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Resumo

Essa dissertagdo de mestrado aborda o controle de um Veiculo Aéreo Nao Tripulado
(VANT) na configuragao Tilt-rotor utilizado para o transporte de carga. Propoe-se resolver
esse problema através de leis de controle 6timo com horizonte deslizante, especificamente,
métodos de controle preditivo baseado em modelo (MPC). O objetivo principal é obter
controladores capazes de realizar o seguimento de uma trajetéria desejada mantendo o
sistema estavel mesmo na presenca de incertezas e perturbacoes.

Inicialmente é proposta uma estratégia de controle utilizando um MPC na formulagao
incremental com modelo de predicao linear e invariante no tempo. Posteriormente, essa
formulagao é estendida para considerar modelos de predicao lineares e variantes no tempo,
possibilitando lidar de maneira simples com o problema de variagao de parametros do
sistema, como massa e comprimento do cabo conectando a carga suspensa ao VANT, o
que permite realizar manobras de decolagem e aterrissagem com a carga ainda em contato
com o solo. Além disso, essa estratégia trata o problema de seguimento de trajetoria
considerando diferentes pontos de equilibrio do sistema linearizado, sendo também possivel
realizar seguimento de trajetéria do angulo de guinada do VANT sem instabilizar o sistema.
Ademais, é desenvolvido nesse trabalho um controlador MPC com critério econémico, sendo
este critério integrado ao funcional de custo do controlador através de fungdes potenciais de
atracao e repulsao. Isso possibilita ao sistema de controle lidar com o problema de desvio
de obstaculos escolhendo uma trajetoria econdmica que evita colisao e reduz o erro entre a
trajetoria inicial e a executada pelo VANT. Ainda, é abordada uma classe de controladores
preditivos robustos, o controlador preditivo baseado em tubos. Para garantir robustez ao
sistema, esse controlador utiliza em sua formulagao algumas técnicas bem conhecidas em
teoria de conjuntos para definir no espaco de estados conjuntos alcancaveis e regides de
estabilidade que limitam a diferenca entre a trajetoria predita pelo modelo nominal e pelo
modelo que leva em consideracao perturbagoes e incertezas limitadas. Esse controlador,
devido ao custo computacional das ferramentas de teoria de conjuntos, sera utilizado
em cascata com um controlador nao linear baseado na linearizagdo por realimentagao de
saida. Finalmente, as caracteristicas de robustez do controlador baseado em tubos sao
combinadas ao controlador MPC econoémico para gerar uma nova estratégia de controle

robusto com critérios econdmicos.



Palavras-chave: Controle Preditivo, Controle Preditivo Econémico, Controle Preditivo
Robusto, VANT Tilt-rotor, Transporte de Carga.



Abstract

This Master Thesis addresses the control of an Unmanned Aerial Vehicle (UAV) in the
Tilt-rotor configuration for load transportation tasks. This work proposes to solve the
problem using an optimal control strategy with receding horizon, mainly, Model-based
Predictive Controllers (MPC). The main objective is to obtain controllers able to perform
path tracking stably even in the presence of uncertainties and disturbances.

Initially, a control strategy is proposed using an MPC based on the incremental
framework with a linear time-invariant prediction model. After, this formulation is
extended to consider a linear time-variant prediction model, which makes it possible to
deal, in a fashion way, with time varying systems’ parameters, such as mass and length of
the cable connecting the suspended load to the UAV, then allowing performing take-off and
landing maneuvers with the load in contact with the ground. Furthermore, this strategy
deals with the path tracking control problem considering different equilibrium points of the
linearized system. This also allows tracking of the UAV’s yaw angle without destabilize the
whole system. Moreover, an MPC controller with economic criteria is designed, in which
this criteria is added to the controller’s cost function through attraction and repulsion
potential functions. This makes the control system able to deal with the obstacle avoidance
problem by choosing an economical trajectory that avoids collision and reduces the error
between the initial trajectory and the one performed by the UAV. Furthermore, a class
of robust predictive controllers, the tube-based ones, is addressed. To ensure robustness
to the system, this controller takes hand of some well-known techniques of set theory to
design reachable sets and stability regions in the state-space in order to limit the mismatch
between the trajectory predicted using the nominal model and the model that considers
limited disturbances and uncertainties. Due to the computational cost of the set theory
tools, the proposed tube-based controller is cascaded with a nonlinear controller based on
input-output feedback linearization. Finally, the robustness features of the tube-based
controller are combined to the economic MPC controller to generate a new strategy of
robust control with economic criteria.

keywords: Predictive Control, Economic Predictive Control, Robust Predictive Control,
Tilt-Rotor UAV, Load Transportation.
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Notation

General notation

a Italic lower case letters denote scalars
a Boldface italic lower case letters denote vectors
A Boldface italic upper case letters denote matrices

Symbols and operators

N Set of natural numbers

R Set of real numbers

0 Zero matrix with appropriate dimension

I Identity matrix with appropriate dimension
Onsm Zero matrix with n lines and m columns
L.n Identity matrix with n lines and n columns
A Time derivative of A

AT Transpose of A

Inverse of A
At Pseudo-inverse of A

Tr(A) Trace of A

@ Minkowski sum operator
S Pontryagin difference operator
Q) One-step set operator

Q) Robust one-step set operator



Model Predictive Control (Chapters 3 and 4)
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State vector

State error vector

Augmented state error vector for the incremental model
State error vector between the aircraft and the collision-free trajectory
State error vector for the nominal model

Input vector

Input vector for linear systems

Control increment vector

Control policy vector able to control the nominal model
Mismatch error vector

Addictive uncertainty vector
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Desired spatial trajectory vector
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Set of admissible inputs
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C;
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sin(i)
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Co
Cy

L, C,

Generalized coordinates vector

Lagrangian

Kinetic energy

Potential energy

Generalized force and torque vector

Inertia matrix

Coriolis and centripetal forces matrix

Gravitational force vector

Point rigidly attached to a body i expressed in F

Angular velocity between the frames 7 and F expressed in T

Inertial reference frame
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Reference frame rigidly attached to the main body’s center of mass
Reference frame rigidly attached to the right thruster group’s center of mass
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CHAPTER 1. INTRODUCTION 23

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have experienced in the recent years a great populariza-
tion among academics, hobbyists, and, more recently, in the industry. This popularization
is mainly due to the development, in the last decades, of technologies related with the
design and assembly of these vehicles. For instance, the development of lighter and resistant
low-cost materials, the cheapness of electronic components, and the increase processing
capacity of embedded systems together with the reduction of the physical space occupied
by them. This scenario allows virtually anyone with some basic engineering knowledge to
build a UAV. In addition, the growing interest of the academy in these vehicles has pushed
forward the state of the art knowledge, which made some problems, that once precludes
the development of UAVs, to become well-known, as for instance, problems like modeling,
dynamic control, state estimation, visual and navigation systems, among others.

In the earlier days, UAVs were mainly used for military purposes since these vehicles
were promising platforms to perform military tasks, such as: search and rescue, surveillance,
transportation, and combat (Ryan & Hedrick, 2005; Beard et al., 2006). However, with
the aforementioned popularization of UAVs, new applications for these vehicles in the
civil sphere arose. Nowadays, UAVs are being used in a wide range of applications, to
cite a few: precision agriculture, fire detection, cargo transportation and delivery, cave
exploration, cinematographic filming, 3-D mapping, and pipeline inspection (Tokekar et al.,
2013; Merino et al., 2005; Palunko et al., 2012).
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UAVs are often found in two main configurations: rotary-wing and fixed-wing. The first
configuration has the advantage of performing Vertical Take-Off and Landing (VTOL),
while the second one is able to obtain improved flights with greater forward operational
range and endurance. Helicopters and quadrotors (Figures 1.1a and 1.1b) are examples of
rotary-wing UAVs, while airplanes (Figure 1.1c) are examples of fixed-wing UAVs. Some
hybrid aircrafts have drawn substantial attention due to their ability to combine the
vertical lift capacity of helicopters with the range, endurance, and speed of fixed-wings.
Amongst them, the Tilt-rotor configuration is one of the most popular, being provided with
fixed-wings and rotary-wings, and capable of switching between helicopter and airplane
flight-modes only by tilting its thrusters group. This kind of aircraft is particularly
interesting to perform tasks that require fast deployment, access to restricted areas, and
high maneuverability in slow velocities. Inspired by the capabilities of those aircrafts,
recent researches are looking into the design of small-scale Tilt-rotor UAVs (Amiri et al.,
2011; Park et al., 2013; Cardoso et al., 2016).

(c) Airplane UAV.

Figure 1.1: Most common examples of unmanned aircrafts.

Full-scale hybrid aircrafts can be found in the aerospace industry, such as: the military
Bell Boing V-22 Osprey Tilt-rotor (Figure 1.2a), which has been widely used by the
U.S. and Japan military forces due to its multi-mission capability; the Augusta Westland
AWG609 Tilt-rotor (Figure 1.2b) developed for the civil aviation market intending to reach
the offshore oil and gas operators; the Nasa GI-10 Greased Lightning Tilt-wing prototype
(Figure 1.2¢) to be used in applications like long endurance surveillance and mapping;
and the military Bell V-280 Valor Tilt-rotor (Figure 1.2d) designed to achieve improved
forward velocity (520 Km/h) and has recently made its first flight.
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Kﬁ»:—%&"“ﬂ R . )
(a) The Bell Boeing V-22 Osprey Tilt- (b) The Augusta Westland
rotor aircraft. AWG609 Tilt-rotor aircraft.

B e T I

(c) The Nasa Gl-10 Greased Lightning (d) The Bell V-280 Valor Tilt-
Tilt-wing aircraft. rotor aircraft.

Figure 1.2: Examples of full-scales hybrid aircraft.

Although the hybrid characteristics of these kind of aircrafts offer advantages over
fixed-wing and rotary-wing UAVs, they also come with control design challenges since these
vehicles are complex underactuated mechanical systems with highly coupled dynamics.
Their underactuated behavior is due to the existence of more degrees of freedom than
control inputs. In practice, work with this kind of system means that it is not possible
to regulate all degrees of freedom at the same time instant. Therefore, the control
system design process must be made regarding the regulation of some desired states
while guaranteeing the stability of the remaining ones. Moreover, the additional tiltable
mechanisms allowing the transition between flight modes increase the system’s mechanical
complexity when compared with others UAVs. Yet, when these mechanisms are assumed
to be rigid bodies, the aircraft becomes a multi-body system with coupling between the
thrusters and the main body, which made the control process design still more challenging.

Despite being underactuated systems with coupled dynamics, these vehicles also
have highly nonlinear dynamics, are affected by aerodynamic perturbations, and the
models obtained for control design purpose are subject to modeling errors and parametric
uncertainties. All these characteristics increase the complexity of the control design and
make the use of traditional control techniques, e.g, pole placement, not suitable to be
applied. In this context, advanced control techniques, for instance, adaptive, robust, model
predictive, nonlinear, among others, become more appropriated in order to achieve good
performance during autonomous flight.

Among several applications of UAVs, the load transportation in risky and inaccessible

zones is quite important since it allows to deal with rapid deployment of supplies in search-
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and-rescue missions (Bernard et al., 2011), vertical replenishment of seaborne vessels
(Wang et al., 2014), and safe landmine detection (Bisgaard, 2008). However, this kind of
task is also a challenging subject in terms of modeling and control. Since the payload is
often connected to the UAV through a rope, the dynamic behavior of the system varies
due to the load’s swing, which can destabilize the whole system if it is not well attenuated.
Moreover, the suspended load by a rope adds more unactuated degrees of freedom into the
system, increasing its overall underactuation degree. Due to its hybrid capabilities, the
Tilt-rotor UAV becomes a promising platform for such application, providing improved
forward speed when compared with rotary-wing UAVs, which is a desired feature for
missions requiring rapid deployment, and precise positioning of the load, which cannot be
addressed by fixed-wing UAVs due to their inability to perform hover flight.

In this context the ProVANT project started as a joint effort between the Brazilians
Federal University of Minas Gerais (UFMG) and Federal University of Santa Catarina
(UFSC) aiming to design an open source Tilt-rotor UAV platform able to perform au-
tonomous flight and address the load transportation problem. Figure 1.3a, shows the first
Tilt-rotor UAV designed in the ProVANT project. The ProVANT 1.0 was assembled at
UFSC, where in 2013 performed its first flight. The ProVANT 2.0, shown in Figure 1.3b,
improved the last version by having its conceptual design made with Computer Aided
Design (CAD) Software, providing a better knowledge of its physical parameters. This
aircraft was assembled at UFMG using 3D printer and is currently under flight tests. The
ProVANT 3.0, see Figure 1.3c, represented the evolution of the ProVANT project towards
the achievement of a fully convertible Tilt-rotor aircraft. In this version, tail and fuselage
surfaces were added seeking to allow improved forward flight when compared with previous
versions. This aircraft is currently under assemblage process at UFMG. Later, after the
University of Seville joined the project, the ProVANT 4.0 was proposed to achieve a full
flight envelope, see Figure 1.3d. The inclusion of wings, besides the previous aerodynamic
surfaces, will allow this aircraft to switch completely between the helicopter and airplane
modes during the autonomous flight. This aircraft is under conceptual design processes
and will be used to perform cargo delivery considering a 20 kilometers range.

This work is part of the ongoing effort of the ProVANT project team to investigate the
problem of performing autonomous flight using a Tilt-rotor UAV applied to cargo trans-
portation tasks. Specifically, this work aims to design model-based predictive controllers to
solve the problem of transporting a load attached to the vehicle by a rope. This problem is
addressed in this work from two different perspectives: (i) the control system is required to
perform trajectory tracking of the suspended load while keeping the aircraft stabilized; (ii)
the control system is required to perform trajectory tracking of the Tilt-rotor UAV while
stabilizing the suspended load. Both approaches can be successfully used as a solution
to the transport problem of slung loads using Tilt-rotor UAV. However, when precision

positioning of the load is required, the first approach is shown to be more suitable.
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(a) ProVANT UAV 1.0. (b) ProVANT UAV 2.0.

(c) ProVANT UAV 3.0. (d) ProVANT UAV 4.0.

Figure 1.3: Aircrafts designed in the context of the ProVANT project.

1.2 State of the art

The Tilt-rotor UAV modeling problem has been addressed in the ProVANT project through
the Euler-Lagrange formulation providing an appropriate dynamic representation of the
aircraft for control design purposes. Initially, the dynamic model was derived in Donadel
et al. (2014b) for a Tilt-rotor UAV similar to the two first prototypes considered in the
project (Figures 1.3a and 1.3b); and, after, this model was extended in Almeida et al.
(2014) and Rego & Raffo (2016¢) to consider a suspended load attached to the aircraft
with the modeling procedure being made, respectively, from the UAV’s perspective and
from the load’s perspective. Subsequently, in Cardoso et al. (2016) the dynamic model
for a Tilt-rotor UAV with fuselage and tail surfaces was proposed. In the literature, it
is possible to find other works considering the Tilt-rotor UAV modeling problem, for
instance, in Sanchez et al. (2008) the dynamic equations of motion are derived through the
Newton-Euler approach considering the vehicle as a single-body system despite the role
that the coupling generated by the tiltable mechanisms have in this aircraft’s dynamics.
For the best knowledge of the author, only in Almeida et al. (2014) and in Rego &
Raffo (2016¢) it is possible to find the Tilt-rotor UAV with suspended load modeling
problem being addressed and taking into account the coupling dynamics between the
bodies composing the system.

Researches dealing with control design for Tilt-rotor UAVs are recent with few published
works in the literature. Some relevant works have used the following techniques: model
predictive control (Papachristos et al., 2013); inverse dynamics (Yanguo & Huanjin, 2009);
backstepping (Kendoul et al., 2006; Amiri et al., 2013); and bounded smooth nonlinear
function (Sanchez et al., 2008). The ProVANT group has contributed with the Tilt-rotor



CHAPTER 1. INTRODUCTION 28

UAV trajectory tracking control problem by considering in Donadel et al. (2014a) and
Rego & Raffo (2016a), respectively, a continuous-time and discrete-time formulation of
a linear quadratic regulator, and in Donadel et al. (2014b) an H., and a mixed H,/H..
robust controllers.

When it comes to control design of Tilt-rotor UAVs for load transportation tasks, the
literature is even more limited. However, if others UAVs structures are considered, many
other works dealing with the load transportation control problem can be found, such as:
Raffo & Almeida (2016); Palunko et al. (2012); Dai et al. (2014); Sreenath et al. (2013b)
for quadrotors, and Bisgaard (2008) for helicopters. In the literature, control objectives
for aerial load transportation include: trajectory tracking of the aircraft with reduced
load’s swing (Bisgaard et al., 2009; Palunko et al., 2012; Faust et al., 2013), obstacle
avoidance (la Cour-Harbo & Bisgaard, 2009; Tang & Kumar, 2015), transportation by
multiple aircrafts (Bernard & Kondak, 2009; Lee et al., 2013), and trajectory tracking of
the suspended load (Palunko et al., 2013; Sreenath et al., 2013a; Pereira & Dimarogonas,
2016; Pereira et al., 2016). In Goodarzi (2016), the aircraft trajectory tracking problem
was addressed considering a suspended load connected to a quadrotor via a length-varying
rope. The problem was modeled through the Euler-Lagrange approach and a nonlinear
geometric control was considered to stabilize the system. In Lee (2018) the suspended
load control problem is also addressed through nonlinear geometric control. However,
the problem of the load’s trajectory tracking is solved considering multiples quadrotors
carrying the load.

The aerial load transportation problem has been addressed in the ProVANT project
considering a Tilt-rotor UAV. The aircraft trajectory tracking with load stabilization
control problem is solved through the following techniques: robust mixed H,/H., control
(Almeida et al., 2014); linear model predictive control (Santos & Raffo, 2016b; Andrade
et al., 2016); adaptive LMI-based control (Santos & Raffo, 2016a); nonlinear IOFL control
with a three-stage cascade structure (Almeida & Raffo, 2015) and with a two-stage cascade
structure (Raffo & Almeida, 2017). Furthermore, the load trajectory tracking with the
UAV stabilization is solved through the techniques: discrete linear quadratic regulator
(Rego & Raffo, 2016b); discrete mixed H,/H., robust control (Rego & Raffo, 2016¢); and
time-variant model predictive control (Santos et al., 2017b).

Model predictive controllers have been known for their ability to control constrained
multiple-input multiple-output nonlinear systems. These controllers are able to deal in a
simple way with multivariate underactuated systems ensuring input-to-output stability
and also internal stability. Therefore, they have been considered in different formulations
in order to deal with aerial robotics control problems, to cite a few: unmanned helicopters
(Castillo et al., 2007; Kunz et al., 2013), quadrotors (Raffo et al., 2010; Alexis et al., 2014),
unmanned airplanes (Kang & Hedrick, 2006), Tilt-rotors (Papachristos et al., 2013; Santos
& Raffo, 2016b; Andrade et al., 2016; Santos et al., 2017b).



CHAPTER 1. INTRODUCTION 29

Since this kind of systems present different sources of uncertainty, robustness should be
considered into the control design process. The problem of robustness in MPC has been
addressed through different strategies. Among them, the most popular are the Min-Max
open-loop MPC (Skokaert & Mayne, 1998; Lee & Yu, 1997) and the Tube-based MPC
(Langson et al., 2004a; Mayne et al., 2009). On one hand, in the Min-Max open-loop MPC
approach the optimization problem considers the worst case of the expected disturbances
and uncertainties, which may lead to an excessively conservative control policy. One the
order hand, the Tube-based MPC considers a dual control scheme, in which a standard
open-loop MPC with tighter constraints is used to control the nominal system and a
feedback control loop is used to increase the robustness of the system. The Tube-based
MPC has shown to be a computationally efficient technique to achieve robustness in
MPC without being so conservative as the Min-Max formulation. However, despite the
Tube-based MPC be computationally efficient when compared to others strategies for
MPC’s robustification, it is still costly for applications that require small sampling periods,
for instance, robotics. Therefore, many works in the literature use the Tube-based MPC
technique only to control systems with a few degrees of freedom, such as: mobile robots
(Kayacan et al., 2015; Ke et al., 2018; Sanchez, 2011) and PVTOL aircraft (Petkar et al.,
2016).

Recently, an interesting formulation for model predictive controllers has been proposed
seeking to include economic oriented criteria into the quadratic open-loop stage cost
used in standard MPC formulations (Rawlings et al., 2012; Ellis et al., 2017). This
formulation has been mainly considered for industrial-like process in order to gather
the process optimization and control problems into an unified problem (Hinojosa et al.,
2017; Amrit et al., 2013; Ellis et al., 2014). Similar ideas have been proposed earlier in
the context of optimal control theory by the problems of minimal fuel or minimal time
(Kirk, 2004). When it comes to the use of economic MPC in robotics, the literature is
limited. However, the underlying ideas of this controller is presented in many works that
use optimal controllers with the optimization problem extended to consider additional
objectives, such as: safe navigation, fuel consumption, minimal time, among others. In
Chung (2017), a predictive controller is formulated to include in its optimization problem
the minimal fuel and time spent by an autonomous vehicle during the trajectory execution.
In Alexis et al. (2015), the collision-free navigation problem is solved for a Tri-Tiltrotor
UAV through a sampling-based receding horizon control considering random trees in the
control space to remove colliding state evolutions. In Nascimento et al. (2014) and Mac
et al. (2016), artificial potential fields are considered, respectively, to perform obstacle
avoidance in a multi-robot system and for a quadrotor UAV. In Perez et al. (2012) a
modified Rapidly-exploring Randomized Tree is joined with a LQR algorithm to perform

obstacle avoidance.
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1.3 Justification

Given the various applications of UAVs together with the technological challenges related
with the design of these aircrafts, develop research in this field has been shown relevant
from a theoretical and practical point-of-view. More specifically, address the autonomous
flight control problem considering a Tilt-rotor UAV allows the investigation of some
advanced topics on control theory applied to robotics. For instance, whole-body control of
underactuated systems, optimal control techniques, nonlinear control, dynamic modeling
of multi-body systems, among others.

The ability of model predictive controllers to deal with multivariate interactions and
constraints, made them an interesting choice to solve aerial robotic problems. However,
due to the number of degrees of freedom and the high sampling rate of these systems, only
a few works have considered this strategy when dealing with Tilt-rotor UAVs because of its
potentially high computational cost. Further, the parametric uncertainties, modeling errors,
and aerodynamic perturbations often limit the performance of linearized control strategies
due to its restricted domain of attraction, which make it necessary the investigation of
control techniques to provide robustness. Finally, autonomous flight is often regarded as a
composition between dynamic control and navigation control, which are usually solved
hierarchically through different control techniques. By using model predictive control
strategies they can be uniquely addressed.

Load transportation using Tilt-rotor UAVs is a part of the research developed in the
ProVANT project and has been previously addressed through different control techniques.
This thesis contributes to this research by further investigating the use of predictive

controllers in such problem.

1.4 Objectives

The main objective of this work is to investigate the load transportation control problem
using a Tilt-rotor UAV with suspended load by means of model predictive controllers,
with the trajectory tracking problem being addressed from the UAV’s perspective with
load stabilization and from the load’s perspective while stabilizing the UAV. The aircraft
considered in this work is the ProVANT 2.0 (Figure 1.3b) with a suspended load attached
to its main body. Furthermore, since the considered UAV do not have aerodynamic
surfaces, only helicopter flight-mode is considered.

The general requirements for all the controllers designed in this thesis are: to perform
trajectory tracking while ensuring closed-loop stability throughout the trajectory; to reject
constant external disturbances and parametric uncertainties; and to satisfy constraints on
state deviations and control inputs. Five formulations of model predictive controllers are

proposed along this work and their specific objectives can be listed as:
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e Design a model predictive controller based on a linearized time-invariant model for
trajectory tracking of the suspended load considering a standard quadratic stage cost
together with stability regions. The control system algorithm must have suitable

computational cost to be implemented in the aircraft’s embedded system;

e Design a model predictive controller based on a linearized time-variant model for
trajectory tracking of the suspended load considering a standard quadratic stage
cost. The control system must be able to cope with yaw angle regulation and with

the variation of the load’s rope length during the take-off and landing maneuvers;

e Design an economic model predictive controller based on a linearized time-invariant
model for trajectory tracking and obstacle avoidance of the Tilt-rotor UAV while
stabilizing the suspended load. The control strategy must be formulated from a
whole-body control approach by means of a standard quadratic stage cost, ensuring
stability and performance, and an economic oriented stage cost, allowing obstacle

deviation.

e Design a robust tube-based model predictive control strategy based on a linearized
time-variant model for trajectory tracking of the Tilt-rotor UAV while stabilizing
the suspended load. The proposed controller solves the load transportation problem
through a cascade structure and must cope, by design concept, with the system’s

uncertainties.

e Design a robust tube-based economic model predictive control strategy based on
a linearized time-variant model for trajectory tracking and obstacle avoidance of
the Tilt-rotor UAV while stabilizing the suspended load. The control strategy must
solves the load transportation problem through a cascade structure and considers

the system’s uncertainties rejection and planar obstacle avoidance in its formulation.

1.5 Structure of the text
This thesis is organized as follows:

e Chapter 2: describes some of the main mathematical tools used in this work,
such as: set theory concepts and operators for model predictive control formulation;
potential functions; and convex optimization principles with focus on linear matrix

inequalities.

e Chapter 3: design two types of linear model predictive controllers to solve the load
transportation problem using a Tilt-rotor UAV from the load’s perspective. Initially,

a linear time-invariant model is presented, and after its formulation is extended to
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a linear time-variant controller. The features and drawback of both controllers are

shown, and numerical simulations are used to validate the results.

e Chapter 4: seeks to design a robust predictive controller able to cope with obstacle
avoidance. Therefore, initially an economic model predictive controller using potential
functions as economic stage cost is presented to deal with the obstacle avoidance
problem, and further a robust tube-based model predictive controller is designed to
achieve the desired robustness feature. Both controllers are then gathered in order to
obtain a tube-based model predictive controller with economic criteria. Numerical

simulations are presented to validate the results of each controller individually.

e Chapter 5: summarizes the contributions and results of this work, and presents

suggestions for future works in this line of research.

e Appendix A: presents the modeling process of the Tilt-rotor UAV with suspended
load from both UAV’s and load’s perspectives. These models are used in this thesis

for control design purposes.

e Appendix B: presents a nonlinear two-level cascade control strategy able to solve
the path tracking problem of a Tilt-rotor UAV while transporting a suspended load
stably. The inner controller is designed using the input-output feedback linearization

technique, and for the outer-loop the controllers presented in chapter 4 are considered.

