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Resumo

O avanço tecnológico tem nos permitido extrair informações e analisar os mais variados
tipos de ambientes. O meio subaquático está incluído nesse conjunto de lugares e tem
sido amplamente estudado nos últimos anos devido a áreas emergentes de pesquisas sub-
aquáticas.No entanto, existem algumas razões pelas quais estudar neste ambiente se torna
um desafio. Estruturas presentes debaixo d’água, como as de sítios arqueológicos, muitas
vezes não podem ser movidas para fora desse meio, pois podem perder suas propriedades
e, consequentemente, serem danificadas. Além disso, imagens tiradas nesses ambientes
possuem qualidade muito baixa em comparação com imagens de fora d’água. O ambiente
subaquático causa diversos efeitos durante o processo de aquisição da imagem. Raios de
luz são espalhados e absorvidos enquanto viajam até o sensor da câmera. A presente
dissertação propõe um método de restauração de imagens de cenas subaquáticas baseado
na extração de parâmetros utilizando redes neurais convolucionais (CNNs) combinada
com métricas de qualidade de imagem. Os parâmetros extraídos da imagem subaquática
original são aplicados ao modelo de formação da imagem para recuperar a radiância orig-
inal da imagem. Não são necessários dados rotulados, já que a rede é treinada com base
apenas nas métricas de qualidade calculadas usando as imagens subaquáticas original e
restaurada. A metodologia proposta se sobressaiu em 60% dos casos em comparação às
demais abordagens apresentadas quando aplicadas na restauração de imagens subaquáti-
cas, levando em consideração a métrica UCIQE. Além disso, dois conjuntos de imagens
subaquáticas são apresentados, adquiridos num processo planejado e direcionado ao prob-
lema de restauração de imagens subaquáticas.

Palavras-chave: Restauração de Imagens, Visão Subaquática, Redes Neurais Convolu-
cionais, Métricas de Qualidade de Imagem



Abstract

Advances in technology have allowed humans to delve into the depths of Earth and to
study the outer space, even if our resources are not sufficient to help us answer all questions
about each one of these environments. The underwater environment is one of those places,
which has been vastly studied in past years due to the increasing use of underwater
research locations. However, there are a few reasons why studying this environment is
challenging. In most cases, structures located underwater cannot be moved out of this
medium as they can lose their properties and be damaged. Moreover, images taken in
these environments have very poor quality in comparison to images from out of water
places. The water medium causes various effects during the image acquisition process.
Rays of light are scattered and absorbed as they travel to the camera. This thesis proposes
an underwater image restoration method based on convolutional neural networks and
image quality metrics, the former being considered universal function approximators.
Features extracted from the original underwater image are applied to the inverse image
formation model in order to recover the original image radiance. No labeled data is
needed as the network is trained based only in the quality metrics computed using the
original and restored underwater images. In 60% of the cases, our proposed methodology
performs better than the techniques applied to the improvement of underwater images,
taking into consideration the UCIQE metric. Additionally, two underwater image datasets
are presented, which were acquired on a planned process, focusing on underwater image
restoration purposes.

Keywords: Image Restoration, Underwater Vision, Convolutional Neural Networks, Im-
age Quality Metrics
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Chapter 1

Introduction

With image processing and learning approaches rapidly evolving, the ability to make sense
of what is going on in a single picture is improving in both scalability and accuracy. Every
year a massive amount of images is being labeled and organized in datasets, which are
applied to a broad range of applications going through image compression [12, 28], object
detection [23, 32], scene understanding [16, 48], image restoration [7], and many other
activities.

In the field of image restoration, researchers have been trying to use distinct sets
of techniques mainly following image enhancement or restoration. Enhancement methods
generally use digital image processing techniques. Many of these fail to recover informa-
tion contained in a picture as they do not adopt physically-based approaches, discarding
information about the three-dimensional structure of the scene. Whereas restoration tech-
niques are generally based on some image formation model. They rely on simple digital
image processing, combining them with advanced techniques and useful information about
the environment. These information are commonly called priors and may cover some as-
pects as the distance from objects to the camera or how light propagates through the
medium.

Regardless of an image visually seeming a two-dimensional world, objects compos-
ing an image scene are not always in the same visual plan. As we can see in Figure 1.1(a),
object A and B seem to be in the exact same location in the scene. However, as seen
in Figure 1.1(b), the two objects are far away when we change perspective. It is usually
difficult to have access to this kind of information, which could explain the use of en-
hancement methods. Yet, it is possible to estimate missing data using computer vision
techniques. Also, a single pixel in an image may not hold the same exact information of
the same point in the real world. This is due to transformations that occur to the light
during an image acquisition. For example, when we add fog to the scene environment,
the resulting pixel from an object in the real world may appear dimmer in the imaged
scene.

Within the environments images are taken, the most challenging ones for restora-
tion purpose are those acquired in a participating medium. Light rays traveling in this
type of medium tend to deviate from their original path proportionally to the amount
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(a) (b)

Figure 1.1: Two objects may appear to be at the same distance from the observer. How-
ever, if we have two different views from the objects in a scene, we are able to perceive
the disparity between their distances.

of particles present in the environment. For instance, in places where the humidity is
too high, the level of fogginess may be too heavy at certain times of the day. This fog
makes the view blurry and it is difficult to visually segment objects and colors. Another
example can be elucidated in underwater ambiences. Depending on the depth and level of
particles present in the medium, it may be impossible to perceive the structures in some
locations. These light rays carry the radiance of scene objects to the camera sensor. Ra-
diance is the radiant flux emitted, reflected, transmitted or received by a surface. Despite
the complexity of this operation, some works have been able to achieve impressive results
in environments with participating medium [4, 13].

1.1 Applications

Restoring the visual quality of images acquired from underwater environments
remains a great challenge for image processing and computer vision communities. Un-
derwater images are crucial in many important applications, such as biological research,
maintenance of marine vessels, and studies of submerged archaeological sites. Most of the
time, structures and objects underwater cannot be removed from their location. They
demand adequate handling due to their material properties. Thus, having the ability to
analyze such objects without directly manipulating them is substantial to the workflow
of mentioned activities.

Marine research, for example, has been helping understand how underwater envi-
ronment works. Some studies focus on the forms of life present in this medium, while
others analyze the impact of disasters, human or natural, on the functioning of marine
ecosystems. In their work, Lu et al. [35] propose a method to classify marine organ-
isms, including sand. In the pipeline of their approach, which they call FDCNet, they
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first try to remove the haloing effects caused by water applying a descattering technique.
Another interesting work follows the disaster that occurred in Japan during the 2011
earthquake. Yamakita et al. [61] gather deep-sea images to compile a dataset that helps
evaluate the status of fishery in the region.

Ødegård et al. [42] use data acquired from Unmanned Underwater Vehicles (UUV)
to detect archaeological artifacts of interest in wreckage sites. Structures in some of those
locations need special care and, in most situations, may not have their artifacts removed
from water in order to preserve their properties. UUVs could be used to address such
constraint, as some have vision-based sensors used by researchers to study the underwater
medium. However, Drews et al. [18] state that work is needed in this area to improve
UUVs obstacle avoidance problem.

Thus, recovering underwater scenes information through image restoration would
benefit a great variety of end users, including the aforementioned issue present in under-
water vehicle navigation.

1.2 Problem Definition

As pointed out earlier, underwater images suffer degradation. As light travels
through the environment, it is scattered and absorbed before arriving the camera sensors.
Consequently, only a percentage of the scene materials properties will be acquired in the
image formation process. The final result can be far from what would be expected if the
scene did not undergo such effects. A sample of underwater images taken from the SUN
dataset [60] can be seen in Figure 1.2. Observing these images, it is possible to see the
predominance of blue and green colors, a characteristic present in most of the underwater
environments. Red color contributes little, unbalancing color distribution in the imaged
scene. Its wavelength weakens as light rays go deeper underwater.

Despite remarkable advances in restoring underwater images with learning methods
like Convolutional Neural Networks (CNN), these methods are limited by the number
of images and the quality of ground truth data used in the training. In underwater
environments, the light is scattered and absorbed when traveling its way to the camera.
As a consequence, objects distant from the camera appear dimmer, with low contrast
and color distortion. The ground truth of an underwater image is then another image
of the same scene but immersed in a non-participating media without scattering and
absorption. Building datasets with high quality and a large number of images is hard or
infeasible, since in most cases it is difficult to acquire images of an underwater scene in
a non-participating media, e.g., images taken from under the sea. Hence, the ability to
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: A small sample extracted from the underwater subcategory of the SUN
dataset.

work with a small number of images or with simulated underwater images plays a key
role in restoring the visual quality of underwater images.

1.3 Thesis Statement

The problem to be overcome in this thesis is to build a method to restore underwa-
ter images. The approach is based on CNNs, in order to extract features with no labeled
data. The learning process will try to improve the quality of an input image, by following
well-defined underwater image quality metrics.

1.4 Contributions

In this thesis, we propose a new learning approach for restoring the visual quality
of underwater images. Our method aims at obtaining the restoration model by working
with simulated data and not demanding a large amount of real data. It is grounded on
a set of image quality metrics that guide the optimization process toward the restored
image. We also contribute with two new datasets containing images taken in controlled
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underwater ambiences. The importance of these datasets is validated in our experiments,
which show that our approach outperforms other methods qualitatively and quantitatively
when considering the UCIQE metric, proposed by Yang and Sowmya [62].

We presented our preliminary results during the 2018 Institute of Electrical and
Electronics Engineers (IEEE) International Conference on Image Processing (ICIP), which
took place in Athens, Greece, from October 7 to October 10, 2018 [6]. These results include
the first underwater images dataset we built during our research along with the initial
restorations achieved by our proposed approach, combining qualitative and quantitative
results.

1.5 Thesis Structure

This thesis is organized as follows:

Chapter 2 - Related Work presents state-of-the-art works related to the problem
being addressed in this thesis. They range from works trying to enhance the visual quality
of images, using some simple techniques, to works that perform image restoration, relying
on more robust and advanced methods. We discuss the advantages and disadvantages of
each approach, emphasizing the points we aim on solving by applying our method.

