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RESUMO

Os processos industriais estão se tornando cada vez mais autônomos e complexos.
Consequentemente, a demanda por segurança e confiabilidade desses processos é
crescente. Nesse contexto, técnicas de controle tolerante a falhas (FTC, do inglês
Fault-Tolerant Control) têm recebido bastante atenção ao longo das últimas décadas
buscando fornecer redundância analítica e aumentar a confiabilidade desses sistemas.
Esta tese aborda o problema de FTC para sistemas não-lineares baseado na abordagem
de ocultação de falhas. A ocultação de falhas consiste na inserção de um bloco de
reconfiguração (RB, do inglês Reconfiguration Block) entre a planta com falhas e o
controlador. O RB mitiga os efeitos das falhas sem exigir reprojeto do controlador, do
qual as falhas são ocultadas. Embora eficazes, a maioria das abordagens de ocultação de
falhas na literatura não cobrem todas as classes de sistemas não-lineares, além de serem
sensíveis a imprecisões na estimativa das falhas devido à dependência das estruturas
canônicas de RB, conhecidas como sensores e atuadores virtuais, em relação ao princípio
do modelo interno. Nesse sentido, esta tese aborda a ocultação de falhas para sistemas
não-lineares baseada em novos RBs cujos parâmetros não dependem explicitamente do
modelo de falhas. Para tal, condições suficientes baseadas em desigualdades matriciais
lineares (LMIs, do inglês Linear Matrix Inequalities) são apresentadas para o projeto de
RBs que garantam a recuperação da estabilidade. Para obter essas condições, três novas
classes de abordagens são propostas, a saber: uma abordagem baseada em Lyapunov
em que uma função de Lyapunov é obtida em uma etapa de análise do sistema nominal
e, em seguida, é usada para projetar os RBs para recuperação de estabilidade do sistema
reconfigurado em uma etapa de síntese; uma abordagem baseada em dissipatividade
na qual as desigualdades de dissipação são obtidas em uma etapa de análise para o
sistema nominal e, em seguida, são usadas para projetar os RBs para recuperação de
dissipatividade do sistema reconfigurado em uma etapa de síntese; finalmente, uma
abordagem baseada em passivação é proposta para obter RBs cuja dissipatividade
compensem a falta de passividade devido à ocorrência de falhas.

Palavras-chave: Controle tolerante a falhas. Ocultação de falhas. Sistemas não-
lineares. Desigualdades matriciais lineares. Inclusões diferenciais politópicas. Teoria da
dissipatividade. Passivação.



ABSTRACT

Industrial processes and technological systems are becoming more and more autonomous
and complex. Consequently, the demand for the safety and reliability of these systems
is increasing. In this context, process monitoring and fault-tolerant control (FTC) have
received a lot of attention during the last decades to provide analytical redundancy
to these processes and improve their reliability. This thesis addresses the problem of
FTC for nonlinear systems based on the fault hiding approach. Fault hiding consists
in inserting a reconfiguration block (RB) between the faulty plant and the controller.
The RB mitigates the fault effects by dispensing with the controller redesign, through
recovering sensor measurements and reallocation of the control effort required by a
controller that does not receive the information about the fault occurrence. Although
effective, most of the fault hiding approaches available in the literature do not cover
all classes of nonlinear systems, and they are sensitive to fault estimation inaccuracy
because the canonical RB structures, known as virtual sensors and actuators, rely
on the internal model principle. In this sense, this thesis addresses the problem of
fault hiding for nonlinear systems based on novel RB structures whose parameters
do not exhibit explicit dependence on the fault model. This thesis presents a novel
constructive design with sufficient conditions based on linear matrix inequalities (LMIs)
for guaranteeing stability recovery by fault hiding. For obtaining those conditions, three
novel classes of approaches are proposed, namely: a Lyapunov-based approach wherein
a Lyapunov function is obtained in a stability analysis step for the nominal system,
then it is used to design the RBs for stability recovery of the reconfigured system in
a synthesis step; a dissipativity based approach wherein dissipation inequalities are
obtained in an analysis step for the nominal system, then they are used to design the
RBs for dissipativity recovery of the reconfigured system in a synthesis step; finally, a
passivation-based fault hiding approach is proposed to compute RBs with dissipativity
properties which compensate for the lack of passivity of the closed-loop system due to
the fault occurrence.

Keywords: Fault-tolerant control. Fault hiding. Nonlinear system. Linear matrix
inequalities. Polytopic differential inclusions. Dissipativity theory. Passivation.
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1 INTRODUCTION

1.1 Fault Tolerant Control

Faults, failures and malfunctions are unavoidable in modern technical processes,
although their increasing autonomy and complexity require higher levels of safety,
reliability and availability. In this context, process monitoring [1, 2, 3, 4, 5, 6] and
FTC [7, 8, 9, 10] have been receiving a lot of attention during the last decades in order
to provide analytical redundancy to these processes and consequently improve their
reliability. The fault occurrence in these modern technological processes particularly
entails higher costs due to growing resilience requirements and increased processes
complexity. FTC aims to ensure the maintenance of stability and required performance
of closed-loop control systems overcoming their complexities and improving the reliability
and availability of these processes. However, FTC techniques try to find the trade-off
between stability and performance recovery conditions usually based on complex and
imperfect models dealing with the computational costs demanded by these solutions.

Indeed the increasing of profits and productivity of industrial processes is usually
achieved by means of actions to improve the reliability, availability, and maintainability of
these processes. On the other hand, the safety and security issues are also indispensable
properties to the new technological processes although they might be conflicting with
respect to profitability and reliability, under penalty of severe legal and social sanctions
in the case of violations.

The application of FDI and fault prognostics techniques aims to improve the
reliability, safety and availability by generating alarms about the fault occurrences
and the remaining useful life of the process parts. However, even when one relies on
diagnosing and predicting failures, the process may remain out of operation while a
maintenance task is not finished and, in some scenarios, such maintenance is simply
impossible. In this sense, FTC systems require physical and analytical redundancy to
maintain the safe operation of processes despite the fault occurrence, also improving
their availability.

The origin and popularization of process supervision and FTC evidence their
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complementarity: nuclear and chemical accidents motivated the early researches on
process supervision and FDI; and aircraft accidents motivated the development of fault
tolerance strategies; certainly, the early fault detection could avoid some of the chemical
and nuclear disasters, but it would not be enough to avoid an flight disaster after a
fault detection on air, in this case, FTC solutions are important to ensure the safety
until some maintenance action can be done.

