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RESUMO 

A gestão dos recursos hídricos é de grande importância para muitas atividades humanas, 

especialmente no contexto operacional no setor elétrico brasileiro, com predominância da 

geração hidrelétrica. Assim, a previsão de vazões é uma das principais informações para 

otimização do sistema. Este manuscrito descreve uma série de etapas para lidar com as incertezas 

nos dados, buscando-se obter uma previsão de vazão confiável. Os trabalhos desta pesquisa têm 

como objetivo desenvolver e avaliar uma cadeia de dados e modelos para a previsão 

hidrometeorológica de curto (vários dias) à longo (vários meses) prazo, que possa ser utilizada 

para a previsão da produção hidroelétrica no Brasil. O estudo é baseado em 41 bacias 

hidrográficas, que representam 30 hidrelétricas na América do Sul, com alto interesse para 

produção de energia. Para a incerteza na precipitação estimada a partir de dados observados, 

foram investigadas as diferenças entre TRMM_MERGE e CPC para diversas resoluções de 

tempo (precipitação diária, mensal e anual). Foram encontradas diferenças substanciais entre as 

duas fontes de dados, que parecem ser amplificadas no período 2008-2017. Foi encontrada uma 

tendência espacial, com valores de precipitação do TRMM-MERGE mais elevados que os do 

CPC ao se deslocar para norte e oeste na área de estudo. Baseado nessas incertezas observadas e 

buscando uma melhor estimativa da precipitação, foi avaliada também a combinação destas duas 

fontes. Assim, inspirado na equação do balanço hídrico modificada, foi identificada e 

quantificada a incerteza envolvendo o conjunto de dados de precipitação e utilizada a modelagem 

hidrológica para escolher e validar melhores dados de precipitação. Os resultados indicaram que 

a combinação da precipitação em tempo real (TRMM-MERGE e CPC), ponderada pela incerteza 

das fontes originais, tem um desempenho superior ao uso isolado de uma das fontes de dados. 

Outra fonte de incerteza analisada foi a previsão de precipitação. Nesta etapa, foi comparado o 

desempenho de dois métodos diferentes de correção de viés, o QM - Quantile Mapping e o LS - 

Linear Scaling. Em termos de previsão de precipitação sazonal (até 7 meses de horizonte de 

previsão), os resultados indicaram que os erros observados na previsão bruta são mais 

dependentes do mês do ano do que do horizonte de previsão, com uma superestimação 

sistemática durante a estação chuvosa e uma subestimação observada durante a estação seca, para 

a maioria das bacias estudadas. Os métodos de correção de viés foram eficazes, especialmente 

durante a estação chuvosa, com o método QM apresentando melhor desempenho. Baseado no 

bom desempenho obtido com este método, a correção de viés foi aplicada nas previsões de médio 

(até 45 dias) e curto (até 15 dias) prazo do centro europeu de previsão ECMWF, mas com uma 

diferente forma de aplicação. O modelo de médio prazo, à cada rodada (lançamento de uma 

previsão), gera também o hindcast dos últimos 20 anos, para os mesmos 46 dias do calendário. 

Assim, os parâmetros para a correção QM são recalculados à cada rodada, gerando uma correção 

on-the-fly, apenas dependente do horizonte de previsão. Esses mesmos parâmetros são utilizados 

para corrigir o modelo de curto prazo, apresentando resultados iguais ou melhores que os 

resultados obtidos com os parâmetros calculados apenas com o histórico de previsões do modelo 

de curto prazo. Esse método apresenta uma vantagem, pois não precisa de um longo histórico de 

previsões para calibração dos parâmetros de correção de viés, podendo acompanhar melhor as 

evoluções dos modelos meteorológicos (no caso desta tese, os modelos do ECMWF). Para 

construir a previsão de precipitação de maneira continua (“seamless”), baseada no acoplamento 



dos três horizontes de previsão dos modelos do ECMWF (15 dias, modelo EPS; 45 dias, modelo 

“extended” e 7 meses, modelo sazonal), foram testados vários métodos de acoplamento, sendo 

escolhido o método membro-a-membro. Este apresentou o mesmo desempenho quando 

comparado aos métodos mais sofisticados também investigados nesta tese, mas com a vantagem 

de não necessitar de grande esforço matemático ou manipulação dos dados. O principal resultado 

obtido indicou que o maior número de inicializações dos modelos de curto e médio prazo 

(inicializados diariamente e a cada segunda e quita feiras, respectivamente) melhora o 

desempenho das previsões de precipitação, principalmente para o mês seguinte à data de 

inicialização da previsão. Esta previsão contínua de precipitação foi aplicada à modelagem 

hidrológica. Foram testadas duas técnicas de pós-processamento para tratar a incerteza da 

previsão hidrológica, sendo estas a assimilação dos dados de vazão em tempo real e a aplicação 

de uma correção autorregressiva (AR output-error correction) para ajustar a saída do modelo 

(previsões finais de vazão). A aplicação destas técnicas melhorou o desempenho das previsões, 

produzindo resultados mais confiáveis e com menor erro médio, principalmente nos dois 

primeiros meses do horizonte de previsão. A previsão de vazão proposta à partir das diferentes 

etapas de construção de previsões hidrometeorológicas de curto à longo prazo foi aplicada para 

prever a produção de energia hidrelétrica do sistema interligado baseada nas 30 usinas associadas 

às 41 bacias hidrográficas deste trabalho de tese. Os resultados mostraram um bom desempenho 

do sistema de previsão, sendo este capaz de prever quando a produção estaria acima ou abaixo 

da produção média para os horizontes de previsão mais distantes (previsão sazonal). O trabalho 

desenvolvido nesta tese propõe assim uma ferramenta que apresenta um grande potencial para 

ser aplicada no planejamento da operação hidrelétrica no Brasil, podendo auxiliar na otimização 

da operação do sistema elétrico e na gestão do uso da água de reservatórios. 

Palavras-chave: Previsão de vazões; Correção de viés; Previsão de precipitação; Previsão 

contínua; Previsão de Geração hidrelétrica 

  



ABSTRACT 

The management of water resources is of great importance for many human activities, 

especially in the operational context of the Brazilian electricity sector, where we have a 

predominance of hydroelectric generation. In this context, streamflow forecasts are the main 

source of information for the optimization of the electric system. This PhD thesis describes a 

series of steps developed to deal with uncertainties in the forecasts, in order to obtain reliable 

flow predictions. This research work aims to develop and evaluate a chain of data and models 

for short (several days) to long (several months) term hydrometeorological forecasting, which 

can be used for forecasting the hydroelectric production in Brazil. The study is based on 41 river 

basins, which represent 30 hydroelectric plants in South America, with high interest for energy 

production. For the uncertainty in the observed precipitation data, we investigated the differences 

between the TRMM_MERGE and CPC datasets, considering different resolutions (daily, 

monthly and annual precipitation). Substantial differences were found between the two data 

sources, which seem to be amplified in the period 2008-2017. A spatial trend was found, with 

TRMM-MERGE precipitation values higher than those of the CPC dataset when moving towards 

north and west in the study area. Based on these observed uncertainties, and seeking a better 

estimate of precipitation, the combination of these two sources was evaluated. Inspired by the 

modified water balance equation, uncertainties involving the precipitation datasets were 

identified and quantified. Hydrological modeling was also used to choose and validate the 

precipitation datasets. The results indicated that the combination of real-time precipitation 

(TRMM-MERGE and CPC), weighted by the uncertainty of the original sources, outperforms 

the isolated use of only one of the data sources. Another source of uncertainty analyzed was the 

precipitation forecast. In this step, the performance of two different bias correction methods, QM 

- Quantile Mapping and LS - Linear Scaling, was compared. In terms of seasonal precipitation 

forecast (up to 7 months of forecast horizon), the results indicated that the errors observed in the 

raw forecasts are more dependent on the month of the year than on the forecast horizon, with 

systematic overestimation during the rainy season and underestimation observed during the dry 

season for most of the basins studied. The bias correction methods were effective, especially 

during the rainy season, with the QM method showing better performance. Based on the good 

performance obtained with this method, the bias correction was applied to the medium (up to 45 

days) and short (up to 15 days) term forecasts of the European center ECMWF, but with a 

different application. At each initialization (time when a forecast is issued), the medium-term 



model also generates the reforecast of the last 20 years, for the same 46 calendar days. Thus, the 

parameters for the QM correction were recalculated at each initialization, generating an on-the-

fly correction, which depends only on the forecast horizon. These same parameters were used to 

correct the short-term model, and the results obtained were equal to or better than the results 

obtained with the parameters calculated only with the historic time series of short-term 

reforecasts. This method is advantageous as it does not need a long time series of reforecasts to 

calibrate the bias correction parameters, which allows to better follow the evolution of 

meteorological models (in the case of this thesis, the ECMWF models). To build the precipitation 

forecast in a continuous (seamless) way, based on the coupling of the three forecast horizons of 

the ECMWF models (15 days, EPS model; 45 days, extended model and 7 months, seasonal 

model), several coupling methods were tested. The member-by-member method was chosen as 

it presented equal performance when compared to the more sophisticated methods, but with the 

advantage of not requiring great mathematical efforts or data manipulation. The main result 

obtained indicated that the greater number of initializations of the short- and medium-term 

models (initialized every day and every 15 days, respectively) improves the performance of the 

precipitation forecasts, especially for the month following the start date of the forecast. The 

seamless precipitation forecast was applied to a hydrological modelling framework. Two post-

processing techniques were tested to deal with the uncertainty of the hydrological forecasts, these 

being the assimilation of streamflow data in real time, and the application of an autoregressive 

correction (AR output-error correction) to adjust the model output (final streamflow predictions). 

The application of these techniques improved the performance of the forecasts, producing more 

reliable results and with lower average error, especially in the first two months of the forecast 

horizon. The streamflow forecasts obtained from the different stages of construction of the short 

to long-term hydrometeorological forecasting system were applied to predict the production of 

hydroelectric energy in the Brazilian electric system, based on the 30 plants associated with the 

41 river basins of this thesis. The results showed a good performance of the forecasting system, 

which was able to predict when the production would be above or below the average production 

for the most distant forecast horizons (seasonal forecast). The work developed in this thesis 

proposes a tool that has great potential to be applied in the planning of the hydroelectric operation 

in Brazil, which can contribute to the optimization of the operation of the electrical system and 

the management of the use of the water stored in the reservoirs. 

Keywords: Flow Forecast; Bias correction; Precipitation forecast; Seamless Forecast; 

Hydropower Generation Prediction
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1 INITIAL CONSIDERATIONS 

1.1 BACKGROUND AND JUSTIFICATION 

 

Precipitation as a crucial variable for large-scale hydrological modelling 

The quantification of precipitation and its spatiotemporal distribution in a certain area has high 

importance in hydrology, especially when we are assessing the impacts of the weather in human 

activities, like water resources management, irrigation, hydropower generation, urban planning 

and forecasting the extremes such as floods and droughts (Golding, 2009; Kucera et al., 2013; 

Pozzi et al., 2013; Serrat-Capdevila et al., 2013; Lettenmaier et al., 2015; Verkade, 2015 and 

Beck et al., 2017). In the Brazilian case, the electrical system is essentially hydrothermal, having 

more than 65% of its production from hydroelectric generation; therefore, it is crucial to have a 

robust and trustworthy streamflow forecasting system to forecast inflows to the power plants in 

order to maximize the production and optimize the management of multiple water uses in 

hydropower reservoirs.  

Precipitation is however one of the most difficult variables to estimate and to forecast, mainly 

due to its heterogeneous distribution in space and in time, to the small-scale processes, such as 

convection, that are difficult to represent in numerical models, and to the measurement errors 

caused by sparse rain gauge networks, uncalibrated equipment, communication problems and 

human errors affecting the measured values, among others (Herold et al., 2015). With the 

constant search to improve the representativeness of the observed precipitation, mainly in areas 

with a low density of gauge of stations, gridded precipitation products, from satellite, radar or 

their combination with rain gauges, have emerged since the late 1990s (Huffman et al., 1997; 

Adler et al., 2003). These products have been constantly improved, as technology advances and 

new measurements are added. Within the experiment MSWEP, Beck et al. (2017)  studied and 

compared a group of 22 gridded rainfall data products based on estimations of precipitation with 

a constellation of satellites, rain gauges and reanalyzes of meteorological models. The authors 

concluded that the product that merged all information available — Multi-Source Weighted-

Ensemble Precipitation (MSWEPv1.0) — had better overall performance. From this group of 22 

data sources, only two however had real-time data available, on a daily basis, with a spatial 

resolution equal to or higher than 0.5°, and covering the whole South America. These datasets 

are the CPC Unified Gauge-Based Analysis of Global Daily Precipitation of the US National 
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Center for Atmospheric Research (NCAR) (Chen et al., 2008) and the NASA’s IMERG, 

Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurements) data 

(Huffman et al., 2017), the successor of the Tropical Rainfall Measuring Mission (TRMM) data 

products. Particularly in the Brazilian case, we also have the TRMM-MERGE dataset, where the 

IMERGE information is coupled with data from Brazilian rain gauges to solve some problems 

of underestimation and overestimation observed in some regions (Rozante et al., 2010, 2018, 

2020). 

With this growing availability of information and precipitation products, with sometimes 

diverging spatial and temporal resolutions (Juárez et al., 2009; Demaria et al., 2011; Scheel et 

al., 2011; Falck et al., 2015; Mantas et al., 2015), it is a challenge for users to assess the quality 

of the datasets and select the best precipitation forcing for hydrological studies and river basin 

water management. This challenge has been explored by many researchers, including by using 

hydrological models as a tool to deal with the validation of precipitation products (e.g., Su et al., 

2008; Collischonn et al., 2008; Voisin et al., 2008; Bitew et al., 2012; Li et al., 2013; Falck et al., 

2015; Tang et al., 2016; Beck et al., 2017). Overall, the studies indicate that where there are good 

estimates of the observed flows at the outlet of the river basins, at least better than estimates of 

the precipitation, the use of hydrologic modeling can indirectly bring result in improvements to 

the estimations of the observed precipitation and help with data validation. 

The transformation of precipitation data into runoff and flow information at the outlet of river 

basins is essential for many human activities. In the last years, large-scale hydrological 

simulation projects have been developed at continental and global scales, the majority using as 

precipitation forcing reanalysis data, as, for example, the HTESSEL offline model coupled to the 

CaMa-Flood (Balsamo et al., 2009; Yamazaki et al., 2011), the LISFLOOD model (van der Knijf 

et al., 2010) and the WaterGAP3 model (Doll et al.,2009). Siqueira et al. (2018) applied a 

distributed model (the MGB model) over South America and obtained good simulation results 

using also the reanalysis dataset MSWEP (Beck et al., 2017). 

For hydrologic applications related to river flow forecasting, the simulation models have to be 

able to run continuously in real-time, with precipitation data also available in real-time or near 

real-time. Recently, GloFas, aGlobal ensemble streamflow and flood warning system (Alfieri et 

al., 2013; Shummann et al., 2018) has been developed for real-time flood forecasting at a global 

scale. It uses a hydrological model (LISFLOOD) to forecast flows up to 45 days ahead in major 
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river basins worldwide and seasonal ensemble forecasts for up to 16 weeks ahead since version 

2.1 (ECMWF, 2019). In Australia, Bennett et al. (2017) present the developments carried out for 

seasonal forecasting by merging the meteorological models and the precipitation climatology to 

create an ensemble of futures scenarios, FoGSS – forecast guided stochastic scenarios (Bennett 

et al, 2017), which are then used as forcing in the hydrological model to generate an ensemble of 

streamflow forecasts up to for 12 months ahead. 

The hydropower sector in Brazil and its needs for reliable forecast information 

The Brazilian electric system has a hydrothermal structure with a centralized operation, where 

the ONS (System National Operator) defines the rules and the normalization in order to have an 

harmonic operation of the system countrywide to attend the energy demand at the lowest price. 

This set of rules are in the “Network Procedures”, which organize all the information of the 

system’s operation, with the obligations of all agents involved at the operation of the system, the 

optimization and forecast models used, the consistence of all information, etc. (ONS, 2021). To 

sell all the energy produced in Brazil, there are two main energy markets, the ACR (Regulated 

Contract Environment), where the Federal Government, with energy auctions, attend the 

structural demand of the electric system and the demand of the distribution companies 

responsible to sell energy directly to the captive consumers, and the ACL (Free Contract 

Environment), where the bigger consumers, with bilateral contracts, buy the energy directly from 

the generators (CCEE, 2021). The commercial part of the energy system is under the 

responsibility of the CCEE (Electric Energy Commercialization Chamber), where all the 

contracts are registered and also run the same models used by ONS to optimize the energy 

production, with a similar deck of information, but with the objective to calculate the PLD 

(Settlement Price of Differences), which is the price of the energy spot market, where all the 

energy produced attend the demand, but without contracts with the ACL or the ACR, which is 

remunerated by the PLD (CCEE, 2021). The optimization models take into account the 

predictions of the energy demand, the energy production of all available sources, hydraulic, 

thermal, solar, wind and others, the level of the reservoirs, and other information (Nascimento, 

2021). Besides the Brazilian electric system be hydrothermal, and year after year it is increasing 

the participation of other sources as solar and wind power, the energy production and its price 

still strongly depend on the hydropower generation. Even during the sequence of drought years 

observed since 2013, the majority of the electricity production was still coming from 

hydropower, responsible for 76% of the energy production in 2016 (Paiva et al., 2020). 
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As shown in Figure 1.1, the needs of the hydroelectric system for accurate and reliable forecasts 

extent from forecasts up to 24-48 hours ahead for the balance of the electric grid (ONS, 2019), 

short-range from 1-7 days for flood control depending on the basin size, medium-range forecasts 

up to 7–30 days ahead for energy trading in the spot-market (CCEE, 2010), and seasonal (months 

ahead) streamflow forecasts for the electric system’s optimization, maintenance planning, 

management of the multiple uses of water , and long-term energy trading strategies. Therefore, 

all forecast horizons have a great importance for the electric system. It becomes crucial to extract 

the best information of each forecasting system that targets a given forecast horizon. 

 

Figure 1.1 –The impact of the forecast horizon in the various activities of management of the SIN 

– National Interconnected System (adapted from the general description proposed by Boucher 

and Ramos, 2018) 

Uncertainties in river flow forecasting 

Uncertainty in hydrologic modeling may arise from several sources: model structure, parameters, 

initial conditions, and observational data as observed precipitation and streamflow used to drive 

and evaluate the model (Liu et Gupta, 2007). Uncertainty is part of the modelling process, as a 

result of the inherently chaotic behavior of the atmosphere (forcing uncertainty), the limitations 

in our ability to measure and model the different compartments of the hydrological cycle, and 
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the errors present in observational and model data (Gill et al. 2008). Therefore, working with 

river flow forecasting is a process where we have to constantly deal with uncertainties to achieve 

the goal of reducing the errors in the forecasts. 

A major source of uncertainty in river flow forecasting is the meteorological uncertainty. 

Meteorological models are in constant evolution, aiming at improving their spatial and temporal 

resolution, incorporating new internal elements of the dynamics of precipitation formation and 

moving from deterministic models to probabilistic models (ensemble forecasts) with the 

representation of scenarios generated from perturbations of the initial conditions and stochastic 

parametrizations of the models (ECMWF, 2015). With this information, we can have a better  

knowledge of the future precipitation, which is one of the most important information when it 

comes to assess the availability of water in the future.  

The European Centre for Medium-Range Weather Forecasts (ECMWF) precipitation forecast 

products can be divided in three products covering different temporal scales. The medium-range 

forecast model (until 15 days ahead) runs twice a day with 51 ensemble members. There is no 

ocean coupling for the first 10 days of the forecasts. From day 10 onwards, the atmospheric 

model is coupled with the ocean model (ECMWF, 2015). The ECMWF extended forecast (sub-

seasonal forecast; until 46 days ahead) runs twice a week, every Monday and Thursday. The 

treatment of the ensemble members between day 15 and day 46 is the same as for the 10-15 day 

of the medium-range forecast model. The ECMWF extended forecast also provides an “on-the-

fly” hindcast from the same calendar date for the last 20 years (ECMWF, 2015). The ECMWF 

seasonal forecast system (SEAS5) consists of an ocean analysis to estimate the initial state of the 

ocean, a global coupled ocean-atmosphere general circulation model to calculate the evolution 

of the ocean and atmosphere, and a post-processing suite to create forecast products from the raw 

numerical output. The seasonal forecast consists of a 51-member ensemble with up to seven 

months of forecast horizon. The ensemble is created using a combination of sea surface 

temperature (SST) and atmospheric initial condition perturbations and the activation of stochastic 

physics. The stochastic physics settings are identical to those used in the medium-range ensemble 

forecast (ECMWF, 2017). 

Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, 

such as water supply or hydropower reservoir operation, energy trading and drought risk 

management. However, forecasts have a degree of uncertainty and can present systematic biases. 
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In order to improve the applications of forecasting systems, it is generally useful to apply bias 

correction techniques or statistical post-processors to the raw forecasts (Verkade, 2015; 

Crochemore et al., 2016). There are many methods for reducing bias in forecasts. These methods 

use reforecasts and observations to estimate the parameters of a statistical model that is applied 

to estimate the corrected probability distribution of the forecast. Techniques include linear 

regression (e.g. Hay and Clark, 2003; Gneiting et al., 2005; Hagedorn et al., 2008; Wilks, 2011), 

logistic regression (Hamill et al., 2008; Wilks, 2011), quantile mapping (Bremnes, 2004; Wood 

et al., 2004; Sharma et al., 2007; Sun et al., 2011; Verkade et al. 2013; Ratri et al., 2019 ) and 

indicator co-Kriging (Brown and Seo, 2010, 2013), among others.  

Besides investing in the correction of the biases of the precipitation forecasts, hydrological 

modelers and forecasters also have to deal with the uncertainties related to the observed 

precipitation. These uncertainties affect the initial conditions of the models and, consequently, 

lead to errors in the flow forecasts, especially in the initial forecast horizons, which, for large 

basins, may exceed one month. Observational and initial conditions uncertainty can be treated in 

a lumped way, pulling it together with the other uncertainties, including the meteorological 

uncertainty (Regonda et al., 2013). Alternatively, it can also be treated separately, since 

observational and initial conditions uncertainty depends on the hydrological modeling process 

and can be caused, for example, by measurement and sampling errors, climate variability and the 

determination of the initial and boundary conditions (Kim et al., 2021), independently of the 

meteorological forecast model. Some authors apply this approach (separation of uncertainties) 

(Krzysztofowicz, 2002; Seo et al., 2006; Demargne et al., 2014). Different post processing 

techniques are available to improve model predictions. The Quantile mapping (QM) technique, 

also widely used for seasonal meteorological forecasts as seen previously, is commonly used in 

hydrological corrections approaches (Shi et al., 2008; Madadgar et al., 2014), but other 

approaches also exist, based, for instance, on Bayesian models (Krzysztofowicz and Maranzano, 

2004; Brown and Seo, 2010, 2013), or the generalized linear regression (Zhao et al., 2011). 

Additionally to post-processing model outputs to correct forecast biases, data assimilation is 

another important component to address the errors of initial conditions and improve the accuracy 

of real-time forecasts. In general, Wu et al. (2012) group the data assimilation techniques into 

two approaches: those where the inputs are changed and, in some cases, also the parameters or 

internal states of the model are changed; and those that directly adjust the outputs of the model 

regardless of what is happening internally in the model. This last category is also associated with 

“output correction” techniques. Xiong and O'Connor (2002) studied several data assimilation 
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methodologies for error correction and concluded that Auto-Regressive (AR) models present 

better performance in correcting errors in flow predictions. Later, studies have shown that lower 

order models (2 or 1) fitted better to predictions (Wu et al., 2012). 

Seamless forecasting  

Whatever techniques of post-processing, data assimilation or output model error correction are 

applied, there is a growing interest from forecast providers and users to consider generating 

seamless forecasts. The seamless prediction is a concept widely used in climatic change 

projections (see, for example, the studies about projections of regional anthropogenic climate 

changes by Solomon et al., 2007). The idea could be translated into the simple concatenation of 

"the best" forecast at each lead-time (Palmer and Webster, 1993). The clear advantage of this off-

the-shelf seamless prediction is that it utilizes products that are already in place, thereby avoiding 

the complications of new developments while generating forecast products to meet different 

types of needs (Pappenberger et al., 2013). The use of a seamless prediction system allows, for 

instance, probabilistic projections of climate change to be constrained by validations on weather 

or seasonal forecast timescales, which can also improve the initialization of the seasonal forecast 

models by adding, at each new run, better initial conditions (Palmer,  2008). Another example of 

seamless forecast application is the PROFORCE  project, where forecasts from nowcasting 

(hours ahead) were coupled to medium-range forecasts (days ahead) providing a seamless 

forecast for decision makers and  civil protection during extreme storms (Wastl et al., 2018). 

Since seamless forecasts can be used across a variety of forecast horizons, the application of this 

concept to the optimization of the hydropower production and the electric system’s operation 

becomes an interesting application for this particular sector. 

Tools for river flow forecasting and forecast performance assessment 

Due to the great importance of future flows in the Brazilian electric system, the investment in 

flow forecasting using meteorological models has intensified in the past years, mainly for the 

operation of reservoirs in order to attend multiple uses and flood control. More recently, we have 

also observed in Brazil, the transition from a deterministic approach to a stochastic approach in 

the modeling of streamflows to be used as input to hydropower plants, with a particular focus on 

the potentials and open opportunities related to the use of ensemble forecasts (ONS, 2019). This 

approach, which attempts to take into account the uncertainties involved in flow predictions in a 
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more space-time coherent way by using ensemble members generated by meteorological modes 

as input to hydrological models (see Cloke and Papenberger, 2009, for a review), is still incipient 

in Brazil. Fan (2015) showed however that significant gains in reliability and accuracy in flow 

forecasts can be achieved with the adoption of probabilistic precipitation forecasts in conjunction 

with hydrological models to applications such as flood control or hydropower plants operation 

(Fan et al., 2014; Fan et al., 2016). More recently, Siqueira et al. (2021) provided a continental-

scale assessment of the use of statistical post-processing on medium-range, ensemble streamflow 

forecasts over South America, based on ECMWF reforecast data and the MGB hydrological 

model. The authors highlighted current challenges and opportunities to improve the skill of 

medium-range forecasts, such as the use of better observational datasets for the calibration of 

post-processors and the use of data assimilation techniques for better model initial conditions.  

The operationalization of hydrologic ensemble modeling and forecasting is a fairly laborious 

activity to perform manually, because it means repeating several times the data collection 

activities, the preparation of files for models and their application in hydrological models. Thus, 

the development of tools to automate this process is growing fast. Within this context of 

integrated modeling, the Delft-FEWS system has been developed (Werner and Heynert, 2006; 

Twigt et al., 2011; Werner et al., 2013; Schwanenberg et al., 2015; Gibertoni et al., 2017). It is a 

sophisticated system composed of a set of modules that can be used in a workflow, in order to 

build an operating system of water resources management adapted to the individual needs of each 

user (Gijsbers, 2010). In Brazil, CEMIG, the main electricity company of Minas Gerais, has 

adopted the Delft-FEWS system since 2015 (Gibertoni et al., 2017). The research presented in 

this PhD thesis relies on this system and brings additional novel components to it, mainly in terms 

of handling seamless ensemble meteorological forecast data, post-processing model outputs and 

assimilating data to improve hydrologic initial conditions and flow forecasts. Together with the 

DELFT FEWS-CEMIG System, this research also uses the EVS (Ensemble Verification System; 

Brown et al., 2010) to asses forecast performance. It is a flexible, user-friendly, software tool that 

is designed to verify ensemble forecasts of numeric variables, such as temperature, precipitation, 

and streamflow. For a better visualization and analyses of some specific results of this thesis, 

some complementary R codes were also developed. 

Motivation, originality and research questions 

This research is motivated by the following considerations: 
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• Ensemble flow forecasting in Brazil is still insipient. The ONS National Operator of the 

Electric System started to use ensemble forecasts in 2017, and recently has worked on 

improving the system through bias analysis and correction for the first 10 days of forecast 

horizon (ONS, 2019). The application of meteorological ensemble models, across 

different time horizons, from days to months ahead, can strongly contribute to enhance 

the performance of flow forecasts in Brazil and provide information for a better use of 

the water resources and a more efficient operation of the reservoirs, ensuring the safety 

of the electric system at the lowest cost to society;  

• Beyond novel operational tools for a broader field of applications, there is also a need to 

better understand how post-processing techniques can be efficiently applied when dealing 

with forecasts and predictions from different models and targeting different lead times. 

Research is needed to better understand sources of uncertainty and systematic biases. This 

study also contributes to the development and expansion of knowledge of the techniques 

to perform flow forecasts and deal with some of the uncertainties inherent in the forecast 

process, in order to propose methods to improve the forecasts and extract the maximum 

of information from the data available;   

• Although many studies have assessed global datasets of historic precipitation data 

worldwide, there is a need to investigate how a good-quality precipitation dataset that 

covers South America can be obtained following some essential criteria for flow 

forecasting: a long enough dataset to allow the estimation of regional climatologies and 

an easy-to-access dataset for real-time or near real-time operational applications. This 

study assess how good the available large-scale gridded real-time precipitation datasets 

are over South America, and proposes a combined precipitation dataset, which is an 

outcome that can be applicable in many research and operational areas; 

• To the knowledge of the author, this study is the first to evaluate  the performance of the 

three ECMWF forecast models available, covering different time horizons (precipitation 

forecasts from days to months ahead) and a large set of river basins with different climatic 

and physiographic characteristics over South America. This study investigates the 

different models separately but also in combination, with the aims to efficiently combine 

the available information and offer a methodology for generating seamless predictions. 

Such information is of great importance for decision-making in various socio-economic 
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fields, such as drought forecasting, agribusiness, energy, transport, tourism, multiple 

water uses, and others. 

The originality of this research lies in the proposition of a methodology to generate seamless 

medium- to long-term forecasts, while dealing with a specific group of uncertainties described 

below, at a continental scale, and identifying spatial and temporal patterns of predictability. The 

first source of uncertainty assessed is the observed precipitation data, and a method is proposed 

to combine two different existing data sources for real time applications based on their 

uncertainty (chapters 2 and 3). The second source of uncertainty assessed is the precipitation 

forecast. Several forecast horizons, from days to months, are explored and different bias 

correction methods are applied to evaluate their ability to reduce biases and improve forecast 

quality (chapters 4 and 5). The research also investigates five different coupling methods to select 

the better way to build a seamless precipitation forecast, a novel work that is very incipient in 

Brazil and internationally (chapter 6). Finally, the seamless precipitation generated in the 

research is applied in a flow forecasting framework to evaluate its value in the 

hydrometeorological forecasting chain (chapter 7). At this point of the research, a flow data 

assimilation method and a flow post-processing technique are also explored to assess hydrologic 

initial conditions uncertainty and hydrologic model biases. The aim is to improve further the 

performance of the flow forecasts, especially at the first days of lead time, and open up 

opportunities towards future investigations on the  value of the forecasts for hydroelectric 

production. 

With this research, we aim to answer the following scientific questions: 

1. How to improve the representativeness of Brazilian climatology as an way of 

guaranteeing energy security in the context of hydroelectric generation?  

a. How representative of local climatology is the daily grid observed precipitation 

data provided by the TRMM-MERGE and by the CPC-NOAA for their use in 

rainfall-runoff models and inflow forecasting to a group of hydropower plants in 

Brazil?  

b. Can this information be blended to have a better precipitation forcing and reduce 

the uncertainty of the observed precipitation while providing a better initial 

condition for the hydrological models?  
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c. Can this new observed precipitation data be used to perform bias correction to 

the meteorological forecasts? 

2. How good is the performance of the weather forecasting models made available by the 

meteorological center of ECMWF (UK) for short (days to weeks) to long (months to 

seasons) forecast ranges in the Brazilian context of hydropower production?  

a. Can the application of bias correction techniques improve the performance of the 

forecasts for the Brazilian basins? 

b.  For the short-term forecasts, does the ‘on-the-fly’ bias correction based on the 

seasonal hindcasts perform better than the structural bias correction based on the 

short-range reforecasts?  

c. How can we build a seamless hydrometeorological forecast for hydropower 

decision-making, ranging from short to seasonal scales? 

3. Can the benefits of the seamless precipitation forecast be translated into a better seasonal 

flow forecast and even into a better driver for decision making in the electric sector?  

a. Can the Quantile Mapping bias correction method correct the systematic 

hydrological calibration bias? 

b. Can flow data assimilation improve the performance of the streamflow forecasts?  

c. Can the seamless forecasts help on building decision-making guidance for 

hydropower generation?  

To answer these scientific questions and to deal with uncertainties in the process to perform a 

seamless seasonal flow forecast, a general methodology is proposed, as  shown in Figure 1.2. 

This general methodology will be detailed on the next chapters of the thesis. 
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Figure 1.2 – General methodology to perform a seamless seasonal flow forecast for hydropower 

plants in the Brazilian interconnected electric system 

1.1 OBJECTIVES 

1.1.1 General objective 

The general objective of this thesis is to develop a methodology to advance knowledge on 

seamless short to seasonal flow forecasting in order to improve energy security in the 

hydropower-dependent context of Brazil. This will be accomplished through a deep investigation 

of the sources and types of uncertainties that may affect commonly used precipitation datasets 
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and through the development of a novel technique to take into account (and potentially overcome) 

the impact of these uncertainty sources. 

1.1.2 Specific objectives and research steps 

I. To assess the quality and uncertainty associated with the real-time observed precipitation 

data from the TRMM-MERGE and CPC-NOAA sources and their applicability for 

predicting flows for hydropower plants in South America. 

II. To assess the uncertainties of observed precipitation and use of hydrological modeling to 

define the best precipitation forcing. 

III. To assess the seasonal flow forecast performance: 

• To assess the performance of ECMWF SEAS5 ensemble seasonal precipitation 

forecast model and the benefit of bias correction methods; 

• To apply this forecast in hydrological models and evaluate their performance. 

IV. To assess the short-term and sub-seasonal precipitation forecasts and to develop the 

seamless precipitation forecast: 

• To assess the performance of the ECMWF short-term and sub-seasonal ensemble 

meteorological models; 

• To evaluate the benefit of forecast bias correction, and the use of the ‘on-the-fly’ 

hindcast from the sub-seasonal model to bias correct short-range forecasts; 

• To compare the performance of the short-term, sub-seasonal and the seasonal 

forecasts at the different lead times;  

• To develop the coupling strategies based on the similarities between the members 

for each forecast horizon and their comparison with the member-by-member 

approach. 

V. To apply the seamless precipitation forecast on the hydrological flow forecast and 

compare to the original seasonal flow forecast: 
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• To test the QM method to correct the systematic bias in hydrological calibration; 

• To define the parameters for auto-regressive (AR) model output correction for the 

flow forecasts, based on the technique of output-error-correction; 

• To evaluate the seamless flow forecast performance and its application to the 

prediction of the hydropower energy production. 

1.2 DOCUMENT STRUCTURE 

This thesis is divided into 8 Chapters. The first, “Introduction” (this chapter) aims at presenting 

the background and the justification of this work, with scientific questions and the objectives of 

the research. 

The second chapter, “Assessing two precipitation data sources at basins of special interest to 

hydropower production in Brazil.”, refers to specific objective I. The content of this chapter is in 

a paper published in the RBRH journal in 2019 - http://dx.doi.org/10.1590/2318-

0331.252020190068). 

The third chapter, “Hydrological modeling as a tool for selection and validation of precipitation 

data relevant to seasonal streamflow forecasting”, refers to specific objective II. 

The fourth chapter, “The quality of seasonal precipitation and streamflow forecasts in Brazil over 

a large set of river basins”, refers to specific objective III. 

The fifth chapter, “Improving the performance of ECMWF short range and subseasonal 

precipitation forecasts in South American catchments”, targets the specific objective IV. 

The sixth chapter, “Coupling the different ECMWF forecast models to build a seamless 

precipitation forecast for a group of South American catchments”, aims to answer to the specific 

objective IV. 

The seventh chapter, “Developing seamless medium- to long-range flow forecast to improve the 

prediction of hydropower production in Brazil”, targets the specific objective V. 

http://dx.doi.org/10.1590/2318-0331.252020190068
http://dx.doi.org/10.1590/2318-0331.252020190068
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Finally, the eighteenth chapter, “Final Considerations”, summarizes the conclusions obtained by 

this thesis, answering its scientific questions, and at the end we have all references used in the 

document.  
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CHAPTER 2: 

ASSESSING TWO 
PRECIPITATION DATA 

SOURCES AT BASINS OF 
SPECIAL INTEREST TO 

HYDROPOWER PRODUCTION 
IN BRAZIL 

 

This chapter is based on a paper published in the RBRH -  Brazilian Journal of Water Resources: 

REIS, A. A.; FERNANDES, W. S.; RAMOS, M. H. Assessing two precipitation data sources at 

basins of special interest to hydropower production in Brazil. RBRH - Brazilian Journal of Water 

Resources, RBRH-2019-0068, 2019, http://dx.doi.org/10.1590/2318-0331.252020190068. 

 

 

  

http://dx.doi.org/10.1590/2318-0331.252020190068
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2 ASSESSING TWO PRECIPITATION DATA SOURCES AT BASINS 
OF SPECIAL INTEREST TO HYDROPOWER PRODUCTION IN 
BRAZIL 

2.1 INTRODUCTION 

Knowledge of surface precipitation is particularly important in hydrological research and 

operations. Accurate estimates of precipitation amounts are necessary to estimate river basin 

runoff, assess water-related risks (floods and droughts) and evaluate water availability for a broad 

range of water uses (e.g., water supply, agriculture, hydropower, and environmental protection).  

At the global scale, gridded precipitation products have emerged since the late 1990s (Huffman 

et al., 1997; Adler et al., 2003). These products usually provide monthly estimates of surface 

precipitation from merged analyses that blend precipitation estimates from satellite data and in-

situ rain gauge observations. While they can be useful for global climate change impact studies, 

finer space and temporal resolutions are often needed for hydrological applications that involve 

daily decision-making at continental or national scales, such as flood forecasting or hydropower 

operations (Alfieri et al., 2013; Fan et al. 2016; Emerton et al., 2016; Siqueira et al., 2018).  

In Brazil, hydropower generation is responsible for 66,6% of the electric production (EPE – BEN, 

2019). The inflows to hydroelectric plants have a considerable influence on planning the 

operation of the electrical system, as well as on setting energy prices in the short-term market. 

Computer models that optimize the system’s operation, solving the hydrothermal dispatch 

problem, run once a week, every Thursday, providing forecasts of inflows on a daily and weekly 

basis for the first five weeks and on a monthly basis for the next months (ONS, 2016).  

Currently, the National Operator of the Electric System (ONS) uses historical natural flow 

records in statistical models for monthly forecasts and daily precipitation data from rain gages to 

run hydrological models for daily flow forecasts at dozens of hydropower plants distributed 

around the whole Brazilian territory. Daily precipitation data is provided by the national 

electricity generators. When real-time precipitation data show gaps or inconsistencies, 

corrections have to be applied to have a better fit between simulated and observed flows during 

the warm-up phase of the hydrological models, i.e., before a forecast is issued (ONS, 2016). This 

is an important step to achieve accurate inflow forecasts to the hydropower plants.  
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Uncertainty in daily precipitation real-time data may come from various sources, such as the low 

density of the gauging network at some regions, human errors when reading the data, 

measurement problems at the gauging stations, data communication failures, among others. 

Observed real-time precipitation will therefore always be an approximation of the actual 

precipitation falling inside the river basins.  

However, accurate real-time precipitation estimates are not the only challenge in hydropower 

operation. Long-term records of unbiased daily gridded-based observed precipitation data are 

also crucial when running sub-seasonal to seasonal forecasting systems. This is the case when 

using the Ensemble Streamflow Prediction (ESP) method, a widely applied technique to generate 

ensembles of possible future scenarios of streamflow over several weeks and months ahead. The 

method is based on using a continuous hydrological model to estimate initial hydrological 

conditions (using real-time meteorological data as input) and future meteorological forecasts 

(based on historical sequences of meteorological data) to obtain streamflow predictions several 

months ahead (see recent applications in, for instance, Crochemore et al., 2016; Bennett et al., 

2017; Arnal et al., 2018; Harrigan et al., 2018). Reliable and consistent long-term historic 

meteorological data are therefore also crucial when running seasonal forecasting systems. For 

the operation of the Brazilian hydropower system at seasonal lead times, a necessary preliminary 

step to setting up an ESP system is to ensure that a homogeneous long-term precipitation time 

series over the whole country is available. 

Beck et al. (2017) listed a group of 22 gridded rain datasets, but only a few of them have, 

simultaneously, a daily temporal resolution and a spatial resolution smaller than or equal to 0.5º 

covering the South America area. Among them, only two datasets were available in real time (or 

near-real-time), which is a necessary characteristic to use the data in forecasting systems. These 

datasets are the CPC Unified Gauge-Based Analysis of Global Daily Precipitation of the US 

National Center for Atmospheric Research (NCAR) and the NASA’s IMERG, Integrated Multi-

satellitE Retrievals for GPM (Global Precipitation Measurements) data, the successor of the 

Tropical Rainfall Measuring Mission (TRMM) data products.  

Sun et al. (2017) also made a wide review of 30 currently available global datasets, based on 

gauging stations, satellite estimates and reanalysis. They compared 22 datasets from daily to 

annual time scales and found high discrepancies between them. The magnitude of the differences 

in annual precipitation estimates between two different data sources was found to be as high as 
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300 mm/yr. The discrepancy in precipitation amounts varied however from region to region and 

according to the time scale. According to the authors, important differences can limit the capacity 

of the products to be used for climate monitoring, attribution and model validation. 

 Another example is provided by Juárez et al. (2009), who analyzed six databases, some based 

on radar and others based only on gauging stations. They observed that the largest difference 

among the datasets over the Brazilian Amazon region was of 8% during the apex of the rainy 

season (December to March). Over the Brazilian northeast region, the maximum difference in 

the wet season rainfall total (February to April) was 30 mm, or 18%. 

Many other authors have studied the uncertainties and the differences among different sources 

of observed precipitation data in different areas of the world, with some studies focusing on South 

America (e.g., Demaria et al., 2011; Scheel et al., 2011; Falck et al., 2015; Mantas et al., 2015). 

Overall, their main conclusion is that differences between different sources of observed 

precipitation data are common, and often vary in space and time. 

The objective of this study is to evaluate two real-time (or near real-time) sources of gridded 

daily observed precipitation data available over the Brazilian and adjacent territory, namely the 

TRMM-MERGE (Rozante et al., 2010) and the CPC (Chen et al., 2008) datasets. The differences 

between these two datasets are investigated in space and time. We evaluated the datasets over 41 

river basins of special interest to hydropower production. We also considered the evolution in 

time of the deviations and the deviations at different temporal resolutions (annual, monthly and 

daily time steps). The impact of using these different datasets in hydrological modelling is also 

presented for two case studies. 

2.2 MATERIALS AND METHODS 

2.2.1 STUDY AREA AND DATA 

Study area 

The study area covers 41 river basins that represent 31 main hydroelectric power plants in Brazil. 

These river basins vary in size, with drainage areas ranging from 9 300 km² to 38 2000 km². The 

study area extends from the north (Madeira River, Xingu River, Tapajos River, Tocantins River, 

and others) to the south of Brazil (Iguaçu River basin), and includes also river basins located at 
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the central part of the country (Paraná River, Grande River, São Francisco River). Figure 2.1 

shows the study area, with the main hydropower plants indicated in the map and the basin areas 

associated with the hydropower plants delimited in red. 

 
Figure 2.1 – Geographic distribution of the 41 basins of this study, with hydroelectric power 

plants in Brazil (the two basins in blue, Campos Novos and Tapajos, are used in an experiment to 

check impact of different precipitation dataset on flow simulations) 

Observed precipitation datasets 

Two datasets are evaluated in this study: the TRMM-MERGE and the CPC datasets. 

