CDR dataset. In Equation 5.8, we show the

coefficients of our RSD model for the CDR dataset:

H(X) ≈ −14.1− 2.00× reg + 16.0× st+ 19.4× div ×−19.0µ (5.8)

All of the coefficients of the model in Equation 5.8 are significant (p-value < 1 ×
10−26). Furthermore, we note that using diversity slightly improved the performance of

the model, compared to our RS model, as shown in Table 5.4. We conjecture that this

metric was able to improve the model for the CDR dataset because, as the period covered

by the data is shorter and the temporal resolution is smaller (fewer observations per time

unit), stationarity alone is not able to capture as much information as it did on the GPS

dataset.

Our discussion so far offers an average view of how the metrics relate to entropy.

We now delve further by looking at this relationship for individual users. To that end,

Figure 5.5 shows a scatter plot (each dot is a user) of the real entropy versus the entropy

estimated by the model, here called proxy entropy, for both datasets. These plots were

built considering the complete RSD model. The closer to the diagonal the points are

the more accurately the model captures the real entropy of the corresponding users. As

shown in the figure, most dots (users) lie close to the diagonal in both graphs, suggesting

good model fittings, but the results are better for the CDR dataset, which is consistent

with the larger adjusted R2. One possible reason is the larger sample (i.e., number of

users) present in the CDR dataset, which favors a tighter model fitting.

However, for both datasets, there are a few dots that are farther away from the

diagonal, shown in red in Fig. 5.5. These outliers are examples of users for which the

regression model was not able to provide very accurate entropy estimates. To better un-

derstand why it happened, we manually inspected our dataset and selected 10 of these

outliers from the GPS dataset, and 20 outliers from the CDR dataset for further investi-

gation.

In the GPS dataset, we observed that most of the cases where model provided a

lower entropy estimate than the actual entropy correspond to users with long (routine)

mobility traces, e.g., more than 1,000 locations. As mentioned, the entropy estimator
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(b) CDR dataset

Figure 5.5: Entropy (in bits per symbol) fitted by the regression model (y-axis) versus
actual entropy (x-axis), for both datasets in the next-cell prediction problem. The green,
dashed line shows the regression line and the gray area shows the confidence interval. The
red points are considered outliers and will be discussed separately. For the GPS dataset,
we consider the RS model.

shown in Equation 2.1 is sensitive to the size of the input traces, and produces better

(lower) estimates as the size of the input sequence grows. Thus, for users with long

mobility traces, our model overestimated the entropy.

Similarly, we observed cases where our model underestimated the entropy corre-

spond to highly regular and stationary users whose mobility trace is not long enough for

the entropy estimator in Equation 2.1 to converge, so there is a gap between the entropy

(computed using Equation 2.1) and the fitted entropy (computed using the metrics). The

same situation was observed in the CDR dataset. We manually inspected twenty users

for whom the model did not perform well and found that some of them had fewer than

40 total observations after our filtering.

In order to validate our hypothesis, we added a variable n to our models and

evaluated their adjusted coefficient of determination. We found that, for the GPS dataset,

the RS model augmented with the size n of the sequence yielded an adjusted R2 of 0.839.

As for the CDR dataset, adding an extra variable n did not increase the adjusted R2, and

the extra variable was less significant than the others (p-value equal to 0.04).

Finally, we experimented with adding yet another variable, also related to one’s

routine, to our best models: the baseline entropy, given in Equation 5.2. We found that

this extra variable increased the adjusted R2 of the GPS dataset to 0.849, but did not

improve the model for the CDR dataset.
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GPS dataset CDR dataset

Model Adjusted R2 Adjusted R2

R 0.672 0.735

RN 0.723 0.801

RND 0.739 0.852

RNDB 0.750 0.855

Table 5.5: Variation in entropy explained by each of the proposed regression models
(adjusted R2) for both datasets, in the next-place prediction task. The R model is the
model that uses regularity, and the RD model is the one where diversity of trajectories
is also used, along with regularity. We also include results for the RDN model, which in
addition to regularity and diversity also uses the size n of ones routine, and the RDNB
model, which adds information about the baseline entropy of one’s routine.

Next-place prediction

We now turn our attention to the next-place prediction task. We note that the models used

to fit the entropy in this prediction task are the same models discussed in Section 5.2.3,

with a single modification: the only difference is that, by definition, there is no stationarity

in the next-place prediction problem, therefore the stationarity term is removed from all

of our three models. Additionally, we added a variable n that accounts for the size of the

input sequence, as discussed in Section 5.2.3.

Because of the lack of stationarity, this prediction task is harder compared to next-

cell prediction [15]. In the latter, a large portion of the accuracy in prediction comes from

the fact that people tend to stay for long periods of time in the same location. Thus,

models that guess that the user will be at the same location in the next time bin have a

higher chance of making a correct prediction. As there is no stationarity in the next-place

prediction problem, models have to cope with the difficulty of effectively guessing the next

distinct location where the user will go.

This difficulty can be seen when we compare values of the adjusted R2 in Table 5.4,

in the previous section, to those in Table 5.5, which summarizes the performance of our

models for the next-place prediction task. We also note that the diversity of trajectories is

more important for the CDR dataset, providing greater improvements to model accuracy

in that case.

We further note the importance of diversity by analyzing the coefficients of regres-

sion of the models. As shown below, though regularity has once again the largest effect on

the entropy estimate, the effect of diversity of trajectories is also quite important in this

task. We note that all model coefficients are statistically significant with p-value < 0.05.

Additionally, as the correlation between diversity and regularity is low in the next-place

prediction task, we observe greater complementarity between these metrics, justifying the

performance gains.
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(b) CDR dataset

Figure 5.6: Entropy (in bits per symbol) fitted by the regression model (y-axis) versus
actual entropy (x-axis), for both datasets in the next-place prediction problem. The green,
dashed line shows the regression line.

Our results also suggest that metrics have different importance depending on the

type of dataset (as evidenced by the coefficient of regression of our models). This has

important implications in terms of prediction because it suggests that prediction strategies

have to be tailored not only to the type of prediction task, but also to the type of dataset.

Figure 5.6 shows scatter plots of the fitted entropy of our RND model versus the

real entropy for both datasets. Once again, we found that users with few observations

also tend to present poor performance in terms of entropy fitting, as was also observed

for the next-cell prediction in Section 5.2.3.

Thus, for both next-cell and next-place prediction, our regression models were able

to capture most of the variability in people’s routine, as evidenced by the R2 of the models

and the entropy fittings shown in Figure 5.5 and Figure 5.6. We also observed that adding

information about one’s baseline entropy can improve the performance of the model, in

1.1% and 0.3% in the GPS and CDR datasets, respectively.