FTC techniques can be divided into two main groups, namely PFTC [11, 12] and
AFTC [13, 14]. PFTC usually handles the fault occurrence as an unknown disturbance
that must be rejected by the nominal controller to maintain acceptable operation. In
this sense, the PFTC consists in designing a controller that is robust with respect to
the fault occurrence, without changing the control law or the loop due to the fault
detection. The inherent simplicity of PFTC systems makes them a common component
in the most practical applications, however, they are conservative solutions that often
produce poor performance even for the nominal operation [10]. Otherwise, the AFTC
performs modifications on the control law or the loop after an estimation of the fault
magnitude and its location provided by an imperative FDI module. There are three main
classes of AFTC techniques: the fault accommodation [15] that adapts the controller
parameters based on the fault estimation and without changing the control loop; the
control reconfiguration [16] that modifies the control loop after a fault detection by
redesigning a novel controller that deals only with the healthy part of the system; and
the fault hiding [17, 18] that modifies the control loop by inserting a RB between the
faulty plant and the nominal controller (which remains unaltered).

The overview of PFTC operation is depicted in Figure 1.1. In Figure 1.1a,
the nominal closed-loop system is depicted with a nominal controller ΣC connected
to the healthy (nominal) plant ΣP. Such controller computes the control signal to
drive some of the m actuators based on some of the p sensors. In Figure 1.1b, a
fault occurs affecting (red-colored) actuators and sensors. Notice that no further fault
detection or management action is required in the PFTC strategy, since there are no
modifications on the control loop neither on the nominal controller after the fault
occurrence. This is so because the PFTC design methodologies are used to synthesize
a ΣC that must be able to maintain the control requirements for every faulty scenario.
Obviously, the more fault scenarios are considered to design ΣC, the more conservative
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(b) Faulty closed-loop system with PFTC.

Figure 1.1 – The scheme of a PFTC strategy.

are the conditions for obtaining it, and consequently, they may become infeasible or
the closed-loop performance can be severely degraded.

Thus, the AFTC strategies are proposed to provide stability guarantees and
some performance recovery after the fault occurrence. Naturally, some conditions must
be met to allow the success of the AFTC goals. For example, if one requires stability
recovery, it is still necessary that the faulty system maintains the stabilizability despite
of the operation under faulty conditions. Similarly, it is not possible find a modified
control loop or design a novel controller if the controlability is lost due to actuators
fault, and some measurements cannot be substituted or estimated after sensor faults if
the observability and detectability is affected. Moreover, the exact performance recovery
after the fault occurrence is unlikely, except if significant physical redundancy is available.
However, it is usual to weaken the performance requirements after a fault. In this
sense, although the expression performance recovery is used sometimes in this text, it
usually does not denote the exact performance recovery, i.e., the post-fault performance
requirements are usually weaker than the nominal performance requirements.

An overview of the three AFTC strategies are illustrated in Figure 1.2. Differently
from PFTC in Figure 1.1b, every AFTC strategy requires an FDI system for providing
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Figure 1.2 – AFTC strategies.
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fault localization and estimation, which accuracy and readiness are key issues in
achieving effective fault management procedures. In Figure 1.2a, an overview of fault
accommodation strategy is depicted. In this case, the FDI system supervises the faulty
plant ΣPf and provides the fault estimate and location for a controller redesign procedure
to achieve an adjusted controller ΣC. The adjusted controller ΣC is able to recover
the closed-loop system properties (e.g., stability and performance) by using the same
group of actuators and sensors (including the faulty ones), i.e., without performing
loop changes. Although, the fault accommodation allows to re-design a controller that
recovers the required performance, it still produces conservative solutions since it does
not take advantage of all the available redundancy related to maintaining the loop
configuration.

In this sense, the control reconfiguration approach allows to re-design the con-
troller for a reconfigured loop that explore all the (physical and analytical) redundancy.
The control reconfiguration paradigm is illustrated in Figure 1.2b. As in fault accommo-
dation, the control reconfiguration also requires the information from the FDI system,
but the fault management is not performed by using the same actuators and sensors used
before the fault occurrence. In this case, it is performed a loop adjustment for including
the remaining actuators and sensors that are healthy, and then a different controller is
designed for the novel control loop. Although effective, the control reconfiguration is
too invasive since the controller and the control loop must be changed at every different
status indicated by the FDI system.

The fault hiding approach allows to reconfigure the control and sensor signals that
drive the plant actuators and the nominal controller, and also to explore the whole sensor
and actuator redundancy without maintaining the nominal (fault ignorant) controller.
On the one hand, the fault hiding procedure can be seen as a control adjustments (as in
the fault accommodation case), wherein the reconfigured controller, i.e. the combination
of the nominal controller with the RB, has a fixed part (nominal controller) and an
adjustable part (reconfiguration block) which is designed to compensate for the fault
effects by using the available redundancy. On the other hand, this approach provides
minimum-invasive changes since all the control and sensor signals and loop changes are
virtually performed by modifying the gains of a third subsystem, denominated RB, which
is inserted between ΣPf and ΣC. Figure 1.2c provides an overview about the fault hiding
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based AFTC. Most of the fault hiding approaches described in the literature are based
on the RBs known as Virtual Actuators (VAs) and Virtual Sensors (VSs) for dealing with
actuator and sensor faults, respectively. Those blocks, the VAs and VSs, are based on
the internal model principle, i.e., the blocks’ parameters are based on the plant’s nominal
and faulty models. Although the internal model principle is convenient to guarantee
the recovery after the reconfiguration by finding gains which ensure the stabilization of
dynamics of the errors between the blocks and nominal plant dynamics, those blocks
become too dependent on the accuracy of the plant models and the FDI systems.
Moreover, the extension of the fault hiding approaches based on the traditional VAs
and VSs to general classes of nonlinear systems is also challenging. In this sense, novel
RBs structures and effective design techniques for fault hiding of nonlinear systems are
welcome.

1.2 Thesis Overview

This thesis tackles the problem of stability and dissipativity recovery by fault
hiding for nonlinear systems. In particular, this thesis aims to propose novel RBs
structures without using the internal model principle, and to obtain constructive design
conditions for those RBs. The proposed solutions are divided into two complementary
classes: the first class uses polytopic differential inclusions, such as T-S fuzzy models,
for representing nonlinear systems and design RBs based on those models; and the
second class consists of novel design methodologies for RBs based on dissipativity
theory. Figure 1.3 summarizes the novel blocks and design methods for fault hiding of
nonlinear systems that are presented in this thesis.