1.6 Publications

During the development of this Master’s thesis, the following papers were elaborated and
accepted for publication:

Conference papers:

1. (Santos & Raffo, 2016a) Santos, M. A. & Raffo, G. V. (2016). Adaptive control of a
tilt-rotor UAV in load transportation tasks - a Imi based approach. In Proc. of the
XXI Congresso Brasileiro de Automdtica (pp. 2461 - 2466).

2. (Santos & Raffo, 2016b) Santos, M. A. & Raffo, G. V. (2016). Path tracking model
predictive control of a tilt-rotor UAV carrying a suspended load. In Proc. of the

IEEE 19th International Conference on Intelligent Transportation Systems (pp. 1458
- 1463).

3. (Santos et al., 2017a) Santos, M. A., Cardoso, D. N.; Rego, S. B., Raffo, G. V., &
Esteban, S. (2017). A discrete robust adaptive control of a tilt-rotor uav for an
enlarged flight envelope. In Proc. of the 56th IEEE Conference on Decision and
Control (pp. 5208 - 5214).
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Journal papers:

1. (Santos et al., 2017b) Santos, M. A.; Rego, B. S., Raffo, G. V., & Ferramosca, A.
(2017). Suspended load path tracking control strategy using a tilt-rotor UAV. In
Journal of Advanced Transportation (pp. 1 - 22).
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Mathematical Preliminaries

This chapter presents the background on the mathematical tools used throughout this
master’s thesis, which are: set methods in control theory, linear matrix inequalities, and

potential functions.

2.1 Set methods in control theory

This section presents basic definitions about sets, their operations and applications in
control theory. All definitions presented here can be found with further details on the
works of Blanchini & Miani (2007), Nguyen (2014), Kerrigan & Maciejowski (2000), and
Kerrigan (2000).

2.1.1 General definitions

The notation A C B is used to denote that A is a subset of B, A C B denotes that A
is a proper subset of B, and a € B denotes that a belongs to B. Further, N is the set of

natural numbers and R is the set of real numbers.

Definition 2.1 (Closed set (Nguyen, 2014)). A set S C R" is closed if it contains its own

boundary.

Definition 2.2 (Bounded set (Nguyen, 2014)). A set S € R" is said to be bounded if it is

contained in some ball Bp = {x € R" : |||/, < ¢} with finite radius € > 0.
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Definition 2.3 (Compact set (Nguyen, 2014)). A set S C R" is compact if it is closed
and bounded.

A set is said to be convex if, given two points, every point on the line segment joining
these two points is also a member of the set. This geometric interpretation of a convex set

can be formally stated by the follow definition.

Definition 2.4 (Convex set (Nguyen, 2014)). A set S C R" is said to be convex if for
every x,,x, € S and every number a € R, 0 < a < 1, the point ax; + (1 — @)z, € S.

Definition 2.5 (Linear variety (Nguyen, 2014)). A set H C R" is said to be a linear
variety, if for every x,,x, € H and every « € R, the point az, + (1 — o)z, € H.

Definition 2.6 (Hyperplane (Nguyen, 2014)). A hyperplane H (f,g) is a set of the form

H(f,g)={zeR": fla =g},
where f € R" and g € R.

From the geometric point of view, a hyperplane in R" can be defined as an (n — 1)-
dimensional linear variety. For instance, in R*, a plane, which is a 2-dimensional linear

variety, is a hyperplane.

Definition 2.7 (Half-spaces (Nguyen, 2014)). From the definition of hyperplane, a closed
half-space H(f,g) is a set of the form

H(f,9)={zeR": flz < g},
where f € R and g € R.

Definition 2.8 (Polyhedral set (Blanchini & Miani, 2007)). A convex polyhedral set
P(F,.g) is a set of the form

P(F,g)={x€R":F'ez <g"},

where F = [flT fro... fTﬂ and g = [91 Ga - gm} with f, € R Vi, and g, e R Vi. In
other words, a convex polyhedral is expressed as the intersection of a finite number of

half-spaces.

Definition 2.9 (Polytope (Blanchini & Miani, 2007)). A polytope is a non-empty bounded
polyhedral set.
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2.1.2 Set operations

Set operations are useful tools in control theory, hence three of them are defined in this
subsection, while the well-known operations, such as union (|J), intersection (), difference

(—), and Cartesian product (x) are disregarded.

Definition 2.10 (Minkowski sum (Nguyen, 2014)). The Minkowski sum of two polytopes
P,, P, C R" is a polytope (see Figure 2.1)

Pl@P2:{$1+x2:$1€P1,$2€P2}.

Definition 2.11 (Pontryagin difference (Nguyen, 2014)). The Pontryagin difference of
two polytopes P, P, C R" is a polytope (see Figure 2.2)

Pl@PQZ{CClEPIZQJI-F.’.BQGPI,V.’.BQEPQ}.

Definition 2.12 (Affine transformation (Nguyen, 2014)). Let S € R” be a convex set,
A e R™" and b e R™. An affine transformation

AS+b={Az+b:z €S}

is also a convex set defined in R™.

P,

Figure 2.1: The Minkowski sum between the polytopes P, and P,.

F,

Figure 2.2: The Pontryagin difference between the polytopes P, and P;.
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Figure 2.3 shows two affine transformations for a convex set S. In the left part of the
figure, an affine transformation is performed considering n = m (see Definition 2.12), i.e.,
A is assumed to be a full rank square matrix. Therefore, the convex set resulting from the
transformation maintains its dimension. On the other hand, in the right part, an affine
transformation is performed considering n # m, i.e., A is a non-square matrix. Hence, the

convex set resulting from the transformation is a transformed projection.

_____

1 2

Figure 2.3: Affine transformation for a convex set S considering a square transformation
matrix (left) and a non-square transformation matrix (right).

2.1.3 Invariant sets

The invariant set theory results are fundamental to design controllers for constrained
systems and to understand some of their properties, for instance, stability and feasibility.
Therefore, the following definitions describe these sets for systems without and with
uncertainties. Moreover, let U ¢ R™, X € R*, and W C R" denote compact sets and €2

denotes any arbitrary subset in R”.

Definition 2.13 (Positively invariant set (Kerrigan & Maciejowski, 2000)). The set
Q C R is said to be positively invariant for the system x,,, = f(x,) if Vx, € €, the system
evolution satisfies x, € Q, Vk € N. In other words, if a system reaches a positively invariant

set, it will stay inside this set.

Definition 2.14 (Maximal positively invariant set (Kerrigan & Maciejowski, 2000)). The
set O, () is said to be the maximal positively invariant set contained in Q for the system
Tr = flx,) if O (Q) is positively invariant and contains all positively invariants sets

contained in Q. Therefore, if ® is a positively invariant set, ® C O, (Q2) C Q.

The concept of positively invariant set can be extended to closed-loop systems through

the definition of the control invariant set.
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Definition 2.15 (Control invariant set (Kerrigan & Maciejowski, 2000)). The set Q@ C R"
is said to be a control invariant set for the system x,,, = f(x,, u,) with x, € X and u, € U,
if for all z, € © there exists u, = h(x,) such that z,,, € Q, Vk € N.

Definition 2.16 (Maximal control invariant set (Kerrigan & Maciejowski, 2000)). The
set C.. () is said to be the maximal control invariant set contained in Q for the system
Ty = [z, u,) if Co.(Q) is control invariant and contains all control invariant sets contained
in Q. Thus, if ® is a control invariant set, ® C C.. (©2) C Q.

The control invariant set can be obtained through the admissible set.

Definition 2.17 (Admissible set (Kerrigan & Maciejowski, 2000)). The i-th step admissible
set C,(2) is the set of states for which exists an admissible control sequence able to keep

the state’s evolution inside © during i steps, i.e.,
Ci(R) ={x, €Q:Vk=0,---,7—1,3u, € U such that z,,, € Q}.

The admissible set have some properties useful for numerical implementation of control

invariant sets.

Property 2.1. The sequence C;(€2) satisfies the properties:
(i) Each set C,,,(2) C C:(€);
(ii) Each set C;(Q2) = N;_, Cc(Q);

(iii) C..(€2) is finitely determined if 3i € N such that C,,,(Q2) = C,(€2). Therefore, C,(Q2) =
C..(%).

Definition 2.18 (The one-step set Q(2) (Kerrigan & Maciejowski, 2000)). The one-step
set Q(€2) is defined as the set of x € R" for which an admissible control input exists and

can drive the system to  in one-step, i.e.,
Q) = {x, € R" : Ju,, € U such that f(xz,,u,) € Q,Vk € N}

Using the definition of the one-step operator it is possible to state a geometric condition

for invariance.

Theorem 1 (Geometric condition for invariance (Kerrigan & Maciejowski, 2000)). The

set @ € R™ is a control invariant set if and only if @ C Q(R).

This theorem gives a geometric interpretation for invariant sets making the one-step

set a standard tool for computation of invariants thought iterative algorithms.
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Definition 2.19 (Reachable set (Kerrigan & Maciejowski, 2000)). The reachable set of €2,
(), is the set of states for which the system can evolve from Q through an admissible

input in one-step, i.e.,
Z(Q) = {w € R": Jx, € Q,Fu, € U such that w = f(x, u,)Vk € N}.

Definition 2.20. (Robust positively invariant set (Kerrigan, 2000)) The set € is said to
be robust positively invariant for the uncertain system x,., = f(x,, w,) if V&, € Q and
Vw, € W, the system evolution satisfies x, € Q, Vk € N. In other words, if a system reaches
a robust positively invariant set, it will stay inside this set despite the uncertainties, i.e.,

T, €=z, € QVw, e W.

Definition 2.21. (Maximal robust positively invariant set (Kerrigan, 2000)) The set
0..(R) is said to be the maximal robust positively invariant set contained in € for the
uncertain system x,., = f(x,, w;) if O, (Q) is robust positively invariant and contains all
the robust positively invariant sets contained in Q. Therefore, if ® is a robust positively
invariant set, ® C 0. (Q) C Q.

Definition 2.22. (Robust control invariant set (Kerrigan, 2000)) The set € C R" is said
to be a robust control invariant set for the uncertain system x,,, = f(xy, us, w,) with
x, € X, u, € U, and w, € W; if for all z, € Q there exists u, = h(x,),Vz, € Q,Vk € N, such
that z,,, € Q, Vw, € W.

Definition 2.23. (Maximal robust control invariant set (Kerrigan, 2000)) The set C..(£2)
is said to be the maximal robust control invariant set contained in € for the uncertain
system x,,, = f(x;, uy, w,) if (?OO(Q) is robust control invariant and contains all the robust
control invariant sets contained in Q. Therefore, if ® is a robust control invariant set,
®CC.(Q)CQ.

As for the case without uncertainties, the useful one-step set can be defined in order to

provide an operator to deal with the set invariance for uncertain systems.

Definition 2.24. (The robust one-step set Q(€2) (Kerrigan, 2000)) The robust one-step
set Q(Q) is defined as the set of € R™ for which an admissible control input exists and

can drive the system to € in one step, for all considered disturbances, i.e,

Q) ={x, € R": Ju, € U such that f(x,, u,, w,) € Q,Vw, € W,Vk € N}.

Theorem 2 (Geometric condition for robust invariance (Kerrigan, 2000)). The set © € R"

is a Tobust control invariant set if and only if Q C Q(Q).
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2.2 Linear Matrix Inequalities

Convex optimization problems over Linear Matrix Inequalities (LMIs) constraints can
be used to formulate many optimization problems in control theory through numerical

efficient methods.

Definition 2.25 (Linear Matrix Inequality (Boyd et al., 1991)). A LMI is a matrix
inequality of type F(x) > 0 in which F(x) : R™ — R™*" is symmetric and affine in the

decision variables x. It can be generally written in the form

F(x)=F,+)» x,F >0,

i=1

T
where F, € R™*" are given matrices, with i € {1,2,--- ,m} and = = [331 Ty v xm] )

Definition 2.26 (Linear Matrix Inequality feasibility (Boyd et al., 1991)). A LMI is said
to be feasible if 3x € R™ such that F(x) > 0.

Often, the inequalities obtained in the control problems’ design are nonlinear functions
of the decision variables. A useful tool to commonly work around these situations are the

Schur complement.

Definition 2.27 (Schur complement (Boyd et al., 1991)). Let M, (x), M,(x), and M,(x) be
affine functions of the decision variable € R™ with M, (x) = M, (z)" and M,(z) = M,(x)".

The Schur complement states that the following inequalities are equivalent.

(i) M,(z) — M(z)" M,(x)"' Ms(x) > 0 with M,(x) >0

(i) {Ml(w) Mg(w)T] >0
M,(x) M,(x)

2.3 Potential functions

As stated in Choset et al. (2015), a potential function is a differentiable real-valued function
U :R" — R that can be seen as an energy function whose gradient gives a force vector
field pointing in the direction where U increases. Two types of potential functions will be
used in this work: the attraction potential function, having its gradient representing an
attractive force field, and the repulsive potential function, having its gradient representing
a repulsive force field.

The attraction potential function is defined having its value increasing with the distance
between two variables a and b. Both conic and quadratic functions satisfy this requirement,
however, since the quadratic function is continuously differentiable the attractive potential

function is defined from it. Therefore,

1
U, = 5/1(1 (a,b), (2.1)
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with d(a,b) being the Euclidean distance between the variables a and b, given by the
2-norm distance, and « is a weight parameter.

On the other hand, inspired by the electric potential field, the repulsive potential
function can be described as being inversely proportional to the square of the distance

between the variables a and b, yielding to

1 1

Ure :7)\77
" 27 d(a,b)’

(2.2)
with A\ being a weight parameter.
Further, it is possible to combine the attraction and repulsive functions for describing
an unified potential field as
U="Uu+ U, (2.3)

The function (2.3) can be used, for instance, to address robot navigation problems
and to describe electrical iteration between charged particles. More information about

potential functions and their use in robotics can be found in Choset et al. (2015).

2.4 Final remarks

In this chapter the main mathematical concepts used along this work were formally
defined aiming to provide a better understanding of this work. In the next chapters
model predictive controllers will be designed with the help of the mathematical tools
presented in this chapter to solve the control problem of a Tilt-rotor UAV performing load

transportation tasks.



CHAPTER 3. LINEAR MODEL PREDICTIVE CONTROL 42

Linear Model Predictive Control

This chapter presents the design of two linear model predictive controllers (MPC) in order
to solve the load transportation problem using a Tilt-rotor UAV. The proposed controllers
must perform trajectory tracking of the suspended load in helicopter-flight mode while
keeping the vehicle stabilized. The main objectives of the control system are: ensure
closed-loop stability, reject constant external disturbances and parametric uncertainties,
and satisfy constraints on state deviations and control inputs.

The control problem is formulated in this chapter considering a state feedback structure,
i.e., all states are assumed to be known either by measurement or estimation. Since the
Tilt-rotor UAV is an underactuated mechanical system' and aiming an improved trajectory
tracking control, the load’s translational position and its yaw angle are chosen to be
regulated, while the others degrees of freedom are only stabilized.

For complex systems, such as the Tilt-rotor UAV, some control techniques widely
used, for instance control by pole allocation, may not achieve satisfactory performance
because of the system’s underactuation and coupled dynamics behaviors. In this context,
MPC become interesting because of their model-based nature and ability to deal with
multivariable systems in a simple way (Rossiter, 2013).

In general, model predictive controllers are a class of optimal receding horizon controllers,
in which the control action applied to the system is obtained by solving at each sampling
time a finite horizon open-loop optimal control problem considering the current state as

initial one for predictions. The optimization problem’s solution gives an optimal control

'Those readers who want further details about the Tilt-rotor UAV modeling may refer to Appendix A.
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sequence, from which the first control of the obtained sequence is applied to the system
as input. Afterward, the horizon is receded and the process starts again considering
the new current state as initial condition. The essence behind this procedure lies on
the ability to predict N, future states having the current information of the system and
its dynamic model. Hereafter, the predicted states could be used in order to obtain N,
control actions able to drive the system optimally along some desired trajectory within
the prediction horizon (Camacho & Bordons, 2004). The variables N, and N, are tuning
parameters of the MPC algorithm and are called, respectively, prediction and control
horizons. The prediction horizon defines how many system’s outputs are predicted within
the receding horizon time span in order to formulate the optimization problem, while the
control horizon defines how many elements compose the optimal control sequence. Usually,
higher prediction horizons increase the system’s time-response, while smaller ones make
the system’s response to become oscillatory and even unstable, depending on how small
the prediction horizon is regarding the system’s transient time. On the other hand, large
control horizons result in better closed-loop performance because more control changes are
allowed during the system’s transient (Rossiter, 2013). Work with both horizons allows to
seek for better closed-loop response with smaller computational effort. Mainly, it allows
to enlarge the system’s domain of attraction without increasing the number of decision
variables in the MPC algorithm.

Initially at this chapter, a linear time-invariant model predictive controller (LTI-MPC)
and a linear time-variant model predictive controller (LTV-MPC) will be generally designed
(Santos et al., 2017b). Later on, both controllers will be particularized for the trajectory
tracking of the suspended load with stabilization of the Tilt-rotor UAV, being their features
and drawbacks when used in such application highlighted and compared through numeric

simulation results.

3.1 Linear time-invariant model predictive controller

This section deals with the design of the LTI-MPC.

3.1.1 Problem statement
Consider a finite-dimensional nonlinear system of the form
&(t) = f (x(t), u(t)), (3.1)

where € X C R denotes the state vector and w € U C R™ denotes the input vector with
X and U being, respectively, the set of admissible states and inputs. Further, f: Xx U~ X

is a state-transition nonlinear map.
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In this section, the control problem for the LTI-MPC is defined as the problem
of designing a model predictive controller able to perform trajectory tracking of the
suspended load while stabilizing the UAV. The controller considers a linear time-invariant
discrete model with state-space representation as the base of its prediction process and,
aiming to achieve improved performance, it works with the incremental form of the MPC.
Besides, it must ensure closed-loop stability throughout the trajectory respecting the
system’s constraints even in the presence of constant external disturbances and parametric
uncertainties.

Therefore, consider the mapping of the system (3.1) from the continuous-time to the
discrete-time domain after linearized through first-order expansion in Taylor series, which

yields the linear system’s error model

where Az, = x, — x!” and Au, = u, — ul’, with the superscript (-)" denoting desired
trajectory variables, and A and B being, respectively, the state and input Jacobians
linear model matrices. Additionally, the pair (A, B) is assumed to be controllable and
Az, € E C R", with E being a compact set limiting the state error.?

The linearized system (3.2) gives the one-step ahead prediction of Az,. Thus, recursively
using (3.2), the prediction of the future states of the system can be obtained by the following

procedure:

1. Evaluate (3.2) at the time instant k + 2 together with the knowledge of Az,,,, which

gives the two-step ahead prediction

Awk+2 - A.Amk+1 + BAuk+1

2. Consider (3.2) at k + 3 with equation (3.3), yielding the three-step ahead prediction

A:I:k+3 — AA:Uk+2 + BAuk+2
- ASAxk + AZBAuk + ABAuk+1 + BAuk+2

3. Follow this recursive procedure until the n-step ahead prediction, resulting in

A$k+n - AnA:Bk + An_lBAuk + ct + BAuk+n,1 (3.5)

In this work variables in continuous-time and discrete-time domains are differentiated by the time
variable t and the sampling variable k.
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Therefore, the sequence of future states of the system up to the time instant & + n can
be generally expressed by the matricial form

Azpyq A B 0 .0 Ay,
Ax A? AB B o 0 Au

i I R /e S . (3.6)
Axpiy A" A" B A" 2B ... B| |Aupin_

where 0 denotes zero matrices with appropriated dimensions.

Equation (3.6) assumes that the prediction and control horizon are equal. However,
when N, < N, the last computed control action needs to be held since the predicted
state sequence has more elements than the control input sequence, thus Awu, ; = Au,y,,
V N, <i < N,. Thereafter, when N, < N,, the previous derived prediction model (3.6) can

be rewritten as

Awkﬂ A B 0 s 0 Auk
Amk+2 14.2 AB B s 0 AUk+1
. =| . |Amp+ :
Az iy, ANy AN-1B  AM2B ... (zjﬁ’o‘ Ne Ai) B| |Aupin, 1
—_———— ——
Ax Phi Hni Au

(3.7)

Aiming to improve the control system’s performance when constant external distur-
bances and parametric uncertainties affect the system, the increment of control defined as
ouy, = Au, — Au,_y, V k € N is taken as input variable, where du, € V.C R™ with V being
a compact set constraining the control increment. Thus, the model described in (3.2) can

be rewritten as

A A B A B
Thtt | _ T4 Sy, (3.8)

Auk 0 I Auk,1 I

AZpyq A AZy B

being I an identity matrix with appropriated dimension.
Then, using the augmented system (3.8) and making du,,, = 0, Vi > N,, the prediction
model (3.6) can be rewritten as

AZp 11 A B 0 cee 0 ou
Az A? AB B co 0 duy,
=T [ amer | S | 69
Ajk+Np ANv AN AN2B ... AN Nep 5uk+NC_1
—_——— ——
AT P H; é’l_l;

In this work, the modified model (3.8) is referred as the incremental model and (3.9)
as the incremental prediction model, likewise, (3.7) is referred as the non-incremental

prediction model. The main feature of working with the incremental formulation is the
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addition of integrators to the system equals to the number of its control inputs (Rossiter,
2013). However, it has the drawback of increasing the dimension of the state-space which
could make the controller’s computational cost prohibitive and hence the use of the non-
incremental model could be more suitable. On the other hand, when working with the
non-incremental prediction model in a scenario where the difference between the prediction
and control horizon is sufficiently large, i.e. N, > N, the sums terms in the last block
column of matrix H,, (see equation (3.7)) increase. Thus, the number of mathematical
operations necessary to obtain the prediction model also increase, which could make the
incremental prediction model more suitable.

The choice of which prediction model should be used is always a trade-off between
good performance and small computational cost. In this work, aiming to improve the
performance with the additional integrators, the incremental prediction model is used to
formulate the predictive controllers. Therefore, the remaining of this chapter considers only
the prediction model defined in (3.9). Note that, all definitions could be easily adapted to

design non-incremental MPCs.

3.1.2 LTI-MPC optimization problem

As previously stated, the control action of an MPC is obtained through the optimization
of a given performance measure. Thus, consider the standard quadratic cost function J
for the incremental model (3.9)

Np—1 N.—1 9
= 2 2 _
T =3 18&ksilly+ Y I0urslz + |AZn, |, (3.10)
i=0 =0

where the matrices @ > 0 and R > 0 are, respectively, weighting matrices for the state
error and the control effort, and P > 0 is a matrix used to formulate a quadratic terminal
cost added to the cost function to ensure closed-loop stability (Mayne et al., 2000). In
addition of being positive definite, the matrix P must formulate a local Lyapunov function,
e.g. V(Az,) = Az{ PAz,, and it must be monotonic.

Considering the prediction model (3.9), it is possible to rewrite equation (3.10) in the

matricial form as
_\T _ T _T _
T = (Hidu + Pidzy) Qg (Hidu + Piday) + dul Qrou + Azl y PAzyy,, (3.11)

where Qg = blkdiag(Q, -, Q) and Qx = blkdiag(R,--- ,R). Finally, equation (3.11)

can be rewritten in the canonical quadratic form

_ 1 T T
T = Soul Adu + fSu + fo, (3.12)
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where

A =2(HQoH: +Qr),
T =2(P;Az)" QoH,,
fo = (PidE)" Qo (PiAZy) + AL,y PAZ) N,

A terminal cost able to ensure closed-loop stability can be defined through a Lyapunov
function as V(Az,) = Az{ PAz,. Considering V (Az,) as an upper bound for the linear
quadratic regulator cost-to-go function, the following problem is considered

V(Azgy) > S rr[%)in | > Az QAZy, + Suj Rouy,. (3.13)
wu|U,00 k_o
In order to obtain P, the necessary conditions to stability, i.e., P > 0 and V(Az,,,) —
V(Az,) < 0 (Boyd et al., 1991), must be considered. Therefore, it is possible to represent
(3.13) as an inequality, yielding to

(A;Azy)" P (A;A%)) — AT PAZ), < -AF] (Q + KTRK) AZy, (3.14)

where du, = KAz, A, = A+ BK, and K is a stabilizing feedback gain.

The inequality (3.14) can be solved as a convex optimization problem if represented as
an LMI (see Chapter 2, Section 2.2). Therefore, in order to express (3.14) as a valid LMI
condition (see Definition 2.25), the inequality needs to be manipulated. Hence, rearranging
(3.14) and applying the Schur complement twice (see Definition 2.27), it yields to

P A7 o: KR:
A, P' 0 o
o) 0o I o
R:K 0 0 I

ol

> 0. (3.15)

Seeking to remove the nonlinear terms, it is necessary to pre and post multiply (3.15)
by the block diagonal matrix blkdiag (P~*,I,1,T), and define S = P! and Y = KP~.
Therefore, the LMI condition is given by

S STAT +yTBT S9: YTR:
A;S+ BY S 0 0
o > 0. (3.16)
038 0 I 0
RIY 0 0 I

Finally, the matrix P can be obtained by solving the optimization problem

min Tr(P),
550 (3.17)
subject to (3.16),

where Tr(-) is the trace operator.
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Further, in order to complete the LTI-MPC optimization problem (3.12) taking advan-

tage of one of the main features of MPC methods, the following constraints are considered:

1. Input signal constraint:

The main goal behind working with restrictions on the control signal is to avoid
actuators’ saturation, i.e., to allow the control algorithm to compute only admissible

control inputs u, € U. Therefore, the control signal must be within the set
U={u, e R": u™" < u, <u™" VkeN}, (3.18)

where (-)™* and (-)™" are, respectively, the maximum and minimum values allowed

for the input variables.

