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Resumo

Essa dissertação de mestrado aborda o controle de um Veículo Aéreo Não Tripulado

(VANT) na conĄguração Tilt-rotor utilizado para o transporte de carga. Propõe-se resolver

esse problema através de leis de controle ótimo com horizonte deslizante, especiĄcamente,

métodos de controle preditivo baseado em modelo (MPC). O objetivo principal é obter

controladores capazes de realizar o seguimento de uma trajetória desejada mantendo o

sistema estável mesmo na presença de incertezas e perturbações.

Inicialmente é proposta uma estratégia de controle utilizando um MPC na formulação

incremental com modelo de predição linear e invariante no tempo. Posteriormente, essa

formulação é estendida para considerar modelos de predição lineares e variantes no tempo,

possibilitando lidar de maneira simples com o problema de variação de parâmetros do

sistema, como massa e comprimento do cabo conectando a carga suspensa ao VANT, o

que permite realizar manobras de decolagem e aterrissagem com a carga ainda em contato

com o solo. Além disso, essa estratégia trata o problema de seguimento de trajetória

considerando diferentes pontos de equilíbrio do sistema linearizado, sendo também possível

realizar seguimento de trajetória do ângulo de guinada do VANT sem instabilizar o sistema.

Ademais, é desenvolvido nesse trabalho um controlador MPC com critério econômico, sendo

este critério integrado ao funcional de custo do controlador através de funções potenciais de

atração e repulsão. Isso possibilita ao sistema de controle lidar com o problema de desvio

de obstáculos escolhendo uma trajetória econômica que evita colisão e reduz o erro entre a

trajetória inicial e a executada pelo VANT. Ainda, é abordada uma classe de controladores

preditivos robustos, o controlador preditivo baseado em tubos. Para garantir robustez ao

sistema, esse controlador utiliza em sua formulação algumas técnicas bem conhecidas em

teoria de conjuntos para deĄnir no espaço de estados conjuntos alcançáveis e regiões de

estabilidade que limitam a diferença entre a trajetória predita pelo modelo nominal e pelo

modelo que leva em consideração perturbações e incertezas limitadas. Esse controlador,

devido ao custo computacional das ferramentas de teoria de conjuntos, será utilizado

em cascata com um controlador não linear baseado na linearização por realimentação de

saída. Finalmente, as características de robustez do controlador baseado em tubos são

combinadas ao controlador MPC econômico para gerar uma nova estratégia de controle

robusto com critérios econômicos.



Palavras-chave: Controle Preditivo, Controle Preditivo Econômico, Controle Preditivo

Robusto, VANT Tilt-rotor, Transporte de Carga.



Abstract

This Master Thesis addresses the control of an Unmanned Aerial Vehicle (UAV) in the

Tilt-rotor conĄguration for load transportation tasks. This work proposes to solve the

problem using an optimal control strategy with receding horizon, mainly, Model-based

Predictive Controllers (MPC). The main objective is to obtain controllers able to perform

path tracking stably even in the presence of uncertainties and disturbances.

Initially, a control strategy is proposed using an MPC based on the incremental

framework with a linear time-invariant prediction model. After, this formulation is

extended to consider a linear time-variant prediction model, which makes it possible to

deal, in a fashion way, with time varying systemsŠ parameters, such as mass and length of

the cable connecting the suspended load to the UAV, then allowing performing take-off and

landing maneuvers with the load in contact with the ground. Furthermore, this strategy

deals with the path tracking control problem considering different equilibrium points of the

linearized system. This also allows tracking of the UAVŠs yaw angle without destabilize the

whole system. Moreover, an MPC controller with economic criteria is designed, in which

this criteria is added to the controllerŠs cost function through attraction and repulsion

potential functions. This makes the control system able to deal with the obstacle avoidance

problem by choosing an economical trajectory that avoids collision and reduces the error

between the initial trajectory and the one performed by the UAV. Furthermore, a class

of robust predictive controllers, the tube-based ones, is addressed. To ensure robustness

to the system, this controller takes hand of some well-known techniques of set theory to

design reachable sets and stability regions in the state-space in order to limit the mismatch

between the trajectory predicted using the nominal model and the model that considers

limited disturbances and uncertainties. Due to the computational cost of the set theory

tools, the proposed tube-based controller is cascaded with a nonlinear controller based on

input-output feedback linearization. Finally, the robustness features of the tube-based

controller are combined to the economic MPC controller to generate a new strategy of

robust control with economic criteria.

keywords: Predictive Control, Economic Predictive Control, Robust Predictive Control,

Tilt-Rotor UAV, Load Transportation.
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Notation
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Model Predictive Control (Chapters 3 and 4)
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Nonlinear Control (Appendix B)
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δ Unmodeled dynamic vector
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H ,Du,Dπ Weighting matrices of the mixed H2/H∞
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∞
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1
Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have experienced in the recent years a great populariza-

tion among academics, hobbyists, and, more recently, in the industry. This popularization

is mainly due to the development, in the last decades, of technologies related with the

design and assembly of these vehicles. For instance, the development of lighter and resistant

low-cost materials, the cheapness of electronic components, and the increase processing

capacity of embedded systems together with the reduction of the physical space occupied

by them. This scenario allows virtually anyone with some basic engineering knowledge to

build a UAV. In addition, the growing interest of the academy in these vehicles has pushed

forward the state of the art knowledge, which made some problems, that once precludes

the development of UAVs, to become well-known, as for instance, problems like modeling,

dynamic control, state estimation, visual and navigation systems, among others.

In the earlier days, UAVs were mainly used for military purposes since these vehicles

were promising platforms to perform military tasks, such as: search and rescue, surveillance,

transportation, and combat (Ryan & Hedrick, 2005; Beard et al., 2006). However, with

the aforementioned popularization of UAVs, new applications for these vehicles in the

civil sphere arose. Nowadays, UAVs are being used in a wide range of applications, to

cite a few: precision agriculture, Ąre detection, cargo transportation and delivery, cave

exploration, cinematographic Ąlming, 3-D mapping, and pipeline inspection (Tokekar et al.,

2013; Merino et al., 2005; Palunko et al., 2012).
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(a) The Bell Boeing V-22 Osprey Tilt-
rotor aircraft.

(b) The Augusta Westland
AW609 Tilt-rotor aircraft.

(c) The Nasa Gl-10 Greased Lightning
Tilt-wing aircraft.

(d) The Bell V-280 Valor Tilt-
rotor aircraft.

Figure 1.2: Examples of full-scales hybrid aircraft.

Although the hybrid characteristics of these kind of aircrafts offer advantages over

Ąxed-wing and rotary-wing UAVs, they also come with control design challenges since these

vehicles are complex underactuated mechanical systems with highly coupled dynamics.

Their underactuated behavior is due to the existence of more degrees of freedom than

control inputs. In practice, work with this kind of system means that it is not possible

to regulate all degrees of freedom at the same time instant. Therefore, the control

system design process must be made regarding the regulation of some desired states

while guaranteeing the stability of the remaining ones. Moreover, the additional tiltable

mechanisms allowing the transition between Ćight modes increase the systemŠs mechanical

complexity when compared with others UAVs. Yet, when these mechanisms are assumed

to be rigid bodies, the aircraft becomes a multi-body system with coupling between the

thrusters and the main body, which made the control process design still more challenging.

Despite being underactuated systems with coupled dynamics, these vehicles also

have highly nonlinear dynamics, are affected by aerodynamic perturbations, and the

models obtained for control design purpose are subject to modeling errors and parametric

uncertainties. All these characteristics increase the complexity of the control design and

make the use of traditional control techniques, e.g, pole placement, not suitable to be

applied. In this context, advanced control techniques, for instance, adaptive, robust, model

predictive, nonlinear, among others, become more appropriated in order to achieve good

performance during autonomous Ćight.

Among several applications of UAVs, the load transportation in risky and inaccessible

zones is quite important since it allows to deal with rapid deployment of supplies in search-
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and-rescue missions (Bernard et al., 2011), vertical replenishment of seaborne vessels

(Wang et al., 2014), and safe landmine detection (Bisgaard, 2008). However, this kind of

task is also a challenging subject in terms of modeling and control. Since the payload is

often connected to the UAV through a rope, the dynamic behavior of the system varies

due to the loadŠs swing, which can destabilize the whole system if it is not well attenuated.

Moreover, the suspended load by a rope adds more unactuated degrees of freedom into the

system, increasing its overall underactuation degree. Due to its hybrid capabilities, the

Tilt-rotor UAV becomes a promising platform for such application, providing improved

forward speed when compared with rotary-wing UAVs, which is a desired feature for

missions requiring rapid deployment, and precise positioning of the load, which cannot be

addressed by Ąxed-wing UAVs due to their inability to perform hover Ćight.

In this context the ProVANT project started as a joint effort between the Brazilians

Federal University of Minas Gerais (UFMG) and Federal University of Santa Catarina

(UFSC) aiming to design an open source Tilt-rotor UAV platform able to perform au-

tonomous Ćight and address the load transportation problem. Figure 1.3a, shows the Ąrst

Tilt-rotor UAV designed in the ProVANT project. The ProVANT 1.0 was assembled at

UFSC, where in 2013 performed its Ąrst Ćight. The ProVANT 2.0, shown in Figure 1.3b,

improved the last version by having its conceptual design made with Computer Aided

Design (CAD) Software, providing a better knowledge of its physical parameters. This

aircraft was assembled at UFMG using 3D printer and is currently under Ćight tests. The

ProVANT 3.0, see Figure 1.3c, represented the evolution of the ProVANT project towards

the achievement of a fully convertible Tilt-rotor aircraft. In this version, tail and fuselage

surfaces were added seeking to allow improved forward Ćight when compared with previous

versions. This aircraft is currently under assemblage process at UFMG. Later, after the

University of Seville joined the project, the ProVANT 4.0 was proposed to achieve a full

Ćight envelope, see Figure 1.3d. The inclusion of wings, besides the previous aerodynamic

surfaces, will allow this aircraft to switch completely between the helicopter and airplane

modes during the autonomous Ćight. This aircraft is under conceptual design processes

and will be used to perform cargo delivery considering a 20 kilometers range.

This work is part of the ongoing effort of the ProVANT project team to investigate the

problem of performing autonomous Ćight using a Tilt-rotor UAV applied to cargo trans-

portation tasks. SpeciĄcally, this work aims to design model-based predictive controllers to

solve the problem of transporting a load attached to the vehicle by a rope. This problem is

addressed in this work from two different perspectives: (i) the control system is required to

perform trajectory tracking of the suspended load while keeping the aircraft stabilized; (ii)

the control system is required to perform trajectory tracking of the Tilt-rotor UAV while

stabilizing the suspended load. Both approaches can be successfully used as a solution

to the transport problem of slung loads using Tilt-rotor UAV. However, when precision

positioning of the load is required, the Ąrst approach is shown to be more suitable.
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UAV trajectory tracking control problem by considering in Donadel et al. (2014a) and

Rego & Raffo (2016a), respectively, a continuous-time and discrete-time formulation of

a linear quadratic regulator, and in Donadel et al. (2014b) an H∞ and a mixed H2/H∞

robust controllers.

When it comes to control design of Tilt-rotor UAVs for load transportation tasks, the

literature is even more limited. However, if others UAVs structures are considered, many

other works dealing with the load transportation control problem can be found, such as:

Raffo & Almeida (2016); Palunko et al. (2012); Dai et al. (2014); Sreenath et al. (2013b)

for quadrotors, and Bisgaard (2008) for helicopters. In the literature, control objectives

for aerial load transportation include: trajectory tracking of the aircraft with reduced

loadŠs swing (Bisgaard et al., 2009; Palunko et al., 2012; Faust et al., 2013), obstacle

avoidance (la Cour-Harbo & Bisgaard, 2009; Tang & Kumar, 2015), transportation by

multiple aircrafts (Bernard & Kondak, 2009; Lee et al., 2013), and trajectory tracking of

the suspended load (Palunko et al., 2013; Sreenath et al., 2013a; Pereira & Dimarogonas,

2016; Pereira et al., 2016). In Goodarzi (2016), the aircraft trajectory tracking problem

was addressed considering a suspended load connected to a quadrotor via a length-varying

rope. The problem was modeled through the Euler-Lagrange approach and a nonlinear

geometric control was considered to stabilize the system. In Lee (2018) the suspended

load control problem is also addressed through nonlinear geometric control. However,

the problem of the loadŠs trajectory tracking is solved considering multiples quadrotors

carrying the load.

The aerial load transportation problem has been addressed in the ProVANT project

considering a Tilt-rotor UAV. The aircraft trajectory tracking with load stabilization

control problem is solved through the following techniques: robust mixed H2/H∞ control

(Almeida et al., 2014); linear model predictive control (Santos & Raffo, 2016b; Andrade

et al., 2016); adaptive LMI-based control (Santos & Raffo, 2016a); nonlinear IOFL control

with a three-stage cascade structure (Almeida & Raffo, 2015) and with a two-stage cascade

structure (Raffo & Almeida, 2017). Furthermore, the load trajectory tracking with the

UAV stabilization is solved through the techniques: discrete linear quadratic regulator

(Rego & Raffo, 2016b); discrete mixed H2/H∞ robust control (Rego & Raffo, 2016c); and

time-variant model predictive control (Santos et al., 2017b).

Model predictive controllers have been known for their ability to control constrained

multiple-input multiple-output nonlinear systems. These controllers are able to deal in a

simple way with multivariate underactuated systems ensuring input-to-output stability

and also internal stability. Therefore, they have been considered in different formulations

in order to deal with aerial robotics control problems, to cite a few: unmanned helicopters

(Castillo et al., 2007; Kunz et al., 2013), quadrotors (Raffo et al., 2010; Alexis et al., 2014),

unmanned airplanes (Kang & Hedrick, 2006), Tilt-rotors (Papachristos et al., 2013; Santos

& Raffo, 2016b; Andrade et al., 2016; Santos et al., 2017b).
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Since this kind of systems present different sources of uncertainty, robustness should be

considered into the control design process. The problem of robustness in MPC has been

addressed through different strategies. Among them, the most popular are the Min-Max

open-loop MPC (Skokaert & Mayne, 1998; Lee & Yu, 1997) and the Tube-based MPC

(Langson et al., 2004a; Mayne et al., 2009). On one hand, in the Min-Max open-loop MPC

approach the optimization problem considers the worst case of the expected disturbances

and uncertainties, which may lead to an excessively conservative control policy. One the

order hand, the Tube-based MPC considers a dual control scheme, in which a standard

open-loop MPC with tighter constraints is used to control the nominal system and a

feedback control loop is used to increase the robustness of the system. The Tube-based

MPC has shown to be a computationally efficient technique to achieve robustness in

MPC without being so conservative as the Min-Max formulation. However, despite the

Tube-based MPC be computationally efficient when compared to others strategies for

MPCŠs robustiĄcation, it is still costly for applications that require small sampling periods,

for instance, robotics. Therefore, many works in the literature use the Tube-based MPC

technique only to control systems with a few degrees of freedom, such as: mobile robots

(Kayacan et al., 2015; Ke et al., 2018; Sánchez, 2011) and PVTOL aircraft (Petkar et al.,

2016).

Recently, an interesting formulation for model predictive controllers has been proposed

seeking to include economic oriented criteria into the quadratic open-loop stage cost

used in standard MPC formulations (Rawlings et al., 2012; Ellis et al., 2017). This

formulation has been mainly considered for industrial-like process in order to gather

the process optimization and control problems into an uniĄed problem (Hinojosa et al.,

2017; Amrit et al., 2013; Ellis et al., 2014). Similar ideas have been proposed earlier in

the context of optimal control theory by the problems of minimal fuel or minimal time

(Kirk, 2004). When it comes to the use of economic MPC in robotics, the literature is

limited. However, the underlying ideas of this controller is presented in many works that

use optimal controllers with the optimization problem extended to consider additional

objectives, such as: safe navigation, fuel consumption, minimal time, among others. In

Chung (2017), a predictive controller is formulated to include in its optimization problem

the minimal fuel and time spent by an autonomous vehicle during the trajectory execution.

In Alexis et al. (2015), the collision-free navigation problem is solved for a Tri-Tiltrotor

UAV through a sampling-based receding horizon control considering random trees in the

control space to remove colliding state evolutions. In Nascimento et al. (2014) and Mac

et al. (2016), artiĄcial potential Ąelds are considered, respectively, to perform obstacle

avoidance in a multi-robot system and for a quadrotor UAV. In Perez et al. (2012) a

modiĄed Rapidly-exploring Randomized Tree is joined with a LQR algorithm to perform

obstacle avoidance.
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1.3 JustiĄcation

Given the various applications of UAVs together with the technological challenges related

with the design of these aircrafts, develop research in this Ąeld has been shown relevant

from a theoretical and practical point-of-view. More speciĄcally, address the autonomous

Ćight control problem considering a Tilt-rotor UAV allows the investigation of some

advanced topics on control theory applied to robotics. For instance, whole-body control of

underactuated systems, optimal control techniques, nonlinear control, dynamic modeling

of multi-body systems, among others.

The ability of model predictive controllers to deal with multivariate interactions and

constraints, made them an interesting choice to solve aerial robotic problems. However,

due to the number of degrees of freedom and the high sampling rate of these systems, only

a few works have considered this strategy when dealing with Tilt-rotor UAVs because of its

potentially high computational cost. Further, the parametric uncertainties, modeling errors,

and aerodynamic perturbations often limit the performance of linearized control strategies

due to its restricted domain of attraction, which make it necessary the investigation of

control techniques to provide robustness. Finally, autonomous Ćight is often regarded as a

composition between dynamic control and navigation control, which are usually solved

hierarchically through different control techniques. By using model predictive control

strategies they can be uniquely addressed.

Load transportation using Tilt-rotor UAVs is a part of the research developed in the

ProVANT project and has been previously addressed through different control techniques.

This thesis contributes to this research by further investigating the use of predictive

controllers in such problem.

1.4 Objectives

The main objective of this work is to investigate the load transportation control problem

using a Tilt-rotor UAV with suspended load by means of model predictive controllers,

with the trajectory tracking problem being addressed from the UAVŠs perspective with

load stabilization and from the loadŠs perspective while stabilizing the UAV. The aircraft

considered in this work is the ProVANT 2.0 (Figure 1.3b) with a suspended load attached

to its main body. Furthermore, since the considered UAV do not have aerodynamic

surfaces, only helicopter Ćight-mode is considered.

The general requirements for all the controllers designed in this thesis are: to perform

trajectory tracking while ensuring closed-loop stability throughout the trajectory; to reject

constant external disturbances and parametric uncertainties; and to satisfy constraints on

state deviations and control inputs. Five formulations of model predictive controllers are

proposed along this work and their speciĄc objectives can be listed as:
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• Design a model predictive controller based on a linearized time-invariant model for

trajectory tracking of the suspended load considering a standard quadratic stage cost

together with stability regions. The control system algorithm must have suitable

computational cost to be implemented in the aircraftŠs embedded system;

• Design a model predictive controller based on a linearized time-variant model for

trajectory tracking of the suspended load considering a standard quadratic stage

cost. The control system must be able to cope with yaw angle regulation and with

the variation of the loadŠs rope length during the take-off and landing maneuvers;

• Design an economic model predictive controller based on a linearized time-invariant

model for trajectory tracking and obstacle avoidance of the Tilt-rotor UAV while

stabilizing the suspended load. The control strategy must be formulated from a

whole-body control approach by means of a standard quadratic stage cost, ensuring

stability and performance, and an economic oriented stage cost, allowing obstacle

deviation.

• Design a robust tube-based model predictive control strategy based on a linearized

time-variant model for trajectory tracking of the Tilt-rotor UAV while stabilizing

the suspended load. The proposed controller solves the load transportation problem

through a cascade structure and must cope, by design concept, with the systemŠs

uncertainties.

• Design a robust tube-based economic model predictive control strategy based on

a linearized time-variant model for trajectory tracking and obstacle avoidance of

the Tilt-rotor UAV while stabilizing the suspended load. The control strategy must

solves the load transportation problem through a cascade structure and considers

the systemŠs uncertainties rejection and planar obstacle avoidance in its formulation.

1.5 Structure of the text

This thesis is organized as follows:

• Chapter 2: describes some of the main mathematical tools used in this work,

such as: set theory concepts and operators for model predictive control formulation;

potential functions; and convex optimization principles with focus on linear matrix

inequalities.

• Chapter 3: design two types of linear model predictive controllers to solve the load

transportation problem using a Tilt-rotor UAV from the loadŠs perspective. Initially,

a linear time-invariant model is presented, and after its formulation is extended to
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a linear time-variant controller. The features and drawback of both controllers are

shown, and numerical simulations are used to validate the results.

• Chapter 4: seeks to design a robust predictive controller able to cope with obstacle

avoidance. Therefore, initially an economic model predictive controller using potential

functions as economic stage cost is presented to deal with the obstacle avoidance

problem, and further a robust tube-based model predictive controller is designed to

achieve the desired robustness feature. Both controllers are then gathered in order to

obtain a tube-based model predictive controller with economic criteria. Numerical

simulations are presented to validate the results of each controller individually.

• Chapter 5: summarizes the contributions and results of this work, and presents

suggestions for future works in this line of research.

• Appendix A: presents the modeling process of the Tilt-rotor UAV with suspended

load from both UAVŠs and loadŠs perspectives. These models are used in this thesis

for control design purposes.

• Appendix B: presents a nonlinear two-level cascade control strategy able to solve

the path tracking problem of a Tilt-rotor UAV while transporting a suspended load

stably. The inner controller is designed using the input-output feedback linearization

technique, and for the outer-loop the controllers presented in chapter 4 are considered.
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Conference papers:

1. (Santos & Raffo, 2016a) Santos, M. A. & Raffo, G. V. (2016). Adaptive control of a

tilt-rotor UAV in load transportation tasks - a lmi based approach. In Proc. of the

XXI Congresso Brasileiro de Automática (pp. 2461 - 2466).

2. (Santos & Raffo, 2016b) Santos, M. A. & Raffo, G. V. (2016). Path tracking model

predictive control of a tilt-rotor UAV carrying a suspended load. In Proc. of the

IEEE 19th International Conference on Intelligent Transportation Systems (pp. 1458

- 1463).

3. (Santos et al., 2017a) Santos, M. A., Cardoso, D. N., Rego, S. B., Raffo, G. V., &

Esteban, S. (2017). A discrete robust adaptive control of a tilt-rotor uav for an
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Journal of Advanced Transportation (pp. 1 - 22).
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2
Mathematical Preliminaries

This chapter presents the background on the mathematical tools used throughout this

masterŠs thesis, which are: set methods in control theory, linear matrix inequalities, and

potential functions.

2.1 Set methods in control theory

This section presents basic deĄnitions about sets, their operations and applications in

control theory. All deĄnitions presented here can be found with further details on the

works of Blanchini & Miani (2007), Nguyen (2014), Kerrigan & Maciejowski (2000), and

Kerrigan (2000).

2.1.1 General deĄnitions

The notation A ⊆ B is used to denote that A is a subset of B, A ⊂ B denotes that A

is a proper subset of B, and a ∈ B denotes that a belongs to B. Further, N is the set of

natural numbers and R is the set of real numbers.

DeĄnition 2.1 (Closed set (Nguyen, 2014)). A set S ⊂ R
n is closed if it contains its own

boundary.

DeĄnition 2.2 (Bounded set (Nguyen, 2014)). A set S ⊂ R
n is said to be bounded if it is

contained in some ball BR = ¶x ∈ R
n : ∥x∥

2
≤ ϵ♢ with Ąnite radius ϵ > 0.
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DeĄnition 2.3 (Compact set (Nguyen, 2014)). A set S ⊂ R
n is compact if it is closed

and bounded.

A set is said to be convex if, given two points, every point on the line segment joining

these two points is also a member of the set. This geometric interpretation of a convex set

can be formally stated by the follow deĄnition.

DeĄnition 2.4 (Convex set (Nguyen, 2014)). A set S ⊂ R
n is said to be convex if for

every x1,x2 ∈ S and every number α ∈ R, 0 < α < 1, the point αx1 + (1 − α)x2 ∈ S.

DeĄnition 2.5 (Linear variety (Nguyen, 2014)). A set H ⊂ R
n is said to be a linear

variety, if for every x1,x2 ∈ H and every α ∈ R, the point αx1 + (1 − α)x2 ∈ H.