We end this section by arguing for the importance of using proxy metrics to under-

stand entropy (and predictability) in human mobility. The state-of-the-art predictability

technique relies on sophisticated entropy estimates, as explained in Chapter 2. As we

have argued, these entropy estimates are difficult to explain, in the sense that it is hard

to relate an entropy value to what resulted in that value, in terms of mobility patterns. By

using proxy metrics that capture specific mobility patterns and relating them to entropy,

we can better understand and explain what affects the entropy of a person’s mobility. In

this chapter, we have shown that three such metrics are enough to explain most of the

variability in the entropy of a person’s routine mobility.
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Open remark: Notice that if we compare the results of our models that try to approxi-

mate the entropy of the routine component with those that try to approximate the entropy

of the whole sequence, we find that we obtain better results for the whole sequence. This

seems counter-intuitive, since one’s routine should be easier to predict than one’s whole

mobility. However, it is important to point out that entropy estimates are sensitive to

the size of the input sequence, i.e., entropy tends to decrease as the size of the sequence

increases. When analyzing a person’s routine component alone, as novelty is filtered out

of the sequence, we obtain smaller input sequences, therefore the entropy estimates for

the routine component are not directly comparable to those of the individual’s whole

mobility.

5.3 Summary

In this chapter, we proposed to study predictability in terms of two components,

routine and novelty, with distinct properties. We showed that this view of one’s mobility

allows us to identify unpredictable behavior in each of these components, and we focused

on analyzing and understanding what affects the predictability of one’s routine. To that

end, we proposed a technique to assess how much one’s routine deviates from a baseline

routine which is completely predictable, therefore estimating the amount of unpredictable

behavior in one’s routine.

Furthermore, we relied on proxy metrics to understand what affects the predictabil-

ity of a person’s routine. Our experiments show that our metrics are able to capture most

of the variability in one’s routine in two different prediction tasks: next-cell and next-place

prediction.

Our results also show that routine behavior can be largely explained by three types

of patterns: (i) stationary patterns, in which a person stays in her current location for a

given time period, (ii) regular visits, in which people visit a few preferred locations with

occasional visits to other places, and (iii) diversity of trajectories, in which people change

the order in which they visit certain locations.

The proxy metrics discussed in Chapter 4 explain most of the variability in a

person’s overall mobility and routine, but there seems to be something else at play here.

Intuitively, one expects that external factors such as day of the week, hour of the day,

weather conditions, and even socio-economic factors play a role in a person’s mobility

patterns. While these types of information affect people’s mobility patterns, the state-of-

the-art technique for computing the limits of predictability in human mobility does not

take them into account. In the next chapter, we investigate how to add such types of
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(contextual) information into the computation of the limits of predictability.
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Chapter 6

Extending Predictability with

Contextual Information

Recall from Section 2.2.1 that predictability is a function of the entropy of the sequence

of locations. However, given prior arguments that contextual information may indeed

improve the predictability of one’s mobility [15, 28], we would like to use not only the

history of visited locations while computing the entropy, but also contextual information

associated with each visit. In this chapter, we study different strategies to incorporate

such side information into entropy (and thus, predictability) estimates, quantifying its

impact on those estimates.

We start by investigating how to explore context using entropy estimators that

are based on the frequency (probability) with which the locations are visited (Section

6.1). We choose to focus first on those entropy estimators, which are alternatives to the

state-of-the-art compression-based approach discussed in the previous section, because

extending them to incorporate context is easier and more intuitive. After quantifying the

impact of context into these entropy estimators, we then move on to explore the more

challenging task of adding context to the compression-based estimator used by Song et

al. (Section 6.3).

In both cases, we consider three types of contextual information, namely day of

the week, hour of the day, and weather information. The latter, obtained through an

an external service1, is only available for our CDR dataset as we were unable to gather

weather information for the period and location covered by the GPS dataset. For the CDR

dataset, the weather information corresponds to descriptions of the weather (clouds, rain,

snow, etc.) which are mapped into 7 distinct and unique integer identifiers.

1https://openweathermap.org/

https://openweathermap.org/
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6.1 Adding contextual information to predictability

estimates

GivenX = (x1, x2, . . . , xn), a time-ordered sequence of locations, and C = (c1, c2, . . . , cn),

a sequence of contextual information associated to each of the visits (ci could be the

weather when the person visited location xi, for instance), we wish to measure the extent

to which knowing sequence C helps estimating the entropy of X. In other words, we wish

to know how much X is constrained (or influenced by) C, which can be determined by

the conditional entropy H(X | C) [14], computed as follows:

H(X | C) = H(X,C)−H(C), (6.1)

where H(X,C) is the joint entropy of X and C, given by

H(X,C) = −
∑

x∈X,c∈C

p(x, c) log2 p(x, c), (6.2)

and p(x) is the probability mass function of variable X given by p(xi) = Pr(X = xi). In

Equation 6.1, if X and C are independent, i.e., if C carries no information about X, it

follows that H(X,C) = H(X) +H(C), which leads to H(X | C) = H(X,C) −H(C) =

H(X). Once we have H(X|C) we use it in Equation 2.3 to compute the predictability of

sequence X constrained by the contextual information in C.

Notice from Equations 6.1 and 6.2 that the basis for entropy computation is an

underlying probability distribution. Thus, if one has the full probability distribution of

a sequence of symbols X, the entropy of that sequence is given by Shannon’s formula:

H = −
∑

p(x) log2 p(x). The same is true for the joint entropy of X and C. In real world

situations, however, one usually has access to only a sample drawn from the underlying

probability distribution. As a consequence, entropy values obtained for a sequence are

estimates of the real entropy of the sequence. Entropy estimators that are based on the

probability distribution inferred from a sample usually compensate for the effects of using

such sample by adding a bias term to their probability estimates. Different estimators

exploring different bias terms exist in the literature [26], but in general their entropy

estimates tend to be more conservative (than the exact values) because of the added bias

term.

In Section 6.2, we investigate how to add context to frequency-based entropy es-

timators and evaluate three representatives of this type of estimator with contextual

information. In Section 6.3, we argue that the aforementioned strategy to add context

to predictability estimates does not work with Song et al.’s estimator, which is based on

compression. We also propose new strategies to incorporate context into Song et al.’s

estimators and evaluate the impact of this type of information on predictability.
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6.2 Contextual information and frequency-based

estimators

We experimented with various frequency (probability) based entropy estimators,

choosing three of them that delivered the best results in our preliminary experiments.2

The first one is called Maximum Likelihood (ML), which estimates entropy using the

empirical frequencies of observations, and therefore is equivalent to Shannon entropy [14].