N-TS Fuzzy
Models

Linear with
Input Saturation Input-affine Models

Fuzzy Static RBs Linear Static RBs Passivation
Blocks

Stability Recovery Dissipativity
Recovery Passivation

Plant models

Proposed RBs

Proposed Method

chapter 4 chapter 3 chapter 5 chapter 6

Figure 1.3 – Overview of the thesis content.
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The following novel RBs are presented in this thesis: a static RB structure
is presented in chapter 3 for fault hiding of linear systems with input saturation; a
fuzzy version of that static RBs is presented in chapter 4; and the static and dynamic
Passivation Blocks (PBs) are presented in chapter 6 for fault hiding. All those novel RB
structures are able to deal with both sensor and actuator faults and their parameters do
not include any parameter from the plant faulty model. To design those blocks for fault
hiding purpose, novel design techniques are also presented in this thesis. A two-steps
stability recovery by fault hiding methodology is proposed and used for LTI, linear
with input saturation, T-S fuzzy, and distributed T-S fuzzy models in chapter 3 and
chapter 4. That methodology is based on Lyapunov theory that proves the stability of
the nominal system and also designs RBs that guarantee that the reconfigured system is
stable using the same Lyapunov function. To deal with the nonlinear systems, we take
advantage of the properties of differential polytopic inclusions, such as that obtained
by using T-S fuzzy and sector nonlinearity methods, to obtain LMI-based sufficient
conditions for stability recovery by fault hiding according to that methodology.

A similar idea is used for dissipativity recovery of input-affine systems in chapter 5,
wherein storage and supply rate functions are obtained for the nominal system and used
to design blocks that guarantee the same dissipation property. Finally, a passivation-
based fault hiding approach for input-affine systems is presented in chapter 6. In this
case, the RBs are designed to guarantee that the reconfigured system exhibits some
desired dissipation property. In this case, only the passivity indices of the faulty plant
and the controller are required to design the RBs, which is an additional step towards
the independence on the accurate fault models. The design method provided in this
thesis are achieved by means of constructive LMI-based conditions.

1.3 Objectives and scope

1.3.1 Objectives

The main objective of this thesis is to develop novel fault hiding strategies
for nonlinear systems using RBs structures that do not depend on the faulty system
parameters. In short, this thesis proposal aims to:

a) develop novel RB suitable for fault hiding of nonlinear systems whose struc-
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tures do not depend on the faulty system parameters;

b) provide constructive LMI-based conditions to design RBs for fault hiding of
nonlinear systems;

c) develop dissipativity-based methods for fault hiding of nonlinear systems;

d) formulate the problem of stability recovery by fault hiding as a passivation
problem such that the RBs are designed to guarantee the desired dissipation
behavior of the reconfigured system.

1.3.2 Scope of this thesis

The fault hiding of nonlinear system is a very broad topic that this thesis does
not intend to exhaust. Thus this subsection aims at specify the scope of this thesis.
Different fault hiding problems are proposed in the literature, for example, the stability
recovery, setpoint tracking recovery and performance recovery. This thesis addresses
only the problem of asymptotic stability recovery by fault hiding. Moreover, the results
provided in this thesis cover multiplicative faults whose parameters are assumed to be
accurately and timely known.

Regarding the guarantees for nonlinear systems, the classes of nonlinear systems
supported by the methodologies presented in this thesis can be generically represented
as follows

Σ :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),u(t)) ,
y(t) = h (x(t)) + j (x(t),u(t)) ,

(1.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are, respectively, the state, input and
output vectors, t ∈ R≥0, and the maps f , g, h, and j are sufficiently smooth, i.e.,
for any x (t0), t0 ∈ R≥0, and admissible u(t), the solutions of Σ satisfies to existence
and uniqueness conditions for all t ≥ t0 and y(t) is locally integrable. Furthermore,
f(0) = 0 and h(0) = 0. Moreover, Σ is ZSD [19].

The formulation in (1.1) includes a broad class of systems with different non-
linearities, e.g., polynomials, saturation, and dead zone. However, it is not able to
cover some nonlinear phenomena, for example, finite escape time cannot be addressed
by the results of this thesis. In particular, the methodologies presented in chapter 3
and chapter 4 are applied to LTI, input saturating, and Takagi-Sugeno fuzzy mod-
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els with nonlinear consequent (NT-S fuzzy models) based on the sector-nonlinearity
method [20, 21] which allows to build polytopic differential inclusions to represent Σ
(cf. (1.1)) if the nonlinear maps are sufficiently smooth. In fact, the general ideas
behind those methodologies could be applied to any nonlinear system like (1.1) through
local exact representation of it by polytopic differential inclusions, which include but is
not limited to LPV, differential-algebraic, and Takagi-Sugeno fuzzys (T-S fuzzys). One
may notice that the guarantees become only locally valid if the polytopic differential
inclusions are able to represent (1.1) only within a compact set. However, this issue
will not be discussed in this thesis.

Regarding the methodologies presented in chapter 5 and chapter 6 are based
on dissipativity theory whose concepts are suitable for nonlinear systems represented
by the formulation in (1.1). However, those approaches require the obtaining of valid
supply rates related to their dissipativity properties, which can be challenging for some
nonlinear systems. Moreover, the computationally efficient methods for obtaining supply
rates, e.g., using sum-of-squares programming, produce only local dissipativity results.
In this case, the validity of the guarantees will be also local.