DeĄnition 2.6 (Hyperplane (Nguyen, 2014)). A hyperplane H (f , g) is a set of the form

H (f , g) = ¶x ∈ R
n : fTx = g♢ ,

where f ∈ R
n and g ∈ R.

From the geometric point of view, a hyperplane in R
n can be deĄned as an (n − 1)-

dimensional linear variety. For instance, in R
3, a plane, which is a 2-dimensional linear

variety, is a hyperplane.

DeĄnition 2.7 (Half-spaces (Nguyen, 2014)). From the deĄnition of hyperplane, a closed

half-space H(f , g) is a set of the form

H(f , g) = ¶x ∈ R
n : fTx ≤ g♢ ,

where f ∈ R
n and g ∈ R.

DeĄnition 2.8 (Polyhedral set (Blanchini & Miani, 2007)). A convex polyhedral set

P (F , g) is a set of the form

P (F , g) = ¶x ∈ R
n : F Tx ≤ gT♢ ,

where F =
[

fT1 fT2 · · · fTm

]

and g =
[

g1 g2 · · · gm

]

with fi ∈ R
n ∀i, and gi ∈ R ∀i. In

other words, a convex polyhedral is expressed as the intersection of a Ąnite number of

half-spaces.

DeĄnition 2.9 (Polytope (Blanchini & Miani, 2007)). A polytope is a non-empty bounded

polyhedral set.
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DeĄnition 2.15 (Control invariant set (Kerrigan & Maciejowski, 2000)). The set Ω ⊂ R
n

is said to be a control invariant set for the system xk+1 = f(xk,uk) with xk ∈ X and uk ∈ U,

if for all x0 ∈ Ω there exists uk = h(xk) such that xk+1 ∈ Ω, ∀k ∈ N.

DeĄnition 2.16 (Maximal control invariant set (Kerrigan & Maciejowski, 2000)). The

set C∞(Ω) is said to be the maximal control invariant set contained in Ω for the system

xk+1 = f(xk,uk) if C∞(Ω) is control invariant and contains all control invariant sets contained

in Ω. Thus, if Φ is a control invariant set, Φ ⊆ C∞ (Ω) ⊆ Ω.

The control invariant set can be obtained through the admissible set.

DeĄnition 2.17 (Admissible set (Kerrigan & Maciejowski, 2000)). The i-th step admissible

set Ci(Ω) is the set of states for which exists an admissible control sequence able to keep

the stateŠs evolution inside Ω during i steps, i.e.,

Ci(Ω) = ¶x0 ∈ Ω : ∀k = 0, · · · , i− 1,∃uk ∈ U such that xk+1 ∈ Ω♢ .

The admissible set have some properties useful for numerical implementation of control

invariant sets.

Property 2.1. The sequence Ci(Ω) satisĄes the properties:

(i) Each set Ci+1(Ω) ⊆ Ci(Ω);

(ii) Each set Ci(Ω) =
⋂i

k=0 Ck(Ω);

(iii) C∞(Ω) is Ąnitely determined if ∃i ∈ N such that Ci+1(Ω) = Ci(Ω). Therefore, Ci(Ω) =

C∞(Ω).

DeĄnition 2.18 (The one-step set Q(Ω) (Kerrigan & Maciejowski, 2000)). The one-step

set Q(Ω) is deĄned as the set of x ∈ R
n for which an admissible control input exists and

can drive the system to Ω in one-step, i.e.,

Q(Ω) = ¶xk ∈ R
n : ∃uk ∈ U such that f(xk,uk) ∈ Ω,∀k ∈ N♢

Using the deĄnition of the one-step operator it is possible to state a geometric condition

for invariance.

Theorem 1 (Geometric condition for invariance (Kerrigan & Maciejowski, 2000)). The

set Ω ∈ R
n is a control invariant set if and only if Ω ⊆ Q(Ω).

This theorem gives a geometric interpretation for invariant sets making the one-step

set a standard tool for computation of invariants thought iterative algorithms.
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DeĄnition 2.19 (Reachable set (Kerrigan & Maciejowski, 2000)). The reachable set of Ω,

R(Ω), is the set of states for which the system can evolve from Ω through an admissible

input in one-step, i.e.,

R(Ω) = ¶ω ∈ R
n : ∃xk ∈ Ω,∃uk ∈ U such that ω = f(xk,uk)∀k ∈ N♢ .

DeĄnition 2.20. (Robust positively invariant set (Kerrigan, 2000)) The set Ω is said to

be robust positively invariant for the uncertain system xk+1 = f(xk,wk) if ∀x0 ∈ Ω and

∀wk ∈ W, the system evolution satisĄes xk ∈ Ω, ∀k ∈ N. In other words, if a system reaches

a robust positively invariant set, it will stay inside this set despite the uncertainties, i.e.,

xk ∈ Ω ⇒ xk+1 ∈ Ω,∀wk ∈ W.

DeĄnition 2.21. (Maximal robust positively invariant set (Kerrigan, 2000)) The set

Õ∞(Ω) is said to be the maximal robust positively invariant set contained in Ω for the

uncertain system xk+1 = f(xk,wk) if Õ∞(Ω) is robust positively invariant and contains all

the robust positively invariant sets contained in Ω. Therefore, if Φ is a robust positively

invariant set, Φ ⊆ Õ∞(Ω) ⊆ Ω.

DeĄnition 2.22. (Robust control invariant set (Kerrigan, 2000)) The set Ω ⊂ R
n is said

to be a robust control invariant set for the uncertain system xk+1 = f(xk,uk,wk) with

xk ∈ X, uk ∈ U, and wk ∈ W; if for all x0 ∈ Ω there exists uk = h(xk),∀xk ∈ Ω,∀k ∈ N, such

that xk+1 ∈ Ω, ∀wk ∈ W.

DeĄnition 2.23. (Maximal robust control invariant set (Kerrigan, 2000)) The set C̃∞(Ω)

is said to be the maximal robust control invariant set contained in Ω for the uncertain

system xk+1 = f(xk,uk,wk) if C̃∞(Ω) is robust control invariant and contains all the robust

control invariant sets contained in Ω. Therefore, if Φ is a robust control invariant set,

Φ ⊆ C̃∞(Ω) ⊆ Ω.

As for the case without uncertainties, the useful one-step set can be deĄned in order to

provide an operator to deal with the set invariance for uncertain systems.

DeĄnition 2.24. (The robust one-step set Q̃(Ω) (Kerrigan, 2000)) The robust one-step

set Q̃(Ω) is deĄned as the set of x ∈ R
n for which an admissible control input exists and

can drive the system to Ω in one step, for all considered disturbances, i.e,

Q̃(Ω) = ¶xk ∈ R
n : ∃uk ∈ U such that f(xk,uk,wk) ∈ Ω,∀wk ∈ W,∀k ∈ N♢ .

Theorem 2 (Geometric condition for robust invariance (Kerrigan, 2000)). The set Ω ∈ R
n

is a robust control invariant set if and only if Ω ⊆ Q̃(Ω).
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2.2 Linear Matrix Inequalities

Convex optimization problems over Linear Matrix Inequalities (LMIs) constraints can

be used to formulate many optimization problems in control theory through numerical

efficient methods.

DeĄnition 2.25 (Linear Matrix Inequality (Boyd et al., 1991)). A LMI is a matrix

inequality of type F (x) > 0 in which F (x) : Rm → R
n×n is symmetric and affine in the

decision variables x. It can be generally written in the form

F (x) = F0 +
m∑

i=1

xiFi > 0,

where Fi ∈ R
n×n are given matrices, with i ∈ ¶1, 2, · · · ,m♢ and x =

[

x1 x2 · · · xm

]T

.

DeĄnition 2.26 (Linear Matrix Inequality feasibility (Boyd et al., 1991)). A LMI is said

to be feasible if ∃x ∈ R
m such that F (x) > 0.

Often, the inequalities obtained in the control problemsŠ design are nonlinear functions

of the decision variables. A useful tool to commonly work around these situations are the

Schur complement.

DeĄnition 2.27 (Schur complement (Boyd et al., 1991)). LetM1(x), M2(x), andM3(x) be

affine functions of the decision variable x ∈ R
m with M1(x) = M1(x)T and M2(x) = M2(x)T .

The Schur complement states that the following inequalities are equivalent.

(i) M1(x) −M3(x)TM2(x)−1M3(x) > 0 with M2(x) > 0

(ii)




M1(x) M3(x)T

M3(x) M2(x)



 > 0

2.3 Potential functions

As stated in Choset et al. (2015), a potential function is a differentiable real-valued function

U : Rn 7→ R that can be seen as an energy function whose gradient gives a force vector

Ąeld pointing in the direction where U increases. Two types of potential functions will be

used in this work: the attraction potential function, having its gradient representing an

attractive force Ąeld, and the repulsive potential function, having its gradient representing

a repulsive force Ąeld.

The attraction potential function is deĄned having its value increasing with the distance

between two variables a and b. Both conic and quadratic functions satisfy this requirement,

however, since the quadratic function is continuously differentiable the attractive potential

function is deĄned from it. Therefore,

Uatt =
1

2
κd (a, b)

2
, (2.1)
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with d (a, b) being the Euclidean distance between the variables a and b, given by the

2-norm distance, and κ is a weight parameter.

On the other hand, inspired by the electric potential Ąeld, the repulsive potential

function can be described as being inversely proportional to the square of the distance

between the variables a and b, yielding to

Urep =
1

2
λ

1

d (a, b)
2 , (2.2)

with λ being a weight parameter.

Further, it is possible to combine the attraction and repulsive functions for describing

an uniĄed potential Ąeld as

U = Uatt + Urep. (2.3)

The function (2.3) can be used, for instance, to address robot navigation problems

and to describe electrical iteration between charged particles. More information about

potential functions and their use in robotics can be found in Choset et al. (2015).

2.4 Final remarks

In this chapter the main mathematical concepts used along this work were formally

deĄned aiming to provide a better understanding of this work. In the next chapters

model predictive controllers will be designed with the help of the mathematical tools

presented in this chapter to solve the control problem of a Tilt-rotor UAV performing load

transportation tasks.
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3
Linear Model Predictive Control

This chapter presents the design of two linear model predictive controllers (MPC) in order

to solve the load transportation problem using a Tilt-rotor UAV. The proposed controllers

must perform trajectory tracking of the suspended load in helicopter-Ćight mode while

keeping the vehicle stabilized. The main objectives of the control system are: ensure

closed-loop stability, reject constant external disturbances and parametric uncertainties,

and satisfy constraints on state deviations and control inputs.

The control problem is formulated in this chapter considering a state feedback structure,

i.e., all states are assumed to be known either by measurement or estimation. Since the

Tilt-rotor UAV is an underactuated mechanical system1 and aiming an improved trajectory

tracking control, the loadŠs translational position and its yaw angle are chosen to be

regulated, while the others degrees of freedom are only stabilized.

For complex systems, such as the Tilt-rotor UAV, some control techniques widely

used, for instance control by pole allocation, may not achieve satisfactory performance

because of the systemŠs underactuation and coupled dynamics behaviors. In this context,

MPC become interesting because of their model-based nature and ability to deal with

multivariable systems in a simple way (Rossiter, 2013).

In general, model predictive controllers are a class of optimal receding horizon controllers,

in which the control action applied to the system is obtained by solving at each sampling

time a Ąnite horizon open-loop optimal control problem considering the current state as

initial one for predictions. The optimization problemŠs solution gives an optimal control

1Those readers who want further details about the Tilt-rotor UAV modeling may refer to Appendix A.
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sequence, from which the Ąrst control of the obtained sequence is applied to the system

as input. Afterward, the horizon is receded and the process starts again considering

the new current state as initial condition. The essence behind this procedure lies on

the ability to predict Np future states having the current information of the system and

its dynamic model. Hereafter, the predicted states could be used in order to obtain Nc

control actions able to drive the system optimally along some desired trajectory within

the prediction horizon (Camacho & Bordons, 2004). The variables Np and Nc are tuning

parameters of the MPC algorithm and are called, respectively, prediction and control

horizons. The prediction horizon deĄnes how many systemŠs outputs are predicted within

the receding horizon time span in order to formulate the optimization problem, while the

control horizon deĄnes how many elements compose the optimal control sequence. Usually,

higher prediction horizons increase the systemŠs time-response, while smaller ones make

the systemŠs response to become oscillatory and even unstable, depending on how small

the prediction horizon is regarding the systemŠs transient time. On the other hand, large

control horizons result in better closed-loop performance because more control changes are

allowed during the systemŠs transient (Rossiter, 2013). Work with both horizons allows to

seek for better closed-loop response with smaller computational effort. Mainly, it allows

to enlarge the systemŠs domain of attraction without increasing the number of decision

variables in the MPC algorithm.

Initially at this chapter, a linear time-invariant model predictive controller (LTI-MPC)

and a linear time-variant model predictive controller (LTV-MPC) will be generally designed

(Santos et al., 2017b). Later on, both controllers will be particularized for the trajectory

tracking of the suspended load with stabilization of the Tilt-rotor UAV, being their features

and drawbacks when used in such application highlighted and compared through numeric

simulation results.

3.1 Linear time-invariant model predictive controller

This section deals with the design of the LTI-MPC.

3.1.1 Problem statement

Consider a Ąnite-dimensional nonlinear system of the form

ẋ(t) = f (x(t),u(t)) , (3.1)

where x ∈ X ⊂ R
n denotes the state vector and u ∈ U ⊂ R

m denotes the input vector with

X and U being, respectively, the set of admissible states and inputs. Further, f : X×U 7→ X

is a state-transition nonlinear map.
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In this section, the control problem for the LTI-MPC is deĄned as the problem

of designing a model predictive controller able to perform trajectory tracking of the

suspended load while stabilizing the UAV. The controller considers a linear time-invariant

discrete model with state-space representation as the base of its prediction process and,

aiming to achieve improved performance, it works with the incremental form of the MPC.

Besides, it must ensure closed-loop stability throughout the trajectory respecting the

systemŠs constraints even in the presence of constant external disturbances and parametric

uncertainties.

Therefore, consider the mapping of the system (3.1) from the continuous-time to the

discrete-time domain after linearized through Ąrst-order expansion in Taylor series, which

yields the linear systemŠs error model

∆xk+1 = A∆xk +B∆uk, (3.2)

where ∆xk = xk − xtrk and ∆uk = uk − utrk , with the superscript (·)tr denoting desired

trajectory variables, and A and B being, respectively, the state and input Jacobians

linear model matrices. Additionally, the pair (A,B) is assumed to be controllable and

∆xk ∈ E ⊂ R
n, with E being a compact set limiting the state error.2

The linearized system (3.2) gives the one-step ahead prediction of ∆xk. Thus, recursively

using (3.2), the prediction of the future states of the system can be obtained by the following

procedure:

1. Evaluate (3.2) at the time instant k+ 2 together with the knowledge of ∆xk+1, which

gives the two-step ahead prediction

∆xk+2 = A∆xk+1 +B∆uk+1

= A [A∆xk +B∆uk] +B∆uk+1

= A2∆xk +AB∆uk +B∆uk+1

(3.3)

2. Consider (3.2) at k + 3 with equation (3.3), yielding the three-step ahead prediction

∆xk+3 = A∆xk+2 +B∆uk+2

= A [A2∆xk +AB∆uk +B∆uk+1] +B∆uk+2

= A3∆xk +A2B∆uk +AB∆uk+1 +B∆uk+2

(3.4)

3. Follow this recursive procedure until the n-step ahead prediction, resulting in

∆xk+n = An∆xk +An−1B∆uk + · · · +B∆uk+n−1 (3.5)

2In this work variables in continuous-time and discrete-time domains are differentiated by the time
variable t and the sampling variable k.
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Therefore, the sequence of future states of the system up to the time instant k + n can

be generally expressed by the matricial form










∆xk+1

∆xk+2

...

∆xk+n










=










A

A2

...

An










∆xk +










B 0 · · · 0

AB B · · · 0

...
...

. . .
...

An−1B An−2B · · · B



















∆uk

∆uk+1

...

∆uk+n−1










(3.6)

where 0 denotes zero matrices with appropriated dimensions.

Equation (3.6) assumes that the prediction and control horizon are equal. However,

when Nc < Np the last computed control action needs to be held since the predicted

state sequence has more elements than the control input sequence, thus ∆uk+i = ∆uk+Nc ,

∀ Nc ≤ i ≤ Np. Thereafter, when Nc < Np, the previous derived prediction model (3.6) can

be rewritten as










∆xk+1

∆xk+2

...

∆xk+Np










︸ ︷︷ ︸

∆x
−→

=










A

A2

...

ANp










︸ ︷︷ ︸

Pni

∆xk +











B 0 · · · 0

AB B · · · 0

...
...

. . .
...

ANp−1B ANp−2B · · ·

∑Np−Nc

i=0 Ai
)

B











︸ ︷︷ ︸

Hni










∆uk

∆uk+1

...

∆uk+Nc−1










︸ ︷︷ ︸

∆u
−→

.

(3.7)

Aiming to improve the control systemŠs performance when constant external distur-

bances and parametric uncertainties affect the system, the increment of control deĄned as

δuk = ∆uk − ∆uk−1, ∀ k ∈ N is taken as input variable, where δuk ∈ V ⊂ R
m with V being

a compact set constraining the control increment. Thus, the model described in (3.2) can

be rewritten as 


∆xk+1

∆uk





︸ ︷︷ ︸

∆x̄k+1

=




A B

0 I





︸ ︷︷ ︸

Ā




∆xk

∆uk−1





︸ ︷︷ ︸

∆x̄k

+




B

I





︸ ︷︷ ︸

B̄

δuk, (3.8)

being I an identity matrix with appropriated dimension.

Then, using the augmented system (3.8) and making δuk+i = 0, ∀ i ≥ Nc, the prediction

model (3.6) can be rewritten as










∆x̄k+1

∆x̄k+2

...

∆x̄k+Np










︸ ︷︷ ︸

∆x̄
−→

=










Ā

Ā2

...

ĀNp










︸ ︷︷ ︸

Pi

∆x̄k +










B̄ 0 · · · 0

ĀB̄ B̄ · · · 0

...
...

. . .
...

ĀNp−1B̄ ĀNp−2B̄ · · · ĀNp−NcB̄










︸ ︷︷ ︸

Hi










δuk

δuk+1

...

δuk+Nc−1










︸ ︷︷ ︸

δu
−→

. (3.9)

In this work, the modiĄed model (3.8) is referred as the incremental model and (3.9)

as the incremental prediction model, likewise, (3.7) is referred as the non-incremental

prediction model. The main feature of working with the incremental formulation is the
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addition of integrators to the system equals to the number of its control inputs (Rossiter,

2013). However, it has the drawback of increasing the dimension of the state-space which

could make the controllerŠs computational cost prohibitive and hence the use of the non-

incremental model could be more suitable. On the other hand, when working with the

non-incremental prediction model in a scenario where the difference between the prediction

and control horizon is sufficiently large, i.e. Np ≫ Nc, the sums terms in the last block

column of matrix Hni (see equation (3.7)) increase. Thus, the number of mathematical

operations necessary to obtain the prediction model also increase, which could make the

incremental prediction model more suitable.

The choice of which prediction model should be used is always a trade-off between

good performance and small computational cost. In this work, aiming to improve the

performance with the additional integrators, the incremental prediction model is used to

formulate the predictive controllers. Therefore, the remaining of this chapter considers only

the prediction model deĄned in (3.9). Note that, all deĄnitions could be easily adapted to

design non-incremental MPCs.

3.1.2 LTI-MPC optimization problem

As previously stated, the control action of an MPC is obtained through the optimization

of a given performance measure. Thus, consider the standard quadratic cost function J
for the incremental model (3.9)

J =

Np−1
∑

i=0

∥∆x̄k+i∥2
Q +

Nc−1∑

j=0

∥δuk+j∥2
R +

∥
∥
∥∆x̄k+Np

∥
∥
∥

2

P
, (3.10)

where the matrices Q > 0 and R > 0 are, respectively, weighting matrices for the state

error and the control effort, and P > 0 is a matrix used to formulate a quadratic terminal

cost added to the cost function to ensure closed-loop stability (Mayne et al., 2000). In

addition of being positive deĄnite, the matrix P must formulate a local Lyapunov function,

e.g. V (∆x̄k) = ∆x̄TkP∆x̄k, and it must be monotonic.

Considering the prediction model (3.9), it is possible to rewrite equation (3.10) in the

matricial form as

J =


Hiδu
−→

+ P i∆x̄k

)T
ΩQ



Hiδu
−→

+ P i∆x̄k

)

+ δuT

−→
ΩRδu

−→
+ ∆x̄T

k+Np
P∆x̄k+Np , (3.11)

where ΩQ = blkdiag(Q, · · · ,Q) and ΩR = blkdiag(R, · · · ,R). Finally, equation (3.11)

can be rewritten in the canonical quadratic form

J =
1

2
δuT

−→
Λδu

−→
+ fT δu

−→
+ f0, (3.12)
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where

Λ = 2


HT
i ΩQHi + ΩR

)

,

fT = 2 (P i∆x̄k)T
ΩQHi,

f0 = (P i∆x̄k)T
ΩQ (P i∆x̄k) + ∆x̄T

k+NP
P∆x̄k+NP

.

A terminal cost able to ensure closed-loop stability can be deĄned through a Lyapunov

function as V (∆x̄k) = ∆x̄TkP∆x̄k. Considering V (∆x̄k) as an upper bound for the linear

quadratic regulator cost-to-go function, the following problem is considered

V (∆x̄0) ≥ min
δu[0,∞)

∞∑

k=0

∆x̄T
k Q∆x̄k + δuT

k Rδuk. (3.13)

In order to obtain P , the necessary conditions to stability, i.e., P > 0 and V (∆x̄k+1) −
V (∆x̄k) < 0 (Boyd et al., 1991), must be considered. Therefore, it is possible to represent

(3.13) as an inequality, yielding to

(
Āf ∆x̄k

)T
P
(
Āf ∆x̄k

)− ∆x̄T
kP∆x̄k ≤ −∆x̄T

k



Q +KT RK
)

∆x̄k, (3.14)

where δuk = K∆xk, Āf = Ā+ B̄K, and K is a stabilizing feedback gain.

The inequality (3.14) can be solved as a convex optimization problem if represented as

an LMI (see Chapter 2, Section 2.2). Therefore, in order to express (3.14) as a valid LMI

condition (see DeĄnition 2.25), the inequality needs to be manipulated. Hence, rearranging

(3.14) and applying the Schur complement twice (see DeĄnition 2.27), it yields to










P ĀT
f Q

1
2 KR

1
2

Āf P−1
0 0

Q
1
2 0 I 0

R
1
2K 0 0 I










≥ 0. (3.15)

Seeking to remove the nonlinear terms, it is necessary to pre and post multiply (3.15)

by the block diagonal matrix blkdiag (P −1, I, I, I), and deĄne S = P −1 and Y = KP −1.

Therefore, the LMI condition is given by










S ST ĀT
f + Y T B̄T SQ

1
2 Y T R

1
2

ĀfS + B̄Y S 0 0

Q
1
2S 0 I 0

R
1
2Y 0 0 I










≥ 0. (3.16)

Finally, the matrix P can be obtained by solving the optimization problem

min
S>0

Tr(P ),

subject to (3.16),
(3.17)

where Tr(·) is the trace operator.
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Further, in order to complete the LTI-MPC optimization problem (3.12) taking advan-

tage of one of the main features of MPC methods, the following constraints are considered:

1. Input signal constraint:

The main goal behind working with restrictions on the control signal is to avoid

actuatorsŠ saturation, i.e., to allow the control algorithm to compute only admissible

control inputs uk ∈ U. Therefore, the control signal must be within the set

U = ¶uk ∈ R
m : umin ≤ uk ≤ umax,∀k ∈ N♢ , (3.18)

where (·)max and (·)min are, respectively, the maximum and minimum values allowed

for the input variables.

Knowing that ∆uk = uk − utrk and δuk = ∆uk − ∆uk−1, with utrk being the control

action that could drives the system towards the desired trajectory, it is possible to

write the control signal at the instant k as

uk = utrk + ∆uk−1 + δuk. (3.19)

Computing the control actions uk up to uk+Nc−1, it yields to











uk

uk+1

...

uk+Nc−1











︸ ︷︷ ︸

u
−→

=











utrk

utrk+1

...

utrk+Nc−1











︸ ︷︷ ︸

utr

−→

+











I

I

...