Chapter 3 - Theoretical Foundations introduces concepts that helps us understand
all of the process involving our approach. We start by explaining the formation of images,
how light rays interact with the medium and objects’ material properties. We also intro-
duce measurements on how to evaluate the quality of images, analyzing scenes structure
and color space distribution. We conclude the chapter by contextualizing neural network
foundations and the CNN aspects we include in our approach.

Chapter 4 - Methodology defines the methodology we developed to tackle the prob-
lem in consideration. We present the propagation model used to restore underwater
images, along its properties and restrictions. Also, we describe a set of image quality
metrics and their correlation to the human visual perspective and some quality priors.
Details of the deep learning model and adaptations needed to use it in the underwater
domain are depicted in the end of this chapter.

Chapter 5 - Datasets details the steps taken to build two underwater images datasets.
We describe the initial plannings, which objects we used to set up the scenes and how
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we changed the turbidity level of the water. Configuring each set of images resulted in
different metadata. For chronological reasons, the second dataset is more robust than the
first dataset. This robustness was achieved by the gathering of information about the 3D
structure of the scene, which we did not worry during the settings of the first dataset.

Chapter 6 - Experiments discusses the results achieved in the experiments performed
to validate the proposed approach on the two datasets we built. We specify the param-
eterization performed to train our CNN model, reporting the outcomes of training and
testing the restoration system pipeline. Concluding the chapter, we compare our approach
to enhancement and restoration techniques proposed in other works. This comparison is
done by applying evaluation metrics such as computing image quality metrics not used in
our system.

Chapter 7 - Conclusion presents final words about the research we have described in
this thesis. We talk about the end-to-end system we propose, the drawbacks we encoun-
tered during its planning and the results we have achieved compared to other approaches.
We also emphasize on the datasets we constructed, their importance to the field of image
restoration and possible usages in computer vision activities. Our work is finalized by
proposing future improvements to our system and potential usability of our approach.
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Chapter 2

Related Work

There has been a great concern in the areas of image processing and computer vision to
develop techniques that can address the issue of recovering the visual quality and infor-
mation of scenes immersed on a participating medium. We can separate these techniques
in two main approaches.

First, in Section 2.1, we have image enhancement, which focuses on using digi-
tal image processing algorithms to improve the visual aspects of images not taking into
consideration the real structure of the environments that pictures are taken. Then, in Sec-
tions 2.2 and 2.3, we talk about image restoration. Combining digital image processing
techniques along with computer vision and knowledge from other fields of study, image
restoration is based on physical properties of the medium and follows well defined priors
and models to achieve a result that is not only visually pleasing but also results that are
plausible according to mathematical and physical models of image formation.

This chapter briefly reviews some of the work available in the literature address-
ing this issue, covering approaches of image enhancement using digital image processing
techniques and going through restoration algorithms that use deep learning methods.

2.1 Image Processing

Early works on image enhancement relied on image processing techniques, which
focused mostly on enhancing the contrast level of the scene. Some recent works developed
techniques following this concept of image enhancement [8, 3, 21, 63, 7].

Contrast enhancement is a technique commonly applied to improve the visual
quality of an image. Contrast is commonly used to measure the level of an image patch
texture. Figure 2.1 shows images of two underwater scenes (2.1a and 2.1d) that had their
contrast enhanced (2.1b and 2.1e). Although adjusting the contrast level of an image may
improve its visual quality, the result is not physically plausible. Additionally, the final
image could have its contents lost by the degradation of the original image. As we can
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: From observing the images in the middle and on the right, it is possible
to understand that contrast enhancement alone cannot improve the visual quality of
underwater images without losing part of the structure of objects from the original scene
on the left [7].

see in Figures 2.1c and 2.1f, some regions on the images became more saturated after the
increase in contrast level.

A filter bank enhancement based approach is used by Bazeille et al. [8]. This bank
is composed of homomorphic filtering, wavelet denoising, anisotropic filtering, contrast
adjustment, and color compensation. Orderly, these algorithms are used to reduce illumi-
nation issues, diminish the presence of noise and balance contrast, enhance edges struc-
tures and overcome prevailing colors. Figure 2.2 shows some images enhanced by Bazeille
et al. [8] and Barros et al. [7] techniques.

Zheng et al. [63] use a linear combination of Contrast-Limited Adaptive Histogram
Equalization (CLAHE) and an Unsharp Mask (USM). CLAHE reduces noise amplifica-
tion resulted from traditional histogram equalization techniques, which do not take into
consideration the information of local image patches. However, some portion of that noise
still remains after applying CLAHE, making borders to lose their structure. This issue
is minimized by complementing the CLAHE with the use of USM. After these two pro-
cesses, they get a slightly blurred version of the original image. Regions that need contrast
enhancement are selected by computing the difference between the blurred image and its
original version. Then, both images are linearly concatenated to produce an enhanced
image. Figure 2.3 shows an underwater image and its enhancement using this approach.

Ancuti et al. [3] derive white balanced and CLAHE input images from an under-
water image. Using these two derived images, they estimate four weight maps, combining
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Enhancement results extracted from [7]: (a),(d) original underwater images;
(b),(e) [8] enhancements; (c),(f) [7] results.

(a) (b)

Figure 2.3: (a) Underwater image and (b) its enhancement using CLAHE and USM [63].

them by a pixelwise product and applying them in a multi scale fusion process in order
to achieve the image restoration. They only apply their approach to low backlight un-
derwater images. Figure 2.8 shows an image taken from the red sea restored using their
approach. Another example can be seen in Figure 2.4a, where in the upper-left we have
the original image and in the bottom its restoration.

In Figure 2.4a left, we can see the original image that was used to derive each
input and the weight maps described in this method. These maps are based on (1) the
application of a Laplacian filter to enhance global contrast; (2) local contrast estimation
to distinguish between the different textures, which is not addressed by (1); (3) the use of
a center-surround contrast concept algorithm to discriminate underwater objects saliency
proposed by Achanta et al. [1]; and (4) an exposedness weight map to preserve the final
image appearance.
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(a)

(b)

Figure 2.4: First row shows an underwater image (left) along with its enhanced version
(right). This result was obtained by extracting and fusing 8 weight maps from the images
in the first column (b), derived from the original underwater image [3].

While these approaches focus mainly on the visual aspects of an image, our goal
is to obtain visually aesthetically good restorations that can be explained by physical
models. Approaches mentioned up to this point do not take into consideration properties
of the 3D scenes structure from these environments.

2.2 Image Formation Model

In the past decades, methods based on physical models have emerged as effective
approaches to predict the original scene radiance [50, 57, 27, 56, 40, 25, 4, 9, 19, 44].
A representative approach is the Dark Channel Prior (DCP), proposed by He et al. [25].
The DCP is computed by taking the minimum value per channel at each pixel of an image
as
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(a) (b) (c)

Figure 2.5: Dark channel prior based image restoration: (a) Hazy image, (b) its dark
channel and (c) haze-free image [25].

Idark(x) = min
y∈Ω(x)

( min
c∈r,g,b

Ic(y)), (2.1)

where Ic(y) is a color channel of an image I at location y in a neighborhood Ω(x) of
I centered at pixel x. Having the dark channel image, the transmission map can be
estimated at each image patch and then recover the scene radiance. Figure 2.5 displays
a hazy image and its dark channel. We can see in Figure 2.5c that regions in the original
image corresponding to whiter areas in the dark channel received a heavier attention
during the restoration process. This can be translated to restored images tending to have
darker colors if the transmission map is not successfully estimated.

Mostly applied to outdoor haze-free images, the idea is that at least one of the
intensity values from all color channels tends to zero. Because the assumption of the dark
channel might not hold in underwater scenes, Drews et al. [19] presented the Underwater
Dark Channel Prior (UDCP). The authors used only the blue and green channels since
the red channel is drastically absorbed in underwater. The UDCP achieved better results
than those obtained by using DCP.

Besides contrast, Barros et al. [7] highlight at least one more property that can be
used to improve the visual quality of an image, its border integrity. As stated earlier in
this document, the final result of an underwater scene acquisition is a blurred image, as
the objects composing the scene have its borders diminished. That is due to the amount
of light that arrives to the camera sensor. Reducing the blurriness level may increase
the details of each object. Measuring how much this effect should be minimized in each
image region may tell us which borders were less affected in the acquisition process. They
apply an algorithm to the most degraded borders of the image in order to regain their
integrity, also enhancing the image contrast. This algorithm is a multi-objective function,
minimized to address the relevant features that need to be restored in underwater scenes.
Restoration results can be seen in Figure 2.2.
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(a) (b)

Figure 2.6: Non-local image dehazing by clustering pixels into haze-lines: (a) hazy image
and (b) recovered image [9].

Berman et al. [9] present an algorithm that assumes colors of a clean image to
be approximated by a number of distinct colors, smaller than the amount of pixels in
that image, forming clusters in the RGB color space. These color groups are located
at different distances from the camera, which refers to distinct transmission coefficients
when there is haze in the scene. Their approach clusters the pixels into haze-lines, which
contain the original radiance of the image and its ambient color. Then, they estimate
the transmission map, applying it to the image formation model in order to recover the
original radiance. Figure 2.6 shows a hazy image recovered using Berman’s algorithm.

Tarel and Hautiere [56] use a median filtering-based approach to restore out of
water images. They assume the bottom third part of an image to always have less hazing
effects than the top first and second parts, which is not valid for all environments.

Peng and Cosman [44] use a physical model to estimate the image blurriness and
its background light. Then, they generate three depth maps taking into consideration
distinct light conditions on underwater environments: red channel, blurriness and maxi-
mum intensity prior-based depth maps. In order to construct a transmission map, they
combine the three depth maps and refine the final map, finally producing a clean image,
i.e., without degradation caused by the medium. Figure 2.7 shows an application of such
approach. Comparing the restored image to the original hazy one, it is possible to see
that, although the approach achieves a good restoration the final image still presents high
level of blurriness.