The TRMM partnership project between the US National Aeronautics and Space Administration 

(NASA) and the Japan Aerospace Exploration Agency (JAXA) started in November 1997, with 

the main goal of studying and monitoring precipitation in tropical regions (Kummerow et al., 

2000). The TRMM satellite uses several instruments to detect rainfall, including radar, 

microwave imaging, and lightning sensors (Maggione et al, 2016; Huffman et al., 2017). 

Although the TRMM products are considered valuable for numerical validation and simulations 

(Rozante et al., 2010), systematic errors have been detected, especially on the coast of the 
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northeast of Brazil and in the south region of Brazil, close to the triple frontier between Brazil, 

Argentina, and Paraguay.  

The TRMM-MERGE data was developed by CPTEC/INPE to reduce the interpolation problems 

observed in regions of low-density of rain gages, causing under- and over-estimations in the 

TRMM products. It combines gauging station datasets from the Global Telecommunications 

System (GTS), telemetric stations from various agencies and companies in South America and 

the real-time TRMM rainfall product (3B42RT), providing an improved quality gridded dataset 

with a spatial resolution of 0.25° for evaluation of models and operational uses (Rozante et al., 

2010). Basically, the merging technique consists in identifying the TRMM grid boxes where the 

observations are present, discarding the two adjacent grid boxes to the observation point, and, 

finally, interpolating the TRMM precipitation and the ground observations using the Barnes 

objective method (Barnes, 1973, apud Rozante et al., 2010). 

The TRMM-MERGE daily precipitation data used in this study was obtained from the CPTEC 

FTP site (CEPTEC - INPE, 2018). The information is available in the grib2 format, 0.25º 

resolution, and the historic period covers 1997 to 2017 

The CPC data (Mingyue et al., 2008) is a product developed by the US NOAA’s Climate 

Prediction Center. It comes from a project created to develop a group of automatic procedures to 

do quality control for the GTS daily precipitation products, comparing historical gauge records, 

concomitant observations at nearby stations, satellite estimates and numerical model forecasts. 

As a product of this project, NOAA/NCEP provides a daily observed precipitation gridded 

dataset with 0.5° spatial resolution since 1979.  

The CPC data used in this study was obtained from the NCEP/NOAA FTP site (NOAA, 2018). 

The information is available in a grib2 format, and was retrieved for the historic period that 

covers 1979 to 2017. 

2.2.2 METHODOLOGY  

Our methodology consists of two main analyses. First, we evaluate basic statistics from the two 

different precipitation data sources for the average precipitation over each river basin. Secondly, 

we investigate the impact of the differences in precipitation on streamflow simulations on two 

selected river basins, one with a low and another with a high difference between the two 
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precipitation data sources. For the flow analysis, we set up and calibrated the HEC-HMS model, 

as presented below. 

Average precipitation for each river basin 

The first step to obtain the average precipitation is to delimit the contour of the basins and 

generate the shapefile with the basins that will be superposed on the gridded data files. In this 

study, we used the DELFT FEWS-CEMIG System (Pinto et al., 2013; Werner et al., 2013; 

Schwanenberg et al., 2015; Gibertoni et al., 2017) to obtain the average precipitation at each 

basin and time step. We configured the FEWS system to read the shapefiles and to use the 

geographic information provided to extract the average precipitation. The system uses a 

workflow of routines to perform the calculations. The methodology used to obtain the average 

precipitation is the “Average Area”, which takes the mean of the data points inside the shape of 

each basin. 

Basic statistics of precipitation differences 

We analyzed the daily, monthly and annual precipitation totals of the two data sources, and their 

basic statistics. We also evaluated the differences in percentage between TRMM-MERGE and 

CPC precipitation data:  

∆𝑃(𝑡) =
𝑃1(𝑡)−𝑃2(𝑡)

𝑃1(𝑡)
∗ 100                               (2.1) 

where P1 is the precipitation from TRMM-MERGE and P2 is the precipitation from CPC at time 

t. A positive (negative) difference indicates higher (lower) value of precipitation for the TRMM-

MERGE dataset. 

In the annual analysis, we considered the hydrological year from October 1st to September 30th 

to calculate the annual totals. From the time series of the annual percent differences, we estimated 

the following basic statistics:  the minimum, the first quartile, the mean, the third quartile, and 

the maximum (Naghettini et al., 2007). For the monthly analysis, we used box-plot 

representations of the monthly percent differences to display the distribution of differences in 

monthly precipitation.  
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For the daily analysis, we estimated the Empirical Cumulative Distribution Function ECDF 

(𝐹𝑛(𝑦)) (Naghettini et al., 2007) of the daily precipitation values for each dataset. We considered 

only the amounts higher than 1 mm/day over the basin areas. For observations x = (x1, 

x2, ... xn), 𝐹𝑛 is the fraction of observations less or equal to y. 

             𝑓𝑛(𝑦) =
1

𝑛
∑ 1𝑥𝑖≤𝑦

𝑛
𝑖=1                             (2.2) 

            𝐹𝑛(𝑦) = ∫ 𝑓𝑛(𝑦)𝑑𝑦
𝑦

−∞
                           (2.3) 

where the indicator is (𝑥𝑖 ≤ 𝑦) and n = number of data points. 

Finally, to visualize the geographic impact of the differences between the datasets and their 

evolution in time, we used maps to represent the percent differences of the annual average 

precipitation for two decades: 1998-2007 and 2008-2017. 

Flow analysis with the HEC-HMS model 

Streamflow modeling for flow forecasting has to be performed using a continuous model for the 

simulations in order to evaluate the initial conditions at the onset of the forecasts. For this, it is 

necessary to choose a more sophisticated configuration of the HEC-HMS model (Feldman, 

2000). Below, we describe the modules used and the method chosen for each module in order to 

build the hydrological modeling approach used in this study (Scharffenberg, 2016). 

Canopy method: Simple Canopy - the precipitation is intercepted until the canopy storage 

capacity of the surface is filled. All excess of precipitation falls to the surface. The potential 

evapotranspiration is used to empty the canopy storage.   

Surface method: Simple Surface - the precipitation that arrives on the soil is captured until the 

storage capacity of the surface is filled, then the runoff starts with the excess of precipitation. 

The water in the surface infiltrates into the soil, according to the soil’s infiltration capacity. 

Loss method: Soil Moisture Accounting - SMA - this loss method uses three layers (soil storage, 

upper groundwater, and lower groundwater) to represent the dynamics of the water movement in 

the soil. For the given precipitation and evapotranspiration the model calculates surface runoff 

of the basin, groundwater flux, losses and the deep percolation over the whole basin. The method 
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is capable to simulate wet and dry cycles and can be used for long periods of continuous 

simulation.Transformation method: Clark Unit Hydrograph - this method is a synthetic unit 

hydrograph and the principal components are the time of concentration defining the travel time 

in the sub-basin and the storage coefficient used to account for storage effects on the linear 

reservoir. 

Base-flow method: Linear Reservoir - uses a linear reservoir to model the recession of the base-

flow after a precipitation event, conserving the mass. The lateral outflow of the groundwater is 

connected with the infiltration from the soil moisture accounting loss method. 

The HEC-HMS configuration selected has 26 free parameters to be calibrated against observed 

flow data. In our study, observed streamflow data comes from ONS (National Operator of 

Electric System). The calibration was performed manually, by comparing simulations with 

observations and minimizing volume errors.  

For the analysis of the impact of the different precipitation data sources on the simulations of 

streamflow, we calibrated two selected basins. They represent the extremes of precipitation 

differences observed during the annual precipitation analysis. This basins are: i) the UHE 

Campos Novos, located at the south region, at Canoas River (Uruguay river basin), where the 

differences between the precipitation data sources are smaller than 5% and there is not a strong 

seasonality in precipitation, and ii) the UHE Tapajos, located at the north region, at Tapajos river 

(Amazon basin), with annual differences between precipitation data sources higher than 40%, 

and with a strong precipitation seasonality. These basins are full blue colored in figure 1. 

In the flow analysis, we want to investigate what happens if we calibrate the hydrological model 

with one dataset and simulate it with another dataset. The hydrological model is first calibrated 

for the complete data period, from October 1997 to September 2017, with one climatic forcing 

and then run to simulate streamflow using the other climatic forcing, over the same period. Since 

we have two climatic forcing datasets, the calibration and simulation procedure is done twice.  

In order to analyze the effects of the different precipitation datasets used as input to the 

hydrological models, we represented the ECDF of both TRMM-MERGE and CPC simulated 

time series. We also evaluated the simulated flows against observed flows using four numerical 

criteria as performance indicators: NSE, RMSE, KGE and R². 
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NSE – The Nash- Sutcliffe efficiency (Nash, 1970) measures how good the results of the model 

are when compared with a simulation represented by the mean observed flow. Values equal to 1 

indicate a perfect fit and values smaller than zero indicate that the mean is a better predictor than 

the model. 

RMSE – The Root Mean Square Error is a common measure of the accuracy of a model. It is 

calculated by taking the square root of the average of the sum of squared differences between 

observed and simulated values. It can be interpreted as the standard deviation of the model 

prediction error. A smaller value of RMSE indicates better model performance. 

KGE – The Kling-Gupta efficiency (Gupta et al., 2009) is an alternative criterion to the NSE, 

and was proposed to assess the qualities of a model in terms of its ability to represent the water 

balance, flow variability and correlation. Values range between −∞ and 1, and as for the NSE, 

values close to 1 indicate a more accurate model. 

R² – The coefficient of determination is an indication of how well one variable correlates with 

the other. It is represented as a value between 0 and 1. The closer the value is to 1, the better the 

fit, or relationship, between the two variables. 

2.3 RESULTS 

2.3.1 Evaluation of annual precipitation totals 

Table 2.1 shows the basic statistics of the percent differences for annual precipitation totals for 

each basin. From this table, we can see that differences in quantiles range between –31% and 

+42% in mm of total annual rainfall. High differences are more frequently observed towards 

positive differences. This means that when differences are high, it is more frequently due to 

higher values of rainfall given by the TRMM-MERGE dataset.  

From table 2.1, we also note that the magnitude of the differences in annual precipitation varies 

according to the basin. Some basins tend to exhibit a similar behavior in terms of basic statistics 

of the percent differences between annual precipitation totals. We detected eight groups of 

similar behavior (Basin Groups I to VIII, hereafter, BGI to BGVIII). These groups are indicated 

in table 2.1. They are formed by the following basins: for north basins - Group I: Inc. Santo 

Antonio, Mira Flores, Pena Amarilla, Puerto Siles, and Guajara Mirim and Group II: Ferreira 



48 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

Gomes, Santo Antônio do Jari, Belo Monte Inc., Boa Sorte, Tapajos, Ebec, Teles Pires, Manso, 

Tucurui Inc., and Conceição do Araguaia. For northeast and east Basins - Group III: Sobradinho 

Inc., Carinhanha, Paracatu, Velhas, Três Marias, Itapebi, and Mascarenhas. For the basins in the 

center-west and southeast regions - Group IV: Lajeado, Emborcação, Itumbiara, São Simão, 

Capim Branco 2, Ilha dos Pombos, and Furnas; Group V: Agua Vermelha, Nova Avanhandava 

and Rosana; and Group VI: Itaipu and Porto Primavera. For the basins in the south region - Group 

VII: Salto Caxias, G. B. Munhoz, Barra Grande, and Campos Novos; Group VIII: Foz do 

Chapecó, Quatorze de Julho, and Dona Francisca. 

 

Table 2.1 – Basic statistics from the time series of percent differences between annual 

precipitation totals from TRMM-MERGE and CPC datasets 

Basin Min. 
1st 

Qu. 
Mean 

3rd 

Qu. 
Max. 

GROUP I 

Mira_flores 

 

27% 

 

25% 

 

34% 

 

39% 

 

38% 

Puerto_Siles 22% 17% 27% 35% 36% 

Pena_Amarilla 8% 2% 8% 11% 0% 

Inc._Guajara_Mirim 17% 11% 12% 10% 14% 

Inc._Santo_Antonio 19% 10% 10% 13% 9% 

GROUP II 

Ferreira_Gomes 

 

28% 

 

21% 

 

10% 

 

5% 

 

2% 

Sto_Antonio_do_Jari 16% 4% 6% 8% 11% 

Belo_Monte_Inc. 28% 15% 11% 7% -1% 

Boa_Sorte 30% 14% 13% 9% 0% 

Tapajos 42% 16% 14% 10% 4% 

EBEC 22% 13% 5% -2% 2% 

Teles_Pires 18% 4% 3% -1% -4% 

Manso 26% 4% 5% 4% -5% 

Tucurui_Inc. 8% 9% 6% 6% 1% 

Conceicao_do_Araguaia 16% 8% 6% 4% 1% 

GROUP III 

Sobradinho_Inc. 

 

6% 

 

2% 

 

0% 

 

1% 

 

-1% 

Carinhanha 6% 9% 1% -3% 0% 

Paracatu -4% 4% 0% -2% -1% 

Velhas 3% 2% -1% -1% -7% 

Tres_Marias 1% -6% -4% -4% -9% 

Itapebi 3% 2% 1% -1% 4% 

Mascarenhas -1% -1% -3% -5% -4% 

GROUP IV 

Lajeado 

 

2% 

 

1% 

 

-1% 

 

-4% 

 

-3% 

Emborcacao -2% -4% -6% -4% -11% 

Inc._Itumbiara -3% -1% -5% -2% -9% 

Inc._Sao_Simao 2% -3% -3% -3% 2% 

Capim_Branco_2 -7% -2% -4% -9% -1% 

Ilha_dos_Pombos 5% -9% -7% -8% -6% 

Furnas 2% 2% -1% -4% -2% 
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GROUP V 

Agua_Vermelha 

 

-5% 

 

-10% 

 

-5% 

 

-6% 

 

5% 

Nova_Avanhandava 3% -14% -5% 1% 1% 

Rosana -8% -4% -3% -2% -3% 

GROUP VI 

Itaipu 

 

4% 

 

-1% 

 

2% 

 

4% 

 

6% 

Porto_Primavera 11% 7% 4% 3% 5% 

GROUP VII 

Salto_Caxias 

 

28% 

 

4% 

 

5% 

 

3% 

 

11% 

G_B_Munhoz 4% 0% 1% -2% 5% 

Barra_Grande -31% -6% -2% -1% -2% 

Campos_Novos 5% 1% 1% 0% 5% 

GROUP VIII 

Foz_do_Chapeco 

 

-3% 

 

-4% 

 

0% 

 

0% 

 

2% 

Quatorze_de_Julho 1% 5% 3% 0% 6% 

Dona_Francisca 9% 7% 4% 2% 2% 

 

 

Figure 2.2 shows how the differences in annual precipitation totals between data sources evolve 

along the years. We selected one basin representative of each BG. We can see that the basins in 

the north region (BGI and BGII) display more often high positive differences, with values tending 

to increase with time, mainly after 2010. These BGs are generally affected by strong variations 

of one of the sources: either TRMM-MERGE presents very high annual precipitation totals all 

over the period (BGI) or CPC presents very low annual totals for a more recent period (BGII). 

These results illustrate how big the uncertainties in precipitation can be in this region, where the 

density of gauges is low. For the other regions, where the gauge density is higher, the variation 

of the differences is smaller and tends to be more linked to specific time periods. BGIII, BGIV 

and BGVI (northeast, central-west and southeast regions), for instance, display high values more 

often for the negative differences, with these occurring either at the initial years or at the final 

years of the study period. In the south region, BGVII and BGVIII present alternated years of 

positive and negative differences along the study period. 
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Figure 2.2 – Percent differences in annual precipitation totals between TRMM-MERGE and CPC 

datasets for a representative basin in each Basin Group (BGI to BGVIII) (period 1998-2017) 

 

2.3.2 Evaluation of monthly and daily precipitation  

Figure 2.3 shows the statistical distribution (boxplot) of the monthly differences. The line in red 

represents the monthly average precipitation of the TRMM-MERGE data. It provides a reference 

to compare the totals to the magnitude of the deviations. With this information, it is possible to 

visualize the differences along the months and the seasons in each of the eight groups of basins 

with similar behavior. We can see that monthly precipitation differences are higher for the basins 

of the north region (BGI and BGII). For these groups, the TRMM-MERGE data source presents 

more precipitation than the CPC data, in practically all months and especially during the rainy 

months (November to March). For the other regions, the differences vary around zero, with the 

higher variations occurring during the wet months. TRMM-MERGE dataset can display either 

wetter or dryer months than CPC, depending on the region. 

Figure 2.4 shows the ECDF curves of the daily precipitation values greater than 1mm/day from 

the two data sources. The line in red represents the TRMM-MERGE data and the blue line, the 

CPC data. Each graph shows one basin representative of the basin groups defined in Table 2.1. 

We can see that the cumulative distribution functions of daily precipitation are very similar. 

Differences can only be seen in the basins in the north region (BGI and BG II) and in the extreme 

south region (BG VIII), where the TRMM-MERGE dataset presents higher values of 

precipitation for almost all probabilities. This analysis illustrates the tendency of the basins in 

the more central regions to present more similarity between the data sources than the basins 

located in the extreme north and south regions. 
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Figure 2.3 – Boxplots of percent differences (%) in monthly precipitation between TRMM-

MERGE and CPC datasets for a representative basin in each Basin Group (BGI to BGVIII). The 

red line represents the monthly average precipitation (mm/month) of the TRMM-MERGE data 

(period 1998-2017) 

 
Figure 2.4 – ECDF of daily precipitation greater than 1mm/day for the TRMM-MERGE (red) 

and the CPC (blue) datasets for a representative basin in each Basin Group (BGI to BGVIII) 

(period 1998-2017) 

 

Table 2.2 shows an example of the differences we can expect in precipitation quantiles (mm/day) 

for the probability of non-exceedance of P=0.9. The quantiles were extracted from the ECDF 

curves for all basins. The percent differences confirm, in numbers, the behavior showed in the 

ECDF plots (figure 4), i.e., a tendency of the extreme regions (north and south) to have higher 

differences (TRMM-MERGE daily precipitation greater than CPC precipitation) and the center 

regions to have similar values for the same probability. 
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Table 2.2 – Daily precipitation quantile (mm/day) for the probability of non-exceedance P=0.9 

extracted from the ECDF curves of each basin and percent difference between TRMM-MERGE 

and CPC data sources 

 

BG Basin 
Quantile (mm/day) P=0.9 

TRMM CPC Diff 

I 

Inc._Guajara_Mirim 14.5 12.6 13% 

Inc._Santo_Antonio 18.0 16.2 10% 

Mira_flores 20.8 17.7 15% 

Pena_Amarilla 20.8 21.5 -4% 

Puerto_Siles 16.9 12.9 24% 

II 

Belo_Monte_Inc. 16.2 15.2 6% 

Boa_Sorte 17.6 16.2 8% 

Conceicao_do_Araguaia 15.7 15.0 4% 

EBEC 17.5 16.6 5% 

Ferreira_Gomes 20.9 19.5 6% 

Manso 20.6 19.4 6% 

Sto_Antonio_do_Jari 19.5 17.3 11% 

Tapajos 17.1 15.8 8% 

Teles_Pires 17.8 18.3 -3% 

Tucurui_Inc. 15.8 14.8 6% 

III 

Carinhanha 17.5 17.4 0% 

Itapebi 17.2 16.2 5% 

Mascarenhas 18.3 18.6 -1% 

Paracatu 19.2 19.0 1% 

Sobradinho_Inc. 13.9 14.5 -4% 

Tres_Marias 17.9 17.9 0% 

Velhas 19.0 17.9 6% 

IV 

Capim_Branco_2 21.0 19.4 8% 

Emborcacao 16.8 17.1 -1% 

Furnas 16.7 17.0 -2% 

Ilha_dos_Pombos 15.9 16.3 -3% 

Inc._Itumbiara 15.8 15.8 0% 

Inc._Sao_Simao 15.2 15.0 2% 

Lajeado 14.6 15.0 -2% 

V 

Agua_Vermelha 15.5 17.2 -11% 

Nova_Avanhandava 19.2 19.0 1% 

Rosana 17.8 19.1 -7% 

VI 
Itaipu 20.7 19.2 7% 

Porto_Primavera 15.3 14.5 5% 

VII 

Barra_Grande 26.4 25.3 4% 

Campos_Novos 25.9 25.2 3% 

G_B_Munhoz 21.5 21.2 2% 

Salto_Caxias 28.8 24.5 15% 

VIII 

Quatorze_de_Julho 29.0 25.5 12% 

Dona_Francisca 32.2 28.5 11% 

Foz_do_Chapeco 28.9 27.6 5% 
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2.3.3 Variation of annual precipitation differences in space and time  

We investigated if the differences between precipitation data from TRMM-MERGE and CPC 

vary when considering two time periods: figure 2.5 shows a map with the average percent 

differences of annual precipitation for the period 1998-2007 and figure 2.6 shows the same but 

for the period 2008-2017. The shadows of green represent positive differences and the shadows 

of red represent negative differences. Table 2.3 shows the specific values for the average 

difference for each basin for each decade. 

 The differences between the TRMM-MERGE and the CPC data sources present a clear spatial 

and temporal behavior. For the first period (1998-2007), some basins in the north region (BGI 

and BGII) and in the extreme south region (BGVIII) display the most important positive average 

values of percent differences, while basins in the south-east region (BGIII and BGIV) display the 

highest negative differences. Positive average percent differences become higher and spread over 

the north and central regions in the last period (2008-2017). Negative average percent differences 

do not spread over the area in the second decade. They are however higher at the basins of the 

BGVI.  

 
Figure 2.5 – Map of the average percent difference (%) of annual precipitation between TRMM-

MERGE and CPC for the period 1998-2007 
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Figure 2.6 – Map of average percent difference (%) of annual precipitation between TRMM-

MERGE and CPC for the period 2008-2017 
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Table 2.3 – Average percent difference (%) of annual precipitation between TRMM-MERGE and 

CPC for the study basins and for the periods 1998-2007 and 2008-2017 

 

BG Basin 1998-2008 2008-2017 

I 

Inc._Guajara_Mirim 2.9 20.3 

Inc._Santo_Antonio 1.8 18.0 

Mira_flores 24.9 39.0 

Pena_Amarilla 3.7 10.7 

Puerto_Siles 15.9 33.9 

II 

Belo_Monte_Inc. 6.0 15.7 

Boa_Sorte 7.7 19.6 

Conceicao_do_Araguaia 1.3 12.0 

EBEC 2.2 8.6 

Ferreira_Gomes 0.0 20.0 

Manso 1.8 7.9 

Sto_Antonio_do_Jari 3.3 5.7 

Tapajos 2.0 25.4 

Teles_Pires -1.3 7.8 

Tucurui_Inc. 1.6 11.1 

III 

Carinhanha 0.4 3.2 

Itapebi 0.8 2.1 

Mascarenhas -6.9 1.8 

Paracatu -3.1 2.7 

Sobradinho_Inc. -3.0 3.2 

Tres_Marias -11.2 4.2 

Velhas -4.0 1.7 

IV 

Capim_Branco_2 -5.4 -2.1 

Emborcacao -8.4 -2.8 

Furnas -4.2 1.7 

Ilha_dos_Pombos -11.1 -2.1 

Inc._Itumbiara -9.5 0.2 

Inc._Sao_Simao -4.4 -1.1 

Lajeado -4.7 3.1 

V 

Agua_Vermelha -1.9 -9.5 

Nova_Avanhandava 0.3 -14.3 

Rosana 1.2 -8.9 

VI 
Itaipu -0.1 4.2 

Porto_Primavera 2.3 5.9 

VII 

Barra_Grande -6.5 -0.5 

Campos_Novos 1.7 0.2 

G_B_Munhoz -1.8 3.4 

Salto_Caxias -3.4 13.7 

VIII 

Quatorze_de_Julho 5.0 -0.5 

Dona_Francisca 5.7 1.6 

Foz_do_Chapeco 2.7 -4.2 
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2.3.4 Impact of different precipitation data on flow simulations  

The results of the experiment with the HEC-HMS hydrological model calibrated for the UHE 

Campos Novos and the Tapajos basins are shown in table 2.4. It shows model performance when 

the model is calibrated with the TRMM-MERGE precipitation data and then used in simulation 

with the CPC precipitation data as forcing and vice versa. Both calibration and simulation runs 

are performed over the same period, 1997-2017. We can see that model performance is good in 

both basins, with NSE and KGE values ranging between 0.71 and 0.94 in calibration and between 

0.45 and 0.79 in simulation. As expected, the performance of the model behaves according to the 

magnitude of the differences between the precipitation data sources: for the basin where the 

differences are small (Campos Novos), the performance in calibration is similar to the 

performance in simulation (differences in performance indicators are between -4% and -8% when 

calibrating with TRMM-MERGE, and simulating with CPC and between -1% and 3% when 

calibrating with CPC and simulating with TRMM-MERGE). For the basin with a high difference 

in precipitation datasets (Tapajos), the decrease in performance from calibration to simulation is 

clear, with stronger differences in performance indicators. The most important losses are in 

accuracy (RMSE). 

Table 2.4 – Performance indicators (RMSE, NSE, KGE and R²) and difference in performance 

(Diff) when calibrating the hydrological model HEC-HMS with TRMM-MERGE (TRMM cal) 

and CPC (CPC cal) precipitation and simulating river flows with the other dataset (CPC sim and 

TRMM sim, respectively) for two basins (Campos Novos and Tapajos) and considering the whole 

period 1997-2017 for calibration and simulation. Diff values indicate the percentage loss (negative 

values) or gain (positive values) in performance when moving from calibration with one dataset to 

simulation with the other dataset 

Basin Campos Novos Tapajos 

Perf. indicator TRMM cal CPC sim Diff. TRMM cal CPC sim Diff 

RMSE (m3/s) 203 214 -6% 1959 3578 -83% 

NSE 0.73 0.70 -4% 0.88 0.61 -31% 

KGE 0.83 0.79 -4% 0.94 0.70 -26% 

R² 0.65 0.60 -8% 0.87 0.50 -42% 
 TRMM sim CPC cal Diff. TRMM sim CPC cal Diff 

RMSE (m3/s) 210 212  1% 3858 3383 -14% 

NSE 0.71 0.72 -1% 0.55 0.66 -16% 

KGE 0.82 0.79 3% 0.45 0.82 -44% 

R² 0.65 0.63 3% 0.67 0.60 11% 

 

Figure 2.7 shows the ECDF of observed flows and of daily flows when calibrating the model 

with TRMM-MERGE and simulating with CPC. We can see that for the basin where the 

precipitation data of both sources are similar, the ECDF curves are also very similar. However, 

for the basin with a higher difference between the two sources, the ECDF curves show a clear 
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difference. For the same probability level, the flows simulated with the CPC data are lower than 

the observed flows and the flows simulated with the TRMM-MERGE data. The ECDF curves 

obtained when using the CPC data for calibration and the TRMM-MERGE for simulation present 

a similar behavior (not shown in this paper). 

 
Figure 2.7 – ECDF curves of the observed (red) and simulated daily flows (m3/s) with the TRMM-

MERGE (blue) and the CPC (green) precipitation data as forcing in the HEC-HMS model for two 

basins (Tapajos, above, and Campos Novos, below) 

 

Finally, in figure 2.8, we present a comparison between the percent differences of annual 

precipitation (TRMM-MERGE minus CPC) and the percent differences of annual streamflow 

simulations, when using TRMM-MERGE data in calibration and CPC data in simulation. The 

points in the first quadrant indicate the situations where the values of precipitation and simulated 

flow are smaller when using the CPC data. The third quadrant indicates the opposite, the 

situations where the CPC precipitation is more intense than the TRMM-MERGE and therefore 

also the streamflow simulations based on CPC data. 

We can see that in the basin with small differences between the precipitation datasets (Campos 

Novos), the relation between the differences of precipitation and the differences of flow (orange 

lines) tends to be closer to the diagonal line, with a slope that is higher when the CPC 

precipitation is higher than the TRMM-MERGE precipitation. For the basin with the high 

difference in precipitation datasets (Tapajos), the slopes of the regression lines (blue lines) are 

higher than 1 for both quadrants, first and third. The angular coefficient of the line of the third 

quadrant is also bigger than the one of the line in the first quadrant. The graphs with the CPC 

data used in calibration and the TRMM-MERGE data used in simulation (not shown in this 

paper) present a similar behavior for the Campos Novos basin. For the Tapajos basin, where the 
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precipitation of the simulation dataset is more intense then the precipitation in the CPC 

calibration dataset, the differences in flows are amplified. 

 
Figure 2.8 – Percent differences (%) in annual simulated flows as a function of percent differences 

in annual precipitation between TRMM-MERGE and CPC datasets for two basins (Tapajos in 

blue and Campos Novos in orange)  

 

2.4 DISCUSSION 

The TRMM-MERGE precipitation dataset uses raingauge data to calibrate the system. They have 

quality control of the sensors and use the telemetry rain data to improve the interpolation of the 

grid data (Huffman et al., 2017). The CPC precipitation data uses satellite information to perform 

the quality control of the rain gauge data and to create a better and trustworthy grid of 

precipitation data (Chen et al., 2008). Despite the fact that both sources use information from 

satellite and rain gauges in different degrees and ways, they both try to represent the same 

variable and one could expect they would provide similar datasets. 

In our comparative study, the first signal of the differences between TRMM-MERGE and CPC 

precipitation datasets appears in the results from the basic statistics of annual precipitation totals. 

We found high differences, up to 42%, for the minimum annual precipitation, as well as for the 

first quartile (up to 25%). The other values (mean, third quartile and maximum) also show 

differences, but they are not as strong. This shows that, in the absence of a more accurate dataset 

of ground precipitation data, and considering that the observed precipitation in a certain basin is 
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an estimation of the actual precipitation, uncertainties are present in any dataset and, for our 

study, both datasets need to be considered.  

Our study provides an extensive analysis of differences in precipitation data for a wide range of 

basins in South America, covering the continent from north (3ºN) to south (30°S) and a variety 

of climatic conditions. Our results show that the 41 basins studied can be grouped into eight 

groups of similar behavior. The results from the group I, the Madeira river basin, show that the 

precipitation values from the TRMM-MERGE are higher than the values obtained from the CPC 

dataset for all the study period (1997-2017), with differences that tend to increase in the last 

years. The analysis of monthly precipitation totals shows that the highest differences are observed 

during the wet season, which goes from November to April. During the wettest months, it is 

common to observe differences higher than 100 mm/month and some maximum values higher 

than 200 mm/month, which can be higher than the monthly average precipitation. The analysis 

of the statistical distribution of daily precipitation shows that the TRMM-MERGE daily 

precipitation quantiles tend to be higher than the CPC quantiles for the same probability of 

occurrence. This is observed for the majority of the probability quantiles.  

The results from the group II, representing other basins in the north region, exhibit smaller 

differences between the precipitation datasets for the first decade of the data period (1998-2007), 

with alternation of positive and negative differences. However, in the last decade (2008-2017), 

the differences become more often positive, showing that CPC precipitation tends to be lower 

than TRMM-MERGE precipitation. These differences in the last decade translate into high 

variations during the wet season, from January to March. It is common to observe differences 

higher than 100 mm/month. The maximum differences occur at the basins in the extreme north, 

with values near to 200 mm/month, which can be around 70% and 80% of the monthly averages. 

The ECDF curves of daily precipitation also exhibit the tendency of TRMM-MERGE daily 

precipitations higher than the CPC values for the same probability of occurrence. The magnitude 

of the differences depends on the basin. 

These results for the north region are coherent with the results obtained by Juarez et al. (2009). 

The authors show positive differences when comparing TRMM-MERGE and CPC precipitation 

data. Their differences were smaller, but the values were only computed considering the first 

decade of our data period. 
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The analysis of the northeast and east basins, group III, shows annual precipitation differences 

smaller than in the north region, with differences that, on the majority of the basins, are lower 

than 10%. The values tend to be slightly negative on the first decade of the study period and 

become slightly positive along the second decade. For the major part of the basins, the smaller 

differences are observed during the last five years, which can be an indication that both data 

sources may be getting more similar along the years in terms of annual precipitation totals. The 

differences in monthly precipitation show that the majority of differences in this group of basins 

are between -25 mm/month and 25 mm/month. The highest differences occur again during the 

wet season, November-March, but they are often smaller than 20% of the monthly average 

precipitation. In terms of daily precipitation, the ECDF curves do not indicate a great difference 

between the two data sources. 

The basins in the center-west and southeast regions, group IV, show a tendency to have negative 

values of the differences between datasets in the first decade, varying from small values near 5% 

until higher values near 25% for some basins. In the second decade of the study period, the 

differences become positive (i.e., TRMM-MERGE precipitation data are higher than CPC data), 

but the values are smaller than 10%. For the monthly precipitation differences, the highest 

differences occur in November, December, January and February, with highlights for strong 

negative values that sometimes are close to -100 mm/month. For the daily precipitation values, 

the probability distribution curves do not indicate a great difference between the two sources of 

precipitation data. 

The three basins in group V, in the southeast region, display a different behavior from the others. 

The differences in annual precipitation are slightly positive in the first decade and tend to be 

negative during the second decade. The highest differences occur between the years 2008-2013, 

with values near -30%. During the last five years of the study period, the differences become 

small again, near 5%. The monthly differences are higher from November to February. In terms 

of daily values, there is a tendency for TRMM-MERGE daily precipitation to be lower than the 

CPC precipitation for the same probability of occurrence. 

In the group VI, basins on the neighborhood of the South region, the differences in annual 

precipitation are very small during the first-decade and become positive along the second decade, 

with values higher than 10%. The highest differences occur during the wet season, varying, in 

the majority of basins, between -50 mm/month and 50 mm/month. The ECDF curves show that 
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the daily precipitation from TRMM-MERGE tends to be higher than CPC precipitation for the 

same probability of occurrence. 

The group VII, basins in the south region, displays small negative differences during the first 

decade, which then become positive along of the last decade, with some values higher than 10%. 

These basins do not have a clear seasonality and differences in monthly precipitations spread all 

over the year, with the majority of values between -50mm/month and 50mm/month. For daily 

precipitation values, the ECDF curves show that the TRMM-MERGE daily precipitations are 

higher than the CPC values for the same probability of occurrence. 

Finally, at the extreme south region, the group VIII exhibits a change of behavior in terms of 

differences in annual precipitation, when compared with the other south basins. Differences are 

more often positive in the first decade and tend to reduce along the second decade. In terms of 

monthly values, this group has the same behavior as group VII, without a wet season with higher 

differences. For daily precipitation values, the statistical distributions show that the TRMM-

MERGE daily precipitations are often higher than the CPC values for the same probability of 

occurrence. 

Our analyses show clearly a regional pattern on the differences between the two precipitation 

data sources. As we move to the north and west regions of the study area, the annual differences 

tend to become more positive. This spatial variability in annual precipitation differences is 

amplified in the second and most recent decade of the study period. The basins located in the 

northeast, east, and southeast regions have smaller differences and these differences tend to 

become more positive in the second decade, although at a smaller degree. The exceptions are the 

basins of the group VI, which tend to display more negative differences in annual precipitation 

during the last decade. 

We also evaluated the impact of the observed differences on the simulation of streamflows, using 

calibrated hydrological models in two basins (Campos Novos and Tapajos), representative of the 

lowest and highest differences between precipitation data sources. The analysis showed how the 

models are sensitive to changes in precipitation, confirming the general findings in Fan (2015). 

If the two precipitation data sources used in calibration and simulation are similar, model 

performance is also similar. However, when they are very different, the performance indicators 

showed that the hydrological model tends to lose performance. The amount of loss in 
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performance may vary according to the quality of the data source used in the calibration. In our 

study, in the Tapajos basin, where the differences between TRMM-MERGE and CPC data are 

high, the performance loss was stronger when calibration was performed with TRMM-MERGE 

and CPC was used in simulation, comparatively to the opposite situation. The empirical 

relationship between annual precipitation and flow values shows that the dispersion is higher 

when dealing with the CPC data. This indicates that CPC data has more uncertainty, which 

impacts the results when the CPC data is used to simulate flows in a model that was calibrated 

with another data source. More uncertainty in the CPC data in this basin can be explained by the 

low density of raingauge stations in this area. The use of satellite information may give more 

accuracy to the TRMM-MERGE dataset in this case.   

Another result of our study is that the hydrological model seems to propagate and amplify the 

differences in precipitation data into differences in streamflow simulations. Small differences in 

precipitation result in similar small differences in streamflow. However, large differences in 

precipitation seem to result in even larger differences in streamflow.  

2.5 CONCLUSIONS 

This study aimed to evaluate the differences between precipitation data obtained from two 

sources over 41 river basins in South America, the TRMM-MERGE and the CPC datasets, for 

the period 1997-2017. We investigated differences for different time resolutions (daily, monthly 

and annual precipitation), at different locations and according to their impact on the simulation 

of streamflow. 

The results show that differences vary in space and time, and according to the temporal 

aggregation of the precipitation values. The second decade tends to amplify the observed 

differences in the majority of the basins.  

Some basins show considerable differences, notably in terms of daily and monthly precipitation 

values, with an expected impact on the simulation of daily streamflows, which are also affected 

by the uncertainty of each precipitation data source. In addition, a spatial behavior of the 

differences between the precipitation sources was detected, with differences becoming more 

positive (i.e., TRMM-MERGE values are higher than CPC values) as we move to north and west 

in the study area. 
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With the results of this study, we recommend being cautious when working with a unique source 

of historic precipitation data to calibrate hydrological models, since this source can display 

uncertainties and errors that vary in space and time. In our study, we showed that it is a complex 

problem to determine a precipitation data source that is the best for all situations, especially when 

no observed data set can be used as ground truth or reference, as in the case of large continental 

areas such as South America.  

When it comes to maximize the performance of streamflow simulations, it becomes important to 

extract information from all data sources available. In this study, we illustrated how hydrological 

models can be sensitive to changes in the precipitation data, especially when these changes reflect 

high differences between different forcing data sources. The use of observed streamflow is an 

alternative to help selecting the best precipitation data source. The comparison between observed 

and simulated streamflows is an indirect way to carry out the precipitation data analysis, but it 

can, nevertheless, be useful in hydrological applications at large river basins. 

Further research will focus on accessing the uncertainties and investigating how data sources 

such as TRMM-MERGE and CPC can be combined, with varying weights according to basin 

location and time of the year, to provide a more robust long time series of precipitation data for 

hydrological model calibration and simulation. The goal is to have time series of forcing data 

that minimize the errors between observed and simulated flows in the past, so that these time 

series can be used for seasonal forecasting in the hydropower sector within the traditional ESP 

(Ensemble Streamflow Prediction) method, where hydrological models and historical 

precipitation are used to generate a set, or an ensemble, of possible flow scenarios dependent on 

the initial states of a given basin in real-time.    
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CHAPTER 3: 

HYDROLOGICAL MODELING AS 
A TOOL FOR SELECTION AND 

VALIDATION OF 
PRECIPITATION DATA 

RELEVANT TO SEASONAL 
STREAMFLOW FORECASTING  

 

This chapter is based on a paper submitted to the Journal of Hydrology: Regional Studies (EJRH), 

which received three reviews, with final editor’s decision as “major revision”; the revised version 

was prepared and is being reviewed by the co-authors before re-submission: REIS. A. A.; 

WEERTS. A.; RAMOS. M. H.; WETTERHALL. F.; FERNANDES. W. S.: Hydrological 

modeling as a tool for selection and validation of precipitation data relevant to seasonal 

streamflow forecasting. Journal of Hydrology: Regional Studies, EJRH-D-21-00413, 2021.  
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3 HYDROLOGICAL MODELING AS A TOOL FOR SELECTION AND 
VALIDATION OF PRECIPITATION DATA RELEVANT TO 
SEASONAL STREAMFLOW FORECASTING 

3.1 INTRODUCTION 

Time series of quantitative precipitation estimates is crucial for calibrating and running 

hydrological models to be used in research and operational applications such as water resource 

management, irrigation planning, hydropower operations, and forecasting of floods and droughts. 

However, in large river basins or on countrywide and continental scales, it is often difficult to 

have consistent and accurate time series of spatially distributed precipitation data available over 

a long period of time. Precipitation is one of the climate variables most difficult to estimate 

because of its heterogeneous distribution in space and high variability in time (Herold et al., 

2015). It is also susceptible to measurement errors caused by wind, evaporation, wetting, 

splashing and drifting effects, and human errors, such as uncalibrated gauge equipment, 

acquisition, and data communication problems (Michelson, 2004). Therefore, it is a major 

challenge to produce consistent precipitation products in space and time over large areas and long 

periods, especially if such products should be continuously used in real-time operations in 

hydrology (Golding, 2009; Kucera et al., 2013; Pozzi et al., 2013; Serrat-Capdevila et al., 2013; 

Verkade et al., 2013; Lettenmaier et al., 2015; Van Osnabrugge et al., 2017).  

The main sources of precipitation data are the gauges, weather radars, and the satellite 

instruments (Gilewski and Nawalany, 2018). The first two sources, besides to be more accurate, 

have limitations because their dependence on spatial distribution, otherwise the satellite data 

emerges as a potential source because its higher resolution and capacity to cover big areas, but 

needs to be unbiased (Cassalho et al., 2020). The main sensors used to estimate the precipitation 

are the passive microwave, the calibrated infrared, and a combination of them (Hong et al., 2018). 

With the evolution of the sensors where added the active microwave sensors at the satellites as 

the Ku-band Cloud Profiling Radar (DPR) on the TRMM Satellite (Simpson et al. 1988), the W-

band Cloud Profiling Radar on the CloudSat (Chen et al., 2008b), and Ku-/Ka-band Dual-

Frequecy Precipitation Radar (DPR) on the GPM satellites (Huffman et al., 2017). To extract the 

precipitation information from this constellation of satellites where developed different 

algorithms, since the simplest IR-based GOES Precipitation Index (GPI) (Arkin and Meisner, 

1987) until the most recent and sophisticated NASA GPM (Global Precipitation Measurements) 

Integrated Multi-satellite Retrievals (IMERGE) (Huffman et al., 2017). 
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On a global scale, gridded precipitation products have been available since the late 1990s 

(Huffman et al., 1997; Adler et al., 2003; Sun et al., 2017; Beck et al., 2017). However, only a 

few are produced in near real-time, such as the CPC Unified Gauge-Based Analysis of Global 

Daily Precipitation from the U.S. National Oceanic and Atmospheric Administration (NOAA) 

(Chen et al., 2008), and the IMERG for GPM dataset from the U.S. National Aeronautics and 

Space Administration (NASA) (Huffman et al., 2017), which is the successor of the Tropical 

Rainfall Measuring Mission (TRMM) data products. For South America, the TRMM-MERGE 

product developed by the Brazilian Centre for Weather Forecast and Climatic Studies (Centro de 

Previsão de Tempo e Estudos Climáticos, CPTEC), is also available in near real-time (Rozante 

et al., 2010). It combines gauging station datasets from the Global Telecommunications System, 

automatic stations from various agencies in South America, and the near real-time TRMM 

precipitation product, providing a gridded dataset of daily precipitation at 0.25° of spatial 

resolution for operational applications. In May of 2020, after the TRMM data be discontinued, 

CPTEC started to provide the  GPM-MERGE, built with the GPM dataset based on the IMERG-

E algorithm  in (the substitute of TMPA-V7 in TRMM mission), maintaining the same gauge 

stations and the algorithm MERGE (Rozante et al., 2010), now in a higher resolution of 0.1° 

(Rozante et al., 2018, 2020). 