I











︸︷︷︸

C1

∆uk−1 +











I 0 · · · 0

I I · · · 0

...
...

. . .
...

I I · · · I











︸ ︷︷ ︸

C2

δu
−→
. (3.20)

Then, the set (3.18) can be written in terms of the control increment through the

inequalities

C2δu
−→

≤ C1 (umax − ∆uk−1) − utrk
−→

, (3.21)

−C2δu
−→

≤ −C1(u
min − ∆uk−1) + utrk

−→

. (3.22)

2. Maximum state error constraint:

Since linearized models could be seen globally as error models, i.e., ∆x̄k = x̄k − x̄tr
k ,

it is possible to bound the maximum and minimum deviation between the states

and reference. Therefore, consider ∆x̄k ∈ Ê ⊂ R
n+m, where

Ê = ¶∆x̄k ∈ R
n+m : ∆x̄min ≤ ∆x̄k ≤ ∆x̄max,∀k ∈ N♢ , (3.23)
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with ∆x̄min and ∆x̄max being, respectively, lower and upper bounds for the state

error.

Using the prediction model (3.9), the state error constraints can be written as

∆x̄min ≤ P i∆x̄k + Hiδu
−→

≤ ∆x̄max. (3.24)

Therefore, the constraints imposed to the state error can be represented by the

following inequalities

Hiδu
−→

≤ ∆x̄max − P i∆x̄k, (3.25)

−Hiδu
−→

≤ −∆x̄min + P i∆x̄k. (3.26)

3. Terminal set constraint:

A terminal set constraint Ω, which ensures that the last state error ∆x̄k+Np belongs

to a control invariant set (see DeĄnition 2.15), giving stability assurances for the

system (Mayne et al., 2000), can be obtained using the concepts of invariant control

sets together with the one-step set Q(Ω) (see DeĄnition (2.18)). Thus, considering

the model (3.8) and constraints (3.18) and (3.23), the one-step operator can be

expressed as

Q(Ω) =
{

∆x̄ ∈ Ê : ∃ δu ∈ V, Ā∆x̄+ B̄δu ∈ Ω

}

. (3.27)

Therefore, the maximal invariant set can be obtained by means of the iterative

procedure:

(a) Initialization: Ω0 = Ê ∩ ¶ω ∈ R
n+m : Kω ∈ V♢.

(b) Iteration: Ωk+1 = Ωk ∩Q(Ωk).

(c) Terminal condition: stop when Ωk+1 = Ωk or Ωk+1 = ∅. DeĄne Ω = Ω∞ = Ωk.

The terminal constraint can be expressed as ∆x̄k+Np ∈ Ω. However, in this form it

cannot be used in the MPC optimization problem since it is not expressed as function

of the decision variable δu. Since Ω is a bounded polyhedron, i.e., a polytope (see

DeĄnition 2.9), it is possible to obtain its H-representation, which is an unique

representation constructed by means of the intersection of half-spaces (see DeĄnition

2.7). Then, the terminal constraint can be rewritten as HΩ∆x̄k+Np ≤ b. Using the

prediction model (3.9) to obtain ∆x̄k+Np , the terminal set constraint can be written

as

HΩ

[

pi,¶Np♢∆x̄k + hi,¶Np♢δu
−→

]

≤ b, (3.28)

where pi,¶Np♢ is the last block entry of the matrix P i, i.e., pi,¶Np♢ = ĀNp , and hi,¶Np♢

is the last block line of matrix Hi, i.e., hi,¶Np♢ =
[
ĀNp−1B̄ ĀNp−2B̄ · · · ĀNp−NcB̄

]
.
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Therefore, in terms of δu
−→

the terminal constraint can be expressed as

HΩhi,¶Np♢δu
−→

≤ b− HΩpi,¶Np♢∆x̄k. (3.29)

Finally, it is possible to write the systemŠs constraints in the matricial form M δu
−→

≤ N ,

with matrices M and N deĄned as

M =













C2

−C2

Hi

−Hi

HΩhi,{Np}













and N =














C1 (umax − ∆uk−1) − utr
k

−→

−C1
(
umin − ∆uk−1

)
+ utr

k
−→

∆x̄max − P i∆x̄k

−∆x̄min + P i∆x̄k

b− HΩpi,{Np}∆x̄k














. (3.30)

Therefore, the constrained LTI-MPC strategy can be generally deĄned through the

optimization problem

min
δu
−→

1

2
δu′

−→
Λδu

−→
+ f ′δu

−→
+ f0,

subject to M δu
−→

≤ N .
(3.31)

3.2 Linear time-variant model predictive controller

This section deals with the design of the LTV-MPC presented in Santos et al. (2017b).

3.2.1 Problem statement

Consider the following Ąnite-dimensional nonlinear system

ẋ(t) = f (x(t),u(t)) , (3.32)

where xk ∈ X ⊂ R
n is the state vector, and uk ∈ U ⊂ R

m is the input vector, with X and U

being, respectively, the set of admissible states and inputs. Further, f : X × U 7→ X is the

state-transition map deĄned by the nonlinear system model.

For the LTV-MPC, the control problem is deĄned as designing a controller able to

perform trajectory tracking of the suspended load while stabilizing the UAV. Further, the

controller must address the problems of performing yaw angle regulation and take-off and

landing maneuvers. In this model predictive controller framework a time-variant discrete

model with state-space representation is considered for state predictions and, aiming an

improved performance, an incremental formulation is used. Besides of performing stably

trajectory tracking, the controller is required to satisfy the systemŠs constraints even in

the presence of constant external disturbances and parametric uncertainties.

Consider the mapping of equation (3.32) from the continuous-time to the discrete-time

domain after being linearized through Ąrst-order expansion in Taylor series around a
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time-varying trajectory. Then, the error model can be expressed as

∆xk+1 = A(ζk)∆xk +B(ζk)∆uk, (3.33)

where ∆xk = xk − xtrk and ∆uk = uk − utrk with the superscript (·)tr denoting the desired

trajectory, ζk is the vector of time-varying parameters, andA(ζk) andB(ζk) are, respectively,

the state and input Jacobian linear model matrices. Additionally, ∆xk ∈ E ⊂ R
n, and the

pair (A(ζk),B(ζk)) are assumed to be controllable for all ζk ∈ ∆ ⊂ R
v, with E and ∆ being

compact sets.

Similarly to the previous section, the state-space model (3.33) gives the one-step

ahead prediction and can be used recursively to obtain the prediction model considering

a prediction horizon Np and control horizon Nc. Thus, the two-step ahead prediction is

given by

∆xk+2 = A(ζk+1)∆xk+1 +B(ζk+1)∆uk+1

= A(ζk+1) [A(ζk)∆xk +B(ζk)∆uk] +B(ζk+1)∆uk+1

= A(ζk+1)A(ζk)∆xk +A(ζk+1)B(ζk)∆uk +B(ζk+1)∆uk+1.

(3.34)

Continuing the recursive procedure, the n-step ahead prediction yields

∆xk+n =

(
n∏

ℓ=1
A(ζk+n−ℓ)

)

∆xk +

(
n−1∏

ℓ=1
A(ζk+n−ℓ)

)

B(ζk)∆uk + · · · +

B(ζk+n−1)∆uk+n−1.

(3.35)

Aiming to improved the control systemŠs performance with additional integrators, the

control increment δuk ∈ V ⊂ R
m is selected to be the control input, with V being a compact

set limiting the control increment. As made in (3.8), the discrete linearized system can be

rewritten in the incremental form as




∆xk+1

∆uk





︸ ︷︷ ︸

∆x̄k+1

=




A(ζk) B(ζk)

0 I





︸ ︷︷ ︸

Ā(ζk)




∆xk

∆uk−1





︸ ︷︷ ︸

∆x̄k

+




B(ζk)

I





︸ ︷︷ ︸

B̄(ζk)

δuk. (3.36)

Considering the case where Nc < Np and assuming δuk+i = 0, ∀ i ≥ Nc, the Np-step

ahead prediction yields

∆x̄k+Np =


Np∏

ℓ=1
Ā(ζk+Np−ℓ)



∆x̄k +


Np−1∏

ℓ=1
Ā(ζk+Np−ℓ)



B̄(ζk)δuk + · · · +


Np−Nc∏

ℓ=1
Ā(ζk+Np−ℓ)



B̄(ζk+Nc−1)δuk+Nc−1.

(3.37)

Thereby, it is possible to write the prediction model as

∆x̄
−→

= P∆x̄k + Hδu
−→

, (3.38)
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where the matrices P and H are given by

P =


(

1∏

ℓ=1
Ā(ζk+1−ℓ)

)T (
2∏

ℓ=1
Ā(ζk+2−ℓ)

)T

· · ·


Np∏

ℓ=1
Ā(ζk+Np−ℓ)

T
]T

, (3.39)

H =














B̄(ζk) 0
(

2−1∏

ℓ=1
Ā(ζk+2−ℓ)

)

B̄(ζk) B̄(ζk+1)

...
...


Np−1∏

ℓ=1
Ā(ζk+Np−ℓ)



B̄(ζk)


Np−2∏

ℓ=1
Ā(ζk+Np−ℓ)



B̄(ζk+1)

· · · 0

· · · 0

. . .
...

· · ·


Np−Nc∏

ℓ=1
Ā(ζk+Np−ℓ)



B̄(ζk+Nc−1)













. (3.40)

Note that the difference between the incremental prediction model when considering the

LTV system (3.38) and the LTI system (3.9) lies on the necessity of on-line computation,

since the latter varies due to the time-varying parameters ζk.

3.2.2 LTV-MPC optimization problem

Consider the standard quadratic cost function

J =
Np∑

i=0

∥∆x̄k+i∥2

Q
+

Nc−1∑

j=0

∥δuk+j∥2

R
, (3.41)

where Q > 0 and R > 0 are, respectively, weighting matrices of states error and control

effort. Note that, unlike equation (3.10) that considers a terminal cost function, here it is

not used due to the time-variant nature of the system, which would require to solve an

LMI problem similar to (3.17) at each sampling period k, making the computational cost

of the controller prohibitive.

The cost function (3.41) can be written in the matricial form by means of the prediction

model (3.38) as follows

J =


Hδu
−→

+ P∆x̄k
)T

ΩQ



Hδu
−→

+ P∆x̄k
)

+ δuT
−→

ΩRδu
−→
, (3.42)

where ΩQ = blkdiag(Q, · · · ,Q) and ΩR = blkdiag(R, · · · ,R) are block diagonal matrices.

Finally, the equation (3.42) can be rewritten in the canonical quadratic form as

J =
1

2
δuT
−→

Λδu
−→

+ fT δu
−→

+ f0, (3.43)
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where

Λ = 2


HT
ΩQH + ΩR

)

,

fT = 2 (P∆x̄)T
ΩQH,

f0 = (P∆x̄k)T
ΩQ (P∆x̄k) .

Adding constraints on the objective variable δu
−→

, the most general optimization problem

must be solved
min
δu
−→

1

2
δuT
−→

Λδu
−→

+ fT δu
−→

+ f0,

subject to M δu
−→

≤ N .
(3.44)

Likewise for the LTI-MPC, the constraints considered above can be used to bound the

control signal amplitude avoiding saturation in the actuators and to limit the maximum

state error, when mapped to the amplitude of the control increment δu. Matrices M and

N are then given by

M =










C2

−C2

H

−H










and N =












C1 (umax − ∆uk−1) − utr
k

−→

−C1(umin − ∆uk−1) + utr
k

−→

∆x̄max − P∆x̄k

−∆x̄min + P∆x̄k












, (3.45)

where matrices C1 and C2 are deĄned as

C1 =










I

I

...

I










and C2 =










I 0 · · · 0

I I · · · 0

...
...

. . .
...

I I · · · I










.

Summarizing, since the relation (3.19) still holds for the LTV-MPC, in order to compute

the control action applied to the system, the optimization problem (3.44) with (3.45) must

be solved.

3.3 Suspended load trajectory tracking control prob-

lem

In this section the trajectory tracking problem of a suspended load carried by a Tilt-rotor

UAV is solved from the loadŠs perspective through the previous designed LTI-MPC and

LTV-MPC. The model (A.49), developed in the appendix A, is used to derive the linearized

models (3.2) and (3.33).

In order to compute both, time-invariant and time-variant linearized models, to design

the predictive controllers, the equilibrium points of the system must be found. Therefore,
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consider the vehicle in hovering without any external disturbances (d = 0). The equilibrium

point can be obtained after solving ẋL = φL(xL,u,d) =
[

q̇TL q̈TL

]T

= 0, which leads to the

system of algebraic equations

ϑL (qeqL ) −GL (qeqL ) = 0, (3.46)

where qeqL = [xeqL yeqL zeqL ϕeqL θeqL ψeqL γeq1 γeq2 αeqR αeqL ]T .

Nevertheless, (3.46) has more variables than equations meaning that an inĄnity set of

real numbers can solve the algebraic problem. To overcome this issue, let the states xL,

yL, and zL assume any value and let ψL = 0.3 Thus, considering the physical parameters

deĄned on table A.1, the equilibrium values for the states and inputs are given by

ϕeq = 0, θeq = 0, γeq1 = 0.0001563, γeq2 = 0.0287134, αeqR = 0.0288375, αeqL = 0.0283718,

f eqR = 9.7903455, f eqL = 9.8252665, τ eqαR = 0, τ eqαL = 0.
(3.47)

For discretization of the linearized Jacobians, it is assumed a sampling time of Ts = 12

ms. Furthermore, the saturation level of the Tilt-rotor UAV actuators and the maximum

state error allowed, used in (3.30) for the LTI-MPC and in (3.45) for the LTV-MPC, are

∆x = [−1, 1], ∆y = [−1, 1], ∆z = [−1, 1],

∆ϕ = [−0.8, 0.8], ∆θ = [−0.8, 0.8], ∆ψ = [−0.8, 0.8],

∆γ1 = [−0.8, 0.8], ∆γ2 = [−0.8, 0.8], ∆αR = [−0.8, 0.8], ∆αL = [−0.8, 0.8],

fR = [0, 15], fL = [0, 15], ταR = [−2, 2], ταL = [−2, 2],

(3.48)

where the error limitations were chosen regarding measurement errors and disturbances

affecting the system, and the actuatorsŠ bounds depends on physical constraints.

The BrysonŠs rule (Johnson & Grimble, 1987) was used as starting point to synthesize

the MPCŠs weighting matrices used in (3.10) and (3.41). The basic idea of BrysonŠs

method is to scale all variables by dividing each weight matrix diagonal entries by the

square of the maximum variation of the variable associated with that entry. Further, the

diagonal numerators can be modiĄed regarding the design goals. Thus, following this

procedure, the weight matrices are given by

Q = diag
(

40

22
,
40

22
,
20

22
,

5

(π/2)2
,

5

(π/2)2
,

10

(π)2
,

10

(π/2)2
,

10

(π/2)2
,

0.1

(π/2)2
,

0.1

(π/2)2
,
10

22
,
10

22
,

5

22
,

1

(π/3)2
,

1

(π/3)2
,

1

(π/4)2
,

5

(3π)2
,

5

(3π)2
,

0.1

(3π)2
,

0.1

(3π)2
, 40, 40, 40, 20,

40

(15 − f eqR )2
,

40

(15 − f eqL )2
,

20

(2 − ταR)2
,

20

(2 − τ eqαL)2



, (3.49)

3From now on, the subscript L used to differ the system from the loadŠs perspective from the UAVŠs
perspective will be omitted since this chapter deals only with the Ąrst one.
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R = diag



200

(15 − f eqR )2
,

200

(15 − f eqL )2
,

1000

(2 − τ eqαR)2
,

1000

(2 − τ eqαL)2



. (3.50)

Furthermore, the prediction and control horizons, chosen considering the trade-off

between good performance and small computational cost, are Np = 100 and Nc = 10. All

the above deĄned parameters are common to both controllers in order to compare their

performances when addressing the suspended load trajectory tracking problem.

3.3.1 Desired trajectory

To explore the controllersŠ capabilities, two trajectories to be tracked by the suspended

load, composed of several interconnected paths described by polynomial and/or sinusoidal

functions, are proposed. For the Ąrst proposed trajectory, the vehicle starts in hovering

and tracks a square-like trajectory without any yaw movement during the execution (see

Figure 3.1). The main purpose of this trajectory is to compare fairly the LTI-MPC and

the LTV-MPC by means of the performance indexes Mean Squared Error (MSE) and

Integrated Absolute Derivative of Control Signal (IADU). For the second trajectory, the

Tilt-rotor UAV starts with vertical take-off, followed by a straight line tracking with

changes in direction together with yaw movements, and ends with vertical landing (see

Figure 3.2). The main goal of this trajectory is to show the ability of the LTV-MPC to

deal with yaw movements and take-off and landing maneuvers, where the length of the

rope and total mass of the vehicle vary, without relying only on the robustness given by

the feedback nature of the MPC.

Moreover, to evaluate the disturbance compensation of the proposed strategy, external

forces are applied to the suspended load when performing both trajectories. Figure 3.3

shows the disturbance proĄle for the desired trajectory, which may represent sustained

wind gusts affecting the load. The magnitude of the disturbances may seem low at a Ąrst

glance, however the mass of the load is very small (see Table A.1). Additionally, to better

evaluate the behavior of the proposed control strategies in the presence of uncertainties,

measurementŠs noise is considered and assumed to have Gaussian probability distribution

with zero mean and measurement error deĄned as three times the standard deviation. For

simulation purposes, position errors are ±0.15 [m], angular position errors are ±0.02 [rad],

velocity errors are ±0.01 [m/s], and angular velocity errors are ±0.002 [rad/s].

3.3.2 Linear time-invariant MPC

Aiming to obtain the discrete linear time-invariant state-space model in order to construct

the prediction model (3.9), the equations of motion (A.49) must be linearized around an

equilibrium point. Let xeq and ueq denote, respectively, the equilibrium state and inputs

able to maintain the system in hovering. Then, linearizing the state-space equations (A.49)
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being xeq = [(qeq)T (q̇eq)T ]T and ueq = [f eqR f eqL τ eqαR τ
eq
αL

]T , with the equilibrium values obtained

in (3.47) and qeq = [0 0 0 ϕeq θeq 0 γeq1 γeq2 αR
eq αL

eq]T .

To improve the trajectory tracking of the regulated variables and provide constant

disturbance and parametric uncertainties rejection, the error state vector ∆x is augmented

with integral actions (Raffo et al., 2010), yielding to

∆x̂ =








∆x
´

(ξ − ξtr)
´

(ψ − ψtr)








∈ R
24, (3.53)

whose dynamics are given by

∆ ˙̂x(t) =














A 020×4

1 0 0 0 0 0

04×14 04×4

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1














︸ ︷︷ ︸

Â

∆x̂(t) +




B

04×4





︸ ︷︷ ︸

B̂

∆u(t). (3.54)

To obtain a discrete prediction model using the incremental form (3.8) and, thereafter,

improve performance provided by the four additional input integrators added to the

closed-loop system (Rossiter, 2013), it is necessary to map the model (3.54) from the

continuous-time to the discrete-time domain, which yields to

∆x̂k+1 = Âd∆x̂k + B̂d∆uk, (3.55)

being the matrices Âd and B̂d obtained after discretizing the model using a zero-order

hold with sampling time Ts. Thereafter, the incremental model can be obtained extending

the system (3.55) as in (3.8), yielding to

∆x̄k+1 = Ā∆x̄k + B̄δuk. (3.56)

The trajectory to be tracked by the suspended load and its control signal are deĄned as

xtrk = [(qtrk )T (q̇trk )T ]T , (3.57)

utr

k = ϑ+ [Mq̈tr

k +Cq̇tr

k +G] , (3.58)

where (·)+ denotes the left pseudoinverse, and qtr
k , q̇tr

k and q̈tr
k are provided reference signals

with qtrk = [xtrk ytrk ztrk ϕeq θeq ψtr γeq1 γeq2 αR
eq αL

eq]T . Notice that utrk , since it is computed

using a left pseudoinverse, will be an exact solution to the dynamic equations (A.49)

∀k ∈ N only if the trajectory is feasible.
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Finally, having the model (3.56), the LTI-MPC algorithm for trajectory tracking of

the suspended load carried by a Tilt-rotor UAV can be described in general terms by the

Algorithm 3.1.

Algorithm 3.1 Linear time-invariant MPC algorithm

1: Obtain P i and Hi through (3.9) using (3.56).
2: Compute P through (3.17) using the model (3.56) and matrices Q and R deĄned,

respectively, in (3.49) and (3.50).
3: Calculate Ω by iterating the one-step operator deĄned at (3.27) and Ąnd its H-

representation HΩ∆x̄k+Np ≤ b.
4: Set ∆u0 = 0.
5: procedure LTI-MPC(xk, ∆uk−1, qtr

−→

, q̇tr
−→

, q̈tr
−→

)

6: Obtain the vector ∆x̄k.
7: Compute utr

−→
using (3.58) from k up to k +Nc.

8: Obtain Λ, fT , and f0 from (3.12).
9: Construct the matrices M and N as in (3.30).

10: Solve the optimization problem (3.31) to obtain δu
−→

.

11: Compute uk = utrk + ∆uk−1 + δuk.

12: Set ∆uk−1 = ∆uk.
13: return uk and ∆uk−1.
14: end procedure

3.3.3 Linear time-variant MPC

Similarly, aiming to obtain the discrete linear time-varying state-space model in order to

construct the prediction model (3.38), the equations of motion (A.49) must be linearized

around a time-varying trajectory. Additionally, due to limited computational resources,

this process needs to be done with most of the physical parameters numerically evaluated.

However, it is possible to let some physical parameters as variables in a way that they will

appear in the linearized Jacobians after Ąnished the linearization process.

Let xtr and utr denote, respectively, the state vector trajectory and the control inputs

able to drive the system along this trajectory.Then, by linearizing the state-space equations

(A.49) around these trajectories using the Ąrst-order expansion in Taylor series, the LTV

linearized model can be expressed as

∆ẋ = A(t)∆x+B(t)∆u, (3.59)

where ∆x = x− xtr, ∆u = u− utr, and

A(t) =
∂φ(x,u,d)

∂x

∣
∣
∣
∣
u=utr
x=xtr ∈ R

20×20, B(t) =
∂φ(x,u,d)

∂u

∣
∣
∣
∣
u=utr
x=xtr ∈ R

20×4. (3.60)
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In this work, the trajectory values for x and u are given by

xtr = [(qtr)T (q̇tr)T ]T , (3.61)

utr = ϑ+ [Mq̈tr +Cq̇tr +G] , (3.62)

where qtr, q̇tr and q̈tr are provided reference signals with lqtr = [xtr(t) ytr(t) ztr(t) ϕeq θeq ψtr(t)

γeq1 γeq2 αR
eq αL

eq]T .

Therefore, by linearizing the system using (3.60) with the trajectories deĄned in (3.61)

and (3.62) added to the ropeŠs length l(t) as a time-varying parameter, the linearized jaco-

bians are A(ζ(t)) and B(ζ(t)), where ζ(t) = [xtr(t) ytr(t) ztr(t) ψtr(t) ẋtr(t) ẏtr(t) żtr(t) ψ̇tr(t)

ẍtr(t) ÿtr(t) z̈tr(t) ψ̈tr(t) l(t)]T is the vector of time-varying parameters.