1.4 Thesis Outline

The thesis’ organization and contributions, in each chapter, are:

a) chapter 2 provides a detailed revision on the origin and applications of RBs,
the fault hiding approach, the main RB design methodologies and the
open challenges related to fault hiding and RBs. Although it can be an
informative reading to find out more details on the fault hiding approach,
which is the focus of this thesis, that chapter can be skipped if the reader
feels comfortable about the subject.

b) chapter 3 presents the proposed static RB structure and describes a general
methodology to design that block by inducing the stability recovery based on
the same Lyapunov function obtained by analyzing the nominal closed-loop
system stability. In particular, this chapter provides LMI-based sufficient
conditions for stability recovery by fault hiding of linear systems with input
saturation.
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c) chapter 4 extends the approach of chapter 3 to NT-S fuzzy model. For this
purpose, fuzzy static RBs are proposed and LMI-based conditions are provided
to design them. Moreover, it is considered the problem of fault hiding for
distributed nonlinear plants by using both centralized and distributed RBs.

d) chapter 5 uses the SRB presented in chapter 2 and establishes the relation
between the traditional stability recovery by fault hiding problem, already
addressed in the literature and in chapter 2 and chapter 3, and the dissipativity
recovery by fault hiding defined in that chapter. Then the dissipativity-based
stability recovery by fault hiding is achieved for nonlinear system without
requiring polytopic differential inclusions as used in chapter 2 and chapter 3.
For linear systems, LMI-based constructive conditions are presented to design
the SRB and guarantee the stability, passivity, and dissipativity after a fault
occurrence.

e) chapter 6 presents a passivation-based fault hiding approach for nonlinear
systems based on a novel dynamic RB structure named as PB. It is shown
that the proposed PB generalizes the canonical RBs, i.e., VSs and VAs, and
it can be used for both sensor and actuator faults simultaneously. It does not
require the knowledge on the system and controller models. The LMI-based
design condition only requires the knowledge on the passivity indices of the
faulty system and controller to guarantee the passivation based stability
recovery by fault hiding.

f) chapter 7 draws the main conclusions of this work and indicates further
research directions.

1.5 Notations

The math variables adopted in this paper are written as lower case bold letters
(v) to denote vectors or matrix-valued functions, capital bold letters (V ) to denote
matrices, non-bold letters (v or V ) to denote scalars or scalar-valued functions, script
capital letters (V ) to denote spaces or set-valued functions.

N denotes the set of natural numbers and N≤m is the set of natural numbers
less than or equal to m; Rn and R≥0 denote respectively the Euclidean space of



Chapter 1. Introduction 31

n-dimensional real numbers and non-negative real numbers. L loc
1 denotes the space of

locally integrable signals. Rm×n is the set of all m× n real matrices.

In and 0n×m denote, respectively, the n-th order identity matrix and the null
matrix of order n×m, however, if the dimensions of both identity and null matrices
are straightforwardly deduced, they are omitted. For a vector v ∈ Rn, ∥v∥2 denotes its
2-norm, and v(l) denotes the l-th entry of v with l ∈ N≤n. For a matrix V , V ≻ (≺) 0
means that V is a positive (negative) definite matrix; V ⊤ is its transpose; V † is its
Moore–Penrose pseudoinverse; ; He {V } denotes He {V } = V + V ⊤. For a matrix
V ∈ Rm×n, ∥V ∥2 denotes the induced matrix 2-norm of V , and V(l) denotes the l-th
line of V with l ∈ N≤n. The notation V ∈ Co {V1, . . . ,Vnv} means that there exists
a set of nv scalars {θ1, . . . , θnv} ⊂ R≥0 such that

nv∑︂
i=1

θi = 1, V =
nv∑︂
i=1

θiVi.

In a symmetric block matrix, ’⋆’ is the term deduced by symmetry; diag {d1, . . . ,dn}
is a diagonal matrix with the elements/blocks d1, . . . , dn in the main diagonal. The
notation (Σ1, . . . ,Σn) represents the system obtained through the interconnection of
the subsystems Σ1, Σ2, ..., and Σn.
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2 RECONFIGURATION BLOCKS AND FAULT HIDING: DESIGN, APPLI-
CATIONS, AND CHALLENGES

This chapter presents a review of the fault hiding approach and RBs. The review
aims to provide a historic perspective to understand the roots and key milestones of
fault hiding advances and their applications. Moreover, it presents the main RBs which
have been proposed to solve the fault hiding approach. Finally, the review indicates open
challenges and emerging applications for RBs, which can be also out of the FTC scope.
The remainder of this chapter is organized as follows: section 2.1 presents the philosophy
behind the use of RBs and the origins of the fault hiding approach; section 2.2 presents
the fault hiding problem; section 2.3 discusses the main milestones of the fault hiding
advances; section 2.4 describes the main structures for RBs; section 2.5 provides an
overview on the design methodologies for RBs found in literature; and section 2.6
presents the main applications for RBs in the literature.

2.1 Philosophy of Reconfiguration Blocks

The general concept of using RBs is the possibility of achieving control objec-
tives without modifying a controller which is already inserted in the loop. The term
"reconfiguration block" was proposed by [17] for fault-tolerant control to designate an
alternative to the most common reconfigurable control approaches where the controller
used to be redesigned when a fault was detected. In this alternative, the key idea is
inserting the RB between the nominal controller (which remains unchanged) and the
faulty plant. Since then, the fault-tolerant control based on the insertion of RBs for
recovering system properties after the fault detection and estimation is called fault
hiding or fault masking. However, conceiving the design of additional blocks in the
control loops to achieve control goals that were not initially considered when the
baseline controller was designed is prior to the concept of RB and fault hiding. Indeed,
the applications of such idea can be found within or without the fault-tolerant control
body of knowledge.

The canonical RBs used for fault hiding are the VSs for dealing with sensor
faults and the VAs for dealing with actuator faults [16, 18, 17]. The VSs are inspired by
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the Luenberger observer design and aim at estimating fault system states and outputs
despite the sensor faults. This concept has already inspired several fault-tolerant
sensor control approaches prior to the emergence of fault hiding approaches. Indeed,
it is well-known that the recovery of systems with sensor faults can be performed by
observers or filters which use the analytical or physical redundancies [8]. For example,
MSIF [22, 23, 24, 25] are techniques proposed to improve the accuracy of observations
by combining the measurements from different sensors. The problem of integrating
the information of fusion of individual sensor technologies to obtain a more accurate
observation was first proposed in the seminal paper [25] concerning tactical warfare
situations. However, solutions for this problem were only presented some years later
by several researchers [24, 26, 27, 28] using mainly stochastic and fuzzy techniques.
Currently, most of the guidance and navigation control systems employ some kind
of MSIF technique. In this context, the term "virtual sensor" was first used in one
of the earliest papers [28] on MSIF. The multisensor integration is extended to the
problem of sensor fault-tolerant control [29, 30, 31, 32, 33, 34] for estimating the
correct observations despite of the sensor faults by combining the measurements of the
remaining healthy sensors, as performed in fault hiding. In the data-driven context,
some soft-sensors to estimate the correct measurements after sensor faults are also
proposed. They are built in the same spirit of VSs, however, they are based on machine
learning structures, e.g., the neural networks [35, 36]. The core idea of using VSs for
fault hiding is the ability to hide the fault effects from the nominal controller, which is
probably borrowed from the sensor fault masking approaches [37, 38, 39]. In particular,
the nonlinear sensor fault masking blocks presented in [38, 39] are designed to work
in the same manner as the fault hiding VSs, by correcting the faulty measurements
for injecting in a fault-ignorant controller. Another similar technique is the sensor
data reconciliation [40, 41] which usually employs constrained optimization (typically,
least squares methods [42]) to handle two kinds of errors in sensor data: random and
gross errors [41]. Under some assumptions, the faults can be modeled as errors and
the sensor reconciliation can be effectively employed for sensor fault-tolerant control
in schemes that already integrate the fault estimation [43, 44, 45, 46]. In [44, 46],
the relation between the sensor reconciliation blocks and VSs used for fault hiding
is established. Indeed, the recent adaptive VAs are also proposed in frameworks
which integrate fault estimation and fault-tolerant control which resembles the sensor
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reconciliation [47, 48, 49, 50, 51, 52, 52, 53, 54].