When different precipitation products are available over an area, the question arises whether it 

would be better to select one product or combine different products. Beck et al. (2017) 

investigated 22 gridded global and tropical precipitation datasets and concluded that the product 

that merged all information available — Multi-Source Weighted-Ensemble Precipitation 

(MSWEPv1.0) — had better overall performance. Recently, Reis et al. (2019) carried out a study 

comparing the CPC-NOAA and TRMM-MERGE real-time precipitation datasets over 41 river 

basins, mostly located in Brazil. The authors found considerable differences in space and time 

between these two datasets, with a tendency to increase differences when moving from south to 

north and from east to west. For the majority of the studied river basins, the recent decade of data 

(2008–2017) presented the biggest differences in terms of areal precipitation over the river 

basins. The authors also highlighted the fact that the differences between the precipitation 

datasets were propagated, and often amplified in simulated streamflow when used to force a 

hydrological rainfall-runoff model. 

Hydrological models can be useful tools for analyzing precipitation datasets. By comparing 

simulated and observed streamflows, the quality of a precipitation dataset used to force the model 
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can be indirectly assessed and the uncertainties evaluated. This strategy has been used in 

numerous previous studies to evaluate the quality of precipitation datasets at regional or global 

scales (e.g., Su et al., 2008; Collischonn et al., 2008; Voisin et al., 2008; Bitew et al., 2012; Li et 

al., 2013; Falck et al., 2015; Tang et al., 2016; Beck et al., 2017). Overall, the studies indicate 

that, once there are better estimates of observed flow than precipitation, the use of hydrological 

modeling can inversely bring better estimations of the observed precipitation and help in data 

validation.  

Hydrological models can also be used to define and evaluate the best combination of multiple 

data sources. The MSWEPv1.0 product is an example of a combined product that uses river 

discharge observations from stations across the globe and hydrological simulations to correct 

systematic terrestrial precipitation biases (Beck et al., 2017). It is a fully global, historic 

precipitation dataset (1979–2014) available at daily and three-hourly temporal resolutions and 

0.25° spatial resolution. It is based on data from gauge stations, satellite remote sensing, and 

atmospheric model reanalysis. The hydrological model used to evaluate the performance of the 

MSWEP product and compare it with other state-of-the-art gauge-adjusted datasets (i.e., 

WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) was the HBV model (Bergström, 

1995). Flow simulations using MSWEP showed better performance (median NSE of 0.52) than 

simulations with the other precipitation datasets (NSE values of 0.29 to 0.39). The median 

correlation obtained when using the MWSEP product was the best correlation for 60% of 

independent precipitation gauges from FLUXNET tower stations used for validation (for more 

details, see Beck et al., 2017). The MSWEP product is in constant evolution, in the version 2 the 

product added new algorithms to improve the accuracy, increased the resolution to 0.1°, included 

ocean areas, added new precipitation dataset at the analysis, and extended the MSWEP dataset 

until 2017 (Beck et al., 2019). Actually, MSWEP is in the version 2.8, with the resolution of 0.1° 

and 3-hourly dataset, under the platform GloH2O, available under requestion to the providers 

(MSWEP, 2021). Recently, Siqueira et al. (2018) applied the MSWEP precipitation product with 

the distributed MGB hydrological model over South America to simulate streamflows. They 

reported good overall performance of the simulations, with NSE > 0.6 in 55% of the flow stations. 

The performance was better in large rivers and wet regions, decreasing in drier climates, where 

timing errors in rivers with floodplain effects had been reported. 

Reliable historical datasets are needed, but the datasets also need to be consistent over time and 

must represent the statistical variability of the climatology of the region. Therefore, consistent 
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long time series of spatially distributed precipitation over large areas are very useful for seasonal 

streamflow forecasting, being used to calibrate the hydrological models, to warmup the flow 

forecast models, calibrate bias correction of the global climate models (GCMs) (Crochemore et 

al., 2016). The ECMWF SEAS5, the most recent version of the European Weather Center 

seasonal model, has a hindcast of 35 years (1981-2016) (ECMWF, 2017), demanding a long time 

series of observed precipitation to access its performance and calibrate an eventual bias 

correction. As an alternative to using dynamic climate forecasts from GCMs as input to 

hydrological models for streamflow seasonal forecasting, the ensemble streamflow prediction 

(ESP) method is traditionally applied in hydrological forecasting (Twedt et al., 1977; Day, 1985; 

Wood and Lettenmaier, 2006). The method relies on using historic precipitation and temperature 

data as future possible climate scenarios in a continuous hydrological model, which is used to 

estimate the initial hydrological conditions of the catchments at the time of issuing a forecast. 

Historic meteorological data are useful for determining an ensemble of future scenarios, while 

real-time meteorological data are crucial for evaluating the initial conditions of the catchment. 

The ESP method has been widely used to provide skillful long-term ensemble predictions for a 

variety of hydrological applications, either alone or in combination with GCM-based predictions 

(see, for instance, Crochemore et al., 2016; Beckers et al., 2016; Bennett et al., 2017; Arnal et 

al., 2017; Harrigan et al., 2018). Emerton et al. (2018), for instance, used the latest ECMWF 

reanalysis product, ERA5, to generate a reference climatology to evaluate the GloFAS-Seasonal 

forecasting system around the globe. In Australia, a seasonal forecasting system was proposed 

by merging meteorological models and precipitation climatology to create an ensemble of future 

precipitation scenarios, the Forecast Guided Stochastic Scenarios (Bennett et al., 2017), which 

was later used to force a hydrological model and generate an ensemble of streamflow forecasts 

up to 12 months ahead. 

In Brazil, gridded large-scale precipitation products are of particular importance to the real-time 

operations of the hydropower sector (Schwanenberg et al., 2015; Gibertoni et al., 2017). The 

anticipation of hydrological conditions can strongly influence the centralized operation of the 

electrical system and energy prices (ONS, 2016). Given the lack of a reference observational 

dataset based on ground rainfall measurements from gauges or radar, a methodology is proposed 

that uses a hydrological model and observed discharge time series to quantify uncertainties from 

the precipitation datasets, combine them, and select the best final product. It has been shown that 

direct empirical comparisons between rainfall and streamflow can be useful for evaluating 

rainfall dataset performance across multiple scales, in addition to helping identify and quantify 
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the magnitude of the uncertainty involving the dataset used in hydrologic modeling (Levi et al., 

2017). Based on the water balance equation, and assuming that a catchment hydrologically 

behaves like a reservoir system, it is possible to invert the reservoir model equation and express 

the rainfall as a function of the streamflow and then use this relationship to estimate the 

uncertainty of the rainfall data (Kirchner, 2009; Henn, 2015).  

Real-time precipitation datasets are usually subject to errors that affect their homogeneity 

through space and time. Because of its great importance for human activities, many studies are 

caring out to improve this information and provide a better real-time precipitation dataset, 

developing different algorithms to process the new satellite data and quality control tools to have 

a reliable rain gauge information, evolving many researchers in this process. The MERGE 

existing products are developed with analysis in a grid scale. As a novelty, we suggest in our 

research a different approach, where we make use of the knowledge existing behind the 

spatialized data, and blend them based on its uncertainty, in a catchment scale, to have a more 

robust estimation of the mean precipitation on the studied basins. This blend solution makes it 

possible to take advantage of the individual quality of the datasets and smooth eventual errors 

from one dataset or the other, ultimately resulting in better performance in hydrological 

modeling. Therefore, this paper addresses the following research questions: i - How can we blend 

this different observed precipitation dataset and validate the combination, taking the advantage 

of the collective intelligence behind each source, to have a better precipitation forcing for their 

use in rainfall-runoff models, precipitation forecast bias correction and flow forecasting? ii - How 

can we extend the combined precipitation dataset for a period longer than the coincident between 

both time series?  

This paper aims to propose a method to produce a long and reliable real-time precipitation dataset 

that can be used to perform seasonal streamflow forecasts and as a reference of observed 

precipitation to assess the performance of precipitation forecasts issued by meteorological and 

global climate models. We use hydrological modeling as a tool for the selection and validation 

of the dataset over a large set of 41 river basins, that are relevant to the hydropower sector in 

Brazil and neighboring countries. The two real-time, station, and satellite-based precipitation 

products are TRMM-MERGE and CPC datasets, and the combined dataset is compared with the 

benchmark MSWEP. In Section 3.2, the methodology and dataset used in the experiment are 

presented. In Section 3.3, the results obtained are provided. Section 3.4 is a discussion of the 

results, and the conclusions and planned future studies are presented in Section 3.5. 
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3.2 MATERIALS AND METHODS 

3.2.1 Study area and data 

The methodology was applied to 41 river basins distributed in different climatic regions within 

Brazil and neighboring countries (Fig. 3.1). The river basins vary in size, with areas ranging from 

9,300 to 382,000 km². The study area extends from the north (Jari River, Madeira River, Xingu 

River, Tapajos River, Tocantins River, and others) to the south of Brazil (Iguaçu River, Uruguay 

River, and others) and includes river basins located in the central part of the country (Paraná 

River, Grande River, São Francisco River, etc.). The 41 river basins provide inflow to 30 

hydropower plants (HPPs). 

 

Figure 3.1 – Geographic location of the study area with the 41 river basins (red contours). 

For each river basin, daily areal precipitation was obtained from the TRMM-MERGE, the CPC-

NOAA, and the MSWEP datasets. Daily areal precipitation time series were calculated using the 

shapefile of the basins and averaging all grid data points falling inside each river basin 

considered. Table 3.1 presents the main information of each dataset. 
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Table 3.1 – Summary of the precipitation dataset main information. 

Dataset 
Spatial 

resolution 

Time 

resolution 

Time 

period 

covered 

Download URL 
Main 

references 

TRMM-

MERGE 
0.25° Daily 

1997 - 

2020 

ftp:ftp1.cptec.inpe.br/modelos/io/produtos/MERGETRMM-

MERGE/ 

Rozante et 

al. (2010) 

GPM-

MERGE 
0.1° 

Daily and 

30 

minutes 

2000 - 

present 
http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY/ 

Rozante et 

al. (2018, 

2020) 

CPC 0.5° Daily  
1979 - 

present 
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB 

Chen et al. 

(2008) 

MSWEP 0.1° 
Daily and 

3 hourly 

1979 - 

2020 
http://www.gloh2o.org/mswep/ 

Beck et al. 

(2019) and 

MSWEP, 

(2021) 

 

Daily discharge data were obtained from the ONS (the National Operator of the Electric System). 

They correspond to the official HPP natural flow time series and are compiled annually by the 

national operator. Where the ONS takes of the regularization effects of the reservoirs and adds 

evaporation and other water uses to obtain the natural flows of the reservoir, these flows are also 

validated by the generators involved at the process (for more details, see ONS, 2005). Overall 

data availability depends on each river basin. The data can be downloaded at the URL:  

https://sintegre.ons.org.br/sites/9/13/84/paginas/servicos/produtos-

pasta.aspx?RootFolder=/sites/9/13/84/Produtos/427/01-12-2020_022612. For this study, the 

discharge dataset used covers the period 1979-2018 for all studied river basins. 

3.2.2 Methodological steps 

To select a better real-time precipitation dataset among the two available independent data 

sources and a dataset that is a combination of the two, and to validate the selection and blending 

procedure using a hydrological model and observed streamflows, an experiment was designed 

with six basic methodological steps as showed in Figure 3.2. 

https://sintegre.ons.org.br/sites/9/13/84/paginas/servicos/produtos-pasta.aspx?RootFolder=/sites/9/13/84/Produtos/427/01-12-2020_022612
https://sintegre.ons.org.br/sites/9/13/84/paginas/servicos/produtos-pasta.aspx?RootFolder=/sites/9/13/84/Produtos/427/01-12-2020_022612
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Figure 3.2 – Summary schema of the experiment. 

Step 1: For each river basin, the daily areal precipitation time series (average over the area of the 

river basin) is estimated for each precipitation data source. The daily observed flow data are 

extracted for the same period at each basin. In addition, the total annual precipitation, and the 

annual mean of observed daily flows are calculated to perform the analysis based on the water 

balance relationship (Step 2). 

Step 2: The uncertainty of each precipitation data source is identified and quantified by using 

empirical functions that relate the total annual precipitation amounts and the observed annual 

mean flows. The weights used to build the combined daily precipitation dataset are obtained 

based on the uncertainty quantified from the annual water balance, as detailed in Section 3.2.2. 

Step 1 

Obtain the mean precipitation at each 
basin, for each source. Calculate the 
total annual precipitation for each 

source and the mean annual inflow at 
each basin. 

Step 2

Identify and quantify the precipitation 
uncertainty using a linear empirical 

function of total annual precipitation 
versus the observed annual mean 

flow. The weights to be used to build 
the combined daily precipitation 

dataset are obtained, as detailed in 
section 3.2.2.

Step 3

Extend the combined precipitation 
dataset over the longest period using 

the double-mass curve, as described in 
Section 3.2.3.

Step 4

For each daily precipitation dataset 
(the two independent sets and the 

combined one), calibrate the 
hydrological model at each river basin 
by applying the traditional split-sample 

test, as described in Section 3.2.4.

Step 5 

Considering daily flows, access the 
performance of calibrated models. 
Evaluating for each precipitation 

dataset and river basin, using a variety 
of performance metrics, as described 

in Section 3.2.5

Step 6

Evaluate the extended combined 
precipitation dataset against the 

benchmark of observed precipitation. 
Also evaluate the simulated discharges 

using the new dataset against 
observed discharges.
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Step 3: Because the two independent precipitation data sources cover different time periods, a 

procedure is used to extend the combined precipitation dataset over the longest period, using the 

double-mass curve, as described in Section 3.2.3. 

Step 4: For each daily precipitation dataset (the two independent sets and the combined one), the 

hydrological model is calibrated at each river basin by applying the traditional split-sample test, 

which divides the time series into two periods for calibration and validation, and a calibration 

procedure over the entire data period, as detailed in Section 3.2.4. 

Step 5: The performance of calibrated models is evaluated for each precipitation dataset and river 

basin, using a variety of performance metrics, as described in Section 3.2.5. The performance is 

accessed considering daily flows, with the parameters calibrated for the complete period 

(Oct1998 - Sep2017), for each of the three precipitation datasets. 

Step 6: The extended combined precipitation dataset is evaluated against a benchmark of 

observed precipitation, and simulated discharges using the new dataset are evaluated against 

observed discharges. 

3.2.3 Combining two precipitation data sources using the annual water balance  

The water balance equation is used in hydrology to describe the flow of water in and out of a 

system. The period used to calculate the water balance is usually the hydrological year, which is 

a 12-month period that starts at the end of the dry season. For any given year, the water balance 

can be written as: 

  ∆𝑆 =  𝑃𝑖 − 𝑄 −  𝐸𝑇     (3.1) 

where 𝑃𝑖 is the annual precipitation for the given year (total precipitation over the hydrological 

year) of the precipitation data source i, 𝑄 is the annual mean flow, 𝐸𝑇 is the annual 

evapotranspiration, and ∆𝑆 is the annual variation of storage in the river basin, with all variables 

expressed in millimeters.  

We are not focused into obtain the perfect relation P x Q, but only interested in knowing how the 

uncertainty varies when we use different precipitation sources in the same basins. We consider 

the hydrological year and at the end of the dry period the storage is near to the minimum. For 

https://en.wikipedia.org/wiki/Water_flow
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long time periods, usually more than 12 months, the ∆𝑆 term can be considered negligible (Shao 

et al, 2012, Beck et al., 2020). The 𝐸𝑇 term depends on physical factors, such as the vegetation 

type, soil cover, and land use, as well as on climate factors, such as temperature, solar radiation, 

humidity, and wind speed, this is clear on the Penman-Monteith method used to calculate the 

evapotranspiration (Allen et al., 1998). Therefore, this term can be considered independent of the 

precipitation source. Therefore, it is assumed that the variation of uncertainty in the water balance 

resulting from the different precipitation data sources is a function of the precipitation only. 

Equation (3.1) can be simplified, and the precipitation can be written as a function of the flow 

and the error term that will translate the uncertainties: 

 𝑃𝑖 = 𝑓 (𝑄) + 𝜀𝑖     (3.2) 

where f (Q) is the empirical function between the precipitation (in millimeters) and the flow (in 

millimeters), and 𝜀𝑖 is the annual error associated with the precipitation source Pi.  

The error 𝜀𝑖 is evaluated for each given year using the empirical function that relates each annual 

precipitation 𝑃𝑖 to the annual flow 𝑄. The evaluation is based on the standard deviation of the 

errors of each precipitation source  𝑃𝑖, and is computed over the time series of annual errors. The 

standard deviation estimates obtained were used to weight the proportion of each precipitation 

data source to create a combined precipitation dataset. The weights were based on the proportion 

of the standard deviation of the errors of one source with respect to the sum of standard deviations 

of the errors of both sources. The weights were obtained from the following equations: 

𝑊𝑗 = 1 −
𝜎𝜀𝑗

𝜎𝜀𝑗+𝜎𝜀𝑘
     (3.3) 

𝑊𝑘 = 1 − 𝑊𝑗     (3.4) 

where 𝑊𝑗 is the weight of the precipitation data source 𝑃𝑖=𝑗, 𝑊𝑘 is the weight of the precipitation 

data source 𝑃𝑖=𝑘, 𝜎𝜀𝑗 is the standard deviation of the annual errors of 𝑃𝑖=𝑗, and 𝜎𝜀𝑘 is the standard 

deviation of the annual errors of source Pi=k. 

The main idea behind this methodology is not to identify the precipitation data source that 

displays the best correlation between 𝑃𝑖 and 𝑄. The goal is to access the uncertainty of each 
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source to make it possible to give a higher weight to the source with smaller uncertainty when 

the two sources of precipitation data are combined in one unique dataset.  

Once the weights of each precipitation data source are obtained, they are applied to the daily 

precipitation time series to generate the combined daily precipitation dataset, according to 

Equation (3.5): 

 𝐷𝑃𝑊𝐶 = 𝐷𝑃𝑗 . 𝑊𝑗 +  𝐷𝑃𝑘 . 𝑊𝑘   (3.5) 

where 𝐷𝑃𝑊𝐶 is the daily precipitation of the weighted combination of the two precipitation data 

sources. 

3.2.4 Double-mass curve method to extend the combined precipitation dataset 

Once the combined precipitation method is applied to the two different precipitation data sources, 

a combined precipitation dataset for the same period of the shorter precipitation data source is 

obtained. It is thus necessary to extend, in a consistent way, this combined precipitation time 

series to also cover the period of the longer available data source. In this study, the double-mass 

curve method developed by the US Geological Survey was used (Searcy et al., 1960). The method 

is commonly used in data analyses to check the consistency of hydrometeorological data and 

adjust the data for any inconsistencies. It is based on comparing the time series of accumulated 

values at a single data station (or a given data source) with those given by data from other stations 

in a surrounding area (or other data sources) during the same period. The theory of the double-

mass curve is based on the fact that a graph of the accumulation of one time series against the 

accumulation of another time series, during the same period, plots as a straight line as long as the 

data are proportional; the slope of the line represents the constant of proportionality “b” between 

them. Applied to this study, it gives Eq. (3.6): 

 𝑃𝑐 =  𝑃𝑘. 𝑏     (3.6) 

where 𝑃𝑐 represents the precipitation variable of the combined precipitation dataset, and 𝑃𝑘 is the 

precipitation variable coming from the longer time series of the two sources of precipitation used 

to produce the combined dataset. A break in the slope of Equation (3.6) indicates a change in the 

constant of proportion and the presence of inconsistencies.  
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In this study, for each river basin, daily precipitation was obtained from the TRMM-MERGE 

dataset for the period of 1997–2017 and the CPC-NOAA dataset for 1979–2017. Data from the 

reanalysis precipitation dataset MSWEP was used as benchmark (Beck et al., 2017). It covers the 

period 1979–2014. The double-mass curve was applied to annual values of total precipitation as 

follows. 

• For each river basin, for the common period of TRMM-MERGE and CPC-NOAA data 

(1998–2017), the graph of accumulated annual values of the combined dataset is plotted 

against the graph of the CPC-NOAA dataset, which is the longer precipitation dataset. 

• The years with a wide discrepancy around the normal tendency are removed, with the 

objective of having the most representative parameter to extend the time series. 

• The constant of proportionality obtained with this correlation is used to multiply the past 

period of the longer data source, obtaining thus a complete time series of daily 

precipitation back until 1979, in order to represent the extension of the combined 

precipitation dataset. 

To compare the combined precipitation dataset with the benchmark precipitation (MSWEP 

dataset), and also to evaluate how the dispersion of the error varies in time, the standard deviation 

of the annual precipitation errors (observed precipitation minus the value calculated with the 

empirical functions of Equation (3.2)) were calculated for 1980–2014 (full hydrological years of 

benchmark data available) in a five-year moving window. To improve the analysis and avoid 

scale distortions caused by differences in wetter or drier years between MSWEP and the 

combined precipitation dataset, the standard deviation error was normalized by dividing its value 

by the average precipitation of each five-year window. 

3.2.5 HEC-HMS modeling and flow analyses 

To validate the combined precipitation dataset obtained, a hydrological model was used to 

evaluate the accuracy of the simulated discharges when this dataset drives the model. The 

hydrological model used in this study is the one proposed in the suite of the HEC-HMS model 

(Feldman, 2000). It is a flexible and user-friendly suite of models, that can be used for many 

hydrological simulations like urban and rural flooding, flood warning systems, water uses 

planning, etc. The model can be applied since a quite simple event simulation to a semi-
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distributed model in a continuous simulation. The modules can be chosen according to the needs 

of the user, application, and expected accuracy (Feldman, 2000; Najim, 2013). For the 

application at flow forecast activities, the model must be able to run in a continuous simulation, 

the HEC-HMS model has this capacity when we choose a more sophisticated configuration, 

selecting specific modules at the loss method, transformation method and base-flow method 

(Scharffenberg, 2016). 

In this study, the HEC-HMS modeling framework was run at the daily time step, and the main 

modules chosen to satisfy a continuous simulation were the following: interception was modeled 

using the simple canopy (Bennett, 1998) and the simple surface (Bennett, 1998) methods, where 

occur the interception of part of the precipitation, the excess that arrives on the soil is captured 

until the storage capacity of the surface is filled then the runoff starts with the excess of 

precipitation. The water in the surface will infiltrate into the soil; to representing the rain-flow 

transformation, the soil moisture accounting method is the unique module able to run a 

continuous simulation, this loss method uses three layers to represent the dynamics of the water 

movement in the soil. For a given precipitation and evapotranspiration the model computes basin 

surface runoff, groundwater flow, losses and the deep percolation over the entire basin. (Bennett, 

1998); to represent the shape of the hydrograph, was used the Clark unit hydrograph, the principal 

components are the time of concentration, defining the travel time in the sub-basin and the storage 

coefficient, used for accounts storage effects on the linear reservoir. (Kull and Feldman, 1998); 

the linear reservoir method (Kull and Feldman, 1998) was used to represent the base flow, it uses 

a linear reservoir to model the recession of base-flow after a storm event, conserving the mass of 

the basin. The lateral outflow of the groundwater is connected with the infiltration from the soil 

moisture accounting loss method. For the routing method, were used two options depending on 

the complexity of the basin and the reach extension: Lag method or Muskingum-Cunge Routing. 

The split-sample approach (Klemes, 1986) was used to calibrate the hydrological model and test 

its robustness (validation). The time series is split into two and both parts are used for calibration 

and validation. The results in terms of model performance are evaluated for the two validation 

periods and compared with the performance results obtained over the same periods but with the 

calibration based on the complete period. The main objective of these various calibration and 

validation periods is to certify that the calibration of the total period, which is used in the next 

steps, is robust and has equivalent performance to that of the split-sample approach. Figure 3.3 

illustrates the periods of calibration and validation of the HEC-HMS model.  
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Figure 3.3 – Split-sample test method used in this experiment with two split periods with 10 years 

each of calibration/validation and the total period of calibration with 19 years and its validation 

separated into two decades to match the size of the split-sample validation periods. The blue 

hydrograph is the simulated flow, and the black is the observed flow. 

The models were calibrated in a daily time step and for each of the three sources separately. 

Large basins, which have different climatic characteristics along the main river, was divided to 

better represent the average precipitation in each region and produce a better runoff 

transformation. In total, there are 26 parameters to be calibrated in the HEC-HMS model, the 

most sensible are the time of concentration and the storage coefficient, linked with the 

transformation module; and the maximum infiltration rate, soil total storage, soil tension storage, 

and the maximum soil percolation rate, linked with the loss method. An initial manual calibration 

is performed to obtain the first parameter set. Then, the automatic calibration procedure, available 

in HEC-HMS model, is applied to obtain optimal parameters using the Univariate-Gradient 

Search Algorithm. For the Clark unit hydrograph parameters, the objective function was the 

Minimum of Peak-Weighted RMS Error, and for the loss parameters the Minimum Sum of 

Squared Residuals (Diskin and Simon, 1977) was applied. Since the objective functions are more 

sensitive to the volumes and peaks of the hydrographs, it is sometimes necessary to adjust the 

baseflow parameters to have a better fit at the recession of the hydrograph after running the model 

optimization. The calibration process is repeated three times (calibration period 1, period 2, and 

total period), for each precipitation data source and for the combined precipitation, and for each 

river basin. 
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3.2.6 Evaluation metrics  

To analyze the performance of the hydrological models run in this study (HEC-HMS model 

calibrated with the different observed precipitation datasets), the Nash–Sutcliffe efficiency - NSE 

(Nash, 1970), Kling–Gupta efficiency - KGE (Gupta et al, 2009), Mean Absolute Error - MAE, 

and R² (coefficient of determination) were used as performance indicators. These metrics are 

used to compare the simulated flows with the observed flows and were evaluated for the 

independent time periods defined in Figure 3 (October 1998 to September 2008; October 2008 

to September 2017). In our evaluation, the performance indicators obtained for the validation 

periods 1 and 2 were used to evaluate the performance of the hydrological model at each river 

basin. The performance obtained during the total calibration period was used to define the best 

precipitation data source for each river basin. 

NSE: measures how good the results of the model are compared with the mean observed 

discharge. Values equal to 1 indicate a perfect fit, and values smaller than zero indicate that the 

mean discharge is a better predictor than the hydrological model. 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑖

𝑠𝑖𝑚−𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

2

∑ (𝑌𝑖
𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)𝑛

𝑖=1

2       (3.7) 

where 𝑌𝑖
𝑠𝑖𝑚 is the simulated value at time step i, 𝑌𝑖

𝑜𝑏𝑠 is the observed value at time step i, �̅�𝑜𝑏𝑠 

is the mean of the observed value, and n is the number of time steps. 

KGE: was developed to provide a decomposition of the Nash–Sutcliffe efficiency analysis. 

Values close to 1 indicate a more accurate model. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

+ (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

 (3.8) 

where, in the first part, 𝑟 is the linear correlation between simulations and observations. In the 

second part (a measure of error variability), 𝜇𝑠𝑖𝑚 is the mean of the simulations 𝑌𝑖
𝑠𝑖𝑚, and 𝜇𝑜𝑏𝑠 

the mean of the observations 𝑌𝑖
𝑜𝑏𝑠. In the third part (a bias term), 𝜎𝑠𝑖𝑚 is the standard deviation 

of the simulations, and 𝜎𝑜𝑏𝑠 is the standard deviation of the observations. 

MAE: gives the average deviation between the simulated and the observed discharge. Values 

closer to zero indicate better performance. 
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𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌𝑖

𝑠𝑖𝑚 − 𝑌𝑖
𝑜𝑏𝑠|𝑛

𝑖=1      (3.9) 

where definitions are the same as in Equation (3.7). 

R²: is the proportion of the variance in the dependent variable that is predictable from the 

independent variable. A value close to 1 indicates a better fit of simulations to observations. 

𝑅2 =
∑ (𝑌𝑖

𝑠𝑖𝑚−�̅�𝑜𝑏𝑠)𝑛
𝑖=1

2

∑ (𝑌𝑖
𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)𝑛

𝑖=1

2       (3.10) 

where definitions are the same as in Equation (3.7). 

3.3 RESULTS 

3.3.1 Standard deviation of the annual precipitation errors 

Figure 3.4 shows the boxplot distribution of the standard deviation of the annual precipitation 

errors (𝜀𝑖 from equation (3.2)) obtained from the two sources of precipitation data and the 

combined precipitation dataset. The standard deviation values were evaluated over all 41 river 

basins and 19 years of data (Oct-1998 / Sep-2017), and in all basins the linear function was the 

best fit, this make sense once the water balance in an annual scale, was represented by a linear 

function (equation (3.1)). The standard deviation of annual precipitation errors from the 

benchmark MSWEP dataset, for all river basins and the period from 1998 to 2017, is also shown 

as reference. Table 3.2 shows the results for each river basin, as well as the weights applied when 

combining the two precipitation data sources. 

The dispersion of the annual precipitation errors is reduced when the different precipitation data 

sources are combined. The combined precipitation dataset shows a lower standard deviation of 

the annual precipitation errors than the original datasets on 15 out of 41 river basins, and its 

boxplot distribution is closer to the reference MSWEP dataset. Although the median value of the 

error standard deviation is close to the TRMM-MERGE dataset median value, the interquartile 

range between the 75th and 25th percentiles is smaller in the combined dataset. This measure of 

dispersion of the precipitation errors around the empirical function gives an idea of the 

uncertainty of each precipitation dataset. In the combined dataset more weight is given to the 

precipitation dataset with lower uncertainty. In Table 3.2, we can see that the TRMM-MERGE 
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dataset has more weight than the CPC dataset in 30 out of 41 river basins, and both have equal 

weight in 2 river basins.    

 

Figure 3.4 – Box-plot of the standard deviation of the annual precipitation errors (in mm) for 

areal precipitation over 41 river basins and for each precipitation dataset: CPC, TRMM-

MERGE, Combined CPC and TRMM-MERGE and the reference MSWEP. 
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Table 3.2 – Standard deviation of the annual precipitation errors (in mm) for each river basin and 

precipitation dataset (TRMM-ERGE, CPC and Combined TRMM-MERGE and CPC) and 

weights used for the combined precipitation dataset. The dataset with the best performance is 

colored. 

RIVER BASIN 

Standard Deviation of 

annual precipitation errors 

Weights used in 

the combined 

dataset 

TRMM-

MERGE 
CPC Comb. 

TRMM-

MERGE 
CPC 

 1) HPP 14_DE_JULHO 128 100 101 0.44 0.56 

 2) HPP DONA_FRANCISCA 163 180 163 0.53 0.47 

 3) HPP BARRA_GRANDE 196 124 134 0.39 0.61 

 4) HPP CAMPOS_NOVOS 141 135 130 0.49 0.51 

 5) HPP FOZ_DO_CHAPECO 237 181 198 0.43 0.57 

 6) HPP G_B_MUNHOZ 111 161 122 0.59 0.41 

 7) HPP SALTO_CAXIAS 149 290 159 0.66 0.34 

 8) HPP ITAIPU 115 126 116 0.52 0.48 

 9) HPP ROSANA 116 80 75 0.41 0.59 

10) HPP PORTO_PRIMAVERA 95 106 90 0.53 0.47 

11) HPP NOVA_AVANHANDAVA 199 126 138 0.39 0.61 

12) HPP AGUA_VERMELHA 169 101 120 0.38 0.62 

13) HPP FURNAS 85 121 96 0.59 0.41 

14) INC_HPP SAO_SIMAO 99 100 94 0.50 0.50 

15) INC_HPP ITUMBIARA 120 150 124 0.56 0.44 

16) HPP CAPIM_BRANCO_2 93 98 89 0.51 0.49 

17) HPP EMBORCACAO 97 146 110 0.60 0.40 

18) HPP ILHA_DOS_POMBOS 89 115 79 0.56 0.44 

19) HPP MASCARENHAS 85 93 80 0.52 0.48 

20) HPP ITAPEBI 43 54 42 0.55 0.45 

21) HPP TRES_MARIAS 110 153 110 0.58 0.42 

22) VELHAS 92 124 99 0.57 0.43 

23) PARACATU 93 103 89 0.52 0.48 

24) CARINHANHA 95 109 99 0.54 0.46 

25) HPP SOBRADINHO_INC 122 135 127 0.52 0.48 

26) HPP LAJEADO 76 100 72 0.57 0.43 

27) CONC_DO_ARAGUAIA 78 119 70 0.60 0.40 

28) HPP TUCURUI_INC 121 162 125 0.57 0.43 

29) BOA_SORTE 101 227 114 0.69 0.31 

30) HPP BELO_MONTE_INC 135 259 142 0.66 0.34 

31) HPP MANSO 198 266 200 0.57 0.43 

32) HPP TELES_PIRES 87 190 102 0.69 0.31 

33) EBEC 69 171 68 0.71 0.29 

34) HPP TAPAJOS 89 340 106 0.79 0.21 

35) PUERTO_SILES 72 81 73 0.53 0.47 

36) PENA_AMARILLA 152 136 139 0.47 0.53 

37) MIRA_FLORES 148 105 110 0.41 0.59 

38) INC_GUAJARA_MIRIM 93 93 89 0.50 0.50 

39) INC_ HPP_SANTO_ANTONIO 111 131 104 0.54 0.46 

40) HPP STO_ANTONIO_DO_JARI  228 257 137 0.53 0.47 

41) HPP FERREIRA_GOMES  250 461 271 0.65 0.35 
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3.3.2 Hydrological model performance 

The three precipitation datasets (TRMM-MERGE, CPC and Combined) were used to calibrate 

and validate the HEC-HMS hydrological model in all 41 river basins. Figure 3.5 shows the 

density functions representing the distribution of the four performance metrics analyzed: KGE, 

NSE, MAE (calculated in terms of specific discharge, in l/s.km² to permit comparison of the 

values in basins with different sizes), and R². The values obtained in calibration (validation) are 

in red (blue). Table 3.3 shows the median values of the metrics when considering all river basins, 

calibration and validation periods (as defined in Figure 3.3), and for each precipitation dataset.  

Table 3.3 – Median values of the performance metrics NSE, KGE, MAE and R² for the simulated 

flows in calibration and validation periods from the hydrological model HEC-HMS applied over 

41 river basins with the TRMM-MERGE, CPC and Combined CPC and TRMM-MERGE 

precipitation datasets. Calibration and validation periods come from the split-sample test of the 

total 1998-2017 data period. 

 

Metric 

Median values 

TRMM-

MERGE 
CPC Combined 

NSE Calibration 0.73 0.71 0.77 

Validation 0.71 0.68 0.75 

KGE Calibration 0.81 0.79 0.81 

 Validation 0.78 0.75 0.78 

MAE (l/s.km²) Calibration 3.87 4.07 3.45 

 Validation 3.94 4.33 3.64 

R² Calibration 0.69 0.66 0.70 

 Validation  0.67 0.64 0.69 

 

For most of the basins, the difference in performance metrics between calibration and validation 

is less than 10%.  The calibrated models can be considered to perform well over the large river 

basin dataset of this study. For most of the 41 river basins, the NSE and KGE criteria are higher 

than 0.60, and the R2 coefficient is higher than 0.55. Table 3.3 shows that median values of NSE 

and KGE vary from 0.71 to 0.81 in calibration, and from 0.68 to 0.78 in validation. Median values 

of R2 coefficient in calibration and validation are also very close. These results indicate that the 

model calibration is sufficiently robust to represent the characteristics of the basins in different 

periods. Figure 5 also shows that the combined dataset results in a more consistent calibration 

and validation performance, with sharper curves and fewer outliers of performance. The 

combined dataset is also the one that presents the highest median values of NSE, KGE and R2 

and the lowest median values of MAE (Table 3.3). These results can also be another indicator of 

the robustness and good performance of the combined precipitation dataset. 
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Figure 3.5 – Density functions of the values of the performance metrics NSE, KGE, MAE and R² 

for the simulated flows in calibration (line in red) and validation (line in blue) periods from the 

hydrological model HEC-HMS applied over 41 river basins with the TRMM-MERGE, CPC and 

Combined CPC and TRMM-MERGE precipitation datasets. Calibration and validation periods 

come from the split-sample test of the total 1998-2017 data period. 

3.3.3 Selection of the best precipitation dataset 

After the evaluation and validation of the performance of the hydrological model for each river 

basin, the best performing precipitation dataset was evaluated in terms of simulated discharges. 

The simulations were made using the model with parameters calibrated with each precipitation 

dataset and over the entire period (Oct1998–Sep2017). Figure 3.6 shows the MAE, KGE, NSE, 

and R² performance metrics obtained for the 41 river basins and the three sources of precipitation 

data (TRMM-MERGE, CPC, and the combined precipitation dataset).  

In general, the simulated discharges using the CPC precipitation dataset clearly performed worse 

for the four indicators analyzed. The simulated discharges using the combined precipitation 

dataset performs best for almost all basins. When the scores are not the best for this dataset in a 

river basin, the differences are less than 10% in the majority of the cases (not shown). The best 
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performance of the combined dataset is clearly shown with the NSE, MAE and R² criteria. In 

terms of the KGE criterion, 50% of the river basins present values higher than 0.79 when using 

the combined and the TRMM-MERGE precipitation datasets. There are small differences in 

KGE between these two datasets, although the use of the combined dataset resulted in fewer 

outliers in terms of performance and notably less river basins with low values of KGE. For 

individual river basins showing the lowest values of KGE with the combined dataset, the 

differences regarding the KGE with the TRMM-MERGE are lower than 8%.  

 
Figure 3.6 – Performance metrics MAE, KGE, NSE and R² for the simulated flows in the 

calibration period 1998-2017 from the hydrological model HEC-HMS applied over 41 river basins 

with the TRMM-MERGE, CPC and Combined CPC and TRMM-MERGE precipitation datasets. 

3.3.4 Extension of the combined precipitation dataset 

Once the evaluation showed that the combined precipitation of the two precipitation data sources 

achieved the best performance over the common period of data (Oct1998–Sep2017), the next 

step was to use the double-mass procedure (Section 3.2.3) to extend the combined dataset. The 

correlation of the double-mass curve between the longest dataset (CPC) and the combined dataset 

was used to extend the period of the combined dataset until 1979 (first year of data available in 

the longest CPC dataset). To validate the extended dataset obtained, the hydrological models 

were run for each river basin, with parameters calibrated for the period 1998–2017. The 
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performance of the streamflow simulations of this recent period was compared with the 

performance of the simulations obtained over the extended (validation) period of 1979–1997. 

Figure 3.7 shows the distribution of streamflow performance metrics (MAE, NSE, and R2) over 

the 41 river basins of this study.   

In terms of accuracy of the streamflow simulations (MAE), the average error for the extended 

(validation) period (1979–1997) is slightly lower than the average error of the recent (calibration) 

period (1998–2017). Considering the NSE criterion, the extended period has, on average, better 

performance (higher NSE values) than the recent period. For the R² correlation, the values 

obtained over the extended period are clearly higher than the values obtained over the recent 

period. These results validate the extension of the combined precipitation dataset in terms of its 

ability to provide streamflow simulations in the extended earlier period that match the observed 

streamflows as well as in the more recent period of the combined precipitation dataset. 

 

Figure 3.7 – Performance metrics MAE, NSE and R² for the simulated flows from the 

hydrological model HEC-HMS applied over 41 river basins with the Combined CPC and TRMM-

MERGE precipitation datasets in the calibration period 1998-2017 and in the validation extended 

period 1979-1998. 

 

 

3.3.5 Comparison of the combined precipitation dataset with the benchmark 

The combined precipitation dataset was evaluated against the benchmark MSWEP dataset. 

Figure 3.8 shows the evolution in time of the normalized standard deviation of the annual 

precipitation errors obtained for 1980–2017 in a five-year moving window. The thickest lines 
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represent the median of the values for all river basins and the shadowed areas show the 25th and 

75th percentiles (variability among river basins).  

 

Figure 3.8 – Normalized standard deviation of the annual precipitation errors with the combined 

precipitation dataset (red) and the benchmark MSWEP dataset (blue). Median values (lines) and 

25th and 75th percentiles (shadowed areas) are calculated in a five-year moving window and over 

41 river basins. 

The extended period of the combined precipitation (before 1998) tends to have a behavior closer 

to the benchmark. It shows similar standard deviation of annual precipitation errors, but higher 

values: median values are closer to 6% versus median values closer to 5% for the benchmark. 

The combined precipitation dataset does not exhibit a visible temporal trend. However, the 

standard deviation of the precipitation errors decreases after the year 2000, to increase again just 

a few years later.  

The standard deviation of the MWSEP annual precipitation errors is smaller and more stable over 

time comparatively to the combined precipitation dataset. It also shows less variability among 

river basins. After around 1998, there is a reduction in the MSWEP error standard deviation, 

probably due to the use of satellite observations to improve the estimates of precipitation. After 

2008, median values tend to increase again to values similar to those before 1998, although the 

variability among river basins remain reduced.  
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When the entire period (1980–2017) is considered, the combined precipitation dataset has a 

higher median and variability among river basins than the benchmark, but the difference can be 

considered small, especially considering that the combined precipitation is a real-time dataset, 

subject to errors that might be corrected afterwards, and the level of consistency is not 

comparable to a reanalysis dataset such as MSWEP.  

In terms of spatial distribution of the errors, there is no evidence of a pattern or regions with a 

clear higher normalized standard deviation of the errors (not shown). For almost all basins, the 

combined precipitation dataset displays values between 4% and 9%. Only a few basins have 

values higher than 11%, and they are not concentrated in the same region..  

3.3.6 Examples of simulated hydrographs using the combined precipitation dataset  

As showed in Sections 3.3.2 and 3.3.3, the combined precipitation dataset displayed good 

performance for the period used to build it from the two existing data sources, i.e., 1998–2017, 

with NSE and KGE values above 0.75. Figure 3.9 shows some examples of the simulated flows 

using the combined precipitation dataset for the complete period generated from this study, i.e., 

from October 1st, 1979 to September 30th, 2017. Three river basins were selected to represent 

the southern region (HPP Foz do Chapecó at the Uruguai River), the southeast region (HPP 

Emborcação at the Paranaíba River), and the north region (HPP Santo Antônio at the Madeira 

River). 

In the southern region, the weather does not present a clear seasonality and peaks of flow may 

occur in any month of the year. The simulated flows tend to underestimate the highest peaks and 

overestimate the lowest flows (NSE = 0.78). In the southeast region, seasonality is present, and 

the wet season is from November to March. The simulated flows tend to overestimate the flow 

peaks for the period 1983–1993 and underestimate them for 2005–2010. Despite these 

tendencies, this river basin also presents a good statistical fit, with NSE value of 0.76. In the 

north region, the biggest basin of our dataset is shown. A clear seasonality is observed, with the 

wet season from December to May. The simulated flows display an overall better and more stable 

performance, with a good fit to flow peaks and flow recession periods (NSE = 0.87). 
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Figure 3.9 – Simulated (blue) and observed (red) daily streamflows for three representative river 

basins from October 1st, 1980 to September 30th, 2017: Foz do Chapecó (Uruguai River) in the 

south region (top pannel), Emborcação (Paranaíba River) in the southeast region (middle panel), 

and Santo Antônio (Madeira River) in the north region (bottom panel). 

3.4 DISCUSSION 

The study area has a continental dimension exhibiting diverse patterns of weather and climate 

governed by large scale climate phenomena (Garreaud et al.,2009). We find climates with a clear 

precipitation seasonality, as the drier semi-arid weather at the northeast region (Tinôco et al., 

2018), the South America monsoon system responsible to the high precipitations at the southeast 



90 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

and central-western Brazil (Ferreira and Gan, 2011), and the intense convective storms from 

tropical weather at the Amazon region with (Garreaud et al.,2009). It is possible to find a weather 

with no seasonality, presenting wet and dry periods in any month of the year, the subtropical 

weather at the south region of the continent (Garreaud et al.,2009). 

The first part of this study is an evaluation of the precipitation uncertainty in two raingauge and 

satellite-based products (CPC and TRMM-MERGE), covering the study area of 41 river basins 

in Brazil and neighboring countries. This is an important step before performing any hydrological 

analysis or using available data in real time flow forecasting (Levi et al., 2017). The uncertainty 

is evaluated and used to combine the two precipitation data sources available in near real time. 