Schechner and Karpel [50] emphasize that the formation of underwater images
is a difficult task due to the polar visibility conditions. They state that marine animals
use polarization for better vision. Thus, they elaborate a method to recover these images
based on the physical model of image formation, estimating the direct transmission and
the forward/backward scattering effects using two polarizing filters orientations, corre-
sponding to extreme intensity values. Then, they obtain the depth map to restore the
scene. Figure 2.8 shows an underwater scene before (upper-left) and after (upper-right)
the restoration process using this technique. We can see that blurriness is still present on
the restorations, as they do not focus their approach on minimizing this effect.
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(a) (b) (c)

Figure 2.7: Underwater image restoration using blurriness and background light: (a) Hazy
image, (b) its depth map and (c) haze-free image [44].

Figure 2.8: Red sea degraded and recovered underwater scene images extracted from [3]:
original image (upper-left), Schechner and Karpel [50] restoration (upper-right) and An-
cuti et al. [3] result (bottom).

Based on the radiometric underwater image formation model [36, 26], Trucco and
Olmos-Antillon [57] propose a self-tuning algorithm using a simplified version of this
model, initializing the parameters needed to perform the image restoration according to
the global contrast of the scene. Parameters are then optimized using a quality metric
in order to restore the original image. They only consider the uniform illumination in
shallow waters, in which backscattering is low and does not degrade the scene at high
levels.

Nascimento [41] uses a pair of cameras along with a stereo system to estimate the
transmission map of an underwater scene. After estimating the attenuation coefficient
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(a) (b)

(c) (d)

Figure 2.9: Multi-scale descattering: (a)-(c) underwater images and (b)-(d) restored im-
ages [4].

and the background light, his method restores the image by applying a physical formation
model. Whereas Drews et al. [17] propose a method to automatically restore underwater
images based on Structure from Motion (SFM) techniques combined with simultaneous
attenuation parameters and depth map estimation.

Improving their previous work, which relied on the derivation of two input images
and on the estimation of four weight maps to enhance an underwater image, Ancuti et al.
[4] proposed a new image formation model-based method similar to [44]. Figure 2.9 shows
some examples of underwater images restored when applying their technique.

In their newer approach, Ancuti et al. [4] estimate backscattered light aiming to
improve global contrast and chrominance, computing three input images. The first image
is derived using a small patch filter to better highlight regions that need contrast enhance-
ment. Secondly, based on a larger patch filter, they compute an image to emphasize zones
for regional color recovering. Then, a third image is derived using the discrete Laplacian
filter to enhance fine details in the original image. Along these inputs, they also estimate
three weight maps: local contrast, saturation, and saliency maps. Combining them in
one by a pixelwise product. Finally, they compute a weighted sum of the inputs and the
estimated maps to produce the final restored image.

These approaches are more reliable than previous image processing based tech-
niques. This affirmation is followed by the fact that they take into consideration formation
models, which can be explained by mathematical formulas and theorems.
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(a) (b)

Figure 2.10: MSCNNDehazing result. Blue and red boxes zoom into detailed from the
scene that were recovered during the restoration. Images extracted from [47].

2.3 Machine Learning Based Approaches

More recently, learning techniques have shown promising results when used for
recovering the visual quality of images taken from participating media [13, 47, 31, 34].

Ren et al. [47] present a multi-scale CNN to estimate the transmission map from
an input image. While one network extracts more general, rough details to estimate the
transmission map, the second one is used to refine the previous obtained map. Their
approach is able to restore an image using the features learned. Figure 2.10 shows (a) an
outdoor image and (b) the result they obtained when applying their method.

A residual deep learning approach is proposed by Liu et al. [34]. In their work,
they developed an architecture that estimates a data-and-prior-aggregated transmission
map. The architecture highlights the important characteristics at the same time that
it tries to nullify the limitations of domain knowledge and training data information for
single image dehazing. Using a modeling perspective based on an energy function, the
authors refine the estimated transmission map, later applying it on underwater images to
restore its visual quality.

Li et al. [31] use a Generative Adversarial Network (GAN) to generate artificial
monocular underwater images from RGB-D air images. They apply three transformations.
First, they estimate the attenuation coefficients. Then, backlight is approximated for
each color channel. Afterwards, a vignetting effect is applied to the image. The network
receives an input air image along with its depth map and a noise vector. Then, the
discriminative module of the GAN classifies the produced image as real or synthetic.

After the synthetic dataset is built, they train a CNN with these images and
regular RGB-D air images as ground-truth in order to restore real images. SegNet [5]
is used for color restoration, using skipping layers to counterbalance the high frequency
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(a) (b)

Figure 2.11: WaterGAN restoration result. Color-shifting was also removed, as we can
see in (b). Images extracted from [31].

structural decrease. As the effects included in the GAN are somewhat limited, i.e., not
all underwater environments have the same color tone, which they assume it is green,
this approach does not seem to be a good generalizer. Thus, their major drawback is
the requirement of a large dataset covering many different situations to achieve a good
generalization. An example of a result from this approach can be seen in Figure 2.11.

DehazeNet, proposed by Cai et al. [13], is also a network designed for air images
restoration. It restores images by extracting features as the dark channel, contrast level,
color attenuation and hue disparity. These features are extracted using a CNN consisting
of four modules. Their goal during the training process is to remove the haze by mini-
mizing the error between expected and estimated transmission maps, which they state it
is the key to recover a clean scene. Their ground-truth data is synthetic, where they used
haze-free images to estimate their transmission map. Then, they added haze to these
maps to produce the synthetic data. Impressive results are obtained when applying their
approach in out of water images but do not generalize to underwater scenes. Figure 2.12
displays this network architecture.

Figure 2.13 shows an example of an air image restoration using DehazeNet. An

Figure 2.12: DehazeNet architecture [13].
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(a) (b)

Figure 2.13: DehazeNet: successful outdoor image restoration. Images extracted
from [13].

(a) (b)

Figure 2.14: DehazeNet: underwater image restoration attempt. By comparing both
images, we can see that (b) lost details present in (a) after restoration. Image from an
archeological location around Turkey, taken from https://acoustics.org/pressroom/
httpdocs/155th/akal.htm.

underwater scene restoration attempt is displayed in Figure 2.14. It can be seen that
when applying the method in this domain, the result is not good as the scene blurriness
is increased.

Unlike the aforementioned methods, our approach does not rely on a large dataset.
Our premise is based and assessed by image quality metrics. This assumption allows us
to obtain results that are directly related to the human sense of quality considering the
conditions of underwater images.

There are other works addressing underwater image restoration. Sheinin and Schechner
[53] propose a method to position the camera and a light source in order to minimize
the scattering effect noise, generating high quality underwater images and 3D models.
However, prior knowledge of the environment is needed to apply this methodology.

https://acoustics.org/pressroom/httpdocs/155th/akal.htm
https://acoustics.org/pressroom/httpdocs/155th/akal.htm
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Chapter 3

Theoretical Foundations

This current chapter aims at contextualizing the most important concepts applied in this
thesis. Initially, we discuss in Section 3.1 the process that leads to the formation of an
image [55, 2]. Going through the characteristics of materials that compose a scene in
the real world, and their interaction with light sources and medium properties. Later, in
Section 3.2, we introduce metrics that are usually analyzed to evaluate the visual quality
of an imaged scene [15]. These measures can either be based on some reference target or
be statistically examined under some previous knowledge of the domain being studied.
Section 3.3 concludes this chapter by briefly highlighting machine learning notations [30,
51] used in our methodology.

3.1 Image Formation Process

Three main steps are followed during the formation of an image. Understanding
each one of them is important when manipulating images. Specific information will be
needed to handle the most distinct environments. We detail important components of the
image formation pipeline in this section.

3.1.1 The Illumination Component

Illumination can be defined as the luminous flux that bounces off from a surface.
It is measured in lumane per square meter (lm/m2) and we represent it as

E =
dF

dA
, (3.1)
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where E is the intensity of a point source, dF is the luminous flux and dA is the incident
area at a distance r from the point source and with inclination θ relative to the normal
of dA. Hence, dF can be computed as

dF = E0
dA cos θ

r2
. (3.2)

This component is very important to the process of image formation as it triggers
our visual system sensors. Depending on the surface properties, the way light interacts
generates different responses that affect illumination.

3.1.2 Reflection Nature and Related Models

A surface reflects light according to the material properties composing the object.
The literature generally calls this the nature of reflection and distribute surfaces in three
main reflectance classes, discussed in the following paragraphs.

Lambertian Reflectance: Surfaces in this class reflect light in all directions. In a
diffuse manner, the whole light incident on a surface is emitted, covering a solid angle 2π

radians. We can define this reflectance as

EL = E0A cos θ, (3.3)

where E0 and θ are the incident light intensity and angle, and A is the surface area.

Specular Reflectance: Metals or mirrors, taken as few examples of this kind of surface,
reflect light according to the laws of reflection, where the angle of the reflected light ray
is equal to the angle of the incident light ray. The specular reflection direction can be
computed as

E⃗S = E⃗0 − 2⟨E⃗0, N⃗⟩N⃗ , (3.4)

where ⟨.⟩ is the inner product between E⃗0, the incident light ray vector, and N⃗ , the normal
to the surface.

Hybrid Reflectance: The majority of materials we find in the real world is composed
of both diffuse and specular surfaces. Each class of reflectance is present at distinct
amounts in the surfaces of materials. This model can be described as

E = ωES + (1− ω)EL, (3.5)
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where ω is the specular component contribution factor on the hybrid surface.

3.1.3 Point-Spread Function

Acharya and Ray [2] state that the basis of image formation can be explained by
a Point-Spread Function (PSF), defined as the radiance intensity distribution in the image
of an infinitely small aperture of an imaging system. It indicates how a point source of
light results in a spread image in the spatial dimension, providing a measure of the image
unsharpness.

If we want to image a point from a scene, the resultant image of this point will
be a blurred version of it. The intensity at the center will be at its maximum and it will
progressively fade away from the center, as if a Gaussian filter was passed on the image.
This blurring occurs from a set of possible factors which range from not appropriate
focusing of the imaging system to scatter of photons in their path to the camera sensor.
Representing an image with its PSF we have

I(x, y) = J(x, y)⊗ P (x, y), (3.6)

where I is the result of the input image J convoluted (⊗) by the point spread function P

at location (x, y).

There exist multiple point-spread functions for the different environments present
in the real world. From vacuum-like controlled scenes, which do not have any participating
media, to gradually increasing atmosphere density and different kinds of participating
media (e.g., rain, fog, sand, water). A single scene is formed by the sum of all PSFs of
the points composing it.