This estimator is also used in Song et al.’s work as a baseline for comparison against

the more refined compression-based estimator, explained in Section 2.2.1. The second

one, called Miller-Madow (MM), estimates entropy by applying the Miller-Madow bias

correction [10] to Shannon entropy. The third one, called SG, estimates entropy using

the Dirichlet multinomial pseudo-count model [2] with parameter a = 1/n where n is the

length of input sequence X. All of these estimators directly apply Equations 6.1 and 6.2

to compute the predictability of sequence X given sequence C.

GPS dataset CDR dataset

No Context Weekday Hour No Context Weekday Hour Weather

Next-cell
Maximum Likelihood 6.01 1.48 1.18 1.45 1.13 0.79 1.23

Miller-Madow 10.6 1.61 1.22 7.86 1.20 0.91 1.32
SG 4.62 1.48 1.19 2.66 1.17 0.84 1.27

Next-place
Maximum Likelihood 4.82 3.80 2.98 2.39 1.74 0.59 1.72

Miller-Madow 5.55 4.17 3.36 8.80 2.05 1.02 1.98
SG 5.55 3.85 3.07 2.92 1.87 1.02 1.84

Table 6.1: Evaluation of three entropy estimators in both datasets and for the two pre-
diction tasks (next-cell and next-place). The reported average entropy values are given in
bits per symbol (each location is a symbol in the input sequence). For probability-based
entropy estimators, context reduces the entropy of the original sequence.

Table 6.1 shows the entropy estimates produced by these three estimators with

and without context, for our two datasets, three types of contextual information, and two

prediction tasks. As shown in the table, in some situations, context does enhance pre-

dictability estimates, i.e., entropy values with context are much lower than those without

context. The gaps are larger when the hour of the day is used as context, which suggests

stronger ties between hour of the day and location. For instance, a person may visit dif-

ferent locations every day of the week, but almost always stays at home from midnight

to early morning, or at workplace during morning and afternoon hours.

We further illustrate these enhancements by showing, in Figure 6.1, scatter plots

of entropy values with and without context (hour of day) for the ML estimator (the best

of the three estimators in Table 6.1). We consider the best estimator the one which

2These three estimators, along with others, are available as off-the-shelf tools in the R package called
entropy [26].
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(d) CDR dataset

Figure 6.1: Reduction in the entropy values when contextual information (hour of the
day in this case) is applied to the Maximum Likelihood estimator, in both datasets and
prediction tasks.

produced lower entropy values. As shown in these figures, the entropy values for all users

were reduced when context was used, for both datasets and prediction tasks. These results

confirm the intuition that human mobility is constrained by several factors. As Table 6.1

shows, some of these factors can be related to people’s routine, e.g., day of the week and

hour of the day, but external factors such as weather also have the ability to influence

people’s mobility.
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6.3 Contextual information and Song et al.’s

estimator

In Section 6.1, we showed that context reduces the entropy of probability-based

entropy estimators. However, in the case of the estimator employed in Song et al.’s work,

it is not possible to exploit contextual information by directly applying Equations 6.1

and 6.2. Recall from Chapter 2 that the algorithm used by Song et al. (originally pro-

posed by Kontoyiannis et al.[33]) works by compressing the input sequence of symbols to

estimate its entropy, therefore leveraging the relation between entropy and compressibility.

In doing so, the algorithm becomes oblivious to the underlying probability distribution of

the symbols in the sequence, which poses a barrier to computing the conditional entropy

using Equations 6.1 and 6.2.

We here investigate two strategies to circumvent the aforementioned barrier and

incorporate context into Song et al.’s estimator, thus using a compression strategy instead

of a probability one. The first one, referred to as sequence-splitting is based on breaking

the original sequence of locations into sub-sequences conditioned to specific contexts. The

second one builds a new sequence by combining locations and associated contexts. It is

referred to as sequence-merging. We discuss both strategies next.

6.3.1 Sequence-splitting

Our first approach relies on splitting the original sequence X according to the

contextual information into consideration and on computing the entropy for visits that

occur with the same context [62]. In other words, we basically hard-code context into

each sub-sequence and in the end, use the entropy of those sub-sequences to obtain the

entropy of the original one.

We will illustrate how this strategy works through an example, shown in Figure 6.2.

Let’s assume we want to use weather as contextual information (i.e., sequence C in the

figure), discretized into three different types (e.g., sunny, cloudy, rainy, represented by the

symbols sun, cloud, and umbrella in the figure). To do that, we split the original sequence

X into three sub-sequences, one for each type of weather, each of which contains all of the

locations visited when the weather was of the same given type. We then, run the entropy

estimation algorithm in each of the three sequences, taking the weighted average of the

results, to consider differences in the size of the sequences.
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More formally, letX = (x1, x2, . . . , xn) be the original sequence and C = (c1, c2, . . . , cn)

be the contextual information sequence. Moreover, let k be the number of distinct ele-

ments in C, i.e., different contexts in C. We split X into sub-sequences X1, X2, . . . , Xk,

so that each Xj is the (sub)sequence of locations in the original sequence X which are

associated with the same type of context cj, j = 1..k in sequence C. We then apply

Equation 2.1 to each Xj, taking the weighted average at the end, where the weight is the

size of each sequence.

A A A F B B D E B A C D C A A

A A B C A D E B A A F C A D BX = 

C = 

Figure 6.2: Example of our sequence-splitting strategy. We divide the original sequence
into sub-sequences according to each type of context.

6.3.2 Sequence-merging

Our second strategy relies on the fact that, by combining locations and contexts

in the same sequence, we can estimate their joint distribution using a compression-based

estimator. In a nutshell, our sequence-merging approach is based on an analogy with

Equation 6.1. We propose to estimate the conditional entropy using a compression-based

entropy estimator, such as the one used by Song et al.Defining Hc(X) as the compression-

based entropy of sequence X, and Hc(X,C) as the joint compression-based entropy of X

and C, we have that:

Hc(X | C) = Hc(X,C)−Hc(C), (6.3)

where Hc(X,C) is the joint (compression-based) entropy of X and Y .

The computation of Hc(C) is a direct application of Song et al.’s estimator on

sequence C, so the challenge lies in computing Hc(X,C). What follows is a procedure to

do so.
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Merging X and C

D A D F B A AX = C = S C S R C S C

DSX’ = AC DS FR BC AS AC

Figure 6.3: Example of our sequence-merging strategy. Each symbol xi ∈ X is combined
with the associated context ci ∈ C to form sequence X ′.

The key insight to computing Hc(X,C), illustrated in Figure 6.3, is to merge

sequences X and C into a sequence X ′, where each symbol is now a pair (x, c) with

x ∈ X being a location and c ∈ C being a context. Recall that, according to Song et al.’s

estimator, the entropy is inversely proportional to the number of repeated sub-sequences

in the target sequence. As we compute the entropy of a sequence using this estimator,

we keep track of every sub-sequence encountered, so that further sub-sequences can be

matched against the previously discovered ones. Assuming that X is somehow related

to C, i.e., there will be repeated location-context pairs throughout the new sequence X ′,

which may help us obtain lower entropy for sequence X by using sequence C as context.