Knowing that Aw, = u, — v/ and du, = Au, — Awu,_,, with u!” being the control
action that could drives the system towards the desired trajectory, it is possible to

write the control signal at the instant %k as

u, = uy + Auy_y + duy. (3.19)

Computing the control actions w, up to w, n._1, it yields to

Uy, ’u?f I I 0
Faa P B S T NP R P (3.20)
- . . k—1 . . . . *)' .
U+ Ne—1 'UJKFNC,l I r o --- 1T
—
u ultr \C:/ Cy

Then, the set (3.18) can be written in terms of the control increment through the

inequalities
Cyou < C, (u™™ — Au,_,) —u}, (3.21)
—Cyou < —C(u™" — Auy_y) +ul. (3.22)

2. Maximum state error constraint:

Since linearized models could be seen globally as error models, i.e., AZ, = &, — T,
it is possible to bound the maximum and minimum deviation between the states

and reference. Therefore, consider Az, € E ¢ R**™, where

E = {AZ, e R"™ : AZ™" < AZ, < AZ™ Vk € N}, (3.23)
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with AZ™™ and Az™" being, respectively, lower and upper bounds for the state

error.

Using the prediction model (3.9), the state error constraints can be written as
AZ™" < P,AZ, + H,ou < AT™. (3.24)

Therefore, the constraints imposed to the state error can be represented by the

following inequalities

H.bu < A" — P,AZ,, (3.25)
—H,ou < —AZ™" + P,AZ,. (3.26)

3. Terminal set constraint:

A terminal set constraint €, which ensures that the last state error AZ, y, belongs
to a control invariant set (see Definition 2.15), giving stability assurances for the
system (Mayne et al., 2000), can be obtained using the concepts of invariant control
sets together with the one-step set Q(2) (see Definition (2.18)). Thus, considering
the model (3.8) and constraints (3.18) and (3.23), the one-step operator can be
expressed as

Q) ={AzcRE:3jucV, AAF + BiucQ}. (3.27)

Therefore, the maximal invariant set can be obtained by means of the iterative

procedure:

(a) Initialization: Q, =EnN{we R : Kw e V}.

(¢) Terminal condition: stop when Q,,, = Q, or Q,,, = 0. Define Q = Q_ = Q,.

The terminal constraint can be expressed as AZ,,y, € Q. However, in this form it
cannot be used in the MPC optimization problem since it is not expressed as function
of the decision variable du. Since € is a bounded polyhedron, i.e., a polytope (see
Definition 2.9), it is possible to obtain its H-representation, which is an unique
representation constructed by means of the intersection of half-spaces (see Definition
2.7). Then, the terminal constraint can be rewritten as HoAZ, v, < b. Using the
prediction model (3.9) to obtain AZ,, y,, the terminal set constraint can be written
as

Ho [Py AT, + hyn,y0u] < b, (3.28)

where p; (x,; is the last block entry of the matrix P;, i.e., p; n,} = AM | and P v,y
is the last block line of matrix H,, i.e., h;(n,, = [AY»'B AM™2B ... AM~"B].
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Therefore, in terms of du the terminal constraint can be expressed as
%th,{]\]p}(&lx S b— %Qpi,{Np}A:ik' (329)

Finally, it is possible to write the system’s constraints in the matricial form M du < N,
with matrices M and N defined as

o, Ci (U™ — Auy_q) — “_Z; ]
~C, —C1 (u™" = Aug_y) + uff
- . ol A — Az A, — (3.30)
—H; —AZ™" + P, ATy,
Hohi(n,}] b — Hap; (n,} AT},

Therefore, the constrained LTI-MPC strategy can be generally defined through the

optimization problem
min %5 u' Adu + f’5u+ fo,

o - (3.31)
subject to ou < N.

3.2 Linear time-variant model predictive controller

This section deals with the design of the LTV-MPC presented in Santos et al. (2017b).

3.2.1 Problem statement

Consider the following finite-dimensional nonlinear system

@(t) = f (z(t), u(t)), (3.32)

where x, € X C R" is the state vector, and u, € U C R™ is the input vector, with X and U
being, respectively, the set of admissible states and inputs. Further, f: X x U~ X is the
state-transition map defined by the nonlinear system model.

For the LTV-MPC, the control problem is defined as designing a controller able to
perform trajectory tracking of the suspended load while stabilizing the UAV. Further, the
controller must address the problems of performing yaw angle regulation and take-off and
landing maneuvers. In this model predictive controller framework a time-variant discrete
model with state-space representation is considered for state predictions and, aiming an
improved performance, an incremental formulation is used. Besides of performing stably
trajectory tracking, the controller is required to satisfy the system’s constraints even in
the presence of constant external disturbances and parametric uncertainties.

Consider the mapping of equation (3.32) from the continuous-time to the discrete-time

domain after being linearized through first-order expansion in Taylor series around a
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time-varying trajectory. Then, the error model can be expressed as

where Az, = x, — " and Au,;, = u, —u!" with the superscript (1) denoting the desired
trajectory, ¢, is the vector of time-varying parameters, and A(¢,) and B(¢,) are, respectively,
the state and input Jacobian linear model matrices. Additionally, Az, € E C R", and the
pair (A(¢,), B(¢,)) are assumed to be controllable for all ¢, € A ¢ R*, with E and A being
compact sets.

Similarly to the previous section, the state-space model (3.33) gives the one-step
ahead prediction and can be used recursively to obtain the prediction model considering
a prediction horizon N, and control horizon N,.. Thus, the two-step ahead prediction is
given by

Azxpio = A(Crs1)Azppr + B(Cry1)Augqy
= A(Cr+1) [A(Ck) Az, + B(Cr)Aug] + B(Crr1)Aupyt (3.34)
= A(Ci+1)A(Ck)Azy + A(Crr1) B(Cr)Auy + B(Cry1) Aupyr.

Continuing the recursive procedure, the n-step ahead prediction yields

n n—1
Axprn = (el:[1 A(Ckmé)) Azxy + (el:[1 A(Ck+ne)> B((r)Aup + -+
B(Ck+n—1)Auk+n—1-

(3.35)

Aiming to improved the control system’s performance with additional integrators, the
control increment du, € V C R™ is selected to be the control input, with V being a compact
set limiting the control increment. As made in (3.8), the discrete linearized system can be

rewritten in the incremental form as

A A B A B
Th1| _ (Ck) B(Ck) Tho| (Ck) Sug. (3.36)
Auy, 0 I Aug_q

Considering the case where N, < N, and assuming du,,; = 0, Vi > N,, the N, -step
ahead prediction yields

Np — Np—l — —
AZpyn, = | I A(Ck+Np—€)> Az, + ( I1 A(Ck+Np—£)> B({r)oup + -+
=1 =1 (3.37)
Np—Ne _ ~ :
el:[1 A(Ck+Nptz)> B(Cr+No—1)0Uk 4+ N1

Thereby, it is possible to write the prediction model as

T = PAZ), + Hou, (3.38)
— —
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where the matrices P and H are given by

1 T 2 T Ny T
P = [(H AGi1-))  (MTAGe20) - (H A<ck+N,,e>> ] L (3.39)
=1 =1 =1
B(Ck) 0
2—1 _ _ _
(le A(Ck+2—e)> B((r) B(Ci41)

/=1 =1

Np—1 _ B Np—2 _ ~
( I1 A(Ck+N,,—£)> B(Cr) ( [1 A(Ck+Np—e)) B(Cr+1)

0
0
(3.40)

Np—N. _ . _
( I1 A(Ck+N,,—e)> B(Ck+N.-1)

(=1

Note that the difference between the incremental prediction model when considering the
LTV system (3.38) and the LTI system (3.9) lies on the necessity of on-line computation,

since the latter varies due to the time-varying parameters ¢,.

3.2.2 LTV-MPC optimization problem

Consider the standard quadratic cost function
Np _ 2 Ne !t 2
J = ;}HAQ%MHQ"‘ ZO H(suk-‘r]”R? (3-41)
1= Jj=

where @ > 0 and R > 0 are, respectively, weighting matrices of states error and control
effort. Note that, unlike equation (3.10) that considers a terminal cost function, here it is
not used due to the time-variant nature of the system, which would require to solve an
LMI problem similar to (3.17) at each sampling period k, making the computational cost
of the controller prohibitive.

The cost function (3.41) can be written in the matricial form by means of the prediction
model (3.38) as follows

T
J = (Hou+PAZ,) Qo (Hou+PAT,) + u’ Qrdu, (3.42)

where Qg = blkdiag(Q,---, Q) and Qx = blkdiag(R,--- ,R) are block diagonal matrices.

Finally, the equation (3.42) can be rewritten in the canonical quadratic form as

T = jou' Adut o+ f, (3.43)
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where

A=2 (’HTQQ’H T QR> :
T =2(PAzZ) QoH,
fo= (PAZ)" Qo (PARZ).

Adding constraints on the objective variable du, the most general optimization problem

must be solved
min o SfuTAdu A f0ut o,
o (3.44)
subject to M du < N.

Likewise for the LTT-MPC, the constraints considered above can be used to bound the
control signal amplitude avoiding saturation in the actuators and to limit the maximum

state error, when mapped to the amplitude of the control increment 6u. Matrices M and

N are then given by

C,2 Cl (umax — Auk_l) — U_Z;
-C -C min __ A tr
M= |G g o | O ue-1) F U (3.45)
H AZ™T — PAZ,
—H —AZ™" L PAZ,
where matrices C, and C, are defined as
I o - ---0
I 0
Cl = 1. and C2 =
I I 1 ... 1

Summarizing, since the relation (3.19) still holds for the LTV-MPC, in order to compute
the control action applied to the system, the optimization problem (3.44) with (3.45) must

be solved.

3.3 Suspended load trajectory tracking control prob-

lem

In this section the trajectory tracking problem of a suspended load carried by a Tilt-rotor
UAV is solved from the load’s perspective through the previous designed LTI-MPC and
LTV-MPC. The model (A.49), developed in the appendix A, is used to derive the linearized
models (3.2) and (3.33).

In order to compute both, time-invariant and time-variant linearized models, to design

the predictive controllers, the equilibrium points of the system must be found. Therefore,
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consider the vehicle in hovering without any external disturbances (d = 0). The equilibrium
T
point can be obtained after solving &, = ¢, (x,,u,d) = [q[T: qlT:} = 0, which leads to the

system of algebraic equations
9. (q7) — Ge(q7) =0, (3.46)

where qi7 = [#50 yi7 257 ¢ 057 W8 750 50 a5t o).

Nevertheless, (3.46) has more variables than equations meaning that an infinity set of
real numbers can solve the algebraic problem. To overcome this issue, let the states z.,
vz, and z, assume any value and let ¢, = 0. Thus, considering the physical parameters

defined on table A.1, the equilibrium values for the states and inputs are given by

P’ =0, 6° =0, 777 = 0.0001563, ;7 = 0.0287134, o} = 0.0288375, a;? = 0.0283718,

(3.47)

i =9.7903455, f;* = 9.8252665, 75 =0, 750 =

For discretization of the linearized Jacobians, it is assumed a sampling time of T, = 12
ms. Furthermore, the saturation level of the Tilt-rotor UAV actuators and the maximum
state error allowed, used in (3.30) for the LTI-MPC and in (3.45) for the LTV-MPC, are

Az =[-1,1], Ay =[-1,1], Az =[-1,1],

Ap=[-08,08], A0=[-08,08, Ap=][-08,08]

Ay, =1-0.8,0.8], Ay, =[-0.8,0.8], Aap=[-0.8,0.8], Aa,=[-0.8,0.8],
fr=10,15], fo =10, 15], Tap = [—2,2], Toy, = [—2,2],

(3.48)

where the error limitations were chosen regarding measurement errors and disturbances
affecting the system, and the actuators’ bounds depends on physical constraints.

The Bryson’s rule (Johnson & Grimble, 1987) was used as starting point to synthesize
the MPC’s weighting matrices used in (3.10) and (3.41). The basic idea of Bryson’s
method is to scale all variables by dividing each weight matrix diagonal entries by the
square of the maximum variation of the variable associated with that entry. Further, the
diagonal numerators can be modified regarding the design goals. Thus, following this

procedure, the weight matrices are given by

40 40 20 5 5 10 10 10 01 01 10 10 5

227227227 (1/2)2" (w/2)2 (m)2 (n/2)2 (m/2)2" (w/2)2 (m/2)? 227 227 22
1 1 1 5 5 01 0.1

(m/3)27 (n/3)?" (m/4)?" (3m)?" (3m)*" (3m)2" (3n)
40 40 20 20

(15 — f&)27 (15 = fi")?" (2 = 7a,)? (2 — TS‘;V)

Q= diag(

40, 40,40, 20,

(3.49)

3From now on, the subscript £ used to differ the system from the load’s perspective from the UAV’s
perspective will be omitted since this chapter deals only with the first one.
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(3.50)

. 200 200 1000 1000
R = diag ( ) .

(15 = f&")* (15 = f2')* " (2 —752)*" (2 — 750 )?

Furthermore, the prediction and control horizons, chosen considering the trade-off
between good performance and small computational cost, are N, = 100 and N, = 10. All
the above defined parameters are common to both controllers in order to compare their

performances when addressing the suspended load trajectory tracking problem.

3.3.1 Desired trajectory

To explore the controllers’ capabilities, two trajectories to be tracked by the suspended
load, composed of several interconnected paths described by polynomial and/or sinusoidal
functions, are proposed. For the first proposed trajectory, the vehicle starts in hovering
and tracks a square-like trajectory without any yaw movement during the execution (see
Figure 3.1). The main purpose of this trajectory is to compare fairly the LTI-MPC and
the LTV-MPC by means of the performance indexes Mean Squared Error (MSE) and
Integrated Absolute Derivative of Control Signal (IADU). For the second trajectory, the
Tilt-rotor UAV starts with vertical take-off, followed by a straight line tracking with
changes in direction together with yaw movements, and ends with vertical landing (see
Figure 3.2). The main goal of this trajectory is to show the ability of the LTV-MPC to
deal with yaw movements and take-off and landing maneuvers, where the length of the
rope and total mass of the vehicle vary, without relying only on the robustness given by
the feedback nature of the MPC.

Moreover, to evaluate the disturbance compensation of the proposed strategy, external
forces are applied to the suspended load when performing both trajectories. Figure 3.3
shows the disturbance profile for the desired trajectory, which may represent sustained
wind gusts affecting the load. The magnitude of the disturbances may seem low at a first
glance, however the mass of the load is very small (see Table A.1). Additionally, to better
evaluate the behavior of the proposed control strategies in the presence of uncertainties,
measurement’s noise is considered and assumed to have Gaussian probability distribution
with zero mean and measurement error defined as three times the standard deviation. For
simulation purposes, position errors are £0.15 [m], angular position errors are +0.02 [rad],

velocity errors are £0.01 [m/s], and angular velocity errors are £0.002 [rad/s|.

3.3.2 Linear time-invariant MPC

Aiming to obtain the discrete linear time-invariant state-space model in order to construct
the prediction model (3.9), the equations of motion (A.49) must be linearized around an
equilibrium point. Let x*? and u®* denote, respectively, the equilibrium state and inputs

able to maintain the system in hovering. Then, linearizing the state-space equations (A.49)
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Figure 3.1: Three-dimensional representation of the first proposed trajectory.
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Figure 3.2: Three-dimensional representation of the second proposed trajectory.
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Figure 3.3: Profile of the disturbance forces applied to the load and expressed in the
inertial frame Z.

around these points, through first-order expansion in Taylor series, yields to

Ad = AAzx + BAu, (3.51)

where Az =z — z°?, Au = u — u*?, and

Qo wd)| . emmn g 2E@wd)| g (3:52)

5:13 u;ueq 311, =l

A:
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being z° = [(g**)" (¢**)"]" and w* = [f’ fi* 757 72417, with the equilibrium values obtained
in (3.47) and q** = [0 0 0 ¢°7 6°7 0 759 757 ax® ay,*9]".

To improve the trajectory tracking of the regulated variables and provide constant
disturbance and parametric uncertainties rejection, the error state vector Az is augmented

with integral actions (Raffo et al., 2010), yielding to

Ax
Az = | [(£—-¢7) | eR*, (3.53)
[ =)
whose dynamics are given by
A 020><4
1.0 0 0 0 O B
AZ(t)=10 10 0 0 0 A&(t) + Au(t) (3.54)
04><14 04><4 04><4
001000 gy
(000001 | i
A

To obtain a discrete prediction model using the incremental form (3.8) and, thereafter,
improve performance provided by the four additional input integrators added to the
closed-loop system (Rossiter, 2013), it is necessary to map the model (3.54) from the

continuous-time to the discrete-time domain, which yields to
Aii:k_;'_l - AdAjk + BdA'u/k, (355)

being the matrices A, and B, obtained after discretizing the model using a zero-order
hold with sampling time 7,. Thereafter, the incremental model can be obtained extending

the system (3.55) as in (3.8), yielding to
The trajectory to be tracked by the suspended load and its control signal are defined as

z, = [(g)" (¢)"]", (3.57)
uy =9 [M¢ + Cq; + G, (3.58)

where (-)* denotes the left pseudoinverse, and g}, ¢i* and ¢* are provided reference signals
with qf" = [zf7 yi" zI7 %9 0% ™" 81 57 ag® a ", Notice that u!”, since it is computed
using a left pseudoinverse, will be an exact solution to the dynamic equations (A.49)

Vk € N only if the trajectory is feasible.
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Finally, having the model (3.56), the LTI-MPC algorithm for trajectory tracking of
the suspended load carried by a Tilt-rotor UAV can be described in general terms by the
Algorithm 3.1.

Algorithm 3.1 Linear time-invariant MPC algorithm
1: Obtain P; and H, through (3.9) using (3.56).
2: Compute P through (3.17) using the model (3.56) and matrices @ and R defined,
respectively, in (3.49) and (3.50).
3: Calculate Q by iterating the one-step operator defined at (3.27) and find its H-
representation HQAEHNP <b.
Set Au, = 0.
procedure LTI-MPC(z,, Au,_,, ¢, ", ¢'")

Obtain the vector Az,. I
Compute u'" using (3.58) from k up to k+ N,.

Obtain A, f7, and f, from (3.12).
Construct the matrices M and A as in (3.30).
10: Solve the optimization problem (3.31) to obtain du.

11: Compute u;, = ul” + Auy_; + duy.
12: Set Auk71 - Auk
13: return u, and Au, ;.

14: end procedure

3.3.3 Linear time-variant MPC

Similarly, aiming to obtain the discrete linear time-varying state-space model in order to
construct the prediction model (3.38), the equations of motion (A.49) must be linearized
around a time-varying trajectory. Additionally, due to limited computational resources,
this process needs to be done with most of the physical parameters numerically evaluated.
However, it is possible to let some physical parameters as variables in a way that they will
appear in the linearized Jacobians after finished the linearization process.

Let " and ' denote, respectively, the state vector trajectory and the control inputs
able to drive the system along this trajectory. Then, by linearizing the state-space equations
(A.49) around these trajectories using the first-order expansion in Taylor series, the LTV

linearized model can be expressed as
A = A(t) Az + B(t)Au, (3.59)

where Az =z — ', Au=u —u'", and

A(t) — W :c::cir c RQOX%, B(t) _ T m:mt; € R20%4, (3.60)
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In this work, the trajectory values for  and u are given by

2 = [(¢")" (")), (3.61)
u” =97 [M¢" + Cq" + G, (3.62)

where ¢'", ¢* and ¢*" are provided reference signals with lg'" = [z'"(¢) y'" (¢) 2" (t) ¢°? 67 ' (¢)
Vit st ar®

Therefore, by linearizing the system using (3.60) with the trajectories defined in (3.61)
and (3.62) added to the rope’s length [(¢) as a time-varying parameter, the linearized jaco-
bians are A(C(t)) and B(C(t)), where ¢(t) = [a(t) y"(£) =" (£) ¥ (£) a(¢) §(8) 2 (8) ¥ (1)
@ () gt (t) E7(t) P (t) 1(t)]" is the vector of time-varying parameters.

Similarly to the previous section, the state vector Az can be augmented with integral
actions seeking improved tracking performance. Therefore, the augmented state vector

can be expressed as

Ax
Az = | [(£—-¢7)| €R*, (3.63)
J W=
whose dynamics are given by
' A1) Oanss |
1 0 00 0O B(C(H)
Az(t)=1]10 1 00 0 0 A&(t) + Au(t). (3.64)
04><14 04><4 04><4
001000 L d
B(¢(t)
_0 0 00 01 |
A

In order to represent the system in its incremental form, the model (3.64) can be

expressed as
Adyyy = Ay(C)AE, + By(C) Auy, (3.65)

being the matrices A,(¢,) and B,(¢,) obtained after discretizing the model using a zero-
order hold with sampling time T,. Thereafter, the incremental model can be obtained

extending the system (3.65) as in (3.8), yielding to

Finally, having the model (3.66), the LTV-MPC for trajectory tracking of the suspended
load carried by a Tilt-rotor UAV able to cope with yaw angle regulation and take-off and

landing maneuvers can be described in general terms by the Algorithm 3.2.
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Algorithm 3.2 Linear time-variant MPC algorithm

1: Set Au, = 0.
2: procedure LTV-MPC(z,, Au,_,, ¢, ¢, §'")

3: Obtain P and H through (3.39) and (_5540_3 using the model (3.66).
Obtain the vector AZ,.

Compute w' using (3.62) from k up to k+ N,.

Obtain A, f7, and f, using (3.43).

Construct the matrices M and N as in (3.45).

Solve the optimization problem (3.44) to obtain 6_q

Compute u;, = u!" + Awuy_, + 0u,.
10: Set Au,_; = Au,,.

11: return u, and Au, ;.

12: end procedure

3.3.4 Simulation results

This subsection presents the numerical simulation results obtained with the proposed
controllers when performing the trajectories previously described. Three simulations
scenarios are carried out: (i) the first one uses the trajectory presented in Figure 3.1 in
order to compare the performance of the LTI-MPC and the LTV-MPC*; (ii) the second
scenario considers the trajectory of Figure 3.2 aiming to show the advantages of working
with the LTV-MPC, mainly due to its capacity to cope with yaw movements and to deal
with take-off and landing maneuvers; and (iii) the third one shows, while performing the
trajectory 3.1, how the computational cost can be reduced when using the LTI-MPC with
the inclusion of the terminal region and terminal cost into the optimization problem.
The simulations have been carried out using the MATLAB/Simulink® environment.
A detailed analysis of the control systems’ performance is provided when solving the
trajectory tracking problem of a suspended load carried by a Tilt-rotor UAV, as well as, a

comparative analysis between both controllers.

Scenario 1

The trajectories performed by the Tilt-rotor UAV and the suspended load using the
LTI-MPC and LTV-MPC are shown in Figures 3.4 and 3.5, while the tracking error is
illustrated in Figure 3.6. The trajectory tracking was performed successfully for both
controllers with similar performance along the proposed trajectory. A slight difference
that stands out is related with the yaw movement regulation, for which the LTV-MPC
achieve better results, and the altitude regulation, where the LTI-MPC performed better.
The first difference can be explained by the inclusion of the yaw angle as time-varying

parameter of the controller, while the second one is due to the larger domain of attraction

“For the sake of comparison, in this scenario the measurement’s noise is removed aiming at a better
visualization of the differences between the proposed controllers.
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of the LTV-MPC. The enlargement of its domain of attraction allows the control system to
perform trajectory tracking in a bigger operation range when compared to the LTI-MPC.
On the other hand, in a small range, the LTV-MPC worsen its performance front to
the LTI-MPC since the latter was design specifically for small ranges. On other words,
the LTV-MPC can work with sufficiently good performance in an enlarged operational
range while the LTI-MPC has better performance for specific ones, but cannot ensure

performance or even stability for large ranges.

x [m] 4

4 y [m]

= = == [,oad Reference 6 2
=== T'ilt-rotor (LTI-MPC) Suspended Load (LTI-MPC)

=== Tilt-rotor (LTV-MPC) ==="Suspended Load (LTV-MPC)

Figure 3.4: Trajectory tracking using LTI-MPC and LTV-MPC when performing the
trajectory presented in Figure 3.1.
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Figure 3.5: Time evolution of the regulated variables (z, y, 2, ¢) and their desired
trajectories.
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Figure 3.6: Time evolution of the tracking errors of the regulated variables (z, y, z, ¥).

Figure 3.7 shows the time evolution of the remaining degrees of freedom for the LTI-
MPC and LTV-MPC, which are kept stable throughout the trajectory. Since the aircraft’s
behavior is described implicitly by those variables, one can conclude that the UAV was

stabilized along the trajectory.
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Figure 3.7: Time evolution of the remaining degrees of freedom.
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Figure 3.8 shows the actuator signals generated by the MPCs. For both cases, the
control signals did not violate the actuators’ constraints despite the LTI-MPC control
signals presented some peaks when executing direction changes, i.e., the corners of the
square-like trajectory. In fact, it is interesting to notice that the for a Tilt-rotor UAV
designed considering the parameters of Table A.1 and the actuators limits (3.47), the
vehicle will mainly flies using its mid range span of actuation. Thus, despite the MPC
constraints are active constraints, for the considered UAV and simulation scenario the

controller does not need to use the actuators close to their limit ranges.