Similarly to the previous section, the state vector ∆x can be augmented with integral

actions seeking improved tracking performance. Therefore, the augmented state vector

can be expressed as

∆x̂ =








∆x
´

(ξ − ξtr)
´

(ψ − ψtr)








∈ R
24, (3.63)

whose dynamics are given by

∆ ˙̂x(t) =














A(ζ(t)) 020×4

1 0 0 0 0 0

04×14 04×4

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1














︸ ︷︷ ︸

Â(ζ(t))

∆x̂(t) +




B(ζ(t))

04×4





︸ ︷︷ ︸

B̂(ζ(t))

∆u(t). (3.64)

In order to represent the system in its incremental form, the model (3.64) can be

expressed as

∆x̂k+1 = Âd(ζk)∆x̂k + B̂d(ζk)∆uk, (3.65)

being the matrices Âd(ζk) and B̂d(ζk) obtained after discretizing the model using a zero-

order hold with sampling time Ts. Thereafter, the incremental model can be obtained

extending the system (3.65) as in (3.8), yielding to

∆x̄k+1 = Ā(ζk)∆x̄k + B̄(ζk)δuk. (3.66)

Finally, having the model (3.66), the LTV-MPC for trajectory tracking of the suspended

load carried by a Tilt-rotor UAV able to cope with yaw angle regulation and take-off and

landing maneuvers can be described in general terms by the Algorithm 3.2.
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Algorithm 3.2 Linear time-variant MPC algorithm

1: Set ∆u0 = 0.
2: procedure LTV-MPC(xk, ∆uk−1, qtr

−→

, q̇tr
−→

, q̈tr
−→

)

3: Obtain P and H through (3.39) and (3.40) using the model (3.66).
4: Obtain the vector ∆x̄k.
5: Compute utr

−→
using (3.62) from k up to k +Nc.

6: Obtain Λ, fT , and f0 using (3.43).
7: Construct the matrices M and N as in (3.45).
8: Solve the optimization problem (3.44) to obtain δu

−→
.

9: Compute uk = utrk + ∆uk−1 + δuk.

10: Set ∆uk−1 = ∆uk.
11: return uk and ∆uk−1.
12: end procedure

3.3.4 Simulation results

This subsection presents the numerical simulation results obtained with the proposed

controllers when performing the trajectories previously described. Three simulations

scenarios are carried out: (i) the Ąrst one uses the trajectory presented in Figure 3.1 in

order to compare the performance of the LTI-MPC and the LTV-MPC4; (ii) the second

scenario considers the trajectory of Figure 3.2 aiming to show the advantages of working

with the LTV-MPC, mainly due to its capacity to cope with yaw movements and to deal

with take-off and landing maneuvers; and (iii) the third one shows, while performing the

trajectory 3.1, how the computational cost can be reduced when using the LTI-MPC with

the inclusion of the terminal region and terminal cost into the optimization problem.

The simulations have been carried out using the MATLAB/Simulink® environment.

A detailed analysis of the control systemsŠ performance is provided when solving the

trajectory tracking problem of a suspended load carried by a Tilt-rotor UAV, as well as, a

comparative analysis between both controllers.

Scenario 1

The trajectories performed by the Tilt-rotor UAV and the suspended load using the

LTI-MPC and LTV-MPC are shown in Figures 3.4 and 3.5, while the tracking error is

illustrated in Figure 3.6. The trajectory tracking was performed successfully for both

controllers with similar performance along the proposed trajectory. A slight difference

that stands out is related with the yaw movement regulation, for which the LTV-MPC

achieve better results, and the altitude regulation, where the LTI-MPC performed better.

The Ąrst difference can be explained by the inclusion of the yaw angle as time-varying

parameter of the controller, while the second one is due to the larger domain of attraction

4For the sake of comparison, in this scenario the measurementŠs noise is removed aiming at a better
visualization of the differences between the proposed controllers.
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Table 3.2 shows the MSE and IADU performance indexes for the LTI-MPC with

different predictive and control horizons. Observe that the MSE index indicates that the

tracking performance for x, y, z, and ψ were better when considering the controller with

smaller horizons. Looking at the IADU index, it is possible to conclude that the controller

with reduced horizon has smaller control effort. Therefore, it is possible to state that the

reduction of Np and Nc, allowed by the inclusion of the stability regions, optimizes the

controller from the computational cost point of view without losing trajectory tracking

performance.

Table 3.2: Performance indexes of the LTI-MPCs with Np = 100 and Nc = 10 and with
Np = 2 and Nc = 1.

LTI-MPC (Np = 100, Nc = 10) LTI-MPC (Np = 2, Nc = 1)
States MSE
x 0.00495174 0.00428795

y 0.01455406 0.01312305

z 0.00270609 0.00257808

ψ 0.00000552 0.00000542

Inputs IADU
fR 2.4199 · 103 1.5576 · 103

fL 2.4229 · 103 1.5865 · 103

ταR 0.5615 · 103 0.1768 · 103

ταL 0.8017 · 103 0.2070 · 103

Moreover, Table 3.3 shows the average and worst wall-clock time for each controller

algorithm simulated in this chapter. In order to compute these values, the controllers were

simulated considering the same initial conditions in a loop of 3000 steps, from which their

average and the worst time of execution were obtained. The LTV-MPC has the higher

computational cost because of the necessity to rebuilt the prediction model using the

LTV model at each sampling period, once the model Jacobians matrices are constantly

changing with ζk. This also makes it computationally prohibitive to include the terminal

cost and terminal region in the optimization problem formulation, since they would also

have to be evaluated online. Therefore, besides having a costly algorithm, the prediction

and control horizons, which are tuning parameters, need to be large in order to avoid

oscillatory behaviors (Camacho & Bordons, 2004) that could destabilize the whole system.

Table 3.3: Wall-clock time for each simulated controller.

LTI-MPC (Np = 2, Nc = 1) LTI-MPC (Np = 100, Nc = 10) LTV-MPC
Average (s) 0.0032 0.0550 0.2022

Worst (s) 0.0116 0.1298 0.4362

Since the computational cost of the predictive controllers are directly related with the

size of their horizons, the reduction of the LTI-MPC horizon from Np = 100 and Nc = 10
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to Np = 2 and Nc = 1 signiĄcantly decreases its computational cost, explaining why it

has the smaller wall-clock time. This is an important feature, mainly because predictive

controllers, knowing for being costly, are often disregarded when having a control problem

that needs to run in embedded systems and has high dimension, i.e., it has a high number

of degrees of freedom to be controlled; for instance, the application considered in this

work.

Remark. The MPC usually have the underlying condition of knowing a priori the trajectory

to be performed. However, in addition to assuming the desired trajectory completely known,

this chapter also assumes that the trajectory does not change during the Ćight execution.

For the LTV-MPC those hypotheses allow to optimize the control algorithm by computing

off-line the system model matrices Ā(ζk) and B̄(ζk) from k = 1 up to k = Np, and to store

that in the digital system memory, as a First In, First Out (FIFO) queue. Hence, during

the Ćight performance, after sliding the horizon, only the model matrices for k = Np need

to be computed to update the FIFO structure. In fact, without this procedure the average

time of execution for the LTV-MPC was 0.3954 seconds with the worst time being 0.7797

seconds.

3.4 Final remarks

In this chapter two linear model predictive controllers were presented. Both strategies were

developed using a state-space model in the incremental form. For the Ąrst strategy, the

linearized model is time-invariant, which leads to a LTI-MPC and, for the second strategy,

a time-variant model leading to a LTV-MPC. The LTI-MPC optimization problem was

developed considering constraints on the amplitude of the state deviation and control

inputs. Further, a terminal cost and terminal constraint set were included in order to

ensure close-loop stability for the linearized system in the vicinity of its linearization

point, allowing to work with reduced prediction and control horizons without losing

performance. The LTV-MPC had also considered in its optimization problem constraints

on the amplitude of the state deviation and control inputs, but, due to the prohibitive

computational cost, the stabilizing regions were not included. However, because of the

the time-varying nature of its model and the model-based nature of predictive controllers,

the LTV-MPC formulation could cope with problems that require controllers with larger

domain of attraction.

Both controllers were used to solve the load transportation control problem using

a Tilt-rotor UAV. SpeciĄcally, to perform trajectory tracking of the suspended load in

helicopter-Ćight mode while keeping the vehicle stabilized. Additionally, the controllers

were required to perform trajectory tracking of some desired degrees of freedom and ensure

closed-loop stability for the remaining ones, rejecting constant external disturbances and
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parametric uncertainties, and satisfying constraints on the state error amplitude while

keeping the control signal inside the actuatorsŠ limits. Numerical simulations were made

to corroborate the controllersŠ ability to satisfy the design requirements and highlight the

difference between both strategies. When applied to the load transportation problem,

the LTV-MPC was able to cope with yaw movements regulation which are a common

drawback of linearized controllers when used for such application due to the necessity

of deĄning the yaw angle equal to zero for the system linearization process. Also, the

time-variant approach was able to solve the interesting practical problem of the ropeŠs

length variation without scheduling between different controllers or relying only on the

controllersŠ robustness. This problem occurs, for instance, during take-off and landing

maneuvers and could also occur due to parametric uncertainties, i.e., the use of rope with

different dimension. Without the rope length as a controllerŠs time-varying parameter,

the choice of a rope with different length would necessarily imply the necessity to re-tune

the controller before perform the Ćight. On the other hand, the LTV-MPC showed to be

computationally costly, which could make its implementation on the UAVŠs embedded

system impracticable. However, the LTI-MPC, due to the stabilizing regions, showed to be

able of performing trajectory tracking using small prediction and control horizons, which

could be implemented on an embedded system without any further research on how to

computationally optimize predictive controller algorithms.

In the next chapter three new predictive controllers will be designed. The Ąrst one

is an Economic Model Predictive Controller that includes in its formulation the idea of

potential Ąelds, enabling obstacle avoidance together with the deĄnitions of the so-called

no-Ćy zones. After, using a cascade structure, a Tube-Based Predictive Controller will be

designed to control the x, y, γ1, and γ2 dynamics with increased performance when dealing

with model uncertainties due to the use of some well-known set theory results, aiming to

add robustness to the controller. Finally, both controllers will be put together to formulate

a Tube-Based Predictive Controller with Economic Criteria robust to uncertainties and

able to perform obstacle avoidance.
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4
Robust Tube-Based Model Predictive Control

with Economic Criteria

This chapter deals with the design of model predictive controllers taking into account

advanced features in order to modify the well-known linear formulation presented in Chapter

3, commonly referred as standard MPC. Essentially, we are looking to provide robustness to

the controller against uncertainties using set theory tools and perform obstacle avoidance

by adding economic criteria within the optimization problem in order to obtain a feasible

collision-safe trajectory. Similar to Chapter 3, the controller is designed to solve the load

transportation problem using a Tilt-rotor UAV ensuring obstacle avoidance. Besides, it is

also required the closed-loop stability assurance, constant external disturbances rejection,

parametric uncertainties attenuation, and constraints satisfaction on state deviations and

control inputs. Nevertheless, unlike the previous chapter, the load transportation problem

is solved from the UAVŠs perspective, i.e., the controller must perform trajectory tracking

of the UAV in helicopter-Ćight mode while keeping the load stabilized. This change of

perspective is due to the high computational cost of the control strategies presented in this

chapter and the necessity to represent the problem in a hierarchal fashion. Initially at this

chapter an economic model predictive controller (EMPC) and a robust tube-based model

predictive controller (RMPC) will be generally designed. Afterward, both controllers

will be joined to reach the intended robust tube-based economic controller (REMPC).

Finally, the three proposed controllers will be particularized for the trajectory tracking

of the Tilt-rotor UAV with load stabilization problem, with the EMPC performing a
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whole-body control and the RMPC and REMPC controlling the UAVŠs planar position

and reducing the loadŠs swing through the cascade structure designed at Appendix B.

Numerical simulations are presented to corroborate the performance of the proposed

controllers.

4.1 Economic model predictive control

The ability of MPC strategies to deal with multivariate interactions and constraints made

them interesting to control constrained multiple-input multiple-output (MIMO) nonlinear

systems. They are usually used to steer the system to an operational point or throughout

a desired trajectory stably, without steady-state error, and with small time response by

means of a quadratic cost function and a linear process representation of the system. An

underlying design assumption is to consider that the reference is feasible to be executed

and fulĄlls economic objectives such as: efficiency of operation, capacity, proĄtability,

sustainability, etc (Ellis et al., 2017).

These goals are commonly addressed by upper level systems which are responsible

to dictate feasible economic-oriented references to the MPC. A common formulation in

industrial control process is a two-layer strategy, where a real time optimizer (RTO)

computes setpoints according to economic objectives and, in an inner layer, an MPC

strategy provides stability and constraints satisfaction (DŠJorge et al., 2017). A parallel to

robotics can be made, for instance, if the navigation problem is looked as an economic

goal in a way that a feasible and collision-free trajectory needs to be generated by a

path planner in an upper layer while dynamic controllers address the trajectory tracking

problem. Another example of economic criteria when working with robotics is the classic

optimal control problem of fuel minimization. Two-layered approaches have been widely

used due to the good performance and low-cost computational burden when compared

to non-decoupled schemes. However, the separation into two different problems often

means that the control law is designed disregarding transients, which could be a problem

if the algorithms run at near frequency rates. The EMPC approach proposes an one-layer

scheme by moving the economically motivated stage cost into the MPC formulation to deal

with the stabilizing control problem, solved by a quadratic stage cost, while guaranteeing

the economic goals required by an additional stage cost.

Regarding the control application proposed in this chapter, the main purpose of working

with EMPC is to gather the path planning and trajectory tracking problems into an uniĄed

non-decoupled problem. Therefore, the economic stage cost will be constructed by means

of potential functions, which are largely used in path planning problems (Choset et al.,

2015). The objective is to design a strategy able to steer the robotic system through a

predeĄned trajectory when it is not obstructed by any obstacle and, if necessary, around

the obstacle to avoid collision until returning to the initial trajectory becomes a safe option
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again.

4.1.1 Problem statement

Consider a Ąnite-dimensional nonlinear system of the form

ẋ(t) = f (x(t),u(t)) , (4.1)

where x ∈ X ⊂ R
n denotes the state vector and u ∈ U ⊂ R

m denotes the input vector, with

X and U being, respectively, the set of admissible states and inputs. Further, f : X×U 7→ X

is the state-transition map deĄned by the nonlinear model that allows to predict the

systemŠs future states.

The control problem in this section for the EMPC is deĄned as the problem of

designing a model predictive controller able to perform trajectory tracking while avoiding

obstacles. The controllerŠs algorithm considers a linear discrete-time model with state-space

representation in order compute the state predictions. Besides, it must ensure closed-loop

stability throughout the trajectory even in the presence of external constant disturbances

and unmodelled dynamics.

Therefore, consider the mapping of equation (4.1) from the continuous-time to the

discrete-time domain after being linearized through Ąrst-order expansion in Taylor series,

which leads to the systemŠs error model

∆xk+1 = A∆xk +B∆uk, (4.2)

where ∆xk = xk − xtrk and ∆uk = uk − utrk with the superscript (·)tr denoting desired

trajectory variables, and A and B being, respectively, the state and input Jacobians

linear model matrices. Additionally, the pair (A,B) is assumed to be controllable, and

∆xk ∈ E ⊂ R
n, with E being a bounded set limiting the state error.

The EMPC cost function can be generally deĄned as

J =
∑

i

ℓ (∆xk,∆uk) +
∑

k

ℓe (εk) , (4.3)

where ℓ (·) is the standard MPC quadratic stabilizing stage cost, and ℓe (·) is the economic

stage cost with εk being the parameters which the economic criteria are function of.

Since in this work the economic stage cost is used to deĄne an obstacle-free trajectory,

the parameters representing the economic criteria are deĄned as εk =
[

xTk (xtrk )T (ξobs)T
]T

,

where ξobs ∈ O ⊂ R
3 is a vector representing an obstacle, with O being a set representing

all points in the robot workspace that are obstructed by some obstacle.1 Therefore, the

1In this work the problem of obstacle detection is not addressed, therefore all obstacles are assumed to
be perfectly known.
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EMPC cost function for obstacle avoidance can be written as

J =
∑

k

ℓ (∆xk,∆uk) +
∑

k

ℓe (xk,x
tr

k , ξ
obs) , (4.4)

with the economic stage cost being a function designed to allow obstacle avoidance.

4.1.2 Potential functions applied to robot navigation

It is easy to see how the potential functions presented in Chapter 2 can be used to

solve the robot safe navigation problem by establishing a parallel with electric potential

energy. The conservative Coulomb forces between two positively charged particles create

a repulsive force, while between particles with different charge create an attraction force

(Halliday et al., 2013). Therefore, it is possible to say that a repulsive potential function

(see equation (2.1)) represents the interaction between positively charged particles with

its energy increasing as the distance between them decreases and going to zero as their

distance become sufficiently large. On the other hand, an attractive potential function

(see equation (2.2)) describes the interaction between positively and negatively charged

particles with the energy increasing as the particles become distant and decreasing as they

get closer. If a robot and the obstacles are looked as positively charged particles and a

desired position in the workspace as a negatively charged particle, the generated gradient,

which is a combination of attractive and repulsive potential functions (see equation (2.3)),

could drive the robot from its initial condition to its goal while avoiding obstacles.

Let ξtr = [xtr ytr ztr]
T denotes the desired trajectory by which the robot should be

moving through its workspace, and ξgoal = [xgoal ygoal zgoal]
T be the collision-free trajectory

that the robot must perform in order to avoid obstacles. Therefore, the attraction potential

function deĄned in the equation (2.1) can be rewritten as

Uatt =
1

2
κd (ξtr, ξgoal)

2
, (4.5)

with κ being a weighting matrix.

Furthermore, letting ξ = [x y z]
T denotes the robot position and assuming non punctual

obstacles, equation (2.2) can be rewritten as

Urep =
1

2
λ

(
1

min ¶d (ξ, ξobs)♢

)2

, (4.6)

where min ¶d (ξ, ξobs)♢ is the smaller Euclidean distance between the robot and the obstacle

given by the 2-norm distance with ξobs denoting the obstacle position, and λ is a weighting

matrix.

Since the robotŠs workspace can be obstructed by multiple obstacles and considering a

safe distance d∗ from the obstacle from which the repulsive Ąeld will be disregarded, the
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equation (4.6) can be rewritten as (Choset et al., 2015)

Urep =
∑

Urepl =







1

2
λ

(

1

min¶dl(ξ,ξobsl )♢ − 1

d∗
l

)2

, if min ¶dl (ξ, ξobsl )♢ ≤ d∗
l ,

0, if min ¶ξl (ξ, ξobsl )♢ > d∗
l ,

(4.7)

where Urepl is the potential function related to the l-th obstacle, dl (ξ, ξobsl ) is the Euclidean

distance between the robot and the l-th obstacle, and d∗
l gives the safe distance from the

l-th obstacle.

Therefore, the potential function able to address the safe navigation problem and that

will deĄne the EMPC economic criteria is obtained by gathering the equations (4.5) and

(4.7), yielding to

U = Uatt +
∑

Urepl . (4.8)

4.1.3 Economic MPC optimization problem

As previously stated, the proposed EMPC cost function (equation (4.4)) is composed by a

standard quadratic stage cost and an economic stage cost. Considering the attraction and

repulsive potential Ąelds proposed in equations (4.5) and (4.7), the economic stage cost

can be expressed as

ℓe (xk,x
tr

k , ξ
obs) =

Np∑

i=0

∥
∥ξgoalk+i − ξtrk+i

∥
∥

2

κ
+
∑

l

Np∑

i=0

χl

∥
∥
∥
∥

1

min ¶∥ξk+i − ξobsl ∥♢ − 1

d∗
l

∥
∥
∥
∥

2

λ

(4.9)

where Np is the prediction horizon and χl is a function deĄned as

χl =







1, if min
{

dl


ξtrk+cNp
, ξobsl

)}

≤ d∗
l ,

0, if min
{

dl


ξtrk+cNp
, ξobsl

)}

> d∗
l ,

(4.10)

with c ∈ N being a scaling factor.

Since ξgoal will be a decision variable of the EMPC optimization problem, which will

give a collision-free trajectory, the quadratic stage cost must be deĄned in a way that

it penalizes the error between ξgoal and ξ instead of the error-vector ∆x of the model

(4.2). Therefore, let xgoal be the desired state vector xtr with the position variables xtr,

ytr, and ztr replaced by the obstacle-free trajectory xgoal, ygoal, and zgoal. Thus, deĄning

∆x̃k = xk − xgoalk the quadratic stage cost can be written as

ℓ (∆x̃k,∆uk) =

Np−1
∑

i=0

∥∆x̃k+i∥2

Q
+

Nc−1∑

j=0

∥∆uk+j∥2

R
+
∥
∥∆x̃k+Np

∥
∥

2

P
, (4.11)

where Q > 0 and R > 0 are weighting matrices, and P > 0 is the matrix used to formulate

a quadratic terminal cost to ensure closed-loop stability that can be obtained using the

equation (3.17) as described in Chapter 3.
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of Np = 10. Initially, from the time instant k = 1 up to k = 11 (see Figure 4.1), the proposed

trajectory (solid green line) and the collision-free trajectory (dashed blue line) are equal

since the trajectory within the predicted horizon lies outside the safe-distance zone (solid

gray circle). For this case, only the attractive Ąeld and the quadratic stage cost act in

order to keep ξtrk = ξgoalk for k = 1, · · · , 11. After, from the time instant k = 11 up to k = 21

(see Figure 4.2), the proposed trajectory moves inside the non-safe zone colliding with

the obstacle (black circle). Thus, both the attractive and repulsive Ąelds act in order to

Ąnd a collision-free trajectory that goes around the obstacle (solid black circle) and, after

overcoming it, make the alternative trajectory equals to the proposed trajectory again.

Finally, from the time instant k = 21 up to k = 31 (see Figure 4.3), the repulsive Ąeld is

again disregarded since there is no imminent collision. The attractive Ąeld together with

the quadratic stage cost act again in order to make ξtrk = ξgoalk for k = 21, · · · , 31.

Further, in order to Ąnish the construction of the optimization problem for the EMPC,

the following constraints are considered:

1. Initial condition constraint:

When initializing the control algorithm the systemŠs initial condition is considered

without collision and state error, that is

∆x0 = ∆x̃0 = 0. (4.13)

Afterward, at each iteration of the algorithm the following initial condition constraint

is considered

∆x̃k = xk − xgoalk . (4.14)

Note that the constraint (4.14) depends on xgoalk which is a decision variable of

the EMPC optimization problem, i.e., it is unknown. Therefore, its value must be

stored from the previous iterations of the control algorithm making the initialization

constraint (4.13) essential to the algorithm feasibility.

2. Model constraint:

In Chapter 3, prediction models were explicitly derived in equations (3.6), (3.7), and

(3.9). Here, the model-based nature of the EMPC represented by the state prediction

procedure is implicitly considered as a constraint. Both strategies are equivalent,

differing only in the notation and in the algorithm implementation.

∆x̃k+i+1 = A∆x̃k+i +B∆uk+i, ∀i = 1, · · · , Np. (4.15)

Note that here the model constraint also ensures feasibility to the collision-free

trajectory since the evolution of ∆x̃k+i, which is function of xgoalk+i , must be subjected



CHAPTER 4. ROBUST TUBE-BASED ECONOMIC CONTROL 80

to the model, being ∆uk+i a bounded signal.

3. Maximum state error constraint:

As previously stated, the trajectory tracking error is bounded by a set E. Thus, to

ensure this condition, the following constraint must be regarded

∆x̃k+i ∈ E, ∀i = 1, · · · , Np. (4.16)

4. Input signal constraints:

In order to avoid saturation on the actuators the following constraint is considered

uk+i ∈ U, ∀i = 0, · · · , Nc − 1, (4.17)

which can be easily mapped to decision variable ∆uk+i

5. Terminal set constraint:

Aiming to ensure closed-loop stability, a terminal set constraint is deĄned to force

the last element of the predicted state vector to belong to a positively invariant set

(see DeĄnition 2.13). Therefore,

∆x̃k+Np ∈ Ω, (4.18)

where Ω denotes a maximal control invariant set (see DeĄnition 2.16), which can be

obtained using the same iterative procedure, based on the one-step operator (3.27)

described in Chapter 3.

6. No-Ćy zone constraints:

Although the potential functions have been designed to perform safe navigation,

they do not strictly ensure that some collision will not occur. For that reason, hard

constraints, the so-called no-Ćy zones, are imposed to ensure that the robot position

and the alternative generated trajectory do not invade the obstacle space. Hence,

ξk+i ∈ R
3 − O, ∀i = 1, · · · , Np, (4.19)

ξgoalk+i ∈ R
3 − O, ∀i = 1, · · · , Np. (4.20)

Finally, the optimization problem for the EMPC strategy, giving the optimal control

sequence to be applied to the system and the collision-free trajectory to be performed by

the robot, is stated as

min
u
→
,x
→
,x
→

goal
J ,

subject to (4.13 Ű 4.20) ,

(4.21)
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with u
→

=
[
uTk · · · uTk+Nc−1

]T
and x

→
=
[

(xk+1)
T · · · (xk+Np

)T
]T

.