More formally, consider two sequencesX = (x1, x2, . . . , xn) and C = (c1, c2, . . . , cn).

It is possible that some symbols in C tend to appear together with some symbols in

X, e.g., when it rains, one tends to stay at home. When we build sequence X ′ =

((x1, c1), (x2, c2), . . . , (xn, cn)) by merging sequences X and C, some pairs (xi, ci), 1 ≤
i < n, will appear at several points in sequence X. This effect can also happen with

several pairs that appear consecutively, i.e., (xi, ci), . . . , (xj, cj), 1 ≤ i < j ≤ n/2. In other

words, compressing (estimating the entropy of) X ′ may require fewer bits than the sum

of the bits required to compress X and C isolated.

6.4 Discussion of results

In this section, we discuss the results for our two approaches (sequence-splitting and

sequence-merging) and compare their performance to the best frequency-based estimator

from Section 6.2 (the ML estimator). We are considering the best estimator the one which
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produced lower entropy values. Table 6.2 shows a comparison of these three approaches.

For each estimator, the table shows average entropy values with and without context, for

both datasets, both prediction tasks, and all types of contexts considered.

Note that for both sequence-splitting and sequence-merging, the results without

context are those estimated by the original Song et al.’s estimator. The results for the

ML estimator are the same as in Table 6.1, shown again here to facilitate comparison.

GPS dataset CDR dataset

No Context Weekday Hour No Context Weekday Hour Weather

Next-cell Maximum Likelihood 6.01 1.48 1.18 1.45 1.13 0.79 1.23
Sequence-Splitting 0.34 0.46 0.90 1.10 1.42 1.62 1.43
Sequence-Merging 0.34 0.35 0.50 1.10 1.27 1.01 1.04

Next-place Maximum Likelihood 4.82 3.80 2.98 2.39 1.74 0.59 1.72
Sequence-Splitting 1.36 1.58 1.96 1.96 1.87 1.20 1.94
Sequence-Merging 1.36 1.43 1.62 1.96 2.03 1.62 1.74

Table 6.2: Evaluation of our sequence-splitting and sequence-merging strategies (com-
pared to the best estimator from Section 6.1) in both datasets and for the two prediction
tasks (next-cell and next-place). The reported average entropy values are given in bits
per symbol (each location is a symbol in the input sequence).

There are three key observations to make out of the results in Table 6.1. First, we

note that in all cases without context, Song et al.’s estimator does produce lower entropy

values than the ML estimator. In other words, it is indeed a very good entropy estimator,

justifying its broad use to estimate predictability in human mobility [58]. Second, we

also note that introducing context into this estimator, by applying either the sequence-

splitting or the sequence merging approach, can yield lower entropy values than the ML

estimator with context in several cases, especially for the GPS dataset.

Yet, quite strikingly and perhaps most importantly, the table also shows that, un-

like observed for the ML estimator (and other probability-based entropy estimators), the

introduction of context into the Song et al.’s estimator, according to our sequence-splitting

and sequence-merging strategies, often leads to an increase in entropy (lower predictabil-

ity), compared to the estimated entropy without context. Out of all scenarios analyzed,

adding context only leads to reduced entropy when the sequence-splitting strategy is used

on the CDR dataset and for the next-place task. In that case, there are reductions on

entropy values, especially if hour of the day is used as contextual information.

The negative results for both sequence-splitting and sequence-merging in all other

scenarios may be at first counter-intuitive, and thus, calls for a deeper investigation on

the challenges of using context together with the compression-based entropy estimator

proposed by Song et al.
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6.4.1 Context-related challenges

In this section, we discuss the challenges associated to using context with compression-

based entropy estimators, and how these challenges reflect on our two proposed strategies.

Specifically, we discuss challenges related to (i) sequence size, (ii) alphabet size, (iii) con-

text variability, and (iv) how to incorporate other types of context into predictability

estimates.

Sequence size. Recall from Equation 2.1 that Song et al.’s entropy estimate converges

to the real entropy as the sequence grows to infinity, therefore being influenced by the

length of the sequence. That is, the larger the sequence the better the entropy estimate. In

our sequence-splitting strategy, by dividing the original input sequence, we are effectively

estimating the entropy of smaller sequences, and Song et al.’s estimator has trouble

converging to the real entropy for such small sequences, and we end up with possibly

inflated entropy values.

As an example, consider a sequence Xs = {A0, A1, . . . , A99} of size 100, where

all observations consist of the same symbol (a completely stationary sequence). The

entropy of this sequence, according to Song et al.’s estimator is 0.26. Further, suppose

that each block of 25 consecutive symbols of sequence Xs is associated with a different

context. Following our sequence-splitting approach, we divide this sequence according to

each context, which results in four sub-sequences of size 25, each of which has entropy

0.68. Thus, the entropy of the original sequence Xs is 4 · 0.68/4 = 0.68, which is higher

than the entropy of the original sequence. Thus, changes in context during stationary

periods can lead to higher estimates of entropy values.

Consider now a more realistic scenario of using hour of the day as contextual

information. In that case, the history of locations of each user is split into 24 sequences,

one for each hour. This division results in sequences with considerably smaller sizes, which

makes it harder for Song et al.’s estimator to converge to the real entropy. This may be

further aggravated by the splitting of longer stationary periods that span more than one

hour into separate sequences, which also contributes to raising the final entropy estimate.

This explains why this approach performed poorly (i.e., its entropy with context was

higher than the one without context) for the next-cell task, for which longer stationary

periods greatly contribute to the real entropy of the original sequence. In the case of the

CDR dataset, as the period covered by the data is smaller, and the temporal resolution

is lower (fewer observations per time unit), there is reduction in stationarity, as argued

in Section 4.2.3, which aleviates the problem we just described. In the case of next-place

prediction in the CDR dataset, as there is no stationarity involved, we observe a reduction

in entropy values when context is used in the sequence-splitting approach.
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Alphabet size. Previous work [23] has shown that the compression-based estimator

used in Song et al.’s work takes longer to converge to the real entropy of the sequence

for sequences with large alphabets. Recall that, in our sequence-merging strategy, when

building sequence X ′, each symbol xi ∈ X is combined with the corresponding context

ci ∈ C to form a tuple location-context in the form (xi, ci). This combination of symbols

produces a new sequence X ′ which is much more complex than the original sequence X in

terms of unique symbols, as the alphabet of X ′ is the cartesian product of the alphabets

of sequences X and C.