12 13
11 12
z 10 z
- — 11
E 9 8
8 10
7 9
0 10 20 30 40 0 10 20 30 40
0.2 0.4
0.1 0.2
g B
Z 0 Z 0
& &
-0.1 -0.2
0.2 -0.4
0 10 20 30 40 0 10 20 30 40
Time [s] Time [s]

LTI-MPC === I TV-MPC

Figure 3.8: Applied thrusts and torques to the Tilt-rotor UAV.

In order to compare the controllers’ performance, the MSE and IADU performance
indexes for discrete systems are used

n
1 tr2

MSE, = =3 (zfi], - [iy) . TADU, =" [[ufilic — ulilics| — [ufilcr — ulili]], (3.67)
k=0 k=0
where x[i] and u[i] are, respectively, the i-th position of the state and control vector, and
the rectangle rule is used as integral approximation.

Table 3.1 shows the performance indexes for both controllers, which corroborate the
analysis previously made. Overall, the LTI-MPC has better performance when executing
trajectory tracking control in the vicinity of the linearization points. The only exception
occurs to the yaw movement for which the LTV-MPC has better performance despite being
kept equal to zero along the trajectory. When it comes to control effort, the LTV-MPC

presents signals smoother with smaller peaks.
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Table 3.1: Performance indexes, obtained through the numerical results.

LTI-MPC LTV-MPC
States MSE
T 0.00242810 0.00335758
Y 0.01144221 0.01768196
z 0.00003113 0.00017094
P 0.00000264 0.00000076

Inputs [ADU
fr 24.2534 9.16095
fr 23.7565 9.4805
Tan 2.6999 1.3370
Tay 3.5426 2.0421

Scenario 2

The obtained results when the suspended load is carried by the Tilt-rotor UAV performing
the trajectory presented in Figure 3.2 with the LTV-MPC are shown in Figures 3.9 and
3.10. Figure 3.11 shows the tracking error of the regulated states z, y, z, and ¢. The
trajectory tracking was performed successfully from the take-off to landing, and throughout
the different paths that compose the trajectory, including yaw angle regulation. For this
scenario, it was not possible to compare the results of the LTV-MPC with the LTI-MPC
since the time-invariant controller became unstable during the execution of the proposed
trajectory. The main reason of the unstable behavior can be explained by the inability of
the LTI-MPC to cope with rope’s length variation at take-off and landing and, mainly,

due to its inability to perform yaw movements regulation.

sl

2 fm] 1 .-
x [m y [m
[ ,0ad Reference 6 8 0 m]
----- Suspended Load

m——— T'ilt-rotor

Figure 3.9: Trajectory tracking using LTV-MPC when performing the trajectory presented
in Figure 3.2.
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Figure 3.10: Time evolution of the regulated variables (z, y, z, ¥).
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Figure 3.11: Time evolution of the tracking errors.

During the vertical take-off, the aircraft starts to fly while the load remains in the
ground. Only when the distance between the aircraft and the floor is greater than the
rope’s length, the Tilt-rotor UAV starts to carry the load. Vice-versa, in the landing
maneuver the aircraft flies free of load once it has touched the ground. Figure 3.12
highlights this behavior in the first 5 and last 10 seconds of simulation. At the beginning
of the simulation, the rope’s length increases until it reaches its maximum value, then, the
aircraft starts to carry the suspended load and the total mass increases. Likewise, during
the landing, last 10 seconds, the load touches the ground and the rope’s length decreases
until the aircraft landing finishes. Also, Figure 3.12 shows the total mass reduction when

the load touches the ground. The controller was capable of dealing with this problem due
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to the incorporation of [, in the time-varying parameters vector ¢, and to the model-based
nature of predictive controllers. The load’s mass was not incorporated in ¢, for two main
reasons: (i) in order to consider the mass variation as a time-varying parameter in the
same way that [, was considered, the load’s mass needs to be estimated or informed to the
controller before the flight starts; (ii) it is reasonable to assume that the relation between
the UAV’s mass and the load’s mass is small enough to be rejected by the controller as
parametric uncertainty when the actual load’s mass is different from the one considered in
Table A.1.
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Figure 3.12: Analysis of the time evolution of the load and UAV altitude in take-off and
landing maneuvers together with the rope’s length and the total mass variation.
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Figure 3.13: Time evolution of the remaining degrees of freedom.
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Figure 3.13 shows that the system’s remaining degrees of freedom are kept stable
during the trajectory execution and, therefore, the goal of stabilizing the UAV during the
suspended load trajectory tracking was successfully achieved. Further, Figure 3.14 shows
the control input applied to the system, which, despite being noisy, did not exceed the

actuators’ limits.
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Figure 3.14: Control inputs applied to the Tilt-rotor UAV.

Scenario 3

This scenario shows that despite not being able to perform yaw movement regulation and
cope with situations where the rope length either varies or is different from the value
used when the controller was being tuned, the LTI-MPC can have its computational cost
reduced. This feature is possible due to the inclusion of the terminal region and terminal
cost in the formulation of the optimization problem, which allow to significantly reduce the
prediction horizon. The same achievement cannot be easily obtained for the LTV-MPC
considered in this work because of the high computation cost to compute the stabilizing
sets for the LTV model (3.65).

Therefore, to show this feature the prediction and control horizon was reduced to
N, =2 and N, = 1, and the LTI-MPC is required to perform again the trajectory presented
in Figure 3.1. Its performance was compared to the one obtained with scenario 1 when the
prediction and control horizons were bigger. After presenting the performance indexes, a
comparison between the computational cost is performed using the mean time of execution

of each controller’s simulation step.
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Figures 3.15 and 3.16 show the trajectory tracking performed by the LTI-MPC with
reduced horizon. Figure 3.17 shows the time evolution of the regulated variables’ tracking
error. The controller was able to perform the load trajectory tracking with success despite
the reduction of the horizons. Further, Figures 3.18 and 3.19 illustrate, respectively, that
the system’s remaining degrees of freedom are kept stable and the control inputs generated

by the predictive controller did not overpass the actuators’ saturation limits.
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s [ .0ad Reference 4 e 4 y [m]
----- Suspended Load 6 2

m—— Tilt-Rotor

Figure 3.15: Trajectory tracking using LTI-MPC when performing the trajectory presented
at Figure 3.1 with reduced prediction and control horizon.

6 10
4
E 2 i, 5
x >
0
) 0
0 10 20 30 40 0 10 20 30 40
6 0.1
5.5 0.05
— k=)
| thETECTRRURSSY s
N >
4.5 -0.05
4 -0.1
0 10 20 30 40 0 10 20 30 40
Time [s] Time [s]

= = =1 Reference Performed

/

Figure 3.16: Time evolution of z, y, z, v.
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Figure 3.17: Time evolution of the tracking errors of the regulated variables.
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Figure 3.18: Time evolution of the remaining degrees of freedom.
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Figure 3.19: Applied thrusts and torques to the Tilt-rotor UAV.
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Table 3.2 shows the MSE and ITADU performance indexes for the LTI-MPC with
different predictive and control horizons. Observe that the MSE index indicates that the
tracking performance for x, y, z, and ¢ were better when considering the controller with
smaller horizons. Looking at the IADU index, it is possible to conclude that the controller
with reduced horizon has smaller control effort. Therefore, it is possible to state that the
reduction of N, and N,, allowed by the inclusion of the stability regions, optimizes the
controller from the computational cost point of view without losing trajectory tracking

performance.

Table 3.2: Performance indexes of the LTT-MPCs with N, = 100 and N, = 10 and with

N,=2and N, = 1.

LTI-MPC (N, = 100, N, = 10) LTI-MPC (N, =2, N,=1)
States MSE
x 0.00495174 0.00428795
Y 0.01455406 0.01312305
z 0.00270609 0.00257808
(] 0.00000552 0.00000542
Inputs IADU
fr 2.4199 - 103 1.5576 - 103
fL 2.4229 - 103 1.5865 - 103
Tap 0.5615 - 10? 0.1768 - 10°
Tay 0.8017 - 10? 0.2070 - 10°

Moreover, Table 3.3 shows the average and worst wall-clock time for each controller
algorithm simulated in this chapter. In order to compute these values, the controllers were
simulated considering the same initial conditions in a loop of 3000 steps, from which their
average and the worst time of execution were obtained. The LTV-MPC has the higher
computational cost because of the necessity to rebuilt the prediction model using the
LTV model at each sampling period, once the model Jacobians matrices are constantly
changing with (,. This also makes it computationally prohibitive to include the terminal
cost and terminal region in the optimization problem formulation, since they would also
have to be evaluated online. Therefore, besides having a costly algorithm, the prediction
and control horizons, which are tuning parameters, need to be large in order to avoid

oscillatory behaviors (Camacho & Bordons, 2004) that could destabilize the whole system.

Table 3.3: Wall-clock time for each simulated controller.

LTLMPC (N, =2, N, = 1) | LTLMPC (N, = 100, N, = 10) | LIV-MPC
Average (s) 0.0032 0.0550 0.2022
Worst (s) 0.0116 0.1208 0.4362

Since the computational cost of the predictive controllers are directly related with the
size of their horizons, the reduction of the LTI-MPC horizon from N, = 100 and N, = 10
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to N, = 2 and N, = 1 significantly decreases its computational cost, explaining why it
has the smaller wall-clock time. This is an important feature, mainly because predictive
controllers, knowing for being costly, are often disregarded when having a control problem
that needs to run in embedded systems and has high dimension, i.e., it has a high number
of degrees of freedom to be controlled; for instance, the application considered in this

work.

Remark. The MPC usually have the underlying condition of knowing a priori the trajectory
to be performed. However, in addition to assuming the desired trajectory completely known,
this chapter also assumes that the trajectory does not change during the flight execution.
For the LTV-MPC those hypotheses allow to optimize the control algorithm by computing
off-line the system model matrices A(¢,,) and B(¢) from k=1 up to k= N,

., and to store

that in the digital system memory, as a First In, First Out (FIFO) queue. Hence, during
the flight performance, after sliding the horizon, only the model matrices for k = N, need
to be computed to update the FIFO structure. In fact, without this procedure the average
time of execution for the LTV-MPC was 0.3954 seconds with the worst time being 0.7797

seconds.

3.4 Final remarks

In this chapter two linear model predictive controllers were presented. Both strategies were
developed using a state-space model in the incremental form. For the first strategy, the
linearized model is time-invariant, which leads to a LTI-MPC and, for the second strategy,
a time-variant model leading to a LTV-MPC. The LTI-MPC optimization problem was
developed considering constraints on the amplitude of the state deviation and control
inputs. Further, a terminal cost and terminal constraint set were included in order to
ensure close-loop stability for the linearized system in the vicinity of its linearization
point, allowing to work with reduced prediction and control horizons without losing
performance. The LTV-MPC had also considered in its optimization problem constraints
on the amplitude of the state deviation and control inputs, but, due to the prohibitive
computational cost, the stabilizing regions were not included. However, because of the
the time-varying nature of its model and the model-based nature of predictive controllers,
the LTV-MPC formulation could cope with problems that require controllers with larger
domain of attraction.

Both controllers were used to solve the load transportation control problem using
a Tilt-rotor UAV. Specifically, to perform trajectory tracking of the suspended load in
helicopter-flight mode while keeping the vehicle stabilized. Additionally, the controllers
were required to perform trajectory tracking of some desired degrees of freedom and ensure

closed-loop stability for the remaining ones, rejecting constant external disturbances and
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parametric uncertainties, and satisfying constraints on the state error amplitude while
keeping the control signal inside the actuators’ limits. Numerical simulations were made
to corroborate the controllers’ ability to satisfy the design requirements and highlight the
difference between both strategies. When applied to the load transportation problem,
the LTV-MPC was able to cope with yaw movements regulation which are a common
drawback of linearized controllers when used for such application due to the necessity
of defining the yaw angle equal to zero for the system linearization process. Also, the
time-variant approach was able to solve the interesting practical problem of the rope’s
length variation without scheduling between different controllers or relying only on the
controllers’ robustness. This problem occurs, for instance, during take-off and landing
maneuvers and could also occur due to parametric uncertainties, i.e., the use of rope with
different dimension. Without the rope length as a controller’s time-varying parameter,
the choice of a rope with different length would necessarily imply the necessity to re-tune
the controller before perform the flight. On the other hand, the LTV-MPC showed to be
computationally costly, which could make its implementation on the UAV’s embedded
system impracticable. However, the LTI-MPC, due to the stabilizing regions, showed to be
able of performing trajectory tracking using small prediction and control horizons, which
could be implemented on an embedded system without any further research on how to
computationally optimize predictive controller algorithms.

In the next chapter three new predictive controllers will be designed. The first one
is an Economic Model Predictive Controller that includes in its formulation the idea of
potential fields, enabling obstacle avoidance together with the definitions of the so-called
no-fly zones. After, using a cascade structure, a Tube-Based Predictive Controller will be
designed to control the z, y, 71, and v, dynamics with increased performance when dealing
with model uncertainties due to the use of some well-known set theory results, aiming to
add robustness to the controller. Finally, both controllers will be put together to formulate
a Tube-Based Predictive Controller with Economic Criteria robust to uncertainties and

able to perform obstacle avoidance.
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Robust Tube-Based Model Predictive Control

with Economic Criteria

This chapter deals with the design of model predictive controllers taking into account
advanced features in order to modify the well-known linear formulation presented in Chapter
3, commonly referred as standard MPC. Essentially, we are looking to provide robustness to
the controller against uncertainties using set theory tools and perform obstacle avoidance
by adding economic criteria within the optimization problem in order to obtain a feasible
collision-safe trajectory. Similar to Chapter 3, the controller is designed to solve the load
transportation problem using a Tilt-rotor UAV ensuring obstacle avoidance. Besides, it is
also required the closed-loop stability assurance, constant external disturbances rejection,
parametric uncertainties attenuation, and constraints satisfaction on state deviations and
control inputs. Nevertheless, unlike the previous chapter, the load transportation problem
is solved from the UAV’s perspective, i.e., the controller must perform trajectory tracking
of the UAV in helicopter-flight mode while keeping the load stabilized. This change of
perspective is due to the high computational cost of the control strategies presented in this
chapter and the necessity to represent the problem in a hierarchal fashion. Initially at this
chapter an economic model predictive controller (EMPC) and a robust tube-based model
predictive controller (RMPC) will be generally designed. Afterward, both controllers
will be joined to reach the intended robust tube-based economic controller (REMPC).
Finally, the three proposed controllers will be particularized for the trajectory tracking
of the Tilt-rotor UAV with load stabilization problem, with the EMPC performing a
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whole-body control and the RMPC and REMPC controlling the UAV’s planar position
and reducing the load’s swing through the cascade structure designed at Appendix B.
Numerical simulations are presented to corroborate the performance of the proposed

controllers.

4.1 Economic model predictive control

The ability of MPC strategies to deal with multivariate interactions and constraints made
them interesting to control constrained multiple-input multiple-output (MIMO) nonlinear
systems. They are usually used to steer the system to an operational point or throughout
a desired trajectory stably, without steady-state error, and with small time response by
means of a quadratic cost function and a linear process representation of the system. An
underlying design assumption is to consider that the reference is feasible to be executed
and fulfills economic objectives such as: efficiency of operation, capacity, profitability,
sustainability, etc (Ellis et al., 2017).

These goals are commonly addressed by upper level systems which are responsible
to dictate feasible economic-oriented references to the MPC. A common formulation in
industrial control process is a two-layer strategy, where a real time optimizer (RTO)
computes setpoints according to economic objectives and, in an inner layer, an MPC
strategy provides stability and constraints satisfaction (D’Jorge et al., 2017). A parallel to
robotics can be made, for instance, if the navigation problem is looked as an economic
goal in a way that a feasible and collision-free trajectory needs to be generated by a
path planner in an upper layer while dynamic controllers address the trajectory tracking
problem. Another example of economic criteria when working with robotics is the classic
optimal control problem of fuel minimization. Two-layered approaches have been widely
used due to the good performance and low-cost computational burden when compared
to non-decoupled schemes. However, the separation into two different problems often
means that the control law is designed disregarding transients, which could be a problem
if the algorithms run at near frequency rates. The EMPC approach proposes an one-layer
scheme by moving the economically motivated stage cost into the MPC formulation to deal
with the stabilizing control problem, solved by a quadratic stage cost, while guaranteeing
the economic goals required by an additional stage cost.

Regarding the control application proposed in this chapter, the main purpose of working
with EMPC is to gather the path planning and trajectory tracking problems into an unified
non-decoupled problem. Therefore, the economic stage cost will be constructed by means
of potential functions, which are largely used in path planning problems (Choset et al.,
2015). The objective is to design a strategy able to steer the robotic system through a
predefined trajectory when it is not obstructed by any obstacle and, if necessary, around

the obstacle to avoid collision until returning to the initial trajectory becomes a safe option
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again.

4.1.1 Problem statement

Consider a finite-dimensional nonlinear system of the form

@(t) = f (2(t), u(t)), (4.1)

where & € X C R™ denotes the state vector and uw € U C R™ denotes the input vector, with
X and U being, respectively, the set of admissible states and inputs. Further, f: XxU +— X
is the state-transition map defined by the nonlinear model that allows to predict the
system’s future states.

The control problem in this section for the EMPC is defined as the problem of
designing a model predictive controller able to perform trajectory tracking while avoiding
obstacles. The controller’s algorithm considers a linear discrete-time model with state-space
representation in order compute the state predictions. Besides, it must ensure closed-loop
stability throughout the trajectory even in the presence of external constant disturbances
and unmodelled dynamics.

Therefore, consider the mapping of equation (4.1) from the continuous-time to the
discrete-time domain after being linearized through first-order expansion in Taylor series,

which leads to the system’s error model

where Az, = z, — z!” and Awu, = u, — u!” with the superscript (-)"" denoting desired
trajectory variables, and A and B being, respectively, the state and input Jacobians
linear model matrices. Additionally, the pair (A, B) is assumed to be controllable, and
Az, € E C R*, with E being a bounded set limiting the state error.

The EMPC cost function can be generally defined as

J = ZE(Amk,Auk) +> L (er), (4.3)

where £ (-) is the standard MPC quadratic stabilizing stage cost, and /. () is the economic

stage cost with €, being the parameters which the economic criteria are function of.
Since in this work the economic stage cost is used to define an obstacle-free trajectory,

the parameters representing the economic criteria are defined as ¢, = [:cf (xt")” (gobs)T} T,

where £ € O C R® is a vector representing an obstacle, with O being a set representing

all points in the robot workspace that are obstructed by some obstacle.! Therefore, the

'In this work the problem of obstacle detection is not addressed, therefore all obstacles are assumed to
be perfectly known.
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EMPC cost function for obstacle avoidance can be written as
T =Y ((Amy, Auy) + > L (m, x) €7), (4.4)
k k

with the economic stage cost being a function designed to allow obstacle avoidance.

4.1.2 Potential functions applied to robot navigation

It is easy to see how the potential functions presented in Chapter 2 can be used to
solve the robot safe navigation problem by establishing a parallel with electric potential
energy. The conservative Coulomb forces between two positively charged particles create
a repulsive force, while between particles with different charge create an attraction force
(Halliday et al., 2013). Therefore, it is possible to say that a repulsive potential function
(see equation (2.1)) represents the interaction between positively charged particles with
its energy increasing as the distance between them decreases and going to zero as their
distance become sufficiently large. On the other hand, an attractive potential function
(see equation (2.2)) describes the interaction between positively and negatively charged
particles with the energy increasing as the particles become distant and decreasing as they
get closer. If a robot and the obstacles are looked as positively charged particles and a
desired position in the workspace as a negatively charged particle, the generated gradient,
which is a combination of attractive and repulsive potential functions (see equation (2.3)),
could drive the robot from its initial condition to its goal while avoiding obstacles.

Let &7 = [z 4" 2"]" denotes the desired trajectory by which the robot should be
moving through its workspace, and €90 = [z9°% yooe! z9°*|" be the collision-free trajectory
that the robot must perform in order to avoid obstacles. Therefore, the attraction potential

function defined in the equation (2.1) can be rewritten as
]' tr oal\?2
Uate = iﬂd (E &7 ) ) (45)

with k being a weighting matrix.
Furthermore, letting &€ = [z y 2]” denotes the robot position and assuming non punctual

obstacles, equation (2.2) can be rewritten as

1 1

Uren = 52 <min{d <£,4obs>}>2’

(4.6)

where min {d (¢, &£°**)} is the smaller Euclidean distance between the robot and the obstacle
given by the 2-norm distance with £€°** denoting the obstacle position, and A is a weighting
matrix.

Since the robot’s workspace can be obstructed by multiple obstacles and considering a

safe distance d* from the obstacle from which the repulsive field will be disregarded, the
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equation (4.6) can be rewritten as (Choset et al., 2015)

> (W - ) . if min {d, (6, &)} < d,

Uy = Uy =3 ° (4.7)
0, if min{& (& &)} > d;,

is the potential function related to the I-th obstacle, d, (€, &) is the Euclidean
distance between the robot and the I-th obstacle, and d; gives the safe distance from the
I-th obstacle.

Therefore, the potential function able to address the safe navigation problem and that

where U,.,,

will define the EMPC economic criteria is obtained by gathering the equations (4.5) and
(4.7), yielding to
U=Usi+ Y Uy (4.8)

4.1.3 Economic MPC optimization problem

As previously stated, the proposed EMPC cost function (equation (4.4)) is composed by a
standard quadratic stage cost and an economic stage cost. Considering the attraction and
repulsive potential fields proposed in equations (4.5) and (4.7), the economic stage cost

can be expressed as

2

1 1
min {[|&e — &0 &

(4.9)

Np
DD IPY
l =0

Np
tr obs\ __ goal tr
L, (in»ka €77 = Z || k+i  Sk+i
1=0

A

where N, is the prediction horizon and y; is a function defined as

1 ifmin{d (&, 7)) < d;,
Xt = { 0, if min{dl (52’1;:, ;bs)} N di*, (4.10)

with ¢ € N being a scaling factor.

Since &2° will be a decision variable of the EMPC optimization problem, which will
give a collision-free trajectory, the quadratic stage cost must be defined in a way that
it penalizes the error between £9°¢ and ¢ instead of the error-vector Az of the model
(4.2). Therefore, let xo°e' be the desired state vector z'" with the position variables z'",
y', and z'" replaced by the obstacle-free trajectory z9°e', yooe!, and z¢9°*. Thus, defining

AZ, =z, — " the quadratic stage cost can be written as

Np—1 Ne—1
CAZ, Awy) = Y [AZ o+ D 1Al + [ AZ e, || (4.11)
i=0 j=0

where @ > 0 and R > 0 are weighting matrices, and P > 0 is the matrix used to formulate
a quadratic terminal cost to ensure closed-loop stability that can be obtained using the

equation (3.17) as described in Chapter 3.
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Therefore, considering equations (4.9) and (4.11), the complete EMPC cost function

can be expressed as

Np—1 Ne—1

T =2 18Zlg+ Y [Auslln + [AZww, Il + (4.12)

i=0 =0

Np
Hsgoal _ getr
k+1i k41
1=0

2

1 1

- - — V.
min {[|&.; — &[]} d;

Np
DD IPY
l =0

’
A

Figure 4.1: Robot system performing a trajectory (solid green line). The blue dashed line
shows the collision-free trajectory for which no imminent collision is detected, the solid
gray circle delimits the non-safe zone, and the solid black circle represents the obstacle.

Y 4
~. --
Figure 4.2: Robot system performing a trajectory (solid green line). The blue dashed line
shows the collision-free trajectory while the controller is avoiding the obstacle (solid black
circle) and the solid gray circle delimits the security zone.

Figure 4.3: Robot system performing a trajectory (solid green line) after overcomes the
obstacle (solid black line). The blue dashed line shows the collision-free trajectory and the
solid gray circle delimits the security zone.

The main idea of the proposed economic cost function is illustrated in Figures 4.1 to

4.3. Consider a trajectory to be performed within 30 time-steps with a prediction horizon
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of N, = 10. Initially, from the time instant £ = 1 up to k = 11 (see Figure 4.1), the proposed
trajectory (solid green line) and the collision-free trajectory (dashed blue line) are equal
since the trajectory within the predicted horizon lies outside the safe-distance zone (solid
gray circle). For this case, only the attractive field and the quadratic stage cost act in
order to keep & = &7°* for k =1,--- ,11. After, from the time instant £ = 11 up to k = 21
(see Figure 4.2), the proposed trajectory moves inside the non-safe zone colliding with
the obstacle (black circle). Thus, both the attractive and repulsive fields act in order to
find a collision-free trajectory that goes around the obstacle (solid black circle) and, after
overcoming it, make the alternative trajectory equals to the proposed trajectory again.
Finally, from the time instant k£ = 21 up to k = 31 (see Figure 4.3), the repulsive field is
again disregarded since there is no imminent collision. The attractive field together with
the quadratic stage cost act again in order to make & = ¢°* for k = 21,--- ,31.

Further, in order to finish the construction of the optimization problem for the EMPC,

the following constraints are considered:

1. Initial condition constraint:

When initializing the control algorithm the system’s initial condition is considered

without collision and state error, that is

Awo - Aio - 0. (4.13)

Afterward, at each iteration of the algorithm the following initial condition constraint
is considered
Ajk - :Bk - ,’L'ZOM. (414)

Note that the constraint (4.14) depends on z{** which is a decision variable of
the EMPC optimization problem, i.e., it is unknown. Therefore, its value must be
stored from the previous iterations of the control algorithm making the initialization

constraint (4.13) essential to the algorithm feasibility.

2. Model constraint:

In Chapter 3, prediction models were explicitly derived in equations (3.6), (3.7), and
(3.9). Here, the model-based nature of the EMPC represented by the state prediction
procedure is implicitly considered as a constraint. Both strategies are equivalent,
differing only in the notation and in the algorithm implementation.

Aik+i+1 = AAQ‘E]C+Z + BA’U,kJri, \V/Z == 17 c e ,N

p*

(4.15)

Note that here the model constraint also ensures feasibility to the collision-free

trajectory since the evolution of AZ,_,;, which is function of {>%', must be subjected
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to the model, being Awu,,; a bounded signal.