As a novelty the method proposed was applied in basins scale, therefore is possible to find a 

combination that satisfies the hydrological and weather specificity of each region, besides to take 

advantage of the quality control and knowledge already developed in each precipitation source, 

as the five levels quality control at the CPC dataset (Chen. M, et al., 2008).  It was found that the 

uncertainty, as measured by the standard deviation of annual precipitation errors, had the highest 

values in the CPC dataset for most of the basins. This result agrees with the finds of Rozante et 

al. (2010), when comparing the performance of TRMM-MERGE product with the gauge based 

product OBS90, showing a superior quality of the MERGE product over the gauge based product. 

When the precipitation data sources were combined, the new dataset displayed remarkably 

similar annual uncertainty to the one evaluated from the source which had the smallest standard 

deviation values. However, the uncertainty variability among the river basins was reduced in the 

combined dataset and became more similar to the one displayed by the reference, non-real time 

MSWEP precipitation dataset. This result is in line with results obtained by Beck at al. (2017), 

when comparing the results of a merged areal product based on satellite, rain gauge and reanalysis 

found a superior quality of the observations against the other individual sources. 

The data source presenting the lower standard deviation of annual precipitation errors is usually 

the one with the higher weight when combining the daily precipitation data. Due the fact of the 

method proposed blends the precipitation in a daily time step, and in a basin scale, the reduction 

of the annual uncertainty is captured at the shorter time scales. In several cases, large errors of 

each data source were smoothed during the combination process, and the resultant precipitation 

dataset displayed lower standard deviation of annual precipitation errors for 15 of the 41 basins. 

However, in a daily scale, where the hydrological models are calibrated and validated, the 

performance is better for almost all basins, reflecting a lower uncertainty also in a daily time step. 
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These results are the first indication that the combination of the different sources of data can lead 

to a precipitation forcing dataset that is more robust and display lower uncertainty in different 

time scales. This is relevant because lower uncertainty can result in better and more robust 

calibration of the hydrological model, with fewer differences in performance of flow simulations 

when comparing validation and calibration periods. Robustness in hydrological modelling is 

crucial for real time flow forecasting, when future events that were not experienced in the past, 

and hence were not included in the model calibration process, might occur and generate extreme 

situations of interest for hydrological risk and water resources management.  

When calibrating the hydrological models, we generated nine simulations, three for each 

precipitation forcing (TRMM-MERGE, CPC, and their combination). Following the traditional 

split-sample test, there were two calibration-validation procedures applied each to half of the 

sample. Additionally, one calibration covered the entire data period of almost twenty years. The 

results were evaluated using performance indicators (NSE, KGE, MAE, and R2) and it was shown 

that, for most of the basins, the results in terms of performance of simulated flows are similar 

among the different periods. This enabled the use of the hydrological model as a tool for the 

selection and validation of the precipitation datasets, including the combined precipitation 

dataset. Such procedure is relevant to seasonal streamflow forecasting, since the traditional 

method of ESP (Ensemble streamflow prediction) for issuing reliable hydrological forecasts 

requires long series of homogeneous historic precipitation data available at real time or near-real 

time.  

For the validation and selection of the best precipitation dataset, the model calibration over the 

complete period was used. Since the treatment of the model parameters uncertainty in not scope 

of this study, are not applied any treatment as the simulation and sampling based method (Monte 

Carlo) (Kuczera and Parent, 1998) or other. It is assumed that the application of the split sample 

test and the use of a long time series, to have the calibrations/validations can satisfactorily deal 

with the uncertainty of the parameters and bring parameters robust enough for the application, it 

is confirmed below, when we compare the performance results with other models. The 

combination of the two available precipitation sources showed the best performance for the 

majority of river basins in a daily time step. This result is in agreement with the conclusions 

drawn by Beck et al. (2017). The authors evaluated a large group of observed precipitation data 

sources and concluded that the combination of data sources into one reanalysis dataset provided 

better estimates of precipitation. The unique MSWEP (Multi-Source Weighted-Ensemble 
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Precipitation) dataset of global terrestrial precipitation dataset provides a high-resolution (daily 

and 3-hourly temporal and 0.1° spatial resolution) reanalysis dataset. While it was used in our 

study as a reference dataset to evaluate (and validate) the combined dataset built, its direct use 

for real time operations is not possible given the fact that this dataset it is not processed to be 

available in real time. Combined precipitation datasets are particularly useful when water 

managers have to operate over large areas, from tens to hundred square kilometers, and cannot 

compile different data sets in real time for each river basin under their management. The use of 

a unique and robust precipitation dataset is an asset in operational settings and continental-wide 

applications.  

The performance results of this study can be compared with other large-scale model experiments 

in terms of overall performance. For the NSE criterion, our results show the performance is 

higher than 0.60 for 97% of the basins and the average NSE over the study area is 0.75. The KGE 

criterion is also higher than 0.60 for all basins and the average value is 0.77. The average 

coefficient of correlation is 0.67 for the study basins. Siqueira et al. (2018), using a distributed 

hydrological model (MGB) and the MSWEP data from Beck et al. (2017) as precipitation 

forcing, obtained NSE values for discharge and water levels higher than 0.60 for 55% of the 

studied cases and KGE values higher than 0.60 in 70% of the studied cases of streamflow 

simulation. According to the authors, the global models (WaterGap, LISFLOOD, and 

HTESSEL/CaMaFlood) showed more than 40% of the basins in South America with an NSE 

and a KGE lower than zero. When comparing the HEC-HMS models calibrated in this study with 

the other experiments realized in South America, we can see that the results and the performance 

of the HEC-HMS models are robust and sufficient for the next step of the study, which is the 

application of the combined precipitation dataset and the calibrated model for seasonal 

streamflow forecasting.  

The combined precipitation dataset has a similar evolution of precipitation uncertainty (standard 

deviation of annual areal precipitation errors) as the reference MSWEP dataset, notably in the 

periods before late 1990s and early 2000s. The median values are however higher (generally, 1% 

higher), as well as the variability of standard deviation of annual areal precipitation errors among 

river basins. Although differences in median values are more important in the period 2005-2010, 

median values become comparable in the more recent period. Despite having more information 

available in the recent period, since satellite data is added to the TRMM-MERGE dataset, the 

uncertainty of the combined precipitation dataset is not reduced, as can be seen in the MSWEP 
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dataset, which presents a decrease in the variability of the standard deviation of the errors among 

the river basins in the period after 1998. These differences can be explained by the fact that the 

MSWEP dataset uses more information and more consistent data than real time datasets. Errors 

and inconsistencies are often present in real time datasets, such as the ones used to build the 

combined dataset in this study, so it is expected that this impacts the quality of the precipitation 

data. Despite these issues, an important aspect of the combined precipitation dataset is that it 

provides a more homogeneous dataset over the region, since no regions in the study area 

displayed specific patterns of errors. Patterns were identified previously in the CPC and TRMM-

MERGE precipitation datasets (Reis et al., 2019), with differences between the datasets growing 

toward the northwest of Brazil. After the combination of the datasets, the uncertainty did not 

show any clear dependency on the spatial location of the river basins. 

The TRMM-MERGE data-set used in this study was discontinued in May 2020, and now CPTEC 

provide a merge product called GPM-MERGE, based on the GPM satellite product which uses 

the new IMERGE retrieval algorithm which “fuses the early precipitation estimates collected 

during the operation of the TRMM satellite (2000 - 2015) with more recent precipitation 

estimates collected during operation of the GPM satellite (2014 - present) (Rozante et al., 2018, 

Skofronik-Jackson et al., 2018). The new CPTEC GPM-MERGE dataset, maintain the same gage 

stations used at the TRMM-MERGE product and the same MERG algorithm (Rozante et al., 

2010), which give privilege of the station data over the satellite information (Rozante et al., 

2020), According Rozante et al. (2018), in a study comparing the old product the TMPA-V7, 

based on the TRMM mission, with the new products IMERGE and the GSMaP-G from JAXA, 

they found that the IMERG-E and TMPA-V7 show a similar behavior in terms of Critical success 

index - CSI, Adjusted Equitable Threat Score - ETS, Probability of Detection - POD, False Alarm 

Ratio - FAR and Bias, with a better performance for IMERGE. These characteristics makes the 

new GPM-MERGE the natural substitute of the discontinued TRMM-MERGE, with similar 

behavior, but with a better performance and higher resolution of 0.1° x 0.1°. Therefore, due the 

similarity of the both products we believe the results obtained at this research with the TRMM-

MERGE, still valid with the use of the new GPM-MERGE available after May of 2020. 

The MSWEP (Beck et al., 2019) dataset used at this study, as benchmark, is the V2.2 daily 

precipitation data, with 0.1° special resolution, the MSWEP is in constant evolution and now is 

in the version 2.8, with the daily and 3 hourly time resolution and with the same spatial resolution, 

but the complete version still not in real time, due the latency of some of the products used 
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(MSWEP, 2021). However, this latency is reducing year after year, and we believe in the next 

years we will have some new real time products, adding these new products with high quality we 

believe it is possible to improve even more the results obtained until this moment of the research. 

3.5 CONCLUSIONS 

At this chapter, we access real-time precipitation datasets in an area with different weather 

patterns, as the convective storms at the Amazon region, the South America monsoon system 

responsible for the precipitations at the center area of the continent, the semi-arid weather at the 

north-east region, and the subtropical weather at the south region, we worked with a variety of 

basin sizes since 9300 km² until 382000 km², to have a good representation of the region for 

hydrological modeling. 

A sequence of steps was described that can be used to blend different real-time precipitation 

datasets, validate the results, and obtain a better near real-time observed precipitation forcing 

dataset for Brazilian river basins, with a long historical period to be used in future studies of 

streamflow forecasting. The main conclusion of this study is that a combination of existing 

precipitation datasets, weighted by the annual uncertainty of each original source, in a basin scale, 

reduces the uncertainty in a yearly basis, adapting the proportion of the precipitation sources for 

the characteristics of each basin and its specific weather. This yearly uncertainty reduction is 

potentialized when we analyze it in daily scale, the hydrological modeling demonstrate that this 

approach is able captures the quality control and intelligence behind the individual dataset, giving 

better results in terms of daily hydrological simulation than the performance of each source 

running individually. Therefore, providing a more trustworthy precipitation dataset also with a 

lower daily uncertainty.  

A drawback of combining data sources is the fact that datasets are often not available for the 

same period. In this study, we show that a possible practical solution is to extend the period of 

the combined precipitation dataset to cover the longest possible period, given the original 

datasets, by using the double-mass curve correlation. The validation of such extension is 

illustrated also using a hydrological model. The model allows users to evaluate, in terms of 

simulated discharges, if the performance of a precipitation dataset in the extended period, where 

not all data sources are available, remains similar and consistent to the one in the original period, 

where all data sources were available to build the combined precipitation dataset. Hydrological 

modeling proved to be a useful tool to evaluate the performance of different sources of 
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precipitation data, as also suggested recently by Levy et al. (2017), who highlighted the 

importance of the problem of “data selection uncertainty” when analyzing nine datasets in 

Brazil.. 

Finally, a comparison of the combined precipitation with the reference MSWEP, our benchmark 

dataset, showed that the combined dataset obtained in this study has a level of uncertainty 

compatible with the benchmark and can be potentially useful for real time seasonal streamflow 

forecasting. The examples of simulated flows showed that the calibrated models can correctly 

represent the long-term flow variations in different regions and climates in the study area. The 

areal precipitation products are reducing the latency and probably on the next years, will be 

possible to add new real time datasets and combine them, with potential to improve even more 

the results obtained until this moment.  

This study is limited to basins with big dimensions, higher than 9000 km², where a daily 

simulation makes sense and for the South America region, where the TRMM-MERGE (after 

2020 is GPM-MERGE) is available. For other regions, the method is applicable for the local 

products available, being necessary to evaluate the local results. For small basins, where hourly 

simulations are necessary, this approach also can be used to blend ground radar dataset, rain 

gauge data and satellite precipitation. But is necessary to compare with other merge algorithms 

and compare the hydrological results at this shorter time step. 
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THE QUALITY OF SEASONAL 
PRECIPITATION AND 

STREAMFLOW FORECASTS IN 
BRAZIL OVER A LARGE SET OF 

RIVER BASINS   

 

This chapter will be submitted as a paper to HESS -  Hydrology and Earth System Sciences 

Journal, with the following co-authors: REIS. A. A.; RAMOS. M. H.; WETTERHALL. F.; 

WEERTS. A.; FERNANDES. W. S. 
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4 THE QUALITY OF SEASONAL PRECIPITATION AND 
STREAMFLOW FORECASTS IN BRAZIL OVER A LARGE SET OF 
RIVER BASINS  

4.1 INTRODUCTION 

The optimal management of water resources is of great importance for many human activities. 

This is especially true in Brazil, where the majority of the electricity production comes from 

hydraulic sources (hydropower reservoirs and run-of-the river power plants). The Brazilian 

electric system is essentially hydrothermal, with hydraulic generation being responsible for 

approximately 67% of the electricity generation (EPE, 2019). With the increasing use of other 

renewable, but intermittent, sources of energy, such as wind and solar power, the role of 

hydropower plants (HPPs) is also becoming more relevant in terms of maintaining the stability 

of the interconnected power grid system, given their capacity to respond quickly under load 

variations (Schmidt et al., 2016).  

In Brazil, hydropower generation takes advantage of the diversity of climatic regions and the 

complementarity of seasonal river flows, as the rainy season occurs in different periods of the 

year from northern to southern parts of Brazil (ONS, 2016). Planning hydropower generation is 

therefore intrinsically related to predicting future river flows and seasonal inflows to reservoirs. 

The inflows to HPPs play a role in the planning of the electrical system operation as well as 

influence the energy price setting in the short-term market. Errors in the forecasts, for instance, 

can lead to the activation of thermal power plants in the wrong moment, increasing the prices of 

energy and also air pollution. 

Traditionally, seasonal climate and hydrological forecasts can benefit from the prediction of 

large-scale climate indexes (ENSO, NAO, etc.). For instance, Rimbu et al., (2005) use  

correlations with the SST (Sea Surface Temperature) for the seasonal forecasting of river flows 

in the Danube river basin; studies of droughts in the Amazon region have shown the usefulness 

of correlating the SST of the ENSO region to forecast the severe periods of low precipitation and 

high temperature (Lima and AghaKouchak, 2017); studies in Africa have explored the use of 

SST-based statistical indices in prediction models for precipitation forecast (Bahaga et al., 2019). 

In hydrology, an alternative approach is the ESP (Ensemble Streamflow Prediction) method 

(Twedt et al., 1977; Day, 1985; Wood and Lettenmaier, 2006). It is a well-established technique 

to generate an ensemble of possible future scenarios of streamflow several weeks and months 
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ahead. The method is based on using a continuous hydrological model to estimate initial 

hydrologic conditions (using real-time meteorological data as input) and future meteorological 

forecasts based on historical sequences of meteorological data from past years to obtain 

streamflow predictions (see, for example, Crochemore et al., 2016; Anghileri et al., 2016; 

Beckers et al., 2016; Bennett et al., 2017; Arnal et al., 2017; Prudhomme et al., 2017; Harrigan 

et al., 2018). The ESP method is widely used alone or, in some cases, in combination with large-

scale climate indexes or information coming from a GCM (General Circulation Model) (e.g., 

Crochemore et al. 2017 and references therein).   

With the increase in computational capacity, GCMs are constantly evolving, improving their 

spatial and temporal resolutions, incorporating new internal elements of the dynamics of 

precipitation formation, and moving from deterministic to probabilistic models, with the 

representation of scenarios generated from perturbations of the initial conditions (ECMWF, 

2015). Increasingly, GCM predictions have been used to provide global precipitation predictions 

(Zhao et al. 2020), and sometimes also input to hydrological models to generate global river flow 

predictions (Emerton et al., 2018) several months ahead. The system SEAS5 is the latest 

generation of the operational seasonal forecasting system of the European Centre for Medium-

Range Weather Forecasts (ECMWF). Since its introduction in November 2017, some studies 

have been carried out to investigate the performance of the model’s raw and bias corrected 

predictions in different regions of the world (e.g. Johnson et al., 2019; Ratri et al., 2019; Sánchez-

García et al., 2019). Recently, Gubler et al. (2020) evaluated the performance of ECMWF SEAS5 

over South America by investigating the quality of 3-monthly means of categorical forecasts of 

temperature and precipitation when compared against homogenized ground meteorological 

station data. The authors show that the dynamical SEAS5 predictions outperform statistical 

predictions based on a regionally-adapted ENSO index in most of the region, with lower 

performance observed for precipitation than for temperature. They also highlight the strong 

variability in space and time of the performance of precipitation predictions as well as the 

influence of quality problems detected in the observation ground data. Both aspects make it 

difficult to identify patterns of the SEAS5 prediction performance, although the authors suggest 

that SEAS5 predictions are reliable enough to be usefully applied in many regions in South 

America. 

In Brazil, diverse patterns of weather and climate governed by large-scale climate phenomena 

can be found (Garreaud et al.,2009), such as the South America monsoon system responsible for 
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high amounts of precipitation in the south-east and central-west regions in Brazil (Ferreira and 

Gan, 2011), the tropical weather at the Amazon region with intense convective storms (Garreaud 

et al.,2009), and the semi-arid weather at the northeast region (Tinôco et al., 2018). Although 

these weather patterns are marked by a clear precipitation seasonality, patterns with no 

seasonality, i.e., presenting wet and dry periods in any month of the year, can also be found in 

the subtropical weather in the south region (Garreaud et al.,2009). This diversity brings 

challenges for reliably predicting precipitation and river flows months ahead, and raises the 

question of which approach performs better when it comes to a user that has to issue predictions 

over a large set of river basins that are spread all over the country, such as hydropower water 

managers.  

The use of statistical approaches to predict precipitation in southern Brazil has shown good 

results for the extreme terciles (Viana and Sansigolo, 2016). A recent study has shown good 

performance for precipitation and temperature predictions from dynamical models, and, 

particularly, the added value of nesting regional climate models (RegCM4) with global models 

(CPTEC and CFSv2) to reduce prediction biases (Reboita at al., 2017). Biases and uncertainties 

in long-term precipitation predictions impact river flow forecasts and influence also the decisions 

on which approach should be used for seasonal hydrological prediction. Pilz et al. (2019) 

compared the performance of a statistical model with the performance of a process-based 

hydrological model (forced by meteorological hindcasts of the GCM ECHAM4.6, downscaled 

using empirical quantile mapping; Delgado et al., 2018) to forecast reservoir levels and droughts 

in the semi-arid northeast of Brazil. They concluded that statistical methods can perform well at 

regionally and monthly aggregated scales, but process-based methods (dynamical approaches 

using climate and hydrological models) are better when applications concern finer spatial and 

temporal scales, such as reservoir inflow forecasting. 

In seasonal hydrological prediction, the ESP approach, which uses hydrological models without 

climate models, may not be a good reference for water management when, depending on the 

period of the year, the climate forcing dominates the variability of the river flows over the 

hydrologic initial conditions, reducing the prediction capacity of the model (Shukla and 

Lettenmaier, 2011). In this case, the use of climate models, together with hydrological models, 

is an asset. This, however, introduces an additional source of uncertainty and can hence also 

introduce systematic biases in the predictions. In order to remove biases, it is generally useful to 

apply bias correction (BC) techniques or statistical postprocessors to correct the raw climate 
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forecasts (e.g., Verkade, 2015; Zhao et al., 2017). Crochemore et al. (2016) compared eight 

simple bias correction methods to correct precipitation seasonal forecasts (ECMWF SEAS4) and 

investigated how they affect the skill of streamflow forecasts over catchments in France that 

displayed a pluvial regime. The study showed that the empirical distribution mapping of daily 

values calibrated for each calendar month (EDMD-m) was particularly efficient for increasing 

the reliability of precipitation and streamflow forecasts, while linear scaling (LS-m) led to higher 

improvements in sharpness and accuracy. When looking at all monthly lead times of the forecast 

range, they also observed that the biases vary more with the calendar month of the forecast 

horizon than with the lead time. In Norway, Gudmundsson et al. (2012) compared a group of 

statistical transformations to correct the precipitation bias from the HIRHAM RCM forced with 

the ERA40 reanalysis and classified them into (1) distribution-derived transformations, (2) 

parametric transformations, and (3) nonparametric transformations, each differing with respect 

to the underlying assumptions. The methods included distribution mapping based on fitted 

theoretical or empirical distributions and linear scaling. The study highlighted the differences 

between the bias corrections and the necessity of testing methods prior to their application. The 

authors recommended using nonparametric methods because these methods were the most 

effective in reducing the bias and did not require any approximations of the empirical 

distributions.  

To our knowledge, similar studies at the catchments scale have not yet been carried out in Brazil. 

The aim of this paper is to investigate the quality of seasonal precipitation forecasts (from SEAS5 

ECMWF) and seasonal streamflow forecasts in Brazil over a large sample of river basins. Our 

goal is to gain insights on the quality of forecasts when using SEAS5 forecasts to drive a 

hydrological model and issue reservoir inflow forecasts for the operation of reservoirs that 

accommodate multiple uses, including hydropower and flood control. More recently, in Brazil, 

the hydrological modeling of river inflows to HPPs has been moving from a deterministic to a 

probabilistic approach using ensemble forecasting (ONS, 2019). However, this approach is still 

incipient and acquiring knowledge on the quality of seasonal ensemble predictions is crucial to 

guide the choice of techniques, data and approaches. With this context in mind, our objective is 

to answer to the following scientific questions: i) How do the precipitation forecasts from the 

SEAS5 ECMWF forecasting model perform in the Brazilian context of large river basins? i) Can 

the application of bias correction techniques improve the accuracy and the reliability of the 

precipitation forecasts for the Brazilian basins? iii) How does the precipitation bias correction 

reflect on the quality of the streamflow forecasts?  
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In Section 4.2, the methodology and dataset used are presented. In Section 4.3, the results 

obtained are provided. Section 4.4 is a discussion of the results, and the conclusions and planned 

future studies are presented in Section 4.5. 

4.2 MATERIALS AND METHODS 

4.2.1 River basins and observed hydrometeorological data 

The study area covers a large part of Brazil and parts of some neighboring countries in South 

America. It comprises 41 river basins, associated with 30 hydropower dams and HPPs of high 

importance for hydroelectric generation in Brazil. The basins display different climates and land 

uses, and have areas varying from 9,300 to 382,000 km². Figure 1 illustrates the study area, with 

the basins delimited in red and the groups (G1 to G8) with similar climatic and flow behavior 

delimited in black dashed lines. 

 
Figure 4.1– Spatial distribution of the river basins, with the HPP basins delimited in red and the 

groups (G1 to G8) with similar climatic and flow behavior in black dashed lines. 

 

Discharge data come from the ONS, the national operator of the electric system in Brazil. They 

are the natural flow time series for HPPs in Brazil. Actual flow is naturalized for each reservoir 

by the ONS by considering the regularization effects of the reservoirs and adding evaporation 
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and other water uses to obtain the natural flow time series of each reservoir (for more details, see 

ONS, 2005). 

The observed precipitation data are a blend of the TRMM-MERGE dataset, a real-time data 

provided by the CPTEC/INPE Meteorological Center of Brazil on a daily basis with 0.25° grid 

resolution (Rozante et al. 2010, Hufman, 2017; Harrigan et al., 2018), and the CPC dataset, which 

provides real-time observed data from the U.S. National Oceanic and Atmospheric 

Administration Climate Prediction Center, with 1° grid resolution and on a daily basis (Mingyue 

et al., 2008). These datasets were combined by merging the two sources, for each basin, weighted 

by the uncertainty of each dataset, based on the standard deviation of the errors of the observed 

precipitation versus the empirical function of annual flow and yearly precipitation (Reis et al., 

2019; Reis et al., 2021, submitted). This combination makes it possible to smooth the errors 

inherent in each source, producing more-trustworthy information (see Chapter 3). 

4.2.2 SEAS5 ECMWF precipitation forecasts 

ECMWF long-range forecasting system SEAS5 is based on a coupled ocean–atmosphere model. 

It consists of an ocean analysis system to estimate the initial state of the ocean, a global coupled 

ocean–atmosphere general circulation model to calculate the evolution of the ocean and the 

atmosphere, and a post-processing suite to create forecast products from the raw numerical 

output. Compared to its predecessor, System 4, the vertical and horizontal resolutions were 

increased and new physical modules were added to improve the ocean model,. The atmosphere 

model is based on the new ECMWF Integrated Forecast System (IFS), which was introduced in 

the medium-range forecasting system in November 2016. In SEAS5, some parameterizations and 

forcing are different from the IFS to better represent the processes that most affect the seasonal 

forecasting skill (ECMWF, 2017).  

The real-time seasonal forecast system SEAS5 consists of a 51-member ensemble with a seven-

month forecasting horizon. The ensemble is created using a combination of sea surface 

temperature, atmospheric initial condition perturbations, and the activation of stochastic physics. 

The stochastic physics settings are identical to those used in the medium-range ensemble forecast 

(ECMWF, 2017). The EMCWF SEAS5 is initialized every first of the month. Hindcasts are 

available from 1981 to 2016, on a daily basis, with an ensemble of 25 members and a spatial 

resolution of 0.4°. These data are made available to users to allow them to analyze the 
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performance of the systems and to calibrate the bias correction methods to be applied to the real-

time forecasts. 

4.2.3 Precipitation bias correction methods 

Were investigated two methods for bias correction (BC) of the precipitation forecasts from 

ECMWF SEAS5: LS – linear scaling and QM – quantile mapping. 

The LS is a simpler method, and consists of correcting the monthly mean values of the forecasts 

to match the monthly mean values of the observations (Teutschbein and Seibert, 2013). A scaling 

factor is calculated considering the ratio between the observed and forecast (ensemble median in 

this study) values. The scaling factor obtained through calibration, for each month, location and 

lead time, is then applied as a multiplicative factor to correct daily precipitation forecasts in each 

basin and for each forecast ensemble member. 

The QM is a more-sophisticated method, classified as distribution-derived transformation 

(Déqué et al., 2007; Block et al., 2009; Piani et al., 2010; Johnson and Sharma, 2011; Sun et al., 

2011; Kim et al., 2016). It involves correcting the precipitation forecasts so that their statistical 

distribution becomes closer to the statistical distribution of the observations. There are several 

ways to adjust the forecast and observed distributions or quantiles, and existing techniques 

mainly differ in terms of how the cumulative distribution functions (CDFs) are considered 

(Crochemore et al., 2016). In this study, the empirical CDFs (ECDFs) are used to build the 

probability distributions of the observed and forecast datasets. Then, the functions are used to 

make the ECDF of the forecast ensemble match the observed ECDF. The correction function is 

a nonlinear equation with the parameters calibrated for each location, month, and lead time. 

In both BC techniques, the correction is a transformation function of the raw forecast 

precipitation, with parameters calibrated from the use of hindcasts and observed precipitation. 

The methods are applied on areal precipitation at each basin. The parameters are dependent on 

the location, month, and lead time. 

𝐵𝐶𝑃𝐹𝛼,𝛽,𝛾 = 𝑓(𝑅𝑎𝑤𝑃𝐹𝛼,𝛽,𝛾)    (4.1) 

where 𝐵𝐶𝑃𝐹𝛼,𝛽,𝛾 is the bias-corrected daily precipitation forecast and 𝑅𝑎𝑤𝑃𝐹𝛼,𝛽,𝛾 is the raw 

daily precipitation forecast at the α location, β month, and γ lead-time. 
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4.2.4 Quality assessment of precipitation and flow forecasts 

Evaluation through a precipitation perspective 

The SEAS5 reforecast dataset (section 4.2.2) and the combined observed precipitation dataset 

(section 4.2.1) were used to evaluate the performance of areal precipitation forecasts over the 

river basins. Firstly, the raw forecasts were used to extract the mean precipitation for each of the 

41 studied basins. Metrics were used to evaluate how well the forecasts matched the observed 

precipitation in terms of reliability, resolution, correlation, the error of the median of the 

ensemble and overall performance (see below). All metrics were calculated using monthly 

precipitation values and forecasts were compared against the combined observed precipitation 

dataset. This evaluation of raw forecasts allowed us to identify patterns of performance and 

biases. Secondly, the BC methods LS and QM (section 4.2.3) were applied to investigate how 

these techniques can improve forecast performance and determine which technique is more 

efficient according to each metric analyzed. 

Evaluation through a hydrologic perspective 

The model used to generate the hydrological forecasts was the HEC-HMS, provided by the 

Hydrologic Engineering Center of the U.S. Army Corp of Engineers 

(https://www.hec.usace.army.mil/software/hec-hms/). It is a flexible and user-friendly 

hydrological model, which includes several hydrologic rainfall-runoff functions such as 

infiltration, unit hydrographs, and hydrologic routing. The configuration applied in this study 

uses a soil moisture accounting function to account for infiltration losses and evaluate excess 

precipitation. The transformation into surface runoff uses the Clark unit hydrograph (Kull and 

Feldman, 1998), and the Linear Reservoir method is used to represent baseflow (Feldman, 2000; 

Scharffenberg, 2016). The models for the 30 HPPs were built in a lumped mode, considering 

hydrologic homogeneous regions. Where the climate or land uses are very different, the basin 

was divided in sub-basins, which resulted in the 41 basins considered in this study (section 4.2.1). 

The calibration of the model was performed at a daily time step for the period 1998–2017, using 

the combined precipitation dataset as observed precipitation and observed flow data. Once the 

models were calibrated, we ran all the ensemble members of the SEAS5 seasonal precipitation 

forecast for all the basins using the DELFT FEWS-CEMIG system (Werner et al., 2006; Werner 

et al., 2013; Schwanenberg et al., 2015; Gibertoni et al., 2017). The ensemble seasonal 

precipitation forecast is used as input to the models, and the flow forecasts are obtained for all 

https://www.hec.usace.army.mil/software/hec-hms/
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basins to assess their performance. Similar to the precipitation analysis, the daily flows obtained 

are aggregated in monthly flows. They were analyzed with the same metrics (see below) and up 

to seven months of forecast horizon. Flow forecasts were compared against the simulated flows 

(obtained using the combined observed precipitation dataset as input to the hydrological model) 

in order to check exactly the effect of the precipitation bias correction at the flows.  

Metrics for forecast quality evaluation 

To assess the performance of the monthly-aggregated forecasts, the ensemble verification system 

(Brown et al., 2010) was used. The metrics presented below were calculated. 

To analyze the overall performance of the forecasts, we used the CRPS – Continuous Rank 

Probability Score (Hersbach, 2000). It measures the integrated square difference between the 

cumulative distribution function (CDF) of the forecast variable, 𝑃𝑖(𝑥), and the corresponding 

CDF of the observed variable, 𝐻(𝑥 − 𝑦𝑖). In practice, the CRPS is averaged over a number of 

cases (pairs of forecast-observation in the time series): 

CRPSi = ∫ [𝑃𝑖(𝑥) − 𝐻(𝑥 − 𝑦𝑖)]2∞

−∞
dx  (4.2) 

 

𝐶𝑅𝑃𝑆 =  
1

𝑀
∑ CRPS𝑀

𝑖=1 𝑖    (4.3) 

 

where 𝑃𝑖(𝑥) is the predictive distribution at time step i, 𝐻(𝑥 − 𝑦𝑖) is a step function that assumes 

a probability of 1 for values of the forecast greater than or equal to the observation 𝑦𝑖, and zero 

otherwise, and M is the number of pairs of forecast-observation.  

To assess the accuracy of the forecasts, we used the RME - Relative Mean Error. It measures the 

mean difference between a set of forecasts and the corresponding observations, divided by the 

mean of the observations. A positive RME implies overestimation and a negative RME, an 

underestimation. 

𝑅𝑀𝐸 =  
∑ (�̅�𝑖−𝑥𝑖)𝑛

𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

        (4.4) 
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where �̅�𝑖 is the mean forecast  at time step i, 𝑥𝑖 is observation, and n is the number of pairs of 

forecast-observation.  

In terms of reliability, we used the decomposition of the BS – Brier Score (Murph, 1973). The 

BS measures the average squared probability error of probability forecasts, and is applicable to 

a set of mutually exclusive discrete outcomes or classes (Brier, 1950). It can be decomposed into 

three terms: reliability, resolution and uncertainty. The reliability term (𝐵𝑆𝑟𝑒𝑙) measures how 

close the predicted probabilities are to the true probabilities, given that forecast.  If the reliability 

is 0, the forecast is perfectly reliable.  

𝐵𝑆𝑟𝑒𝑙 =
1

𝑁
∑ 𝑛𝑘

𝐾
𝑘=1 (𝑓𝑘 − �̅�𝑘)2                                     (4.5) 

where 𝑁 is the number of forecast-observation pairs, 𝑛𝑘 is the number of forecasts with the same 

probability category k , �̅�𝑘 is the observed frequency (actual outcome: 0 if it does not happen and 

1 if it does happen) and 𝑓𝑘 is the forecast probability (based on the percentage of ensemble 

members). 

To evaluate the degree to which forecasts can separate different situations, we used the resolution 

term of the decomposed Brier Score (Murph, 1973). The resolution term (𝐵𝑆𝑟𝑒𝑠) measures how 

much the conditional probabilities given the different forecasts differ from the sample 

climatology. The higher the resolution term is (the closer to 1), the better (i.e., the ensemble 

forecast has  resolution  enough  to produce very high and very low probability forecasts). When 

the forecasts always give the climatological frequency as forecast, the resolution term is zero 

(i.e., ensemble forecasts with low resolution) (Murphy 1996). 

𝐵𝑆𝑟𝑒𝑠 =
1

𝑁
∑ 𝑛𝑘

𝑘𝐾
𝑘=1 (�̅�𝑘 −  �̅�)2                                   (4.6) 

�̅� = ∑
𝑜𝑡

𝑁
𝑁
𝑡=1                                                                        (4.7) 

where 𝑁 is the number of forecast-observation pairs, 𝑛𝑘 is the number of forecasts with the same 

probability category k , �̅�𝑘 is the observed frequency (actual outcome: 0 if it does not happen and 

1 if it does happen) and  �̅� is the observed frequency of the event (sample climatology). 

https://en.wikipedia.org/wiki/Mutually_exclusive
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To measure the strength of the relationship between the observed data and the median values of 

the ensemble forecasts, we used the Correlation Coefficient (𝑟), where values close to 1 denotes 

a strong linear correlation between forecasts and observations. 

𝑟 =
𝐶𝑜𝑣(𝑥,�̅�)

𝜎(𝑥)𝜎(�̅�)
                                                                       (4.8) 

where 𝐶𝑜𝑣(𝑥, �̅�) is the sample covariance between �̅�, the median of the members of the ensemble 

forecasts and 𝑥, the corresponding observations, 𝜎(𝑥) is the standard deviation of the 

observations and 𝜎(�̅�) is the standard deviation of the forecasts.  

Finally, to assess the capacity of the ECMWF SEAS5 system to forecast low-precipitation 

periods during the wet season, we calculated the probability of detection (PD), i.e., the probability 

of precipitation values below the average precipitation for each basin, month, and lead time. The 

PD is the ratio between the number of hits (observed and forecast events) and the number of 

observed events (forecast and missed events). It ranges from zero to one; one represents a perfect 

score. We considered two levels of detection: the system’s capacity to detect values below the 

average, and the system’s capacity to detect droughts, defined as values below the third quartile 

of exceedance (value below which 75 % of the observed values are situated). This threshold is 

the same considered by Sant’Anna Neto (1990) for Brazilian basins. 

Skill scores were used when comparing the ensemble forecast system against a reference 

forecast. In the case of precipitation forecasts, the climatology of the combined precipitation 

dataset (Reis et al., 2021, submitted) was used as a reference forecast to benchmark the 

performance of the ECMWF SEAS5 precipitation forecasts. For the streamflow forecasts  the 

reference was the simulated flows. Skill scores were calculated according to the following 

equation: 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  
𝑆𝑐𝑜𝑟𝑒𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡− 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑆𝑐𝑜𝑟𝑒𝑝𝑒𝑟𝑓𝑒𝑐𝑡− 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
        (4.9) 

4.3 RESULTS 

4.3.1 How raw precipitation forecast skill varies over climatic zones and seasons 

Figure 4.2 shows the maps for the metric RME of the median raw catchment precipitation 

forecasts of the ensemble ECMWF SEAS5 (period 1981-2016), for the lead-times 1, 4 and 7 
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months, and for the wet (October, November, and December – OND, and January, February, and 

March - JFM) and dry (April, May, and June – AMJ, and July, August, and September - JAS) 

seasons. We can see that forecast performance depends more on the season of the year than lead-

time. For the same season, catchment precipitation forecasts show the same tendencies of 

overestimation (positive RME) or underestimation (negative RME) along the forecast horizon. 

During the wet seasons (OND and JFM), a great part of the basins, represented by the groups G1 

to G3, the south part of group G4 and group G7, show forecasts that tend to overestimate the 

observations, while the basins in the north and northeast region (groups G5 and G8 and part of 

groups G4 and G6) show a  tendency towards underestimation, especially for the trimester OND. 

During the period JFM, the number of basins with overestimation increases, and, at longer lead-

times, only basins from group G8 and part of G5 and G6 still present an underestimation 

tendency. 

During the drier months AMJ and JAS, when the basins from groups G2 to G7 receive very low 

amounts of precipitation, it is possible to see a generalized underestimation tendency, with 

exception of the basins from group G7, Madeira river, where forecasts tend to overestimate the 

observations. For all seasons, it is also possible to see that the intensity of the underestimation 

increases to the northeast direction. For the basins from group G1, where there is no precipitation 

seasonality, with possibility of both below-average precipitation and severe precipitation periods 

during  AMJ, the underestimation persists along this semester. 
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Figure 4.2 – RME of the median raw catchment precipitation forecast of the ensemble ECMWF 

SEAS5 (period 1981-2016), for the lead-times 1, 4 and 7 months, and the wet (OND and JFM), 

and dry (AMJ and JAS) seasons. 

Figure 4.3 shows the bias (forecast ensemble median/observed precipitation; Mbias) evaluated 

over monthly totals of the raw catchment precipitation forecasts of ECMWF SEAS5. Months are 

represented by the numbers 01 (January) to 12 (December) and for all seven lead times. To 

visualize the patterns more clearly, the basins were grouped by similarity of behavior and climate 

(groups G1 to G8). For most of the basins, the monthly bias presents a clear seasonal pattern with 

an overestimation (Mbias greater than 1, in blue) for most of the months during the rainy season 

of each group and an underestimation (Mbias smaller than 1, in red) during the low precipitation 

period, independent of the lead time. The exceptions are the Madeira River basin (group G7), 
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where the forecasts present an overestimation bias in all months, and the two basins above the 

equator line (group G8), where the opposite behavior is found, with an underestimation forecast 

bias observed year-round. 

 

Figure 4.3 – Monthly bias (Mbias) of the median raw catchment precipitation forecasts of the 

ensemble ECMWF SEAS5 (period 1981-2016), for lead-times 1 to 7 months, for each calendar 

month (vertical axis) and the 8 groups (G1 to G8, horizontal axis; see Figure 4.1) of river basins 

(blue indicates forecast overestimation and red, underestimation).  

 

Figure 4.4 shows a group of heat graphs for the metrics CRPSS, correlation coefficient, resolution 

(𝐵𝑆𝑟𝑒𝑠), and reliability (𝐵𝑆𝑟𝑒𝑙). The graphs are separated by trimester from wet to dry season 

(OND, JFM, AMJ, and JAS) and for each lead-time (1 to 7 months). 

In terms of overall performance (CRPS Skill score, CRPSS), the results shows that the raw 

precipitation forecasts present a performance superior to the climatology for the first month at 

most of the basins in all seasons; the exceptions are the basins from groups G7 and G8, which 

shows a poor performance in all seasons at almost all lead times. For the basins in the south 

region (G1 and G2), performance decreases from the second month, and become worse than the 

climatology until the last month of the forecast horizon (month 7). For the other basins (G3, G4, 
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G5, and G6), the forecasts are better than the climatology in all lead-times for almost all seasons; 

the exception is JFM, the trimester most difficult to forecast, where forecasts are skillful only in 

the first month lead-time. 

The results for the correlation coefficient show that the basins of the south region (G1 and G2) 

have a good performance only at the first month of lead time, with R² values higher than 0.5. For 

the trimester OND, the basins from groups G3 to G8 present values higher than 0.6 at all forecast 

horizons. On the other hand, the trimester JFM only shows good performance at the first month; 

from the second month ahead there is practically no correlation between precipitation forecasts 

and observations. 

In terms of resolution, the forecasts present lower values (better performance) only at the first 

month, losing resolution as lead time increases. The trimester JFM is clearly the most difficult to 

forecast, with a low resolution of the ensemble forecasts from the second month onwards in all 

basins (BS-SHA closer to zero).  

Concerning reliability, the worse results appear in almost all lead times for the basins of the 

groups G7 and G8, with values far from zero (best score). For the other basins, the best values 

are around 0.03 and 0.1, and better performance is seem at the first two months of forecast 

horizon. 
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Figure 4.4 – CRPS Skill score (CRPSS), correlation coefficient (R²), BS resolution (BS-SHA), and 

BS reliability (BS-REL) performance of the raw catchment precipitation forecasts of the ensemble 

ECMWF SEAS5 (period 1981-2016), for lead-times 1 to 7 months and the 8 groups of river basins 

(G1 to G8). Graphs are separated by trimester from wet to dry season (OND, JFM, AMJ, and 

JAS). 

4.3.2 How bias correction affects the quality of precipitation forecasts 

The LS and QM bias correction methods were applied to the raw catchment precipitation 

forecasts and scores were computed over the bias corrected forecasts. In Figure 4.5, the maps 

with the RME values for the wet season (trimesters OND in the first six maps on the top, and 

JFM in the last six maps on the bottom) are shown for the raw forecast (first column) and for the 

bias-corrected forecasts (LS and QM). The analysis shows that bias correction strongly improves 

accuracy already at the first month of lead time; the performance achieved at the first month is 

then slightly improved or remains the same at the subsequent forecast lead times (months 2 to 7). 

The spatial pattern of the errors after bias correction shows that both correction methods bring 

the RME values closer to zero in all basins, indicating a very good efficiency of these methods. 
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Overall, the efficiency of the QM BC method is slightly better over the basins and across lead 

times. 

 

Figure 4.5 – RME of the median raw (left) and bias corrected (LS, center and QM, right) 

catchment precipitation forecast of the ensemble ECMWF SEAS5 (period 1981-2016), for the 

lead-times 1 and 4 months, and the wet periods OND (first six graphs on top) and JFM (last six 

graphs on bottom). 

 The correlation coefficient analysis showed that forecast performance did not change after the 

application of bias correction to the raw forecasts (not shown here). In terms of CRPS skill score 

(CRPSS), figure 4.6 shows the results for the eight groups of basins, the four 3-month periods of 

the year and the seven monthly forecast lead times. The application of the bias correction 
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improves the skill of the forecasts for all basins and lead times. In terms of seasons, the 

improvements are more important for the periods OND (G1, G2, G7 and G8), JFM (G3 to G8), 

and JAS (G7 and G8). The results are similar for both bias correction methods. It is worth noting 

that the QM method produces bias corrected forecasts that have less skill than the reference 

climatology at some specific situations: JAS, G5, lead times 6 and 7 months ahead). This is an 

indication that the method is not performing correctly, as, at worst, it should give bias corrected 

forecasts with performance at least equal to climatology (Zhao et al., 2017).  

 

Figure 4.6 – CRPSS of the raw (top) and bias corrected (LS, center and QM, bottom) catchment 

precipitation forecast of the ensemble ECMWF SEAS5 (period 1981-2016), for lead times 1 to 7 

months, all the river basins groups (G1 to G8), and the periods OND, JFM, AMJ, and JAS. 