4.2 Robust tube-based model predictive control

Closed-loop model based control methods have an inherited robustness due to the process

of feed the information of the controlled states back into the control algorithm, which

allows the controller to deal with unmodelled dynamics, measurement errors, and unknown

and/or unmodelled disturbances. However, since these uncertainties are not taken into

account in the control design process, the domain of attraction for which the controllers

will be able to keep the system controlled using only their feedback nature are small,

mainly for those algorithms based on model linearization. Therefore, it becomes necessary

to work with controllers that, by design concept, could cope with uncertainties (Langson

et al., 2004b). As stated in Bemporad & Morari (1999), a control system is robust only

when it maintains its stability and performance speciĄcations in the presence of bounded

disturbances, which is a desirable feature.

When it comes to formulate robust MPCs, a common approach is to deĄne regions

in the state-space that bounds the difference between the nominal and the uncertain

systems. MPCs working with admissible regions that contains the possible trajectories of

an uncertain system are commonly referred as tube-based and these regions, the so-called

reachable sets, can be obtained using set-theory tools. In this work, the control of time-

varying systems will be considered. Therefore, despite bound additive uncertainties, the

reachable sets must also bound the systemŠs realizations regarding the time-varying model

parameters. Further details about the controller presented in this section can be obtained

in the work of Sánchez (2011).

The robust tube-based model predictive control strategy considers that the statesŠ

trajectory of the nominal and the uncertain systems are different, and the mismatch

between them needs to be controlled and bounded. Therefore, the control law applied to

the system considers the sum of two different control policies: (i) a pre-stabilizing policy

able to control the nominal system with state and input constraintsŠ regions shaped by

the reachable sets in other to take into account the uncertainties, and (ii) a control policy

to compensate the mismatch between the nominal and uncertain systems.

4.2.1 Problem statement

Consider a Ąnite-dimensional uncertain nonlinear system of the form

ẋ(t) = f (x(t),u(t),w(t)) , (4.22)
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where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R

m is the input vector, and w ∈ W ⊂ R
n is

the uncertainty vector with X, U, and W being, respectively, the set of admissible states,

admissible inputs, and the set of bound uncertainties. Further, f : X × U × W 7→ X is the

state-transition map deĄned by the nonlinear system model.

The control problem for the RMPC can be deĄned as the problem of designing

a model predictive control system able to perform trajectory tracking and robust to

bounded uncertainties and unmodelled dynamics. The controllerŠs algorithm considers a

linear discrete-time model with state-space representation in order to compute the state

predictions, and it must ensure closed-loop stability throughout the trajectory.

Now, consider the mapping of equation (4.22) from the continuous-time to the discrete-

time domain after being linearized through Ąrst-order expansion in Taylor series around a

time-varying trajectory, which gives the uncertain error model

∆xk+1 = A(ζk)∆xk +B(ζk)∆uk +wk, (4.23)

where ∆xk = xk − xtrk and ∆uk = uk − utrk , wk is the vector of additive uncertainties, and

ζk ∈ ∆ ⊂ R
v denotes the vector of time-varying model parameters with ∆ being a convex

polytope with 2v vertices. Further, A(ζk) and B(ζk) are, respectively, the state and input

Jacobian linear model matrices, which are assumed to have polytopic form in order to

represent the systemŠs realization considering the parameters ζ at the time instant k, and

to compose a controllable linear system.

The nominal linear time-varying error model can be obtained by considering the system

(4.23) without additive uncertainty, i.e, W = ¶0♢, yielding to

∆xnomk+1 = A(ζk)∆x
nom

k +B(ζk)gk, (4.24)

where ∆xnomk = xnomk − xtrk with the superscript (·)nom denoting the state vector predicted

without uncertainties, and gk is the policy able to control the nominal system.

The mismatch error between the uncertain system (4.23) and the nominal system

(4.24) can be deĄned as

ek+1 = ∆xk+1 − ∆xnomk+1

= A(ζk)∆xk +B(ζk)∆uk +wk −A(ζk)∆x
nom
k −B(ζk)gk

= A(ζk)ek +B(ζk) [∆uk − gk] +wk.

(4.25)

Since the control objective is to compensate the mismatch error ek while controlling

the nominal system through some desired trajectory, the control input that controls the

uncertain system can be deĄned as (Sánchez, 2011)

∆uk = K (ζk) ek + gk, (4.26)
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where K (ζk) ∈ R
n×m is an adaptive feedback control gain designed to control the mismatch

error.

Using the deĄnition (4.26), the mismatch error model can be rewritten as

ek+1 = [A(ζk) +B(ζk)K (ζk)] ek +wk. (4.27)

Further, to design the RMPC the follows elements must be obtained: (i) the adaptive

feedback gain that controls the mismatch error, (ii) the reachable sets to envelope the

systemŠs evolution in the space ensuring robustness, (iii) the state error and control input

constraints, (iv) the terminal constraint and terminal regions to ensure closed-loop stability,

and (v) an MPC strategy to control the nominal system. In the following subsections

these elements are deĄned.

4.2.2 Mismatch error adaptive controller

In order to obtain the adaptive feedback gain able to control the mismatch error (4.26),

consider the following Lyapunov function

V (ek) = eTkPek, (4.28)

where P ∈ R
n×n is a Lyapunov matrix. Further, to obtain an asymptotically stable control

system, the conditions P > 0 and V (ek+1) − V (ek) < 0 must be satisĄed.

Aiming to add some performance requirements to the problem, V (ek) is considered

as an upper bound for the linear quadratic regulator (LQR) cost function. Thereby, the

performance of the mismatch error adaptive controller should be as close to the LQR

controller performance as possible. Therefore, the following optimal control problem is

considered

V (e0) ≥ min
υ[0,∞)

∞∑

k=0

eTkQek + υTk Rυk. (4.29)

where

υk = K (ζk) ek, (4.30)

and the matrices Q > 0 and R > 0 are, respectively, weighting matrices for the state error

and control effort.

Considering the conditions for asymptotic stability and the performance condition

(4.29), it is possible to deĄne the following inequalities

eTkPek > 0, (4.31)

eTk
(

AT

fPAf

)

ek − eTkPek ≤ −eTk


Q +K (ζk)
T

RK (ζk)
)

ek, (4.32)
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where Af = A(ζk) +B(ζk)K (ζk).

Removing the the state mismatch error variables, the inequalities can be rewritten as

P > 0, (4.33)

AT

fPAf +K (ζ)
T

RK (ζ) + Q − P ≤ 0. (4.34)

The Jacobian linear model matrices A (ζ) and B (ζ) are assumed to have polytopic

representation, i.e., it is possible to represent each of them as a convex sum regarding the

uncertain parameter ζ. This assumption allows one to represent the inequalities (4.33)

and (4.34) as linear matrix inequalities conditions (see DeĄnition 2.25). Although (4.33)

is already a valid LMI condition, the inequality (4.34) is not due to its nonlinear terms.

Thereafter, equation (4.34) needs to be manipulated.

Rearranging (4.34) and applying the Schur complement twice (see DeĄnition 2.27), it

holds that











P AT
f Q

1
2 K (ζ)

T
R

1
2

Af P −1 0 0

Q
1
2 0 I 0

R
1
2K (ζ) 0 0 I











≥ 0. (4.35)

In order to remove the nonlinear terms, it is necessary to pre and post multiply (3.15) by

the block diagonal matrix blkdiag (P −1, I, I, I), and to deĄne S = P −1, Y (ζ) = K (ζ)P −1.

Thus, the LMI condition used to calculate a state feedback controller that ensure stability

and performance when controlling the systemŠs mismatch error can be written as











S HT SQ
1
2 Y (ζ)

T
R

1
2

H S 0 0

Q
1
2S 0 I 0

R
1
2Y (ζ) 0 0 I











≥ 0, (4.36)

where H = A (ζ)S +B (ζ)Y (ζ). Note that the condition (4.36) must hold for each of the

2v vertices of the polytope ∆.

Finally, the following optimization problem must be considered

min
S>0,Y (ζ)∀ζ

Tr(P ),

subject to (4.36) ∀ζ ∈ ∆,
(4.37)

where Tr(·) is the trace operator.

The solution of the optimization problem (4.37) gives the Lyapunov positive deĄnite

matrix P and also the feedback gains K (ζ) able to control the system for each vertex of

the polytope ∆. In Santos & Raffo (2016a), inspired by the work of Gonzalez et al. (2010),
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a similar problem was solved using these gains to create an adaptive control scheme by

means of an LP problem in order to Ąnd at each time-step an optimal feedback gain for the

systemŠs current realization. Although this approach could be used to obtain the adaptive

feedback gain for the mismatch error control problem considered in this work, it will

require online computation increasing the complexity of the RMPC algorithm. Therefore,

the approach proposed in Sánchez (2011) to obtain the feedback gain K (ζ) in a more

computational efficient way is considered.

Hence, considering the matrix P known after the solution of the problem (4.37), the

inequality (4.32) could be reevaluated and solved explicitly for the control input υk through

min
υk∀k

eTkQek + υTk Rυk + (A(ζk)ek +B(ζk)υk)
T
P (A(ζk)ek +B(ζk)υk) − eTkPek. (4.38)

The cost function of the problem (4.38) can be rewritten with respect to υk as

f ∗ = eTkQek + υTk Rυk + eTkA(ζk)
TPA(ζk)ek + υTkB(ζk)

TPB(ζk)υk+

2υTkB(ζk)
TPA(ζk)ek − eTkPek. (4.39)

Assuming the systemŠs current realization known, i.e., the uncertain model parameter

vector is either measured or estimated at each sampling period k, it is possible to analytically

solve (4.38) through differentiation of (4.39) with respect to the control input. This leads

to
∂f ∗

∂υk
= 2Rυk + 2B(ζk)

TPB(ζk)υk + 2B(ζk)
TPA(ζk)ek = 0, (4.40)

which by simple manipulation gives

υk = − (R +B(ζk)
TPB(ζk))

−1
B(ζk)

TPA(ζk)ek. (4.41)

Finally, using the relation (4.30), the feedback gain for the mismatch error adaptive

controller can be written as

K (ζk) = − (R +B(ζk)
TPB(ζk))

−1
B(ζk)

TPA(ζk). (4.42)

Note, that instead of solving an online LP problem as made in Santos & Raffo (2016a),

equation (4.42) needs only to perform numerical algebraic matrix operations.

4.2.3 Reachable sets

The reachable sets, which deĄne the region around the nominal trajectory that envelops the

system states for any bounded uncertainties and disturbances, can be deĄned as (Sánchez,

2011)

Rk+i+1 = (A(ζk) +B(ζk)K (ζk)) Rk+i ⊕ W, ∀i = 0, · · · , Np − 1, (4.43)
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with Np being the prediction horizon. Further, in order to recursively use equation (4.43)

to compute the reachable sets along the prediction horizon, consider the initialization

condition Rk = ¶0♢.

Note that the equation (4.43) needs to be evaluated online because of its dependency

on the time-variant Jacobian linear model matrices. If the system was time-invariant,

i.e. A(ζk+1) = A(ζk) and B(ζk+1) = B(ζk) ∀k, equation (4.43) can still be used to compute

the reachable sets. However, these operations could be performed offline since the sets

becomes constant robust invariant sets.

4.2.4 State and input constraints

In order to take advantage of one of the main features of predictive controllers, constraints

on the amplitude of the control signal and on the state error are considered. Therefore, let

the sets E ∈ R
n and V ∈ R

m denote, respectively, the bounding trajectory tracking error set

and the admissible control input set for the uncertain model (4.23). Thus, the constraints

can be written as

∆xk ∈ E, (4.44)

∆uk ∈ V. (4.45)

Since the MPC strategy is used to control the nominal system in the RMPC formulation,

the constraints (4.44) and (4.45) must be redeĄned relatively to the nominal state error

∆xnomk and control input gk considered in the model (4.24). Therefore, using the reachable

sets (4.43) to reshape the bounding sets E and V in order to have tighter constraints, it

yields to

Ēi =E ⊖ Ri, ∀i = 1, · · · , Np, (4.46)

V̄i =V ⊖K (ζk) Ri, ∀i = 0, · · · , Nc − 1. (4.47)

Note that the Pontryagin difference needs to be performed online increasing the complexity

of the MPC algorithm.

Finally, the constraints for the nominal MPC strategy are described as

∆xnomk+i ∈ Ēi, ∀i = 1, · · · , Np, (4.48)

gk+i ∈ V̄i, ∀i = 0, · · · , Nc − 1. (4.49)

4.2.5 Terminal cost and terminal constraint

Aiming to ensure closed-loop stability to the MPC, a terminal cost and a terminal constraint

set to be added into the nominal MPC strategy are considered (Mayne et al., 2000).
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A terminal cost able to ensure closed-loop stability can be deĄned using a Lyapunov

function V (∆xk) = ∆xTkP∆xk. Thus, the matrix P obtained from the optimization problem

(4.37) can be used to formulate a quadratic terminal cost since it is a Lyapunov function

able to ensure closed-loop stability for the uncertain model (4.23).2

As for Chapter 3, a terminal constraint ensuring the last element of the predicted

state sequence to belong to an invariant set is obtained by means of the one-step operator.

However, instead of considering the operator presented at equation (3.27) used to obtain a

maximal control invariant set, its deĄnition is modiĄed in order to include the uncertainties

and deĄne a maximal robust control invariant set (see DeĄnitions 2.23 and 2.24). Thus,

consider the robust one-step operator

Q̃(Ω) = ¶∆x ∈ E : ∃ K (ζ) ∆x ∈ V, (A(ζ) +B(ζ)K (ζ)) ∆x+w ∈ Ω, ∀w ∈ W♢ . (4.50)

Note that the one-step operator as deĄned in (4.50) must be evaluated for each vertex of

the polytope ∆.

Using the one-step operator (4.50), the maximal robust control invariant set can be

obtained by means of the following iterative procedure:

1. Initialization: Ω0 = E ∩ ¶ω ∈ R
n : K (ζ)ω ∈ V, ∀ζ♢.

2. Iteration: Ωk+1 = Ωk ∩ Q̃(Ωk).

3. Terminal condition: stop when Ωk+1 = Ωk or Ωk+1 = ∅. Set Ω = Ω∞ = Ωk+1.

The terminal constraint set obtained through the iterative procedure considers the

uncertain system. Hence, in order to use Ω to constraint the nominal system, the

Pontryagin difference with the reachable set at the Np-step is considered

∆xnomk+Np
∈ Ω ⊖ Rk+Np . (4.51)

4.2.6 MPC strategy

Since the mismatch error adaptive controller and the reachable sets are dealing with the

mismatch between the nominal and the uncertain system, an MPC strategy is designed to

deal only with the nominal control problem.

Therefore, consider the cost function

J =

Np−1
∑

i=0

∥
∥∆xnomk+i

∥
∥

2

Q
+

Nc−1∑

j=0

∥gk+j∥2

R
+
∥
∥
∥∆xnomk+Np

∥
∥
∥

2

P
, (4.52)

2Although the LMI used to formulate the optimization problem (4.37) was obtained for the mismatch
error model (4.27), it is easy to see that the matrix P forms a Lyapunov function for the uncertain model
(4.23), since their closed-loop model are the same.
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with Nc being the control horizon.

Moreover, in order to consider the complete optimization problem design, an initial

state constraint and a model constraint must be deĄned. Therefore,

∆xnom0 = 0. (4.53)

∆xnomk+i+1 = A(ζ)∆xnomk+i +B(ζ)gk+i, ∀i = 1, · · · , Np. (4.54)

Thus, the MPC problem for the nominal system can be written as

min
g

→
,x
→

J ,

subject to (4.48), (4.49), (4.51), (4.53), (4.54),
(4.55)

with g
→

=
[

gTk · · · gTk+Nc−1

]T

and x
→

=
[

(xk+1)
T · · · (xk+Np

)T
]T

.

4.3 Robust tube-based economic model predictive

control

This section proposes an REMPC strategy formulated combining the controllers EMPC

and RMPC previously presented in this chapter. The main goal is to design a controller

able to perform safe navigation and robust to uncertainties, such as: unmodelled dynam-

ics, measurements errors, and unknown and/or unmodelled disturbances. This can be

accomplished by simply using the EMPC strategy as pre-stabilizing policy rather than the

MPC strategy used in the presented RMPC algorithm.

Therefore, the REMPC strategy can be formulated as a combination of two control

policies: (i) an EMPC policy able to control the nominal system while performing obstacle

avoidance, and (ii) a control policy to compensate the mismatch between the nominal and

the uncertain system.

4.3.1 Problem statement

As for the RMPC problem statement, a Ąnite-dimensional uncertain nonlinear system is

considered

ẋ(t) = f (x(t),u(t),w(t)) , (4.56)

where x ∈ X ⊂ R
n denotes the state vector, u ∈ U ⊂ R

m denotes the input vector, and

w ∈ W ⊂ R
n denotes the uncertainty-vector with X, U, and W being bounded sets.

The control problem for the REMPC can be deĄned as the problem of designing a model

predictive control system able to perform trajectory tracking while avoiding obstacles and

robust to bounded uncertainties and unmodelled dynamics. The controllerŠs algorithm
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considers a linear discrete-time model with state-space representation in order compute

the state predictions and must ensure closed-loop stability throughout the trajectory.

The nonlinear model (4.56) is linearized around a time-varying trajectory and discretized

to generate the time-varying uncertain model

∆xk+1 = A(ζk)∆xk +B(ζk)∆uk +wk, (4.57)

where ∆xk = xk −xtrk , ∆uk = uk −utrk , wk is the vector of additive uncertainties, and ζk ∈ ∆

denotes the vector of time-varying model parameters with ∆ being a convex polytope.

The matrices A(ζk) and B(ζk) are assumed to have polytopic form and to compose a

controllable system.

Further, the nominal model is deĄned considering (4.57) with W = ¶0♢, yielding to

∆xnomk+1 = A(ζk)∆x
nom

k +B(ζk)gk, (4.58)

with ∆xnomk = xnomk − xtrk , and gk being the nominal control input. Therefore, the complete

control policy for the uncertain system can be deĄned as

∆uk = K (ζk) ek + gk, (4.59)

with ek = ∆xk − ∆xnomk being the mismatch error.

As for equation (4.25), considering the models (4.57) and (4.24) together with the

deĄnition (4.59), the mismatch error model can be written as

ek+1 = [A(ζk) +B(ζk)K (ζk)] ek +wk. (4.60)

4.3.2 Mismatch error adaptive controller

The procedure to obtain the mismatch error adaptive controller can be seen at subsection

4.2.2, but it was brieĆy presented here to made the section self-contained.

Let V (ek) = eTkPek be a Lyapunov function for the mismatch error system. Moreover,

as considered for the RMPC, let V (ek) be an upper bound for LQR cost function. Thus,

regarding the conditions for asymptotic stability,

V (ek) ≥ 0 and V (ek+1) − V (ek) < 0, (4.61)

the follow inequalities can be written

P > 0, (4.62)

AT

fPAf +K (ζ)
T

RK (ζ) + Q − P ≤ 0, (4.63)
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with Af = A(ζk) +B(ζk)K (ζk).

Hence, an LMI condition can be deĄned from (4.63), yielding to











S HT SQ
1
2 Y (ζ)

T
R

1
2

H S 0 0

Q
1
2S 0 I 0

R
1
2Y (ζ) 0 0 I











≥ 0, (4.64)

where S = P −1, Y (ζ) = K (ζ)P −1, H = A (ζ)S +B (ζ)Y (ζ), and Q > 0 and R > 0 are,

respectively, weighting matrices for the state error and the control effort.

In order to obtain a matrix P that shapes a Lyapunov function to fulĄll the conditions

(4.61), the follow optimization problem must be considered

min
S>0,Y (ζ)∀ζ

Tr(P ),

subject to (4.64) ∀ζ ∈ ∆,
(4.65)

where Tr(·) denotes the trace operator.

Finally, having P and assuming the systemŠs current realization known, the feedback

gain for the mismatch error adaptive controller is given by

K (ζk) = − (R+B(ζk)
TPB(ζk))

−1
B(ζk)

TPA(ζk). (4.66)

4.3.3 Constraints

As for the EMPC, the trajectory tracking must be performed considering the collision-free

trajectory ξgoal ∈ R
3 instead of the initial proposed one ξtr ∈ R

3. Thus, the uncertain linear

model (4.57) can be rewritten as

∆x̃k+1 = A(ζk)∆x̃k +B(ζk)∆uk +wk, (4.67)

where ∆x̃k = xk −xgoalk with xgoalk being the desired state vector xtr with the initial position

trajectory ξtr replaced by the obstacle-free position trajectory ξgoal.

Moreover, considering W = ¶0♢ for the model (4.67), the nominal model is given by

∆x̃nomk+1 = A(ζk)∆x̃
nom

k +B(ζk)gk, (4.68)

where ∆x̃nomk = xnomk − xgoalk . Thus, the control input for the uncertain system can be

rewritten as

∆uk = K (ζk) ẽk + gk, (4.69)

with ẽk = ∆x̃k − ∆x̃nomk .

Further, to shape the EMPC pre-stabilizing strategy constraints, consider the reachable
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sets obtained through the iterative procedure

Rk+i+1 = (A(ζk) +B(ζk)K (ζk)) Rk+i ⊕ W, ∀i = 0, · · · , Np − 1, (4.70)

with Np being the prediction horizon and Rk = ¶0♢.

The same constraints presented at section 4.1.3 for the EMPC are considered to

formulate the REMPC pre-stabilizing control policy. However, in order to take the

uncertainties into account, the reachable sets are used to shape the constraints into tighter

ones.

1. Initial condition constraint:

The system is assumed to start without any state error and collision. Thus,

∆x̃nom0 = 0. (4.71)

Further, the last computed collision-free trajectory is considered as the initial

condition

∆x̃nomk = xnomk − xgoalk . (4.72)

2. Model constraint:

Aiming to consider the prediction process into the optimization problem and ensure

feasibility to the collision-free trajectory, the model constraint is deĄned as

∆x̃nomk+i+1 = A(ζ)∆x̃nomk+i +B(ζ)gk+i, ∀i = 1, · · · , Np. (4.73)

3. Maximum state error constraint:

Let E ∈ R
n be the trajectory tracking error bounding set for the uncertain system

(4.67). Thus,

∆x̃k ∈ E. (4.74)

Therefore, using the reachable sets (4.70) to reshape E as Ēi = E ⊖ Ri ∀i = 1, · · · , Np,

the maximum state error constraint can be deĄned as

∆x̃nomk ∈ Ēi, ∀i = 1, · · · , Np. (4.75)

4. Input signal constraints:

Similarly to the state error constraint, let V ∈ R
m deĄne a set of admissible control
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inputs for the uncertain system. Thus,

∆uk ∈ V. (4.76)

Using the reachable sets to redeĄne V as V̄i = V ⊖K (ζk) Ri ∀i = 0, · · · , Nc − 1, the

constraint can be expressed as

gk+i ∈ V̄i, ∀i = 0, · · · , Nc − 1. (4.77)

5. Terminal set constraint:

Aiming closed-loop stability, a terminal constraint for the uncertain system is

considered

∆x̃k+Np ∈ Ω, (4.78)

where Ω is a maximal robust control invariant set that can be obtained through the

procedure presented at the subsection 4.2.5.

Further, the last element of the reachable set sequence Rk+Np is used to modify the

terminal constraint (4.78) in order to be used in the EMPC pre-stabilizing control

strategy. Therefore,

∆x̃nomk+Np
∈ Ω ⊖ Rk+Np . (4.79)

6. No-Ćy zone constraints:

Finally, to strictly ensure that no collision will occur, the no-Ćy zone constraints are

considered

ξk+i ∈ R
3 − O, ∀i = 1, · · · , Np, (4.80)

ξgoalk+i ∈ R
3 − O, ∀i = 1, · · · , Np, (4.81)

with ξk+i denoting the position and O being a set representing all points in the

workspace that are obstructed by obstacles.