Otherwise, the VAs are used to translate the nominal control signals into
reconfigured ones which can recover the system performance by using the healthy
actuators. In [55], the VAs are described as the dual Luenberger observer which
was presented in[56]. However, the fault hiding by means of VAs is also closely
related to other control approaches. For example, motivated by the airplane flight
control, since the 1990s the control allocation problem is investigated for over-actuated
system [57, 58, 59]. The control allocation aims at determining how to distribute a
commanded virtual control between several (redundant) actuators while considering
some issues which are ignored by the virtual control law [60], e.g.: input saturation,
rate constraints, and tear-and-wear minimization [60, 61, 62, 63]. Based on the control
allocation problem, it is proposed the use of a control mixer [64], also for flight control
systems, to exploit the actuator redundancy in fault-tolerant control problems. The
use of control allocation for fault-tolerant control purposes is usually named as control
re-allocation [65, 66]. For this purpose, the most basic idea is to manipulate a weighting
matrix that produces a reconfigured control signal by linearly transforming the original
control signal computed through the nominal controller [67, 68, 69, 70, 71, 72]. A
general solution for computing such matrix is the use of pseudo-inverse methods.
However, this solution is too sensitive to uncertainties and numerical issues. A more
complex version of this idea consists in inserting various (possibly dynamic) control
mixer blocks to obtain the robust control reconfiguration for different kinds of faults [73].
In both cases, the information of FDI systems is used to reconfigure the control mixer
blocks and achieve the fault tolerance. The relation between control reallocation and
VAs is evidenced by the virtual thrusters [74, 75, 72], which are not physically existent
but can be obtained by control reallocation based on the synthesis of control mixers
that combine the remaining healthy actuators. In [76, 77], VAs are employed as control
mixers to solve the control reallocation problem.

Probably, the embryonic idea of fault hiding is the control retrofit approach
initially proposed for fault-tolerant flight control. The retrofit control consists in
performing the control reconfiguration by inserting a supplementary control loop
without replacing any nominal control element [78]. In that proposal, the fault-tolerant
controller should be inactive during nominal operation and should be activated only
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when a fault is detected. Indeed the peculiarities of the aviation industry motivated
this kind of solution. Although the requirements for safety in the aviation sector
are strict, the certification costs for a new control architecture are complex and
expensive. In this sense, the proposed retrofit module could be aircraft independent,
which allows certifying the module once for being used in various aircraft. Moreover,
the certification process for the retrofit module should be easier than certifying a
novel baseline controller [79, 80, 81, 82]. Therefore, the fault-tolerant control by
using a retrofit module reduces both cost and complexity. 1 Although the aviation
industry provides particular motivations for installing a supplementary control loop, the
advantages of employing that kind of strategy are also valid for other systems with long
life-cycle and strict regulation for providing performance improvement or fault tolerance,
for example, power systems [84, 85, 86, 87, 88], transportation systems [78, 89],
and internet congestion control [90]. As a matter of fact, the use of supplementary
loops and virtual elements to improve the robustness and oscillation damping is usual
in power grids [91, 92, 93, 94, 95, 96], where the local controllers are not easily
modified. Moreover, the retrofit fault-tolerant control approach was extended to
other applications such as for generic mechanical systems represented by Newton-Euler
models [97]. Recently, the control retrofit approach has been proposed for improving
the control performance or providing additional guarantees in a single subsystem of a
networked system without affecting the other subsystems of the network [78, 98, 99].

Therefore, the philosophy behind using RBs is closely related to the control
mixing and control retrofit for dealing with actuator faults and to soft sensors and
sensor reconciliation for dealing with sensor faults. In particular, the RBs are generally
designed to be inactive in nominal conditions and for achieving novel control goals
(e.g., fault tolerance) without modifying the baseline controller. The main advantages
of adopting RBs are listed as follows:

a) RBs are usually inactive when the system operates in the nominal conditions;

b) RBs can be designed independently of the controller design, which means
that the nominal closed-loop properties and goals may be unknown for its

1 Lessons learned from recent Boeing 737 MAX accidents [83] indicate that certification of supple-
mentary control modules must require scrutiny of the conditions for activating these modules as
well as training pilots in these technologies.



Chapter 2. Reconfiguration blocks and fault hiding 36

design;

c) RBs can be combined with any kind of controller, which includes: a hu-
man controller in human-in-the-loop control systems [18, 16]2; "black-box"
controllers whose only signals are available [17];

d) the fault-tolerance obtained by preserving the nominal controller also pre-
serves some implicit knowledge of the process and desired performance
usually contained in the original closed-loop system [7];

e) the insertion of RBs results in minimally invasive changes in the control
system when compared to other control reconfiguration approaches, which
allows, for instance plug-and-play approaches for control reconfiguration
based on RBs [100];

f) the design of the RB may take advantage of the properties guaranteed by
the nominal controller (e.g., stability, passivity, and dissipativity);

g) it is convenient for large-scale and interconnected systems because it allows
to maintain overall process operation and handle the control reconfiguration
of only specific components or subsystems.