3. Maximum state error constraint:

As previously stated, the trajectory tracking error is bounded by a set E. Thus, to

ensure this condition, the following constraint must be regarded

N,

Aik%»i E E7 VZ - 1, cre p- (4.16)

I’

4. Input signal constraints:

In order to avoid saturation on the actuators the following constraint is considered
’LLk+i GU, vi:07"' ,Nc_l, (4.17)

which can be easily mapped to decision variable Aw,;

5. Terminal set constraint:

Aiming to ensure closed-loop stability, a terminal set constraint is defined to force
the last element of the predicted state vector to belong to a positively invariant set
(see Definition 2.13). Therefore,

A&y, € Q, (4.18)

where Q denotes a maximal control invariant set (see Definition 2.16), which can be
obtained using the same iterative procedure, based on the one-step operator (3.27)
described in Chapter 3.

6. No-fly zone constraints:

Although the potential functions have been designed to perform safe navigation,
they do not strictly ensure that some collision will not occur. For that reason, hard
constraints, the so-called no-fly zones, are imposed to ensure that the robot position

and the alternative generated trajectory do not invade the obstacle space. Hence,

£k+i€R3_©a \V/ZZ177
g0l cR3_Q, Vi=1,.-.

k+i

N, (4.19)
N,. (4.20)

Finally, the optimization problem for the EMPC strategy, giving the optimal control

sequence to be applied to the system and the collision-free trajectory to be performed by

the robot, is stated as

min l J,
it (4.21)
subject to (4.13 — 4.20),
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T
with w=[u! - u/,, ,]" and T = [(mk+1)T (mkva)T} :

—

4.2 Robust tube-based model predictive control

Closed-loop model based control methods have an inherited robustness due to the process
of feed the information of the controlled states back into the control algorithm, which
allows the controller to deal with unmodelled dynamics, measurement errors, and unknown
and/or unmodelled disturbances. However, since these uncertainties are not taken into
account in the control design process, the domain of attraction for which the controllers
will be able to keep the system controlled using only their feedback nature are small,
mainly for those algorithms based on model linearization. Therefore, it becomes necessary
to work with controllers that, by design concept, could cope with uncertainties (Langson
et al., 2004b). As stated in Bemporad & Morari (1999), a control system is robust only
when it maintains its stability and performance specifications in the presence of bounded
disturbances, which is a desirable feature.

When it comes to formulate robust MPCs, a common approach is to define regions
in the state-space that bounds the difference between the nominal and the uncertain
systems. MPCs working with admissible regions that contains the possible trajectories of
an uncertain system are commonly referred as tube-based and these regions, the so-called
reachable sets, can be obtained using set-theory tools. In this work, the control of time-
varying systems will be considered. Therefore, despite bound additive uncertainties, the
reachable sets must also bound the system’s realizations regarding the time-varying model
parameters. Further details about the controller presented in this section can be obtained
in the work of Sdnchez (2011).

The robust tube-based model predictive control strategy considers that the states’
trajectory of the nominal and the uncertain systems are different, and the mismatch
between them needs to be controlled and bounded. Therefore, the control law applied to
the system considers the sum of two different control policies: (i) a pre-stabilizing policy
able to control the nominal system with state and input constraints’ regions shaped by
the reachable sets in other to take into account the uncertainties, and (ii) a control policy

to compensate the mismatch between the nominal and uncertain systems.

4.2.1 Problem statement

Consider a finite-dimensional uncertain nonlinear system of the form

&(t) = f (2(t), u(t), w(t)), (4.22)
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where « € X C R” is the state vector, u € U C R™ is the input vector, and w € W C R is
the uncertainty vector with X, U, and W being, respectively, the set of admissible states,
admissible inputs, and the set of bound uncertainties. Further, f: X x U x W — X is the
state-transition map defined by the nonlinear system model.

The control problem for the RMPC can be defined as the problem of designing
a model predictive control system able to perform trajectory tracking and robust to
bounded uncertainties and unmodelled dynamics. The controller’s algorithm considers a
linear discrete-time model with state-space representation in order to compute the state
predictions, and it must ensure closed-loop stability throughout the trajectory.

Now, consider the mapping of equation (4.22) from the continuous-time to the discrete-
time domain after being linearized through first-order expansion in Taylor series around a

time-varying trajectory, which gives the uncertain error model

where Az, =z, — 2" and Au, = u, — u!", w, is the vector of additive uncertainties, and
¢, € A C R” denotes the vector of time-varying model parameters with A being a convex
polytope with 2v vertices. Further, A(¢,) and B((,) are, respectively, the state and input
Jacobian linear model matrices, which are assumed to have polytopic form in order to
represent, the system’s realization considering the parameters ¢ at the time instant k, and
to compose a controllable linear system.

The nominal linear time-varying error model can be obtained by considering the system
(4.23) without additive uncertainty, i.e, W = {0}, yielding to

Azt = A(C)Az™™ + B(Cr)gr (4.24)

where Azrom = x7°™ — z'~ with the superscript ()"“" denoting the state vector predicted
without uncertainties, and g, is the policy able to control the nominal system.

The mismatch error between the uncertain system (4.23) and the nominal system
(4.24) can be defined as

€1 = Amyy, — AxpoT
A(E) Az, + B(C)Awy, + wy, — A(C) Az — B(C) g (4.25)

= A(¢r)er + B(C) [Auy, — gi] + wy.

Since the control objective is to compensate the mismatch error e, while controlling
the nominal system through some desired trajectory, the control input that controls the

uncertain system can be defined as (Sanchez, 2011)

Au, = K (Ck) €. + gk, (4‘26)
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where K (¢,,) € R™™ is an adaptive feedback control gain designed to control the mismatch
error.

Using the definition (4.26), the mismatch error model can be rewritten as
er1 = [A(C) + B(C) K (C)] ex + wy. (4.27)

Further, to design the RMPC the follows elements must be obtained: (i) the adaptive
feedback gain that controls the mismatch error, (ii) the reachable sets to envelope the
system’s evolution in the space ensuring robustness, (iii) the state error and control input
constraints, (iv) the terminal constraint and terminal regions to ensure closed-loop stability,
and (v) an MPC strategy to control the nominal system. In the following subsections

these elements are defined.

4.2.2 Mismatch error adaptive controller

In order to obtain the adaptive feedback gain able to control the mismatch error (4.26),

consider the following Lyapunov function
V(e.) = e, Pey, (4.28)

where P € R™*" is a Lyapunov matrix. Further, to obtain an asymptotically stable control
system, the conditions P > 0 and V(e,,,) — V(ex) < 0 must be satisfied.

Aiming to add some performance requirements to the problem, V (e,) is considered
as an upper bound for the linear quadratic regulator (LQR) cost function. Thereby, the
performance of the mismatch error adaptive controller should be as close to the LQR

controller performance as possible. Therefore, the following optimal control problem is

considered
V(es) > min ;efgek + v Ry, (4.29)
where
v, = K (C) e, (4.30)

and the matrices @ > 0 and R > 0 are, respectively, weighting matrices for the state error
and control effort.
Considering the conditions for asymptotic stability and the performance condition

(4.29), it is possible to define the following inequalities

e, Pe, > 0, (4.31)
e, (ATPA;)e, — e, Pe, < —e; (Q + K (¢)" RK (Ck)) €, (4.32)
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where A; = A((,.) + B(Cn) K (Cr)-

Removing the the state mismatch error variables, the inequalities can be rewritten as

P >0, (4.33)
ATPA;+K(()"RK({)+ Q- P <0. (4.34)

The Jacobian linear model matrices A (¢) and B (¢) are assumed to have polytopic
representation, i.e., it is possible to represent each of them as a convex sum regarding the
uncertain parameter ¢. This assumption allows one to represent the inequalities (4.33)
and (4.34) as linear matrix inequalities conditions (see Definition 2.25). Although (4.33)
is already a valid LMI condition, the inequality (4.34) is not due to its nonlinear terms.
Thereafter, equation (4.34) needs to be manipulated.

Rearranging (4.34) and applying the Schur complement twice (see Definition 2.27), it
holds that

P AT QF K(¢)"R?

A P 0 0

! > 0. (4.35)
ok 0 I 0
RIK(C) 0 0 I

In order to remove the nonlinear terms, it is necessary to pre and post multiply (3.15) by
the block diagonal matrix blkdiag (P~',I,I,I), and to define S=P~', Y ({) = K (¢) P'.
Thus, the LMI condition used to calculate a state feedback controller that ensure stability

and performance when controlling the system’s mismatch error can be written as

S H” SQ% Y (¢)'R?

H S 0 0

, >0, (4.36)
0is 0 I 0
RIY(C) O 0O I

where H = A(¢) S+ B (¢)Y (¢). Note that the condition (4.36) must hold for each of the
2v vertices of the polytope A.

Finally, the following optimization problem must be considered

min Tr(P),
550,Y (O)V¢ (4.37)
subject to (4.36) V¢ € A,

where Tr(-) is the trace operator.

The solution of the optimization problem (4.37) gives the Lyapunov positive definite
matrix P and also the feedback gains K ({) able to control the system for each vertex of
the polytope A. In Santos & Raffo (2016a), inspired by the work of Gonzalez et al. (2010),
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a similar problem was solved using these gains to create an adaptive control scheme by
means of an LP problem in order to find at each time-step an optimal feedback gain for the
system’s current realization. Although this approach could be used to obtain the adaptive
feedback gain for the mismatch error control problem considered in this work, it will
require online computation increasing the complexity of the RMPC algorithm. Therefore,
the approach proposed in Sanchez (2011) to obtain the feedback gain K (¢) in a more
computational efficient way is considered.

Hence, considering the matrix P known after the solution of the problem (4.37), the
inequality (4.32) could be reevaluated and solved explicitly for the control input v, through

min e’ Qe + v Ruv, + (A(Ch)er + B(¢)v)" P (A(Cy)ew + B(C)vy) — e Pe,. (4.38)

v Vk

The cost function of the problem (4.38) can be rewritten with respect to v, as

[ = el Qe+ vIRuy + el A(¢,) " PA(Cer + v B(C) PB(()u+
2v/'B(¢,)" PA(C)er, — ef Pe,. (4.39)

Assuming the system’s current realization known, i.e., the uncertain model parameter
vector is either measured or estimated at each sampling period &, it is possible to analytically
solve (4.38) through differentiation of (4.39) with respect to the control input. This leads

to
afx
vy,

which by simple manipulation gives

— 9Rw, + 2B(¢) " PB(C)vs + 2B(C) PA(C e, = 0, (4.40)

vy =—(R+ B(Ck)TPB(Ck))_l B(¢i)" PA(Cy ey (4.41)

Finally, using the relation (4.30), the feedback gain for the mismatch error adaptive

controller can be written as
K (¢) = —(R+ B({)"PB(C)) B(C)"PA(G). (4.42)

Note, that instead of solving an online LP problem as made in Santos & Raffo (2016a),

equation (4.42) needs only to perform numerical algebraic matrix operations.

4.2.3 Reachable sets

The reachable sets, which define the region around the nominal trajectory that envelops the
system states for any bounded uncertainties and disturbances, can be defined as (Sanchez,
2011)

Rrvivr = (A(CG) + B(C) K (C) Ziyi ®W,  Vi=0,--- N, — 1, (4.43)
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with N, being the prediction horizon. Further, in order to recursively use equation (4.43)
to compute the reachable sets along the prediction horizon, consider the initialization
condition %, = {0}.

Note that the equation (4.43) needs to be evaluated online because of its dependency
on the time-variant Jacobian linear model matrices. If the system was time-invariant,
ie. A(Cuy) = A(¢) and B(Ciyr) = B(¢y) Vk, equation (4.43) can still be used to compute
the reachable sets. However, these operations could be performed offline since the sets

becomes constant robust invariant sets.

4.2.4 State and input constraints

In order to take advantage of one of the main features of predictive controllers, constraints
on the amplitude of the control signal and on the state error are considered. Therefore, let
the sets E € R" and V € R™ denote, respectively, the bounding trajectory tracking error set
and the admissible control input set for the uncertain model (4.23). Thus, the constraints

can be written as

Az, € E, (4.44)

Since the MPC strategy is used to control the nominal system in the RMPC formulation,
the constraints (4.44) and (4.45) must be redefined relatively to the nominal state error
Azpem and control input g, considered in the model (4.24). Therefore, using the reachable
sets (4.43) to reshape the bounding sets E and V in order to have tighter constraints, it
yields to

E,

\£

o, Vi=1,--- N, (4.46)
K

E
oK ()%, Vi=0,--- N, —1 (4.47)

Note that the Pontryagin difference needs to be performed online increasing the complexity
of the MPC algorithm.

Finally, the constraints for the nominal MPC strategy are described as

Az}or € E, Vi=1,---,N,, 4.48)
i€V, Vi=0,--- N, —1. (4.49)

4.2.5 Terminal cost and terminal constraint

Aiming to ensure closed-loop stability to the MPC, a terminal cost and a terminal constraint
set to be added into the nominal MPC strategy are considered (Mayne et al., 2000).
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A terminal cost able to ensure closed-loop stability can be defined using a Lyapunov
function V(Az,) = Az} PAz,. Thus, the matrix P obtained from the optimization problem
(4.37) can be used to formulate a quadratic terminal cost since it is a Lyapunov function
able to ensure closed-loop stability for the uncertain model (4.23).2

As for Chapter 3, a terminal constraint ensuring the last element of the predicted
state sequence to belong to an invariant set is obtained by means of the one-step operator.
However, instead of considering the operator presented at equation (3.27) used to obtain a
maximal control invariant set, its definition is modified in order to include the uncertainties
and define a maximal robust control invariant set (see Definitions 2.23 and 2.24). Thus,

consider the robust one-step operator
Q) ={AzcE:IK()AzcV, (AL)+BOK () Az +wecQ, Vw e W, (4.50)

Note that the one-step operator as defined in (4.50) must be evaluated for each vertex of
the polytope A.
Using the one-step operator (4.50), the maximal robust control invariant set can be

obtained by means of the following iterative procedure:
1. Initialization: @, =EN{w eR": K ({)w €V, V(}.
2. Iteration: €,,, =2, N Q(Qk)
3. Terminal condition: stop when Q,,;, =Q, or Q,., =0. Set 2 =Q_ = Q..

The terminal constraint set obtained through the iterative procedure considers the
uncertain system. Hence, in order to use Q to constraint the nominal system, the
Pontryagin difference with the reachable set at the N,-step is considered

Awnom (= Q © %k—O—Np' (451)

k+Np

4.2.6 MPC strategy

Since the mismatch error adaptive controller and the reachable sets are dealing with the
mismatch between the nominal and the uncertain system, an MPC strategy is designed to
deal only with the nominal control problem.

Therefore, consider the cost function

Np—1

J = Az
=0

Ne—1 ,
ot 2 lgeslln + Az, | (4.52)
j=0

2 Although the LMI used to formulate the optimization problem (4.37) was obtained for the mismatch
error model (4.27), it is easy to see that the matrix P forms a Lyapunov function for the uncertain model
(4.23), since their closed-loop model are the same.
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with N. being the control horizon.
Moreover, in order to consider the complete optimization problem design, an initial

state constraint and a model constraint must be defined. Therefore,

Azx;o™ = 0. (4.53)
Az, = A(QAZY! + B(C)grri,  Vi=1,--- N, (4.54)

Thus, the MPC problem for the nominal system can be written as

min J,
25 (4.55)
subject to  (4.48),(4.49), (4.51),(4.53), (4.54),

with g= {gz gZ+Nc,1]T and T = |:(33k+1)T (iUkJer)Tr-

4.3 Robust tube-based economic model predictive

control

This section proposes an REMPC strategy formulated combining the controllers EMPC
and RMPC previously presented in this chapter. The main goal is to design a controller
able to perform safe navigation and robust to uncertainties, such as: unmodelled dynam-
ics, measurements errors, and unknown and/or unmodelled disturbances. This can be
accomplished by simply using the EMPC strategy as pre-stabilizing policy rather than the
MPC strategy used in the presented RMPC algorithm.

Therefore, the REMPC strategy can be formulated as a combination of two control
policies: (i) an EMPC policy able to control the nominal system while performing obstacle
avoidance, and (ii) a control policy to compensate the mismatch between the nominal and

the uncertain system.

4.3.1 Problem statement

As for the RMPC problem statement, a finite-dimensional uncertain nonlinear system is

considered

&(t) = f (2(t), u(t), w(t)), (4.56)

where x € X C R" denotes the state vector, uw € U C R™ denotes the input vector, and
w € W C R" denotes the uncertainty-vector with X, U, and W being bounded sets.

The control problem for the REMPC can be defined as the problem of designing a model
predictive control system able to perform trajectory tracking while avoiding obstacles and

robust to bounded uncertainties and unmodelled dynamics. The controller’s algorithm
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considers a linear discrete-time model with state-space representation in order compute
the state predictions and must ensure closed-loop stability throughout the trajectory.
The nonlinear model (4.56) is linearized around a time-varying trajectory and discretized

to generate the time-varying uncertain model

where Az, = ¢, —x!", Au, = u, —u'", w, is the vector of additive uncertainties, and ¢, € A
denotes the vector of time-varying model parameters with A being a convex polytope.
The matrices A(¢,) and B(¢,) are assumed to have polytopic form and to compose a
controllable system.

Further, the nominal model is defined considering (4.57) with W = {0}, yielding to

A2}y = A(G)AZ" + B(Ggr. (4.58)

k+1

with Azpem = gpem — 2! and g, being the nominal control input. Therefore, the complete

control policy for the uncertain system can be defined as

with e, = Az, — Azy°™ being the mismatch error.
As for equation (4.25), considering the models (4.57) and (4.24) together with the

definition (4.59), the mismatch error model can be written as

err1 = [A(C) + B(C) K (C)] ex + wy. (4.60)

4.3.2 Mismatch error adaptive controller

The procedure to obtain the mismatch error adaptive controller can be seen at subsection
4.2.2, but it was briefly presented here to made the section self-contained.

Let V (e,) = ef Pe, be a Lyapunov function for the mismatch error system. Moreover,
as considered for the RMPC, let V (e,) be an upper bound for LQR cost function. Thus,

regarding the conditions for asymptotic stability,
Ve, >0 and V(e )—V(er) <0, (4.61)
the follow inequalities can be written

P >0, (4.62)
ATPA;+K(()"RK ({)+ Q- P <0, (4.63)
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with A; = A(C) + B(C:) K (Cr)-
Hence, an LMI condition can be defined from (4.63), yielding to

S  H" SQ! Y(¢)'R!?
H S o0 0
X >0, (4.64)
Qis 0 I 0
RY () 0 O I

where S=P 'Y (()=K{)P ', H=A)S+B()Y ((),and Q >0 and R > 0 are,
respectively, weighting matrices for the state error and the control effort.
In order to obtain a matrix P that shapes a Lyapunov function to fulfill the conditions

(4.61), the follow optimization problem must be considered

min Tr(P),
550,Y (O)V¢ (4.65)
subject to (4.64) V¢ € A,

where Tr(-) denotes the trace operator.

Finally, having P and assuming the system’s current realization known, the feedback

gain for the mismatch error adaptive controller is given by

K ({) =—(R+B(()"PB(¢) B(&)"PAC). (4.66)

4.3.3 Constraints

As for the EMPC, the trajectory tracking must be performed considering the collision-free
trajectory &9°* € R? instead of the initial proposed one &' € R3. Thus, the uncertain linear

model (4.57) can be rewritten as

Adyy = A(C)AT, + B(¢)Auy + wy, (4.67)

goal

where AZ, = x, — x{°* with z{°* being the desired state vector " with the initial position
trajectory &' replaced by the obstacle-free position trajectory go°«.

Moreover, considering W = {0} for the model (4.67), the nominal model is given by

Az = A(G)AZL™™ + B(C)gr (4.68)

where Azrem = xrom — x{°'. Thus, the control input for the uncertain system can be

rewritten as

Wlth ék — Ai}k - Afi’:om.

Further, to shape the EMPC pre-stabilizing strategy constraints, consider the reachable
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sets obtained through the iterative procedure
Rrrivr = (A(Ck) + B(Ck)K (Ck))%kﬂ ew, VvVi=0,---,N,—1, (4-70)

with N, being the prediction horizon and %, = {0}.

The same constraints presented at section 4.1.3 for the EMPC are considered to
formulate the REMPC pre-stabilizing control policy. However, in order to take the
uncertainties into account, the reachable sets are used to shape the constraints into tighter

ones.

1. Initial condition constraint:

The system is assumed to start without any state error and collision. Thus,

AZp™ = 0. (4.71)

Further, the last computed collision-free trajectory is considered as the initial
condition

Aizom — x'fklom _ wioal. (472)

2. Model constraint:

Aiming to consider the prediction process into the optimization problem and ensure
feasibility to the collision-free trajectory, the model constraint is defined as
Az, = AQAZLY! + B(Q)grvi,  Vi=1,--- N, (4.73)

k41

3. Maximum state error constraint:

Let E € R be the trajectory tracking error bounding set for the uncertain system
(4.67). Thus,

A#, €E. (4.74)

Therefore, using the reachable sets (4.70) to reshape Eas E, =Ec %, Vi=1,--- , N,

D)

the maximum state error constraint can be defined as

Az € B, Vi=1,--- N, (4.75)

4. Input signal constraints:

Similarly to the state error constraint, let V. € R™ define a set of admissible control
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inputs for the uncertain system. Thus,

Using the reachable sets to redefine VasV, =Vo K (¢) %, Vi=0,---,N, — 1, the

constraint can be expressed as

5. Terminal set constraint:

Aiming closed-loop stability, a terminal constraint for the uncertain system is
considered
Az, € Q, (4.78)

where Q is a maximal robust control invariant set that can be obtained through the

procedure presented at the subsection 4.2.5.

Further, the last element of the reachable set sequence %, y, is used to modify the
terminal constraint (4.78) in order to be used in the EMPC pre-stabilizing control
strategy. Therefore,

AT € QO Ry, (4.79)

6. No-fly zone constraints:

Finally, to strictly ensure that no collision will occur, the no-fly zone constraints are

considered

Ek—‘—z' € RS - @, VZ - 1, s 7Np7 (4.80)
ol e RS _Q, Vi=1,--- N, (4.81)

k+i

with &,,, denoting the position and O being a set representing all points in the

workspace that are obstructed by obstacles.

4.3.4 EMPC strategy

Having the constraints defined in the previous subsection, an EMPC strategy to deal with

the nominal control problem can be designed. Hence, consider the economic cost function

Np—1

J = Az
=0

Np

goal tr
ZH k+i — Sk+i
=0

Ne—1 )
ot O Mgl + Az, ||+ (4.82)
j=0

2

1 il
win (€~ €17

Vi,

Np
LY DX
l i=0

’
A
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where N, is the control horizon, P is the Lyapunov matrix obtained in the equation (4.65),
k and X are weighting matrices, £ denotes the position of the I-th obstacle, and

1, ifmin{d; (€7, €%%) ¢ < d¥,
{ ;;(sm | )%_ l )

0, if minqd; (gliﬁs_ch’ lobs

with ¢ € N being a scaling factor and d; being a safe distance from the I-th obstacle and
min {dl (5,’;’; Np? f”s)} denoting the smaller Euclidean distance between &7, and &*.°

Hence, the pre-stabilizing control policy for the REMPC strategy can be defined
through the optimization problem as

min J,
g.@,zoo (4.84)
subject to (4.71 — 4.73),(4.75), (4.77), (4.79 — 4.81) ,

with g= {g[ gg+N671]T and z = [(CB;M)T (q;,HNp)T}T.

4.4 Tilt-rotor UAV trajectory tracking control

In this section the trajectory tracking problem of a Tilt-rotor UAV carrying a suspended
load is solved from the UAV’s perspective using the three controllers previously designed
in this chapter. The EMPC proposed at section 4.1 solves the trajectory tracking problem
while performing obstacle avoidance through a whole-body control approach, i.e, controlling
all the UAV’s degrees of freedom. The RMPC presented at section 4.2 is used as an
outer-loop controller for the cascade structure shown at Appendix B to perform trajectory
tracking of the UAV’s planar motion while stabilizing the load, i.e., to control z, y, v,
and v, dynamics. Moreover, similar to the RMPC, the REMPC presented at section 4.3 is
used as an outer-loop controller to regulate the UAV’s planar motion and stabilizes the
suspended load while performing obstacle avoidance in the x — y plane.

The necessity to work with a cascade structure when using the tube-based controllers
is due to dimensionality problems, which are common in MPC strategies but it is worse
in the tube-based approaches. Mainly, this happens because of the computational cost
associated with the Minkowski sum and the Pontryagin difference, which increases with the
control system’s state-space dimension. While in the whole-body approach the predictive
controller must control at least twenty degrees of freedom used to describe the Tilt-rotor
with suspended load dynamic model, using the cascade structure the outer controller only
deals with eight of them. Afterwards, all the remaining degrees of freedom that are not
controlled by the predictive controllers are addressed by a nonlinear IOFL inner-loop

controller. For more details about the dynamic model from the UAV’s perspective and

3Further information about how the terms of the nonlinear economic cost are derived can be found at
section 4.1.
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the cascade structure used in this section, the reader should refer, respectively, to the
Appendices A and B.

Moreover, in this section, simulations will be carried out to corroborate the controller’s
trajectory tracking good performance and, for those with economic criteria, the obstacle
avoidance ability. The simulations were made using the MATLAB/Simulink® environment
with the help of the YALMIP solver and the MPT toolbox.

4.4.1 Discrete whole-body linearized model

The model (A.30), described in Appendix A, is considered to obtain the discrete whole-body
linearized model to be used in the implementation of the EMPC. Thus, its equilibrium
point must be found in order to expand (A.30) through first-order Taylor series.
Therefore, considering the vehicle in hovering without any external disturbances (d = 0),
the equilibrium point can be obtained after solving @&z = pg(xs,u,d) = [qg fjgr =0,

which leads to the system of algebraic equations
U5 (qy') — Gs (q5') = 0. (4.85)

where g5 = [#30 y& 25" 6% 0 & a5t a3t 5t 5.