4.3.4 EMPC strategy

Having the constraints deĄned in the previous subsection, an EMPC strategy to deal with

the nominal control problem can be designed. Hence, consider the economic cost function

J =

Np−1
∑

i=0

∥
∥∆x̃nomk+i

∥
∥

2

Q
+

Nc−1∑

j=0

∥gk+j∥2

R
+
∥
∥
∥∆x̃nomk+Np

∥
∥
∥

2

P
+ (4.82)

Np∑

i=0

∥
∥ξgoalk+i − ξtrk+i

∥
∥

2

κ
+
∑

l

Np∑

i=0

χl

∥
∥
∥
∥

1

min ¶∥ξk+i − ξobsl ∥♢ − 1

d∗
l

∥
∥
∥
∥

2

λ

, ∀l,
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where Nc is the control horizon, P is the Lyapunov matrix obtained in the equation (4.65),

κ and λ are weighting matrices, ξobsl denotes the position of the l-th obstacle, and

χl =







1, if min
{

dl



ξtr
k+cNp

, ξobs
l

)}

≤ d∗
l ,

0, if min
{

dl



ξtr
k+cNp

, ξobs
l

)}

> d∗
l ,

(4.83)

with c ∈ N being a scaling factor and d∗
l being a safe distance from the l-th obstacle and

min
{

dl


ξtrk+Np
, ξobsl

)}

denoting the smaller Euclidean distance between ξtrk+Np
and ξobsl .3

Hence, the pre-stabilizing control policy for the REMPC strategy can be deĄned

through the optimization problem as

min
g
→

,x
→

,x
→

goal
J ,

subject to (4.71 Ű 4.73) , (4.75), (4.77), (4.79 Ű 4.81) ,

(4.84)

with g
→

=
[

gTk · · · gTk+Nc−1

]T

and x
→

=
[

(xk+1)
T · · · (xk+Np

)T
]T

.

4.4 Tilt-rotor UAV trajectory tracking control

In this section the trajectory tracking problem of a Tilt-rotor UAV carrying a suspended

load is solved from the UAVŠs perspective using the three controllers previously designed

in this chapter. The EMPC proposed at section 4.1 solves the trajectory tracking problem

while performing obstacle avoidance through a whole-body control approach, i.e, controlling

all the UAVŠs degrees of freedom. The RMPC presented at section 4.2 is used as an

outer-loop controller for the cascade structure shown at Appendix B to perform trajectory

tracking of the UAVŠs planar motion while stabilizing the load, i.e., to control x, y, γ1,

and γ2 dynamics. Moreover, similar to the RMPC, the REMPC presented at section 4.3 is

used as an outer-loop controller to regulate the UAVŠs planar motion and stabilizes the

suspended load while performing obstacle avoidance in the x− y plane.

The necessity to work with a cascade structure when using the tube-based controllers

is due to dimensionality problems, which are common in MPC strategies but it is worse

in the tube-based approaches. Mainly, this happens because of the computational cost

associated with the Minkowski sum and the Pontryagin difference, which increases with the

control systemŠs state-space dimension. While in the whole-body approach the predictive

controller must control at least twenty degrees of freedom used to describe the Tilt-rotor

with suspended load dynamic model, using the cascade structure the outer controller only

deals with eight of them. Afterwards, all the remaining degrees of freedom that are not

controlled by the predictive controllers are addressed by a nonlinear IOFL inner-loop

controller. For more details about the dynamic model from the UAVŠs perspective and

3Further information about how the terms of the nonlinear economic cost are derived can be found at
section 4.1.
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the cascade structure used in this section, the reader should refer, respectively, to the

Appendices A and B.

Moreover, in this section, simulations will be carried out to corroborate the controllerŠs

trajectory tracking good performance and, for those with economic criteria, the obstacle

avoidance ability. The simulations were made using the MATLAB/Simulink® environment

with the help of the YALMIP solver and the MPT toolbox.

4.4.1 Discrete whole-body linearized model

The model (A.30), described in Appendix A, is considered to obtain the discrete whole-body

linearized model to be used in the implementation of the EMPC. Thus, its equilibrium

point must be found in order to expand (A.30) through Ąrst-order Taylor series.

Therefore, considering the vehicle in hovering without any external disturbances (d = 0),

the equilibrium point can be obtained after solving ẋB = φB(xB,u,d) =
[

q̇TB q̈TB

]T

= 0,

which leads to the system of algebraic equations

ϑB (qeqB ) −GB (qeqB ) = 0. (4.85)

where qeqB = [xeqB yeqB zeqB ϕeqB θeqB ψeqB αeqR αeqL γeq1 γeq2 ]T .

The algebraic problem (4.85) can be solved by an inĄnity set of real numbers since it

has more variables than equations. Thus, let the states xB, yB, and zB assume any values

and ψB = 0.4 Therefore, considering the physical parameters deĄned on table A.1, the

equilibrium values for the UAVŠs states and inputs are given by

ϕeq = −0.000154, θeq = −0.0411, αeqR = 0.0411, αeqL = 0.0409, γeq1 = 0.000153, γeq2 = 0.0409,

f eqR = 10.1838, f eqL = 10.2197, τ eqαR = 0, τ eqαL = 0. (4.86)

Let xeq and ueq denote, respectively, the equilibrium state and input vectors able to

maintain the system in hovering. Then, the equations of motion (A.30) can be linearized

around these points, yielding to

∆ẋ = A∆x+B∆u, (4.87)

where ∆x = x− xeq, ∆u = u− ueq, and

A =
∂φ(x,u,d)

∂x

∣
∣
∣
∣
u=ueq
x=xeq ∈ R

20×20, B =
∂φ(x,u,d)

∂u

∣
∣
∣
∣
u=ueq
x=xeq ∈ R

20×4, (4.88)

being xeq = [(qeq)T (q̇eq)T ]T and ueq = [f eqR f eqL τ eqαR τ eqαL ]T , with qeq = [0 0 0 ϕeq θeq 0 αR
eq αL

eq

γeq1 γeq2 ]T .

4From now on, the subscript B used to differ the system from the UAVŠs perspective from the loadŠs
perspective will be dropped, since this chapter deals only with the Ąrst one.
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Similar to Chapter 3, to improve the trajectory tracking performance, the error state

vector ∆x is augmented with integral actions, yielding to

∆x̂ =








∆x
´

(ξ − ξtr)
´

(ψ − ψtr)








∈ R
24, (4.89)

whose dynamics are given by

∆ ˙̂x =














A 020×4

1 0 0 0 0 0

04×14 04×4

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1














︸ ︷︷ ︸

Â

∆x̂+




B

04×4





︸ ︷︷ ︸

B̂

∆u. (4.90)

Finally, the discrete whole-body linearized model can be obtained after map the model

(4.90) from the continuous-time to the discrete-time domain, which yields to

∆x̂k+1 = Âd∆x̂k + B̂d∆uk, (4.91)

being the matrices Âd and B̂d obtained after discretizing the model using a zero-order

hold with sampling time Ts = 12 ms.

The trajectory to be tracked by the suspended load and its control signal are deĄned as

xtrk = [(qtrk )T (q̇trk )T ]T , (4.92)

utr

k = ϑ+ [Mq̈tr

k +Cq̇tr

k +G] , (4.93)

where (·)+ denotes the left pseudoinverse, and qtr
k , q̇tr

k and q̈tr
k are provided reference signals

with qtrk = [xtrk ytrk ztrk ϕeq θeq ψtr γeq1 γeq2 αR
eq αL

eq]T . Notice that utrk , since it is computed

using a left pseudoinverse, will be an exact solution to the dynamic equations (A.30)

∀k ∈ N only if the trajectory is feasible.

4.4.2 Discrete outer-loop linearized model

The second-order dynamic model (B.31), obtained in Appendix B, is used to derive the

outer-loop linearized model necessary to implement the RMPC and REMPC strategies.

Therefore, in order to expand the outer system in Taylor series, the model (B.31) must be

rewritten in a state-space representation and, later, its equilibrium point must be found.
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Thus, consider the state-space representation

ẋq2
= φq2

(

xq2
,Υq2

, δq2

)

=




q̇2

q̈2



 =




q̇2

M−1
q2

[
Υq2

+ δq2
− n̄q2

]



 , (4.94)

where Υq2
is an intermediary control input vector, and δq2

is a vector containing uncer-

tainties and external disturbances (see Appendix B, section B.3).5

Moreover, considering the vehicle in hover-Ćight and not affected by any external

disturbances, i.e., ẋ = 0 and δq2
= 0, the equilibrium point for the system (4.94) can be

obtained by solving the algebraic problem

φ(x,Υ, δ) =




q̇

q̈



 = 0, (4.95)

which solution has an inĄnity set of real numbers since it has more variables than equations.

Therefore, letting x and y assume any value and considering the physical parameters

deĄned on table A.1, the solution of the algebraic system (4.95) gives uniquely the follow

equilibrium values

γeq1 = 0.000154, γeq2 = 0.0411, Υeq

1 = 0, Υeq

2 = 0. (4.96)

Let xtr and Υ
tr denote, respectively, the state vector trajectory and the intermediary

control inputs able to drive the system along this trajectory. Then, the state-space

equations (4.94) can be linearized around these trajectories, resulting in the model

∆ẋ = A(ζ(t))∆x+B(ζ(t))∆Υ, (4.97)

where ∆x = x−xtr, ∆Υ = Υ−Υ
tr, ζ(t) denotes a vector of time-varying model parameters.

The linearized Jacobians are given by

A(ζ(t)) =
∂φ(x,Υ, δ)

∂x

∣
∣
∣
∣
Υ=Υ

tr
x=xtr ∈ R

8×8, B(ζ(t)) =
∂φ(x,Υ, δ)

∂Υ

∣
∣
∣
∣
Υ=Υ

tr
x=xtr ∈ R

8×2. (4.98)

In this work, the trajectory values for x and Υ are given by

xtr = [(qtr)T (q̇tr)T ]T , (4.99)

Υ
tr = Mq̈tr + n̄, (4.100)

where qtr, q̇tr, and q̈tr are provided reference signals with qtr = [xtr(t) ytr(t) γeq1 γeq2 ]T .

5From now on, the subscript q2 used to differ the outer-loop from the inner-loop system will be dropped
to simplify the notation. The reader can easily understand by context when a variable, for instance x and
q, is being used as a whole-body systemŠs variable or an outer-loop systemŠs variable since the Ąrst one
refers only to the EMPC strategy and the latter to the RMPC and REMPC strategies.
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Considering the state vector trajectory deĄned in (4.99), the time-varying param-

eters become ζ(t) = [ẍtr(t) ÿtr(t)]T , which is limited by the polytope ∆ ∈ R
2 with 22

vertices. Therefore, the linearized Jacobian matrices can be rewritten in a convex polytopic

representation as

A(ζ(t)) =
4∑

i=1

ιiAi, (4.101)

B(ζ(t)) =
4∑

i=1

ιiBi, (4.102)

with Ai and Bi being, respectively, the matrices A(ζ(t)) and B(ζ(t)) evaluated at the i-th

vertex of ∆. Moreover, the constraints 0 ≤ ι1 ≤ 1 and
∑n

i=1 ιi = 1 must hold for i = 1, · · · , 4.

Aiming to improve the trajectory tracking performance of the states x and y, the state

vector ∆x is augmented with integral actions as

∆x̂ =







∆x
´ (

x − xtr
)

´ (
y − ytr

)







∈ R
10, (4.103)

whose dynamics are given by

∆ ˙̂x =







A(ζ(t)) 08×2

1 0
02×6 02×2

0 1







︸ ︷︷ ︸

Â(ζ(t))

∆x̂+




B(ζ(t))

02×2





︸ ︷︷ ︸

B̂(ζ(t))

∆Υ. (4.104)

Finally, the discrete outer-loop linearized model can be obtained after map the model

(4.104) from the continuous-time to the discrete-time domain, which yields to

∆x̂k+1 = Â(ζk)∆x̂k + B̂(ζk)∆Υk, (4.105)

being the matrices Â(ζk) and B̂(ζk) obtained after discretizing the model using a zero-order

hold with sampling time Ts = 120 ms.

4.4.3 Desired trajectory

Aiming to explore the capabilities of the three controllers proposed in this chapter, two

trajectories to be tracked by the Tilt-rotor UAV carrying a suspended load are proposed.

The Ąrst one intends to show the obstacle avoidance feature achieved with the economic

criteria included in the optimization problem by means of the potential functions. In

this trajectory the vehicle needs to displace itself along the XI-axis while avoiding three

spherical obstacles that are obstructing its path (see Figure (4.4)). In this trajectory, the

obstacle avoidance capability of the EMPC and the REMPC strategies are shown. The
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Algorithm 4.1 Economic MPC algorithm

1: Compute P through (3.17) using the model (4.107) and matrices Q and R.
2: Calculate Ω by iterating the one-step operator deĄned at (3.27).
3: Set xgoal1 = xtr1 .
4: procedure EMPC(xk, qtr

−→

, q̇tr
−→

, q̈tr
−→

, ξobsl , xgoalk )

5: Obtain the vector ∆x̃k.
6: Compute utr

−→
using (4.93) from k up to k +Nc.

7: Check if min
{

dl


ξtrk+cNp
, ξobsl

)}

≤ d∗
l ∀l.

8: Write the cost function (4.12).
9: Write the constraints (4.13 Ű 4.20).

10: Solve the optimization problem (4.21) to obtain u
−→

and x
−→

goal.

11: Set xgoalk = xgoalk+1 .
12: return uk and xgoalk .
13: end procedure

R = diag



1

(15 − f eqR )2
,

1

(15 − f eqL )2
,

0.1

(2 − τ eqαR)2
,

0.1

(2 − τ eqαL)2



. (4.109)

Furthermore, the saturation level of the Tilt-rotor UAV actuators and the maximum

state error between the vehicle and the colision-free trajectory, are

x− xgoal = [−1, 1], y − ygoal = [−1, 1], z − zgoal = [−1, 1],

ϕ− ϕeq = [−0.5, 0.5], θ − θeq = [−0.5, 0.5], ψ − ψtr = [−0.5, 0.5],

αR − αeqR = [−0.5, 0.5], αL − αeqL = [−0.5, 0.5], γ1 − γeq1 = [−0.5, 0.5],

γ2 − γeq2 = [−0.5, 0.5], fR = [0, 15], fL = [0, 15],

ταR = [−2, 2], ταL = [−2, 2],

(4.110)

where the error limitations were chosen regarding measurement errors and the actuatorsŠ

bounds depends on physical constraints.

The potential functions weighting matrices, obtained by try-and-error, are κ = 0.1 · I3×3

and λ = 15 · I3×3, and the security distance from the obstacle deĄning when the repulsive

potential Ąeld starts to act is d∗
l = 0.5. Moreover, the prediction and control horizons are

Np = 10 and Nc = 5, and the scaling factor is c = 10.

Simulation results

The Figure 4.7 shows the Tilt-rotor UAV with suspended load performing a straight

trajectory passing through three spherical obstacles. Is is possible to see that when the

desired trajectory approaches the obstacles, the vehicle Ąnds an alternative trajectory to

follow in order to avoid collision. Further, after passing through the obstacle, the vehicle

returns to the original trajectory. The Ąrst behavior can be explained by the action of the

repulsive potential Ąeld and the second by the attractive potential Ąeld.
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The uncertain system is described considering the additive uncertainty w, which

includes parametric uncertainties, unmodelled dynamics, and the external disturbance

vector δ. Thus, the uncertain error model can be written by

∆x̂k+1 = Â(ζk)∆x̂k + B̂(ζk)∆Υk +w. (4.112)

Moreover, the mismatch error is deĄned as

ek = ∆x̂k − ∆x̂nomk . (4.113)

Therefore, it is possible to describe in general terms the RMPC strategy used to control

the Tilt-rotor UAV in the outer-loop by the Algorithm 4.2.

Algorithm 4.2 Robust Tube-Based MPC algorithm

1: Compute P through (4.37) using the matrices Â(ζk), B̂(ζk), Q, and R.
2: Calculate Ω by iterating the one-step operator deĄned at (4.50).
3: Set ∆x̂nom0 = ∆x̂0 = 0.
4: procedure RMPC(xk, qtr

−→

, q̇tr
−→

, q̈tr
−→

)

5: Compute the feedback gain K (ζk) using (4.42).
6: Obtain the augmented vectors ∆x̂k and ∆x̂nomk .
7: Calculate the mismatch error ek.
8: Compute the reachable sets, R, from k up to k +Np through (4.43).
9: Write the nominal model constraints using the equations (4.48), (4.49), and (4.51).

10: Solve the optimization problem (4.55) to obtain g
−→

.

11: Calculate ∆Υk = K (ζk) ek + gk.
12: Compute Υ

tr
k using (4.100).

13: return Υk.
14: end procedure

After Ąnished the execution of the RMPC algorithm, the intermediary control signal,

Υk, is obtained. However, since the outer-loop must send roll and pitch reference angles to

the inner-loop, equation (B.30) is necessary to obtain ϕk and θk from Υk.

Tunning parameters

In order to deĄne the tuning parameters, it is important to Ąnd the maximum and minimum

values allowed to the intermediary control input. Thus, considering the equation (B.29)

evaluated at the values γeq1 , γeq2 , ϕ = [−0.5, 0.5], θ = [−0.5, 0.5], fR = [0, 15], and fL = [0, 15],

the allowed range for Υ is given by

Υ1 = [−13, 13], Υ2 = [−15, 15]. (4.114)

Moreover, considering the limits for the state error ∆x = [−1, 1], ∆y = [−1, 1], ∆γ1 =
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linear discrete-time model (4.105) is considered as the nominal model, i.e.,

∆x̂nomk+1 = Â(ζk)∆x̂
nom

k + B̂(ζk)gk, (4.117)

with gk being the nominal model control input. Therefore, the uncertain linear system is

described considering an additive uncertainty as described in the previous subsection

∆x̂k+1 = Â(ζk)∆x̂k + B̂(ζk)∆Υk +w. (4.118)

To perform trajectory tracking considering the collision-free trajectory, the state error

vector must be rewritten as

∆x̃ = x̂− x̂goal =








x− xgoal
´

(x− xgoal)
´

(y − ygoal)







, (4.119)

where xgoal = [(qgoal)T q̇T ]T and qgoal = [xgoal ygoal γeq1 γeq2 ]T , with the equilibrium values being

given by (4.96).

Thus, the models (4.117) and (4.118) are modiĄed, respectively, leading to

∆x̃nomk+1 = Â(ζk)∆x̃
nom

k + B̂(ζk)gk, (4.120)

∆x̃k+1 = Â(ζk)∆x̃k + B̂(ζk)∆Υk +w, (4.121)

which are the error models considered in the REMPC strategy implementation.

Finally, redeĄning the mismatch error as ẽk = ∆x̃k − ∆x̃nomk , the control input for the

uncertain system is given by

∆Υk = K (ζk) ẽk + gk. (4.122)

Assuming the obstacles position ξobsl ∈ O known for all l, the Algorithm 4.3 describes in

general terms the REMPC strategy used in the outer-loop to control the Tilt-rotor UAVŠs

outer-loop. After executed the algorithm, the intermediary control signal is obtained and

equation (B.30) needs to be considered to obtain the inner-loop references ϕk and θk from

Υk.

Tunning parameters

Similar to the RMPC strategy, the following bounding sets are considered

E = ¶(x− xgoal), (y − ygoal) ∈ ±1 m,∆γ1,∆γ2 ∈ ±0.5 rad♢ ,
V = ¶Υ1 ∈ ±13,Υ2 ∈ ±15♢ ,
W =

{
wx, wy ∈ ±0.1 m, wγ1

, wγ1
∈ ±0.01 rad,

}
,
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Algorithm 4.3 Robust Tube-Based Economic MPC algorithm

1: Compute P through (4.65) using the matrices Â(ζk), B̂(ζk), Q, and R.
2: Calculate Ω by iterating the one-step operator deĄned at (4.50).
3: Set xgoal1 = xtr1 .
4: Set ∆x̃nom0 = ∆x̃0 = 0.
5: procedure REMPC(xk, qtr

−→

, q̇tr
−→

, q̈tr
−→

, ξobsl , xgoalk )

6: Compute the feedback gain K (ζk) using (4.66).
7: Write the augmented vectors ∆x̃k and ∆x̃nomk .
8: Write the mismatch error ẽk.
9: Compute the reachable sets R from k up to k +Np through (4.70).

10: Check if min
{

dl


ξtrk+cNp
, ξobsl

)}

≤ d∗
l ∀l.

11: Write the cost function (4.82).
12: Obtain the constraints (4.71), (4.72), (4.73), (4.75), (4.77), (4.79), (4.80), (4.81).
13: Solve the optimization problem (4.84) to obtain g

−→

and x
−→

goal

14: Set xgoalk = xgoalk+1 .
15: Calculate ∆Υk = K (ζk) ẽk + gk.
16: Compute Υ

tr
k using (4.100).

17: return Υk and xgoalk .
18: end procedure

being the weighting matrices given by

Q = diag
(

1

22
,

1

22
,

5

(π/2)2
,

5

(π/2)2
,

1

22
,

1

22
,

1

(3π)2
,

1

(3π)2
, 10, 10

)

, (4.123)

R = diag
(

1

(13 − Υeq
1 )2

,
1

(15 − Υeq
2 )2

)

. (4.124)

The prediction and control horizons are Np = 10 and Nc = 5. Further, the maximum

absolute accelerations are 1 m/s2, given the polytope ∆ = ¶±1,±1♢ ∈ R
2. The potential

functions weighting matrices are κ = 0.1 · I2×2 and λ = 15 · I2×2. The security distance is

d∗
l = 0.5, and the scaling factor is c = 10.

Simulation results

Figure 4.19 shows the Tilt-rotor UAV performing trajectory tracking while carrying a

suspended load and when the desired path is obstructed by obstacles to be overcame by

the vehicle. Similar to the EMPC, the cascade structure composed by the REMPC and

the nonlinear IOFL controller was able to perform obstacle avoidance successfully (see

Figure 4.19). The economic stage cost of the REMPC is the reason why the vehicle looks

to an alternative collision-free trajectory when approaching obstacles and returns to the

desired one after passing through it.

Figures 4.20 and 4.21 show, respectively, the trajectory projection presented in Figure

4.19, which is decomposed in the y−x and z−x planes. Observe that, unlike the simulation

using the EMPC strategy (see Figure 4.19), the UAV deviates from all the obstacles using
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a whole-body approach. Secondly, a robust tube-based model predictive controller was

presented aiming to address robustness issues without only rely on the inherited robustness

presented in feedback controllers. Therefore, the RMPC, using set theory tools, considers

uncertainties by design concept, which increases its domain of attraction when compared

to the standard MPC formulations. The RMPC was used to solve the load transportation

problem through a cascade structure in order to avoid dimensionality problems that could

made the implementation of this controller impractical. Finally, the main goal of this

chapter was achieved when the EMPC and RMPC was gathered into a single strategy to

create a robust tube-based economic model predictive controller able to formally address

the robustness problem and to perform obstacle avoidance. This strategy was applied to

solve the load transportation problem using a Tilt-rotor UAV through a cascade structure,

avoiding the dimensionality problems presented in RMPC.

Numerical results have shown that the EMPC successfully performed trajectory tracking

avoiding obstacles obstructing the aircraftŠs workspace. Therefore, in the considered

simulation scenario, this controller was able to achieve the speciĄed requirements, i.e.,

perform trajectory tracking while ensuring closed-loop stability and obstacle avoidance

due to the combination of the standard quadratic with stability regions stage cost and the

economic stage cost. Moreover, as for the LTI-MPC controller, the quadratic stage cost

and the inclusion of integral actions also make the EMPC strategy capable of dealing with

constant external disturbances and parametric uncertainties rejection. The RMPC strategy

was also successfully used to solve the load transportation problem using a Tilt-rotor UAV.

The presented numerical results corroborate the good trajectory tracking performance

of these controllers even in presence of disturbances and the parametric uncertainties

represented by the model dependency on the reference accelerations. Moreover, due

to the use of a cascade structure with a nonlinear controller in the inner-loop, it was

possible to perform yawŠs movements regulation in a way that the vehicle could always be

head-on to the trajectory. Yet, the numerical results had also shown that the combination

of obstacle avoidance and robustness to uncertainties were possible using the REMPC

strategy. However, due to the necessity of working in a cascade structure, only planar

obstacle avoidance was possible.