2.2 Fault hiding

The main application of RBs is undoubtedly fault-tolerant control. In this sense,
the fault hiding approach is proposed for fault-tolerant control of systems subject to
sensors and actuators’ faults. The fault hiding approach is an alternative to the classic
model-matching control reconfiguration that requires the complete redesign of the
nominal controller after a fault occurrence. In contrast, the fault hiding approach aims
to hide the fault effects from the controller while mitigating them for recovering the
nominal behavior. Thus, the nominal controller is maintained in the loop and a different
component is inserted: the RB. The fault hiding approach inserts an RB between the
plant and controller to mitigate the fault effects. The RB uses all the available (physical
and analytical) redundancy to reallocate the control signals for the healthy actuators
and compensate for the faults in the output measurements.
2 Although the fault hiding in human-in-the-loop control systems is useful to improve the operation

experience under critical circumstances, the fault alarm must be sent to the human operator, who
must be trained to deal with the reconfigured system.
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Figure 2.1 depicts the general idea of fault hiding. This figure illustrates that
the nominal control system consists of the interconnection between the plant ΣP and
the controller ΣC, if a fault occurs in the plant (modeled by its faulty model ΣPf ), then
the RB ΣR is inserted into the control loop without any modification in the nominal
controller ΣC.

ΣP

ΣC

yuc

ΣPf

ΣC

yuc

ΣPf

ΣR

ΣC

y

yruc

yr

Nominal system Faulty system Reconfigured system

Figure 2.1 – Control reconfiguration by fault hiding. In this figure, the exogenous
signals w1 and w2 are disregarded.

2.2.1 Fault hiding Problem

Let a fault-free plant be represented by the following nominal model ΣP:

ΣP :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),up(t)) ,
yp(t) = h (x(t)) + j (x(t),up(t)) ,

(2.1)

associated to the operator ΣP : (yp(·),x(t)) = Ω (up(·),x0). Notice that x(t) ∈ Rn,
u(t) ∈ Rm, and y(t) ∈ Rp are, respectively, the vectors of state, input, and output
variables; t ∈ R≥0; the initial condition is x0 = x (0); and the matrix-valued maps f ,
g, h, and j are sufficiently smooth with appropriate dimensions. The same model plant
under faulty operation is represented by the following faulty model ΣPf :

ΣPf :

⎧⎨⎩ ẋ(t) = ff (x(t)) + gf (x(t),up(t)) ,
yp(t) = hf (x(t)) + jf (x(t),up(t)) ,

(2.2)
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associated to the operator ΣPf : (yp(·),x(·)) = Ωf (up(·),xf,0). Notice that xf,0 =
x (tf), tf ∈ R≥0 is the time when the fault begins, xf(t) ∈ Rn, uf(t) ∈ Rm, and
y(t) ∈ Rp are, respectively, the vectors of state, input, and output variables; the matrix-
valued maps ff , gf , hf , and jf are sufficiently smooth with appropriate dimensions.

As depicted in Figure 2.2, the plant is interconnected by feedback to a dynamic
output feedback controller ΣC described as follows:

ΣC :

⎧⎨⎩ ẋc(t) = fc (xc(t)) + gc (x(t)) yc(t),
uc(t) = hc (x(t)) + jc (xc(t)) yc(t).

(2.3)

The output feedback controller (5.6) is associated to the operator ΣC : (uc(·),xc(·)) =
ΩC (yc(·),xc,0), where xc,0 = xc (0).

ΣP/ΣPf+

Σc +

w1 yp

w2uc

up

yc

yp

uc

Figure 2.2 – Control loop with ΣP/ΣPf and ΣC and without reconfiguration.

In Figure 2.2, w1 ∈ Rm and w2 ∈ Rp denote exogenous signals, e.g., distur-
bances or reference signals. After the fault diagnosis, the fault hiding mechanism inserts
an RB ΣR, designed according to the fault estimates, between the faulty plant ΣPf and
the nominal controller ΣC, as depicted in Figure 2.1, in order to recover the nominal
performance or stability. Generically, ΣR is described as follows

ΣR :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = fr (xr(t),y(t),uc(t)) ,
yr(t) = gr (xr(t),y(t),uc(t)) ,
ur(t) = hr (xr(t),y(t),uc(t)) ,

(2.4)

where the matrix-valued maps fr, gr, and hr are sufficiently smooth with appropriate
dimensions. The RB ΣR (2.4) is associated to the operator ΣR : (yr(·),ur(·),xr(·)) =
ΩR (yf(·),uc(·),xr,0), where xr,0 = xr (tr), and tr ∈ R≥0 is the reconfiguration instant
when ΣR is inserted in the control loop.
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ΣPf+

ΣR

ΣC

+

w1 yp

w2ur

uc yr

up

y

yp

ur

uc yc

yr

Figure 2.3 – Control loop with RB ΣR inserted between the faulty plant ΣPf and
the nominal controller ΣC.

Notice that the insertion of the RB in the loop performs the following modifica-
tions in the signals injected in the controller and the plant as indicated by Figure 2.3:

y = yp + w2 (2.5)

up =

⎧⎪⎨⎪⎩w1 + uc, if the reconfiguration does not occur,
w1 + ur, if the RB is inserted,

(2.6)

yc =

⎧⎪⎨⎪⎩w2 + yp, if the reconfiguration does not occur,
yr, if the RB is inserted.

(2.7)

The fault hiding problem is related to the design of ΣR aiming at recovering
some closed-loop property after the fault occurrence without changing the nominal
controller ΣC. Different problems and solutions can be formulated and obtained,
respectively, depending on the property to be recovered. In the earliest research related
to fault hiding [17, 16, 18], three generic fault-hiding problems are usually addressed:
asymptotic stability, tracking, and trajectory recovery. Those problems are described as
follows:

Problem 2.1. Asymptotic stability recovery by fault hiding. Consider the plant
whose nominal model is described in (2.1), subject to faults represented by the faulty
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model ΣPf described in (2.2). The nominal plant ΣP is connected to an output feedback
controller ΣC described in (5.6) such that (ΣP,ΣC) is asymptotically stable. Find
an RB ΣR of the form (2.4) such that the equilibrium of the reconfigured system
(ΣPf ,ΣR,ΣC) is asymptotically stable.