To evaluate the gain in performance in terms of forecast reliability and resolution, figure 4.7 plots 

the skill score of both metrics (𝐵𝑆𝑟𝑒𝑙 and 𝐵𝑆𝑟𝑒𝑠), with the raw forecast used as a reference 

forecast: i.e., positive (negative) values of the skill score indicate that the bias corrected forecasts 

perform better (worse) than raw forecasts. Equally performing forecasts will display skill scores 

equal to 1. The results show that, for most of the cases, there is a gain in reliability, with values 

close to 100% improvement. In terms of resolution, values vary around −10% to 10%, and they 

seem to be independent of a gain or loss in reliability. The results are similar with both bias 
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correction methods. In addition, no spatial pattern (not shown) was found, with all basins 

displaying a similar result. 

 

Figure 4.7 – BS reliability Skill Score (bs_rel2) versus BS resolution Skill Score (bs_sha2) of the 

bias corrected (LS in green and QM in red) catchment precipitation forecasts of the ensemble 

ECMWF SEAS5 (period 1981-2016), for lead-times 1 month (0720), 4 months (2880) and 7 

months (5040) and the 41 river basins. The skill cores use the raw forecasts as reference forecast. 

Since the overall results in performance were quite similar for both bias corrected methods, we 

carried out an analysis that focused on the wet, rainy seasons only (OND and JFM), with all 

metrics used in this study (BS reliability, BS resolution, Correlation coefficient, CRPS and RME) 

evaluated as skill scores, with the raw forecast as the reference. Figure 4.8 shows bar graphs with 

the percentages of the cases (over all basins and lead times) where each method (LS and QM) 

showed a better performance. Red (green) bars show the cases where the QM method scores 

better (worse) than the LS method. Blue bars contain the cases where both methods perform 

equally (‘TIE’). Here, we consider that performances are different if the scores differ by more 

than 0.05 points.  As the figure shows, in terms of reliability (BS-rel), overall performance 

(CPRSS) and accuracy (RME), the QM method is more effective and performs better than the 

LS method for most cases during the wet season. In terms of resolution (BS-res), the LS method 

is slightly better. Regarding the linear correlation, in the trimester OND, there is a large number 

of cases (more than 60%) where both methods perform equally. In the JFM period, most cases 
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are either associated with better performance from the QM method or equal performance (around 

35% of cases in each situation).  

 

Figure 4.8 – Percentage of cases where each bias correction method performs better than the 

other (red bars when LS method performs better; green bars when QM method performs better) 

or when both performs equally (blue bars; ‘TIE’) for catchment precipitation forecasts of the 

ensemble ECMWF SEAS5 (period 1981-2016) and the wet seasons (OND and JFM). Scores are: 

BS reliability (bs_rel), BS resolution (bs_sha), Correlation coefficient, CRPS Skill score (CRPSS) 

and RME (rme). Percentage of cases include all 41 basins and 7 monthly lead times. 

 

To evaluate the capacity of the model to forecast low monthly precipitation amounts during the 

wet season, two situations of precipitation deficit were considered: i) precipitation below the 

average monthly precipitation, and ii) precipitation below the quartile 0.75 of probability of 

exceedance. It was seen (not shown here) that the raw forecasts exhibit a low capacity to predict 

values below the average for the majority of the basins, even at the first month of lead time with 

POD – Probability of Detection skill scores below zero for many basins. Concerning the very 

low precipitation deficit situation (below quartile 0.75), forecast skill is limited to the first month 

of lead time, and this for both raw and bias corrected forecasts, with, in general, the QM method 

displaying better results than the LS method (not shown here). Specifically for the performance 

of the QM method, Figure 4.9 a heat graph with the performance of the bias corrected 

precipitation forecasts for the 7 lead times (0720 corresponds to month 1 and 5040 to month 7; 
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vertical axes) and for precipitation deficits during months JFM (01, 02, 03) and OND (10, 11, 

12) for all 41 basins (horizontal axis). The skill score in the plots refers to the first situation of 

precipitation deficit (i.e., capacity to forecast below average monthly precipitations). Blue (red) 

colors indicate that the bias corrected forecasts are better (worse) than the climatology (the 

reference forecast) in terms of forecasting precipitation below the average. For all basins, except 

two (basin #31 and #33), the bias corrected forecasts are skillful at the first month lead time. In 

many basins, they remain skillful until the maximum lead time of seven months. The efficiency 

of the QM method to improve the performance of the raw precipitation forecasts is confirmed. . 

 

Figure 4.9 – POD Skill Score for detecting monthly precipitation amounts below the average for 

the months of January, February, March, October, November, and December (01, 02, 03, 10, 11, 

12), lead time 1 to 7 months (vertical axis) and the 41 basins (horizontal axis). 

4.3.3 Impact of bias correction of precipitation forecasts on streamflow forecasts 

To understand the specific effect of precipitation bias correction on the streamflow forecasts, the 

performance of the streamflow forecasts is evaluated when running the hydrological model with 

raw and bias corrected precipitation forecasts. The quality of the forecasts is evaluated against 

the simulated streamflows obtained when using the observed precipitation (combined 

precipitation dataset) as forcing. Figure 4.10 shows the monthly biases (Mbias) of the median 

ensemble streamflow forecasts when using raw and bias corrected (LS and QM) catchment 

precipitation forecasts of the ensemble ECMWF SEAS5 (period 1981-2016). We show the 



118 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

results for lead times 1, 4 and 7 months, for each calendar month of initialization of the forecasts 

and for the 8 groups of river basins. The effects of the LS and QM bias correction methods on 

the quality of streamflow forecasts can be clearly seen, as the initial bias is strongly reduced after 

bias correction. The results of the LS and QM bias correction methods are very similar.   

 

Figure 4.10 – Monthly bias (Mbias) of the median streamflow forecasts when using raw (left) and 

bias corrected (LS, middle; QM right) catchment precipitation forecasts of the ensemble ECMWF 

SEAS5 (period 1981-2016), for lead times 1, 4 and 7 months, for each calendar month (vertical 

axis) and the 8 groups (G1 to G8, horizontal axis; see Figure 4.1) of river basins (blue indicates 

forecast overestimation and red, underestimation). 

 

The analysis of RME (not shown here) indicated similar results. The RME was significantly 

reduced in all basins and for all seven months horizon. Only in group G6, Madeira River, the 

systematic overestimation becomes a small underestimation, although, in absolute values, flow 

forecast accuracy is improved by the correction of biases in the raw precipitation forecasts. The 

analysis of the BS reliability and resolution (not shown here) showed that the reliability is 

improved for all basins and lead times, with the QM method displaying a better performance than 

the LS method, while the resolution did not significantly change with the application of bias 

correction. The same was observed for the correlation coefficient (not shown here). The results 
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were similar to those obtained for the precipitation forecasts, i.e., the correlation did not change 

after the application of the bias correction methods. 

Figure 4.11 shows the performance results obtained with the CRPS Skill Score (CRPSS) of the 

median of the ensemble streamflow forecasts, using as reference forecast the simulated flow, 

while Figure 4.12 provides a spatial representation with a focus on the wet season (OND, first 

six upper panels, and JFM, last six bottom panels) and lead times 1 and 4 months. 

We can see that, after bias correction, the performance is improved, resulting in better forecasts 

for almost all basins and seasons across the seven months of lead time (figure 4.11). The 

exception is the season JFM, when the forecasts for groups G1 to G4 were improved only until 

3 months of lead time. In general, the results of the QM method are slightly better than those of 

the LS method. For the dry season, the forecasts after the bias correction have higher quality than 

the climatology in the April, May, and June (AMJ) trimester for all basins for the seven months 

forecast horizon. When the transition to the wet season begins, the ability is reduced, being usable 

around the second-month lead time for groups G1–G3 and for the complete forecast horizon for 

groups G4–G8.  

From Figure 4.12, we can see that, at the beginning of the wet season (OND), the raw and bias 

corrected forecasts produce streamflow predictions with better quality than the climatology of 

the simulated flows. The benefits of the corrections applied to the precipitation forecasts are more 

noticeable after the second month of lead time, when the hydrological initial conditions have less 

influence on the flow forecasts. This is shown by the maps for a lead-time of four months ahead, 

which show an improvement in the quality of the forecasts, especially in the southern region. The 

second part of the wet season (JFM) is the most difficult to forecast, with the raw flow forecasts 

demonstrating more skill than the climatology only at the first month of lead time for most of the 

basins. The bias correction shows a visible improvement only after the second month of lead 

time, with its impact becoming clear at the fourth month of lead time, as shown in Figure 4.12, 

with values better than the climatology for all basins. The bias correction of precipitation 

forecasts was able to generate streamflow forecasts with a CRPSS superior or equal to the 

climatology of the simulated flows (positive values of CRPSS in Figure 4.12) for most of the 

basins and up to seven months ahead. The QM correction was again more effective than the LS 

method 
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It is important to notice that streamflows are strongly influenced by the hydrological initial 

conditions at the first month of lead time, especially in the case of large river basins. In this 

situation, the performance of the streamflow forecasts is not strongly impacted by the 

performance of the precipitation forecasts and, as a result, the values of the CRPSS practically 

do not change after the application of the bias correction methods to the precipitation forecasts, 

as shown in Figures 4.11 and 4.12. The performance at the first month of the flow forecasts only 

reflects the impacts of the bias correction applied to the precipitation forecasts in the small basins 

located in the southern region (group G1). In this group, the time of concentration of the basins 

is approximately one week, therefore the benefits of the bias correction appear more clearly 

already in the first month. For the other basins, the improvements produced by the bias correction 

appear only after the second month of lead time, and increases along the forecast horizon. 

 

Figure 4.11 – CRPSS of the streamflow forecasts when using raw (top) and bias corrected (LS, 

middle; QM bottom) catchment precipitation forecasts of the ensemble ECMWF SEAS5 (period 

1981-2016), for lead times 1 to 7 months, all the river basins groups (G1 to G8), and the periods 

OND, JFM, AMJ, and JAS. 
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Figure 4.12 – CRPSS of the streamflow forecasts when using raw (left) and bias corrected (LS, 

center and QM, right) catchment precipitation forecast of the ensemble ECMWF SEAS5 (period 

1981-2016), for the lead-times 1 and 4 months, and the wet periods OND (first six graphs on top) 

and JFM (last six graphs on bottom). 

4.3.4  Validating the bias correction using an independent period in real-time forecasting 

The parameters of the bias correction methods were calibrated for the period 1981–2016, with 

ensembles of 25 members coming from the hindcast made available by ECMWF. The real time 

ECMWF SEAS5 precipitation forecasts have however 50 members. In order to visualize the 

effect of the bias correction on real-time streamflow forecasts, we present an example where we 

apply the bias correction to an independent time series of real-time forecasts. The real-time 

validation period considered is 2017–2019. Figure 4.13 shows the application of the QM bias 

corrected precipitation to the forecast of streamflows in three selected HPPs. The black line is 

the observed flow; the red line is the median of the raw forecast, with, in light red the envelop 
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corresponding to the percentiles 20 and 80 of the raw ensemble; and in blue, we show the median 

and the same 20 and 80 percentiles for the flows generated using the QM bias corrected 

precipitation forecast. For visualization purposes, all forecasts are initialized every three months 

and the hydrographs correspond to a lead time of 1 to 3 months.  

The first graph shows the 1 to 3 months ahead hydrograph of the HPP Ferreira Gomes, located 

in the northern region of Brazil. In this basin, the raw precipitation and streamflow forecasts 

showed a systematic underestimation during the BC calibration period. This underestimation is 

also visible in the graph for the raw forecasts during 2017–2019. The precipitation bias correction 

was able to improve the forecasts, reduce errors, and deliver flow forecasts that are closer to the 

observed values.  

The second graph shows the HPP Santo Antonio, in the northwest region at the Madeira River. 

This basin presents the opposite behavior, with a systematic overestimation of the raw 

precipitation and streamflow forecasts. The bias correction was also able to correct this positive 

bias, reduce the errors and drive the forecasts to values closer to the observed flow in the 

calibration-independent period shown here (2017–2019).  

The last graph shows the hydrographs for HPP Itaipu, in the southeast region. This HPP shows a 

mixed bias, with overestimations during the wet season and underestimations during the dry 

period. The application of the bias correction reduced the flows during the wet season and 

increased those during the dry season, decreasing the errors of the forecasts. However, the 

improvements in forecast performance were smaller than those observed in the two previous 

cases.  

The graphs show clearly that the main biases coming from the uncertainty of the precipitation 

forecasts can be treated with post-processing of raw precipitation forecasts. However, along the 

forecasting chain, errors coming from the observed precipitation data, the initialization of the 

hydrologic model and the hydrologic model itself (calibrated parameters and structure) can also 

affect the performance of the flow forecasts. This indicates the need to also investigate post-

processing techniques to apply to the flow forecasts in the future. 
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Figure 4.13 – Comparison of mean monthly flow hydrographs, with forecast initialized every 

month, when using raw (red) and QM bias corrected (blue) catchment precipitation forecast of 

the 50-member ensemble ECMWF SEAS5 over the period 2017-2019. Observed flows are 

indicated (black), as well as the percentiles 20-80 for the ensemble forecasts (shadowed areas). 

Graphs are for the HPP Ferreira Gomes (top), HPP Santo Antonio (middle), and HPP Itaipu 

(bottom). 

 

4.4 DISCUSSION 

Performance of raw precipitation over climatic zones and seasons 

The results of the analyses of the bias behavior show similar results to those of Crochemore et 

al. (2016), with a bias that is not strongly dependent on the lead time, but with a clear pattern 

linked to the calendar month (initialization of the forecast). For basins from the south region, 

groups G1 and G2, raw precipitation forecasts display good performance in terms of reliability, 

resolution and correlation only at the first month of lead time, decreasing strongly at the longer 

horizons. The basins from groups G3-G6 exhibit the best performance at the first month, with 

performance still higher than the climatology up to seven months ahead, in almost all seasons. 
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The exception is the trimester JFM, the hardest period for the forecast model, when forecast 

performance decreases strongly after the second month of lead time. During this period, the 

forecasts have a very low resolution, which is a problem already observed in seasonal forecasts 

(Barnston and Mason, 2011). For the basins in groups G7 and G8, which display systematic 

overestimation and underestimation of the precipitation, respectively, there is a low performance 

in all horizons and seasons. In summary, when the analyses were divided in trimesters, to have a 

clear visualization of the variability of performance according to the seasons of the year, the 

overall performance of the raw precipitation forecast showed low scores mostly during the wet 

season, especially for longer lead times. 

When we analyze performance with a spatial perspective, we notice, as also observed by Gubler 

et al. (2020) and Zhao et al. (2020), that the performance of the raw forecasts vary strongly, 

depending on the region studied, which highlights the need to separate the basins in clusters to 

drive the analysis towards the identification of spatial patterns. During the wet season, the basins 

from south and western area in groups G1-G3, part of G4 and G7 show a pattern of raw forecasts 

that overestimate the observed precipitation. The groups G4-northeast part, G5, G6 and G8 

present a clear underestimation of the precipitation. During the dry season, almost all basins 

present a tendency of underestimation, with exception of those in the group G7. The raw forecast 

performance analysis showed, in general, an underestimation tendency going towards the north 

and east regions, as revealed in the RME maps. The overestimation of the catchment precipitation 

in the Madeira River, especially for basins closer to the Andes Mountains, is probably caused by 

the orographic effects that tend to produce more rain in the forecast models, and can also be 

affected by the lack of information  on observed precipitation in the region. In general, the basins 

from the southeast and north region (groups G3-G6), where we have a clear seasonality of the 

precipitation signal, tend to present a better performance in all forecast horizons in terms of 

reliability, resolution and correlation. The south region G1 and G2, with no clear precipitation 

seasonality, only exhibits a reasonable performance at the first month horizon. The basins in 

groups G7 and G8, because of their systematic bias during the whole year, show the worse 

performance. 

The impact of bias correction on the quality of precipitation forecasts 

After the application of the bias correction methods, there is a clear improvement in the 

performance of the precipitation forecasts in all basins and lead times for both the LS and QM 

https://journals.ametsoc.org/view/journals/apme/58/3/jamc-d-18-0066.1.xml?tab_body=fulltext-display#bib8
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correction methods. This shows that the methods were effective in bringing the forecast 

precipitation closer to the observed data. 

The results in terms of accuracy showed that the bias correction methods were very effective in 

removing the error of the median of the precipitation ensemble, especially during the wet season, 

bringing the RME to values close to zero in all basins and for all lead times for both correction 

methods. They also showed that the QM method was more effective in correcting the bias of the 

forecasts (similar results were obtained in other regions by, for instance, Piani et al., 2010; 

Mehrotra and Sharma, 2016; Crochemore et al., 2016; Ratri et al, 2019). The evaluation of the 

correlation coefficient showed that the correlation of the bias corrected precipitation forecasts 

with the observations remained similar to the correlation of the raw forecasts with the 

observations. This is an expected result since the methods applied do not target corrections to the 

temporal correlation between the variables. In terms of forecast reliability, the results showed a 

general gain in performance during the wet season, in all basins and for all lead times after bias 

correction, with similar  results for both techniques. In terms of  resolution, the analysis did not 

show significant changes after the application of bias correction. When evaluating the tradeoff 

between reliability and resolution, it was shown that the highest gains in reliability imply only a 

small change in resolution, varying between −10% and 10%. Therefore, in our case, the gain in 

reliability brought by the bias correction methods does not imply a significant loss in resolution. 

Although the LS method is simpler than the QM method, the results obtained in terms of 

performance of bias corrected catchment-scale precipitation forecasts were similar in many 

cases. The QM method showed to be more effective in improving the performance in a large 

percentage of cases in terms of overall skill (CRPSS), reliability (BS-reliability), accuracy 

(RME), and linear correlation (correlation coefficient).  

The bias correction methods also showed ability to improve the forecast of precipitation deficits 

below average values during the wet season. Knowing that the precipitation in the future months 

might be below the monthly average provides valuable information for reservoir operation and 

energy trading. Extreme conditions are also important for reservoirs, particularly when the 

multiple uses of the water (agriculture, water supply, tourism, etc.) increase the pressure over 

water use for electricity production. In our analysis, when looking at stronger deficits (below 

percentile 75), the capacity to forecast drier conditions during the wet season was not improved 

with the bias correction. This may be due to the limitations of the seasonal climate forecasting 
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models to forecast extreme events and to remain sharp (i.e., avoid a large ensemble spread) at 

longer lead times (ECMWF, 2015). As a result, forecasts tend to stay closer to the average of the 

climatology at longer lead times. The limited efficiency of the bias correction methods when 

forecasting extreme precipitation deficits may also be linked to the scales adopted in this study 

(monthly aggregations and catchment-scale precipitation values). Higher time resolution (daily 

scale) or the analysis of smaller basins may provide more insight in terms of the ability of 

seasonal predictions to forecast extreme weather conditions. 

The impact of precipitation forecast bias correction on streamflow forecasts 

For the streamflow forecast performance, the results showed that the bias correction of the raw 

precipitation forecasts improves also the skill of the flow forecasts for all the metrics considered 

in this study. This cascade of improvement in performance, from precipitation to streamflow, 

due the correction of precipitation biases is aligned with the results of other studies (e.g. 

Hagemann et al., 2011; Zalachori et al., 2012, Lucatero et al., 2017). However, in our study at 

the seasonal scale, and given the size of the studied basins, the differences in performance 

between the streamflow forecasts issued when using the raw and the bias corrected precipitation 

forecasts is more clearly visible from the second month of lead time only, when the forecast 

becomes less sensitive to the initial conditions of the hydrological model and more sensitive to 

the precipitation forcing. Streamflow forecasts are strongly affected by the hydrological initial 

conditions (Lucatero et al., 2017), but also by errors from the hydrological model and the 

observed precipitation used to calibrate and run the model. If model and observations were 

perfect, the same benefit observed in the precipitation forecasts from the bias correction would 

probably be automatically observed in the streamflow forecast. This raises the question on the 

need to bias correct also hydrological model outputs before their use in decision-making. 

Between the two bias correction methods investigated in this study, when taking into account all 

the skill metrics computed, the QM method performed best. The QM corrected flow forecasts 

were tested against the simulated flows. In terms of CRPSS, the results are superior for all seasons 

and basins, improving the performance and extending the reliable forecast horizon. As also 

observed in the precipitations forecasts, the trimester JFM exhibits the lowest performance. In 

terms of accuracy, the performance was improved in all basins, especially at the wet season, 

reducing the overestimations. 
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In general, the performance of the forecasts displayed a spatial trend. For the basins in the 

southern region of Brazil, where there is no seasonality, without a clear wet and dry season, and 

with the possibility of heavy rains in any month, the forecasts had the worst performance, with 

good skill only in the shorter horizons, generally two months ahead. In the basins in the north 

region, the forecasts showed better performance and up to longer horizons. In this basins, the 

climate is more determinant to the skill of the forecasts than the size of the basin. For example, 

the forecasts in the basin associated with the HPP Manso, located in the center-north region, 

which is a small basin in our experiment, had a forecast performance like the one observed in the 

large basins of the northern region, showing higher skill and for a longer horizon than the basins 

in the southern region with similar area. 

Finally, the study showed how the corrected precipitation forecasts can affect the operational 

flow forecasts, which were run over an independent period from the period used to calibrate the 

bias correction methods. The changes are clear, especially in basins with systematic bias of 

under- or over-estimation. For basins where the errors are lower or can be related to both under- 

and over-estimation, the benefit is less striking. 

4.5 CONCLUSIONS 

The main conclusions after addressing the forcing uncertainties in the seasonal streamflow 

forecasts by applying bias correction methods to improve the precipitation forecasts from the 

ECMWF SEAS5 seasonal ensemble forecasting system to 41 basins in Brazil are presented 

below. 

• In terms of precipitation forecast, the errors observed in the raw forecast depend more on 

the calendar month than the lead time, with a systematic overestimation during the wet 

season and an underestimation during the dry season for most of the basins.  

• A spatial pattern was also noted during the wet season (OND–JFM), showing an 

underestimation going to the north and east regions and an overestimation in the direction 

of southern and west regions.  

• The LS and QM bias correction methods are highly effective in correcting the biases of 

the raw precipitation forecasts, especially during the wet season. 
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• Although the BC methods provide both good results, the QM bias correction presents the 

best performance in the majority of cases (basins, lead times and scores, all together). 

• The QM bias correction particularly improved the capacity of the model to forecast wet 

months or precipitation deficits below the monthly averages, which are both  important 

information for reservoir operation and energy trading. 

• The precipitation bias correction affects the performance of the streamflow forecasts, 

reducing the errors and presenting good forecast performance along the seven months of 

forecast horizon for almost all basins. As observed in the precipitation forecasts, the 

trimester JFM is also the most difficult for the flow forecasts.  

• The climate showed to be more determinant in the flow forecast performance than the 

size of the basin in the small basins located in the regions with a strong precipitation 

seasonality; in this basins the forecasts performed better than in the larger basins in the 

south region, where there is not a marked seasonality of precipitation and precipitation 

variability along the year is higher. 

• The parameters calibrated for bias correction, using 35 years of 25-member precipitation 

hindcasts, were effective to correct precipitation forecast biases and improve the 

performance of streamflow forecasts in an independent period of validation that reflects 

the current period (2017-2019). The ensemble with 50 members displayed flow forecasts 

closer to the observed flows when the bias corrected precipitation forecast was used in 

the hydrological model. 

All the results, performances, and the calibration of the parameters of the bias correction methods 

and of the hydrologic models were based on a specific observed precipitation dataset available 

in real-time (developed in chapter 3). If the analyses were done with other proxy to observed 

(ground station) precipitation , as reanalysis precipitation data, different conclusions might be 

reached.  
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CHAPTER 5: 

IMPROVING THE 
PERFORMANCE OF ECMWF 

SHORT RANGE AND 
SUBSEASONAL PRECIPITATION 

FORECASTS IN SOUTH 
AMERICAN CATCHMENTS  

 

This chapter contains material for a paper to be submitted to the journal CLIMATE SERVICES, 

with the following co-authors: REIS. A. A.; RAMOS. M. H.; WETTERHALL. F.; WEERTS. 

A.; FERNANDES. W. S. 

 

  



130 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

 

5 IMPROVING THE PERFORMANCE OF ECMWF SHORT RANGE 
AND SUBSEASONAL PRECIPITATION FORECASTS IN SOUTH 
AMERICAN CATCHMENTS   

5.1 INTRODUCTION 

Precipitation is one of the most important information for many economic activities related with 

water resources and uses, such as agriculture, recreation, transportation, energy production, 

among others. An important source of precipitation forecast information are the numerical 

weather prediction (NWP) models, which provide predictions from the short range (several days 

or weeks ahead, multiple times per day) up to global seasonal forecasts (several months ahead, 

once a month). NWP models have shown advances during the last decades (Hamill et al., 2013), 

with notable improvements on their physics, the estimation of forecast uncertainty (ensemble 

forecasting), predictability and predictive skill (Bauer et al., 2015). As a result, NWP data, 

weather forecasting products and climate services have been increasingly used in many areas to 

support operations and decision-making. 

Forecast users are many, and theirs needs may involve forecasts at different spatial resolution 

and for different time horizons. Although the concept of seamless prediction of the Earth system 

across scales has been widely investigated in the past decade (WMO, 2015), when it comes to 

the operational use of weather forecasts and climate predictions, users often have to handle 

outputs coming from different models. Forecasts associated to short and medium range models 

are specially affected by the atmospheric initial conditions (Kalnay, 2003; ECMWF, 2015). On 

the other hand, seasonal forecasts from coupled ocean-atmosphere general circulation models 

(GCM) are predominantly influenced by inertial variations of the initial conditions, such as sea 

surface temperature (SST), soil moisture and snow cover (Shukla, 2014; ECMWF, 2017). In both 

cases, models have migrated from deterministic to probabilistic forecasting in order to better 

estimate forecast uncertainty and allow users to assess risks more accurately. Based on 

perturbations of the initial conditions and stochastic model parametrizations, an ensemble of 

members is generated from the forecast model. Ensemble forecasts can deliver a probabilistic 

forecast to the users, and the dispersion of the ensemble members can provide information on the 

predictability of the phenomena being forecast. Users such as flood forecasters, water reservoir 

operators or agricultural planners can use all ensemble members in their operational models or 

decide on probability thresholds of interest to make their decisions. 
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Among the existing ensemble forecasting systems in the world, those developed and run by the 

European Center for Medium-range Weather Forecast (ECMWF) have been acknowledged as 

presenting consistently the best results in many regions worldwide (Hamill et al., 2006; Su et al., 

2008; Medina et al.; 2019). They consist of three main products: the medium-range ECMWF 

ENS Ensemble Prediction System (EPS) runs twice a day for forecast horizons up to 15 days; 

the extended range system focuses mainly on the week-to-week changes in the weather and 

covers lead times up to 46 days; the long range, seasonal forecasting system (SEAS5) runs on 

the 1st of each month and extends up to 7 months. The EPS and SEAS5 products have been 

widely investigated for their use in hydrological models and water-related risk assessment (e.g., 

Fan et al. 2015, 2016; Johnson et al. 2019; Emerton et al. 2018), while studies investigating the 

value of the extended range system to hydrological applications are still rare (e.g., Wetterhall et 

al., 2018). 

Extended range forecasting systems were created to investigate how predictability could be 

enhanced in the time range of 10 to 46 days, covering the gap between the short-term forecasting 

and the seasonal prediction. The World Weather Research Programme and the World Climate 

Research Programme implemented the Subseasonal to Seasonal (S2S) prediction project with the 

participation of operational centers and researchers around the world (Vitart et al., 2012). The 

ECMWF S2S datasets have being used in many different modeling and scientific studies around 

the world (e.g. Wang et al. 2017, Vigaud et al. 2017 a and b, Liu et al. 2017, Olaniyan et al., 

2018, Andrade et al., 2018, Coelho et al., 2018). Despite the many improvements of the NWP 

and GCM models uncertainties and systematic biases remain, particularly when it comes to key 

variables used in hydrological models and applications such as precipitation and surface 

temperature. The application of bias corrections or statistic post-processors is a needed step to 

improve the predictability of the models (Verkade et al., 2013; Crochemore et al. 2016).  

In Norway, Gudmundsson et al. (2012) compared a group of statistical transformations to correct 

the bias of precipitation forecasts. They classified the approaches into (1) distribution derived 

transformations, (2) parametric transformations and (3) nonparametric transformations, each 

differing from the other with respect to their underlying assumptions. The methods included 

distribution mapping based on fitted theoretical or empirical distributions. The authors 

recommended using non-parametric methods, since these methods were the most effective to 

reduce the bias and did not require any approximations of the empirical distributions. Their study 

highlighted the differences between the bias correction methods and the necessity to test them 
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prior to their application in an operational context. There are many other studies in the literature, 

from different regions and using different techniques of post processors, that apply bias 

correction techniques to improve the quality of precipitation forecasts (e.g. Piani et al. 2009; 

Gudmundsson et al., 2012; Teutschbein and Seibert, 2013; Crochemore et al. 2016; Mehrotra 

and Sharma, 2016; Kim et al., 2016; Zhao et al., 2017; Yang et al., 2020). In the context of bias 

correction, two procedures stand out: one that uses a fixed, historic time series of hindcasts (or 

reforecasts) to calibrate the bias correction parameters (‘structural’ bias correction), and another 

that applies calibration corrections ‘on-the-fly’, i.e., the full hindcast set is run every time a new 

real-time forecast is produced (‘conjunctural’ bias correction). 

The ‘structural’ bias correction procedure is the most common approach found in the applications 

of post-processors in hydrology to correct systematic biases of the meteorological forecasts 

before running an operational hydrological model. In this case, a long period of meteorological 

hindcasts, often computationally expensive, is generated, with the same (fixed) version of the 

operational forecasting model, and used to evaluate forecast biases and skill, and calibrate the 

bias correction parameters. The errors between the forecasts and the observations (from gauge 

stations, satellite, radar or reanalysis data) are evaluated and considered in the setup of the post-

processor, which is then systematically applied in real-time to the operational forecasts.  

The ‘conjunctural’ or ‘on-the-fly’ bias correction procedure relies on parameters that are 

calibrated at each run of the operational forecast, at the user’s request. In this case, the hindcasts 

are generated every time a new forecast is produced (in practice, slightly in advance of the real-

time forecasts) using the same version of the model that is used to run the operational forecast 

(which can change over time and, therefore, the hindcasts can also come from different model 

versions, contrary to the fixed-model hindcast of the ‘structural’ procedure). The advantage of 

this procedure is that there is no need to have a long reforecast period before using the forecasts 

in real-time applications. On the other hand, one has to keep in mind that the parameters 

calibrated ‘on-the-fly’ with a short period of hindcasts might not be representative enough of the 

climatology of the weather of the region under study (e.g. Fan and Van de Doll, 2011; Jiang-

Shan et al., 2014; ONS, 2019; Medina et al., 2019).  

The aim of this study is to assess the performance of ECMWF short range EPS and extended 

range sub-seasonal S2S precipitation forecasts in river basins in Brazil and neighboring countries 

in South America. We focus on investigating how best can bias correction techniques be applied 
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to improve the quality of both sets of forecasts, while also analyzing the benefits of using the 

‘on-the-fly’ S2S hindcast to calibrate the short-range EPS forecasts in a real-time, operational 

context. Our case study is the Brazilian hydroelectric system. In Brazil, the needs of the 

hydroelectric system for accurate and reliable forecasts extent across several forecasting 

horizons. The system relies on forecasts up to 48 hours ahead for the balance of the electric grid 

(ONS, 2019). Short-range forecasts, from 1 to 7 days ahead, depending on the basin’s size, are 

applied to flood control, while medium-range forecasts, up to 7–30 days ahead, are crucial for 

energy trading in the spot market (CCEE, 2016). Additionally, seasonal (months ahead) 

streamflow forecasts are used to guide the system’s optimization, to plan infrastructure 

maintenance, to manage multiple water uses, and to set up long-term energy trading strategies. 

Therefore, all forecast horizons have a great importance for the sector, being necessary to extract 

the best information of each one.  

In the previous chapter (Chapter 4) we assessed the performance of the precipitation forecast 

from the seasonal model ECMWF SEAS5. We found systematic biases and investigated the use 

of the LS (Linear scaling) and QM (Quantile Mapping) bias correction methods to improve 

forecast performance. The conclusions drawn from the analysis indicated that the QM method 

provides the best results to correct the forecast biases and extend the predictive skill of the 

precipitation and streamflow forecasts. Therefore, in this part of the research, we focus on the 

use of the QM method only. Additionally, we also explore the use of the ‘on-the-fly’ hindcast of 

the sub-seasonal model to calibrate the parameters of the bias correction method and apply bias 

correction also to the short-range ENS forecasts. The idea is that if the ‘on-the-fly’ calibration 

performs well, it will then be possible to correct the short-term model without the need of using 

a fixed long historic hindcast. This is crucial issue since reforecasts need to be done every time 

a new model is implemented, i.e., every time important modifications are brought to the NWP 

models. In this chapter, as in Chapter 4, we evaluate the forecasts against the near real-time 

observed precipitation dataset developed in Chapter 3.  

Considering the aims of this chapter, we focus on the following research questions: 

i. How good is the performance of the ECMWF S2S precipitation forecasts, before and after 

the QM bias correction in the studied basins, considering the ‘on-the-fly’ hindcast? 
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ii. How good is the performance of the ECMWF EPS precipitation forecasts, before and 

after the QM bias correction, considering its historical 10-year hindcast? 

iii. Does the bias correction using the ‘on-the-fly’ ECMWF S2S hindcast perform better than 

the bias correction using the 10-year historical ECMWF EPS reforecast to correct the short term 

ECMWF EPS forecasts? 

The materials and methods are presented in section 5.2. Section 5.3 describes the results and 

section 5.4 presents the discussion. Finally, section 5.5 draws the conclusions of the study . 

5.2 MATERIALS AND METHODS 

5.2.1 River basins and observed precipitation data 

The case study (41 river basins) and the observed precipitation data, averaged over the river 

basins’ areas, used here are the same that were presented in chapter 4, section 4.2.1. The reader 

is invited to refer to it. We also remind that the combined real-time observed precipitation dataset 

was developed in chapter 3, by blending the gauged observed precipitation from CPC - NOAA 

(Chen et al., 2008) and the precipitation from TRMM-MERGE (Rozante et al., 2010). The 

combined precipitation, weighted by the uncertainty of the individual data sources, presented 

better results than the isolated use of each. The availability of the dataset is for the period from 

1979 to 2020. This combined dataset was used in this chapter to evaluate the ECMWF 

precipitation forecasts. 

5.2.2 ECMWF precipitation forecasts 

ECMWF EPS – 15 days horizon, using the 00 GMT initialization with daily precipitation 

The medium-range forecasting system runs every day with 51 ensemble members (one control 

plus 50 perturbed members) and up to 15 days of forecast horizon. Ensemble hindcasts 

(reforecasts) are available from 2006 to 2020. According to ECMWF previous analyses, in spite 

of the coarser resolution of the ensemble forecasts, which is half that of the deterministic forecast 

(ECMWF HRES; one single member), the ensemble control member, which has the same initial 

conditions as the deterministic forecast, performs very similarly to the deterministic forecast with 

respect to synoptic patterns. Differences are most noticeable for small scale extreme weather 

events, where the deterministic forecast is able to generate, for example, stronger winds and 
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higher precipitation values. There is no ocean coupling for the first 10 days of the forecasts. From 

day 10 onwards, the atmospheric model is coupled with the ocean model. To account for initial 

uncertainties, the oceanic control temperature analysis, including the SST and the deep ocean 

temperature, is complemented by four alternative analyses. They are produced by adding 

randomly wind perturbations to the ocean data assimilation, driven by five slightly different 

meteorological fields based on the control analysis, slightly and randomly perturbed. The 

resulting five ocean analyses are then distributed among the control member and the ensemble 

members (ECMWF, 2015). 

ECMWF S2S – 46 days horizon, twice a week initialization (Monday and Thursday) with 

daily precipitation 

The ECMWF extended forecasting system runs twice a week, every Monday and Thursday, with 

51 members and up to 46 days of forecast horizon. As it runs, it also produces the ‘on-the-fly’ 

hindcast for the same calendar date covered by the run but for the last 20 years (see section 5.2.3). 

Data from the operational run is available from May 2015 to June 2020. The treatment of the 

ensemble members between day 15 and day 46 is the same as for the 10-15 day range described 

earlier for the ECMWF EPS. In order to estimate and compensate for any model drift, a five-

member ensemble is integrated from the same calendar date for the last 18 years. This results in 

“back statistics”, based on a 90-member ensemble of reforecasts from which systematic errors 

can be calculated. Systematic errors are then corrected during post-processing after the forecast 

run (ECMWF, 2015). 

5.2.3 Methodology to assess the performance of the ECMWF S2S precipitation forecasts 

and apply the QM bias correction with the ‘on-the-fly’ hindcast 

The methodology comprises four steps:  

i) the first step is to assess the performance of the raw daily precipitation forecasts at the scale of 

the river basins (i.e., average precipitation over the river basin areas). This is done by calculating 

the performance metrics (see section 5.2.5) of the forecasts against the observed precipitation 

dataset; 
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ii) the second step is to calibrate the bias correction method using the precipitation forecasts of 

the hindcasts. For this study, we did all the bias correction analysis at the daily precipitations in 

a weekly lead times; 

iii) the third step is to apply the QM method over the daily precipitation forecasts of the 

operational run, which covers the period May 2015 to 2020 June; 

iv) the fourth step is to assess the performance of the bias-corrected daily precipitation forecasts 

at the scale of the river basins, and analyze it in comparison to the performance obtained in step 

i) for the raw forecasts. 

The QM method is a more-sophisticated method, classified as distribution-derived 

transformation, (e.g. Block et al., 2009; Piani et al., 2010; Johnson and Sharma, 2011; Sun et al., 

2011; Kim et al., 2016). It is based on correcting the precipitation forecasts aiming that their 

statistical distribution fits to the statistical distribution of the observations. There are several ways 

to adjust the forecast and the observed distributions or quantiles, and existing techniques mainly 

differ in terms of how the cumulative distribution functions (CDFs) are considered (Crochemore 

et al., 2016). In this study, the empirical CDFs (ECDFs) are used to build the probability 

distributions of the observed and forecast datasets. The QM method is already presented in 

chapter 4, section 4.2.3, and the reader is invited to refer to it. 

The conjunctural bias correction was applied to the ECMWF S2S precipitation forecasts, using 

the ‘on-the-fly’ hindcast. It consists of an ensemble with 11 members (one control plus ten 

perturbed members), covering the previous 20 years of the same calendar dates of the operational 

run period (May 2015 to June 2020). For the calibration of the bias correction parameters, we 

take the ‘on-the-fly’ hindcast that are associated with exactly the same 46 calendar days of the 

operational forecast run. Therefore, this bias correction is only lead time dependent. It is applied 

to the daily precipitation of each river basin. The parameters are calibrated at each run, from 

week one to week six, and for each basin, considering the daily precipitation of the last 20 years 

on the same calendar days.  

For example, the operational (raw) forecast run of 1 June 2020 covers the forecast range from 1 

June 2020 to 16 July 2020 (46 days) with its 51 members. The ‘on-the-fly’ hindcast available to 

calibrate the parameters of the bias correction method corresponds to reforecasts for the period 

from 1 June to 16 July for the years 1999 to 2019 (the year of the operational forecast run is not 
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included). Each 46-day period has 11 ensemble members. Therefore, for each (operational 

forecast) run, we have a new set of hindcast and a new set of calibrated parameters. These 

parameters are then applied to the (raw) operational forecast to generated the bias corrected 

forecast. Both raw and bias corrected forecasts are then evaluated against the observed 

precipitation dataset, so that improvements due to the QM bias correction can be assessed. We 

note that, the QM bias correction is calibrated using daily precipitation in a weekly lead time, 

.i.e., there are six sets of calibrated parameters, one per each week of lead time.  

5.2.4 Methodology to assess the performance of the ECMWF-EPS precipitation forecasts 

and apply the QM bias correction with the 10-year historical reforecast 

At this step, the performance of the 15-day ECMWF EPS model is assessed for the period 2007-

2016, using the forecast evaluation metrics CRPSS and RME, presented in section 5.2.6. Both 

raw and QM bias corrected forecasts are evaluated against the observed precipitation dataset, so 

that improvements due to the bias correction can be assessed.  

The calibration of the parameters of the QM bias correction method (structural procedure) is done 

using a weekly time step (2 weeks of lead time for the forecast horizon of 15 days) and the 

historical reforecast period from 2007 to 2016. The correction method is lead-time and month 

dependent, i.e., a different correction is applied according to the month when the forecast was 

issued and the lead time for which the forecast value is valid. Therefore, there are 24 sets of 

parameters for each basin (12 months * 2 weeks of lead time). The calibrated parameters obtained 

are then applied to the raw daily precipitation forecast values according to the day of the forecast 

(on which month it falls) and the lead time. We use an independent period from the calibration 

of the QM method, running from January 2017 to June 2020. 

5.2.5 Methodology to assess the performance of the bias corrected ECMWF EPS 

precipitation forecasts using the ‘on-the-fly’ sub-seasonal hindcast 

The performance of the conjunctural (‘on-the-fly’) bias correction on the ECMWF EPS 

precipitation forecasts is assessed. The ‘on-the-fly’ hindcast from the S2S model (only lead time 

dependent; section 5.2.3) is used to correct the forecast bias of the short-term ECMWF EPS 

forecast model. The correction is applied to the daily precipitation forecast values for the same 

period used to assess the structural bias correction (section 5.2.4), from January 2017 to June 

2020. 
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The parameters for the QM bias correction method obtained from the ECMWF S2S precipitation 

forecasts (section 5.2.3) are only available for the dates of the runs of the S2S forecasts, i.e., 

Monday and Thursday. However, the ECMWF EPS forecasts are issued every day, from Monday 

to Sunday. In this way, the parameters obtained from the Monday’s run of the ECMWF S2S ‘on-

the-fly’ hindcast will be used to correct the short-term ECMWF EPS runs from Monday to 

Wednesday, while the parameters obtained from the ECMWF S2S Thursday’s run will be used 

to correct the short-term runs from Thursday to Sunday. Moreover, since the short-term model 

has only two weeks of lead time, only the bias correction parameters for the first two lead times 

of the sub-seasonal ‘on-the-fly’ hindcasts are used. Figure 5.1 shows the example of one week 

of bias correction of the short-term model using the sub-seasonal ‘on-the-fly’ bias correction 

parameters. The week starts on 1 June 2020 (Monday), and ECMWF ENS forecasts of Monday 

(1 June), Tuesday (2 June) and Wednesday (3 June) are bias corrected with the parameters that 

come from ECMWF S2S run of 1 June 2020 for lead time 1 (first week, in black) and lead time 

2 (second week, in red). The other weeks of lead time are not used. On 4 June 2020 (Thursday), 

a new set of parameters from ECMWF S2S is available. They are used to bias correct ECMWF 

ENS forecasts of Thursday (4 June), Friday (5 June), Saturday (6 June) and Sunday (7 June). 

 

Figure 5.1– Example of one week of bias correction of the short-term forecast model (ECMWF 

ENS) using the ‘on-the-fly’ sub-seasonal (ECMWF S2S) hindcast. The days in black (red) indicate 

the first (second) week of lead time (LDT) that shares the same bias correction calibrated 

parameter. 