Examples of PSFs for distinct atmosphere and underwater configurations are esti-
mated in [37, 39].
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3.2 Image Quality Metrics

During the image acquisition process, the scenes we see on pictures are a result
of the light interaction with the environment and all its components. Such interactions
produce some artifacts that degrade the final image at certain levels. This degradation
will depend on the medium properties (e.g., atmosphere density for air images or turbidity
level for underwater scenarios).

Quality assessment is commonly performed on images in order to evaluate the
imaging system used in the acquisition process. A prior applied in this evaluation is
the similarity of image aspects to physical attributes that the Human Visual System
(HVS) finds pleasing. Examples of basic properties range from contrast sensitivity to the
multichannel human vision model.

Image Quality Assessment (IQA) algorithms have been developed through various
sorts of researches. The following subsections describe a few of them, which may or may
not require ground-truth data, which we will describe as reference data in this thesis.

3.2.1 Full-Reference Quality Metrics

For being the first thoroughly studied, this class contains the majority of assessment
algorithms. A general Full-Reference (FR) approach is to take as input a reference image
and the degraded version of that image, computing an estimate of the quality of the latter
relative to the reference image.

HVS-based Methods: Such approaches try to mimic the human capability of rating
the quality of original and distorted images. By applying spatial filters, images are derived
from input images to simulate linear responses of the primary visual cortex neurons. The
final estimate of the quality is based on the difference between responses of the original
image and the degraded image. This is commonly computed by taking a pointwise abso-
lute difference operation between the two derived images, using a normalization function
in the end.

Image Structure-based Methods: This class of procedures measure the quality of
an image assuming that HVS draws information about the structure of natural scenes.
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Thus, high quality images are those which approximate from the original image structure.
One of the most popular method is the Structural Similarity Index (SSIM) [58], a cross-
correlation-based measure that uses luminance and contrast measures to estimate quality.
Another way to evaluate a degraded image structure is to compute local changes in image
gradients. An example of such method is the Visual Gradient Similarity (VGS) index [64],
in which global contrast is applied to each one of the three scales of VGS, later combining
the similarity of the gradients to then perform intra and interscale pooling of the maps
generated in the previous steps.

Statistical-based Methods: Following the assumptions of former methods of evalua-
tion, approaches like the Visual Information Fidelity (VIF) algorithm [52] are based on the
premise that HVS relies on statistical properties of natural environments to qualify their
images. In the work of Liu and Yang [33], Peak Signal-to-Noise Ratio (PSNR), SSIM, VIF,
and Visual Signal-to-Noise Ratio (VSNR), both IQA methods, were combined in a super-
vised learning technique based on decision fusion to measure the image quality.

3.2.2 Reduced-Reference Quality Metrics

In cases where there is few information about the reference image, Reduced-
Reference (RR) algorithms are applied. An interesting approach is proposed by Gunawan
and Ghanbari [22], in which they use only an edge-detected reference image. They com-
pute a local harmonic analysis on this image in order to estimate the quality of the same
scene degraded by blurring. An RR SSIM is also presented in the literature. Rehman and
Wang [46] propose this method of extracting statistical information using a divisive nor-
malization transform. Quality estimation is performed by a regression-by-discretization
approach, which rely on the linear relationship between FR and RR SSIM algorithms.

3.2.3 No-Reference Quality Metrics

When there is no reference image for the quality evaluation, No-Reference (NR) IQA
methods are applied. These techniques are generally distortion-domain specific, e.g., blur-
ring, ringing or other types of noise. Here, we describe NR IQA methods that try to assess
the aspects of an image which are closely related to perceived sharpness or blurriness of
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scenes, some of them directly correlate to the HVS manner of qualifying images.

The majority of methods being used usually rely on the edges structure of the image
but there are those which operate in the spatial domain without any priors to edges or
the ones that use transform-based methods. Additionally, general-purpose non-distortion-
specific methods have been developed and they are available in the literature. These
approaches rely on machine learning techniques that are employed to extract natural-
scene statistics in order to train an image quality classifier.

An example of a metric function that uses some of the characteristics of this class is
the UCIQE metric [62]. Designed for a participating medium, this measure was elaborated
by computing statistical measures on the CIELab color space of underwater images and
correlating these features to visual subjective evaluation of humans. A set of weigths was
estimated using a linear regression approach in order to compose a multi-objective function
which returns the quality measure of images distorted by the underwater medium.

3.3 Machine Learning Overview

Being a subfield of Artificial Intelligence (AI), which has the purpose of design-
ing intelligent agents to fulfill activities by sensing information about the environment or
making decisions relying on data of a certain domain. Machine learning gives the com-
puter, or the device embedded with this technology, the ability to learn without explicit
programming. It has three main approaches thoroughly studied in the literature:

Supervised Learning: Means the final AI model is a result of learning phases based
on examples of the target domain. Typically, we use a training set containing n pairs
{(x1, y1), ..., (xn−1, yn−1), (xn, yn)}, where xi and yi are respectively an example and its
label, and a test set composed by m elements {xn+1, xxn+2 , ..., xn+m}. The idea is for the
model to learn from a labeled set so that it can predict unlabeled examples.

Reinforcement Learning: Involves learning what action to take in order to maximize
a function. The learning agent must discover, via an exploit-and-explore approach, which
decisions will yield the maximum final recompense. In reinforcement learning we can
identify three main components, besides the intelligent agent. A policy that tells the
agent what to do depending on the current state of the system. A reward signal defining
the rewards for all the events the agent can possibly choose on its way to a goal. These
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rewards can either be positive or negative, thus influencing the learner decision process.
Finally, a value function determines if the path taken by the agent will yield a long-term
maximum gain.

Unsupervised Learning: Differently from supervised and reinforcement learning, this
approach does not rely on labeled data nor rewards from its environment in order to
learn. It receives a training set {x1, x2, ..., xn} and tries to find a pattern in the data,
usually trying to reduce or increase a loss function. Examples of applications range from
clustering to group the data into similar classes, to dimensionality reduction as a way of
optimizing storage and post-processing by selecting the principal variables from a set of
extracted features.

Each approach is applied to distinct scenarios, depending on the data and domain
knowledge to be used as key to the elaboration of the AI model. There exist numerous
machine learning techniques which can be used for different structures of data. Here,
we are focusing on images, 2D arrays of n-depth size. Additionally, there are learning
approaches which derive from those presented earlier, while keeping some of their context
when being performed.

Self-supervised learning, for example, is a type of unsupervised learning that can
be applied when there is a regression problem with limited ground-truth data. Albeit
existing the possibility of this data to be used in the learning process, an objective function
could replace it. This function should lead the learning process toward a desired data
distribution.

Going back a little bit further, we need to contextualize Artificial Neural Networks
(ANN), a bio-inspired machine learning technique, based on the biological neural system.
It contains a high number of components called neurons, this quantity depends on the
network complexity. Figure 3.1 shows a simple example of an ANN model, though it
clearly describes how this kind of system works. An input data is fed to the input layer
of the network, which will pass to the hidden layer the features needed for the decision
making process. Such features are a result of the application of activation functions over
a weighted sum on the input data of each layer. Finally, the output layer will provide the
predicted value for that data.

When we add more complexity to an ANN, it normally means we add more hidden
layers and neurons. This happens when we need to process images in order to do some
pattern recognition or more complex digital image processing operations that would be
difficult and it would take considerable time to design by hand. As the resolution of input
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Figure 3.1: A simple ANN model containing three layers: input layer, hidden layer and
output layer. Inputs from each layer are weighted summed together, being activated in
every output.

Figure 3.2: Example of a RGB input image of a CNN. This image has dimensions
4× 4× 3, e.g., its width, height and depth are 4, 4 and 3, respectively. Image extracted
from https://medium.com/p/3bd2b1164a53.

.

image increases, so does the number of neurons and layers of the network. Such models
can be defined as deep neural networks, which include CNNs.

3.3.1 Convolutional Neural Networks Concepts

Similar to the application of filters in image processing, a CNN can be described as
a bank of filters that are applied to the input of each layer and results in a desired result
computed using the features from the output of each layer. May that result be a class for
classification tasks, a bounding box for object detection or a pixel-wise regression that
will result in an image encoding or decoding process, or in the transformation of pixels for
restoration purposes. The architecture of a CNN is analogous to that of an ANN, being
inspired in the human visual cortex. Neurons activates to stimuli in the receptive field,
which is restricted to a region of the visual field.

https://medium.com/p/3bd2b1164a53
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Figure 3.3: CNN overview. A simplified model would have convolutional layers followed
by pooling layers and activation functions. Additionally, fully-connected layers may be
introduced for classification purposes. Image extracted from https://medium.com/p/
3bd2b1164a53.

Figure 3.4: Example of a filter of size 3×3 being convoluted through a patch of an image.
Image extracted from https://medium.com/p/3bd2b1164a53.

A CNN architecture comprises several modules and concepts illustrated in Fig-
ure 3.3, some of them are described and exemplified as follows.

Input Data: This is generally a 3-channel image, from any color space, depending on
the application. The purpose of a CNN is to reduce the dimensions of this image without
losing features that describe important information about the desired task. Figure 3.2
shows an example of a RGB image, with 4 pixels each dimension.

Convolution Layer (CONV): Among the different types of layers in a CNN, a core
component is the convolutional layer, responsible for doing the heavy computational work.
It consists of a set of learnable filters, generally called weights, which are convolved through
the input image producing a feature map. This convolution process is similar to a sliding
window, where the filter will slide through the image path horizontally and vertically
until it reaches the end of the patch. Each element on the feature map is a response of
that filter at each local region on the input data, these responses are highlighted by an
activation function (e.g., activation responses of a filter to detect corners). Figure 3.4
shows an example of a convolution being performed. A filter of size 3 × 3 is used, each
weight on the filter is multiplied by its corresponding location in the image patch. This
operation is illustrated in the yellow block. Multiplication results are then added together
and then fed to an activation function.

https://medium.com/p/3bd2b1164a53
https://medium.com/p/3bd2b1164a53
https://medium.com/p/3bd2b1164a53
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Figure 3.5: Example of a pooling filter of size 3× 3 being convoluted through a patch of
an image. Image extracted from https://medium.com/p/3bd2b1164a53.