Problem 2.2. Asymptotic reference tracking recovery by fault hiding. Consider
the plant whose nominal model ΣP : (yp(t),x(t)) = Ω (up(t),x0) is described in (2.1),
subject to faults represented by the faulty model ΣPf : (yf(t),xf(t)) = Ωf (up(t),xf,0)
described in (2.2). The nominal plant ΣP is connected to an output feedback controller
ΣC described in (5.6). Find an RB ΣR of the form (2.4) such that the reconfigured
system (ΣPf ,ΣR,ΣC) ensures

lim
t→∞

(yf(t)− yp(t)) = 0, ∀xf,0,x0. (2.8)

Problem 2.3. Asymptotic trajectory recovery by fault hiding. Consider the
plant whose nominal model ΣP : (yp(t),x(t)) = Ω (up(t),x0) is described in (2.1),
subject to faults represented by the faulty model ΣPf : (yf(t),xf(t)) = Ωf (up(t),xf,0)
described in (2.2). The nominal plant ΣP is connected to an output feedback controller
ΣC described in (5.6). Find an RB ΣR of the form (2.4) such that the reconfigured
system (ΣPf ,ΣR,ΣC) ensures

lim
t→∞

(xf(t)− x(t)) = 0, ∀xf,0,x0. (2.9)

Most of the fault hiding literature solves those problems or some variations of
them. For example, in the context of fault-tolerant control of Multi-Agent Systems
(MASs), the problem of consensus recovery is also proposed [101]. Moreover, in systems
subject to exogenous disturbances, the stability recovery problem with guaranteed L2

performance had also been handled [18, 102, 103, 104, 105]. More recently, novel fault
hiding problems related to dissipativity and passivity recovery by fault hiding have been
proposed [106]. They are described as follows:

Problem 2.4. Passivity recovery by fault hiding. Consider the plant whose nominal
model is described in (2.1), subject to faults represented by the faulty model ΣPf

described in (2.2). The nominal plant ΣP is connected to an output feedback controller
ΣC described in (5.6) such that (ΣP,ΣC) is passive. Find an RB ΣR of the form (2.4)
such that the reconfigured system (ΣPf ,ΣR,ΣC) is also passive.
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Problem 2.5. Dissipativity recovery by fault hiding. Consider the plant whose
nominal model is described in (2.1), subject to faults represented by the faulty model
ΣPf described in (2.2). The nominal plant ΣP is connected to an output feedback
controller ΣC described in (5.6) such that (ΣP,ΣC) is dissipative with respect to a
supply rate S : Rm × Rp → R. Find an RB ΣR of the form (2.4) such that the
reconfigured system (ΣPf ,ΣR,ΣC) is also dissipative with respect to S.

Remark 2.1. Relevant part of the literature on reconfiguration deals with quasi-LPV
systems. Notice that if the nonlinear models used to describe ΣP and ΣPf in (2.1)
and (2.2) are input-affine models, then they can be exactly represented by quasi-LPV
models using nonlinearity embedding methods described in [20, 21, 107]. For example,
the following quasi-LPV models can be used to describe ΣP and ΣPf , respectively:

ΣP :

⎧⎨⎩ ẋ(t) = A (z(x(t))) x(t) + B (z(x(t))) up(t),
yp(t) = C (z(x(t))) x(t) + D (z(x(t))) up(t),

(2.10)

ΣPf :

⎧⎨⎩ ẋ(t) = Af (z(x(t))) x(t) + Bf (z(x(t))) up(t),
yp(t) = Cf (z(x(t))) x(t) + Df (z(x(t))) up(t),

(2.11)

where the matrix-valued maps A, B C, D, Af , Bf Cf , and Df are sufficiently smooth
with appropriate dimensions and depending on the time-varying scheduling parameters
(or premise variables in T-S fuzzy models) z(x(t)) = (z1(x(t)), . . . , zp(x(t))) used to
embed nonlinear terms of (2.1) and (2.2). In this case, the models (2.10) and (2.11)
are defined within a domain of validity, which is usually a convex polytope on the
state-space containing the equlibirum of interest. It follows that the image of z(x(t))
and the state-space matrix-valued maps are also convex polytopes for sufficiently
smooth nonlinear maps in (2.1) and (2.2). Therefore, (2.10) and (2.11) are differential
polytopic inclusions. For example, the following inclusion is valid for the nominal
model (2.10):⎡⎣A (z(x(t))) B (z(x(t)))

C (z(x(t))) D (z(x(t)))

⎤⎦ ∈ Co

⎧⎨⎩
⎡⎣Ai Bi

Ci Di

⎤⎦⎫⎬⎭ , i ∈ N≤r, (2.12)

where matrices with appropriate dimensions Ai, Bi, Ci, and Di represent the i-th
vertex of a polytopic differential inclusion with r vertices. The same reasoning can be
extended to ΣPf .
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It is worthy to mention that z(x(t)) may be partially or totally unmeasured or
compromised by sensor faults. Notice that if the matrix-valued maps A, B C, D, Af ,
Bf Cf , and Df are constant, then ΣP and ΣPf are LTI models.

2.3 Brief history

Section 2.1 showed the connection between fault hiding ideas and other concepts
in the literature. As discussed, the virtual blocks, VA and VS, have been consolidated
before the fault hiding approach: the VAs are connected to retrofit and reallocation
control techniques, while VSs combine concepts of MSIF and sensor conciliation.
Those blocks have been used to solve fault hiding (fault masking) problems since the
5th SAFEPROCESS in 2003, when the papers [108] and [38] presented solutions for,
respectively, the control reconfiguration by means of VAs, and the sensor fault masking
problem. Those ideas are consolidated in the fault hiding approach whose first milestone
should be the books [17, 7] in which the use of such a terminology begins and also
solve the Problems 2.1, 2.2, and 2.3 for LTI systems. Since then, several advances were
achieved to extend that idea to nonlinear systems, to develop novel design methods,
to propose novel virtual blocks, and to integrate them to FDI systems. The main
milestones in the development of fault hiding approaches are depicted in Figure 2.4.
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2.3.1 Linear Fault Hiding

For systems with both sensors and actuator faults the VS and VA blocks
can be used together to recover the system when actuator and sensor faults occur
simultaneously. For this purpose, an important property is the separation principle that
allows to design the VS and VA independently. This result is firstly presented in [16]
for LTI systems. Indeed, the early results for fault hiding deal only with LTI systems [109,
110, 17, 7, 132, 133, 103, 134]. As discussed in [17, 7], the VS for LTI systems is a
kind of Luenberguer observer. Based on that analogy, the paper [55] demonstrates that
the VA for LTI systems is the dual observer based on the concepts proposed by [56] for
perfect pole-assignment by means of state-feedback control. In [135], predictive VAs
are proposed to deal with network-induced delays in networked LTI systems.