Song et al.’s estimator is based on the Lempel-Ziv compression algorithm, which

is a universal compressor [14]. These compressors learn the distribution of symbols in the

input sequence on-the-fly. Thus, for more complex inputs they may take longer to learn

the underlying distribution of symbols. If the input sequence is not long enough, such

methods may produce inaccurate entropy estimates. Thus, given the higher complexity

of X ′, compared to the original sequence X, Song et al.’s estimator may indeed produce

quite inflated estimates of entropy, as observed in Table 6.2.

As a more concrete example, consider the two following hypothetical sequences:

X = (A,B,A,B,A,B,A,B,A,B,A,B), and C = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7). The

entropy of X alone is 1.00, and the entropy of C is 2.66, both computed using Song et

al.’s estimator. Yet, the entropy Hc(X | C) is 1.14, i.e., using C to estimate the entropy

of X actually increased the entropy (compared to the entropy without context). It is

important to note that, though theoretically context can never increase entropy (“infor-

mation cannot hurt” property [14]), it is not clear whether the use of context can actually

help predictability in practice, when using compression-based entropy estimators such as

Song et al.’s. In particular, we cannot compute the conditional entropy directly, but only

estimate it through universal compressors, which may need a large sequence to learn the

input distribution and start approximating the real entropy closely.

Context variability. Another aspect that is important to consider regarding both

sequence-splitting and sequence-merging is the variability of symbols in sequence C. For

the former, less variability implies fewer (and longer) sub-sequences, which favors the

convergence of the entropy estimator. For the latter, little variability means a smaller

alphabet, which makes it easier for the entropy estimator to converge. Out of the three

types of context considered, weather has the lower variability: in total there are seven

types of weather in our dataset, but four of them appear only in three days out of the

two weeks analyzed. Such lower variability may have contributed to sequence-splitting

producing improved estimates in the CDR dataset.

Incorporation of external contextual information. Recall that in our datasets

there is a given piece of context associated to each location that a user visited. This is
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what we call internal context, i.e., context associated to each symbol in the input sequence.

It can also be desirable to incorporate what we call external context into entropy estimates.

External context refers to contextual information that is not associated to each visit, but

rather to the environment.

For instance, suppose in a given city all bars close at 10pm, and we wish to know the

next location of a user after that time. A prediction model can eliminate all locations that

refer to bars from the set of possible next locations. Such elimination of unlikely locations

can lead to better prediction accuracy. A similar strategy to filter out unlikely next

symbols can lead to lower entropy, and therefore higher predictability. Previous work [56]

evaluated a similar strategy, and showed that it indeed leads to high predictability. The

strategy adopted was to remove from the set of possible next locations every location that

was far away from the current position of the user.

6.5 Summary

In this chapter, we investigated the challenges in introducing context into Song et

al.’s entropy estimator. We showed that several interdependent factors play a role in the

convergence of the estimator to the real entropy, making it hard to know when introducing

context will actually be helpful, i.e., producing lower entropy values. Our discussion in

this chapter suggests that for highly stationary or highly regular location sequences, the

estimate of the entropy with context may be higher than that without it. This may also

be the case for a very diverse set of contexts. In practice, for some types of sequences

and contexts, one may obtain better (higher) predictability values by ignoring contextual

information and focusing only on the history of visited locations.

Taking a step further, we also conjecture that our sequence-merging approach could

be used as a test to determine if a given contextual information can be useful for predic-

tion. Suppose one wishes to use a given type of context when predicting an individual’s

locations. Before performing the prediction itself, one may run our technique and check

whether context reduces the estimation of entropy. If so, there is enough information

in the context to possibly help prediction. Otherwise, the size of the sample (length of

sequences X and C) may not be large enough for context to be useful for prediction,

therefore one may be better off not using it. Investigating how to translate this general

idea into a practical solution is an interesting avenue we intend to pursue in the future.

In the next chapter, we summarize our results and discuss possible future directions

for research on the topic of predictability in human mobility.
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Chapter 7

Conclusions, Limitations, and Future

Directions

In this chapter we present a summary of our results, discuss limitations of our techniques,

and provide general directions for future explorations of predictability.

Human mobility, being influenced by multiple factors ranging from a person’s mood

to traffic conditions to the weather, is hard to predict. Knowing how predictable someone’s

mobility can be is also a challenging task. Although Song et al.’s [58] and subsequent

work [15, 56] made important progress towards understanding predictability, our investi-

gations revealed significant shortcomings in their approach.

This thesis was centered around three goals, each of which aimed at address-

ing an important shortcoming in the state-of-the-art predictability technique. First, we

provided ways to interpret/explain predictability estimates in human mobility. Second,

devised techniques for studying the predictability of different components of human mo-

bility. And third, developed techniques to extend predictability estimates with contextual

information.

Our goals are translated into three Research Questions:

• Research Question 1 (RQ1): Would it be possible to trace a given predictability value

back to its causes, i.e., to interpret/explain predictability values and to understand

what makes a person’s predictability higher or lower?

• Research Question 2 (RQ2): Would it be possible to use Song et al.’s technique to

study the predictability of different components of individual human mobility?

• Research Question 3 (RQ3): Would it be possible to take contextual information into

account when using Song et al.’s technique, as well as to investigate the pros/cons

related to the use of contextual information jointly with predictability?

In Chapters 4, 5, and 6, we describe in details our efforts towards tackling each of

these RQs, and in the following sections we summarize our results and make concluding

remarks.
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7.1 Conclusions

In this section, we summarize our results for each of our Research Questions pro-

posed in Section 1.2.

RQ1: Understanding predictability in human mobility Towards tackling this re-

search question, first delved into how Song et al.’s technique works, and proposed metrics

to serve as proxies for predictability, showing that these metrics capture most of the vari-

ability in one’s predictability. Our experiments were conducted on two datasets of distinct

properties, discussed in Section 3.2, and for two different prediction tasks, described in

Section 2.1.3. Our decision to use metrics that capture a person’s predictability was mo-

tivated by the fact that Song et al.’s predictability technique is based on a sophisticated

compression algorithm, which makes it hard to look at the output of the algorithm and

reason what caused such output.

Previous work had showed that predictability is proportional to the amount of

stationary periods, i.e., periods when one stays at the same location for a given time, in an

individual’s mobility. We then reasoned that we could propose a metric that measures the

amount of stationarity in one’s mobility and use it to explain predictability (Section 4.1.1).

We noticed, however, that stationarity alone is not able to explain predictability.

We hypothesized that other metrics are needed to better explain predictability.

Our intuition was that the key to these metrics lies in how Song et al.’s entropy estimator

works, i.e., what patterns it captures. Our investigation showed that this estimator,

being based on compression, outputs an entropy estimate that is related to the number of

repeated sub-sequences (patterns) in one’s mobility. We then leveraged this knowledge to

propose another metric, called regularity, that, together with stationarity, could help to

understand the predictability of one’s mobility (Section 4.1.2). Similarly, we also proposed

a third metric, called diversity, which together with stationarity and regularity, paints a

clearer picture of the patterns in an individual’s mobility.