Activation Function: These functions are generally used after each weighted sum is
computed in CONV layers. Most of the time we get values we do not really know if they
are useful for the learning process. That is the reason we apply some functions to tell if a
neuron response should be fired, not fired, or to what extent the following layers should
consider that response. Examples of such functions are Sigmoid, outputting probability
values between 0 and 1; Softmax, making each component of a feature vector to add up
to 1, mostly used in classification models; and Rectified Linear Unit (RELU), used in the
majority of CNN models, this activation function puts a minimum clipping threshold of
0, where all feature values below this bound are set to 0. There exist variations of these,
along other types of activation functions.

Pooling Layer (POOL): Mostly used to reduce the quantity of parameters to learn as
the network goes deeper. This minimizes computational work and reduces the spatial size
of features. The goal here is to reduce dimensionality by keeping dominant features, which
are relevant to the learning process. Max-Pooling is the most used pooling operation, as
it has shown to work better in actual cases. Figure 3.5 illustrates a Max-Pooling being
performed with a 3× 3 window size over an image patch. The brown block is the pooling
window and its output is depicted in the dark green pixel in the 3× 3 image on the right.

Fully-Connected Layer (FC): It is simply the case where each neuron on this layer
is connected to all activations from the previous layer, generating an array of n outputs,
which are passed through an activation function, as Softmax. Mostly used in classifier
models, each output refers to a single class.

Backpropagation Algorithm (BP): This is a concept generally applied during the
training process of AI techniques, after all operations are computed in a forward pass of
the network. Depending on the error yielded by a defined loss function, the weights of
each layer are updated so that future forward passes result in a lower error value.

Loss Function (L): In most learning models, error is computed as the difference be-
tween the estimated output and the expected output, which could be a label for supervised
learning or a domain-data-driven prior value for unsupervised approaches. This function

https://medium.com/p/3bd2b1164a53
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has great impact on the model performance as it is directly correlated to the weight up-
dating process during BP.
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Chapter 4

Methodology

In this chapter, we focus on describing our solution to tackle the underwater image restora-
tion issue. Section 4.1 describes how an image with haze or some other degrading effect
can be restored by using a simplified formation model. Sections 4.2 and 4.3 explain our
methodology, comprising a two-phase learning.

In the first phase of our methodology, we perform a supervised training by fine-
tuning the DehazeNet [13]. This network was developed to restore images acquired from
scenes presenting a high level of haze, an atmospheric phenomenon where dry and liquid
particles affect the sky clarity. Afterwards, the input image is restored according to a
formation model. In the second phase, we minimize a loss function composed of quality
metrics to finally perform image restoration. The assortment of these metrics was realized
by evaluating studies concerning underwater images and their properties. The following
section describes the general idea for the formation of an underwater image. Figure 4.1
shows a simplified system of light interactions in this medium. Figure 4.2 illustrates the
process we have adopted in our methodology.

4.1 Image Formation Model

In the underwater environment, the image is a combination of the light coming
directly from the objects composing the scene and light that was redirected towards the
camera. In this thesis, we use a commonly referenced image formation model [20, 25, 19],
expressed as

I = Je−βd +B(1− e−βd), (4.1)

where I is the observed light intensity, J the scene radiance, B the background light, which
is the light coming from other scenes not in field of view of the camera, and t = e−βd is the
transmission map. This map t gives the amount of light not attenuated, due to scattering
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scattering and absorption

Figure 4.1: Air light, besides being diffracted, is scattered and absorbed by objects and
tiny particles present in the underwater medium. The resulting radiance that arrives to
the camera sensor is a combination of a percentage of light reflected from the scene and
light coming from other sources, the background light.

or absorption, on a given point x at a distance d(x). The parameter β represents the
medium attenuation coefficient. As we need to approximate J , we reorganize Equation 4.1
as

Jt = I −B(1− t). (4.2)

We need to isolate J and we know that t is a 2D-matrix containing the amount of light
not attenuated for each pixel of the scene. Then, to continue the process of approximating

backpropagate error

(b) Image Formation Model

CNN

(a) Transmission Map Estimation (c) Visual-Quality-driven learning

image 
quality
metric

metric
weight

input image I
estimated 

transmission map t

restored image J

Figure 4.2: Diagram of our two-stage learning. First, we fine-tune the CNN using ground
truth transmission maps, applying the mean squared error loss in the training process.
Second, we take the model and adapt it by including the image restoration process (b).
Finally, we perform new training in the network minimizing a loss function based on image
quality metrics.
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J , we multiply both terms of the equation by the inverse transmission map

Jtt−1 = (I −B(1− t))t−1. (4.3)

After solving Equation 4.3, we have

J = It−1 −Bt−1 +B. (4.4)

Finally, J can be estimated by reformulating Equation 4.4 as

J = (I −B)t−1 +B. (4.5)

Thereby, as we already have I from the image acquired, we only need to estimate
t and B to restore an image in the underwater environment. The transmission map t can
be estimated using the fine-tuned DehazeNet. Following the prior of [19], we can roughly
estimate the background light as

B = max
y∈{x|t(x)≤t0}

I(y), (4.6)

where B is the pixel in a degraded image I whose transmission map value is the highest,
limited by a constant t0. The value t0 is chosen as the 0.1% highest pixel. If there is more
than one pixel satisfying this condition, we compute their mean.

Background light is inversely proportional to the transmission map. Thus, we can
extract B from the region we are unable to see objects in an underwater image, as depth is
too high. This can be visualized in Figure 4.3. The darker the region in the transmission
map, the most accurate the estimation of the background light in the underwater image.

4.2 Transmission Map Estimation

In order to recover the scene information, the CNN model follows an accepted
physical image formation model, relying on the approximation of the transmission map.
To adjust the network to our purpose, we proposed to perform a supervised approach
following the training guidelines of [13]. It consists in using underwater images as input
to the network and comparing its estimated transmission map to ground truth maps. The
loss function used in this stage is the Mean Squared Error (MSE), defined as

Lt(I, J) =
1

n

n∑
x=1

(tI(x)− tJ(x))
2 , (4.7)
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(a) (b)

Figure 4.3: (a) an example of an underwater image; (b) the transmission map of the image
on the left.

where n is the number of pixels in the image, tJ the estimated transmission map and tI

the ground truth. Thus, the network will have its weights updated towards approximating
the expected transmission map of each scene used in the training stage. Figure 4.3 shows
an example of an underwater image along with its transmission map. By analyzing the
map, we can see that regions closer to white are closer to the camera the picture was
taken, while darker regions are far from the camera.

4.3 Visual-Quality-Driven Learning

Based on the work of Barros et al. [7], to overcome the absence of ground truth
data for underwater scenes, we present an approach that assesses the result by computing
a set of Image Quality Metrics (IQM). The IQM set X yields a multi-objective function
that measures the enhancement of four features in the restored image in comparison to
the input image. The multi-objective function is given by

IQM(I, J) =
∑
X∈X

λXqX(I, J), (4.8)

where λX is the weight for a feature gain qX .

We choose four metrics that are well correlated to the human visual perception to
compose our IQM set: contrast level, acutance, border integrity, and gray world prior.
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Contrast Level: Underwater images tend to have low contrast as the amount of water
between objects and the camera increases [40]. We compute the contrast gain of a restored
image J over the degraded image I as

qC(I, J) =
1

n

n∑
x=1

(
C(J, x)2 − C(I, x)2

)
, (4.9)

where C(image, x) is the contrast level of a pixel x in the grayscale version of an image,
computed as

C(image, x)2 =

∑n
x=1

∑
c=r,g,b(imagec(x)− 1

n

∑n
y=1 imagec(y))

2

(
∑n

x=1

∑
c=r,g,b imagec(x))2

. (4.10)

Acutance: The restoration process should also enhance the acutance metric, which
measures the human perception of sharpness [29]. The restoration gain for acutance is
given by

qA(I, J) =
1

n

n∑
x=1

G(J, x)− 1

n

n∑
x=1

G(I, x), (4.11)

where each term of the subtraction in the equation is the acutance of the degraded and
the original image, respectively. G(K, x) is the gradient magnitude of an image K at pixel
x. We use the Sobel operator [54] to compute this magnitude.

Border Integrity: It measures the visibility of the borders after the restoration. This
measurement allows us to check how much the border increased in regions that were likely
to have borders, avoiding random noise to appear in the restored image. It is calculated
by

qBI(I, J) =

∑n
x=1 (E(J, x)× Ed(I, x))∑n

x=1Ed(I, x)
, (4.12)

where E is an edge detector, here we use the Canny edge detection [14], and Ed is a
morphological operation which dilates the borders of an image by 5 pixels. × represents
an element-wise multiplication.

Gray world prior: The fourth feature is the gray world prior [11], a hypothesis that,
under natural circumstances, the mean color of an image tends to gray. Therefore, we
evaluate how distant from the gray world our restored image is by computing

qG(J) = (Imax − Imin)−
2

n

n∑
x=1

(I(x)− Im)
2, (4.13)

where Imax and Imin are the maximum and minimum intensity a pixel can have and Im

is the average of these two values. The first term of qG makes the metric higher as the
distance from the gray world is smaller.
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After computing the gain in each quality metric, we minimize the subsequent IQM
loss:

LIQM = 1− IQM(I, J). (4.14)

Network weights are updated by propagating the IQM error backwards. This step
is done by computing the gradient of the loss function.

∂L
∂ω

= −2
∂J

∂t

∂t

∂ω
(λC

∂C

∂J
(C)) + λE

∂EI

∂J
(EJ). (4.15)

Note that this step does not require labeled data. Instead of using ground truth
data, our method uses the quality metrics to guide the optimization process for refining the
transmission map. As a result, the final image presents a physically-plausible restoration
of the input with better quality than the results achieved by other approaches.
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Chapter 5

Datasets

One of the disadvantages in using a convolutional neural network is that it requires a large
amount of data to be trained on. This becomes an issue in the underwater domain. For
instance, if we wanted to perform a supervised training, where the network model should
learn how to approximate an underwater image from its out of water version. It would be
difficult for this model to learn without enough data. This task is difficult as it is much
complicated to have an image of the same scene taken from under and out of water.