5.2.6 Metrics to assess forecast performance 

The metrics used are the same that were presented in Chapter 4, section 4.2.4 for the evaluation 

of the precipitation forecasts, i.e., CRPS, RME, BSrel, BSres, Correlation coefficient. The reader 

is invited to refer to it. 
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5.3 RESULTS 

5.3.1 Performance of the sub-seasonal precipitation forecasts using the ‘on-the-fly’ 

hindcast (conjunctural bias calibration) 

Figure 5.2 shows the overall performance of the ECMWF S2S model, in terms of the CRPSS 

metric, for the period May 2015 to May 2020, considering the 41 basins, grouped by climatic 

similarity in eight groups, for six week lead times. The analysis was divided in four seasons 

represented by the trimesters OND, JFM, AMJ and JAS to improve the understanding of the 

effects of the wet and dry seasons on performance. The graphs indicate the  raw precipitation 

forecasts (‘Raw’) and the bias corrected forecasts using the QM method (‘QM’). The shadows 

of red represent the results when the forecasts have a performance that is worse than the 

climatology forecast. 

We can see that the raw forecast presents a good performance for almost all basins for the first 

two weeks horizon. The second trimester of the wet season (JFM) presents the lowest 

predictability of all seasons, with good forecasts at the first week and performance clearly 

degrading from the second week onwards. On the other hand, the first trimester of the wet season 

(OND) displays good performance up to six weeks ahead for the majority of the basins, with an 

exception for the basins from the south region groups G1 and G2, where the CRPSS values 

become negative after week 3, indicating a loss of skill comparatively to the benchmark 

climatology. After the  application of the QM bias correction method, it is possible to see an 

improvement of forecast performance for the OND period, except for the Madeira river, 

represented as group G7, where the bias corrected forecasts became worse than the raw forecast. 

In the trimester JFM, only the basins of group G8 present a clear improvement after bias 

correction at all lead times. For the dry seasons (AMJ and JAS), the bias correction only slightly 

impacts the raw forecasts, often bringing them to a performance that is closer to the climatology 

(CRPSS values closer to zero). 
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Figure 5.2– CRPS Skill score (CRPSS) of the raw (top) and QM bias corrected (bottom) 

catchment precipitation forecasts of the ensemble ECMWF S2S model (period 2015-2020), for 

lead-times 1 to 6 weeks and the 8 groups of river basins (G1 to G8). Graphs are separated by 

trimester from wet to dry season (OND, JFM, AMJ, and JAS). 

Figure 5.3 shows the spatial representation of the ECMWF S2S performance for the CRPSS 

metric and the first two weeks of lead time for the wet seasons (OND and JFM), for the raw and 

the bias corrected precipitation forecasts. There is a spatial pattern of CRPSS performance that 

shows better performance when we move towards the northeast direction, with basins in the north 

presenting a better performance than those in the west and south regions. In all regions, the results 

degrade at the second week of lead time, with the period JFM presenting the stronger decrease 

in performance. After the application of the QM bias correction, it is possible to see a small 

improvement in some basins (G1, G2, and G6). Improvements are higher at the second week of 

lead time, when the trimesters present the higher number of basins with improvements, especially 

the trimester OND. 
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Figure 5.3 Spatial distribution of the CRPS Skill score (CRPSS) of the raw (top) and QM bias 

corrected (bottom) catchment precipitation forecasts of the ensemble ECMWF S2S model (period 

2015-2020), for lead-times 1 and 2 weeks, all river basins and the wet seasons (JFM and OND). 

Figure 5.4 shows the accuracy of the raw and bias corrected ECMWF S2S precipitation forecasts, 

as represented by the RME metric. Results are shown for the four seasons, the six weekly lead 

times, and the eight groups of climatic similar river basins. For the analyzed period (2015-2020), 

the raw forecasts show a tendency to  underestimate the observed precipitation (negative RME 

values) at the first week for the majority of the basins, except those in the group G7. Considering 

only the wet seasons (OND and JFM), the tendency is inversed for groups G3 to G7 after the 

second week of lead time and raw forecasts tend to slightly overestimate the precipitation until 

the week 6. For the basins in group G8, at the extreme North region, the forecasts tend to 

underestimate the observed precipitation at all horizons and seasons. After the application of the 

QM bias correction method, the underestimation tendency of the first week is not corrected and, 

in some cases, it even increases in intensity. The forecast tendency to overestimate after the 

second week in the wet seasons for groups G3 to G6 becomes neutral or revert to a slight 

underestimation. For the basins in the group G7, the tendency revert to a slight underestimation 

of the precipitation, while for those in the group G8 the underestimation is reverted to a slight 

tendency to overestimate the observed precipitation. 
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Figure 5.4– RME of the raw (top) and QM bias corrected (bottom) catchment precipitation 

forecasts of the ensemble ECMWF S2S model (period 2015-2020), for lead-times 1 to 6 weeks and 

the 8 groups of river basins (G1 to G8). Graphs are separated by trimester from wet to dry season 

(OND, JFM, AMJ, and JAS). 

We also analyzed the impact of the bias correction of the raw forecasts on their reliability and 

resolution using the decomposition of the BS score (graphs not shown here). The application of 

the QM bias correction method did not visibly change the performance of the forecast model. 

Forecasts present better performance in terms of resolution at week 1 of lead time in all basins 

and seasons, with results degrading from week 2 onwards. The analysis of the correlation 

coefficient (also not shown here) also indicated no visible impact of the bias correction method. 

Correlation coefficients were higher than 0.7 for all basins at the first week of lead time and 

higher than 0.5 for the majority of the basins at the second week. For longer horizons, the values 

become lower than 0.25 for the majority of the basins. 

5.3.2 Performance of the short-term precipitation forecasts using the historic hindcast 

(structural bias calibration) 

Figure 5.5 shows the overall performance of the raw and bias corrected ECMWF EPS 

precipitation forecasts with the metric CRPSS, for the four seasons, week 1 and week 2 lead 

times and for the eight groups of river basins. The period 2007-2016 and the historic hindcast 

(structural bias calibration) were used to calibrate the bias correction parameters of the QM 

method. We can see that almost all basins have a good performance at the first week of lead time, 

which is reduced at the second week, with the exception of group G7, the Madeira river, which 

presents a performance that is worse than that of the climatology already at the first week lead 
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time, especially at the wet seasons (OND and JFM). After the application of the bias correction, 

we have an improvement in forecast performance in all basins and lead times. 

 

Figure 5.5 – CRPS Skill score (CRPSS) of the raw (top) and QM bias corrected (bottom) 

catchment precipitation forecasts of the ensemble ECMWF EPS model (period 2007-2016), for 

lead-times 1 to 2 weeks and the 8 groups of river basins (G1 to G8). Graphs are separated by 

trimester from wet to dry season (OND, JFM, AMJ, and JAS). 

Figure 5.6 shows the results for the RME score. We can see that raw forecasts tend to 

overestimate the precipitations during the wet season (OND and JFM),  for the majority of the 

basins. The exceptions are the basins from group G8, at the extreme North region, where a 

tendency towards underestimation is seen in all seasons and lead times. Raw forecasts tend to 

underestimate precipitations during the dry season (AMJ and JAS). After the application of the 

bias correction, the overestimation tendency of the basins during the wet seasons becomes a slight 

underestimation, and the overestimation from the forecasts in the basins from group G8 is 

reduced. The tendency of overestimation during the dry season persists even after the bias 

correction. Since the precipitation values are very small during this season, at some places almost 

near to zero, this tendency might not be a problem for flow forecasting and water resources 

management. 
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Figure 5.6 – RME of the raw (top) and QM bias corrected (bottom) catchment precipitation 

forecasts of the ensemble ECMWF EPS model (period 2007-2016), for lead-times 1 to 2 weeks and 

the 8 groups of river basins (G1 to G8). Graphs are separated by trimester from wet to dry season 

(OND, JFM, AMJ, and JAS). 

Here again, the application of the QM bias correction method did not change the performance of 

the forecast model in terms of reliability, resolution and when considering the correlation 

coefficient (not shown). Forecasts tend to present better performance at week 1 of lead time in 

all basins and seasons, with results degrading from week 2 onwards. For instance, the BS 

resolution score shows values superior to 0.5 at the first week lead time, and values lower than 

0.2 from the second week onwards during the wet season. The analysis of the correlation 

coefficient (also not shown here) also indicated no visible impact of the bias correction method. 

Correlation coefficients were higher than 0.6 for all basins at the first week of lead time, with a 

clear reduction during the second week, and with worse results observed at the wet season for 

the trimester JFM. 

5.3.3 Performance of the short-term precipitation forecasts using the ‘on-the-fly’ hindcast 

of the sub-seasonal model  (conjunctural bias calibration) and comparison with the 

structural bias calibration  

Figure 5.7 compares the performance of the bias correction methods for the short-term 

precipitation forecasts (week 1 and week 2 of lead time) when following the conjunctural (section 

5.2.3) and structural (section 5.2.4) procedures. Here, the validation period is different from the 

QM calibration periods of the previous sections. In this section, we apply the bias correction to 

short-range forecasts from an independent period, 2017-2020. The eight graphs on the left side 

of figure 5.7 show the CRPSS results, with the first column showing the performance when the 
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QM bias correction is applied with parameters calibrated with the historical reforecast (2007-

2016; section 5.2.4) (noted, ‘QM’), and the second column showing the performance when the 

QM bias correction is applied with parameters calibrated with the ‘on-the-fly’ hindcast of the 

sub-seasonal model (section 5.2.3), (noted, ‘QM - Hind’). The other eight graphs on the right 

side of figure 5.7 show the RME results, following the same presentation as in the CRPSS.  

In general, the performance of the bias correction using the ‘on-the-fly’ hindcast is equal or 

superior to the performance of the bias correction using the historic reforecasts for the majority 

of the basins. In terms of accuracy (RME), the bias correction using the ‘on-the-fly’ hindcast 

performs better especially during the wet seasons, with a reduction of the errors in the majority 

of the basins. 

Finally, we note that the performances were very similar, showing no visible difference between 

the two bias correction procedures, for the other skill scores analyzed (BS relative reliability, BS 

relative resolution and correlation coefficient; not shown here). 

 

Figure 5.7 – CRPS Skill score (CRPSS) of the structural bias correction QM (first column) and 

conjunctural QM-Hind (second column), RME of the structural bias correction QM third 
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column) and conjunctural QM-Hind (fourth column) catchment precipitation forecasts of the 

ensemble ECMWF EPS model (period 2017-2020), for lead-times 1 to 2 weeks and the 8 groups of 

river basins (G1 to G8). Graphs are separated by trimester from wet to dry season (OND, JFM, 

AMJ, and JAS). 

In order to analyze how the climatology of the observed precipitation period can impact the 

calibration of the bias correction parameters and, consequently, the analysis of the bias correction 

performance on the validation period (2017-2019) that is shorter than the calibration period 

(1996-2019), we present in figure 5.8 the monthly mean precipitation during the calibration 

period (top) and the validation (middle) periods, and the differences in precipitation between both 

periods (bottom) for the observed precipitation and all the river basins, ordered from South to 

North.  

We can see that the wet season of the recent period (2017-2019) presents lower precipitation 

monthly values than the long period from 1996-2016. The wet months of December and January 

show a negative anomaly for the basins 10 to 25 (groups G3 and G4). The basins 26 to 34 (groups 

G5 and G6) and the basins 40 and 41 (group G8) present a negative anomaly for almost all months 

of the wet season. The basins 35 to 39 (group G7) show the first three basins with a positive 

anomaly and the last two basins with a negative anomaly. The basins 1 to 9 (groups G1 and G2), 

representing the basins of the south region, with no clear seasonality, also present more months 

with negative anomaly in the recent period when compared with the past period. 
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Figure 5.8 – Monthly mean observed precipitation during the calibration (1996-2016; top) and the 

validation (2017-2019; middle) periods, and differences in observed precipitation between both 

periods (bottom). The 12 months of the year are represented in the y-axis and the 41 river basins, 

ordered from South to North, in the x-axis. 

5.4 DISCUSSION 

Sub-seasonal precipitation forecast analysis 

The performance of the ECMWF S2S was analyzed for its six weeks of lead time and considering 

the five-year period from May 2015 to Jun 2020. The overall performance of the raw forecasts 

assessed showed a good performance, with predictability superior to the observed climatology 
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until the third week of lead time for all basins in almost all seasons, but with a clear reduction 

after the second week. The exception is the JFM trimester, the most difficult to forecast, with a 

good performance only at the first week. There is a visible reduction of the reliability at the 

second week for this trimester, with practically all basins showing worse performance than the 

climatology after the third lead time week. The results also showed a slightly underestimation 

for the first week of lead time for most of the basins, with this behavior inverted at the second 

week lead time. For the basins located at the south region, the underestimation returns again and 

persists until the end of the forecasting horizon, at week six. The basins from group G7 present 

a tendency of overestimation in the whole forecast horizon and the basins from group G8 present 

exactly the opposite behavior. Our results are in line with the results presented by Coelho et al. 

(2018), where the authors assessed the performance of the ECMWF S2S and its hindcast with a 

framework of verification over the South America region, considering weekly accumulated 

precipitations. They evaluated the forecasts against the CPC observed precipitation, and their 

results also showed a reduction of the performance of the forecasts after the third week of lead 

time.  

After the application of bias correction, the performance of the ECMWF S2S improved for most 

of the basins at the first week. However, for the next weeks of the forecast horizon, the results 

were very similar or, in some cases, even worse than the raw forecasts, especially for the trimester 

JFM (wet season). The overestimation biases were corrected and, in some cases, became a slight 

underestimation. At some basins (G1 to G6), the underestimation observed in the raw forecasts 

was not corrected, and it even became stronger in some cases.  

These counter intuitive results, after the application of the bias correction, where the bias 

correction was not effective and, in some cases, bring even worse results, can be explained by 

the differences in the climatology of the observed precipitation during the longer, hindcast period 

1996-2019 (in 20 years windows of the ECMWF on-the-fly hindcast), and the shorter, bias 

corrected period (2015-2020). When we look at the hindcast period, the model presents a 

tendency to overestimate the precipitations in most of the basins, and this tendency was also 

observed by Andrade et al. (2019) over South America. In addition, the past period of the hindcast 

was wetter than the recent period 2015-2020. Therefore, after the application of the bias 

correction, the results, in some cases, become worse, with the small overestimation of the raw 

forecasts becoming an underestimation, and also the underestimations being amplified. 
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Short-term precipitation forecast analysis 

The analysis of the ECMWF-EPS precipitation forecasts, with 15 days of forecast horizon and 

data available from June 2006 to June 2020, also showed that the raw forecasts present skill 

superior to the observed climatology for the first week in most of the basins and seasons, with a 

reduction of the skill at the second week. The exception is the basins from the group G7 (Madeira 

river), which presented non-skillful forecasts even at the first week horizon. Forecast 

overestimation was detected for most of the basins during the wet season, and forecast 

underestimation was detected during the dry season, with the exception of the basins from group 

G8, at the extreme north region, where the forecasts tend to overestimate the observed 

precipitation during the whole year. After the application of the bias correction, the skill was 

improved in all basins and horizons and the over- or underestimations were reduced, following 

the same pattern as observed for the first weeks of the sub-seasonal forecasts. 

Short-term bias correction comparison 

One of the objectives of this study was to evaluate the possibility to correct the ECMWF EPS 

model with the parameters calibrated with the ‘on-the-fly’ hindcast of the ECMWF S2S model. 

This facilitates the use of the ECMWF EPS model in operational settings, without the need of 

changing a fixed bias correction procedure every time the meteorological model changes. The 

‘on-the-fly’ bias correction, although it might be better, it is not necessary to have a long 

reforecast period of the operational forecast model to calibrate the parameters for the bias 

correction. This is because the ‘on-the-fly’ model automatically produces 20 years of hindcast at 

each run. Therefore, if the atmospheric model changes, to add new physics or configurations, it 

is possible to use the ‘on-the-fly’ hindcast to calibrate the parameters to correct both models (EPS 

and S2S), while one waits for a long term reforecast to be produced. With the ‘on-the-fly’ 

procedure, the user can bias correct (or not, it is their choice; for instance, they could apply bias 

correction during the wet seasons but skip the procedure during the dry season if this is in their 

interest) as the operational forecasts run in real-time.  

We remind that the first bias corrected forecast is based on the parameters calibrated with the 

long term hindcast of the ECMWF EPS, with 51 members and a ten-year period (2007-2016). 

The second bias correction uses the parameters calibrated with the ‘on-the-fly’ hindcast of the 

ECMWF S2S, with 11 members, and 20 years of data. The analysis was performed over an 

independent validation period, 2017-2020.  
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The results showed that the ‘on-the-fly’ correction has performance equal or superior to the 

performance of the traditional correction with long term reforecasts. The ‘on-the-fly’ correction 

provides forecasts with smaller errors for the majority of the basins. Although this correction 

operates with less ensemble members, it performed better due to the longer historical period 

available (20 years as opposed to 10 years of the fixed, long term hindcast). Coelho et al. (2018) 

observed a similar behavior during their experiment, where they analyzed the performance of the 

‘on-the-fly’ hindcast and the operational forecasts of the ECMWF S2S. The reduced number of 

members has not impacted the quality of the forecasts. In addition, the higher number of hindcast 

years, 20 in the on-the-fly, allows to capture better the variability of the climatology of the 

observed precipitation, and hence generate more robust parameters for the bias correction. This 

results highlighted the importance of the time window used to calibrate the parameters of the bias 

correction method, which seems to be more important than the number of members used to obtain 

the empirical density functions of the precipitation forecast used to calibrate the parameters. 

5.5 CONCLUSIONS 

This study presented an analysis of the performance of the ECMWF EPS and ECMEF S2S 

precipitation forecasts, assessing the capacity of these models to forecast weekly precipitation 

amounts in the 41 basins of this study, with special interest to energy production in Brazil and 

covering basins in practically the whole South America, from the subtropical to equatorial 

climate zones. The quality of the precipitation forecasts was analyzed in terms of the overall 

performance, accuracy, reliability, resolution and correlation, covering the lead times of one to 

two weeks for the ECMWF EPS and one to six weeks for the ECMWF S2S. The results of the 

application of the QM bias correction method to the forecasts of both models were also presented. 

We applied two procedures: the structural procedure for the bias correction of the ECMWF EPS 

using a long-term, fixed reforecast dataset, and the conjunctural procedure for the bias correction 

of the ECMWF S2S using its ‘on-the-fly’ hindcast dataset. Additionally, we applied the ECMWF 

S2S bias correction parameters to correct the ECMWF EPS short-term forecasts, comparing the 

results with the traditional (structural procedure) of bias correction. The main conclusions drawn 

from this study are presented below. 

Sub-seasonal precipitation forecast analysis 

• The ECMWF S2S model was able to produce skillful forecasts at least for the first three 

weeks of forecast horizon, and the ‘on-the-fly’ bias correction was able to improve the 
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quality of the precipitation forecasts, especially at the cases where systematic biases of 

overestimation or underestimation of the precipitations were observed in the raw 

forecasts. 

• Spatially, the forecast model presented better results when moving towards the north-east 

direction in Brazil, and this was independent of the lead time. 

Short-term precipitation forecast analyzes 

• The short term ECMWF EPS model was analyzed for the period 2007-2016. It showed 

raw forecasts that tend to overestimate the observed precipitation during the wet season 

and underestimate it during the dry season. The raw forecasts were skillful at the first 

week horizon only, and, after the application of the QM bias correction, skillfulness was 

extended to the two weeks of forecast horizons, with also lower biases of under- or 

overestimation. 

• When we compare the performance of the bias correction of the ECMWF EPS 

precipitation over the recent period 2017-2020, using parameters from both the long-term 

reforecasts (fixed period 2007-2016) and parameters from the ‘on-the-fly’ ECMWF S2S 

(moving window of 20 years prior to the forecast date), the bias correction using the ‘on-

the-fly’ exhibited results equal or superior than the traditional fixed-period bias 

correction, based on ten years of reforecasts. 

• The results obtained for the recent period (2017-2020) showed that the bias correction 

was not always very effective when compared to the performance of the bias correction 

over the longer 2007-2016 period. It was shown that this is probably because the shorter 

and recent validation period is not long enough to represent the variability of the 

climatology. The fluctuations of the interannual variation of the precipitation can affect 

the results of the performance metrics of skill. It is expected that, when we will have a 

longer period available for the validation of the bias correction over the operational 

forecasts (using forecast data after 2020), it will be possible to have a more robust analysis 

of the effectiveness of the bias correction. 

Finally, it is necessary to take in account that the precipitation forecasts were compared against 

a near real-time observed precipitation dataset (see chapter 3). Although this dataset corresponds 
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to the best combination of two sources of precipitation, both based on satellite and gauge stations, 

uncertainties on the estimated precipitation remains over the basins, especially over areas with a 

sparse distribution of ground rain gauges as the North region of Brazil. Future studies with longer 

forecast periods and in-depth studies at specific regions or river basins with dense raingauge 

stations could be useful to confirm the predictive skill of the forecast models and the capacity of 

the bias correction to improve the quality of the precipitation forecasts coming from both  

ECMWF EPS and S2S models. 
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CHAPTER 6: 

COUPLING THE DIFFERENT 
ECMWF FORECAST MODELS 

TO BUILD A SEAMLESS 
PRECIPITATION FORECAST 

FOR A GROUP OF SOUTH 
AMERICAN CATCHMENTS 

 

This chapter will inspire a paper to be submitted to an international journal. 

  



154 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

 

6 COUPLING THE DIFFERENT ECMWF FORECAST MODELS TO 
BUILD A SEAMLESS PRECIPITATION FORECAST FOR A GROUP 
OF SOUTH AMERICAN CATCHMENTS  

6.1 INTRODUCTION 

The seamless forecast idea could be translated into the simple concatenation of "the best" forecast 

at each lead time (Palmer and Webster, 1993). Pappenberger et al., (2013) wrote that “the clear 

advantage of this off-the-shelf seamless prediction is that it utilizes products that are already in 

place, thereby avoiding the complications of new developments while generating forecast 

products to meet different types of needs”. As stated by Wetterhall and Di Giuseppe (2017), 

“there is, however, an underlying complexity in this simplification, the substantial difference in 

design between the various forecasting systems makes the concatenation a task technically 

difficult. As systems are designed for different users, they often have non-matching temporal and 

spatial resolutions, different hindcast, different initialization frequency, and different ensemble 

sizes.”. 

The concept of seamless forecast has applications in a wide range of time horizons, starting from 

very short-term forecasts, sometimes also known as nowcasting forecasts (Wang et el., 2017), 

generated with hourly updates nested with medium-term models, as the ECMWF EPS model 

(ECMWF 2015), or other intermediate models with different spatial and temporal resolutions, to 

build a seamless forecasting system, to be especially applied to civil protection (Wastl et al., 

2018). Long term applications as climate change projections can also apply the seamless forecast 

concept (Solomon et al., 2007). Palmer et al. (2008) showed that the link between climate forcing 

and climate impact involves processes acting on different time scales, and the use of a seamless 

prediction system allows projections of climate change scenarios to be limited by validations on 

meteorological or seasonal forecast horizons. 

In Europe, Wetterhall and Di Giuseppe (2018), with the objective of generating seamless 

hydrological forecasts with the European Flood Awareness System – EFAS (Thielen at al., 

2019), compared the ECMWF seasonal forecasting system (SEAS4) and a  merged system that 

assembled the ECMWF extended range forecasts (sub-seasonal) and the seasonal forecasting 

system SEAS4. The seamless system showed a better overall skill over most areas in Europe, 

with skillful lead times up to seven weeks. This increase in skill could be attributed to better 
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initial conditions of the hydrological and meteorological models, as well as a better atmospheric 

model version used in the sub-seasonal model of the seamless system.  

Although seamless applications have been discussed since 1993, there is still a gap in the 

knowledge of the way to couple different models with different forecast horizons, number of 

ensemble members, spatial and temporal resolutions, frequency of initialization and target 

applications. Examples in the literature investigate how to apply a randomly selection to 

concatenate different models with different ensemble sizes to join the ECMMWF sub-seasonal 

and seasonal models (Wetterhall and Di Giuseppe, 2017); how to join the ensemble mean of the 

short-term model GEFS with the ensemble of the CFS seasonal forecasts (Yuan et al. 2014, Ye 

et al., 2017); or how to join models with different forecast horizons with a nowcasting model, by 

working with the probabilistic information of the time window that display the best performance 

of each of the models and extracting the most likely and other scenarios (Wastl et al., 2018). It is 

also possible to cluster the ensemble members of the models with different forecast horizons and 

distinct ensemble sizes and then generate an ensemble with a specific number of members, using 

a ranking method to order the ensemble members in a coherent way. This ranking can be based 

on a simple member-to-member coupling or on more sophisticated similarity methods that uses 

distance metrics, such as the Euclidean distance (Elmore and Richman, 2001).  

Regardless the coupling technique used to generate seamless forecasts, it is crucial to ensure that 

the final system is coherent in space and time and provides a consistent forecast to users. 

Techniques using random selection for coupling ensemble members of different forecasting 

systems or techniques of statistical post-processing of model outputs (such as those used in 

chapters 4 and 5) can in certain cases result in incoherent forecasts. According to Schefzik (2017), 

many post-processing approaches for bias correction apply to a single weather quantity, at a 

single location, and for a single lead time only. Hence, they are incapable of taking inter-variable 

and spatial and temporal dependence structures into account. The rank dependence of the raw 

ensemble needs to be retrieved by combining the univariate post-processing techniques with 

specific ranking techniques such as the ensemble copula coupling (ECC; Schefzik et al., 2013). 

Essentially, ECC is used in ensemble calibration to preserve correlations. It aggregates samples 

from univariate post-processed predictive distributions obtained for each weather variable, 

location, and lead time separately, by reordering each individual sample according to the rank 

dependence pattern of the corresponding raw ensemble forecast. ECC has been a popular 

technique to issue physically realistic and consistent (in space and time) post-processed ensemble 
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weather and hydrologic forecasts (e.g., Bellier et al., 2018; Cassagnole et al., 2021). It can also 

be useful when coupling systems for seamless prediction. 

In the context of the Brazilian electric system, where  inflows to hydroelectric plants have a 

considerable weight in the planning of the electrical system operation, as well as a large weight 

in the energy price, computer models that optimize the system’s operation, solving the 

hydrothermal dispatch problem (ONS, 2016), uses weekly flow forecasts for the first two 

operational months and monthly stochastic models from the third month to five years ahead 

(ONS, 2019). In our research work, we propose to use the ECMWF seasonal precipitation 

forecasting model (chapter 4) as input at a hydrological model to forecast flows two months 

ahead in a group of 41 South American river basins. However, the model issues daily forecasts 

every first of the month and, as the days pass, the initialization of the seasonal model becomes 

increasingly distant and the model loses performance until the next initialization. In this case, the 

solution to improve the results, until the next monthly run, is to couple the seasonal model with 

other models that have a shorter distance between two initializations. This is the case of the 

ECMWF EPS model (15 days ahead; initialized every day) and the ECMWF sub-seasonal model 

(46 days ahead; initialized twice a week), as seen in chapter 5. A seamless forecast can take the 

advantage of the higher frequencies of initialization of the short-term and sub-seasonal forecasts 

models, while also benefiting from the longer lead times of the seasonal model, in order to 

increase the capacity of the forecasting system to anticipate the changes in the atmosphere and 

better forecast the more intense precipitation events or the dryer periods occurring during the wet 

season. 

In this chapter, we explore some techniques to couple the members of the different ECMWF 

precipitation forecasting systems, at their different forecast horizons, and investigate how to 

define a better way to build a seamless precipitation forecast. The idea is to couple the best part 

of each forecast horizon, aiming to obtain a better seasonal forecast, especially until two months 

of forecast horizon, that can  be applied in hydrologic models. 

Accordingly, the objective of this study is to answer the following research questions: 

i. How can we create a seamless precipitation forecast with the three available ECMWF 

models (EPS, sub-seasonal, seasonal)? 
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ii. Does a more sophisticated coupling method perform better than the simple member-to-

member coupling? 

iii. Is it possible to improve the predictability of high anomalies of precipitation (positive or 

negative) for the next month by applying the seamless precipitation forecast? 

This chapter is organized with the following sequence: materials and methods are presented in 

section 6.2; section 6.3 describes the results and section 6.4 presents the discussion. Finally, 

section 6.5 draws the conclusions of the analysis. 

6.2 MATERIALS AND METHODS 

6.2.1 Coupling structure 

When coupling different forecast horizons from different forecast sources, there is a risk of 

changing the sharpness and the reliability of the coupled forecast by joining the same event of 

precipitation or drought forecasted at different times by the models and, as a result, to create a 

forecast with a dispersion that is higher or smaller than the dispersion of the original sources. The 

schemas in figure 6.1 illustrate two examples of what could happen when considering the 

evolution of accumulated precipitations in time: the shorter horizon model (in blue) and the model 

with the longer horizon (in red), both starting at the same time, are shown in the first graph (a); the second 

graph (b) shows a coupling order that creates a very wide dispersion of the precipitation at the end; the 

third graph (c) shows a coupling that, on the contrary, creates a sharper distribution of the precipitation at 

the end. 

 

Figure 6.1 – Examples of the effects of coupling a shorter horizon model (in blue) with a longer 

horizon model (in red) with the same start time (a): we can have a coupling order that creates (b) 

a very wide dispersion of the accumulated precipitation, or (c) a too sharp distribution of the 

accumulated precipitation. 
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In this research, we will couple the three horizons of the ECMWF EPS, sub-seasonal and seasonal 

forecast models. Figure 6.2 shows an example of coupling the three forecast horizons along the 

31 forecast days of January 2020. We have 31 initializations of the daily ECMWF EPS model 

(green), nine initializations of the ECMWF S2S model (blue) and one initialization of the 

ECMWF seasonal SEAS5 model (red). The last two colored lines indicate a seamless coupling 

for two forecast dates (5 January 2020 and 31 January 2020). On January 5th, the day of the month 

when each seasonal model run becomes available (in an operational mode), the seamless forecast 

has 211 days horizon, when we join the available runs of ECMWF EPS from January 5th, the 

ECMWF S2S runs from January 2nd and the ECMWF seasonal runs from January 1st. The last 

seamless run of January, on the 31st, is composed of the ECMWF EPS from this day, the sub-

seasonal from January 30th and the seasonal run that is still the one from January 1st, resulting a 

seamless forecast with 185 days of forecast horizon. 

 

Figure 6.2 – Coupling scheme of the three ECMWF forecast models, EPS (green), sub-seasonal 

(blue) and seasonal (red), by joining their different forecast horizons to form a seamless run, with 

illustration for 5 January 2020 and 31 January 2020 (bottom lines). 

6.2.2 Application of different methods to couple the models and build a seamless 

precipitation forecast 

Based on the fact that the ECMWF EPS and ECMWF S2S forecasts are the same for the first 15 

days (i.e., member 1 of ECMWF EPS is the same as member 1 of ECMWF S2S, with the same 

model structure and parametrization), and given that the forecast models lose skill as lead time 

increases (see chapter 5), there is an improvement in performance that can be expected by the 

more frequent daily model initialization of ECMWF EPS. Therefore, the models will be coupled 

every day member-to-member (0-0, 1-1, …, 50-50). This generates, every day, a 51-member 

ensemble forecast up to 46 days ahead, with ECMWF EPS in the first 14 days and ECMWF S2S 

from 15 to 46 days. 

To couple the ECMWF sub-seasonal and the ECMWF seasonal forecast models, five blending 

methods are considered to build a seamless seasonal forecast. The methods are presented below 

Month ... AGO
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 215

ECMWF EPS 2020/01/05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

...
ECMWF EPS 2020/01/31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ECMWF S2S 2020/01/02 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

...
ECMWF S2S 2020/01/30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

ECMWF Seasonal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 ... 215

horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 ... 211

Seameless run at 2020/01/05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 ... 215

horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ... 185

Seameless run at 2020/01/31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 76 77 78 79 80 81 82 83 ... 215

JAN FEB MAR
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and vary from the simplest (a) to the most sophisticated (e) methods used to combine the models 

while avoiding the possible coupling problems shown in figure 6.1. 

a) The first coupling method is the simpler member-to-member, where the control member of 

the sub-seasonal model is coupled to the control member of the seasonal model, member 1 

of sub-seasonal coupled with the member 1 of seasonal, and so sequentially until the last 

member, considering the raw and bias corrected precipitation forecasts; 

b) The second coupling consists of coupling the members of the raw sub-seasonal forecast, 

ordered by the volume of the last 15 days, with the accumulated precipitation of the same 

calendar days of the raw seasonal forecast; 

c) The third coupling consists of coupling the members of the raw sub-seasonal forecast, 

ordered by the volume of the last 30 days, with the accumulated precipitation of the same 

calendar days of the raw seasonal forecast; 

Methods b) and c) are based on the volumes of the last days of the sub-seasonal model. Two 

windows of accumulated precipitation are tested to calculate the volumes, the last 15 days and 

the last 30 days of the sub-seasonal model, considering the same calendar days of the seasonal 

model. We consider the raw precipitation forecasts, with members ordered from the wettest to 

the driest to obtain the order of the members of the coupled system. The wettest member of the 

sub-seasonal is coupled with the wettest member of the seasonal and so on,  sequentially, until 

the driest members of the models. This order is used to build the raw and the bias corrected 

seamless forecast; 

d) The fourth coupling consists of coupling using the Euclidean distance to calculate the 

similarity between the members to be blended considering the last 15 days. 

𝑑 = ∑ √𝑃𝑆𝑒𝑎𝑠𝑜𝑖−
2 𝑃𝑆2𝑆𝑖

2𝑛
𝑖=1      (6.1) 

where PSeasoi is the accumulated precipitation of the seasonal model of day i, PS2Si is the 

accumulated precipitation of the subseasonal model of day i, and n is the total number of days 

considered to calculate the Euclidean distance d between the accumulated precipitations. 
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e) The fifth coupling consists of coupling using the Euclidean distance to calculate the similarity 

between the members to be blended considering the last 30 days. 

The last two methods d) and e) are the most sophisticated methods and are based on the daily 

similarity, using as a parameter the Euclidean distance between the member of each model, of 

the accumulated precipitation of the raw ub-seasonal forecast and the correspondent calendar 

period in the raw seasonal forecast, following the steps described below: 

• To avoid scale distortions during the coupling process, the precipitation sum is  

standardized, dividing the values by the mean of the totals of the 15 and 30 days 

precipitation for each model;  

• We then order the sub-seasonal from extremes, alternating the wetter and drier members 

until the median member (to reduce the chance to have a wet member of one model 

coupled with a dry member of the other, and to try to preserve the original sharpness of 

the forecast); 

• Starting by the extremes (wettest, driest, second wettest, second driest, etc.), we obtain 

the sequence to couple the sub-seasonal forecast to the seasonal forecast, by calculating 

the Euclidean distance, as a reference of similarity. Starting by the distance between the 

wettest sub-seasonal member and the other 51 seasonal members, we select the smallest 

value and save the couple member numbers. The number of members available to couple 

will reduce at each coupling run, eliminating progressively the coupled members. At the 

next run, we use the driest sub-seasonal to calculate the Euclidean distance between the 

other 50 seasonal members available, and so sequentially until the last sub-seasonal 

member is coupled with the last member from the seasonal model. At the end of the 

interactions, we have a table coupling each sub-seasonal member with a corresponding 

member from the seasonal model. 

6.2.3 Schema to evaluate the performance of the coupling methods 

To evaluate the skill of the different coupled forecasts, the climatology of the combined observed 

precipitation dataset (see chapter 3), at each of the 41 basins, is used as a reference forecast (see 

details in section 2.6). The following strategy is used to evaluate the performance of the coupling 

methods that use the ECMWF sub-seasonal and ECMWF seasonal models: 
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• we compare the skill of the proposed blending methods by checking the performance at 

the second month lead time, considering the 30 days coupling period (first 15 days from 

sub-seasonal and last 15 days from seasonal) and the 10 days coupling period (5 days 

from sub-seasonal and 5 days from seasonal); 

• we compare the inter-quantile distance considering the 10, 20 and 30 days coupling 

periods, with the values made dimensionless by the mean precipitation of the coupled 

ensemble, in order to allow us to compare different seasons and basins; 

• we then evaluated the degree of coincidence of coupled members between the methods, 

in order to verify how different they are; 

• we finally define the method to be used for the creation of the seasonal seamless forecast, 

by considering the computational costs and the benefits in terms of additional forecast 

performance. 

After selecting the best method, the seamless forecast is compared with the seasonal forecast 

model according to the strategy below: 

• we compare the performance by season of the first 10 days of the seamless forecast with 

the corresponding calendar period of the seasonal model; 

• we compare the performance by season of the first 30 days of the seamless forecast with 

the corresponding calendar period of the seasonal model; 

• we compare the performance by season of the second lead time month of the seamless 

forecast with the corresponding calendar period of the seasonal model 

6.2.4 Application of the selected seamless forecast to predict precipitation anomalies 

during the wet season 

To evaluate how the seamless forecast can help at the anticipation of atypical events during the 

wet season, we will consider three basins as case study: HPP Dona Francisca (South region), 

HPP São Simão (Southeast region) and HPP Tucurui (North region). We will consider the month 

of January 2019 (wet season), when a clear negative anomaly of precipitation happened in the 

North and Southeast regions, just after the occurrence of normal precipitations on the trimester 
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OND (anomalies of -7% at Tucurui and +16% at São Simão). At the same time, a positive 

anomaly happened in the South region. 

In this case study, we evaluate how the predictability/assertiveness vary at each initialization of 

the sub-seasonal model when coupled with the seasonal model to generate the seamless forecast. 

We also evaluate the capacity of the forecasts to anticipate precipitation anomalies, when the 

seamless forecast model is compared with the seasonal forecast model. 

6.2.5 Metrics to assess the forecast performances 

The metrics used are the same that were presented in Chapter 4, section 4.2.4 for the evaluation 

of the precipitation forecasts, i.e., CRPS, RME, BSrel, BSres, Correlation coefficient. The reader 

is invited to refer to it. 

Another metric used to evaluate the dispersion will be inter-quantiles distance, considering the 

quantiles of precipitation with probability of exceedance of 5% and 95% . 

𝐼𝑄𝐷 = 𝑃(0.05) − 𝑃(0.95)  (6.2) 

6.2.6 The dataset and study area 

The case study (41 river basins) and the observed precipitation data, averaged over the river 

basins’ areas, used here are the same that were presented in chapter 4, section 4.2.1. The reader 

is invited to refer to it. We also remind that the combined real-time observed precipitation dataset 

was developed in chapter 3, by blending the gauged observed precipitation from CPC - NOAA 

(Chen et al., 2008) and the precipitation from TRMM-MERGE (Rozante et al., 2010). The 

combined precipitation, weighted by the uncertainty of the individual data sources, presented 

better results than the isolated use of each. The availability of the dataset is for the period from 

1979 to 2020. This combined dataset was used in this chapter to evaluate the seamless 

precipitation forecasts. The ECMWF SEAS5 – seasonal forecast with 7 months horizon 

(ECMWF, 2017), used here is the same present in chapter 4, section  4.2.2. The ECMWF EPS 

(15days horizon) and the ECMWF S2S (46 days horizon) (ECMWF, 2017), used here are the 

same present in chapter 5, section  5.2.2. The reader is invited to refer to it. The ECMWF forecast 

models were used in this chapter to build the seamless precipitation forecasts. 
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6.3 RESULTS 

6.3.1 Selection of the best coupling method  

Figure 6.3 shows the CPRSS results for the five coupling methods. For each graph in the 

sequence: Euclidean distance 15 days (red), Euclidean distance 30 days (brown), Member-to-

Member (green), Volume of last 15 days (blue) and Volume of last 30 days (pink), for the 

window of days 30 to 60 (the five graphs on the left) and days 40 to 50 (the graphs on the right). 

The analyses are for the complete year (first row) and also the four seasons (second to fifth rows) 

(October, November, and December - OND; January, February, and March - JFM; April, May, 

and June - AMJ; July, August, and September - JAS). The box-plots summarize the results of the 

41 basins pulled all together. 

From this figure, there is no visible difference in performance between the methods; the results 

in terms of median and quartiles are very close for all the methods analyzed. The same pattern is 

observed when we analyze the results individually at each basin (not shown here). 

 

Figure 6.3– CPRSS for the coupling time window of 30 days (left column) and 10 days (right 

column), for the complete year (first row) and for the seasons OND, JFM, AMJ, JAS (second to 
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fifth row), and the methods Euclidean distance 15 days (red), Euclidean distance 30 days (brown), 

Member-to-Member (green), Volume of last 15 days (blue) and Volume of last 30 days (pink). 

To have an overall visualization of the results, figure 6.4 summarizes the results for the five 

coupling methods (1-Euclidean distance 15 days, 2-Euclidean distance 15 days, 3-Member-to-

Member, 4-Volume last 15 days and 5-Volume last 30 days) tested for the metrics CRPSS, 

Coefficient of correlation, Relative resolution, Relative reliability and RME. The values are 

dimensionless, i.e., they were divided by the mean of the results for each season, and are 

represented by the lines with different colors (light blue represents the complete year, dark blue 

OND season, yellow for JFM, orange for AMJ and gray for JAS seasons). 

For the CRPSS, the relative differences are lower than 10% compared to the average of the 

coupling method performances. The performance varies depending on the season and there is not 

a method that performs better than the others in all periods. The coefficient of correlation, the 

relative resolution and the relative reliability show average differences in performance of around 

5%, and again there is not a method that performs better than the others in all periods. The RME 

shows that the differences in terms of accuracy are lower than 3% between the methods. 

Therefore, this figure indicates that, when the different seasons and metrics are compared, there 

is not a visible difference that could indicate a clear superiority of one of the coupling methods 

tested. 
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Figure 6.4– Evaluation of the  five performance metrics, for the coupling time window of 30 days, 

the four first metrics the values are divided by the mean value, with different colors for the results 

considering the complete year and the seasons OND, JFM, AMJ, JAS; the x-axis represents the 

different coupling methods (1-Euclidean distance 15 days, 2-Euclidean distance 15 days, 3-

Member-to-Member, 4-Volume last 15 days and 5-Volume last 30 days). 

The last metric applied to evaluate the performance of the coupling method is the inter-quantile 

distance, applied to all 41 basins. Figure 6.5, shows examples for 3 basins representing the 

regions South (HPP Dona Francisca), Southeast (HPP São Simão) and North (Tucurui), for the 

results of the inter-quantile distance, considering the percentiles of 5% and 95% of exceedance, 

for the coupling windows of 10, 20 and 30 days; the values were dimensionless by the mean 

precipitation of each window.  

We can see that the dispersion of the ensemble members, at each window of analysis for 10, 20 

or 30 days, does not change significantly when the coupling method applied changes; the median 

and the quartiles remain very similar. This behavior  observed at these three basins is the same 

observed at the other 38 basins studied. 
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Figure 6.5– A sample of three basins, of the evaluation of the inter-quantiles distance (P 0.05 and 

0.95), the values are dimensionless by the mean of each period of 10, 20 or 30 days, for the five 

methods: Euclidean distance 15 days (red), Euclidean distance 30 days (brown), Member-to-

Member (green), Volume of last 15 days (blue) and Volume of last 15 30 days (pink). 

When we compare the six metrics presented before, the results are very similar, independently 

of the coupling method. This can rises a doubt if the coupled members are really different for 

each method. Table 6.1 shows the degree of coincidence between the members of each method 

applied. As we can see, the coupling order is very different at each method, and the degree of 

coincidence varies by 2% to 4%, which is very small. Considering the 51 members available, 

this translate into having one or two coupled members identical in the methods, while all the 

others are completely different. Therefore, the similarity observed in the performance results 

cannot be due to a coincidence of having the same coupled members in all methods. 
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After comparing all the results presented previously, we can say that there is no significant 

difference between the coupling methods applied. The method which presents the best cost-

benefit ratio for operational uses  is thus the Member-to-Member method, since there is no high 

computational or mathematical cost to apply it and, in addition, it is a simple method that avoids 

intense data manipulation to create the seamless forecast, which could be another source of errors 

brought into the process. 

Table 6.1 – Matrix with the degree of coincidence between the members of each coupling method 

applied. 