The algebraic problem (4.85) can be solved by an infinity set of real numbers since it
has more variables than equations. Thus, let the states zz, y5, and 2z assume any values
and ¢z = 0.* Therefore, considering the physical parameters defined on table A.1, the

equilibrium values for the UAV’s states and inputs are given by

1 = —0.000154, 69 = —0.0411, a%f = 0.0411, o = 0.0409, ~{ = 0.000153, ~5 = 0.0409,
fit = 10.1838, fi7 = 10.2197, 7% =0, 1% = 0. (4.86)

Let = and u*? denote, respectively, the equilibrium state and input vectors able to
maintain the system in hovering. Then, the equations of motion (A.30) can be linearized

around these points, yielding to
At = AAx + BAu, (4.87)

where Az =z — x°?, Au = u — u*?, and

Op(x,u,d)
ox

Op(x,u,d)

A= ou

R c R20X20, B —

u=u®?

e € RWX (4.88)

u=u®q

being = [(¢*)" (¢*)"]" and w* = [fg" fi" 725 720

7, with g** = [0 0 0 ¢= 9 0 ap*? ay*
ST

“From now on, the subscript BB used to differ the system from the UAV’s perspective from the load’s
perspective will be dropped, since this chapter deals only with the first one.
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Similar to Chapter 3, to improve the trajectory tracking performance, the error state

vector Az is augmented with integral actions, yielding to

Ax
A= | [(&—¢€)| R, (4.89)
J W=
whose dynamics are given by
A 020><4
1 0 00 0O B
Az={0 1000 0 Ad + Au. (4.90)
O4><14 O4><4 04><4
001000 —_—
000001 i

A

Finally, the discrete whole-body linearized model can be obtained after map the model

(4.90) from the continuous-time to the discrete-time domain, which yields to
Aik+1 - A\.dAjk + BdA’U,k, (4.91)

being the matrices A, and B, obtained after discretizing the model using a zero-order
hold with sampling time 7, = 12 ms.
The trajectory to be tracked by the suspended load and its control signal are defined as

z = ((g.")" (@), (4.92)
uy =97 [Mq; + Cq; + G, (4.93)

where (-)™ denotes the left pseudoinverse, and q!*, ¢i* and ¢* are provided reference signals
with gi" = [xl" yir 27 ¢ 0°7 ' 481 427 g a,*]". Notice that w!", since it is computed
using a left pseudoinverse, will be an exact solution to the dynamic equations (A.30)

Vk € N only if the trajectory is feasible.

4.4.2 Discrete outer-loop linearized model

The second-order dynamic model (B.31), obtained in Appendix B, is used to derive the
outer-loop linearized model necessary to implement the RMPC and REMPC strategies.
Therefore, in order to expand the outer system in Taylor series, the model (B.31) must be

rewritten in a state-space representation and, later, its equilibrium point must be found.
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Thus, consider the state-space representation

. q: q:
mQQ (PQ2 (mQQ7 TQQ’ 6‘12) |: (_1.2 ] |: Mq_21 [qu + 5q2 o ’FLQQ] ’ (494)
where Y, is an intermediary control input vector, and é,, is a vector containing uncer-
tainties and external disturbances (see Appendix B, section B.3).°
Moreover, considering the vehicle in hover-flight and not affected by any external
disturbances, i.e., # = 0 and §,, = 0, the equilibrium point for the system (4.94) can be
obtained by solving the algebraic problem

p(x,YX,0) = [q] =0, (4.95)
q

which solution has an infinity set of real numbers since it has more variables than equations.
Therefore, letting x and y assume any value and considering the physical parameters
defined on table A.1, the solution of the algebraic system (4.95) gives uniquely the follow

equilibrium values
451 = 0.000154, 7%7 = 0.0411, T =0, T = 0. (4.96)

Let ' and Y* denote, respectively, the state vector trajectory and the intermediary
control inputs able to drive the system along this trajectory. Then, the state-space

equations (4.94) can be linearized around these trajectories, resulting in the model
Az = A(¢(t)) Az + B(¢(t))AY, (4.97)

where Az =z —x', AY =Y — X', {(t) denotes a vector of time-varying model parameters.

The linearized Jacobians are given by

dp(x, X, 0 “ dp(x,Y,0 “
) = 22T eme B = 2B eme a0y
T="tr r=otr

In this work, the trajectory values for £ and Y are given by

x" = [(g")" (¢")"]", (4.99)
Y= M§" +n, (4.100)

where ¢*, ¢*", and ¢* are provided reference signals with ¢'" = [ (¢) " (t) 757 7£9]".

*From now on, the subscript g, used to differ the outer-loop from the inner-loop system will be dropped
to simplify the notation. The reader can easily understand by context when a variable, for instance  and
q, is being used as a whole-body system’s variable or an outer-loop system’s variable since the first one
refers only to the EMPC strategy and the latter to the RMPC and REMPC strategies.
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Considering the state vector trajectory defined in (4.99), the time-varying param-
eters become ((t) = [ (t) ¢ (¢)]*, which is limited by the polytope A € R? with 22
vertices. Therefore, the linearized Jacobian matrices can be rewritten in a convex polytopic

representation as

A¢(t) = Z LA, (4.101)
B(((t) = ZéiBi, (4.102)

with A, and B, being, respectively, the matrices A({(¢)) and B(((t)) evaluated at the i-th
vertex of A. Moreover, the constraints 0 <., <1 and " ¢, = 1 must hold for i =1,--- /4.
Aiming to improve the trajectory tracking performance of the states z and y, the state

vector Az is augmented with integral actions as

Ax
Az = |[(z—a')| e R, (4.103)

[ y—y")

whose dynamics are given by

A1) | 080

. B({(t
Ad = as+ [P Ay (4.104)
02x6 | O2x2 02x2
—
- Bt
A(C() @

Finally, the discrete outer-loop linearized model can be obtained after map the model

(4.104) from the continuous-time to the discrete-time domain, which yields to
Ady g1 = A(Cr) A%k + B(Cr)AY, (4.105)

being the matrices A(¢,) and B(¢,) obtained after discretizing the model using a zero-order

hold with sampling time 7, = 120 ms.

4.4.3 Desired trajectory

Aiming to explore the capabilities of the three controllers proposed in this chapter, two
trajectories to be tracked by the Tilt-rotor UAV carrying a suspended load are proposed.
The first one intends to show the obstacle avoidance feature achieved with the economic
criteria included in the optimization problem by means of the potential functions. In
this trajectory the vehicle needs to displace itself along the X*-axis while avoiding three
spherical obstacles that are obstructing its path (see Figure (4.4)). In this trajectory, the
obstacle avoidance capability of the EMPC and the REMPC strategies are shown. The
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second trajectory, on the other hand, is composed of several interconnected paths described
by polynomial and sinusoidal functions (see Figure 4.5). In this case, the vehicle starts
in hovering and tracks a square-like trajectory while performing yaw movements during
the execution. The main goal of this trajectory is to show the RMPC trajectory tracking
performance and robustness against modeling uncertainties and disturbances. Therefore,
when performing the second trajectory, external forces are applied to the Tilt-rotor UAV.
Figure 4.6 shows the disturbance profile for the desired trajectory, which may represent
sustained wind gusts affecting the load. Additionally, to better evaluate the behavior of
the proposed control strategies in the presence of uncertainties, measurement’s noise is
considered for both trajectories and assumed to have Gaussian probability distribution
with zero mean and measurement error defined as three times the standard deviation. For
simulation purposes, position errors are +0.15 [m], angular position errors are +0.02 [rad],

velocity errors are +0.01 [m/s|, and angular velocity errors are +0.002 [rad/s].

.....

-

50

x [m]

5
y [m] o O
m— Tilt-rotor UAV === Suspended Load

Figure 4.4: Three-dimensional representation of the first proposed trajectory, with the
blue spheres being the obstacles.

= Tilt-rotor UAV === Suspended Load

Figure 4.5: Three-dimensional representation of the second proposed trajectory.



CHAPTER 4. ROBUST TUBE-BASED ECONOMIC CONTROL 99

0.1 F -
/ :
0.08 | : :
— ! i da
Z.0.06 |- H :
~ : e dy
0.04 H i
i H
0.02 : H
' H
0 H 1 1 1
0 10 20 30 40

Time [s]

Figure 4.6: Profile of the disturbance forces applied to the Tilt-rotor UAV expressed in
the inertial frame Z.

4.4.4 Economic MPC

Aiming to implement the EMPC strategy to solve the load transportation problem, the
discrete-time augmented error model (4.91) is considered. However, as stated in the section
4.1, the state error vector must be modified in order to track the collision-free trajectory

instead of the initially prosed one. Therefore, the state error vector can be rewritten as

T — wgoal
AZ =2 — 27" = | [ (&g, (4.106)
J W=y
Whel"e wgoal — [(qgoal)T quIT7 ggoal — {xgoal ygoal Zgoa.l]T) and qgoal — [(ggoal)T ¢cq eeq wtr a;q azq

yea o™ with the equilibrium values being given by (4.86).
Thus, the model (4.91) can be modified into

Aik+1 — AdA:ik + BdA’U,k, (4.107)

which is the error model used in the EMPC strategy implementation.

Finally, having the model (4.107) and assuming the obstacles position &> € O perfectly
known for all [, the EMPC strategy for trajectory tracking of the Tilt-rotor UAV carrying
a suspended load while performing obstacle avoidance can be described in general terms

by the Algorithm 4.1.

Tunning parameters

Similar to Chapter 3, the Bryson’s rule was used as starting point to synthesize the MPC’s

weighting matrices Q@ and R, which are given by

Q:dia,g(E 1010 1 1 15 1 1 30 30, 55 5
202 2 (/2 (x/2)2 (7 (w/2 (w/2 (n/2) (n/2)? 22 22" 22
1 1 1 1 1 15 15
/37 (/37 /Ay Gy G G B 1075) : (4.108)
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Algorithm 4.1 Economic MPC algorithm

1: Compute P through (3.17) using the model (4.107) and matrices Q and R.
2: Calculate © by iterating the one-step operator defined at (3.27).

3: Set x¢o* =zl

4: procedure EMPC(z,, ', ¢, §'", &, i)

5: Obtain the vector Az,.

6: Compute u' using (4.93) from k up to k + N..
7. Check if min {d, (&, &)} < d; VL.

8: Write the cost function (4.12).

9 Write the constraints (4.13 — 4.20).

10: Solve the optimization problem (4.21) to obtain w and z ¢
1. Set @ = g,
12: return u, and x?°*.

13: end procedure

(4.109)

’R:diag< 1 1 0.1 0.1 )

(15— i (= J0) @ =) @—mi )

Furthermore, the saturation level of the Tilt-rotor UAV actuators and the maximum

state error between the vehicle and the colision-free trajectory, are

x —zo = [-1,1], y—yoort =[—1,1], z =z =[-1,1],

¢ — ¢ =1-0.5,05], 6—0°=[-05,05], —¢"=[-05,05],

ar — o =[-0.5,0.5], a,—a =[-0.50.5], v —~%=][-0.5,0.5], (4.110)
V> — 757 = [=0.5,0.5],  fr=10,15], fr=1[0,15],

Tap = [—2,2], Top =[-2,2],

where the error limitations were chosen regarding measurement errors and the actuators’
bounds depends on physical constraints.

The potential functions weighting matrices, obtained by try-and-error, are kK = 0.1 I,
and XA =15 - I;,5, and the security distance from the obstacle defining when the repulsive
potential field starts to act is d; = 0.5. Moreover, the prediction and control horizons are
N, =10 and N, = 5, and the scaling factor is ¢ = 10.

Simulation results

The Figure 4.7 shows the Tilt-rotor UAV with suspended load performing a straight
trajectory passing through three spherical obstacles. Is is possible to see that when the
desired trajectory approaches the obstacles, the vehicle finds an alternative trajectory to
follow in order to avoid collision. Further, after passing through the obstacle, the vehicle
returns to the original trajectory. The first behavior can be explained by the action of the

repulsive potential field and the second by the attractive potential field.
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T 1Oz [m]

5
y [m] 00
Tilt-rotor UAV

Reference Suspended Load

Figure 4.7: Trajectory tracking using the EMPC when performing the trajectory presented
in Figure 4.4.

Figures 4.8 and 4.9 show, respectively, the projection of the trajectory presented in the
Figure 4.7 decomposed in the y —z and z — z planes. Note that the Tilt-rotor UAV deviates
from the first two obstacles by finding an alternative trajectory that maintains its altitude.
On the other hand, the last obstacle is overcame by changing its altitude. This behavior
can be explained since, using the EMPC strategy proposed in this section, the control
system has three degrees of freedom to find a collision-free trajectory, i.e., it performs
obstacle avoidance in the tree-dimensional space. Moreover, since the obstacle avoidance
feature is obtained through the optimization of an economic stage cost, the controller is
always looking for the alternative trajectory that minimizes the artificial potential field

energy.

0 2 4 6 8 10 12 14 16 18 20
z [m]

— Reference Tilt-rotor UAV

Suspended Load

Figure 4.8: Projection in the y — x plane of the trajectory shown in Figure 4.7.

0 2 4 6 8 10 12 14 16 18 20
x [m]
Tilt-rotor UAV

— Reference Suspended Load

Figure 4.9: Projection in the z — x plane of the trajectory shown in Figure 4.7.
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Figure 4.10 presents the time evolution of the regulated variables z, y, z, and ¢. It is
possible to notice the moment when the UAV stop following the desired trajectory in order
to avoid collision. Observe that no yaw movement is performed since, like the LTI-MPC
presented in the Chapter 3, the EMPC, as formulated in this chapter, cannot cope with
yaw angle regulation. Also, notice in Figure 4.10 the presence of oscillatory behavior in the
x evolution, this can be explained by the fact that, despite the controller being tracking
the g0 it still have the same initial velocity references. Furthermore, Figure 4.11 shows

the trajectory tracking error between the vehicle and the collision-free trajectory, £9°*.

20 7

15 6

£ 10 =N
8 >

5 4

0 3

0 10 20 30 40 0 10 20 30 40
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z [m]

_
% © . o
o o o o @

. ¢ [rad]
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E P o B &

o 10 20 30 40 0 10 20 30 40
Time [s] Time [s]
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Figure 4.10: Time evolution of the regulated variables (z, y, z, ¥) and their desired
trajectories.
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Figure 4.11: Time evolution of the tracking errors of the regulated variables (z, y, z, v).

Finally, Figure 4.12 shows the time evolution of the remaining degrees of freedom,
which are kept stable throughout the simulation. Therefore, it is possible to state that
the EMPC strategy was able to ensure closed-loop stability for the considered simulation

scenario. Further, Figure 4.13 shows the actuator signals applied to the Tilt-rotor UAV.
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Note that the controller was able to perform the trajectory tracking without reaching the

actuators saturation level during the trajectory execution.
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Figure 4.12: Time evolution of the remaining degrees of freedom.
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Figure 4.13: Applied thrusts and torques to the Tilt-rotor UAV.

4.4.5 Robust tube-based MPC

Aiming to implement the RMPC strategy to solve the load transportation problem through
the cascade structure proposed at Appendix B, the augmented linear discrete-time outer-

loop model (4.105) is used as the nominal model, i.e.,
Az = A(G)AZE™ + B(Ch) g (4.111)

with g, being the nominal model control input.
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The uncertain system is described considering the additive uncertainty w, which
includes parametric uncertainties, unmodelled dynamics, and the external disturbance

vector §. Thus, the uncertain error model can be written by
Ay, = A(C)AZ, + B(C)AY, + w. (4.112)
Moreover, the mismatch error is defined as
e, = AL, — Az}, (4.113)

Therefore, it is possible to describe in general terms the RMPC strategy used to control
the Tilt-rotor UAV in the outer-loop by the Algorithm 4.2.

Algorithm 4.2 Robust Tube-Based MPC algorithm

1: Compute P through (4.37) using the matrices A(¢,), B(¢), Q, and R.
2: Calculate © by iterating the one-step operator defined at (4.50).

3: Set Ad&rom = A, = 0.

4: procedure RMPC(z,, ¢, ¢, ¢')

5: Compute the feedback gain K (¢) using (4.42).

Obtain the augmented vectors A&, and Azrem.

Calculate the mismatch error e,.

Compute the reachable sets, #Z, from k up to k + N, through (4.43).

Write the nominal model constraints using the equations (4.48), (4.49), and (4.51).
10: Solve the optimization problem (4.55) to obtain g .

11: Calculate AY, = K () ex + gs-
12: Compute Y!" using (4.100).

13: return Y.

14: end procedure

After finished the execution of the RMPC algorithm, the intermediary control signal,
Y,, is obtained. However, since the outer-loop must send roll and pitch reference angles to

the inner-loop, equation (B.30) is necessary to obtain ¢, and 6, from Y,.

Tunning parameters

In order to define the tuning parameters, it is important to find the maximum and minimum
values allowed to the intermediary control input. Thus, considering the equation (B.29)
evaluated at the values v¢, 724, ¢ = [-0.5,0.5], § = [-0.5,0.5], fr =[0,15], and f, = [0, 15],
the allowed range for Y is given by

T, =[-13,13], T, =[-15,15]. (4.114)

Moreover, considering the limits for the state error Ax = [—1,1], Ay = [-1,1], Ay, =
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[—0.5,0.5], and Ay, =[-0.5,0.5], the bounding sets are given by

E ={Az, Ay € +1 m, Avy,, Ay, € £0.5 rad},
V — {Tl (S :i:l?), TQ (S :i:15} 5

W = {w,,w, € £0.1 m,w, ,w,, € +0.01 rad, },

717

with W being chosen by try-and-error procedure.

Now, using the Bryson’s rule, the weighting matrices @ and R can be described as

. 1 1 ) ) 1 1 1 1
Q — dlag <§> ?a (71_/2)27 (77'/2)2’ ?a ?7 (37_‘_)27 (371_)2 ) 107 10) ) (4115)
1 1
=di : 4.11
R = diag ((13 — T (15— quy) (4.116)

Moreover, the prediction and control horizons, chosen considering a trade-off between
good performance and computational cost, are N, =5 and N, = 2. Further, the maximum

absolute accelerations are 1 m/s?, which gives the box-like polytope A = {+1,+1} € R2.

Simulation results

Figure 4.14 shows the results of the Tilt-rotor UAV carrying a suspended load while
performing a square-like trajectory when affected by the disturbances shown in Figure 4.6.
The RMPC is controlling the system planar motion and providing the load stabilization,
while the nonlinear inner-loop IOFL controller is dealing with the altitude and the yaw

regulation, and stabilizing the remaining degrees of freedom of the system.

5.4

4.2 1

____________ 10

6
6 2 y [m]

— Reference — mmm Tilt-rotor UAV Suspended Load

Figure 4.14: Trajectory tracking using the RMPC when performing the trajectory presented
in Figure 4.5.

Figure 4.15 presents the time evolution of the regulated variables z, y, z, and ¥. Observe

that the RMPC successfully performs trajectory tracking for the states z and y, as well as,



CHAPTER 4. ROBUST TUBE-BASED ECONOMIC CONTROL 106

the nonlinear controller for the states z and . Although the formulation of the RMPC
presented in this chapter is not able to perform yaw’s regulation, the cascade structure
proposed to reduce the dimensionality problems makes not only the implementation of the
tube-based controller possible but also allowed yaw movements. This allows the aircraft to
perform trajectory tracking always head-on to the trajectory, which can be seen in Figure
4.15. Moreover, Figure 4.16 shows the tracking error of the regulated variables. Although
some oscillations can be seen in Figure 4.15 and, consequently, in Figure 4.16, it should be

notice that they are not sustained and their amplitude are small.
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Figure 4.15: Time evolution of the regulated variables (z, y, z, v¥) when performing a
square-like trajectory.
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Figure 4.16: Time evolution of the tracking error when performing a square-like trajectory.

Furthermore, Figure 4.17 shows that the remaining system’s degrees of freedom are
kept stable during the trajectory execution, meaning that the cascade structure composed

by the RMPC and the nonlinear IOFL controller was able to ensure closed-loop stability
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for the Tilt-rotor UAV during the considered simulation scenario. Figure 4.18 shows that
the input signals computed by the inner-loop controller did not saturate the vehicle’s
actuators. Moreover, it is possible to notice that some peaks appear in the torque input
signals, which is explained by the required direction change in the corners of the square-like
trajectory.
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Figure 4.17: Time evolution of the remaining degrees of freedom when considering the
square-like trajectory.
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Figure 4.18: Inputs applied to the Tilt-rotor UAV.

4.4.6 Robust tube-based economic MPC

Similar to the RMPC strategy, to solve the load transportation problem using the REMPC

as an outer-loop controller in the cascade structure proposed in Appendix B, the augmented
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linear discrete-time model (4.105) is considered as the nominal model, i.e.,
A = A(E)AZ™ + B(C) gy, (4.117)

with g, being the nominal model control input. Therefore, the uncertain linear system is

described considering an additive uncertainty as described in the previous subsection
Ak, = A(C)AZ, + B(E)AY, + w. (4.118)

To perform trajectory tracking considering the collision-free trajectory, the state error

vector must be rewritten as

€T — mgoal
AT =& — 9% = f (x — xgo‘”) , (4.119)
J =y

where 9" = [(g°")" ¢"]" and g = [x9° yoo* v:1 4¢]T ) with the equilibrium values being
given by (4.96).
Thus, the models (4.117) and (4.118) are modified, respectively, leading to

AZLTT = A(C)AZS™ + B(C)gr, (4.120)

which are the error models considered in the REMPC strategy implementation.
Finally, redefining the mismatch error as é, = A%, — Az} ™, the control input for the
uncertain system is given by
AY, = K ({) € + gs- (4.122)

Assuming the obstacles position £ € O known for all [, the Algorithm 4.3 describes in
general terms the REMPC strategy used in the outer-loop to control the Tilt-rotor UAV’s
outer-loop. After executed the algorithm, the intermediary control signal is obtained and
equation (B.30) needs to be considered to obtain the inner-loop references ¢, and 6, from
Y,.

Tunning parameters

Similar to the RMPC strategy, the following bounding sets are considered

E ={(z — 2°"), (y — y*°*) € £1 m, Ay, Ay, € £0.5 rad},
V - {Tl S :|:13, TQ S :i:15}7

W ={w,,w, € £0.1 m,w, ,w, € £0.01 rad, },

717
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Algorithm 4.3 Robust Tube-Based Economic MPC algorithm

1: Compute P through (4.65) using the matrices A(¢,), B(¢), Q, and R.
2: Calculate © by iterating the one-step operator defined at (4.50).

3: Set x¢o* =zl

4: Set AZ"m = A%, = 0.

5. procedure REMPC(z,, q, ', G, &, =°")

6: Compute the feedback gain K (¢,,) using (4.66).

7: Write the augmented vectors AZ, and Az;°™.

8: Write the mismatch error é€,.

9: Compute the reachable sets # from k up to k + N, through (4.70).
10:  Check if min {d, (&7, &)} < d; VL.

11: Write the cost function (4.82).

12:  Obtain the constraints (4.71), (4.72), (4.73), (4.75), (4.77), (4.79), (4.80), (4.81).
13: Solve the optimization problem (4.84) to obtain g and £ goal

14: Set &l =z,

15: Calculate AY, = K () éx + 9s-

16: Compute Y!" using (4.100).

17: return Y, and x{°*.

18: end procedure

being the weighting matrices given by

. 1 1 ) ) 1 1 1 1

Q — dla‘g (227 ?) (7_[_/2)27 (7T/2)2 ) ?7 ?7 (377)27 (37T)2 ) 107 10) ) (4123)
. 1 1

R = diag ((13 T (15 qu)z) : (4.124)

The prediction and control horizons are N, = 10 and N, = 5. Further, the maximum
absolute accelerations are 1 m/s?, given the polytope A = {£1,+1} € R%. The potential
functions weighting matrices are k = 0.1 - I,,, and XA = 15 -I,,,. The security distance is

d; = 0.5, and the scaling factor is ¢ = 10.

Simulation results

Figure 4.19 shows the Tilt-rotor UAV performing trajectory tracking while carrying a
suspended load and when the desired path is obstructed by obstacles to be overcame by
the vehicle. Similar to the EMPC, the cascade structure composed by the REMPC and
the nonlinear IOFL controller was able to perform obstacle avoidance successfully (see
Figure 4.19). The economic stage cost of the REMPC is the reason why the vehicle looks
to an alternative collision-free trajectory when approaching obstacles and returns to the
desired one after passing through it.

Figures 4.20 and 4.21 show, respectively, the trajectory projection presented in Figure
4.19, which is decomposed in the y —x and z —x planes. Observe that, unlike the simulation
using the EMPC strategy (see Figure 4.19), the UAV deviates from all the obstacles using
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Figure 4.19: Trajectory tracking using the REMPC in a cascade structure when performing
the trajectory presented in Figure 4.4.

only its planar motion, i.e., without changing its altitude. This behavior is expected due
to the necessity of use the REMPC in a cascade control scheme to avoid dimensionality
problems and to work with smaller sampling frequencies. Moreover, the REMPC only
controls the states z, y, 71, and ~,. Therefore, it does not have any action on z. On
the other hand, the use of the cascade structure allows to have a control system able
to perform planar motion with obstacle avoidance, besides to consider yaw’s movements
regulation, which could not be achieved if the REMPC strategy, as presented in section

4.3, was used considering the whole-body control approach.
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Figure 4.20: Projection in the y — z plane of the trajectory shown in Figure 4.19.
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Figure 4.21: Projection in the z — z plane of the trajectory shown in Figure 4.19.
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Figure 4.22: Time evolution of the regulated variables (z, y, z, ¥).
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Figure 4.23: Time evolution of the tracking errors of the regulated variables (z, vy, z, ¥).