However, we pointed out that the main idea of our methodology relies on quality
metrics guiding the restoration learning process. Thus, we do not need a large set of
images containing some kind of ground truth information. In order to validate that our
method successfully restores underwater images, we have built four datasets, grouped into
two larger datasets, including synthetic and real scenes under controlled turbidity levels to
simulate a few underwater environments. These sets of images were created through two
phases of experiments, with increasing level of complexity in the process. In summary:

Section 5.1 - UVision18 Dataset details the steps taken in the building process of
the first dataset. We see this dataset as an initial attempt to produce an underwater
image restoration dataset.

Section 5.2 - UVision19 Dataset gives the decisions made regarding the set up of
this dataset, taking into consideration the process of building the first underwater dataset.
It also describes the techniques applied in the assembling process.
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Figure 5.1: UVision18 RGB image samples. We can see water mirroring due to the
position the camera was placed to take the pictures.

5.1 UVision18 Dataset

This initial dataset was built to see if the methodology was indeed suitable for
solving the problem of underwater image restoration. Using a water tank of dimensions
126cm×189cm×42cm, 665 liters of water and 3 solution configurations to simulate distinct
levels of turbidity, a total of 695 images were taken with a GoPRO HERO5 Black camera
(from now on we are going to refer to the camera as GoPRO). The turbidity levels were
controlled using different quantities of green-tea sachets, respectively: 0g (clean water),
and 80g and 160g. Images were acquired positioning the camera in different points inside
the water tank. Figure 5.1 shows a sample of RGB images from UVision18 dataset.

Listing 5.1: PBRT Li method changed code to compute the transmission map of a
scene. This method can be found in integrators/directlighting.cpp on the tool source
code repository.

1 Spectrum Di r e c tL i gh t i n g In t e g r a t o r : : Li ( const RayD i f f e r en t i a l &ray ,
2 const Scene &scene , Sampler &sampler ,
3 MemoryArena &arena , int depth ) const {
4 Pro f i l ePhase p( Prof : : Sample r IntegratorL i ) ;
5 Spectrum L( 0 . f ) ;
6 Su r f a c e I n t e r a c t i o n i s e c t ;
7 if ( ! scene . I n t e r s e c t ( ray , &i s e c t ) ) {
8 return L ;
9 }

10 L += 1 − Distance ( ray . o , i s e c t . p ) / 13 ;
11 return L ;
12 }



5.1. UVision18 Dataset 52

(a) (b)

Figure 5.2: UVision18 3D scenes: (a) shows a set of spheres in different distances from
the camera; (b) displays a kitchen.

To increase the amount of data, we created a set of synthetic underwater images
using the PBRT [45]. In order to generate the transmission map from each scene, we
changed the method that computes the amount of light that arrives in the image plane.
This modification is depicted in Listing 5.1. Two base 3D scenes were rendered fixing the
camera in different positions. Figure 5.2 displays the scenes used in this process.

A total of 642 images was rendered, along with each respective transmission map.
We set the absorption and scattering coefficients according to Mobley [38]. These coeffi-
cients are displayed in Table 5.1, where each column respectively refers to light wavelength,
spectral absorption and molecular scattering coefficients.

Listing 5.2 shows an example of a PBRT input file, describing a new water medium.
Properties sigma_a, sigma_s and scale define, in this order, absorption, scattering and
scaling of coefficients depending on the distance unit, which should be in millimeters. A
sample of these synthetic images is displayed in Figure 5.3. Comparing the kitchen images
to Figure 5.2b, it is possible to visualize that we removed the walls and the ceiling from
the 3D scene structure.

Listing 5.2: Example of a PBRT input file describing a water medium. Variables sigma_a,
sigma_s define absorption and scattering coefficients, whereas scale sets the scaling of
these coefficients to millimeters.

1 MakeNamedMedium "water " " s t r i n g type" [ "homogeneous" ]
2 " spectrum sigma_s" [ 600 .0014 ] " spectrum sigma_a" [ 600 .244 ]
3 " f l o a t s c a l e " [ 0 .001 ]
4
5 MediumInterface "" "water "
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λ(nm) a(m−1) b(m−1) λ(nm) a(m−1) b(m−1) λ(nm) a(m−1) b(m−1) λ(nm) a(m−1) b(m−1)

200 3.0700 0.1510 360 0.0379 0.0120 520 0.0477 0.0024 680 0.4500 0.0007
210 1.9900 0.1190 370 0.0300 0.0106 530 0.0507 0.0022 690 0.5000 0.0007
220 1.3100 0.0995 380 0.0220 0.0094 540 0.0558 0.0021 700 0.6500 0.0007
230 0.9270 0.0820 390 0.0191 0.0084 550 0.0638 0.0019 710 0.8390 0.0007
240 0.7200 0.0685 400 0.0171 0.0076 560 0.0708 0.0018 720 1.1690 0.0006
250 0.5590 0.0575 410 0.0162 0.0068 570 0.0799 0.0017 730 1.7990 0.0006
260 0.4570 0.0485 420 0.0153 0.0061 580 0.1080 0.0016 740 2.3800 0.0006
270 0.3730 0.0415 430 0.0144 0.0055 590 0.1570 0.0015 750 2.4700 0.0005
280 0.2880 0.0353 440 0.0145 0.0049 600 0.2440 0.0014 760 2.5500 0.0005
290 0.2150 0.0305 450 0.0145 0.0045 610 0.2890 0.0013 770 2.5100 0.0005
300 0.1410 0.0262 460 0.0156 0.0041 620 0.3090 0.0012 780 2.3600 0.0004
310 0.1050 0.0229 470 0.0156 0.0037 630 0.3190 0.0011 790 2.1600 0.0004
320 0.0844 0.0200 480 0.0176 0.0034 640 0.3290 0.0010 800 2.0700 0.0004
330 0.0678 0.0175 490 0.0196 0.0031 650 0.3490 0.0010
340 0.0561 0.0153 500 0.0257 0.0029 660 0.4000 0.0008
350 0.0463 0.0134 510 0.0357 0.0026 670 0.4300 0.0008

Table 5.1: Spectral absorption and molecular scattering coefficients per light wavelength
in a pure water medium, provided by Mobley [38].

(a) (b) (c)

(d) (e) (f)

Figure 5.3: UVision18 synthetic sample rendered with PBRT: Figures a and d are images
from a different perspective of the 3D scenes, Figures b and e shows these images as they
were underwater, Figures c and f are the transmission maps of a and d.



5.2. UVision19 Dataset 54

5.2 UVision19 Dataset

This new dataset was designed to fill the gaps the previous dataset presented,
regarding restoration purposes for underwater images. We are now able to get the depth
information for each planned scene. Consequently, an extensive set of turbidity levels
simulating various types of water medium can be produced using the scenes available.
Applying an image formation model, we could generate a considerable amount of synthetic
underwater images for the scenes we elaborated in this dataset.

Setting Up. We used the same water tank described in Section 5.1. Additionally, we
included an old wooden door to fix the objects that compose the scene, a 30cm-height
support for the RGB camera and two 2cm-sided calibration marks.

As we filled the tank with water, the door started to float, as it has density less
than water. Thus, we decided to cover the door surface with gravel, which helped keep
the wooden material in the bottom of the water tank. The lateral surface was covered
with jute fabric in order to minimize possible illumination and reflection issues that are
not desirable for the experiments led in this thesis.

We wanted to acquire the images under controlled settings, so we customized a
source light composed by two 32W fluorescent lamps fixed inside a metal box with its
output blinded by a twice-folded white non-woven fabric. This allowed us to obtain a
near diffuse light source. Figure 5.4 illustrates the settings used to acquire the underwater
images from a set of real scenes.

Real Scenes. Figure 5.5 shows scenes we used to build the UVision19 dataset. Three
red cubes are present in all the scenes. They could be used to analyze the dimming of
color channels as depth and turbidity levels increase.

The idea behind leaving two calibration marks in every scene is that they may be
used to calibrate these images with the images taken with the depth sensor. Therefore,
if we needed to know the correspondence of a pixel on an object in the world coordinate
system, we could do this by transforming it from the camera coordinate system to the
world coordinate system.

A group of nine objects were placed in different positions every other scene. The
arrangement aims to have an object at distinct distances from the camera sensor. This
helps evaluate restoration at variate depth levels.
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RGB-D Images. A Kinect One was used to acquire images from the scenes along with
their depth information. The camera was positioned on a box behind the RGB camera
support. Algorithm 1 describes the steps followed to take the RGB-D images. Figure 5.6
shows a sample of color images (top-row) and depth images (bottom-row) acquired using
the Kinect One.

Algorithm 1: RGB-D images acquisition using a Kinect One.
1 Place Kinect One in the platform behind RGB camera support;
2 while not all scenes had their RGB-D images acquired do
3 Setup new scene;
4 Run save_image.py script;
5 Press "s" to save both RGB and depth images;
6 Repeat step 5 10 times;

The save_image.py script uses iaikinect2 [59], a collection of tools and libraries
for a Robot Operating System (ROS) Interface to communicate with the Kinect One. This
script subscribes to /kinect2/qhd/image_color_rect and /kinect2/qhd/image_depth_rect

topics available in the Kinect One, respectively providing color and depth images.

The depth image is a matrix where each cell contains the depth in millimeters of
a specific point in the world. This point maps to a pixel on an RGB image, also acquired
using the Kinect One. During acquisition, the sensor may not map all world points to the
depth image. We try to regain this lost information by taking 10 RGB-D images of each
scene. Later, we compute the average image for the RGB images. For the depth images,

Figure 5.4: Setting up of the UVision19 dataset. It is possible to see the water tank, the
calibration marks and the supports for the camera, the light source and the objects.
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Figure 5.5: Scenes available in the UVision19 dataset. Each scene is composed by two
chessboard calibration marks, three red cubes and a few sorting of objects.

we normalize them by computing

Dfinal
i (x, y) =

 max
1≤j≤10

Dj
i (x, y), if <= 4, 499

4, 499 , otherwise
(5.1)

where Dfinal
i is the final depth image of scene i. We apply a pixel-wise max function in all
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10 images of the same scene. This value is then limited by a threshold of 4499 millimeters,
which indicates the maximum approximate distance the sensor can reach [43].