Despite being able to bring advanced features into the load transportation using a Tilt-

rotor UAV problem, the controllers proposed in this chapter have the drawback of being

computationally costly. The cost of the EMPC algorithm is mainly due to the nonlinear

cost function, the optimization problem, and the number of constraints necessary in its

formulation. The RMPC algorithm cost, on the other side, is due to the computational

burden associated with the Minkowski sum and the Pontryagin difference, which are usualy

obtained through the interception of hyperplanes. Finally, since the REMPC gathers the

beneĄt and drawback of both controllers, its algorithm is the one with higher computation.

Since this work does not address the implementation issues related to these controllers
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algorithms, the results presented here can only be obtained through numerical simulations

and the control strategies cannot yet be tested in the real system. In the next chapter

some general conclusions about this thesis are given and some future works, including the

implementation issues and the obstacle detection problem, are proposed.
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5
Conclusion

5.1 Overview

This thesis dealt with the load transportation control problem using a Tilt-rotor UAV from

two different approaches. In order to solve this problem Ąve different formulations of model

predictive controllers were proposed. Initially, the suspended load trajectory tracking with

the UAV stabilization was addressed using both LTI-MPC and LTV-MPC control strategies.

After, the UAV trajectory tracking problem with load stabilization was considered and

solved through a whole-body approach using the EMPC and through a cascade structure

using the RMPC and REMPC control strategies. It was required for all designed controllers

to be able to perform trajectory tracking while ensuring closed-loop stability throughout

the trajectory, to reject constant external disturbances and parametric uncertainties, and

to satisfy constraints on state deviations and control inputs. Numerical results have shown

that these goals were achieved by all proposed model predictive controllers.

The Ąrst proposed control strategy was a linear time-invariant model predictive con-

troller for trajectory tracking of the suspended load considering a standard quadratic stage

cost together with stability regions. For prediction purposes, the nonlinear state-space

equations of motion were linearized around an equilibrium pointand adapted to consider

the incremental form of MPC aiming to achieve improved performance by means of the

additional integrators. The main goal of using the standard MPC formulation was to

provide a computationally efficient control algorithm suitable to be implemented in the

ProVANT 2.0 UAVŠs embedded system observing the required 12 ms sampling time. This
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is an improvement of the previous results obtained in Santos & Raffo (2016b) and Andrade

et al. (2016). In fact, the inclusion of a terminal cost and terminal constraint set, despite

formally ensure closed-loop stability in the vicinity of the linearization point, have also

allowed the reduction of the prediction and control horizons without losing performance.

These features allowed to reduce the control algorithm time of execution from 55 ms to 3.2

ms, in the average case, and from 129.8 ms to 11.6 ms, in the worst case. Therefore, the

proposed strategy, even in the worst case, can be successfully used in the real system to

solve the considered load transportation control problem.

The second designed predictive control strategy also solved the trajectory tracking of

the suspended load using a Tilt-rotor UAV. However, it differs from the previous control

strategy by considering a linear time-variant model as the foundation of its prediction

process. For the LTV-MPC, the nonlinear state-space equations of motion were linearized

around a generic trajectory considering the ropeŠs length as a time-varying parameter

and also extended to consider the incremental form of MPC. In this formulation, the

stability regions were not considered due to the inability to express the LTV model in

a polytopic form and the prohibitive computation cost to compute this regions in an

on-line approach. However, because of the time-varying model and model-based nature of

predictive controllers, the LTV-MPC formulation was able to solve problems requiring a

larger domain of attraction, such as: yaw movement regulation, and ropeŠs length variation

during take-off and landing maneuvers. The linearized controllers that have been proposed

to solve this problem, with exception to those considering scheduling between control

strategies, are unable to cope with yaw regulation. Moreover, the ropeŠs length variation

is only regarded as an uncertainty to be rejected by the controllers due to its robustness

against model uncertainties. In this context, the proposed controller has the feature of

addressing this practical problem in a simple way without relying only on the controllersŠ

robustness. However, this advantage comes with the drawback of increasing the control

algorithm computational cost due to the high number of required on-line computation.

Therefore, without further research on the topic of how to reduce the computational cost

of this controller, it cannot be implemented in the aircraftŠs embedded system.

For the third proposed control strategy, the load transportation control problem was

solved considering the Tilt-rotor UAVŠs trajectory tracking and obstacle avoidance. For the

development of the EMPC, the nonlinear state-space equations of motion were linearized

around an equilibrium point and all obstacles were considered to be perfectly known. The

optimization problem was designed through a cost function formulated by a standard

MPC quadratic stage cost together with an economic oriented one. The quadratic cost,

as for the LTI-MPC strategy, was used to ensure stability and performance, while the

economic cost was considered to allow obstacle avoidance. Attraction and repulsive

potential functions were use to formulate the economic criteria, and constraints were

added into the optimization problem in order to deĄne no-Ćy zones areas and giving a
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stronger assurance against collisions. The presented numerical results, obtained through

simulations, showed that the EMPC strategy was able to perform obstacle avoidance

while performing trajectory tracking stably. Nevertheless, despite being formulated with

terminal cost and terminal constraint and, hence, being able to work with small prediction

and control horizons, due to the EMPC nonlinear optimization problem, this control

strategy has shown to be computationally costly, which prevents it to be implemented in

the real aircraft without further investigation.

The fourth proposed control strategy was a robust tube-based model predictive con-

troller used to solve the load transportation problem from the UAVŠs perspective through a

cascade structure. The choice of using a hierarchical approach, in which the RMPC control

strategy only deals with the planar motion trajectory tracking and the load stabilization,

was made seeking to reduce the control problemŠs dimension and to allow the controller to

run in a slower frequency rate. In order to design the proposed controller, the outer-loop

model was linearized around a generic trajectory, which resulted in a linear time-variant

model with politopic representation. The proposed control strategy is said to be robust

since it considers in its formulation the effect of both additive and modeling uncertainties.

This approach used set theory tools to deĄne tube regions in order to constrain the

uncertain systemŠs evolution. Its optimal control policy was used to steer the nominal

system throughout the desired trajectory, while an adaptive law reduced the mismatch

error between the uncertain and the nominal systems. Numerical simulation results were

shown to corroborate the controllerŠs good trajectory tracking performance in the presence

of external disturbances and modeling uncertainties, which was mainly associated with

the decoupling and linearization process. Despite the use of the RMPC control strategy to

only address the outer-loop control problem, this strategy still had high computational cost

due to the on-line calculation of Minkowski sums and Pontryagin differences. Therefore,

further researches on the topic of computational efficiency of this control algorithm still

need to be made in order to make its implementation practicable.

Finally, the Ąfth control strategy was proposed aiming to gather the RMPCŠs robustness

with the EMPCŠs obstacle avoidance. This controller also solved the load transportation

problem from the UAVŠs perspective. Similar to the RMPC, the robust tube-based

economic model predictive controller was used in a cascade structure seeking to reduce the

control problem complexity. For the REMPC, the outer-loop model was also linearized

around a generic trajectory, which resulted in a LTV model. Moreover, all obstacles were

also considered to be perfectly known. Since this controller only dealt with the planar

motion trajectory tracking and the load stabilization, the obstacle avoidance feature was

only achieved in the x − y plane. Numerical simulation results were proposed to show

the controllerŠs ability of joining the two previously proposed control strategiesŠ features.

Although being able to gather their features, the REMPC also gathered their drawbacks.

Therefore, this control strategy has high computational cost and will be only possible



CHAPTER 5. CONCLUSION 118

to be applied in the real system when the previous controllerŠs computational efficiency

problems are solved.

5.2 Contributions

The main contribution of this thesis are:

• The design of an LTI-MPC with suitable computational cost for being implemented

in the Tilt-rotor UAVŠs embedded system;

• The design of an LTV-MPC able to address the yawŠs movements regulation problem

and the ropeŠs length variation during take-off and landing maneuvers;

• The design of an EMPC considering potential functions as economic criteria to solve

the obstacle avoidance problem though an one-layer scheme;

• The design of a RMPC to control a Tilt-rotor UAV used for load transportation

tasks considering, by design concept, both additive and model uncertainties;

• The design of a REMPC gathering the robustness and obstacle avoidance features

to solve the load transportation control problem using a Tilt-rotor UAV.

5.3 Future works

This section suggests possible future works that could improve the results of this thesis.

• Improve the LTV-MPC computational cost. The computational cost of the

LTV-MPC is mainly due to the inability of Ąnding a politopic representation for the

linearized model through Ąrst-order Taylor series expansion and the large prediction

and control horizons considered. The Ąrst problem can be worked around by obtaining

the linear parameter varying model using a subspace identiĄcation process, while the

second one can be addressed investigating scheduling MPC techniques that, formally,

ensure stability allowing the reduction of the controllerŠs horizons.

• Inclusion of input rate constraints. For all MPC strategies formulated in this

work it will be necessary to include input rate constraints in order to successfully

validate them in an experimental setup. Although the proposed strategy did not

took into account the actuators dynamics, the inclusion of input rate constraints

will consider, in a simpler way, the actuators time response avoiding the controllers

to calculate unrealistic control actions.
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• Obstacle avoidance considering the aircraftŠs orientation and velocities.

The EMPC proposed in this work considers only the aircrafts position in order

to Ąnd a collision-free trajectory. The inclusion of the orientation could improve

the performance, for instance, by keeping the vehicle head-on to the trajectory.

Moreover, due to the Tilt-rotor UAVŠs dynamics be described by second-order

differential equations, the controller needs to control the generalized coordinates

and their time derivatives. Therefore, depending on the desired trajectory velocities

amplitude, when a collision-free trajectory is found but the desired velocities are kept

the same, the control system may not be able to perform the collision-free trajectory

properly and could even become unstable.

• Inclusion of loadŠs collision avoidance. Since loadŠs collisions are undesirable

due to many aspects, such as: capacity of destabilize the whole-system, damage

of the cargo and the environment, among others; the EMPC formulation can be

modiĄed in order to also includes loadŠs collision avoidance.

• Study of obstacle detection strategies. For future implementation of the EMPC

control strategy in the Tilt-rotor UAV, the obstacle detection problem must be

addressed.

• Study of computational efficiency of the nonlinear optimization algorithms.

In order to be able to implement the EMPC in the UAVŠs embedded system, observing

the desired 12 ms time period for the control algorithm execution, the study of

computational efficient algorithms to solve the controllerŠs optimization problem is

required.

• Compute the adaptive controller through H∞ approach. By changing the

LMI formulated in order to compute the mismatch error adaptive controllerŠs gain for

the RMPC and REMPC strategies, it is possible to include some additional features

into the problem. For instance, since the optimization problem is formulated only to

Ąnd a Lyapunov positive deĄnite matrix P, it could be rewrite as an H∞ problem

aiming to have additional robustness features ensured by the Small Gain Theorem

(Boyd et al., 1991).

• Improve the RMPCŠs computational cost. The investigation of efficient ways

to perform Minkowski sums and Pontriagin differences are necessary to reduce the

algorithmŠs time of execution. For instance, the use of more conservative sets to

compute the reachable sets and to deĄne the restrictions, e.g., zonotopes, can be

considered.

• Ensure no saturation for the control inputs in the RMPC strategy. Although

the MPC strategy used to control the nominal system are able to ensure that the
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control inputs will not reach some desired saturation levels, due to the combination

of the MPC law with mismatch error adaptive control law, the applied control input

has none assurance of no saturation.

• Validation of the proposed techniques in the Gazebo platform. A simulation

platform based on Gazebo was developed in the ProVANT project to validate control

and estimation strategies (Lara et al., 2017). Therefore, the validation of the proposed

control strategies in this platform would allow to test their ability to solve the load

transportation problem in a more realistic scenario.

• Validation of the proposed techniques in experimental setup. An important

step in this research would be the application of the proposed control strategies in

the ProVANT 2.0 UAV to corroborate their performance in the real system.

• EMPC stability analysis. Analyze the stability of the EMPC algorithm presented

in Chapter 4.
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A
Tilt-Rotor UAV with Suspended Load

Modeling

This appendix brieĆy describes the equations of motion of a Tilt-rotor UAV with suspended

load from two different perspectives: (i) the UAVŠs perspective with the vehicle as a free

body coupled to the load; (ii) the loadŠs perspective with the load as a free body coupled

to the UAV. Both models are obtained through the Euler-Lagrange formulation, in which

the coupling between the aircraft and the load is considered naturally. Further details

about the modeling process can be found in Almeida (2014) and Rego (2016), respectively,

from the UAVŠs and the loadŠs perspective.

The Tilt-rotor UAV with suspended load is shown in Figure A.1. The system can be

seen as a multi-body mechanical system composed of four bodies: the Tilt-rotor UAV itself

composed by three bodies, a main body and two thrustersŠ groups, and the suspended

load being the fourth body. The system is actuated through the aircraftŠs thrusters group

composed by a servomotor to tilt the propellers and a rotor to generate the lift force.

For modeling purposes, all bodies are assumed to be rigid; the load is assumed to be

attached to the main body by a massless inelastic rope through two revolute joints; the

rope is connected to the aircraftŠs geometric center; the main bodyŠs center of mass does

not coincide with the aircraftŠs geometric center; and the thrusters groupsŠ centers of mass

are located at their respective tilting axes.
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where ρi is the density, Vi is the volume, mi =
´

Vi
ρiVi is the mass, g ≜ [0 0 − gz]

T denotes

the gravitational acceleration vector expressed in the inertial frame I, and pI
i is a point

rigidly attached to the i-th body expressed in I.

The total kinetic and potential energy of the system can be obtained by the sum of

each body kinetic and potential energies, i.e, K =
∑Ki and U =

∑Ui (Shabana, 2005).

Thereafter, they can be used to compute the inertia matrix and the gravitational force

vector, respectively, since

K =
1

2
q̇TM(q)q̇, (A.6)

and

G(q) =
∂U
∂q

. (A.7)

The Coriolis and centripetal forces matrix can be obtained from the inertia matrix

through the Christoffel symbols of the Ąrst kind as (Spong et al., 2006)

ckj =
10∑

i=1

1

2

[
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

]

q̇i, (A.8)

where ckj is the (i, j)-th entry of the matrix C (q, q̇) and mij is the (i, j)-th entry of the

matrix M (q).

Finally, the last term that must be obtained to have the systemŠs dynamics represented

by equation (A.3) consists of the contributions of all non-conservative forces and torques

applied to the system. Hence, let f and τ denote, respectively, the general non-conservative

forces applied in a point p and the general non-conservative torques applied to a body with

a reference frame F rigidly attached to it. The contributions of f and τ to the generalized

force and torque vector ϑ (q) can be obtained through the following mappings (Kane &

Levinson, 1985)

ϑf = (Jp)TfI ∈ R
n, (A.9)

ϑτ = (WF)Tτ I ∈ R
n, (A.10)

with Jp = ∂ṗI/∂q̇ and WF = ∂ωI
IF/∂q̇, where ωI

IF is the angular velocity between the

frames I and F expressed in I.

Thus, to summarize the modeling process, Ąrst the systemŠs frames deĄnitions should

be made in order to describe pI
i and ṗI

i through basic kinematics transformations; second,

the quadratic term (ṗI
i )
T

(ṗI
i ) needs to be obtained to compute the kinetic energy and, using

equation (A.6), identify the inertia matrix; third, the equation (A.8) together with the

derived inertia matrix should be used to obtain the Coriolis and centripetal forces matrix;

fourth, knowing pI
i , the total potential energy needs to be calculated and differentiated

using (A.7) to obtain the gravitational force vector; and Ąfth, the Jacobians Jp and Wp

need to be calculated through equations (A.9) and (A.10) in order to derive the generalized
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Therefore, the generalized coordinates that describe the motion of the Tilt-rotor UAV

are chosen as

qB = [ξTB η
T

B α
T γT ]

T
, (A.11)

with α = [αR αL]
T and γ = [γ1 γ2]

T .

Furthermore, the systemŠs inputs are given by u = [fR fL τR τL]
T , where fR and fL are

the thrust forces, respectively, of the right and left propellers; likewise, τR and τL are the

torques applied by the servomotors. Additionally, the system underactuated behavior can

be noticed from the generalized coordinates deĄnition and the amount of inputs available.

A.2.1 Kinematics

Considering the Euler angles using the ZYX convention about local axes, the rotation

matrix between the frames B and I is given by (Spong et al., 2006)

RI
B =








cψB
cθB

cψB
sθB

sϕB
− sψB

cϕB
cψB

sθB
cϕB

+ sψB
sϕB

sψB
cθB

sψB
sθB

sϕB
+ cψB

cϕB
sψB

sθB
cϕB

− cψB
sϕB

−sθB
cθB

sϕB
cθB

cϕB







, (A.12)

with s(·) = sin (·) and c(·) = cos (·).
A point rigidly attached to the main body can be represented in the inertial frame by

pI
B = RI

Bp
B + ξB, (A.13)

likewise, a point rigidly attached to the frame Ci can be expressed in the body frame as

pB
i = RB

Ci
pCi + dB

Ci
, ∀i, (A.14)

where dB
Ci

denotes the translation between the frames B and Ci with i ∈ ¶1, 2, 3, 4♢.

Therefore, combining the equations (A.13) and (A.14), a point rigidly attached to Ci
can be expressed in the inertial frame by

pI
i = RI

B



RB
Ci
pCi + dB

Ci

)

+ ξB, ∀i. (A.15)

Furthermore, taking the Ąrst time derivative of equation (A.15), it is possible to express

the velocity of the i-th body in the inertial frame as

ṗI
i = ṘI

B



RB
Ci
pCi + dB

Ci

)

+RI
B



ṘB
Ci
pCi +RB

Ci
ṗCi + ḋB

Ci

)

+ ξ̇B. (A.16)

In order to be able of expanding the derivative terms of the equation (A.16), since

Rj
i = Rj

iS(ωi
ij) with S(·) being a skew symmetric matrix (Spong et al., 2006), the angular

velocities ωB
BI, ωC2

C2B, ωC3
C3B, and ωC4

C4B, and the relative velocity ḋB
C4

between the frames C4
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and B must to be obtained. As shown in Almeida (2014), these terms can be described by

ωB
BI = WηB

η̇B, (A.17)

ω
C2
C2B = α̇Ray, (A.18)

ω
C3
C3B = α̇Lay, (A.19)

ω
C4
C4B = Pγ, (A.20)

ḋB
C4

= Lγ, (A.21)

where

WηB
=








1 0 −sθB

0 cϕB
sϕB

cθB

0 −sϕB
cϕB

cθB







,ay =








0

1

0







,P =








1 0

0 cγ1

0 −sγ1







,L =








lsγ1
sγ2

−lcγ1
cγ2

lcγ1
0

lsγ1
cγ2

lcγ1
sγ2







.

A.2.2 Dynamic model

The nonlinear dynamic model of the Tilt-rotor UAV with suspended load, from the UAVŠs

perspective, can be described by the Euler-Lagrange equation, as in (A.3), by

MB (qB) q̈B +CB (qB, q̇B) q̇B +GB (qB) = ϑB (qB, q̇B) . (A.22)

After obtained ṗI
i in equation (A.16), the quadratic term (ṗI

i )
T

(ṗI
i ) can be computed

and the kinetic energy can be represented as in equation (A.6) in order to obtain the

inertia matrix. Therefore, as shown in detail in Almeida (2014), the inertia matrix can be

written as

MB (qB) =














mI3×3 m12 m13 m14 m15

∗ W T
η JWη m23 m24 m25

∗ ∗ aTyI2ay m34 m35

∗ ∗ ∗ aTy I3ay m45

∗ ∗ ∗ ∗ m4L
TL+ P TI4P














(A.23)

where the ∗ terms indicate symmetry with respect to the main diagonal and

m12 = −RI
BHWη, m13 = 03×1, m14 = 03×1, m15 = m4RI

BL,

m23 = W T

η R
B
C2
I2ay, m24 = W T

η R
B
C3
I3ay, m25 = W T

η R
B
C4
I4P +m4W

T

η S


dB
C4

)

L,

m34 = 0, m35 = 01×2, m45 = 01×2,

with m =
∑
mi, J =

∑
Ji and H = S


∑
mid

B
Ci

)

, being Ji the inertia tensor of the i-th

body given by

Ji = RB
Ci
Ii



RB
Ci

)T

+miS


dB
Ci

)T

S


dB
Ci

)

, (A.24)
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where Ii is the moment of inertia of the i-th body.

Further, the Coriolis and centripetal forces matrix CB (qB, q̇B) can be obtained directly

from the inertia matrix using equation (A.8).

As shown in Almeida (2014), the total systemŠs potential energy is given by

UB = (gI)
T
RI

B


4∑

i=1

mid
B
Ci



+ (gI)
T
mξB. (A.25)

Thus, the gravitational force vector GB (qB) can be obtained using equation (A.7).

The generalized force and torque vector ϑB (qB, q̇B) can be described as a combination

of forces and torques generated by the actuators, ϑBu, the friction between the rope and

the Tilt-rotor, ϑBfr, and the external disturbances applied to the vehicle, ϑBd. Hence, the

generalized force and torque vector can be expressed as

ϑB = ϑBu + ϑBfr + ϑBd, (A.26)

where

ϑBu = Bu =

















RI
BrR RI

BrL 0 0

W T
ηB
τR W T

ηB
τL 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



























fR

fL

ταR

ταL











, (A.27)

ϑBfr = −µq̇B = −blkdiag (0, 0, 0, 0, 0, 0, 0, 0, µγ, µγ) q̇B, (A.28)

ϑBd =
[

I3×3 03×3 03×2 03×2

]T

dB, (A.29)

with dB =
[

dxB dyB dzB

]T

denoting the disturbance vector, and

rR =








sαR

cαRsβ

cαRcβ







, rL =








sαL

−cαLsβ
cαLcβ







, τR =








−cαRcβdy − kτ

b
sαR

sαRd
z + kτ

b
cαRsβ

sαRd
y + kτ

b
cαRcβ







, τL =








cαLcβd
y + kτ

b
sαL

sαLd
z − kτ

b
cαLsβ

−sαLdy − kτ

b
cαLcβ







,

being dz = dB
C2z

= dB
C3z

and dy = ♣dB
C2y

♣. The derivation of each term of the equation (A.26)

can be found with detail in Almeida (2014).

A.2.3 State-space representation

Considering the obtained inertia matrix, MB (qB), the Coriolis and centripetal forces matrix,

CB (qB, q̇B), the gravitational force vector, GB (qB), and the generalized torque and force

vector, ϑB, it is possible to write the Euler-Lagrange equations of motion in a state-space
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representation, yielding to

ẋB = φB (xB,u,d) =




q̇B

q̈B



 =




q̇B

M−1
B [ϑB −CB (qB, q̇B) q̇B −GB (qB)]



 . (A.30)

The model derived in this section is used to design the controllers of Chapter 4 and to

obtain the nonlinear cascade structure presented in Appendix B.

A.3 Dynamic model from the loadŠs perspective

In order to formulate the dynamic model from the loadŠs perspective, six reference frames

are deĄned, as shown in Figure A.3: the inertial frame I, the moving frames B and Ci,
which are, respectively, frames rigidly attached to the main body center of rotation and to

the center of mass of the i-th body, and the suspended load group center of mass frame,

L. The loadŠs position with respect to the inertial frame I is denoted by ξL = [xL yL zL]T ,

and its attitude by ηL = [ϕL θL ψL]T , described by Euler angles using the ZYX convention

about local axes. The displacement vector from L to B corresponds to the rope, and is

expressed in L by dL
B = [0 0 l]T , with l being the ropeŠs length. The displacement vectors

from B to Ci expressed in B are model parameters of the Tilt-rotor UAV and are denoted

by dB
Ci

with i ∈ ¶1, 2, 3♢. Further, the orientation of the aircraftŠs geometric center frame

with respect to L is parametrized by two angles, γ = [γ1 γ2]
T ; and the orientations of the

thrustersŠ groups with respect to B is parametrized by α =
[

αR αL

]T

.

Aiming to obtain the equations of motion describing explicitly the time evolution of

the loadŠs position and orientation, the generalized coordinates are chosen as

qL =
[

ξTL ηTL γT αT

]T

. (A.31)

As considered in the previous section, the systemŠs inputs are the thrust forces and

torques given by u = [fR fL τR τL]
T , which show again the systemŠs underactuated behavior.

A.3.1 Kinematics

Considering the Euler angles vector ηL to describe the orientation of the load with respect

to I, the associated rotation matrix can be deĄned as

RI
L =








cψLcθL cψLsθLsϕL − sψLcϕL cψLsθLcϕL + sψLsϕL

sψLcθL sψLsθLsϕL + cψLcϕL sψLsθLcϕL − cψLsϕL

−sθL cθLsϕL cθLcϕL








.