Further, Figures 4.22 and 4.23 show, respectively, the time evolution of the regulated
variables z, y, z, and ¢, and its tracking errors. Observe that the difference between the
desired trajectory and the performed one in the y time evolution is due to the obstacle
avoidance feature. Moreover, note that the tracking error Az and Ay are obtained with
respect to the collision-free trajectory, while the Az and A consider the error with respect
to the initial proposed one since these states are addressed by the inner-loop controller.

Finally, Figures 4.24 and 4.25 show, respectively, the time evolution of the remaining
degrees of freedom and the control inputs computed by the inner-loop controller. All the
remaining degrees of freedom are kept stable by the cascade structure using the REMPC,
which shows the closed-loop stability feature for the considered simulation. Further,
thrusts and torques provided by the nonlinear controller, respectively, to the rotors and

servomotors do not exceed their saturation levels.
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Figure 4.24: Time evolution of the remaining degrees of freedom when using the REMPC
in a cascade structure.
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Figure 4.25: Applied thrusts and torques to the Tilt-rotor UAV when using the REMPC
in a cascade structure.

4.5 Final remarks

In this chapter three types of predictive controllers with advanced features were proposed
aiming to solve the load transportation problem using a Tilt-rotor UAV from the UAV’s
perspective. The main goal was to design a control system able to perform trajectory
tracking and obstacle avoidance while providing closed-loop stability assurance, constant
external disturbances rejection, parametric uncertainties attenuation, and constraints
satisfaction on state deviations and control inputs. First, an economic model predictive
controller was derived with its economically motivated stage cost defined by potential
functions in order to perform obstacle avoidance through an one-layer scheme. The LTI-
MPC proposed in Chapter 3 was took as basis for its design, and the EMPC were use

to solve the load transportation problem while performing obstacle avoidance through
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a whole-body approach. Secondly, a robust tube-based model predictive controller was
presented aiming to address robustness issues without only rely on the inherited robustness
presented in feedback controllers. Therefore, the RMPC, using set theory tools, considers
uncertainties by design concept, which increases its domain of attraction when compared
to the standard MPC formulations. The RMPC was used to solve the load transportation
problem through a cascade structure in order to avoid dimensionality problems that could
made the implementation of this controller impractical. Finally, the main goal of this
chapter was achieved when the EMPC and RMPC was gathered into a single strategy to
create a robust tube-based economic model predictive controller able to formally address
the robustness problem and to perform obstacle avoidance. This strategy was applied to
solve the load transportation problem using a Tilt-rotor UAV through a cascade structure,
avoiding the dimensionality problems presented in RMPC.

Numerical results have shown that the EMPC successfully performed trajectory tracking
avoiding obstacles obstructing the aircraft’s workspace. Therefore, in the considered
simulation scenario, this controller was able to achieve the specified requirements, i.e.,
perform trajectory tracking while ensuring closed-loop stability and obstacle avoidance
due to the combination of the standard quadratic with stability regions stage cost and the
economic stage cost. Moreover, as for the LTI-MPC controller, the quadratic stage cost
and the inclusion of integral actions also make the EMPC strategy capable of dealing with
constant external disturbances and parametric uncertainties rejection. The RMPC strategy
was also successfully used to solve the load transportation problem using a Tilt-rotor UAV.
The presented numerical results corroborate the good trajectory tracking performance
of these controllers even in presence of disturbances and the parametric uncertainties
represented by the model dependency on the reference accelerations. Moreover, due
to the use of a cascade structure with a nonlinear controller in the inner-loop, it was
possible to perform yaw’s movements regulation in a way that the vehicle could always be
head-on to the trajectory. Yet, the numerical results had also shown that the combination
of obstacle avoidance and robustness to uncertainties were possible using the REMPC
strategy. However, due to the necessity of working in a cascade structure, only planar
obstacle avoidance was possible.

Despite being able to bring advanced features into the load transportation using a Tilt-
rotor UAV problem, the controllers proposed in this chapter have the drawback of being
computationally costly. The cost of the EMPC algorithm is mainly due to the nonlinear
cost function, the optimization problem, and the number of constraints necessary in its
formulation. The RMPC algorithm cost, on the other side, is due to the computational
burden associated with the Minkowski sum and the Pontryagin difference, which are usualy
obtained through the interception of hyperplanes. Finally, since the REMPC gathers the
benefit and drawback of both controllers, its algorithm is the one with higher computation.

Since this work does not address the implementation issues related to these controllers
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algorithms, the results presented here can only be obtained through numerical simulations
and the control strategies cannot yet be tested in the real system. In the next chapter
some general conclusions about this thesis are given and some future works, including the

implementation issues and the obstacle detection problem, are proposed.
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Conclusion

5.1 Overview

This thesis dealt with the load transportation control problem using a Tilt-rotor UAV from
two different approaches. In order to solve this problem five different formulations of model
predictive controllers were proposed. Initially, the suspended load trajectory tracking with
the UAV stabilization was addressed using both LTI-MPC and LTV-MPC control strategies.
After, the UAV trajectory tracking problem with load stabilization was considered and
solved through a whole-body approach using the EMPC and through a cascade structure
using the RMPC and REMPC control strategies. It was required for all designed controllers
to be able to perform trajectory tracking while ensuring closed-loop stability throughout
the trajectory, to reject constant external disturbances and parametric uncertainties, and
to satisfy constraints on state deviations and control inputs. Numerical results have shown
that these goals were achieved by all proposed model predictive controllers.

The first proposed control strategy was a linear time-invariant model predictive con-
troller for trajectory tracking of the suspended load considering a standard quadratic stage
cost together with stability regions. For prediction purposes, the nonlinear state-space
equations of motion were linearized around an equilibrium pointand adapted to consider
the incremental form of MPC aiming to achieve improved performance by means of the
additional integrators. The main goal of using the standard MPC formulation was to
provide a computationally efficient control algorithm suitable to be implemented in the
ProVANT 2.0 UAV’s embedded system observing the required 12 ms sampling time. This
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is an improvement of the previous results obtained in Santos & Raffo (2016b) and Andrade
et al. (2016). In fact, the inclusion of a terminal cost and terminal constraint set, despite
formally ensure closed-loop stability in the vicinity of the linearization point, have also
allowed the reduction of the prediction and control horizons without losing performance.
These features allowed to reduce the control algorithm time of execution from 55 ms to 3.2
ms, in the average case, and from 129.8 ms to 11.6 ms, in the worst case. Therefore, the
proposed strategy, even in the worst case, can be successfully used in the real system to
solve the considered load transportation control problem.

The second designed predictive control strategy also solved the trajectory tracking of
the suspended load using a Tilt-rotor UAV. However, it differs from the previous control
strategy by considering a linear time-variant model as the foundation of its prediction
process. For the LTV-MPC, the nonlinear state-space equations of motion were linearized
around a generic trajectory considering the rope’s length as a time-varying parameter
and also extended to consider the incremental form of MPC. In this formulation, the
stability regions were not considered due to the inability to express the LTV model in
a polytopic form and the prohibitive computation cost to compute this regions in an
on-line approach. However, because of the time-varying model and model-based nature of
predictive controllers, the LTV-MPC formulation was able to solve problems requiring a
larger domain of attraction, such as: yaw movement regulation, and rope’s length variation
during take-off and landing maneuvers. The linearized controllers that have been proposed
to solve this problem, with exception to those considering scheduling between control
strategies, are unable to cope with yaw regulation. Moreover, the rope’s length variation
is only regarded as an uncertainty to be rejected by the controllers due to its robustness
against model uncertainties. In this context, the proposed controller has the feature of
addressing this practical problem in a simple way without relying only on the controllers’
robustness. However, this advantage comes with the drawback of increasing the control
algorithm computational cost due to the high number of required on-line computation.
Therefore, without further research on the topic of how to reduce the computational cost
of this controller, it cannot be implemented in the aircraft’s embedded system.

For the third proposed control strategy, the load transportation control problem was
solved considering the Tilt-rotor UAV’s trajectory tracking and obstacle avoidance. For the
development of the EMPC, the nonlinear state-space equations of motion were linearized
around an equilibrium point and all obstacles were considered to be perfectly known. The
optimization problem was designed through a cost function formulated by a standard
MPC quadratic stage cost together with an economic oriented one. The quadratic cost,
as for the LTI-MPC strategy, was used to ensure stability and performance, while the
economic cost was considered to allow obstacle avoidance. Attraction and repulsive
potential functions were use to formulate the economic criteria, and constraints were

added into the optimization problem in order to define no-fly zones areas and giving a
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stronger assurance against collisions. The presented numerical results, obtained through
simulations, showed that the EMPC strategy was able to perform obstacle avoidance
while performing trajectory tracking stably. Nevertheless, despite being formulated with
terminal cost and terminal constraint and, hence, being able to work with small prediction
and control horizons, due to the EMPC nonlinear optimization problem, this control
strategy has shown to be computationally costly, which prevents it to be implemented in
the real aircraft without further investigation.

The fourth proposed control strategy was a robust tube-based model predictive con-
troller used to solve the load transportation problem from the UAV’s perspective through a
cascade structure. The choice of using a hierarchical approach, in which the RMPC control
strategy only deals with the planar motion trajectory tracking and the load stabilization,
was made seeking to reduce the control problem’s dimension and to allow the controller to
run in a slower frequency rate. In order to design the proposed controller, the outer-loop
model was linearized around a generic trajectory, which resulted in a linear time-variant
model with politopic representation. The proposed control strategy is said to be robust
since it considers in its formulation the effect of both additive and modeling uncertainties.
This approach used set theory tools to define tube regions in order to constrain the
uncertain system’s evolution. Its optimal control policy was used to steer the nominal
system throughout the desired trajectory, while an adaptive law reduced the mismatch
error between the uncertain and the nominal systems. Numerical simulation results were
shown to corroborate the controller’s good trajectory tracking performance in the presence
of external disturbances and modeling uncertainties, which was mainly associated with
the decoupling and linearization process. Despite the use of the RMPC control strategy to
only address the outer-loop control problem, this strategy still had high computational cost
due to the on-line calculation of Minkowski sums and Pontryagin differences. Therefore,
further researches on the topic of computational efficiency of this control algorithm still
need to be made in order to make its implementation practicable.

Finally, the fifth control strategy was proposed aiming to gather the RMPC’s robustness
with the EMPC’s obstacle avoidance. This controller also solved the load transportation
problem from the UAV’s perspective. Similar to the RMPC, the robust tube-based
economic model predictive controller was used in a cascade structure seeking to reduce the
control problem complexity. For the REMPC, the outer-loop model was also linearized
around a generic trajectory, which resulted in a LTV model. Moreover, all obstacles were
also considered to be perfectly known. Since this controller only dealt with the planar
motion trajectory tracking and the load stabilization, the obstacle avoidance feature was
only achieved in the z — y plane. Numerical simulation results were proposed to show
the controller’s ability of joining the two previously proposed control strategies’ features.
Although being able to gather their features, the REMPC also gathered their drawbacks.

Therefore, this control strategy has high computational cost and will be only possible
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to be applied in the real system when the previous controller’s computational efficiency

problems are solved.

5.2 Contributions

The main contribution of this thesis are:

e The design of an LTI-MPC with suitable computational cost for being implemented
in the Tilt-rotor UAV’s embedded system;

e The design of an LTV-MPC able to address the yaw’s movements regulation problem

and the rope’s length variation during take-off and landing maneuvers;

e The design of an EMPC considering potential functions as economic criteria to solve

the obstacle avoidance problem though an one-layer scheme;

e The design of a RMPC to control a Tilt-rotor UAV used for load transportation

tasks considering, by design concept, both additive and model uncertainties;

e The design of a REMPC gathering the robustness and obstacle avoidance features

to solve the load transportation control problem using a Tilt-rotor UAV.

5.3 Future works

This section suggests possible future works that could improve the results of this thesis.

e Improve the LTV-MPC computational cost. The computational cost of the
LTV-MPC is mainly due to the inability of finding a politopic representation for the
linearized model through first-order Taylor series expansion and the large prediction
and control horizons considered. The first problem can be worked around by obtaining
the linear parameter varying model using a subspace identification process, while the
second one can be addressed investigating scheduling MPC techniques that, formally,

ensure stability allowing the reduction of the controller’s horizons.

e Inclusion of input rate constraints. For all MPC strategies formulated in this
work it will be necessary to include input rate constraints in order to successfully
validate them in an experimental setup. Although the proposed strategy did not
took into account the actuators dynamics, the inclusion of input rate constraints
will consider, in a simpler way, the actuators time response avoiding the controllers

to calculate unrealistic control actions.
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e Obstacle avoidance considering the aircraft’s orientation and velocities.
The EMPC proposed in this work considers only the aircrafts position in order
to find a collision-free trajectory. The inclusion of the orientation could improve
the performance, for instance, by keeping the vehicle head-on to the trajectory.
Moreover, due to the Tilt-rotor UAV’s dynamics be described by second-order
differential equations, the controller needs to control the generalized coordinates
and their time derivatives. Therefore, depending on the desired trajectory velocities
amplitude, when a collision-free trajectory is found but the desired velocities are kept
the same, the control system may not be able to perform the collision-free trajectory

properly and could even become unstable.

e Inclusion of load’s collision avoidance. Since load’s collisions are undesirable
due to many aspects, such as: capacity of destabilize the whole-system, damage
of the cargo and the environment, among others; the EMPC formulation can be

modified in order to also includes load’s collision avoidance.

e Study of obstacle detection strategies. For future implementation of the EMPC
control strategy in the Tilt-rotor UAV, the obstacle detection problem must be
addressed.

e Study of computational efficiency of the nonlinear optimization algorithms.
In order to be able to implement the EMPC in the UAV’s embedded system, observing
the desired 12 ms time period for the control algorithm execution, the study of
computational efficient algorithms to solve the controller’s optimization problem is

required.

e Compute the adaptive controller through #_. approach. By changing the
LMI formulated in order to compute the mismatch error adaptive controller’s gain for
the RMPC and REMPC strategies, it is possible to include some additional features
into the problem. For instance, since the optimization problem is formulated only to
find a Lyapunov positive definite matrix P, it could be rewrite as an H. problem
aiming to have additional robustness features ensured by the Small Gain Theorem
(Boyd et al., 1991).

e Improve the RMPC’s computational cost. The investigation of efficient ways
to perform Minkowski sums and Pontriagin differences are necessary to reduce the
algorithm’s time of execution. For instance, the use of more conservative sets to
compute the reachable sets and to define the restrictions, e.g., zonotopes, can be

considered.

e Ensure no saturation for the control inputs in the RMPC strategy. Although

the MPC strategy used to control the nominal system are able to ensure that the
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control inputs will not reach some desired saturation levels, due to the combination
of the MPC law with mismatch error adaptive control law, the applied control input

has none assurance of no saturation.

e Validation of the proposed techniques in the Gazebo platform. A simulation
platform based on Gazebo was developed in the ProVANT project to validate control
and estimation strategies (Lara et al., 2017). Therefore, the validation of the proposed
control strategies in this platform would allow to test their ability to solve the load

transportation problem in a more realistic scenario.

e Validation of the proposed techniques in experimental setup. An important
step in this research would be the application of the proposed control strategies in
the ProVANT 2.0 UAV to corroborate their performance in the real system.

e EMPC stability analysis. Analyze the stability of the EMPC algorithm presented
in Chapter 4.
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Tilt-Rotor UAV with Suspended Load
Modeling

This appendix briefly describes the equations of motion of a Tilt-rotor UAV with suspended
load from two different perspectives: (i) the UAV’s perspective with the vehicle as a free
body coupled to the load; (ii) the load’s perspective with the load as a free body coupled
to the UAV. Both models are obtained through the Euler-Lagrange formulation, in which
the coupling between the aircraft and the load is considered naturally. Further details
about the modeling process can be found in Almeida (2014) and Rego (2016), respectively,
from the UAV’s and the load’s perspective.

The Tilt-rotor UAV with suspended load is shown in Figure A.1. The system can be
seen as a multi-body mechanical system composed of four bodies: the Tilt-rotor UAV itself
composed by three bodies, a main body and two thrusters’ groups, and the suspended
load being the fourth body. The system is actuated through the aircraft’s thrusters group
composed by a servomotor to tilt the propellers and a rotor to generate the lift force.

For modeling purposes, all bodies are assumed to be rigid; the load is assumed to be
attached to the main body by a massless inelastic rope through two revolute joints; the
rope is connected to the aircraft’s geometric center; the main body’s center of mass does
not coincide with the aircraft’s geometric center; and the thrusters groups’ centers of mass

are located at their respective tilting axes.
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Figure A.1: The Tilt-rotor UAV with suspended load.

A.1 Model dynamics using Euler-Lagrange

The dynamics of a general mechanical system can be well described by its Lagrangian,
which is defined as the difference between the kinetic, K (q,q), and the potential, U (q),
energies,

Z(a,4) =K (a.9) ~U(a), (A1)

being g the generalized coordinates of the system.
The Euler-Lagrange equations of motion that describe the general mechanical system

can be obtained through the Lagrangian by (Spong et al., 2006)

% (Még"”) - (M;j@) =9(q.9). (A.2)

where 9 (q, q) is the generalized force and torque vector composed by input forces, drag
forces, and external disturbances forces.

The equation (A.2) can be rewritten in its canonical matricial form as

M(q)G+C(q,49)¢+G(q) =9(q.q), (A.3)

where M (q) is the inertia matrix, C (g, q) is the Coriolis and centripetal forces matrix,
and G (q) is the gravitational force vector.

Therefore, in order to derive the equations of motion using the Euler-Lagrange formu-
lation, the kinetic and potential energies of each body composing the mechanical system
must be obtained. For each rigid body, these energies can be computed through the volume

integrals (Siciliano et al., 2009)
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where p, is the density, V, is the volume, m, = fvl_ p;V; is the mass, g £ [00 — g.]” denotes
the gravitational acceleration vector expressed in the inertial frame Z, and p? is a point
rigidly attached to the i-th body expressed in Z.

The total kinetic and potential energy of the system can be obtained by the sum of
each body kinetic and potential energies, i.e, K = > K, and & = > U; (Shabana, 2005).
Thereafter, they can be used to compute the inertia matrix and the gravitational force

vector, respectively, since

K= i M(a)i (A.6)
and U
G(q) = aq (A7)

The Coriolis and centripetal forces matrix can be obtained from the inertia matrix
through the Christoffel symbols of the first kind as (Spong et al., 2006)

101{8171,” omy;  Omy,

Crj = ; 2 | 0g, 90, — 90, Gis (A.8)
where ¢; is the (i,j)-th entry of the matrix C (q,q) and m,; is the (i, j)-th entry of the
matrix M (q).

Finally, the last term that must be obtained to have the system’s dynamics represented
by equation (A.3) consists of the contributions of all non-conservative forces and torques
applied to the system. Hence, let f and 7 denote, respectively, the general non-conservative
forces applied in a point p and the general non-conservative torques applied to a body with
a reference frame F rigidly attached to it. The contributions of f and 7 to the generalized
force and torque vector ¥ (g) can be obtained through the following mappings (Kane &
Levinson, 1985)

9y =(T,)" fT R, (A.9)
9. = (Wy)'r% € R", (A.10)

with J, = 0p*/0q and Wyr = 0w, /Jq, where w?. is the angular velocity between the
frames Z and F expressed in Z.

Thus, to summarize the modeling process, first the system’s frames definitions should
be made in order to describe p? and p? through basic kinematics transformations; second,
the quadratic term (p?)" (p?) needs to be obtained to compute the kinetic energy and, using
equation (A.6), identify the inertia matrix; third, the equation (A.8) together with the
derived inertia matrix should be used to obtain the Coriolis and centripetal forces matrix;
fourth, knowing pZ, the total potential energy needs to be calculated and differentiated
using (A.7) to obtain the gravitational force vector; and fifth, the Jacobians J, and W,
need to be calculated through equations (A.9) and (A.10) in order to derive the generalized
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force and torque vector.

A.2 Dynamic model from the UAV’s perspective

Aiming to obtain the kinematics from the UAV’s perspective six frames are defined to
describe the Tilt-rotor UAV motion with suspended load: the inertial frame Z, and the
moving frames B and C;, which are, respectively, frames rigidly attached to the main body

center of rotation and to the center of mass of the i-th body (see Figure A.2).

Figure A.2: Tilt-rotor UAV frames and variables definition considering the system from
the UAV’s perspective.

The position of the body frame’s origin represented in the inertial frame is given by
&€s =[5 ys zB]T, and the attitude by nz = [¢5 05 Q/JB]T, described by Euler angles using the
7YX convention about local axes. The orientation of C, with respect to B is obtained
by a rotation ap around the YZ-axis and a constant negative tilt g around the XZ-axis.
Likewise, the rotation of the frame C; with respect to B can be obtained considering
rotations «, around the Y?-axis and a constant tilt 5 around the X®-axis.! Moreover, using
a parametrization that considers the load as a pendulum with length [ and two degrees
of freedom represented by v, and ~, (rotations around X5-axis and Y?5-axis, respectively)
(Almeida & Raffo, 2015); the position of the suspended load with respect to the main

body becomes a simple forward kinematic problem.

!5 is a fixed tilt angle introduced in the mechanical design seeking to increase the controllability along
the Y?-axis (Raffo et al., 2011).
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Therefore, the generalized coordinates that describe the motion of the Tilt-rotor UAV

are chosen as
as =[5y a" 4], (A.11)

with a = [ap ;)" and v = [, 7.]".

Furthermore, the system’s inputs are given by w = [fx f. 7= 7], where f5 and f, are
the thrust forces, respectively, of the right and left propellers; likewise, 7 and 7, are the
torques applied by the servomotors. Additionally, the system underactuated behavior can

be noticed from the generalized coordinates definition and the amount of inputs available.

A.2.1 Kinematics

Considering the Euler angles using the ZYX convention about local axes, the rotation

matrix between the frames B and Z is given by (Spong et al., 2006)

CypCor  CypSosSes — SupCes  CupSesCop + SyrSep

Z _
R; = SypCos  SupSopSes T CupCop  SupSosCos — CypSes |» <A'12)
—Sop CopSep CopCop
with s, =sin(-) and ¢, = cos (-).

A point rigidly attached to the main body can be represented in the inertial frame by
ps = Rzp” + &5, (A.13)

likewise, a point rigidly attached to the frame C; can be expressed in the body frame as
p’ = Rip% +di, Vi (A.14)

where df denotes the translation between the frames B and C; with i € {1,2,3,4}.
Therefore, combining the equations (A.13) and (A.14), a point rigidly attached to C;

can be expressed in the inertial frame by
p? = RE (REpS +d2) +&s, Vi (A.15)

Furthermore, taking the first time derivative of equation (A.15), it is possible to express

the velocity of the i-th body in the inertial frame as
Pt = RY (Rgipci n dg) + R? (Rgipci FRES + dg) 1 ép (A.16)

In order to be able of expanding the derivative terms of the equation (A.16), since
R] = R]S(w},) with S(-) being a skew symmetric matrix (Spong et al., 2006), the angular

velocities wh;, wels, wels, and weiy, and the relative velocity df between the frames C,
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and B must to be obtained. As shown in Almeida (2014), these terms can be described by

wgl = Wr;g’f’Bv (A]_?)
weis = (pa,, (A.18)
weds = dra,, (A.19)
wels = P, (A.20)
ds = L, (A.21)
where
1 0 — S0, 0 1 0 ls, s, —lc,c,,
W”B =10 Cop  SepCog | @y = | 1 ,P=10 Cyy L= le,, 0
0 —S4p  CopCop 0 0 —s,, ls, cyy, lcy s,

A.2.2 Dynamic model

The nonlinear dynamic model of the Tilt-rotor UAV with suspended load, from the UAV’s
perspective, can be described by the Euler-Lagrange equation, as in (A.3), by

M (gs) Gs + Cs (@5, 45) 45 + G5 (@5) = V5 (a5, qs) - (A-22)

After obtained p? in equation (A.16), the quadratic term (p?)" (p¥) can be computed
and the kinetic energy can be represented as in equation (A.6) in order to obtain the

inertia matrix. Therefore, as shown in detail in Almeida (2014), the inertia matrix can be

written as
mlys my, s myy mys
* WWTJWT, M3 Moy mys
M5 (g5) = * * a’La, my, M5 (A.23)
* * * a, I a, mMys
* * * * m,LTL + PTI,P

where the * terms indicate symmetry with respect to the main diagonal and

my, = — R?;HWm My = 03,1, Myy = 03,4, Mz = m4R§L7
ma, = WIRE La,, m, = W!RE La,, my;=W/'RSLP+m,W'S (d§4) L,
My, =0, My5 = 01,5, Mys = 04,5,
withm =Y m,;,, J=>YJ, and H =S (Z midgi), being J; the inertia tensor of the i-th

body given by
J,=REL(RE) +mS(ds)s(ds). (A.24)
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where I, is the moment of inertia of the i-th body.

Further, the Coriolis and centripetal forces matrix Cj (gs, ¢s) can be obtained directly
from the inertia matrix using equation (A.8).

As shown in Almeida (2014), the total system’s potential energy is given by

=1

Us = (9")" R (24: mid?i> +(g")" més. (A.25)

Thus, the gravitational force vector G (g;) can be obtained using equation (A.7).