In order to check the effectiveness of our metrics, we proposed regression models

that use them as proxies of one’s predictability. Our results, which encompass both next-

cell and next-place prediction (described in Sections 4.2.1 and 4.2.2, respectively), show

that stationarity, regularity, and diversity are able to capture most of the variability in a

person’s predictability. For instance, in the next-cell prediction task, the adjusted R2 of

our model is 77% and 93.5% for the GPS and CDR datasets, respectively. As for next-

place prediction, adjusted R2 of our model is 85.5% and 91.3% for the GPS and CDR

datasets, respectively.

Our results suggest that predictability can be captured through proxy metrics such

as the ones we have proposed. Additionally, as mentioned, our experiments show that
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these simple metrics are capable to capture most of the variability in one’s predictability.

These results are encouraging and point us in the direction of investigating additional

metrics that could improve the R2 of our models as well as to using these metrics to

better understand the predictability of an individual’s mobility.

RQ2: Investigating predictability of components of human mobility Towards

addressing RQ2, we first identified a gap in the way individual human mobility is com-

monly modeled in the literature and the way Song et al.’s predictability technique is used.

While previous studies showed that individual human mobility can be modeled in terms

of explorations and preferential returns, Song et al.’s technique views one’s mobility as

a single, monolithic entity, thus preventing the analysis of the predictability of different

components of human mobility.

To bridge this gap, we propose a technique to break one’s mobility into two compo-

nents (novelty and routine), which naturally map to explorations and preferential returns.

These components possess different properties: absence of visitation history in the nov-

elty component, and higher potential for prediction, due to more regular behavior, in the

routine component.

Our technique allows us to estimate the impact of each of these components on

predictability, and one of its by-products is a closed-formula to estimate the impact of

novelty and routine on the predictability of individual human mobility. We use this tech-

nique to isolate each component of human mobility, first providing a characterization of

these components and then we focus on studying the routine component of one’s mobility,

which possess a higher potential for prediction.

We validate our results by applying regression models that use the three metrics

proposed in Chapter 4 to explain routine-related predictability. Our experiments show

that our metrics are able to capture most of the variability in one’s routine in two different

prediction tasks: next-cell and next-place prediction. Our models were able to explain up

to 96% of the variability in an individual’s routine.

Our results also show that routine behavior can be largely explained by three types

of patterns: (i) stationary patterns, in which a person stays in her current location for a

given time period, (ii) regular visits, in which people visit a few preferred locations with

occasional visits to other places, and (iii) diversity of trajectories, in which people change

the order in which they visit certain locations.

RQ3: Extending predictability with contextual information We here describe

our results towards tackling our third research question, namely to extend predictability

estimates with contextual information. Concretely, this research goal can be broken down

into two main objectives: (i) to propose ways to use contextual information with Song et

al.’s technique, and (ii) to evaluate the impact of this type of information on predictability.
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Towards tackling this research goal, we have (i) evaluated the impact of contextual

information on predictability estimates by employing alternative, frequency-based entropy

estimators, (ii) described the challenges associated with using contextual information with

Song et al.’s estimator, (iii) proposed new techniques to seamlessly incorporate context

into Song et al.’s estimator, and (iv) evaluated the impact of contextual information both

on frequency-based entropy estimators and on Song et al.’s estimator.

Specifically, we found that when using frequency-based entropy estimators, context

tended to lead to higher predictability. However, when using our techniques that incorpo-

rate context into the more robust, compression-based estimator originally used by Song et

al., the use of contextual information did not always increase predictability. Our inves-

tigations suggest that this behavior is due to the sensitiveness of the compression-based

estimator to the size of the input sequences. Our results also suggest that these techniques

could be used to decide whether some piece of context will be useful for prediction before

actually using them to train a model.

7.2 Limitations

Throughout this thesis, we discussed and addressed several shortcomings of the

predictability technique. However, there are some inherent limitations and issues to this

technique that are also worth mentioning.

The data issue In order to obtain a robust estimate of a person’s predictability, we

need long data sequences. This means that we need the user to share location data

for an extended period of time. Additionally, the more fine-grained the spatiotemporal

resolution, the more robust the predictability estimate. However, obtaining this type of

data is often a challenge. Most datasets do not have all of these desired properties, and

thus it is hard to study predictability in an ideal setting.

The privacy issue The predictability technique studied in this thesis relies on user-

level location data. Such data is privacy-sensitive, as it reveals personal information

about people.1 Relying on users to share such sensitive information for research studies

can make it hard to advance the research on predictability. In our datasets, user identifiers

are anonymized, but ensuring people that their data will remain anonymous and ensuring

such anonymity is also a challenge that one has to face when studying user-level mobility.

1https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.

html

https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
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The computational issue In order to ensure people that their data will remain in

their possession and will not be shared with other parties, one can offer to collect the

data on the user’s device and perform all the computations locally. Thus, the user’s data

would remain in their device, and only the results of the computations (in our case, the

user’s predictability) would be shared with an application. This practice addresses some

privacy problems, but raises other issues. For instance, performing certain computations

on a mobile phone can be restrictive in terms of battery consumption. Moreover, certifying

the correctness of certain analyses does require that we actually inspect the data, which

is not possible if the data remains in the user’s device.

7.3 Future directions

In this section, we describe possible practical applications of predictability and

delineate general steps that could be taken when tackling these practical uses of pre-

dictability.

Using predictability as a baseline for complex models

Overview The idea here is to use predictability values as a baseline for more complex

models (non-universal predictors). The argument is that the cost of a complex model is

worth it only when the model provides higher accuracy than the predictability value of a

dataset.

As argued in Section 2.2.1, predictability values hold only when universal predictors

are used. These are simpler, faster, and easy-to-interpret predictors that, in certain cases,

lead to high prediction accuracy, as evidenced by the results of previous work [39].

The predictability technique gives us an upper bound on the accuracy that these

predictors can achieve on a given dataset, and it has been shown that this upper bound is

indeed reachable [39]. Here, we argue that the predictability techniques discussed in this

thesis can also be used to evaluate the practical utility of more complex models that do

not qualify as universal predictors.

When performing predictions, one is often tempted to employ the most sophisti-
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cated model, hoping that such model will lead to higher accuracy than simpler models.

However, in general, the more complex the model, the higher its cost (in terms of com-

puting power, time, energy, and even carbon footprint). Thus, the use of such models

should be motivated by real needs.