On the other hand, the rotation matrices associated, respectively, to the orientation of

the aircraftŠs geometric center frame with respect to L and the orientations of the thrustersŠ





APPENDIX A. TILT-ROTOR UAV WITH SUSPENDED LOAD MODELING 138

the inertial frame, and pI
i is a point rigid attached to the frame Ci expressed in the inertial

frame. As shown in Rego (2016), the time derivatives of the equations (A.33) and (A.34)

can be written as

ṗI
L = ξ̇L +RI

LS(pL)TωL
LI, (A.35)

ṗI
i = ξ̇L +

[

RI
LS(dL

B)T +RI
LR

L
BS(dB

Ci
)T (RL

B)T +RI
LR

L
BR

B
Ci
S(pCi)T (RL

BR
B
Ci

)T
]

ωL
LI

+
[

RI
LR

L
BS(dB

Ci
)T +RI

LR
L
BR

B
Ci
S(pCi)T (RB

Ci
)T
]

ωB
BL +RI

LR
L
BR

B
Ci
S(pCi)Tω

Ci
CiB

.
(A.36)

A.3.2 Dynamic model

The nonlinear dynamic model of the Tilt-rotor UAV with suspended load from the loadŠs

perspective can be described by the Euler-Lagrange equations of motion as

ML (qL) q̈L +CL (qL, q̇L) q̇L +GL (qL) = ϑL (qL, q̇L) , (A.37)

After derive pI
L and pI

i with equations (A.33) and (A.34), the quadratic terms (ṗI
L)
T

(ṗI
L)

and (ṗI
i )
T

(ṗI
i ) can be evaluated and the kinetic energy can be represented as in equation

(A.6) in order to obtain the inertia matrix. Therefore, the inertia matrix can be written

as (Rego, 2016)

ML(qL)=














(mL +m)I3×3 m12 −RI
LR

L
BS(dm)Q 03×1 03×1

∗ m22 m23 W T
ηL
RL

BR
B
C2
I2ay W T

ηL
RL

BR
B
C3
I3ay

∗ ∗ QTJQ QTRB
C2
I2ay QTRB

C3
I3ay

∗ ∗ ∗ aTy I2ay 0

∗ ∗ ∗ ∗ aTy I3ay














,

(A.38)

with ∗ denoting terms that are deduced by symmetry, and

m12 = −mRI
LS(dL

B)WηL
−RI

LR
L
BS(dm)(RL

B)TWηL
,

m22 = W T

ηL
[IL +D − S(dL

B)RL
BS(dm)(RL

B)T −RL
BS(dm)(RL

B)TS(dL
B)]WηL

,

m23 = W T

ηL
[−S(dL

B)RL
BS(dm) +RL

BJ ]Q,

where m =
∑3

i=1 mi, J =
∑3

i=1 Ji, D =
∑3

i=1Di, and dm =
∑3

i=1 mid
B
Ci

.

The Coriolis and centripetal forces matrix can be easily obtained from the inertia

matrix using equation (A.8). Besides, as shown in Rego (2016), the total potential energy

is given by

UL = −gT [(mL +m)ξL +mRI
Ld

L
B +RI

LR
L
Bdm] . (A.39)

Therefore, the gravitational force vector can be obtained using equation (A.7).

The last term that needs to be obtained to completely describe the system from the

loadŠs perspective through the equation (A.37) is the generalized force and torque vector,
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ϑL, that can be described as (Rego, 2016)

ϑL = ϑLfR
+ ϑLfL

+ ϑLταR
+ ϑLταL

+ ϑLτdrag,R
+ ϑLτdrag,L

+ ϑLfr + ϑLd, (A.40)

where ϑLfR
and ϑLfL

represents, respectively, the contribution of the lift force generated by

the right and the left propellers; ϑLταR
and ϑLταL

are, respectively, the contribution of the

torques generated by the right and left servomotors; ϑLτdrag,R
and ϑLτdrag,L

are, respectively,

the effect of the drag torques generated by the right and left propellers; ϑLfr denotes the

contribution of the viscous friction at the point of connection between the rope and the

Tilt-rotor UAV; and ϑLd is the external disturbances applied to the suspended load. All

terms of equation (A.40) were carefully derived in Rego (2016) and can be written as

ϑLfR
=














RI
LR

L
BR

B
C2
az

W T
ηL
S(dL

B)RL
BR

B
C2
az +W T

ηL
RL

BS(dB
C2

)RB
C2
az

QTS(dB
C2

)RB
C2
az

0

0














fR, (A.41)

ϑLfL
=














RI
LR

L
BR

B
C3
az

W T
ηL
S(dL

B)RL
BR

B
C3
az +W T

ηL
RL

BS(dB
C3

)RB
C3
az

QTS(dB
C3

)RB
C3
az

0

0














fL, (A.42)

ϑLταR
=
[

(03×1)
T (03×1)

T (02×1)
T 1 0

]T

ταR
, (A.43)

ϑLταL
=
[

(03×1)
T (03×1)

T (02×1)
T 0 1

]T

ταL
, (A.44)

ϑLτdrag,R
= λR

kτ
b














03×1

W T
ηL
RL

BR
B
C2
az

QTRB
C2
az

0

0














fR, (A.45)

ϑLτdrag,L
= λL

kτ
b














03×1

W T
ηL
RL

BR
B
C3
az

QTRB
C3
az

0

0














fL, (A.46)

ϑLfr = −blkdiag(0, 0, 0, 0, 0, 0, µγ, µγ, 0, 0)q̇L, (A.47)

ϑLd =
[

I3×3 03×3 03×2 03×1 03×1

]T

dL, (A.48)
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with dL =
[

dxL dyL dzL

]T

denoting the disturbance vector and az = [0 0 1]T .

A.3.3 State-space representation

After obtained the inertia matrix, ML (qL), the Coriolis and centripetal forces matrix,

CL (qL, q̇L), the gravitational force vector, GL (qL), and the generalized torque and force

vector, ϑL, it is possible to rewrite the model in a state-space representation, yielding to

ẋL = φL (xL,u,d) =




q̇L

q̈L



 =




q̇L

M−1
L [ϑL −CL (qL, q̇L) q̇L −GL (qL)]



 . (A.49)

The model derived in this section is used to design the controllers of Chapter 3.

A.4 Model parameters

Table A.1: Model parameters of the Tilt-rotor UAV with suspended load.

Parameter Value
mL = m4 0.09000 [Kg]

m1 1.70249 [Kg]
m2, m3 0.13973 [Kg]

l 1 [m]
dB

C4
= dL

B [0 0 l]T [m]
dB

C1
[−0.00433 0.00060 − 0.04559]T [m]

dB
C2

[0.00002 − 0.27761 0.05493]T [m]
dB

C3
[0.00077 0.27761 0.05493]T [m]

I4 = IL 2.645 · 10−6 · I3×3 [Kg·m2]

I1






3697.66749 0.36342 −9.51029

∗ 840.10403 0.61804

∗ ∗ 3865.05354




 · 10−6 [Kg·m2]

I2






441.68245 0 0

∗ 441.67985 −1.07006

∗ ∗ 0.64418




 · 10−6 [Kg·m2]

I3






441.68245 0 0

∗ 441.67985 1.07006

∗ ∗ 0.64418




 · 10−6 [Kg·m2]

g [0 0 − 9.81]T [m/s2]
kτ 1.7 · 10−7 [N·m·s2]
b 9.5 · 10−6 [N·s2]
β 5 [o]
µγ 0.005 [N·m/(rad/s)]

The model physical parameters of the Tilt-rotor UAV with suspended load considered

in this work are shown in Table A.1. Mass, inertia and displacement parameters of the

aircraft were obtained from CAD model, designed in Solidworks® software. The parameters
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related to the suspended load, as well as kτ and b, are the same considered in Almeida &

Raffo (2015). Moreover, the gravitational acceleration is assumed constant.

A.5 Considerations about the embedded system

The description of the UAVŠs embedded system and its peripherals are beyond the scope of

this work. Those readers interesting to know more details about the sensors and actuators,

or how the controllersŠ sampling time are chosen regarding their limitations, should refer to

the work of Andrade (2016) where a detailed description of the Tilt-rotor UAV is provided.

For the sake of simplicity in this work the control problem is solved through state-feedback

structure with all states assumed to be known either by measurement or estimation.
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B
Nonlinear Cascade Control Strategy

This appendix presents a nonlinear two-level cascade control framework able to solve the

path tracking problem of a Tilt-rotor UAV while transporting a suspended load stably.

The inner-loop is designed in order to control the attitude and altitude while stabilizing the

thrustersŠ group tilting angles actuating on the UAVŠs propellers and servos. Besides, the

outer-loop controls the vehicleŠs planar position while stabilizing the load angles calculating

the desired roll and pitch angles to be set as external reference for the inner-loop.1

In the upcoming sections some assumptions about the system are made seeking to

decouple its dynamics for control purposes. Also, regarding the inner-loop, a nonlinear

controller is designed using the input-output feedback linearization (IOFL) method with

dynamic extension together with a mixed discrete H2/H∞ with pole placement constraints

controller to deal with the linearized system resulting from the diffeomorphism obtained

after the IOFL techniques was applied. The outer-loop control problem is not addressed

in this appendix since the RMPC and REMPC controllers presented in Chapter 4 were

designed for such end.

The nonlinear cascade control strategy developed here was mainly based on the work

of Raffo & Almeida (2017), been only modiĄed to include the mixed discrete H2/H∞ with

pole placement constraints controller formulated in Rego (2016) and used to control a

Tilt-rotor with tail surfaces in Santos et al. (2017a). Additionally, the readers should refer

to Slotine & Li (1991) and Khalil (2001) for further information about the IOFL method

1Further information about the Tilt-rotor UAV considered in this appendix can be seen at section
A.2 from Appendix A, where the modeling process to describe the load transportation problem from the
UAVŠs perspective is presented.
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and dynamic extension technique.

B.1 Decoupled system

Consider the model deĄned in the equation (A.22) representing the dynamics of the

Tilt-rotor UAV with suspended load from the UAVŠs perspective.2 In order to decouple

the model (A.22) into two independent dynamic models, some assumptions regarding the

systemŠs equation of motion needs to be made (Raffo & Almeida, 2017). Specially, some

degrees of freedom that have their dynamics coupled are assumed uncoupled making the

follow hypotheses about some of the inertia matrixŠs entries (see equation (A.23)):

1. Despite the physical parameters presented at Table A.1, for control purposes, the

center of mass of the main body frame C1 is assumed to be exactly placed at its

own geometric center frame B, i.e., dB
C1

= 0; also, the rotors are assumed to have the

same mass and to be aligned with the frame B along the XB-axis and ZB-axis being

equally distant to the main body frame origin regarding the YB-axis, i.e., m2 = m3

and dB
C2

=
[

0 dB
C2y

0
]T

= −dB
C3

; leading to H = S


m4d
B
C4

)

. Additionally, assuming

m4 << m, the inertia matrixŠs entry m12 = RI
BHWη ≈ 0. Therefore, the coupling

between the attitude and position dynamics is assumed to be negligible.

2. The coupling between the altitude and load angles dynamics is assumed to be

negligible, i.e., m15 ≈
[

i⃗ j⃗ 0
]

m15.

3. The coupling between the attitude and tilting angles dynamics is assumed to be

negligible, i.e., m23 ≈ 0 and m24 ≈ 0.

4. The coupling between the attitude dynamics and the load motion is also assumed to

be negligible, i.e., m25 ≈ 0.

Thereafter, equation (A.22) can be split into two new uncoupled models having the

generalized coordinates q1 =
[

z ηT αT

]T

and q2 =
[

x y γT
]T

, yielding to

Mq1
(q1) q̈1 +Cq1

(q1, q̇1) q̇1 +Gq1
(q1) = ϑq1

(q1, q̇1) , (B.1)

Mq2
(q2) q̈2 +Cq2

(q2, q̇2) q̇2 +Gq2
(q2) = ϑq2

(q2, q̇2) , (B.2)

where Mqi
= IqiMITqi , Cqi

= IqiCI
T
qi

, Gqi
= IqiG, and ϑqi

= Iqiϑ with

Iq1
=
[

06×2 I6×6 06×2

]

, Iq2
=




I2×2 02×6 02×2

02×2 02×6 I2×2



 .

2The subscript B used to mark the systemŠs equation of motion as derived from the UAVŠs perspective
at section A.2 will be dropped since this appendix considers only this perspective.
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Considering equation (A.26) and equations (A.27) to (A.29), ϑqi
can be expressed as

ϑqi
= Bqi

u− µqi
q̇i + δqi , (B.3)

where Bqi
= IqiB, µqi

= IqiµI
T
qi

, and δqi is a vector containing the unmodeled dynamics

from the decoupled procedure and external disturbances ϑd.

Using the expression (B.3), the uncoupled models (B.1) and (B.2) can be rewritten in

the state-space representation as

ẋqi
=




q̇i

q̈i



 =




q̇i

M−1
qi

[
Bqi

u+ δqi − [
Cqi

(qi, q̇i) + µqi

]
q̇i −Gqi

(qi)
]





= fqi
(xqi

) + guqi
u+ gdqi

δqi .

(B.4)

B.2 Inner-loop control

This section deals with the design of a nonlinear controller able to control the dynamics of

the generalized coordinate q1 described by the model (B.1). First, the IOFL method with

dynamic extension technique is used to obtain a linear system through a diffeomorphism.

Hereafter, a robust discrete H2/H∞ controller is designed to control the resulting linear

system while dealing with the unmodeled dynamics present in the decoupled system.

Instead of the continuous H2/H∞ controller used in Raffo & Almeida (2017), this work

uses its discrete version to avoid uncertainties coming from the discretization process since

the controllers presented here will be implemented in digital computers.

B.2.1 IOFL with dynamic extension

Let hq1
=
[

z ϕ θ ψ
]T

be the outputs and u =
[

fR fL ταR ταL

]T

be the inputs of the

system (B.1). Therefore, considering equation (B.4), a nonlinear system affine in the

inputs can be written as3

ẋ = f(x) + gu(x)u+ gd(x)δ,

y = h(x).
(B.5)

The concepts of Lie derivative and relative degree of a system are essential to apply

the IOFL techniques (Slotine & Li, 1991). Recalling, the Lie Derivative of a scalar Ąeld

h(x) in the direction of a vector Ąeld f(x) results in a third scalar Ąeld given by

Lfh(x) = ∇h(x) · f(x), (B.6)

3Since this section address only the inner-loop control problem, to simplify the notation, in the
remaining of the section the subscript q1 will be dropped and q will be used to denotes q1.
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where ∇h(x) =
[
∂h(x)

∂x1
· · · ∂h(x)

∂xn

]

is the gradient of h(x). Further, the relative degree ri to

an output yi is deĄned as the number of times the output needs to be differentiated until

some input appears in the resulting expression. Thus, the system relative degree is given

by the sum of all outputsŠ relative degree r =
∑
ri, which can be obtained through the

expression

ri = inf
{

k : ∃j,Lgj
Lk−1

f hi(x) ̸= 0
}

, (B.7)

where gj is the j-th column of gu(x).

The output differentiating procedure used to compute the relative degree can be

generally expressed as (Slotine & Li, 1991)

y
(ri)
i = Lri

f hi(x) +
m∑

j=1

Lgj
Lri−1

f hi(x)uj, (B.8)

with Lgj
Lri−1

f hi(x) ̸= 0 for at least one j when performing the ri-th differentiation and uj

being the j-th systemŠs input.

In order to have a system with a set of input/outputs fully feedback linearizable, its

relative degree should be equal to the number of state variables to avoid the presence of

internal dynamics in the transformed system. However, as shown in Raffo & Almeida

(2017), the relative degree of the system (B.1) is r = 8 while x ∈ R
12. To overcome this

issue, the authors propose to use the dynamic extension technique (Slotine & Li, 1991)

augmenting the state vector to x̄ = ha (x,u) =
[

qT q̇T fR ḟR fL ḟL

]T

and redeĄning

the input vector as ū =
[

f̈R f̈L ταR ταL

]T

, which gives the new state-space equation

˙̄x = f̄(x̄) +
∑4

i=1 ḡi(x̄)ūi + ḡd(x̄)δ,

y = h(x),
(B.9)

where f̄(x̄) =
[

q̇T q̈T ḟR 0 ḟL 0
]T

, q̈ = M−1 (− [C + µ] q̇ −G+ δ) +B1fR +B2fL, ūi is the

i-th input, Bi is the i-th column of Bq, and ḡi(x̄) is given by

ḡ1 =








013×1

1

02×1







, ḡ2 =




015×1

1



 , ḡ3 =








06×1

B3

04×1







, ḡ4 =








06×1

B4

04×1







. (B.10)

As shown in Raffo & Almeida (2017), after applying the dynamic extension technique

the systemŠs relative degree becomes r = 16, hence it is now fully feedback linearizable.

In order to obtain the transformed linearized states Θ(x), in which Θ(·) deĄnes a local

diffeomorphism, the follow input transformation must be considered

ū = ∆
−1(v − b) (B.11)
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with v =
[

vz vϕ vθ vψ

]T

being the additional control inputs. Using the equation (B.8)

with the augmented state vector x̄ and the input ū, it is possible to deĄne

∆(x̄) ∈ R
4×4 : ∆ij(x̄) = Lḡj

L3
f̄hi (x̄)

b(x̄) ∈ R
4×1 : bi(x̄) = L4

f̄
hi (x̄) ,

(B.12)

where ∆ij(x̄) is the (i, j)-th entry of the matrix ∆(x̄) and bi(x̄) is the i-th row of b(x̄).

Therefore, the systemŠs outputs become a simple linear relation yielding to

y(r) =
....
h (x̄) = v + π(δ), (B.13)

with π(δ) being a term containing unmodeled dynamics and unknown external disturbances.

Thereafter, a Proportional-Integral-Derivative (PID)-like controller with feed-forward

term is proposed in order to regulate the outputs z, ϕ, θ, and ψ (Raffo & Almeida, 2017).

Then, the additional linear control laws can be designed as

vi =
...
i
tr

+Kdddi

...
e i +Kddi

ëi +Kdi
ėi +Kpi

ei +Kii

ˆ

eidt, (B.14)

where ei = i− itr with i ∈ ¶z, ϕ, θ, ψ♢ and (·)tr denotes the desired trajectory.

DeĄning the vector ẽ =
[
´

edt e ė ë
...
e
]T

with e =
[

ez eϕ eθ eψ

]T

, and K =

blkdiag (Ki,Kp,Kd,Kdd,Kddd), the linearized dynamics can be written as follows







˙̃e = Aẽ+Buũ+Bππ,

ũ = Kẽ,
(B.15)

where A, Bu, and Bπ are matrices with appropriated dimension.

B.2.2 Discrete mixed H2/H∞ control

In order to design a discrete mixed H2/H∞ control to compute the feedback gain K, the

model (B.15) can be discretized through a zero-order hold with sample time Ts, yielding to

ẽk+1 = Aẽk +Buũk +Bππk,

ũk = Kẽk.
(B.16)

DeĄning the cost variables

z̃k = Hẽk +Duũk, (B.17)

zk = Hẽk +Duũk +Dππk, (B.18)

where H, Du, and Dπ are weighting matrices.

Let Ψπz̃(ς) denotes the discrete-time transfer function from π to z̃, with ς ∈ C. Then,
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the H2 norm of the system (B.16) considering the cost variable (B.17) is deĄned as

∥Ψπz̃(ς)∥2 =
√∑∞

k=0 trace¶ψT
kψk♢ <

√
σ, with ψk = Z−1¶Ψπz̃(ς)♢ and σ ∈ R. Further,

the H∞ norm of the system (B.16) considering the cost variable (B.18) is deĄned by

∥Ψπz(ς)∥
∞

= supπ ̸=0 ∥πk∥2
/ ∥zk∥2

<
√
ϱ, with ϱ ∈ R.

Given the state-feedback control law ũk = Kẽk, the gain matrix K that minimizes an

upper-bound for the H2 norm while guaranteeing a prescribed upper-bound
√
ϱ̃ >

√
ϱ for

the H∞ norm is obtained by solving the optimization problem

min
P ,X,Y ,N

tr ¶N♢ subject to (B.19), (B.20), (B.21)



N HX +DuY

∗ X +XT − P



 > 0, (B.19)








P AX +BuY Bπ

∗ X +XT − P 0

∗ ∗ I







> 0, (B.20)











P AX +BuY Bπ 0

∗ X +XT − P 0 XTHT + Y TDT
u

∗ ∗ I DT
π

∗ ∗ ∗ ϱ̃I











>0, (B.21)

where K = −Y X−1 and ∗ denote the elements that are deduced by symmetry.

Furthermore, the systemŠs time response can be improved by means of pole placement

constraints using LMIs regions to restrict the complex plane. Thus, let D1 = Re(eig¶Ã♢) > ε

and D2 = ♣eig¶Ã♢♣ < ϖ denote subsets of the complex plane, where Ã = A −BuK, and

¶ε,ϖ♢ ∈ R
+. Therefore, eig¶Ã♢ ⊂ D1 ∩ D2 if ∃ T > 0 and Y such that

TAT +AT + Y TBT
u +BuY − 2εT > 0, (B.22)




−ϖT AT +BuY

∗ −ϖT



 < 0, (B.23)

where K = −Y T −1. The constraints (B.22) and (B.23) can be merged into the H2/H∞

control problem by making X = XT = T > 0.

Those whom are interested to see the complete derivation of the LMIs (B.19), (B.20),

(B.21), (B.22), and (B.23) that compose the H2/H∞ control problem with pole placement

constraints should refer to Rego (2016).

B.3 Outer-loop

This section deal with the manipulation of the model (B.2) allowing the design of a system

able to control the generalized coordinates q2 actuating on the angles ϕ and θ. As proposed
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in Raffo & Almeida (2017), an intermediary control input variable is deĄned for such end.

From (A.27) and regarding the deĄnition Bq2
= BIq2

, the effect of the generalized force

vector generated by the actuators on the subsystem (B.2) can be written as

Bq2
u =

[

T I
x T I

y 0 0
]T

, (B.24)

with T I
x and T I

y being, respectively, translational forces along XB and YB axes expressed

in the inertial frame.

These translational forces can be represented as




T I
x

T I
y



 =




1 0 0

0 1 0



RI
B (rRfR + rLfL) =




r11 r12 r13

r21 r22 r23



 (rRfR + rLfL) , (B.25)

where rij is the (i, j)-th entry of the matrix RI
B. The generalized force vector expressed

in the body frame (rRfR + rLfL) can be decomposed into the projections fB
x , fB

y , and fB
z .

The drawback idea behind the actuation using the roll (ϕ) and pitch (θ) angles is to

change the projection of fB
z along the XI and YI axes of the inertia frame in order to

control the planar motion movements and stabilize the load (Raffo & Almeida, 2017). The

remaining projections of the generalized force vector are assumed to be known disturbances

compensated by the controller.

Considering the relation (B.3) for q2, the model (B.2) can be rewritten as

Mq2
q̈2 +

[
Cq2

+ µq2

]
q̇2 +Gq2

− F ′
q2

= F ′′
q2

+ δq2
, (B.26)

where F ′
q2

=
[

r11f
B
x + r12f

B
y r21f

B
x + r22f

B
y 0 0

]T

and F ′′
q2

=
[

r13f
B
z r23f

B
z 0 0

]T

. More-

over, deĄning the auxiliary vector nq2
=
[

nx ny nγ1
nγ2

]T

as

nq2
=
[

Cq2
+ µq2

]

q̇2 +Gq2
− F ′

q2
, (B.27)

the outer loop model can be rewritten as

Mq2
q̈2 +











nx

ny

nγ1

nγ2











=











(sψsϕ + cψsθcϕ) f
B
z

(sψsθcϕ − cψsϕ) f
B
z

0

0











+ δq2
. (B.28)

Since the nonlinear model (B.28) cannot be easily expressed as affine in control inputs

ϕ and θ, intermediary input variables Υ1 and Υ2 are deĄned as







Υ1 = (sψsϕ + cψsθcϕ) f
B
z − nx,

Υ2 = (sψsθcϕ − cψsϕ) f
B
z − ny,

(B.29)
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