The generalized force and torque vector ¥4 (gs, gs) can be described as a combination
of forces and torques generated by the actuators, 9¥5,, the friction between the rope and
the Tilt-rotor, ¥4;,, and the external disturbances applied to the vehicle, 94,. Hence, the

generalized force and torque vector can be expressed as

198 = '195’“ + 193& + "-9de (A'26)
where
| RIr, RIr, 0 0]
WWZTR WWZTL 00 fr
0 0 1 0
9. — Bu — Lol (A.27)
0 0 0 1 Tap
0 0 00|,
0 0 0 0
Opp = —pqs = _blkdlag (07 0,0,0,0,0,0,0, Hoy /~L'y) ds; (A28)
T
Vpa = {]Ism 03,3 05y 03><2:| dg, (A29)
T
with ds = |d,s d,s dzB} denoting the disturbance vector, and
Sap Sa —CapCpd’ — s, CapCad’ + %5,
Tr=| CapSs |TL=| —CaySs | TR=| Sapd+*capss | T = 8a,d° —*co 55 |
CapCp Cay Cp Sapd’ + ErcyCp —5q,d" — Erc, cs
being d* = d¢,. = d¢,. and @* = |dg ,|. The derivation of each term of the equation (A.26)

can be found with detail in Almeida (2014).

A.2.3 State-space representation

Considering the obtained inertia matrix, My (g5), the Coriolis and centripetal forces matrix,
C5 (g5, qs), the gravitational force vector, G5 (gs), and the generalized torque and force

vector, ¥z, it is possible to write the Euler-Lagrange equations of motion in a state-space
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representation, yielding to

Ty = s (Ts,u,d) = s = s . A.30
el ) [ ds ] [ M;* [193 —C5(q5,q5) s — G (QB)] ( )

The model derived in this section is used to design the controllers of Chapter 4 and to

obtain the nonlinear cascade structure presented in Appendix B.

A.3 Dynamic model from the load’s perspective

In order to formulate the dynamic model from the load’s perspective, six reference frames
are defined, as shown in Figure A.3: the inertial frame Z, the moving frames B and C,,
which are, respectively, frames rigidly attached to the main body center of rotation and to
the center of mass of the i-th body, and the suspended load group center of mass frame,
L. The load’s position with respect to the inertial frame Z is denoted by &, = [z, vy, 2z.]7,
and its attitude by n, = [¢, 0. ¢¥.]", described by Euler angles using the ZYX convention
about local axes. The displacement vector from £ to B corresponds to the rope, and is
expressed in £ by dg = [0 0 {], with [ being the rope’s length. The displacement vectors
from B to C; expressed in B are model parameters of the Tilt-rotor UAV and are denoted
by d¢. with 7 € {1,2,3}. Further, the orientation of the aircraft’s geometric center frame
with respect to £ is parametrized by two angles, v = [y, 7.]"; and the orientations of the
thrusters’ groups with respect to B is parametrized by a = [aR aLr.

Aiming to obtain the equations of motion describing explicitly the time evolution of

the load’s position and orientation, the generalized coordinates are chosen as
T

As considered in the previous section, the system’s inputs are the thrust forces and

torques given by w = [fr fo 7= 7], which show again the system’s underactuated behavior.

A.3.1 Kinematics

Considering the Euler angles vector i, to describe the orientation of the load with respect

to Z, the associated rotation matrix can be defined as

CyrCor  CyrSorSer — SyrCer CyrSerCer + SyrSer
Z __
R, = SycCor  SuyrSecSec + CyrCor  SyrSerCer — CyrSer

—Sor CorSorc CorCor

On the other hand, the rotation matrices associated, respectively, to the orientation of

the aircraft’s geometric center frame with respect to £ and the orientations of the thrusters’
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Figure A.3: Tilt-rotor UAV frames and variables definition considering the system from
the load’s perspective (adapted from Rego (2016)).

groups with respect to B are given by

Cyyy 0 —S4, Cag 0 Sag Cap 0 Sar
L _ B __ B _
R;= 15,8, €, S,C,|: RBc,=]-5s8p Cs SsCap|: Bec, =1 8s8a, Cs —S5Ca;
€y, S, —S, C,C, —CgSap,  —S5  CsCap —CsSa;  Ss CsCap

The angular velocities of the system are given by wz, = W, .n., wg, = Q7, wgiB = 05,,,
wgﬁg = a,dg, and wgg’B = a,dy, where, for instance, w4, denotes the angular velocity of £

with respect to Z expressed in £, with

1 0 —Sac —C,, 0
W,. =10 Cor SscCos| > Q=0 -1}, (A.32)
0 —S4z CurCor Sy, 0

and a, =[0 1 0]".
From the rigid transformations of the system, the forward kinematics of points that

belong to each rigid body are given by

PL =&+ RIp", (A-33)
pr =€ + RidS + RERSAS, + RERERE DS, (A.34)

where pZ is the position of a point rigid attached to the suspended load body expressed in
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the inertial frame, and p? is a point rigid attached to the frame C; expressed in the inertial
frame. As shown in Rego (2016), the time derivatives of the equations (A.33) and (A.34)

can be written as

pi = & + RES(p) " wis, (A.35)
pl =€ + |RES(d5)" + RERGS(dS)"(RE)™ + RERERE S(p™)" (RERE)" | wE, (A.36)

1 1 k2 ‘36
+ |RERES(dS)" + RERERE S(p*)" (RE)"| wi, + RERERE S(p%) Wil

A.3.2 Dynamic model

The nonlinear dynamic model of the Tilt-rotor UAV with suspended load from the load’s

perspective can be described by the Euler-Lagrange equations of motion as

M, (QL) g. +C; (qg, qg) g+ G, ((h) =9, (QEa QE) ) (A'37)

After derive p% and p? with equations (A.33) and (A.34), the quadratic terms (p%)" (p%)
and (p?)" (p?) can be evaluated and the kinetic energy can be represented as in equation

(A.6) in order to obtain the inertia matrix. Therefore, the inertia matrix can be written

as (Rego, 2016)

_(mﬁ +m)laxs mi; —RLRES(d,)Q 03, 03, ]
* My, M3 W, RiRi La, W, R;RC I,a,
M,(q.)= * * QTJIQ Q"R; La, Q"RE La, |,
* * * a,la, 0
* * * * a;I;a,

(A.38)
with * denoting terms that are deduced by symmetry, and

my, = —mR;S(dg)W,, — RiR;S(d,)(R)"W,,,
Moy = W, [I: + D — S(dg) RgS(d,)(Ry)" — R5S(d,,)(Ry)"S(dg)] W,
My = WT,TL [—S(dé)RgS(dm) + Rzg']] Q,

where m = Y0, m;,, J =37, J;, D=3, D, and d,, = ¥.]_, md¢ .

The Coriolis and centripetal forces matrix can be easily obtained from the inertia
matrix using equation (A.8). Besides, as shown in Rego (2016), the total potential energy
is given by

U, =—g" [(m. +m)€. + mRLd; + RERgd,,) . (A.39)

Therefore, the gravitational force vector can be obtained using equation (A.7).
The last term that needs to be obtained to completely describe the system from the

load’s perspective through the equation (A.37) is the generalized force and torque vector,
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9., that can be described as (Rego, 2016)
v, = ﬁl:fR + 19LfL + ’19£raR + '1951-% + ﬁll‘rdmg?Rv + ﬂc-rdrag,L + Ve + Vza, (A‘40)

where 9., and 9., represents, respectively, the contribution of the lift force generated by
the right and the left propellers; 9.,  and 9., are, respectively, the contribution of the
torques generated by the right and left servomotors; 9. tragr M Dery o are, respectively,
the effect of the drag torques generated by the right and left propellers; 9., denotes the
contribution of the viscous friction at the point of connection between the rope and the
Tilt-rotor UAV; and 9,4 is the external disturbances applied to the suspended load. All

terms of equation (A.40) were carefully derived in Rego (2016) and can be written as

| RIRSRE a. ]
WfﬁS(dg)RéRanz + WgﬁRéS(di)Réaz
'l9LfR = QTS(de)RéCLZ fR, (A41)
0
0
i RERLRE a. ]
W"TES(dg)RgRCBSaZ + WfﬁRéS(da)Rfaaz
Do, — Q"5(d2,) R a. i (A.42)
0
0
L ., i
ﬁﬁmR = {(03x1)T (03x1)T (02x1)T 1 O} Tags <A43)
T
Direy = [(00)7 (050)" (00,)7 0 1] 7o, (A.44)
0354
" WnTCRéR?QG,Z
ﬂﬁ"’drag,R = AR?T QTR?2G’Z fR7 <A45)
0
0
03><1
L WTITLRéRgSa
1'9L7-drag,L = AL?T QTR?3az fL? <A46)
0
0
Vip = —blkdiag(o, 0,0,0,0,0, i, 11,0, O)q'g, (A.47)

T
ﬁﬁd:[ﬂzsm 055 0s.0 034, 03x1] dg, <A48)
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T
with d, = [dmﬁ d,. d..| denoting the disturbance vector and a. =[0 0 1]".

A.3.3 State-space representation

After obtained the inertia matrix, M, (q.), the Coriolis and centripetal forces matrix,
C:(q.,q.), the gravitational force vector, G, (q.), and the generalized torque and force

vector, 9., it is possible to rewrite the model in a state-space representation, yielding to

dc dc
&, = (xs,u,d) = = . A.49
‘ o { 4c ] [ M, V. —C.(qs,q4:) 4 — G (qc)] ( )

The model derived in this section is used to design the controllers of Chapter 3.

A.4 Model parameters

Table A.1: Model parameters of the Tilt-rotor UAV with suspended load.

Parameter Value
M = My 0.09000 [Kg]
m, 1.70249 [Kg]
My, M 0.13973 [Kg]
l 1 [m]
a5, — d= 00 27 [m)
d?l [—0.00433 0.00060 — 0.04559]" [m}
dé [0.00002 — 0.27761 0.05493]" [m]
d(i [0.00077 0.27761 0.05493]" [m
I,=1, 2.645-107% - I5,5 [Kg-m?|
3697.66749  0.36342 —9.51029
I * 840.10403  0.61804 | -10~° [Kg-m?]
* * 3865.05354
441.68245 0 0
I, * 441.67985 —1.07006| - 10~° [Kg-m2]
* * 0.64418
441.68245 0 0
I, . 441.67985 1.07006| - 10-° [Kg-m?]
* * 0.64418

g 00 —9.81)" [m/s?]
k. 1.7-107" [N-m-s?|
b 9.5-10-° [N-s?]

B 5[]

[y 0.005 [N-m/(rad/s)]

The model physical parameters of the Tilt-rotor UAV with suspended load considered
in this work are shown in Table A.1. Mass, inertia and displacement parameters of the

aircraft were obtained from CAD model, designed in Solidworks® software. The parameters
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related to the suspended load, as well as k. and b, are the same considered in Almeida &

Raffo (2015). Moreover, the gravitational acceleration is assumed constant.

A.5 Considerations about the embedded system

The description of the UAV’s embedded system and its peripherals are beyond the scope of
this work. Those readers interesting to know more details about the sensors and actuators,
or how the controllers’ sampling time are chosen regarding their limitations, should refer to
the work of Andrade (2016) where a detailed description of the Tilt-rotor UAV is provided.
For the sake of simplicity in this work the control problem is solved through state-feedback

structure with all states assumed to be known either by measurement or estimation.
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Nonlinear Cascade Control Strategy

This appendix presents a nonlinear two-level cascade control framework able to solve the
path tracking problem of a Tilt-rotor UAV while transporting a suspended load stably.
The inner-loop is designed in order to control the attitude and altitude while stabilizing the
thrusters’ group tilting angles actuating on the UAV’s propellers and servos. Besides, the
outer-loop controls the vehicle’s planar position while stabilizing the load angles calculating
the desired roll and pitch angles to be set as external reference for the inner-loop."

In the upcoming sections some assumptions about the system are made seeking to
decouple its dynamics for control purposes. Also, regarding the inner-loop, a nonlinear
controller is designed using the input-output feedback linearization (IOFL) method with
dynamic extension together with a mixed discrete H,/H., with pole placement constraints
controller to deal with the linearized system resulting from the diffeomorphism obtained
after the IOFL techniques was applied. The outer-loop control problem is not addressed
in this appendix since the RMPC and REMPC controllers presented in Chapter 4 were
designed for such end.

The nonlinear cascade control strategy developed here was mainly based on the work
of Raffo & Almeida (2017), been only modified to include the mixed discrete H,/H., with
pole placement constraints controller formulated in Rego (2016) and used to control a
Tilt-rotor with tail surfaces in Santos et al. (2017a). Additionally, the readers should refer
to Slotine & Li (1991) and Khalil (2001) for further information about the IOFL method

'Further information about the Tilt-rotor UAV considered in this appendix can be seen at section
A.2 from Appendix A, where the modeling process to describe the load transportation problem from the
UAV’s perspective is presented.
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and dynamic extension technique.

B.1 Decoupled system

Consider the model defined in the equation (A.22) representing the dynamics of the
Tilt-rotor UAV with suspended load from the UAV’s perspective.? In order to decouple
the model (A.22) into two independent dynamic models, some assumptions regarding the
system’s equation of motion needs to be made (Raffo & Almeida, 2017). Specially, some
degrees of freedom that have their dynamics coupled are assumed uncoupled making the

follow hypotheses about some of the inertia matrix’s entries (see equation (A.23)):

1. Despite the physical parameters presented at Table A.1, for control purposes, the
center of mass of the main body frame C, is assumed to be exactly placed at its
own geometric center frame B, i.e., dg = 0; also, the rotors are assumed to have the
same mass and to be aligned with the frame B along the X®-axis and Z*-axis being
equally distant to the main body frame origin regarding the Y?-axis, i.e., m, = my
and dg, = {0 de,, O]T = —d¢; leading to H = S (m4d§4). Additionally, assuming
my << m, the inertia matrix’s entry m,, = REHW, = 0. Therefore, the coupling

between the attitude and position dynamics is assumed to be negligible.

2. The coupling between the altitude and load angles dynamics is assumed to be

negligible, i.e., m,; ~ [{ j 0] ms.

3. The coupling between the attitude and tilting angles dynamics is assumed to be

negligible, i.e., m,; ~ 0 and m,, ~ 0.

4. The coupling between the attitude dynamics and the load motion is also assumed to

be negligible, i.e., m.,; ~ 0.

Thereafter, equation (A.22) can be split into two new uncoupled models having the

T T
generalized coordinates ¢, = [z n” aT] and ¢, = [gg Y 7T} , yielding to

Mtn (ql) dl =+ qu (qla ql) ql + th (ql) = 19111 <q17 ql) ) (Bl)
qu (q2) qQ + Cq2 (QQa qQ) q2 + qu (qQ) - Ilgqg (q27 q2) ) (B2)

where M,, = I, MI!, C,, = I, CI., G, = I, G, and 9,, = I,9 with

]12><2 02><6 02><2
Iq1 = |06x2 Isxs 06x2]a qu = |:0 0 I .
2x2 2x6 2%2

2The subscript B used to mark the system’s equation of motion as derived from the UAV’s perspective
at section A.2 will be dropped since this appendix considers only this perspective.
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Considering equation (A.26) and equations (A.27) to (A.29), ¥, can be expressed as
¥y, = Bg,u — pg,q; + 0, (B.3)

where By, = I, B, po, = I, pl; , and §,, is a vector containing the unmodeled dynamics
from the decoupled procedure and external disturbances 9.
Using the expression (B.3), the uncoupled models (B.1) and (B.2) can be rewritten in

the state-space representation as

. q: q;

€T, . = =

" [ ql ] |: Mq_il [quu + 5% B [qu (qi7 qZ) + quJ qz - Gtu (qZ)] (B'4)
= fqi(mqi) +guqiu+gdqi6%'

B.2 Inner-loop control

This section deals with the design of a nonlinear controller able to control the dynamics of
the generalized coordinate g, described by the model (B.1). First, the IOFL method with
dynamic extension technique is used to obtain a linear system through a diffeomorphism.
Hereafter, a robust discrete H,/H., controller is designed to control the resulting linear
system while dealing with the unmodeled dynamics present in the decoupled system.
Instead of the continuous H,/H., controller used in Raffo & Almeida (2017), this work
uses its discrete version to avoid uncertainties coming from the discretization process since

the controllers presented here will be implemented in digital computers.

B.2.1 IOFL with dynamic extension

Let h,, = {z o 0 wr be the outputs and u = [fR fo Tap TQL}T be the inputs of the
system (B.1). Therefore, considering equation (B.4), a nonlinear system affine in the

inputs can be written as®
(B.5)

The concepts of Lie derivative and relative degree of a system are essential to apply
the IOFL techniques (Slotine & Li, 1991). Recalling, the Lie Derivative of a scalar field
h(x) in the direction of a vector field f(x) results in a third scalar field given by

Lsh(x) = Vh(z) - f(x). (B.6)

3Since this section address only the inner-loop control problem, to simplify the notation, in the
remaining of the section the subscript q; will be dropped and q will be used to denotes q;.
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where Vh(x) = {‘98’17?) aahT(:)] is the gradient of h(x). Further, the relative degree r; to
an output y; is defined as the number of times the output needs to be differentiated until
some input appears in the resulting expression. Thus, the system relative degree is given
by the sum of all outputs’ relative degree r = > r;, which can be obtained through the
expression

ro=inf{k: 3j, £, L5 "hi(x) # 0}, (B.7)

where g; is the j-th column of g, (x).
The output differentiating procedure used to compute the relative degree can be

generally expressed as (Slotine & Li, 1991)
Y = Lh(x) + Z L,, Ly hy(x)u;, (B.8)

with £, L7 "h;(x) # 0 for at least one j when performing the r,-th differentiation and w;
being the j-th system’s input.

In order to have a system with a set of input/outputs fully feedback linearizable, its
relative degree should be equal to the number of state variables to avoid the presence of
internal dynamics in the transformed system. However, as shown in Raffo & Almeida
(2017), the relative degree of the system (B.1) is » = 8 while € R'. To overcome this
issue, the authors propose to use the dynamic extension technique (Slotine & Li, 1991)

augmenting the state vector to = h, (x,u) = [qT q" fa fa fi fLr and redefining

the input vector as u = [ fa fo Tan TaL:|T, which gives the new state-space equation
= h(z),
— . . T
where f(2) = [47 §" = 0 fo 0] , §= M (=[C+u]q— G +8)+ Bifa+ Bsfs, @ is the
i-th input, B, is the i-th column of B,, and g,(Z) is given by

O13><1 O6><1 O6><1

— — 015><1 — —

g1 = 1 7g2 — [ ] ,gs = B3 7g4 — B4 . (BlO)
O2><1 O4><1 04><1

As shown in Raffo & Almeida (2017), after applying the dynamic extension technique
the system’s relative degree becomes r = 16, hence it is now fully feedback linearizable.
In order to obtain the transformed linearized states ©(x), in which ©(-) defines a local

diffeomorphism, the follow input transformation must be considered

a=A"(v—b) (B.11)
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with v = |v, v, w, “wr being the additional control inputs. Using the equation (B.8)

with the augmented state vector & and the input @, it is possible to define

(B.12)
b(ii) e Rt . bz(i) = Ej?hi (:ﬁ) s

where A;;(z) is the (i,j)-th entry of the matrix A(Z) and b,(z) is the i-th row of b(Z).

Therefore, the system’s outputs become a simple linear relation yielding to
y" = h(Z) = v+ w(d), (B.13)

with 7(d) being a term containing unmodeled dynamics and unknown external disturbances.
Thereafter, a Proportional-Integral-Derivative (PID)-like controller with feed-forward
term is proposed in order to regulate the outputs z, ¢, 6, and ¢ (Raffo & Almeida, 2017).

Then, the additional linear control laws can be designed as
Vi= 1+ Kygg, €3+ Kga &+ K6+ K, e + K, / e;dt, (B.14)

where e, =i —i'" with i € {z,¢,0,¢} and (-)"" denotes the desired trajectory.
T T
Defining the vector € = [f edt e & é€ e} with e = [62 es € ew} , and K =
blkdiag (K, K,, K,;, K., K 4.4), the linearized dynamics can be written as follows

{é

where A, B,, and B, are matrices with appropriated dimension.

Aé + B,u + B,
— K&,

(B.15)

[~

B.2.2 Discrete mixed Hs/H., control

In order to design a discrete mixed H,/H., control to compute the feedback gain K, the
model (B.15) can be discretized through a zero-order hold with sample time T, yielding to

€41 = Ae, + B,u, + B, m,,

B.16
Defining the cost variables

where H, D,,, and D, are weighting matrices.

Let ¥,.:(s) denotes the discrete-time transfer function from = to z, with ¢ € C. Then,
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the H, norm of the system (B.16) considering the cost variable (B.17) is defined as
[P:()]l. = VDo, trace{vpTp,} < /o, with ¢, = Z7{¥,:(c)} and ¢ € R. Further,
the H., norm of the system (B.16) considering the cost variable (B.18) is defined by
W ()l o = SUPrso 1ll, / |24l < /0, With o € R.

Given the state-feedback control law w, = Ké,, the gain matrix K that minimizes an
upper-bound for the H, norm while guaranteeing a prescribed upper-bound /o > /o for

the H. norm is obtained by solving the optimization problem

min _tr{N} subject to (B.19),(B.20), (B.21)

P.X,Y,N
N HX+D,Y
>0, (B.19)
x X+X"-P
P AX +B)Y B,
x X+X"—-P 0] >0, (B.20)
* * I
P AX +B)YY B, 0
* X+X"-P 0 X"H"+Y"D!
“1>0, (B.21)
* * I Dt
* * * ol

where K = —Y X' and * denote the elements that are deduced by symmetry.

Furthermore, the system’s time response can be improved by means of pole placement
constraints using LMIs regions to restrict the complex plane. Thus, let D, = Re(eig{A}) > ¢
and D, = |eig{ A}| < @ denote subsets of the complex plane, where A = A — B, K, and
{e,w} € R*. Therefore, eig{ A} ¢ D, ND, if 3T > 0 and Y such that

TAT + AT +YT'BL + B,Y — 2¢T > 0, (B.22)
—wT AT+ B,Y

* —wT

<0, (B.23)

where K = —YT~'. The constraints (B.22) and (B.23) can be merged into the H,/H..
control problem by making X = X* =T > 0.

Those whom are interested to see the complete derivation of the LMIs (B.19), (B.20),
(B.21), (B.22), and (B.23) that compose the H,/H.., control problem with pole placement
constraints should refer to Rego (2016).

B.3 Outer-loop

This section deal with the manipulation of the model (B.2) allowing the design of a system

able to control the generalized coordinates g, actuating on the angles ¢ and 6. As proposed
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in Raffo & Almeida (2017), an intermediary control input variable is defined for such end.
From (A.27) and regarding the definition B,, = BI,,, the effect of the generalized force
vector generated by the actuators on the subsystem (B.2) can be written as

T
B,u=[T? T7 0 0] , (B.24)

T

with T? and T being, respectively, translational forces along X* and Y* axes expressed
in the inertial frame.

These translational forces can be represented as

TI
T;

- [1 ! 0] RE (rnfn +70f0) = [T“ e T”’] (Fafa+70f2), (B.25)

01 0 Tor Tos Tos

where r;; is the (i, j)-th entry of the matrix R;. The generalized force vector expressed
in the body frame (rpfz +r.f.) can be decomposed into the projections f7, f”, and f7.
The drawback idea behind the actuation using the roll (¢) and pitch () angles is to
change the projection of f® along the X* and Y* axes of the inertia frame in order to
control the planar motion movements and stabilize the load (Raffo & Almeida, 2017). The
remaining projections of the generalized force vector are assumed to be known disturbances
compensated by the controller.

Considering the relation (B.3) for g,, the model (B.2) can be rewritten as
MQQ(j2 + [qu + “QQ:I qQ + qu - F;Q = Fz;; + 61123 <B26)

T T
where Fj, = [ry f5 + rif? raf® +raf® 0 0] and Ejy = [rgf® rf® 0 0] . More-

T
over, defining the auxiliary vector n,, = {nr n, n, nw] as
Ny, = [Coy + Ma,) G2 + G4, — F, (B.27)
the outer loop model can be rewritten as
Ny (456 + Cy80C) f7
n SpSeCy — CypSy) fB
Mq2q2 + Yy — ( Y 20-d P ¢) fz +6q2. (B28)
Moy, 0
n 0

2

Since the nonlinear model (B.28) cannot be easily expressed as affine in control inputs

¢ and 6, intermediary input variables T, and T, are defined as

{ Ty = (8484 + CySoCy) [ — N (B.29)

Ty = (8480Cs — CyS4) fr — My,
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forming a set of nonlinear equations which solution is given by (Raffo & Almeida, 2017)

¢ = arcsin [a (swm*"’”’%(’fﬁw))] ;

B

. c¢(T1+ng;)+sw YTo+ny
# = arcsin [a< ( ) ,

szC¢

(B.30)

where o(a) is a saturation function given by o(a) = min(1, max(—1,a)).

Aiming to evaluate the equation (B.30), the projections f2, f#, and f? are assumed to
be known and can be obtained from the inner-loop controller, which also allows to simply
obtain the terms n, and n,. Moreover, the yaw (¢) angle is assumed to be measurable.

Replacing the transformation (B.29) into (B.28), the outer loop nonlinear model become
M, G, + Py, = Y, +0,,, (B.31)

r and Y, = [Tl T, 0 Or. Therefore, the MPC strategies

to control the outer-loop dynamics must be designed for the model (B.31) to obtain the

where 71, = [0 0 n, n,
intermediary control inputs Y,, and hence be transformed into roll and pitch references

for the inner-loop controller through the relations presented at (B.30).

B.4 Cascade control structure

The cascade control structure proposed in this appendix is presented in Figure B.1. The
inner-loop controller deals with the generalized coordinates g, by actuating on the thrusters’
group torques and lift forces, moreover the outer-loop controller regulates g, by actuating
on the desired roll and pitch angles, which are reference signals to the inner-loop. The
inner controller designed in the previous section works with sampling period 7T, while the
outer controller algorithms designed in Chapter 4 must be executed with sampling period
equal or bigger than 107,. These sampling periods are chosen in order to avoid the external

controller to actuates while the inner one still in transient period.

Outer-loop Inner-loop
(@, ¥ 115 72) (2, ¢, 0, ¥, ag, ay)

xtr MPC 91&7‘ O i
Y ontroller ¢t |Q

Ztr

P

N 10T,

Figure B.1: The proposed control cascade structure.
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