We here argue that our predictability techniques can be used to decide whether it

is worth to use complex models for a given prediction task, by using it as a baseline for

the accuracy of such models. The idea is that, while evaluating a complex model, if its

accuracy does exceed the maximum accuracy that a simpler model can achieve (which is

given by the predictability value), the use of a complex model is not worth its cost, and

one could rather invest on fine-tuning a simpler universal predictor.

For instance, let us assume we want to perform mobility prediction, and we have a

range of options for which prediction model to use in production. During an initial phase,

we can evaluate the performance of all the models, some of which are universal predictors,

and some which are not. In this initial phase, we also compute the predictability of

our dataset. If the accuracy of the non-universal predictors exceeds the predictability

values, we keep them as candidates to be used in production. Otherwise, we try to tune

the universal predictors so they can eventually reach their maximum possible accuracy,

obtained via predictability.

Additionally, for small sequences, it might also be better to use a universal pre-

dictor, as non-universal predictors usually require more data to be trained. On the other

hand, a non-universal predictor is suitable if there is enough data to train it (long input

sequences), and its performance is greater than the predictability of the input sequence.

This simple idea can be used to answer a range of interesting questions:

• What are the characteristics of universal predictors that achieve the maximum ac-

curacy obtained via predictability?

• What features do these models used to reach such accuracy? If we use the same set

of features in a more complex model, do we get higher accuracy?

• Previous work has shown that the maximum accuracy obtained via predictability

can be surpassed in certain cases [34], but what are the characteristics of more

complex models which surpass the maximum accuracy obtained via Song et al.’s

technique?

• What features do these models use to perform prediction? What accuracy do we get

by using the same features in a universal predictor such as a Markov-based model?
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Using predictability to assess confidence in predictions

Overview The idea here is to use predictability values as a measure of confidence in

predictions in situations where a misprediction can have a high cost. The argument is

that if the cost associated to a misprediction is high, and we have low confidence in the

accuracy of the prediction, it might be better not to take the risk of a misprediction and

rather take a more conservative approach.

Recall that predictability provides a value in the range [0, 1], with 0 meaning

completely unpredictable, and 1 meaning totally predictable. In other words, if a person’s

predictability is 0.8, it means that an ideal prediction model could accurately predict her

next location at most 80% of the time, according to the predictability technique. In this

example, looking at the 80% value in terms of the confidence in a model’s prediction gives

us valuable information, as it is more likely that a model will make a correct prediction for

a person whose predictability is higher. As mentioned in Section 1.2, we here claim that

predictability could be used as a measure of confidence in predictions so as to improve

location-based systems that rely on the prediction of individuals’ whereabouts.

One of the challenges associated to the aforementioned task is to establish a cost

model to determine how predictability relates to confidence in predictions. Concretely, we

wish to specify a function f(x) whose input is a person’s predictability and the output is

the confidence in predictions related to that person’s mobility. Determining the compo-

nents and shape of f(x) is a research challenge in and of itself, as there are many factors

that could play a role in this function, and some of them are application-dependent.

In the following example, we illustrate a simple cost model in which f(x) is a linear

function of x. Suppose, for instance, that we want to predict a sequence of n = 1, 000

events, given the following rules. For every event we make a wrong prediction, we pay a

price of x = $20. If choose not to predict the next event in the sequence, we pay y = $10.

And if we correctly predict the next event in the sequence, we pay nothing. Our goal is

to minimize the amount paid at the end of the sequence of events.

In this example, the largest amount will be paid if we incorrectly predict every

event in the sequence, resulting in a payment of 1, 000× $20 = $20, 000, and the smallest

amount paid is 0, if we correctly predict every event in the sequence. A middle ground is

reached if we choose not to predict any event in the sequence, in which case we end up

paying 1, 000× $10 = $10, 000.

To better understand what is advantageous in this situation, consider that we

correctly predict the events in the sequence 50% of the time, which would also result in

a payment of 500× $0 + 500× $20 = $10, 000. A prediction accuracy of 60% results in a
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payment of 600×$0+400×$20 = $8, 000. Thus, if we are confident that we will correctly

predict events in the sequence more than 50% of the time, it is better to always perform

predictions. Conversely, if our confidence is less than 50%, it is better not to perform any

predictions at all.

In the example above, our confidence in the accuracy of predictions is the key to

decide whether or not to perform predictions. In the example, the threshold above which

we decide to perform predictions is 50%, but this value may change depending on the

values of n, x, y, and f(x) which can vary in different applications. Furthermore, as

mentioned above, this cost model considers that f(x) is a linear function of the user’s

predictability, but depending on the application, f(x) could be a different function.

The example above serves to illustrate that assessing the confidence in a given

prediction can be useful when the cost of a misprediction is high. In these scenarios,

a misprediction can result in lower quality of service or resource waste. Consider, for

instance, the case of 5G networks, where there is a need for fine-grained management of

user mobility [45].

In these networks, computing nodes have to be close to end-users so as to provide

ultra-low latency, reliability, and scalability, and the network management system may

offload certain computations to computing nodes that are closer to the end users. Our

hypothesis is that mispredicting the users’ next location can waste resources in this type

of situation.

Suppose, for instance, that a user’s next location is assumed to be near node ni,

so the network management system decides to offload computations to that node, but it

turns out that the user’s next location is actually near node nj. A misprediction such as

this will waste computational resources, as the computation will have to be performed

again at node nj, and the latency of the network will increase. The problem in this case

is that the cost of a misprediction is higher than making no prediction at all. At the

same time, it is desirable to make predictions about the users’ next location, as correct

predictions can result in better quality of service for the users of the network.

Thus, we propose to investigate different cost models that would allow us to decide

whether or not to trust certain predictions. For instance, depending on the output of

the function f(x) for a given user, the system may decide whether to (i) always offload

computations for that user, (ii) to offload computations only when the load of the system

is relatively low, i.e., the cost of a misprediction will not affect the overall performance

of the system, or (iii) not to offload the user’s computations at all.

One possible direction to test the validity of this approach is to implementing it

into a network simulator that takes into account mobility information. To that end, we

plan to perform the following key-steps:

• Compute the predictability of each user in the system beforehand and store that
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information to be used later.

• Measure the average latency of the system in normal conditions, i.e., when pre-

dictability information is not used to assess confidence in predictions.

• Build different cost models, with different functions that take as input a user’s

predictability and outputs the confidence in predictions associated to that user.

• Evaluate the impact of these different cost models on the overall latency of the

system.

Specifically, this strategy can be used to answer the following research questions:

• Does the use of predictability information reduce the latency of the system?

• How does the reduction in latency relate to the confidence in predictions?

• What is the shape and components of the function that leads to lower latency

overall?

• What other terms are relevant to the cost model (e.g., error penalty, number of

users in the system, current load of the system, and so on)?