 

 

Member to 

member 

Volume 15 

days 

Volume 30 

days 

Euclidean Similarity 

15 days 

Euclidean Similarity 

30 days 

Member to member 100.0% 2.0% 2.0% 2.0% 2.0% 

Volume 15 days 2.0% 100.0% 4.1% 3.8% 2.3% 

Volume 30 days 2.0% 4.1% 100.0% 2.4% 3.8% 

Euclidean Similarity 

15 days 
2.0% 3.8% 2.4% 100.0% 2.8% 

Euclidean Similarity 

30 days 
2.0% 2.3% 3.8% 2.8% 100.0% 

 

6.3.2 Comparison of the seamless forecast with the seasonal forecast 

Figure 6.6 shows the CRPSS performance comparison, for the raw forecast, between the 

seamless forecast (in red) created by the member-to-member method and the Seasonal forecast 

(in blue), for three time windows, the first 10 days, the first month and the second month, 

considering the runs of the seamless along the first month of the seasonal model. The analysis 

are separated in complete year and the four seasons (OND, JFM, AMJ and JAS) to facilitate the 

evaluation of the wet season. 
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Figure 6.6– The CRPSS performance comparison between the seamless (in red) and the seasonal 

(in blue) forecasts, for three time windows, the first 10 days, the first month and the second, 

considering the runs of the seamless along the first month of the seasonal model. The first line of 

graphs represents the total year analyzes and the other four lines of graphs represent the seasons 

OND, JFM, AMJ and JAS, sequentially. 

As we can see, the highest difference between the seamless and the seasonal forecast appears 

when we evaluates a shorter time window of 10 days, where we have the highest accuracy of the 

models. When the first month lead-time is analyzed, the difference in performance reduces but 

the seamless model still better than the seasonal. When we look at the second month lead time 

the two models have similar performance, with the seamless slightly better than the seasonal. 

The results are very similar when we evaluate only the wet season, but at the second month lead 

time the results becomes closer. 

The same analysis was done for RME, the behavior of the performance is very similar to the 

CRPSS, with the difference between the seamless and the seasonal reducing with a longer lead-

time. However, when we look at the wet season, this difference of performance at the shorter 

lead-time is less evident than we find at the CRPSS. The relative reliability presents the same 

behavior of the RME metric. 

When we evaluate the relative sharpness and the correlation, the results become more similar to 

the CRPSS metric, with a clear better performance at a shorter lead-time, reducing the differences 
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when the horizon increases and at the second month lead time the performance becomes very 

similar. 

The results are then evaluated after apply the bias correction at the forecasts. Figure 6.7 shows 

the CRPSS and RME performance comparison, for the first month lead time and for the wet 

season, between the Seamless (in red) and the Seasonal (in blue) forecasts, the bias corrected 

forecast graphs are in the first column and the raw forecasts results are presented at the second 

column, considering the runs of the seamless, along the first month of the seasonal model, for 

the period of January/2017 to May/2020. 

 

Figure 6.7– The CRPSS and RME performance comparison, for the first month lead time and the 

wet season, between the Seamless (in red) and the Seasonal (in blue) forecasts, with the bias 

corrected forecast in the first column and the raw forecast at the second column, considering the 

runs of the seamless along the first month of the seasonal model. 
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As we can see at the figure, the CRPSS of the bias corrected forecast did not improved 

significantly in the analyzed period, but the corrected seamless forecast still performing better 

than the corrected seasonal forecast. On the other side, the RME was improved in both forecasts 

reducing the errors. At the trimester OND, after the bias correction, the seamless improves its 

performance showing more values closer to zero. At the trimester JFM, the correction changes a 

slightly overestimation to an slightly underestimation in both models. The seasonal forecast 

presents the median closer to zero but with a higher dispersion, in other hand the seamless shows 

a lower dispersion of the errors. 

The analyzes of the other metrics relative sharpness, relative reliability and correlation showed 

that the bias correction did not improved this parameters, which still performing similar to the 

raw forecast, and the seamless forecast still slightly better than the seasonal model. 

6.3.3 Case study: an application of a seamless forecast in January 2019  

Figure 6.8 shows how the seamless forecast can help in the anticipation of high precipitation 

anomalies. We present a forecast of the accumulated precipitation for the month of January 2019, 

with (i) the run of the ECMWF seasonal model started on 1 December  2018 and (ii) the runs of 

the seamless forecast, with their nine initializations (twice every week) along December. The 

first column (left) shows the results for the seasonal precipitation forecast and the second column 

(right), the results for the seamless forecast. Results are for the HPP Tucurui in the North region 

(first row), the HPP São Simão in the Southeast region (second row), HPP Dona Francisca in the 

South region (third row). The box-plots indicate the distribution of the 51 members of the 

ensemble model and the red dots represent the observed precipitation for January 2019. 
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Figure 6.8 –  Precipitation for the month of January 2019, with the comparison between the 

seasonal forecast (left column) and the seamless forecast (right column), for three basins 

representing the regions North (HPP Tucurui), Southeast (HPP São Simão) and South (Dona 

Francisca),  considering 9 runs of the seamless model and the run of the seasonal along December 

2018, the box-plot graphs show the distribution of the 51 members of each run and the red dots 

represent the observed precipitation in each basin. 

As we can see, when we try to forecast the second month lead time (January 2019) with the 

seasonal model (box-plot m2M12R1, in red), which initializes on 1 December 2018 and remains 

unchanged, with the same forecast, until the next run on 1 January, the model forecasts an 

anomaly of precipitation opposite to what actually happened. On the other hand, the seamless 

forecast, which has new initializations along December (in this example, we show initializations 

twice a week in December, totalizing nine runs) captures better the anomaly. The first run of the 

seamless model (m2M12R2, in brown) is very similar to the seasonal model, however the 

subsequent runs (m2M12R3 to m2M12R9) tend to get closer to the observed value, with the 

median of the box-plot becoming near to the observation at each run. The seamless forecast 

presents fluctuations intrinsic to the model’s behavior, as the model tries to capture the variations 

of the chaotic atmosphere in its runs. However, it is still possible to see that the forecast captures 

well  the tendency of the negative anomaly for the basins of the HPP Tucurui (observed 

precipitation 28% below the average, considering the observed period from 1979-2017) and HPP 

São Simão (observed precipitation 47% below the average), as well as the positive anomaly at 

the HPP Dona Francisca (observed precipitation 19% above the average). After the third run of 
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the seamless forecast (m2M12R4), the model starts to show the correct tendency of the 

precipitation for the next month, and in the last three runs the signal of the anomaly becomes 

clear as well as its magnitude. The seamless forecast can anticipate the anomaly of the next month 

and its amplitude with almost two weeks in advance to the next run of the seasonal model (which 

in this example only comes on 1 January 2019). 

6.4 DISCUSSION 

We analyzed different ways to create a seamless seasonal forecast, coupling the three available 

horizons of the ECMWF models, and we evaluated the performance of each method to choose 

the best one. We also evaluated the capacity of the seamless forecast to anticipate precipitation 

anomalies when compared with the forecasts of the seasonal model. In the next paragraphs, the 

main results are discussed. 

6.4.1 Selection of the best coupled method  

To couple the three different horizons of the ECMWF models, five different methods to combine 

each ensemble member were tested. The simpler method is the member-to-member method, and 

the other four methods are based on the similarity of the model forecasts days before the moment 

of the coupling. Two methods are based on the accumulated volume of the precipitation 

considering the last 15 and 30 days, and the other two methods are based on the Euclidean 

distance of daily precipitations of the last 15 and 30 days. 

To compare the performance of the different coupling methods, forecast evaluation metrics were 

used considering two time windows (10 and 30 days). The results from all metrics showed that 

in both time windows the performance was very similar. When we visualize the results over a 

whole year or even during each season, the results of the median and the quartiles of the ensemble 

forecasts are extremely close for the five coupling methods. Even when river basins are analyzed 

individually, the same behavior is observed. Differences in the mean CRPSS obtained with each 

method were lower than 10%, while other metrics indicated differences lower than 5% or even 

3%. In addition, differences vary according to the seasons, with some times of the year one 

method performing better than the other. Therefore, it becomes clear that it is not possible to 

indicate that one method performs much better than the other, when considering all seasons and 

the analyzed metrics.  
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To investigate if the similar performance of the different methods was not due to the fact that, 

coincidently, they were coupling the same members, we evaluated the degree of coincidence of 

coupled members between the methods. The results showed that the couples formed within each 

method are extremely different, with a degree of similarity varying between only 2% to 4%. 

Considering the 51 members available, the coincidence is of 1 couple or at most 2 couples. The 

higher rate of same couples occur when the methods are based on the same method for defining 

similarity (volume or Euclidean distance) or with the time window (15 or 30 days). 

With this observed evidences, the member-to-member method presents the best cost-benefit ratio 

for an operational use, since it presents equivalent performance when compared with more 

sophisticated methods and has low computational or mathematical cost, while it also avoids 

complex data manipulation procedures, which could bring additional sources of errors to the 

process. 

Since the ECMWF EPS and the ECMWF S2S are the same model with only the forecast horizon 

extended (ECMWF, 2015), it was assumed that the coupling between them should be based on 

the member-to-member method, with no necessity to comparison its  performance with other 

methods. This strategy also makes sense in the light of the results from the assessment of the 

coupling of the ECMWF S2S with the seasonal model, which showed that there is no reduction 

in performance when the member-to-member method is used. 

6.4.2 Comparison of the seamless forecast with the seasonal forecast 

After the definition of the best way to couple the different horizons, the member-to-member 

method was applied to the three ECMWF precipitation forecasts. The performance of the 

seamless forecast obtained was evaluated against the seasonal forecast for three different 

horizons (10 days, 1 month, and 2 months ahead), considering the raw and the QM bias corrected 

forecasts.  

The analysis of the CRPSS metrics showed a clear superiority of the seamless over the seasonal, 

considering the first 10 days of forecast horizon. The superiority remains until the first month of 

lead time, but in a lower level. At the second month of lead time, the two forecasts practically 

exhibit the same performance, with a slight superiority of the seamless forecast. Other evaluation 

metrics exhibit the same general behavior, metrics evaluating accuracy and reliability exhibiting 

lower differences in performance at the shorter lead times during the wet season. These results 
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are in line with other authors who also found improvements in the predictability when coupling 

sub-seasonal to seasonal forecasts, and are explained by the higher number of initializations of 

the seamless forecast over the seasonal forecast (Wetterhall and Di Giuseppe, 2017; Wastl et al., 

2018; Ye et al., 2017). 

When we analyzed the QM bias corrected forecasts, the seamless forecast still performed better 

than the seasonal forecast, and followed the same behavior of the raw forecasts, but the 

differences in performance were smaller during the short period analyzed (January 2017 - May 

2020). 

6.4.3 Case study using the seamless forecast in January 2019  

To evaluate how the seamless forecast can anticipate an anomalous event occurring during the 

wet season, in January 2019, in basins under different climates, we selected three basins to 

compare the results with the seasonal forecast, with the initializations occurring in December 

2018. The seamless forecast was able to predict the negative precipitation anomaly that occurred 

in January in the basins of HPP Tucurui in the North region and HPP São Simão in the Southeast 

region, two weeks before the next run of the seasonal forecast, while the seasonal forecast 

predicted a positive anomaly, i.e., an anomaly with the opposite sign of the actual occurrence. 

For the basin HPP Dona Francisca in the south region, the seamless forecast was able to capture 

the signal of the positive anomaly earlier than it did in the other basins, with near three weeks 

before the next run of the seasonal model. Here again the seasonal model forecasted the opposite 

anomaly. The two forecasts showed similar performance only at the first or second weeks of lead 

time. However, with more initializations, the seamless forecast was able to capture better the 

tendency of the forecasts and also the amplitude of the anomalies. This result is in line with the 

results obtained by Andrade et al. (2018). The authors studied a group of S2S forecast models 

and obtained good results in the correlation between the observed precipitation anomalies and 

the mean of the ensemble forecasts until the second week of lead time for most of the studied 

models. For the ECMWF S2S, they found remarkable results until week three for the south region 

of Brazil, and until week four over the northern part of the northeast region of Brazil. 

6.5 CONCLUSIONS 

The first conclusion is that the seamless forecast can be done by coupling the three ECMWF 

forecast models (EPS, S2S and seasonal), to have a continuous daily precipitation forecast, with 
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a daily actualization. We recommend the use of the member-to-member coupling, which presents 

the best cost-benefit ratio, due the fact that other more sophisticated methods did not perform 

better than this simple method, which does not require a high computational effort or complex 

data manipulation. 

The seamless precipitation forecast system presents better performance than the seasonal forecast 

model, and showed a better ability to anticipate, weeks ahead, the occurrence of high anomalies 

of precipitation during the wet season in Brazil. This capacity brings great opportunities for this 

category of forecast to future applications in hydrological models, in order to generate flow 

forecasts to improve the hydropower operation. 
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CHAPTER 7: 

DEVELOPING SEAMLESS 
MEDIUM- TO LONG-RANGE 

FLOW FORECAST TO IMPROVE 
THE PREDICTION OF 

HYDROPOWER PRODUCTION 
IN BRAZIL  

This chapter will inspire a paper to be submitted at HESS - Hydrological Earth System 

Sciences Journal 
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7 DEVELOPING SEAMLESS MEDIUM- TO LONG-RANGE FLOW 
FORECAST TO IMPROVE THE PREDICTION OF HYDROPOWER 
PRODUCTION IN BRAZIL 

7.1 INTRODUCTION 

The management of the water supply is of great importance for many human activities, as 

navigation, water supply, agriculture, tourism and especially in the context of operations in the 

Brazilian electricity sector, where the majority of its production comes from hydroelectric 

generation. Therefore, flow forecast is one of the main information to optimize the electric 

system. To obtain a trustworthy flow forecast is necessary to deal with many different sources of 

uncertainties. We have uncertainties from the observed precipitation data, which is one of the 

most difficult variable to estimate (Herold et al. 2015), where different sources of precipitation 

can presents huge differences depending on the cover density of the gage stations (Juárez et al., 

2009; Demaria et al., 2011; Scheel et al., 2011; Falck et al., 2015; Mantas et al., 2015; Reis et 

al., 2019) and an way to deal with this, it is to combine different sources based on their individual 

uncertainty obtaining a more robust estimation of the precipitation, as done in chapter 3, where 

were combined the precipitation from the CPC-NOAA (Chen et al., 2008) and TRMM-MERGE 

(Rozante et al., 2010) to obtain a more reliable estimation of the precipitation over basins in 

South America. In the flow forecasts based on the GCM - General Circulation Models, the 

precipitation forecast is another important uncertainty source, due the chaotic behavior of the 

atmosphere the models are affected by the initial conditions (Kalnay, 2003; ECMWF 2015), to 

deal with this, the models migrated from the deterministic to probabilistic forecast, presenting 

better prediction results (e.g. Fan and Van de Doll, 2011; ECMWF, 2015; Hamill et al., 2006; Su 

et al. 2008; Medina et al. 2019). The GCM models are in constant improvement, but still 

remaining some uncertainties and systematic bias, and an application of post processors are an 

interesting way to improve the results of the forecasts (Verkade et al. 2013; Crochemore et al. 

2016). In chapters 4 and 5, assessing the performance of the ECMWF models, over basins in 

South America, with interest to power generation, were applied different bias correction methods, 

and obtained better forecast results with the application of QM – Quantile Mapping method, for 

bias correction of the daily precipitation forecasts. 

Another way to improve the forecasts, based om GCM models, it is to build a seamless forecast, 

this concept can be translated into concatenation of the best forecast model at each lead-time 

(Palmer and Webster, 1993). This method is used since in now-casting predictions (Wastl et al. 
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2018) or in a long time horizon like, applications in climate change studies (Solomon et al., 

2007). In chapter 6 were explored on a wide forecast horizon, from days to months and applying 

different coupling methods, was selected the better way to joining the 3 different horizons of the 

ECMWF forecast models (EPS, Extended and Seasonal), building a seamless seasonal 

precipitation forecast for basins in South America, presenting better results in predictability than 

the original seasonal forecast, for the first two months horizon. 

Invest in the treatment of the precipitation uncertainties is only the first part of the problem, still 

necessary to deal with the hydrological model uncertainty to have better results in flow forecast. 

It can be treated lumping this with the other uncertainties or separately from the meteorological 

uncertainties (Regonda et al., 2013), because it depends on the hydrological modeling process, 

caused, for example, by measurement and sampling errors, climate variability and determination 

of the initial and boundary conditions (Kim et al., 2021). There are some authors applying this 

approach, Krzysztofowicz (2002), Seo et al. (2006), and Demargne et al. (2014). There are 

different post processing techniques available to improve model prediction. The QM based on 

the cumulative distributions is one of the approaches (Shi et al., 2008; Madadgar et al., 2014), 

some approaches based on the Bayesian models (Krzysztofowicz and Maranzano, 2004 ;Brown 

and Seo 2010, 2013), and the generalized linear regression (Zhao et al., 2011). Besides of the 

existence of various studies on post processing of flow forecast, still necessary studies to evaluate 

its performance in big basins in a context of seasonal forecast.  

Besides the flow post processing approach may corrects the hydrological model, still remaining 

the uncertainty of the observed precipitation, which affects the initial conditions of the forecasts. 

The data assimilation is an interesting technique to improve the real-time flow forecasts. In 

general, the assimilation of data can be grouped into three approaches, (1) where the inputs are 

changed, (2) the model parameters or (3) state update. In this two first approaches the Kalman 

filter is widely used to update the internal state and parameters of the system (e.g. Hsu et al., 

2003; Moradkhani et al., 2005; Bloschl et al., 2008) and the last directly adjusts the outputs of 

the models regardless of what is happening internally (e.g. Lundberg, 1982; Lekkas et al., 2001; 

Xiong and O 'Connor, 2002; Broersen, 2007; Romanowicz et al., 2008; Wu et al., 2012; Liu et 

al., 2016; Tiwari et al., 2021; Yassin et al. 2021). Xiong and O 'Connor (2002) studied some data 

assimilation methodologies for error correction and verified that Auto-Regressive (AR) models 

presented better performance in correcting errors in flow prediction. Later, studies have shown 

that lower order models (2 or 1) were more applicable in predictions (Wu et al., 2012). The post 
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processors can improve the predictability of the forecasts and the use of a trustworthy flow 

forecast can help on the water resources management, especially when it is necessary to take 

anticipatory measures during the extreme events like droughts and floods. 

The Brazilian electric system has a hydrothermal structure with centralized operation, where 

ONS – System National Operator defines the rules and the normalization to have an harmonic 

operation of the system, to attend the energy demand at the lowest price. This set of rules are in 

the Network Procedures, which organize all the information of the system operation, with the 

obligations of all agents involved at the operation of the system, the optimization and forecast 

models used, the consistence of all information, etc. (ONS, 2021). To sell all the energy 

produced, Brazil has two main energy markets, the ACR – Regulated Contract Environment, 

where the Federal Government, with energy auctions, attend the structural demand of the electric 

system and the demand of the distribution companies, responsible to sell energy direct to the 

captive consumers, and the ACL – Free Contract Environment, where the bigger consumers, with 

bilateral contracts buy the energy directly to the generators (CCEE, 2021). The commercial part 

of the Energy System is under the responsibility of the CCEE – Electric Energy 

Commercialization Chamber, where all the contracts are registered and also run the same models 

used by ONS to optimize the energy production, with a similar deck of information, but with the 

objective to calculate the PLD – Settlement Price of Differences, which is the price of the energy 

spot market, where all the energy produced attend the demand, but without contract with the 

ACL or the ACR, is remunerated by the PLD (CCEE, 2021). The optimization models take in 

account the predictions of the energy demand, the energy production of all available sources, 

hydraulic, thermal, solar, wind and others, the level of the reservoirs, and other information 

(Nascimento, 2021). 

Besides the Brazilian electric system be hydrothermal, and year after year it is increasing the 

participation of other sources as solar and wind power, the energy production and its price still 

strongly dependent of the of the hydropower generation. Even during the sequence of drought 

years at the system, observed since the year of 2013, the majority of the energy still coming from 

hydropower, responsible for 76% of the energy production in 2016 (Paiva et al., 2020). In terms 

of time horizon, as shown in Figure 7.1, the needs of the hydroelectric system for accurate and 

reliable forecasts extent from forecasts up to a few days ahead for the balance of the electric grid 

(ONS, 2019), short-range from 1-7 days for flood control depending on the basin size, medium-

range forecasts up to 7–30 days ahead for energy trading in the spot-market (CCEE, 2021), and 
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seasonal (months ahead) streamflow forecasts for electric system optimization, maintenance 

planning, water multiple uses management, long-term energy trading strategies.  

 

Figure 7.1– The impact of the forecast horizon in the various activities of management of the SIN 

– National Interconnected System (adapted from Boucher et Ramos, 2018). 

At this experiment we explore some techniques to deal with uncertainties faced by hydrologists 

during the forecast activity, with the goal to generate a seamless seasonal flow forecast. Some of 

the steps as the treatment of the observed precipitation, the hydrological model calibration, the 

bias correction of the meteorological models and the coupling of the different horizons of the 

ECMWF models, after the application of the bias correction on the precipitation forecast were 

done in previous chapters. In this chapter we deal with hydrological uncertainty exploring some 

flow post-processors to improve the results of the flow forecasts and apply the results to predict 

the hydropower generation at the Brazilian electric system. 

According the objectives, we answer the following research questions: 

i. Can the application of the QM method correct the hydrological bias and improve the 

simulated flows? 
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ii. Can the application of the flow data assimilation at the output-error- correction technique 

deal with the uncertainty of the initial conditions and improve the flow forecasts? 

iii. Does the proposed seamless flow forecast perform better than the traditional seasonal 

flow forecast? 

iv. Can the use of the seamless flow forecast improve the prediction of the hydropower 

production in Brazil? 

The chapter is organized with the following sequence, the materials and methods are presented 

in section 7.2, section 7.3 describe the results and section 7.4 presents the discussion. Finally, 

section 7.5 bring the conclusions of the study. 

7.2 MATERIALS AND METHODS 

7.2.1 The dataset and study area (the HPP Brazilian basins) 

a. Precipitation forecasts 

We use the precipitation forecasts obtained in chapters 4 (section 4.2.2) and 5 (section 5.2.2), 

based on the application of the QM bias correction method, at the daily precipitation, at the three 

forecast horizons of ECMWF models: 

• The ECMWF seasonal SEAS5 (7 months), with the correction parameters calibrated with 

the reforecast from 1981 to 2016; 

• Extended forecast ECMWF S2S (46 days), applying an on-the-fly bias correction with 

the parameters being calibrated every run with the 20 years on-the-fly hindcast and; 

• The medium term ECMWF EPS model (15 days), correction using the parameters 

calibrated with the ECMWF S2S hindcast. 

The three bias corrected ECMWF models, are coupled to produce a seamless precipitation 

forecast, using the member-to-member coupling technique to join the bias corrected precipitation 

forecasts. (for more details see chapter 6). 
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b. Observed precipitation 

The observed precipitation, with the objective to have a more trustworthy dataset, is a 

combination of two observed precipitation sources, the TRMM-MERGE, with satellite 

information (Rozante et al., 2010) and the CPC – NOAA, a gauge based dataset (Chen et al., 

2008), weighted by the uncertainty of each source, available from 1979-2021 (see chapter 3).  

c. HPP streamflows 

Observed flows 

Daily natural discharge data were obtained from the ONS (the national operator of the electric 

system). They correspond to the official HPP natural flow time series, and compiled annually by 

the national operator (for more details, see ONS, 2005). Overall data availability depends on each 

river basin. For this study, the discharge dataset used covers the period 1979-2021 for all studied 

river basins. 

Simulated flows 

Daily simulated hydropower flows dataset came from the HEC-HMS hydrologic model, with 

parameters calibrated for the period from 1997-2017, using the combined precipitation weighted 

by the uncertainty, having as a reference the natural observed flow from ONS (for more details, 

see chapter 3).  

The study area covers part of South America, divided in 41 river basins, to model 30 hydropower 

plants with great importance for hydroelectric generation in Brazil, with diverse climates and soil 

uses, with areas ranging from 9300 km² to 382000 km². Figure 7.2 illustrates the study area, with 

the basins delimited in red and the group with similar behavior in dashed black line. 
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Figure 7.2– Geographic location of the study area composed by 30 HPP, with the basins delimited 

in red and the groups G1 to G8 delimited in dashed black line. 

7.2.2 Applying the QM method to deal with the hydrological uncertainty 

The QM bias correction method is classified as distribution-derived transformation, (e.g. Block 

et al., 2009; Piani et al., 2010; Johnson and Sharma, 2011; Sun et al., 2011; Kim et al., 2016). It 

is based on correcting the forecasts aiming that their statistical distribution fits to the statistical 

distribution of observations. There are some ways to adjust the forecast and observed 

distributions or quantiles, and existing techniques mainly differ in terms of how the cumulative 

distribution functions (CDFs) are considered (Crochemore et al., 2016). In this study, the 

empirical CDFs (ECDFs) are used to build the probability distributions of the observed flows 

and simulated flows of the calibrated HEC-HMS models (see chapter 3).  

The QM will be applied with the objective to correct the systematic hydrological model bias. 

With this technique the bias correction parameters are calibrated applying the split-sample-teste 

(Klemes, 1986), considering the calibrated periods  Cal1-1979/1997, Cal2-1997/2016 and Cal3-

1979/2016, the validation periods are Val1-1997/2016 and Val2-1979/2016, and finally the 

period 2017-2021 is tested with the three calibrations. This bias correction method will be only 
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month dependent and applied to the daily flows of each basin. Therefore the parameters are 

calibrated aiming to fit the ECDFs of the Simulated flows with the ECDFs of the observed flows 

of each calibration period and in sequence checked at the validation period. The bias correction 

only will be applied if the calibrated parameters presents a performance of correction, at the 

validation period, similar to the obtained at the calibration period, and also shows a similar 

performance when applied at the period 2017-2021. To evaluated the performance will be used 

the MAE, KGE, NSE and R2 metrics. 

7.2.3 Applying the flow data assimilation to update the flow forecast 

The selected method is the output-error-correction, AR – Auto Regressive with order 1, with the 

exponential decay based on the duration of the Clark Unit Hydrograph (Kull and Feldman, 1998)  

of the calibrated hydrologic models. The hydrological models, in the prediction mode, can adopt 

a correction of the initial conditions of forecast in the time T0, in order to have a better 

assertiveness in the first horizons of the forecast. This correction is based on the errors of the last 

day of the simulation and from them, the values of the initially predicted flows are corrected. The 

parameters for this autoregressive correction must be adjusted and are dependent on the flow 

characteristics of each river basin and the forecast horizon. For this research we apply as the flow 

post processor the simple output error correction method, defined by the equations 7.1 and 7.2, 

where we will determine the parameter α that defines the velocity of the exponential decay of the 

correction.  

𝑄𝑐𝑜𝑟 (𝑇(𝑛+1)) =  𝑄𝑠𝑖𝑚 (𝑇(𝑛+1)) − 𝐸𝑟 ∙ 𝛼𝑇(𝑛+1)      (7.1) 

𝐸𝑟 =  𝑄𝑆𝑖𝑚 (𝑇0) −  𝑄𝑂𝑏𝑠 (𝑇0)     (7.2) 

where 𝑄𝑐𝑜𝑟 is the corrected flow, 𝑄𝑠𝑖𝑚 is the simulated flow, 𝐸𝑟 is the error of the simulation, 𝑇0 

is the time zero with of the last observed flow, and n is the number of days ahead after start the 

correction. 

The α parameter will be defined physically, as a function of the duration of the runoff hydrograph 

for each basin, defined by the Clark Unit Hydrograph calibrated at the HEC-HMS models, for 

each catchment, to define the time Tn where ends the runoff flow. At this time Tn, the factor 

𝛼𝑇(𝑛+1) , that multiply the correction 𝐸𝑟, is equivalent to the average fraction of the total baseflow 
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divided by the total discharge of the basin, during the total calibration period (1997-2017) of the 

hydrologic model, obtained from the HEC-HMS models, for each basin. 

The 𝛼𝑝ℎ𝑦𝑠, values proposed have their performance compared with the values of 𝛼𝑚𝑎𝑡ℎ which 

are calculated only mathematically, minimizing the RMSE metric, considering the first month 

horizon, a time window where we have the higher capacity of correction. With this test, we can 

see how the method proposed to obtain the α, based on physical representation of the flow, has a 

performance closer to the mathematical method, based only on the best RMSE fit. Once the 

mathematical 𝛼 parameters are dependent on the time window to calculate the RMSE, the 

physical approach has the advantage to be only dependent on the hydrological characteristic of 

the basin and valid for any horizon. Finally, the simulated flows corrected with the physical 𝛼 

value are compared with RMSE of the simulated flow without AR correction, for the windows 

of 1, 2 and 4 months, to see how the capacity of correction reduces when the time horizon 

increases. 

7.2.4 Assess the performance of the chosen seamless forecast compared with the 

traditional seasonal flow forecast 

After test the two post processors described in 7.2.2 and 7.2.3, the chosen correction methods, 

calibrated with the simulated flows and compared to observed values, will be used to correct the 

seamless flow forecast, running with the seamless precipitation forecast described in 7.2.1. To 

simulate a real situation of a flow forecast to the Brazilian electric system (detailed in 7.2.5), the 

performances are checked considering the begin of the simulations happening at the last day of 

the month 1, therefore we will have six months lead-times ahead instead of the 7 months horizon 

of the traditional ECMWF seasonal forecast model. 

To evaluate the overall performance we will use the metric CRPSS - Cumulative Rank 

Probability Skill Score, and in terms of assertiveness will be used the RME of the median of the 

ensemble forecasts. The results are compared with the observed flow as a reference, for the period 

of Jan/2017 to Jun/2021. 

We will compare the performance of the flow forecast running with the traditional ECMWFsn 

SEAS5 bias corrected and the Seamless bias corrected after the application of the flow post-

processor.  
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7.2.5 Application of the seamless flow forecast to predict the future hydropower energy 

production of the Brazilian interconnected system 

The optimization of the Brazilian electric system operation and the methodology for setting 

energy prices 

The electric energy operation policy and the definition of the prices of the generated energy 

(CMO - Marginal cost of operation and PLD - Settlement price of differences) is carried out from 

the chain of computational models (NEWAVE, DECOMP and DESSEM) that seek to optimize 

the operation of the system, with the lowest operating cost in the period, respecting the 

requirements of reliability in meeting the load. 

NEWAVE is used for planning the operation of the Brazilian hydrothermal system, with a 

horizon of up to 5 years, in a monthly basis. The thermal plants are represented individually and 

for the hydroelectric park that is centrally dispatched, the plants are aggregated into Equivalent 

Energy Reservoirs - REE, the other sources are represented as Individually Not Simulated Plants 

- UNSI, which come in to meet the submarket's share of the load where they are present. Its 

objective is to define the hydraulic and thermal generation strategy that minimizes the operating 

cost for the entire planning period. It defines the future water cost functions that impact the water 

use policy in the reservoirs, determined by the short-term models. 

DECOMP optimizes the operation of the hydrothermal system, with a horizon of up to 2 months 

and weekly discretization in the first month. In this model, thermal and hydroelectric plants are 

represented individually and energy exchanges are modeled similarly to NEWAVE. In 

DECOMP, the dispatch of the hydrothermal park is determined, which minimizes the operating 

cost in the period analyzed, based on the set of available information (load forecast, reservoir 

start-up levels, plant availability, flow forecast, future cost function of the NEWAVE, electrical 

limits, hydraulic restrictions, among others). In it, the future cost function, for coupling to the 

DESSEM very short-term model, is obtained. 

At DESSEM, the hydrothermal system is optimized in the very short term, with a 7-day horizon, 

with hourly discretization. In this model, thermal plants are represented by generating unit, 

considering the restrictions of unit commitment, and hydroelectric plants are represented 

individually. Intermittent sources (solar and wind) have their characteristic variations represented 

in this model. It determines the dispatch of the system that minimizes the operating cost, the 
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Marginal Operating Cost - CMO for each period and submarket, with a more detailed set of 

information (Load forecast, Flow rates, storage, wind generation, solar generation, limits 

electrical, future cost function of DECOMP, among others). 

The CMO is obtained through the aforementioned models, while the PLD is determined from the 

CMO limited between minimum and maximum values, according to ANEEL Normative 

Resolution No. 858/19. In addition, the maximum PLD has 2 values, a structural maximum limit 

and a maximum hourly limit. 

The revisions of the operation policy and prices are carried out in the Monthly Operation 

Planning - PMO meetings, whose energy price and the operating assumptions for the current 

month are carried out on the last Thursday of the previous month. Prices are revised weekly, 

every Thursday, based on the rounds of the three operation optimization models. Details of the 

entire process and the requirements of each of the factors that affect the planning of the operation 

can be obtained from the network procedures of the ONS - National Electric System Operator 

(ONS, 2021) 

As the Brazilian hydrothermal system has a predominance of hydraulic generation, the analysis 

of its behavior assumes a probabilistic premise, since the policy for the use of stored water is 

dependent on future uncertainties such as load, system expansions, present and future storage, 

but mainly the future affluent flows. Table 7.1 summarizes the operation policy and its 

consequences, based on the possibilities of future inflows. 

Table 7.1 – The impact of the operation policy under the influence of future inflows. 

Policy Future inflows Consequences of the operation 

Use stored water 

High (abundance 
of flows) 

Economically efficient operations, with optimal use of water, 
thermal and financial resources (lower energy cost, with the 

activation of cheaper thermal plants over the period) 

Drops (drought) 

Energy Deficit (Unoptimized use of resources, leading to depletion 
of reservoirs, with late activation of thermal resources, leading to 
the use of more expensive thermal plants for a longer period, with 
the highest energy costs in the period and, in extreme cases, failure 

to meet demand, with long-term social and economic repercussions) 

Use the Thermals, 
saving water in 
the reservoirs. 

High (abundance 
of flows) 

Spillage above necessary (Deoptimized use of resources, leading to 
premature filling of reservoirs, with unnecessary activation of 

thermal resources, increasing energy costs in the period and, in 
extreme cases, limiting flood control) 

Drops (drought) 
Economically efficient operations, with optimal use of water, 

thermal and financial resources (a little higher energy cost, with 
activation of the necessary thermal plants over the period) 
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Brazil is a country with a large territorial extension and great climatic variability, which makes 

it possible to reduce operating costs through the exchange of energy between the four subsystems 

(North, Northeast, Southeast/Midwest and South). These regions have great complementarity 

between the affluent flows of the various regions and also between the generation of intermittent 

wind and solar sources, in which the peak of wind and solar generation is observed during the 

period of lower flows in most of the country. This exchange is only possible due to the vast 

transmission system, which interconnects the various regions and allows the abundance of energy 

in one subsystem to be transferred to the other subsystems, which can be used to supply the load 

and in cases of excess supply, stored in the various reservoirs of the hydroelectric plants. 

Thus, the importance of knowing the future flows to the reservoirs of the Brazilian interconnected 

system is evident, being essential a reliable and assertive flow forecasting system, which would 

provide the optimal use of available resources and the lowest energy cost for the whole society. 

The calculation of Affluent Natural Energy - ENA, based on affluent flows 

ENA is calculated based on natural flows and productibilities equivalent to the storage of 65% 

of the active storage of the reservoirs of hydroelectric plants. It can be calculated on a daily, 

weekly, monthly or annual basis and also by basin and by subsystem (ENASUBSYSTEM), 

according to the existing hydropower systems in the configurations of the hydrographic basins 

and electrical subsystems, as described in the procedures of network submodule 2.4 (ONS, 2021). 

In the present work, the forecasts of 30 projects were modeled, so that it was possible, with these 

hydroelectric plants, to represent the ENA of the four subsystems and, consequently, the ENA of 

the complete interconnected system. Thus, to obtain the ENA by subsystem, the parameters of 

multiple regressions between the observed natural flows, in the plants that make up each 

subsystem, and the respective ENA of the subsystem were calibrated. Table 7.2 shows the plants 

used to calculate the ENA in each subsystem. 
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Table 7.2 – HPP list used to calculate the ENA in each subsystem. 

Subsystem North Northeast Southeast / Center-West South 

HPP 

Belo Monte 
Ferreira Gomes 
Sto. Ant. do Jari 

Lajeado 
Tucurui 

Itapebi 
Três Marias 
Sobradinho 

Ilha dos Pombos 
Manso 

Mascarenhas 
Itumbiara 

Emborcação 
Capim Branco 2 

São Simão 
Furnas 

Agua Vermelha 
Nova Avanhandava 

Porto Primavera 
Rosana 
Itaipu 

Santo Antônio 
Teles Pires 

Quatorze de Julho 
Dona Francisca 
Barra Grande 

Campos Novos 
Foz do Chapecó 
Gov. B. Munhoz 

Salto Caxias 

 

For the South, Southeast/Center-West and Northeast regions, where the system had a more stable 

configuration until the actual days, without the entry of new relevant plants, and consequently a 

longer period of data for the relation Flow versus ENA, greater than 10 years, multiple 

regressions were used to calculate the ENA for each month of the year. Thus, each of these 

subsystems presents twelve sets of parameters to model the year's ENA. As for the North 

subsystem, which more recently had the entry into operation of the Belo Monte HPP, whose 

number of operating machines allowed us to have the most similar configuration to the current 

system only after 2015, a multiple regression representing the entirety year was adopted for the 

relation Flow versus ENA. 

The calculation of ENA, based on seamless flow forecast 

The Affluent Natural Energy-ENA predicted for each subsystem was calculated from the median 

of the ensemble of expected flows for the reference month, from the runs of the last Thursday of 

the previous month, similar to what is done in the actual PMO systematics. For the median 

predicted flows, a calibrated multiple regression was applied for each subsystem and the ENA 

forecasts were obtained for a horizon of up to 6 months, for each of the subsystems. The sum of 

these flows results in the total ENA of the SIN – National Interconnected System. 

The performance of these planned ENAs was evaluated for the period from Jun/2017 to Jun/2021, 

using the performance indicators MAPE, KGE and R2. It will be evaluated how the ENA forecast 

performance is for each subsystem and for each forecast horizon. In addition, the performance of 
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the SIN will be evaluated, since it is interconnected, the analysis of the forecast of the SIN, as a 

whole, will allow to assess whether it is possible to anticipate the most extreme events, especially 

droughts, which bring the most serious consequences for the price of energy. 

Comparison of predicted ENA, based on seamless flow forecast and NEWAVE's first six 

months forecast 

At this part we run the NEWAVE Model, on its latest 2021 version, which were introduced an 

extension of the stochastic model, adding a new term at the regression equation, referring to the 

average of the observed flows of the last twelve months, to give to the model a higher capacity 

to represent a more severe hydrological tendency, for example long droughts (Lima and Oliveira, 

2021). NEWAVE is able to simulate the operation of the interconnected system for a horizon of 

up to 5 years, and will be operated in the forecast module only with the objective to obtain the 

ENAs of the electric systems, which are statistical forecasts based on the past of observed flows, 

which results are determinant for the future cost function of water and, consequently, for the 

price of energy. The first six months of NEWAVE forecast will be evaluated with the six months 

of ENA obtained by the proposed methodology, comparing the assertiveness of the median of 

Seamless forecast versus the NEWAVE, based on the performance metric MAPE Skill Score. If 

the forecasts based on the seamless flow forecast are more assertive, we will have an excellent 

indicative that the proposed methodology can contribute to a better operation of the system. 

7.2.6 Metrics to assess the forecast performances 

The metrics used are the same that were presented in Chapter 4, section 4.2.4 for the evaluation 

of the precipitation forecasts, i.e., CRPS, RME, BSrel, BSres, Correlation coefficient, and skill 

score. Also the same that were presented in chapter 3, section 3.2.6, for the evaluation of the 

hydrological simulations, i.e., NSE, KGE, MAE and R². The reader is invited to refer to it. 

The mean absolute percentage error (MAPE), is a measure of prediction accuracy of a forecasting 

method in statistics. It usually expresses the accuracy as a ratio defined by the formula: 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑌𝑖−𝑥𝑖

𝑥𝑖
|𝑛

𝑖=1       (7.3) 

https://en.wikipedia.org/wiki/Statistics
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where 𝑥𝑖 is the observed value, 𝑛  is the number of events, and 𝑌𝑖 is the forecast value. The 

absolute value in this ratio is summed for every forecasted point in time and divided by the 

number of fitted points n. 

The root mean square error (RMSE), is a measure of  the standard deviation of the residuals. It 

usually expresses the accuracy as a ratio defined by the formula: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑖 − 𝑥𝑖)2𝑛

𝑖=1

2
     (7.4) 

7.3 RESULTS 

7.3.1 Application of the QM method to deal with the hydrological uncertainty 

The parameters calibrated to perform the QM bias correction of the flows was calibrated with 3 

different periods applying the split-sample-test (Klemes, 1986) to have more robust parameters. 

Figure 7.3 shows the boxplots with the performance results of the application of the QM method 

in three different periods of calibration (1979-1997, 1997-2016 and 1976-2016) and validation 

(1997-2016, 1979-1997, and 2017-2021), considering the four metrics (MAE, KGE, NSE, and 

R²) with analysis of the bias corrected simulated flows of the HMS-models considering as a 

reference the observed daily flow, for the 30 HPP.  

When we observe the three calibration periods (first row of graphs), it is clearly visible an 

improvement of the performance of the corrected flow (left boxplot) compared with the raw 

simulated flow (right boxplot), at all the four metrics, with emphasis on KGE, NSE, and R2, 

where they presents a better median of the performance and also reduces the variability, 

especially for the calibration period 1979-1997. Otherwise when we look at the validation 

periods, those improvements do not appear, the median of the performance of the corrected flows 

tends to be equal or worse than the raw flows, also is noted a bigger dispersion of the results 

presenting more basins with worse performance after the correction. 

Finally, when we observe the recent period 2017-2021, the parameters calibrated for the periods 

1979-1997 and 1979-2016 generate corrected flows with a median of the performances similar 

to the raw flows, but with a higher dispersion, presenting more basins with worse performance 

for the corrected flows. The calibration for the period 1997-2016, had the worst performance of 
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the corrected flows, showing a lower median of the performances and also a higher dispersion, 

with worst performance in more basins. 

 

Figure 7.3– Graphs with the performance indicators (MAE, KGE, NSE and R2) of the bias 

corrected flows (right boxplot in each graph), obtained with parameters calibrated in three 

different periods (1979-1997, 1997-2016 and 1976-2016) and validated in two validation periods 

(1997-2016 and 1979-1997)  and verified in the recent period 2017-2021, compared with the raw 

simulated flows (left boxplot in each graph). 

7.3.2 Application of the output-error-correction technique at the simulated flow 

In Table 7.3 we can see the α parameters, first with the best RMSE of the corrected simulated 

flows, obtained only mathematically (𝛼𝑚𝑎𝑡ℎ) compared with the hydrologically proposed method 

(𝛼𝑝ℎ𝑦𝑠) with the correspondent RMSE of the daily corrected flows, considering the first month 

horizon, with the observed flow as a reference. Also is presented the comparison of the 

performance of the corrected daily simulated flows, with the raw simulated flows for the horizons 

of one, two and four months ahead. 

In this table is possible to see that the RMSE of the hydrological α is very closer to the best 

RMSE, the differences show that the chosen values are in average 2% worse than the best 

performance, and the biggest difference is 10%, in more of 80% of the basins the difference is 
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equal or lower than 2% for the first month horizon. When we compare the performance of the 

flows corrected with the physical α, is possible to see that method improves the RMSE metric in 

20% in average, and the maximum improvement is 39%. For the second month horizon the mean 

improvement of the performance is around 12%, with the best value of 24%. Finally, at the fourth 

month horizon, the improvement of the corrected flows is near 6%, with the best value of 12%. 