RGB Images. Color images were captured using a GoPRO. During this process, the
water tank was filled with water at each scene imaging. Also, the room light was turned
off to make the environment be illuminated only by our diffuse source light.

Green tea was also used in this phase. However, UVision18 used green tea sachets,
while UVision19 used 80g dry leaves green tea bundles. We processed the tea in a blender
and then sifted the powder to get rid of large solid parts that could create different effects
in the medium. Floating particles from the blended tea could affect the restoration process
of our methodology. Figure 5.7 shows an example of an image from a scene where we
did not sifted these particles, which clearly difficult the process of image restoration.
UVision18 green tea was not as concentrated as UVision19 tea. Thus, for the setup of
the second dataset, we needed to use lesser amounts of green tea to control the water
turbidity levels.

We decided to apply three levels of turbidity in the clean water using 15g, 20g

and 25g of sifted green tea, respectively. Algorithm 2 describes the pipeline of RGB
images acquisition. We took pictures using the 10-shot burst functionality in the 4 modes
available in the GoPRO camera: linear, medium, narrow and wide. Figure 5.8 shows
a sample illustrating the distinct levels of turbidity present in the dataset, taken in the
medium mode of the camera.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: RGB-D image samples. Top-row images shows color images from three scenes,
whereas bottom-row images are their depth maps after a normalization process. For
visualization purpose only, the depth images had their depth values inverted, where darker
regions represent closer objects.
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(a) (b)

Figure 5.7: Underwater images with non-sifted green tea powder.

Algorithm 2: Color images acquisition using a GoPRO HERO5 Black.
1 Place the GoPRO on the camera support;
2 while not all scenes have their images acquired do
3 Setup new scene;
4 Fill tank with clean water;
5 Take the images for this scene in the clean water;
6 foreach quantity of green tea ∈ [15g, 5g, 5g] do
7 Add the specified quantity of green tea to the water;
8 Take the images for this scene at this turbidity level;

Cameras Calibration. In order to correlate RGB pixels with world coordinates, it is
needed to perform a process known as camera calibration. This also allows us to remove
distortion effects that commonly occur in pinhole cameras and are related to geometric
properties of the lenses. It is possible to see on Figure 5.9 that a point in the world
coordinate system is mapped to a point C in the camera coordinate system, which is then
mapped to an image plane point q defined by the coordinates (u, v).

When ongoing a calibration process, the aim is to estimate camera intrinsic pa-
rameters, which gives us the optical point and the focal length of the camera and its
distortion parameters. It also gives us the camera extrinsic parameters, which gives us
its rotation matrix and translation vector. Thus, we are able to know its position and
orientation according to the world coordinate system.

a) Kinect One Sensor Calibration. To calibrate our Kinect One, we used the calibra-
tion tool kinect2_calibration available in the iaikinect2 [59]. The kinect2_calibration
tool calibrates the IR sensor of the Kinect One to the RGB sensor and the depth measures.
It uses OpenCV [10] to calibrate the two cameras.
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Figure 5.8: RGB image samples. Turbidity levels from top to bottom rows: clean water,
15g green tea, 20g green tea, 25g green tea.

Figure 5.9: Pinhole camera model.



5.2. UVision19 Dataset 60

Figure 5.10: Kinect One calibration images. Fixed marks were hidden to avoid unsuc-
cessful camera calibration.

For this calibration, we used a 2.8cm-sided 8 × 6 chessboard calibration mark.
Figure 5.10 shows 11 pictures we took of this mark in different positions and rotations,
always visible to both IR and RGB sensors. After following the calibration steps described
in iaikinect2, we are able to generate the RGB-D images. Each pixel in the depth image
is directly related to the same coordinate in the RGB image taken using the Kinect One.

b) Stereo Calibration. We also tried to perform a stereo system calibration composed
by the two cameras. We used the MATLAB camera calibration toolbox [49]. Although
all the steps were followed, the stereo calibration was not successful.

This may have happened due to the lack of calibration marks in the scenes, never-
theless one of the two marks we placed was much inclined in relation to the cameras. This
calibration would allow us to produce synthetic underwater images with near properties
to the underwater images we have acquired in our dataset. Additionally, the synthetic
dataset could have been created using the clean water images acquired with the GoPRO
camera, which have higher resolution and cover a larger world space.
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Synthetic Data using RGB-D Images As the RGB images taken using the GoPRO
camera were representing underwater mediums limited to the turbidity levels we created
using green tea, we needed more underwater images that could resemble a few other
aquatic environments. Thus, we selected three attenuation coefficients from [38]: 0.244,
0.65 and 2.07, from 600nm, 700nm and 800nm wavelengths, respectively. We built a look
up table for the possible transmission values applied to each location in the image scene.
Depth range of Kinect One goes up to 4500mm. This table is filled using the transmission
map equation

tβ = e−βd(x,y), (5.2)

where d ranges from 0m to 4.5m and β assumes the attenuation coefficients described
earlier. Thus, we end up with three transmission look up tables.

Then, we manually selected a patch referring to the farthest region in the under-
water RGB images in the first column from Figure 5.8. For each of the turbidity levels
present in our real underwater images set, we used the selected patch to compute the
background light, expressed as

Bc =
1

N

∑
Pc, (5.3)

where c ∈ {reg, green, blue} and N is the number of pixels in the patch P .

Finally, we are able to synthesize our underwater images. For each combination of
scene, attenuation coefficient and background light, we apply Equation 4.1 to generate a
new image that is added in our artificial dataset. Figure 5.11 lists some images from this
synthetic subset of our second dataset.

We consider these datasets essential contributions for the literature. They impact and
add value to the work that has been done to tackle the issue of image restoration. We
specifically approached the underwater medium and its complexities. In fact, our real
underwater images do not cover all possible configurations of subaqueous environments.
However, with the depth information of each scene, we are able to apply the most variate
set of parameters in order to represent a vast number of aquatic sets. At the same time,
any type of participating media may be generated with our RGB-D data.

All datasets are publicly available at our project homepage.
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Figure 5.11: Kinect One synthetic images. Attenuation coefficients used from top to
bottom rows: 0.244, 0.65, 2.07. These coefficients are displayed in Table 5.1, respectively
referring to 600nm, 700nm and 800nm wavelengths. Approximated background light
from left to right columns: clean water, 15g green tea, 20g green tea, 25g green tea.
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Chapter 6

Experiments

In this chapter, we show the results we obtained by applying our methodology on both
datasets. We wanted to validate the applicability of these sets in image restoration tasks.
Additionally, a series of metrics is used to evaluate the effectiveness of our approach.
Section 6.1 defines some evaluation metrics applied to compare our method to a few rel-
evant approaches. In Section 6.2, we discuss the processes taken to apply the proposed
methodology in UVision18. Section 6.3 describes UVision19 usage and experimenta-
tion. Qualitative and quantitative analyses are presented, comparing our method to some
relevant works in the field of underwater image enhancement and restoration.

6.1 Evaluation Metrics

For results comparison, we used the UCIQE metric proposed by Yang and Sowmya
[62]. They state this metric is in accordance with the human visual assessment for under-
water image quality, correlating statistical measures of chroma, contrast, and saturation
with this quality index.

To obtain the image chroma we first decompose it in luminance (L), a and b bands
from the CIELab color space [24]. Thus, chroma can be computed as

C =
√
a2 + b2. (6.1)

The UCIQE value is given by

UCIQE = c1 × σC + c2 × conL + c3 × µS, (6.2)

where σc is the standard deviation of chroma, defined as

σc =

√∑
(C − µC)2

N
, (6.3)
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µC is the average of chroma, conL is the contrast of luminance, computed as

conL =

∑
max1% L−

∑
min1% L∑

max1% L+
∑

min1% L
(6.4)

and µs is the average of saturation, given by

µs =
1

N

∑ C

L
. (6.5)

Furthermore, c1 = 0.4680, c2 = 0.2745, c3 = 0.2576 are weighting factors that control the
contribution of each quality metric. They were estimated through a 4-fold cross-validation
training process, by the authors of this metric.

6.2 Experiments on UVision18

During the training phase of the first experiments, we selected a subset of 300

images from the 642 synthetic images to perform a fine-tuning of DehazeNet. This subset
contains RGB images along with their transmission maps. The fine-tuning of the network
is performed following the specifications described by the authors in their paper [13].
After 1,500 epochs of supervised training, we switched the process to a self-supervised
phase of 1,180 epochs.

We used three subsets of different datasets in the self-supervised part of training.
The first two subsets are composed of 40 images from the underwater-related scene cate-
gories of the SUN dataset [60] and 60 images from a dataset created by Nascimento et al.

Figure 6.1: Underwater images sample taken from [40] and SUN dataset [60].
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Table 6.1: Visual quality using UCIQE metric (best in bold).

Scene Original He Tarel Drews Ancuti Ours

ancuti1 0.42465 0.50867 0.41273 0.48448 0.58765 0.65037
ancuti2 0.41477 0.47404 0.43678 0.50476 0.59013 0.56471
ancuti3 0.42631 0.57482 0.46343 0.53477 0.65185 0.62751
galdran 0.49783 0.62876 0.52362 0.64161 0.64333 0.67015
eustice 0.50363 0.61666 0.55290 0.55068 0.63356 0.69135
fish 0.56627 0.67276 0.57636 0.70121 0.66976 0.75171
ocean 0.40795 0.57136 0.43580 0.64708 0.61660 0.66903
reef1 0.61081 0.68628 0.60182 0.63525 0.65471 0.67233
reef2 0.69870 0.72402 0.68316 0.71520 0.71784 0.73244
reef3 0.54392 0.66470 0.57455 0.63816 0.70512 0.67891

[40]. Figure 6.1 illustrates a sample of these subsets. We also added 70 images from the
underwater set we built, described in Section 5.1.

During the self-supervised training phase, we apply Equations 4.5 and 4.6 to com-
pute the restored image. This image is normalized for values between [0,1]. We restricted∑

λX = 1 to make the IQM score to lie in between [0,1], where 1 stands for the best and
0 for the worst restoration, respectively. The values of lambdas were defined empirically,
being λC = 0.25, λA = 0.45, λE = 0.05 and λG = 0.25. The weights of DehazeNet are
initialized with a pre-trained model provided by Cai et al. [13]. This model was designed
and trained to restore air images.