Predictability as a measure of susceptibility

Overview The idea here is to use predictability values as a measure of how open a

person is to novelty in a recommendation scenario. The argument is that less predictable

people are less attached to their routine, and are thus more open to novelty, and more

predictable people will tend to deviate less from their routine, and therefore will be less

open to novelty.

We here describe a way to use predictability as a measure of susceptibility of

users to new things and discuss how a practical application could leverage this type

of information. Specifically, we argue that a possible case study to explore this idea

consists of using predictability information to calibrate novelty in a place recommendation

scenario. In this scenario, it is often a problem to decide which items to recommend to a

user. For a given user, the recommender system has to decide whether to suggest a place

the user has already been to or a place he or she never visited before but may like, based

on his or her preferences.
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The idea here is that more predictable users will have a more strict routine and

less predictable users will be less influenced by routine. If routine does not play such a

large role in someone’s daily activities, they may have a higher propensity to explore new

places. Thus, predictability information could be used as a way to quantify this propensity

and subsequently use it to calibrate the amount of new (previously unseen) places that

the system recommends to the users. These systems usually suggest to someone a list of

possible places (and not only one place) so knowing whether the user is more open to new

places can be useful to determine the number of new (previously unseen) places to show

her.

This idea could be implemented in the following way. One could pick an existing

recommender system and existing benchmarks on which this system was evaluated. One

would then run the system as usual, i.e., without using predictability information, and

compute the amount of recommendations that the users followed. In this case, we consider

that a person followed the system’s recommendation if their next location is one of the

locations that the system showed them. Then, one would compute the predictability

of every user in the system and establish a relation between predictability and novelty

in recommendation. For instance, suppose a user’s predictability is 70%. The simplest

approach may be to build a list of recommended places to show the user such that 70%

are previously visited places and 30% are new places.

This strategy could be used to answer the following questions:

• Does the use of predictability information increase the amount of recommendations

that users follow?

• Do less predictable users usually follow the system’s recommendations, or to they

tend to explore new locations of their own choosing?

• Conversely, are more predictable users more prone to follow the system’s recom-

mendation?

Concluding remarks In this section, we described future directions for predictability

studies, focusing on possible uses of predictability in practical scenarios. The predictabil-

ity technique was originally proposed as a theoretical measure, but as argued in Section 1.2

and described here, this technique also has important practical applications. We note that

finding these practical applications was the result of a deep theoretical investigation and

experimental evaluation the state-of-the-art predictability technique conducted in this

thesis. This highlights the importance of more foundational work such as ours, which

often leads to interesting avenues of research.
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predictability in human mobility. Science, 327(5968), 2010.

[59] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating next-cell predic-

tors with extensive wi-fi mobility data. IEEE Transactions on Mobile Computing,

5(12):1633–1649, December 2006.



Bibliography 106

[60] Douglas Teixeira, Mário Alvim, and Jussara Almeida. On the predictability of a

user’s next check-in using data from different social networks. In Proceedings of the

2Nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility, PredictGIS

2018, pages 8–14, 2019.

[61] Douglas Do Couto Teixeira, Aline Carneiro Viana, Jussara M. Almeida, and Mrio S.

Alvim. The impact of stationarity, regularity, and context on the predictability of

individual human mobility. ACM Trans. Spatial Algorithms Syst., 7(4), June 2021.

[62] Douglas do Couto Teixeira, Aline Carneiro Viana, Mário S. Alvim, and Jussara M.

Almeida. Deciphering predictability limits in human mobility. In Proceedings of

the 27th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, SIGSPATIAL ’19, pages 52–61, New York, NY, USA, 2019.

ACM.
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Appendix A

Appendix

In Section 2.2.1, we argued that an entropy estimate is the crux of predictability, and we

also mentioned that the state-of-the-art predictability technique uses an entropy estima-

tor, defined in Equation 2.1, according to which the entropy of an input sequence X is

given by:

Sreal(X) ≈ n log2(n)∑n
i=1 Λi

.

The term
∑n

i=1 Λi records the sum of the sizes of the smallest subsequences starting

at position i that do not appear before in the input sequence.

In Section 5.1.1, we argued that every new (previously unseen) symbol will produce

a subsequence that has not appeared before inX. We also argued that that, for a sequence

of size n containing m ≤ n distinct symbols, the contribution of such symbols to the term∑n
i=1 Λi will be exactly m.

Recall that, in Section 5.1.2, when describing our technique to isolate the effect

of novelty on the predictability of a sequence, we moved the symbols in the novelty

component to the back of the sequence. In this section, we argue that it is safe to do

so because the contribution of each new (previously unseen) symbol to the term
∑n

i=1 Λi

does not depend on the position of such symbols in an input sequence X.

To illustrate that, we will focus on how Λi is computed, for a given i. Let q be

the largest subsequence starting at position i that does appear before in X. In practice,

Λi = |q| + 1 [33]. Suppose that we want to insert a new (previously unseen) symbol s

into q and that we want to measure the impact of this new symbol on
∑n

i=1 Λi. There are

three cases to consider:

(i) We can prepend s to q;

(ii) We can append s to q;

(iii) We can insert s somewhere inside q.

For case (i), we note that this case is equivalent to case (ii), as prepending s to q

has the same effect as appending s to a subsequence p that appears immediately before q

in X.
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For case (ii), given that q is the largest sequence that starts at position i and

appears before in X, appending s to q will result in the smallest subsequence that starts

at position i and does not appear before in X, therefore Λi = |q| + |s| = |q| + 1, i.e.the

contribution of s to Λi will be 1.

For case (iii), to see that the contribution s to
∑n

i=1 Λi when we insert this symbol

into q, it helps to break q into two subsequences r and t with q = r+t, where |q| = |r|+|t|,
and r and t are subsequences of q.

Given that q has appeared before in X, both r and t will also have themselves

appeared before. For instance, if we have q = AABCAEDFBA, and we make r =

AABCA and t = EDFBA, as both of these subsequences are part of q and q as a whole

appears before in X, both r and t must also have appeared before in the input sequence

X.

The insertion of symbol s into q can be seen as concatenating s to r—prepending

s to t has the same effect. Notice that r is a subsequence that appears before in X. When

we append s to r, as s is a symbol that does not appear before in X, we are forming a

new subsequence which is the smallest subsequence that does not appear previously in

X, resulting in Λi = |r|+ 1.

The subsequence t, which was part of q will still contribute to
∑n

i=1 Λi, but instead

of appearing as part of Λi, it will be incorporated into a sequence u, appearing immediately

after t, and will account to the term Λi+1, instead of Λi.

Thus, we have showed that no matter where the symbols in the novelty component

appear in the input sequence, their contribution to
∑n

i=1 Λi will be the same, therefore

our strategy to move these symbols to the back of the sequence in order to focus on the

routine component is a valid one.
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