For longer horizons the improvement tends to zero due the exponential decay factor of the 

correction. 

Table 7.3 – Comparison of the α values and the RMSE performance of the corrected flows using 

the mathematical α and the proposed physical α, considering the first month (1M) horizon (first 5 
columns). In sequence corrected simulated flows with Physical α compared with the performance of 

the raw simulated flows for 1, 2 and 4 months horizon. 

HPP 𝛼𝑚𝑎𝑡ℎ 
RMSE 

1M 
𝛼𝑝ℎ𝑦𝑠 

RMSE 

1M 
diff. 

Raw 

RMSE 
1M 

RMSE 

2M 

Raw 

RMSE 
2M 

RMSE 

4M 

Raw 

RMSE 
4M 

diff 

1M 

diff 

2M 

diff 

4M 

14_DE_JULHO 0.728 231 0.887 233 1% 241 258 261 278 280 -3% -1% -1% 

AGUA_VERMELHA 0.975 301 0.964 305 1% 428 373 448 441 478 -29% -17% -8% 

BARRA_GRANDE 0.809 177 0.778 177 0% 186 195 199 209 211 -5% -2% -1% 

BELO_MONTE 0.973 1206 0.973 1206 0% 1953 1628 2085 2081 2344 -38% -22% -11% 

CAMPOS_NOVOS 0.939 125 0.887 127 2% 145 145 154 160 164 -13% -6% -3% 

CAPIM_BRANCO_2 0.961 75 0.959 75 0% 89 86 94 99 103 -15% -9% -4% 

DONA_FRANCISCA 0.939 176 0.868 179 2% 197 202 210 219 223 -9% -4% -2% 

EMBORCACAO 0.981 100 0.957 103 3% 141 125 148 148 160 -27% -16% -8% 

FERREIRA_GOMES 0.966 225 0.949 228 1% 296 268 310 311 334 -23% -14% -7% 

FOZ_DO_CHAPECO 0.927 622 0.824 638 3% 696 714 742 772 786 -8% -4% -2% 

FURNAS 0.963 186 0.953 203 10% 228 216 241 249 262 -11% -10% -5% 

G_B_MUNHOZ 0.961 217 0.923 222 2% 271 262 289 294 306 -18% -9% -4% 

ILHA_DOS_POMBOS 0.967 109 0.956 110 0% 138 127 144 144 152 -20% -12% -5% 

ITAIPU 0.971 1479 0.971 1479 0% 2058 1780 2142 2064 2248 -28% -17% -8% 

ITAPEBI 0.927 162 0.963 165 2% 183 189 200 222 227 -10% -6% -2% 

ITUMBIARA 0.973 258 0.958 263 2% 355 320 376 383 413 -26% -15% -7% 

LAJEADO 0.945 702 0.978 725 3% 732 723 777 845 862 -1% -7% -2% 

MANSO 0.841 70 0.696 70 1% 74 77 79 87 89 -5% -2% -2% 

MASCARENHAS 0.963 219 0.938 224 2% 277 263 294 304 320 -19% -11% -5% 

NOVA_AVANHANDAVA 0.961 200 0.963 203 2% 246 228 256 256 271 -17% -11% -6% 

PORTO_PRIMAVERA 0.978 929 0.962 942 1% 1293 1145 1352 1332 1437 -27% -15% -7% 

ROSANA 0.951 387 0.947 388 0% 466 449 492 504 524 -17% -9% -4% 

SALTO_CAXIAS 0.965 428 0.896 462 8% 554 539 587 600 623 -17% -8% -4% 

SANTO_ANTONIO 0.979 2122 0.984 2125 0% 3458 2730 3592 3335 3792 -39% -24% -12% 

SAO_SIMAO 0.979 364 0.970 367 1% 522 453 553 551 604 -30% -18% -9% 

SOBRADINHO 0.977 451 0.979 452 0% 655 556 693 683 762 -31% -20% -10% 

STO_ANTONIO_DO_JARI 0.979 222 0.950 240 8% 353 303 371 367 404 -32% -18% -9% 

TELES_PIRES 0.978 330 0.983 331 0% 534 438 565 557 622 -38% -22% -10% 

TRES_MARIAS 0.950 222 0.960 223 0% 267 260 286 308 322 -16% -9% -4% 

TUCURUI 0.969 1257 0.961 1274 1% 1892 1639 1998 2004 2200 -33% -18% -9% 

Mean          2%           -20% -12% -6% 
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7.3.3 Evaluate the performance of the seamless forecast compared with the traditional 

seasonal flow forecast 

After the definition of the AR output-error-correction as the flow postprocessor, we compare the 

performance between the original bias corrected ECMWFsn and the proposed flow forecast with 

the Seamless ARpost (with the flow data assimilation). Figure 7.4 shows the heat map graphs of 

CRPSS metric, with six months horizon, divided in four seasons, for a best evaluation of the dry 

and wet periods. We are considering the run at the last day of the month, to simulate a real forecast 

situation for the PMO of the Brazilian Electric System. In each column we have the seasons, 

starting with the months OND (October, November and December) representing the begin of the 

wet season, at the last column we have the months JAS (July, August and September), 

representing the end of the dry season. At the rows we have the different seasonal forecasts, the 

ECMWFsn bias corrected, at the first row, and the proposed methodology, the Seamless ARpost 

at the end, with the application of the post processor the AR output-error-correction. The results 

are divided in eight groups from South to North direction (G1 to G8) with hydrological similarity. 

It is possible to observe in this figure that the South region represented by the group G1, it is 

pretty hard to predict the flows, even in the first month horizon, only at the seasons AMJ and 

JAS is possible to be better than the climatology, only with the Seamless ARpost forecast 

improving the performance, fortunately the highest flows happens at this seasons. After the 

second month horizon is not possible to beat the climatology. 

For the group G2 which still under some influence of the South weather, the result is similar, but 

with the Seamless ARpost, it is possible to have a performance higher than the climatology in all 

seasons for the first month horizon.  

In group G3, which is located in the center of Brazil, the Seamless ARpost present a visible 

improvement at the first month horizon, being possible to beat the climatology in all seasons. 

And for the seasons OND and JAS, it is possible to extend the viability to longer horizons. 

In group G4, with great part of the basins under influence of the semi-arid weather, it is only  

possible go best than the climatology at the first month horizon with the Seamless ARpost, except 

in the JAS season, the driest period of the basins, when it is not possible to perform better than 

the climatology in any horizon. 
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In the groups G5, G6 and G7, located in the north region, and with the biggest basins, the 

Seamless ARpost forecast can beat the climatology in all seasons at the first two months horizon, 

and in the seasons OND, AMJ and JAS we can extend this better performance for longer 

horizons. Finally at group G8, at the extreme North region, the Seamless ARpost flow forecast 

has a good performance and in a longer horizon at the seasons OND, JFM, and JAS than the 

ECMWFsn. 

 

Figure 7.4– CRPSS results of the two flow forecasts (ECMWFsn and Seamless ARpost), 

considering the run at the last day of the month, the six months lead times and the four seasons. 

Divided in 8 groups with hydrological similarity (G1 to G8). The gray and the red color represents 

a performance worse than the climatology, the colors yellow, green and blue represents different 

degrees of performance better than the climatology. 

Figure 7.5, shows a spatial vision of the CRPSS performance, with maps of the first month 

horizon, for all four seasons in each column of maps, starting by the begin of the wet seasons 

(OND) and at the rows of maps we have each seasonal flow forecast (ECMWFsn and Seamless 

ARpost). With this figures is possible to see a clear improvement of the flow forecasts with the 

proposed method Seamless ARpost, illustrated by the stronger blue when we compare with the 

ECMWFsn. It happens in all seasons and in all basins. This is an evidence that the flow post 

processor applied with the seamless forecast produces more viable flow forecasts. 
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Figure 7.5– Maps with CRPSS results of the two forecasts (ECMWFsn and Seamless ARpost), 

considering the run at the last day of the month, for the first month lead-time (LDT1M) and the 

four seasons. The blue represent a performance better than the climatology and the red a worse 

performance. 

Figure 7.6 shows the heat map graphs of RME metric, to give an idea of the assertiveness of the 

forecasts, with six months lead-time horizons, divided in the four seasons, for a best evaluation 

of the dry and wet periods, with exactly the same structure and scenarios presented in figure 7.4. 

But in this case, at the RME figures, the best performance is the white color (zero bias), a red 

color represents and underestimation of the forecasts and the blue represents an overestimation 

of them. 

 

Figure 7.6– RME results of the two forecasts (ECMWFsn and Seamless ARpost), considering the 

run at the last day of the month, the six months lead times and the four seasons. The blue 

represent an overestimation, the red an underestimation of the forecast flows, and white is the 

best performance. 

At this figure we can see a tendency of overestimation of the forecast flows for groups G1 to G5, 

in all seasons and forecast methods, with the Seamless ARpost being able to reduce this 
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overestimation at the first month horizon, and sometimes generating a small underestimation. 

For group G6 appears a tendency of underestimation during the wet seasons at the first lead time 

horizons with the Seamless ARpost being able to improve the results. 

For groups G7 and G8 appears a tendency of underestimation in practically all seasons and again 

the Seamless ARpost was able to improve the forecasts at first horizons. 

After the second month horizon the both forecasts tend to have a similar performance due the 

fact that the Seamless and the flow post processor acts stronger only at these initial periods, 

decreasing the influence along the higher lead-times. 

Figure 7.7, shows a spatial vision of the RME performance with maps of the first month horizon, 

for all four seasons in each column of maps, starting by the begin of the wet seasons (OND), and 

at the lines of maps, we have each seasonal flow forecast (ECMWFsn and Seamless ARpost). 

With this figures is possible to see that the basins at the West region have a tendency to present 

underestimation of the flows and in the east region inverts this tendency to an overestimation at 

the ECMWFsn flow forecast. But after the application of the complete Seamless ARpost flow 

forecast, the method was able to reduce significantly this bias of the underestimations and also 

at the overestimations, represented by the colors near to white, generating forecasts with lower 

bias, and consequently with more assertiveness. 

 

Figure 7.7– Maps of RME results of the two forecasts (ECMWFsn and Seamless ARpost), 

considering the run at the last day of the month for the first month lead-time (LDT1M) and the 

four seasons. The blue represent an overestimation, the red an underestimation of the forecast 

flows, and white is the best performance. 
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7.3.4 Application of the Seamless flow forecast to predict the hydropower energy 

production for the Brazilian electric system 

The transformation of the hydropower energy production in each subsystem involves the 

calculation of the generation of each HPP in the system. But at this experiment we work with a 

specific group of HPP that can represent the energy production of the subsystem. To calculate 

the energy production for the subsystem a multiple regression was calibrated to calculate the 

ENA – Energia Natural Afluente (Affluent Natural Energy ) of the subsystems. In Figure 7.8, we 

can see the result of the coefficient of correlation between the calculated ENA and the real 

observed ENA, for each of the four subsystems of the Brazilian interconnected system. It is 

possible to see a very good fit between the calculated and observed values, with a R2 near to one. 

The lower value appears at the North region where we have a shorter period of the actual 

configuration of the subsystem to calibrate the parameters. This results indicates that the 30 

chosen HPP can represent the complete electric system with a high degree of confidence. 

 

Figure 7.8– Graphs with the ENA calculated versus ENA observed and the correlation coefficient 

of the calibrated multiple linear regression of observed flow and ENA for the subsystems South, 

Southeast/Center-West, Northeast, and North. 
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The calibrated multiple regressions parameters were applied at the median of the Seamless 

ARpost flow forecasts to predict the hydropower energy production at each subsystem, until six 

month lead-time. In Figure 7.9 we have the HPP energy production forecast for the subsystems 

South and Southeast / Center-West, for the period from July/2017 to June/2021, with the LTM 

(long term mean) of the ENA in blue dots line, the observed ENA in dashed black line, the green 

lines represent the forecasted ENA in different horizons, the thickest and darkest lines are the 

closer  lead time horizons, and the red bars indicates the error for the first month lead-time. The 

table 4 indicates the performance of the predictions, for the six lead-times, and for the metrics 

MAPE, NSE and R2. At this figure, on the first graph, we can see that the South region is the 

most difficult to predict, even for the first month. When the observations are far to the 

climatology, the forecasts cannot predict the intensity of the extremes or a sudden change of the 

conditions from dry to wet or at the opposite direction. But the model still with the capacity to 

forecast if we will have production above or below the climatology for almost all months of the 

analyzed period. When we look to the  bars of errors of the first month lead-time we can see a 

tendency of overestimation of the forecasts. Table 7.4, with the performance metrics, shows in 

numbers this behavior with a strong degradation of the performance after the first month horizon, 

with MAPE near to 50%, NSE below zero and R2 below 0.2 after the first month horizon. 

In the second graph of this figure, we have the representation of the Southeast / Center-West 

subsystem, with the bigger production of the SIN. At this subsystem the results are much better 

than the previous, showing ability to predict the energy production in a longer horizon and with 

more sensibility to predict the intensity of the more extreme situations. This become more evident 

during the recession period which goes from April to October where the observed initial 

conditions are known and the hydrological model predict well the future conditions. The model 

exhibits a good performance to forecast the energy production below or above the average for 

the majority of the observed period and in a long horizon, more than 5 months during the 

recession and near 3 months during the wet period. The red bars with the errors of the first month  

shows the lower errors at this period and the highest values appear during the wet season, 

especially when happens a break in the trend of the flows. At table 7.4 we can see the best results 

at the first two months, with MAPE below 30%, NSE higher than 0.6 and R2 higher than 0.8, we 

have a small degradation on the third month, and after this we have the lowest performance with 

MAPE higher than 40%, NSE below 0.4 and R2 around 0.76. 
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Figure 7.9– Hydrographs of ENA for the subsystems South and Southeast/Center-West, for the 

period from July/2017 to June/2021, with the LTM (long term mean) of the ENA in blue dots line, 

the observed ENA in dashed black line, the forecasted ENA for each lead-time in green, the 

thinner and clearer line is the farther lead time horizon, and the red bars indicates the error for 

the first month lead-time. 

Table 7.4 – The performance of the forecast for the ENA of the subsystems South and Southeast / 

Center-West with the metrics MAPE, NSE and R2, for six months lead-time. 

  South Southeast / Center-West 

LDT MAPE NSE R2 MAPE NSE R2 

1 37% 0.15 0.37 30% 0.61 0.81 

2 47% -4.92 0.20 25% 0.63 0.82 

3 47% -6.59 0.17 33% 0.39 0.79 

4 48% -6.28 0.11 46% 0.36 0.76 

5 47% -8.03 0.09 40% 0.32 0.76 

6 47% -8.03 0.09 34% 0.33 0.77 
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In Figure 7.10 we have the HPP energy production forecast for the subsystems Northeast and 

North, for the period from July/2017 to June/2021, with the same configuration of the Figure 7.9. 

The table 7.5 indicates the performance of the predictions, for the six lead-times, and for the 

metrics MAPE, NSE and R2. At this figure, on the first graph, we can see that the Northeast 

region have a good capacity of prediction, especially on the first two months lead time. When 

the observations are far to the climatology, the forecasts can predict the intensity of the extremes 

or a sudden change of the conditions dry to wet or the opposite on the first month lead time. The 

model exhibits a great capacity to forecast if we will have production below the climatology for 

almost all months of the analyzed period and in a long lead-time horizon. When we look to the 

bars of errors of the first month lead-time, we can see a tendency of overestimation of the 

forecasts, but during the recession period, from April to October, the errors are very small 

showing the good ability of the hydrological model to reproduce the recession of the basins. 

Table 7.5 shows the best results at the first month, with MAPE of 16%, NSE higher than 0.85 

and R2 higher than 0.95, we have a degradation on the second month (MAPE=0.29, NSE=0.39, 

and R2=0.75), and after this we have the lowest performance with MAPE higher than 35%, NSE 

below 0.3 and R2 below 0.75. 

In the second graph of this figure, we have the representation of the North subsystem, with the 

bigger basins, that represent part of the Amazon river basin. At this subsystem the results are the 

best of the subsystems, showing ability to predict the energy production in a longer horizon (even 

six months ahead) and with more sensibility to predict the intensity of the high and low inflows. 

This become more evident during the recession period which goes from May to October, where 

the observed initial conditions are known and the hydrological model predict well the future 

conditions especially at the big basins. The model exhibits a good performance to forecast the 

energy production below or above the average for all observed period and in a long horizon, more 

than six months during the recession and near 3 months during the wet period. The red bars with 

the errors of the first month horizon, show the lower errors at this period and the highest values 

appear during the wet season, especially when happens a break in the trend of the flows. At table 

7.5 we can see good results in practically all horizons, with performance starting with MAPE 

equal 21%, NSE higher than 0.8 and R2 higher than 0.9, we have a small degradation along the 

higher lead-times, with MAPE below than 28%, NSE above 0.75 and R2 above 0.9. 
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Figure 7.10– Hydrographs of ENA for the subsystems Northeast the first and in second the North, 

for the period from July/2017 to June/2021, with the LTM (long term mean) of the ENA in blue 

dots line, the observed ENA in dashed black line, the forecasted ENA for each lead-time in green, 

the thinner and clearer line is the farther lead time horizon, and the red bars indicates the error 

for the first month lead-time. 

Table 7.5 – The performance of the forecast for the ENA of the subsystems Northeast and North 

with the metrics MAPE, NSE and R2, for six months lead-time. 

  Northeast North 

LDT MAPE NSE R2 MAPE NSE R2 

1 16% 0.86 0.95 21% 0.81 0.91 

2 29% 0.39 0.75 24% 0.75 0.89 

3 35% 0.23 0.71 26% 0.78 0.92 

4 36% 0.26 0.75 28% 0.78 0.93 

5 37% 0.21 0.72 27% 0.81 0.94 

6 38% 0.18 0.73 27% 0.79 0.94 
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Finally, in figure 7.11, we have the representation of the complete interconnected system. Once 

the Brazilian electric system is interconnected with big power transmission lines, we can take 

advantage of the aggregation of the forecast results. The forecasts show ability to predict the 

energy production in a longer horizon (even six months ahead) and with more sensibility to 

predict the intensity of the high and low inflows especially at the first three months horizon. At 

this global forecast, the model exhibits a good performance to forecast the energy production 

below or above the average for all observed period and in a long horizon, more than six months 

during the recession, but also is able to do good predictions during the wet period. The red bars, 

with the errors of the first month, show a more equilibrated distribution along the observed 

period, with lower errors during the recession and the highest values appearing during the wet 

season, especially when happens a break in the trend of the flows. At Table 7.6 we can see good 

results in practically all horizons, with performance starting with MAPE equal 18%, NSE higher 

than 0.8 and R2 higher than 0.9, we have a small degradation along the lead-times, with MAPE 

below than 23%, NSE above 0.72 and R2 above 0.87. 

 

Figure 7.11– Hydrographs of ENA for the SIN (Interconnected Electric System), for the period 

from July/2017 to June/2021, with the LTM (long term mean) of the ENA in blue dots line, the 

observed ENA in dashed black line, the forecasted ENA for each lead-time in green, the thinner 

and clearer line is the farther lead time horizon, and the red bars indicates the error for the first 

month lead-time. 
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Table 7.6 – The performance of the forecast for the ENA of the complete Interconnected Electric 

System with the metrics MAPE, NSE and R2, for six months lead-time. 

  Complete SIN 

LDT MAPE NSE R2 

1 18% 0.82 0.91 

2 17% 0.80 0.90 

3 20% 0.74 0.89 

4 23% 0.74 0.87 

5 22% 0.72 0.87 

6 20% 0.72 0.87 

 

At Table 7.7 we have the comparison of the assertiveness performance, with the metric MAPE 

Skill Score, between the ENA calculated with the median of the Seamless forecast and with the 

reference model NEWAVE, for the period 07/2017 to 06/2021, for each subsystem and for the 

complete interconnected system (SIN), for the six months lead time. We ca see that in three of 

the four subsystems the performance of the Seamless forecast is superior than the reference 

NEWAVE, only at the Southeast/Center-West the NEWAVE performs better at the analyzed 

period. Besides the NEWAVE has the best performance at the biggest subsystem, was not enough 

to compensate the superiority of the seamless forecast at the other subsystems. When analyze the 

complete interconnected system the Seamless forecast have a best performance in all six months 

horizon. 

Table 7.7 – Comparison of the MAPE Skill Score performance of the forecast for the ENA, 

calculated with the Seamless forecast versus the NEWAVE, at the four subsystems and the 

complete SIN, for six months lead-time. 

MAPE Skill Score  

LDT Northeast North South Southeast / Center-West SIN 

1 0,47 0,05 0,52 -0,96 0,08 

2 0,37 0,16 0,54 -0,21 0,40 

3 0,40 0,20 0,57 -0,38 0,33 

4 0,47 0,21 0,57 -0,82 0,27 

5 0,52 0,29 0,55 -0,57 0,32 

6 0,54 0,34 0,56 -0,30 0,40 

 

7.4 DISCUSSION 

At this experiment we tested some methods to deal with some of the uncertainties related with 

the hard job of produce a flow forecast, and we define a consistent methodology for a seamless 

flow forecast with potential application to predict the hydropower energy production in the 
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Brazilian electric system. The steps related to the uncertainty of the observed precipitation and 

the forecast precipitation was done by the author previous studies, now is presented the final part 

related with the flow forecast uncertainties and the final proposed methodology. 

7.4.1 Application of the QM method to deal with the hydrological uncertainty 

In previous chapters (4 and 5) the we applied with success the QM bias correction to improve 

the precipitation forecast at the ECMWF meteorological model. The same method was applied 

here, aiming to correct the bias of the hydrological model, calibrating the parameters to fit the 

simulated flows ECDF - Empirical Cumulative Density Function with the ECDF of the observed 

flows, applying the split-sample-test (Klemes, 1986). 

For the three calibration periods, as we can see at the first graphs of figure 7.3, the correction was 

able to improve all the results for all basins for the metrics MAE, KGE, NSE and R2. Initially it 

seemed to be a good indication of success, but when we applied the calibrated parameters at the 

validation period, the results are not good enough. The calibration with the period 1979-1997 did 

not produce the same good correction at the validation, the metrics of performance presented the 

same average of the raw simulated flow, but with a higher dispersion, showing more basins with 

worse performance. Parameters of the period 1997-2016, during the validation step, showed 

worse performance than the raw simulated flows at the average values and in the dispersion with 

more basins with worse performance. 

At the analyze of the recent period 2017-2021, the results was very similar with the validation 

period with no improvement of the simulated flows after the bias correction. The best result was 

obtained with the parameters the calibration of the total period 1979-2016, with a slight lower 

MAE, but with KGE, NSE and R2 with average very similar but with higher dispersion in the 

results. 

The application of the QM method, brings one inconvenient at the application at daily flows, 

once the parameters are month dependent due the big variation of the scale of the flows in each 

season, the application of the bias correction can create a discontinuity at the daily flows. Every 

time we manipulate the dataset trying to reduce the errors, we add some new uncertainty, and 

only make sense apply the correction if the benefit is really bigger than the uncertainty. 



206 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

In this case, there is no evident benefit and the discontinuity created with the method can generate 

a worse forecast, for this reason the application of the QM bias correction at the flows was 

discarded as a flow post processor in this study. 

7.4.2 Application of the flow data assimilation to update the flow forecast 

The second flow post processor was the data assimilation, where we use an AR – Auto Regressive 

output-error-correction, with degree 1, to correct the forecasted flows and improve the results. 

To define the parameters of the AR models was tested a hydrological approach with the α  

parameters, which defines the exponential decay of the correction, dependent of the 

characteristics of the basins, taking as a reference the characteristics of Clark Unit Hydrograph 

and the base flow calibrated at the HEC-HMS models with daily flows. The advantage of this 

technique is that the parameters are not time dependent. 

The physical α is compared with the parameter calibrated mathematically, with the objective 

function to reduce the RMSE of the daily simulated flows, this approach is time dependent, 

therefore the result can be different if you take a time window of one, two or three months to 

calculate the RMSE and obtain the optimum α that minimize the error. The results obtained with 

one month horizon (Table 7.3), showed that the performance of the physical α is very close to 

the best mathematical value in average 2% worse, with more than 80% of the differences below 

2%. With this result we can conclude that the parameter based on the hydrological characteristic 

of the basin make sense and can improve the simulated flows. 

At table 7.3, we also can see that the proposed α can improve the simulated flows reducing the 

RMSE in 20% in average at the first month horizon, at the second month the average 

improvement reduces to 12%, and four months ahead the average improvement is 6%. This 

reduction of performance makes sense with the characteristic of the correction that is maximum 

at the first day and tends to zero in a longer lead-time. With this method we aim to treat some 

part of the error of the observed precipitation that affect the initial conditions of the hydrological 

model, we assume the hypothesis that the error of the last observed precipitation affect the flows 

strongly at the first days and reduces along the time of the runoff hydrograph and become 

equivalent of the base flow at the end. 
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With this results this post-processor has a great potential to correct the seamless flow forecast 

and improve the performance specially at the shorter lead-times, where the initial conditions of 

the hydrological model affects more the predicted flows. 

7.4.3 Evaluate the performance of the seamless forecast compared with the traditional 

seasonal flow forecast 

After test the methods to deal with some uncertainties related to flow forecast, at figure 7.12 we 

present a flowchart of the proposed methodology, with each step suggested to produce the 

seamless flow forecast at this study. 

 

Figure 7.12– The methodological steps defined from the works of this thesis to build a seamless 

flow forecast. 

Each step was detailed at the methodology (item 7.2) and the details and references can be 

obtained there. 

After apply this proposed method for the flow forecast of the period 2017-2021 we evaluate the 

performance of this forecasts. In terms of overall performance the CRPSS indicates that the 

proposed seamless forecast can produce forecasts with a better results than the traditional 

seasonal forecast. Considering the assertiveness, the RME metric shows that the proposed 
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seamless forecast can reduce the error of the predictions, especially at the first month horizons, 

producing forecasts with less bias than the traditional seasonal forecast. 

For the basins closer to the South region (group G1 and G2), only the proposed seamless forecast 

is able to produce forecasts more viable than the climatology, and RME showed a reduction of 

the tendency of overestimation only at the first month. The weather of the south region is more 

unstable, with no seasonality of wet and dry season, dominated by the passage of the cold fronts, 

that can depending on the atmospheric conditions, change dramatically the weather with strong 

convective storms causing big variations at the flows. This characteristic can be associated with 

the difficult of the models to forecast the region, generally the models have reasonable results at 

the first two weeks, but the performance presents a big degradation in longer horizons (see 

chapter 5). 

For the basins of group G3, located more in the center of Brazil, we have a clear seasonality 

between the dry and the wet season. During the wet season the big precipitations are associated 

with the South Atlantic Convergency Zone  - ZCAS, which creates a moisture pathway between 

the Amazon region and the Atlantic Ocean. This kind of precipitation has a more inertial 

atmosphere conditions and the models can predict this events with more antecedence, its permits 

the model a better performance and for a longer horizon especially at the end of the wet season 

and the proposed seamless forecast was able the reduce the tendence of the overestimation of the 

flows until the third month horizon. 

In group G4, with great part of the basins under influence of the semi-arid weather, it is only  

possible go best than the climatology at the first month horizon with the Seamless ARpost and 

the proposed method was able to reduce the tendency of overestimation of the flows. Probably 

the reasons for the difficult of the models to forecast at this region, can be related with the strong 

reduction of the flows and of part of the precipitations during the last twenty years. The models 

was calibrated to correct the precipitation bias considering the a window of 35 years started forty 

years ago, when the precipitations and flows was higher than the recent years, with this situation 

the calibrated parameters are not able to correct so strong reduction. 

In the groups G5 to G8, with basins located in the north region, and with the biggest basins, the 

Seamless forecast can produce more viable predictions and have a CRPSS better than the 

climatology in all seasons at the first two months horizon, and in the seasons OND, AMJ and 
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JAS we can extend this better performance for longer horizons. Considering the assertiveness, 

the proposed method was able to reduce the bias at the first two months and at the big basins 

until the third month horizon. 

After the second month horizon, for the majority of the basins, the both forecasts tend to have a 

similar performance due the fact that the Seamless and the flow post processor acts stronger only 

at the initial periods, decreasing the influence along the higher lead-times. 

This capacity to improve the forecasts at the initial lead times can be observed at the figures 7.5 

and 7.7, where the basins with a clear seasonality between wet and dry season and with bigger 

drainage areas, which increase the inertia of the flows, presents a better performance of the 

CRPSS and with lower RME after the application of the proposed method. The smaller basins 

located in a region with no seasonality and with a more unstable weather, the proposed method 

improves the results but in a lower degree, especially in the south region of Brazil. 

7.4.4 Application of the Seamless flow forecast to predict the hydropower energy 

production on the Brazilian electric system 

At the daily activities of the ONS are calculated the ENA of more than 160 HPP of the Brazilian 

electric system, considering the observed inflows and the producibility at 65% of the operational 

volume (ONS, 2021). In this study we use a simplification to represent the ENA of each of the 

four main subsystem, in which the electric system is divided. We perform a flow forecast of 30 

main HPP and calibrate the multiple linear regressions with the HPP inside of each of the 

energetic regions. At figure 7.8 was possible to see a very good fit between the calculated ENA 

and the observed ENA with an R2 above 0,99 for the regions South, Southeast/Center-West and 

Northeast, with a value superior to 0.98 to North region, confirming how representative they are 

of the real ENA. With this result, we have a simplified tool to convert flow in energy and have 

an good idea how the forecasted flows can reflect at the HPP energy production and evaluate its 

potential to help on the policies of energy and water management. 

Applying the conversion tool at the median of the HPP seamless flow forecasts, from the period 

of 2017-2021, was obtained the forecasted ENA of each subsystem. The first region, and the 

most difficult to predict, the South region, where we have a more unstable weather, governed by 

the passage of cold fronts, which depending on the atmospheric conditions can create big 

convective storms, which reflects in big changes of the flows and with sudden floods. The chaotic 
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weather, the mountainous relief and the small size of the basins, when compared with the others 

of the electric system, can explain why is so difficult to forecast at this subsystem. The results 

showed that only at the first month lead time the forecasts are viable, with lower error and with 

a tendency of overestimation under the studied period. For a period superior to that the errors are 

too high, and cannot bring a very usable information. 

The second subsystem the Southeast/Center-West, with the biggest energy production in Brazil, 

and it is the area where is concentrated the majority of the energy consumers. This subsystem is 

distributed in a large geographic area, with the South Atlantic Convergency Zone (ZCAS) as the 

main mechanism responsible for the big precipitations during the wet season, and consequently 

the big flows. This precipitation system has a high inertia of the formation at the atmosphere and 

a longer horizon predictability. For this reasons we have better results of the forecast at this region 

with lower errors and viable for a longer lead time with the forecasts able to capture better the 

variations of the energy production. Besides to have a clear seasonality, with a dry and wet 

season, sometimes the strongest cold fronts from the South, affects some important basins at the 

Southeast region, and change the natural recession of the energy production during the dry 

season, driving more difficult for the forecast even during the dry season. 

At the Northeast subsystem, the main mechanism responsible for the big precipitations still the 

ZCAS, and here we have a more clear seasonality, with practically zero precipitation during the 

months of the dry period. Due the absence of the precipitation forecast uncertainty at his period, 

the forecast recession of the hydrological model, based on the initial conditions of the basins, can 

have a much higher accuracy of the flows and the energy production during this season. The 

highest difficult appears at the wet season, with the model able to forecast the precipitation 

events, but the intensity is harder hit. This basin is passing for a long period of flows below the 

average since the last two decades, and besides the models be bias corrected and be able to reduce 

the overestimation, the parameters calibrated with the 35 years reforecasts (1981-2016) (see 

chapter 4), are not able to reproduce so strong drought and this explain the tendency of 

overestimation of the energy forecast at the analyzed period. 

The North System, formed by big basins, is located on the equatorial region, and because of that 

we have the equatorial weather with convective precipitation on the major part of the basin, but 

at the upstream part of the basins, the precipitation still under some effect of the ZCAS. At this 

subsystem, the prediction of the energy production showed the major accuracy and with a longer 
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lead-time horizon. During the dry period, at the recession of the basins, the error is very low, 

evidencing the ability of the hydrological model to reproduce the baseflow, controlled by the 

initial conditions of the begin of the dry season. The bigger errors happens exactly during the wet 

season, but the model can predict with an acceptable accuracy, especially at the first two months 

horizon. A good signal of the accuracy of this system are the NSE near 0.8 and R2 higher than 

0.9 in practically all the six months horizon. 

Finally, we have the complete SIN, where we sum the energy production of the four subsystems. 

Generally when aggregate the forecast in big areas the results tends to improve, therefore in the 

case of the Brazilian electric system, which is strongly interconnected by power lines, make sense 

this systemic analysis because the excess of flow/energy in one region can be transported to other 

region to be used or stored at the reservoirs. At this complete system, the difficult of forecast at 

the South region is compensated by the accuracy of the North region forecast. At figure 7.11 is 

possible the see that the proposed methodology is able to capture the variation of the energy 

production, predicting the wet period and capturing part of the intensity, even in a long forecast 

horizon, giving a good view of the future scenarios of the HPP energy production of the 

interconnected system. It is possible to see that the model was able to predict this sequence of 

years of energy production below the average during the wet period, and during the recession 

periods, where the production reached near to 50% of the mean, at the driest month. Other 

advantage of this systemic analysis is that the distribution of the errors became more 

homogeneous along the analyzed period, practically without a bias (near -2%). 

When we compare the results of ENA prediction obtained with the Seamless forecast versus the 

reference model NEWAVE the seamless has superiority in 3 of the four subsystems, but at the 

analysis of the complete electric system The proposed forecast has superior performance in all 

six months horizon. Besides the newest NEWAVE, tried to solve the tendency to quick converge 

to the climatology in longer horizons, and give more capacity to represent a severe hydrological 

tendency, based on the short past tendency (last 12 months) (Lima and Oliveira, 2021), the 

reference model still exhibiting a tendency of overestimation of the ENA at the analyzed period 

and still converging to the climatology after the third month horizon with predicted values closer 

to the historical mean flows than to observed values in all subsystems and at the SIN. The 

seamless forecast presents as lower bias, for a longer horizon, even at the Southeast/Center-West 

subsystem where the NEWAVE has a better MAPE skill score, Therefore the Seamless forecast 

shows a better capacity to predict the more extreme events (droughts and floods) giving the 



212 

 

 

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG 

possibility to have a more conservative policy of energy production, and save water on the 

reservoirs once the models indicates the production below the average months before. This 

indicates that the proposed forecast can be a promising information to help on the energy 

production policy.  

7.5 CONCLUSIONS 

A sequence of steps was described that can be used to obtain a better flow forecast to be applied 

at the prediction of the HPP energy production in Brazil. The main conclusion is that the seamless 

flow forecast, with the proposed postprocessors, can improve the predictability of the flows at 

the basins studied to perform the forecast at the main 30 HPP in the Brazilian electric system, 

and consequently improve the prediction of the HPP energy production. This shows a great 

potential to help on the optimization of the energy generation and on the management of the 

water resources of the HPP reservoirs. 

At this study, we show that the QM bias correction method, applied to deal with the uncertainty 

of the hydrological model, may be not enough robust to be applied on the correction of the 

simulated flows, neither at the flow forecast. Being able only to correct at the calibrated period, 

when the same parameters are applied in a validation period the correction does not exhibit the 

same capacity off correction, and in some basins get worse results. 

Another postprocessor, the data assimilation of the observed flow, with the output-error-

correction method, proved to be very effective at the correction of the seamless flows forecasts, 

especially at the first month horizon, reducing significantly the error and generating forecast 

more viable. 

The proposed seamless flow forecast was tested against the traditional seasonal flow forecast 

showing a clear improvement at the flow forecast performance. The proposed seamless forecast 

shows the advantage of the more frequent initializations of the meteorological models, and the 

benefit of the suggested post processor to correct the flow forecast and improve the accuracy and 

the reliability. 

The seamless forecast proposed at this study shows a great potential to help on the prediction of 

the HPP energy production at the Brazilian electric system. With application at each of four 

subsystems (South, Southeast/Center-Wes, North, and Northeast) shows how is the predictability 
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in each of them and also in conjunctural application, when we analyze the complete 

interconnected system, in terms of HPP energy production, the proposed forecast shows the 

capacity to forecast this observed sequence of years with energy production below the average 

at the analyzed period. Presenting a better performance to predict the HPP energy production of 

the interconnected electric system – SIN, at the six months horizon, at the period analyzed, than 

the reference model NEWAVE, the official software of Brazilian energy planning. 
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CHAPTER 8: 

FINAL CONSIDERATIONS 
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8 FINAL CONSIDERATIONS 

With the results obtained it is possible to answer the scientific questions proposed at the begin of 

the research. 

1. How to improve the representativeness of Brazilian climatology as an way of 

guaranteeing energy security in the context of hydroelectric generation?  

a. How representative of local climatology is the daily grid observed precipitation 

data provided by the TRMM-MERGE and by the CPC-NOAA for their use in 

rainfall-runoff models and inflow forecasting to a group of hydropower plants in 

Brazil?  

The first part of the research showed that for some basins the two sources show considerable 

differences, notably in terms of daily and monthly precipitation values, with an expected impact 

on the simulation of daily streamflows. In addition, a spatial behavior of the differences between 

the precipitation sources was detected, with differences becoming more positive (i.e., TRMM-

MERGE values are higher than CPC values) as we move to north and west in the study area. 

With the results of this study, we recommend being cautious when working with a unique source 

of historic precipitation data to calibrate hydrological models, since this source can displays 

uncertainties and errors that vary in space and time. In our study, we showed that it is a complex 

problem to determine a precipitation data source that could be the best for all situations, 

especially when no observed data set can be used as ground truth or reference, as in the case of 

large continental areas, such as South America. 

b. Can this information be blended to have a better precipitation forcing and reduce 

the uncertainty of the observed precipitation while providing a better initial 

condition for the hydrological models?  

The experiment described in chapter 3 showed that the combination of the real-time precipitation 

(TRMM-MERGE and CPC), weighted by the uncertainty of the original sources, performs better 

than the isolated use of them, and is possible to have a longer time series using double-mass 

curve correlation and hydrological models to validate it. This time series can be used to have a 
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better calibration of the hydrological models and to give better initial condition for hydrological 

models, in a forecast mode, than the use of only one of the sources. 

c. Can this new observed precipitation data be used to perform bias correction to 

the meteorological forecasts? 

On the experiment showed in chapter 3, when comparing the uncertainty of the obtained blended 

precipitation dataset with the reanalysis product MSWEP, the uncertainties are in a similar 

magnitude, a good result for a real-time dataset. Therefore, this blended precipitation can be used 

to perform the analysis and the bias correction of the forecast models. Once the hydrological 

models are calibrated with this dataset, the blended precipitation should be the reference to assess 

the precipitation forecasts performance and calibrate the bias correction methods, with the 

objective to obtain a better flow forecast. 

2. How good is the performance of the weather forecasting models made available by the 

meteorological center of ECMWF (UK) for short (days to weeks) to long (months to 

seasons) forecast ranges in the Brazilian context of hydropower production?  

a. Can the application of bias correction techniques improve the performance of the 

forecasts for the Brazilian basins? 

About the seasonal forecast, the experiment described in the chapter 4, the raw seasonal forecast 

presented a clear bias and the methods of correction (QM- Quantile Mapping and LS – Linear 

Scaling) were very effective to correct the precipitations, improving the assertiveness and the 

reliability. To separate only the effect of the precipitation bias correction on the flow forecast, 

the predictions were compared with the simulated flows, the precipitation correction converts in 

a better flow forecast, reducing the errors and presenting viable results in the seven months 

horizon for almost all basins. The uncertainties of the observed precipitation, affects the 

hydrologic model calibration and the initial conditions of the forecast, reducing the improvement 

in quality at the first month horizon. Despite of that, the flow forecast have enough quality and 

with potential to contribute in operational decisions for hydropower operation. 

a. For the short-term forecasts, does the ‘on-the-fly’ bias correction based on the 

seasonal hindcasts perform better than the structural bias correction based on the 

short-range reforecasts?  
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For the short-term and the extended model, the study described in chapter 5, shows that the 

ECMWF S2S models was able to produce viable forecasts at least at the first three weeks horizon 

and the on-the-fly bias correction was able to improve the precipitation forecasts, especially at 

the cases where was observed systematics overestimations or underestimations of the 

precipitations. When we compare the recent period 2017-2020, the on-the-fly bias correction 

exhibited results equal or superior than the traditional bias correction based on ten years 

reforecast parameters calibration period to correct the ECMWF EPS, the short term model. One 

other clear advantage of this on-the-fly bias correction, it is that we are able to follow any change 

of the forecast model, being able to calibrate the bias correction parameters without the necessity 

wait for a long period to have a reasonable reforecast to calibrate the bias correction parameters. 

b. How can we build a seamless hydrometeorological forecast for hydropower 

decision-making, ranging from short to seasonal scales? 

In chapter 6 we study the seamless precipitation forecast, and this approach can be done coupling 

the three ECMWF forecast models (EPS, S2S and Seasonal), to have a continuous daily 

precipitation forecast, with a daily actualization. We recommend the use of the member-to-

member coupling, which presents the best cost-benefit ratio, due the fact that other more 

sophisticated methods did not perform better than this simple method, which does not have a 

computational effort or data manipulation. The seamless precipitation forecast presents a 

performance superior than the seasonal model, and showed a great capacity to anticipate, in some 

weeks, the occurrence of higher anomalies of precipitation during the wet season in Brazil. This 

capacity brings great opportunities for this category of forecast to future applications in 

hydrological models, to generate flow forecasts to improve the hydropower operation. 

3. Can the benefits of the seamless precipitation forecast be translated into a better seasonal 

flow forecast and even into a better driver for decision making in the electric sector?  

a. Can the Quantile Mapping bias correction method correct the systematic 

hydrological calibration bias? 

In chapter 7, we show that the QM bias correction method is not enough robust to be applied on 

the correction of the simulated flows, neither at the flow forecast. Being able only to correct at 

the calibrated period, when the same parameters are applied in a validation period the correction 

does no exhibit the same capacity off correction. 
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b. Can flow data assimilation improve the performance of the streamflow forecasts?  

To deal with the uncertainty of the initial conditions we suggest the post processor that uses the 

data assimilation of observed flow, and the output-error-correction method proved to be very 

effective at the correction of the seamless flows forecasts, especially at the first month horizon, 

reducing significantly the error and generating forecast more viable. 

c. Can the seamless forecasts help on building decision-making guidance for 

hydropower generation? 

The proposed seamless flow forecast shows a clear improvement at the flow forecast 

performance when compared with the traditional seasonal flow forecast. Being clear the 

advantage of the more frequent initializations of the meteorological model, and the benefit of the 

suggested post processor to correct the flow forecast and improve the accuracy and the reliability. 

When it was applied at each electric subsystems shows how the predictability of the hydropower 

energy production is in each of them and also in conjunctural application, when we analyze the 

complete interconnected system, the proposed flow forecast shows the capacity to forecast the 

observed sequence of years with energy production below the average at four years analyzed. 

The seamless forecast proposed at this study shows a great potential to help on the prediction of 

the HPP energy production at the Brazilian electric system. The results of this study shows that 

we can extend the application of the meteorological models to predict the hydropower energy 

production, for period superior than those actually practiced by the ONS, which uses practically 

only at the first month horizon. 

Recommendations: 

This study is only the begin of a long research line and there are a lots of questions that need to 

be answered with more research, as the performance new post processors based on the climatic 

teleconnections as a drivers, extend the forecast period with the use of the ESP – Ensemble 

streamflow prediction, with the selection of the years based on the similarity of the last years or 

with the current meteorological forecast, apply the method suggested to produce the seamless 

forecast with other group models and create a super-ensemble. There is a long road to be covered 

by those who want to follow this challenge, which is generate a flow forecasting. 
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