To evaluate our trained network, we applied another subset of images often used
by the community and available in the work of Ancuti et al. [3]. Although we did not use
this dataset during training, it served as a subject of comparison between our approach
and other methods. First column of Figure 6.2 shows these images.

We compared our results against four different techniques: DCP [25] estimates the
depth map of the scene by taking the dark channel, which is used in the restoration
process; UDCP [19], a DCP-like prior that does not take into account the red band
when computing the dark channel; Tarel and Hautiere [56] perform a linear-complexity
function based on median filtering to restore the image; Ancuti et al. [3] restore the image
by executing a multi-scale fusion process combining four estimated weight maps.

Table 6.1 shows the UCIQE scores. We ran all the experiments using the UCIQE
source code provided by the authors. When comparing the restorations using UCIQE
metric, one can see that some methods perform better in different images, but ours out-
performs the majority of them. We could achieve the best results in 6 of the 10 images.
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Figure 6.2: UVision18: Images from [3] dataset restored by five different approaches,
including ours.

6.3 Experiments on UVision19

The first dataset we built lacks complexity in terms of usable information, such as
scene depth and water turbidity control. This leads to a non-successful application of that
dataset in underwater images restoration approaches. Aiming to validate the new dataset
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and highlight its importance for underwater image restoration techniques, we decided to
perform a new training, once again using the air-images-pretrained DehazeNet model as
baseline. In total, three training phases were executed. In each part of this experiment,
we applied a learning rate of 1e− 08, decay of 1e− 05, momentum of 0.95 and batch size
of 2.

First, we used 280 images from the real subset to train the CNN model following
our quality-based training, i.e., using the underwater images quality metrics we selected
to minimize the loss during training. We tested this trained model in the remaining
16 images from the same dataset (Figure 6.3a), all these images are from a scene not
included in the training set. After 140 epochs, the network started to perform promising
restoration. Although, as we can see in the results displayed in Figure 6.3b, the borders
of the objects in the scene were still blurry.

Thus, a supervised training was done, using images of the synthetic subset. We
decided to include all the 264 images in the training step, testing the trained model in the
same 16 images we used in the first batch of training. After a few epochs, we could see
some improvement. Figure 6.3c illustrates the restorations achieved in this phase. Edges
of the object present in the scene were less blurry than previous results.

In the third batch of training, we used the best model trained on the second phase,
which was a result of a supervised training. From this model, we performed a new quality-
based training using the IQM loss function. Figure 6.3d shows the test results from this
phase.

6.4 Parametrization

Our convolution network has three convolutional layers: 16 5×5 filters in CONV1,
16 3×3, 5×5 and 7×7 filters in CONV2, and a 6×6 filter in CONV3. An element-wise
maximum operation is applied to the outputs of the first layer, producing four feature
maps which are concatenated and fed to the second convolutional layer. We use a 7×7

max-pooling of stride 1 in the concatenated outputs of the second layer and a RELU
function in the last layer output.

Hyperparameters Optimization. In an attempt to use the best values for the weights
of our quality-driven loss, we performed a grid search algorithm, guided by the UCIQE
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metric. We tuned the parameters: lambdaC, lambdaG, lambdaE and lambdaA, which
specify the contribution factor for the contrast, gray-world prior, border integrity and
accutance metrics, respectively. These parameters were assigned values of 0.25, 0.45 or
0.65. We also included two optimizers in the grid search: Adam and SGD, both with
learning rate of 0.0005 and decay of 0.00025.

We run the algorithm for 20 epochs each combination of parameters using a 3-fold
optimization. As best combination, the grid search returned the value of 0.25 for all IQM

weight factors and SGD as the best optimizer. It took two weeks to run the algorithm.

After optimizing these parameters, we performed another self-supervised training
in our network. However, the results we obtained were worse than the ones we achieved
during the first experiments we performed in UVision19. Visualizing Figure 6.3e, the
restored images lost most of the 3D structure information, also having their color dis-
tribution saturated by the heavy restoration process. This may have happened due to
the poor selection of parameters during the grid search algorithm. If we used a broad
number of parameter values for the algorithm to select from we could have had a better
optimization for the hyper-parameters. Moreover, parameters such as learning rate and
decay should have been optimized for a better learning process.

Table 6.2 shows the UCIQE results for each of the restorations displayed in Fig-
ure 6.3. We can assume that this metric alone cannot be used to visually qualify the
restoration of underwater images. By looking at the metric values, the best results (ex-
cept for Scene 7, by a low) were obtained by the grid search restoration, which are clearly
the ones that most degraded the original images.

Our experiments show that our methodology could be applied in underwater image
restoration activities. It is clear that it needs improving. Visually, our results are not the
best taking into consideration the works we have compared our approach with.

At the same time, studying our datasets may lead us to new ideas in how to
modify our pipeline and change the architecture of the convolutional neural network.
These modifications could give us satisfiable results, physically plausible and visually
pleasing. It is also worth noting that our datasets usage do not limit to underwater images
restoration purposes. They could be applied image recovering from various participating
medium.
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Table 6.2: Visual quality using UCIQE metric (best in bold) on UVision19 experiments.

Scene Original MSE IQM Mixed GridSearch

0 0.47742 0.55919 0.55358 0.54814 0.62626
1 0.45805 0.55462 0.55207 0.54684 0.64429
2 0.45494 0.55511 0.55314 0.54843 0.64382
3 0.47377 0.59151 0.59915 0.59410 0.63794
4 0.49120 0.56670 0.56656 0.56427 0.63818
5 0.47674 0.57339 0.56914 0.56428 0.63299
6 0.47528 0.57028 0.56985 0.56928 0.64242
7 0.49184 0.61793 0.61551 0.61361 0.61662
8 0.51375 0.58490 0.58404 0.58108 0.64768
9 0.50897 0.58975 0.58702 0.58544 0.65984
10 0.50497 0.59293 0.59172 0.58902 0.62803
11 0.52449 0.62825 0.62695 0.62523 0.64993
12 0.55845 0.60835 0.60432 0.60182 0.65126
13 0.56386 0.60692 0.60726 0.60519 0.65309
14 0.56296 0.60872 0.60806 0.60652 0.63348
15 0.57359 0.61675 0.62029 0.62181 0.63655
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(a) (b) (c) (d) (e)

Figure 6.3: Experiments applied to UVision19 dataset images: (a) original image; (b)
MSE-based training results; (c) IQM-based training restorations; (d) Mixed training re-
sults; (e) Optimized hyper-parameters training restorations.
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Chapter 7

Conclusion

In this thesis we discussed about image restoration, an important field of computer vision.
Throughout the years, researchers have achieved impressive results when trying to recover
information on images acquired from scenes undergoing medium effects as sand, fog, rain
or water. Our main focus was in the underwater environment, a complex participative
medium where light suffers absorption and scattering effects. The resulting image is a
blurred and color-shifted version of the scene we would see if there was no interference in
the paths that light follows from source to camera sensor.

We proposed an end-to-end self-supervised approach that after training receives an
underwater image as input, estimating the transmission map of the scene, which is then
used to compute the background light. Both are applied to the inverse of the underwater
image formation model, which combines them to the input image in order to restore
information lost by effects such as absorption and scattering of the light that travels from
a source to the camera sensor.

Our approach has been complemented and validated by two datasets we built
during our research. The first dataset contains a few underwater images taken using
a water tank under controlled configurations, where we used green tea to simulate a
few turbidity levels. Along with this real subset of images, a simple synthetic dataset
was produced using PBRT, a rendering tool based on physical principles such as the
absorption coefficient of water. Whereas our second dataset contains thoroughly planned
scenes illuminated by a controlled light source. We have again applied portions of green
tea in the water to simulate different turbidity levels. Additionally, with the use of depth
data we acquired from the scene, we were able to construct a synthetic dataset which can
be expanded.

Analyzing our quantitative results using the UCIQE metric, we can see that our
method successfully restores lost scene information. As for the qualitative results, as we
do not apply color correction algorithms in the image restoration pipeline, our results
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seem unpleasant when compared to other approaches.

7.1 Future Work

During our experiments, some aspects involving the structure and visible features
of the imaged scenes caught our attention. We could not, for example, solve the issue of
color shifting during the restoration process. Although the network was not trained for
that purpose, we could apply some sort of color correction algorithm before or after the
image was processed by our system.

Another component we did not tackle was the water refraction indices, which affect
the way camera lenses image the scene, causing distortion of objects in the final images.
This may or may not affect the restoration process. When we perform camera calibra-
tion, this operation gives us the intrinsic parameters, including the distortion coefficients,
which refer to characteristics of the camera itself. In a future work, we could use this
information to undistort the images, perform their restoration and compare the results
with our previous restorations with distorted images. Thus, we could conclude if our
network would still estimate the same transmission maps when using structure-corrected
images.

While building our second synthetic dataset, we wanted to correlate our RGB
images, taken with a GoPRO camera, with our RGB-D images, taken using a Kinect
One sensor. To accomplish this, we needed to perform a stereo calibration to get the
transformation matrix from one system to another. As we only had two calibration marks
per image, the transformation matrix could not be efficiently and correctly estimated.
Thereby, the synthesis of artificial underwater images had to be done using only the
RGB-D images. For this reason, we propose to further go back to try and produce this
synthetic data using both RBG and RGB-D images. This would allow us to contribute
with a more complete dataset. In this, the synthetic data would be more accurate with
real turbidity levels as the ones we used in our real dataset.

We conclude our research presented in this thesis by stating that underwater image
restoration will become a common process in the following years. The field of computer
vision and machine learning are evolving exponentially at the same pace of technology.
New embedded technology will facilitate the execution of activity as devices are more
capable of processing more complex algorithms.
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As we discussed before, the images we acquired are not usage-limited to underwater
image recovering. They could be applied in a variety of studies which refer to image
restoration and those that need depth information in their pipeline execution. We hope
the idea we approached throughout this text along with the datasets we delivered may be
a relevant contribution to the community of image restoration.
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