Most of those results for LTI systems are based on exact model-matching design
conditions for solving the Problems 2.1–2.3. Although exact model-matching conditions
are effective to recover the exact nominal dynamics, they tend to be conservative.
An effective alternative to the model-matching conditions is the convex optimization
approaches with LMI constraints. LMI-based conditions for optimal stability recovery
are proposed in [103]. In [103], VAs are designed to minimize the H∞ performance from
the nominal controller input to the deviations and input gain due to the reconfiguration.
Similarly, to guarantee some H∞ robust performance, a PI VA structure and its
LMI-based design conditions are provided for fault hiding of LTI systems.

Recently, MPC is used to design moving horizon VAs in [130, 131] aiming at
minimizing the divergence between the reconfigured and nominal trajectories while
guaranteeing input constraints.

2.3.2 Fault Hiding for Polytopic Differential Inclusions

The first application of fault hiding for nonlinear systems is presented in [111]
which uses the KYP Lemma to design VA for Hammerstein nonlinear systems with
Lipschitzian nonlinearities. However, the key milestone to achieve fault hiding for
nonlinear systems are the results presented in [103, 112]. The main contribution of
those works is that they indicate a way to solve the fault hiding problems using Linear
Matrix Inequalities (LMIs). One of the advantages of the LMI-based control design
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is the ease provided by these methods for dealing with nonlinear systems which can
be represented by polytopic differential inclusions, e.g., LPV, L’ure, T-S fuzzy, PWA,
and Lipschitzian systems. Indeed, in the next years, most of the fault hiding results are
developed for those classes of systems.

Initially, the stability recovery by fault hiding problem for PWA systems with
actuator faults is solved in [112] by means of PWA VAs designed through LMI-based
conditions. In [136], that result is also extended to solve the reference tracking and
trajectory recovery by fault hiding. Similarly, in [102], LMI-based conditions are used to
design Hammerstein VAs which solve the Problems 2.1–2.3 for Hammerstein systems
with Lipschitzian nonlinearities and include, for example, systems with input saturation.
Both PWA systems and Hammerstein systems with Lipschitzian nonlinearities are
examples of polytopic differential inclusions which are handled in different ways. The
analysis or control design for polytopic differential inclusions can be performed vertex-
wise (which results in one LMI for each vertex) considering all the possible combinations
of the subsystems, e.g., plant, and controllers, vertices [137, 20], or applying some
relaxation technique, e.g., Pólya Theorem [138]. This is the idea behind the design
of VAs for PWA systems which is presented in [112], and it is also valid for LPV
and T-S fuzzy models. Otherwise, the paper [111] deals with Lipschitzian nonlinearities
as sector bounded nonlinearities [139] that allows obtaining robust LMI-based conditions
taking into account the sector nonlinearity inequality. In addition to Hammerstein
systems, this approach can be employed for fault hiding of any nonlinear system with
Lipschitzian nonlinearities [140, 141] and L’ure systems [118, 142, 143]. Based on those
ideas, the Problems 2.1–2.3 are solved for PWA and Hammerstein-Wiener systems
in [18] using ISS concepts. The book [18] also presents a relevant result for designing
simultaneously nonlinear VAs and VSs, which is the nonlinear separation principle based
in the cascaded interconnection of ISS systems.

Among the polytopic differential inclusions, LPV and T-S fuzzy models stand
out due to their ability to provide exact representations of input-affine nonlinear systems
by embedding the nonlinearities into their time-varying or state-dependent parameters
(or membership degrees). Indeed, most of the fault hiding approaches for nonlinear
systems deal with T-S fuzzy, LPV and quasi-LPV models, which are LPV models
whose parameters depend on the system states. For LPV systems, LPV VSs ([114])
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and VA ([115]) are proposed to solve the stability recovery by fault hiding problem.
The design of those LPV RBs is achieved by means of LMI-based conditions for
D-stabilization of the reconfigured dynamics. Moreover, the separability principle
for gain-scheduled state-feedback controllers and VAs is obtained in [115]; and the
separability principle for gain-scheduled state-feedback controllers, state observers,
and VSs in [114]. The fault hiding for LPV systems with simultaneous sensor and
actuator faults is addressed in [120], which also provides the separation principle for
the design of LPV VAs and VSs. The simultaneous design of discrete-time LPV VAs
and VSs is also addressed in [144, 145] in which the ISS property is used to guarantee
the design separability as proposed by [18]. In [146], reference tracking recovery by
fault hiding is presented for a four-wheeled omnidirectional mobile robot represented by
switched quasi-LPV using a switching LPV VA. Other fault hiding applications to LPV
systems can be found in [147, 148, 149, 119, 150, 151, 152, 153, 154, 125, 155, 156,
157, 44, 158, 159, 128, 160, 161].

In the same spirit, fault hiding approaches for T-S fuzzy fuzzy systems are also
proposed in the literature [117, 162, 163, 164, 165, 166, 127, 105, 167]. Indeed, the
control method for LPV systems can be easily adapted to T-S fuzzy systems since they
are particular cases of quasi-LPV systems [21], whose fault hiding was already addressed
in [154, 146]. The first fuzzy approach is proposed in [117] which proposes a T-S fuzzy
VA for fault hiding of nonlinear systems represented by T-S fuzzy models. However, in
the paper [117], the solution is based on the assumption that state-space matrix B is
constant, which may be unable to represent some classes of nonlinear systems. Such a
constraint is surpassed in subsequent researches on fuzzy fault hiding [162, 165, 164].
In [163], the result presented in [168] for LTI systems is extended to T-S fuzzy systems
subject to unknown disturbances and the robust stability recovery by fault hiding with
guaranteed L2 performance is obtained based on PI fuzzy VAs.

Although there are several papers proposing the use of fuzzy and LPV RBs
for fault hiding of nonlinear systems represented by quasi-LPV models, as discussed
before, most of them ignore the relevant problem: the existence of unmeasured
parameters or premise variables. For state-observers, filters, and fuzzy controllers, the
problem of unmeasured premise variables is well-known and investigated by several
works [169, 170, 171, 172]. In sensor FTC, it becomes more relevant, since even the
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measurable premise variables may become unavailable due to the sensor fault occurrence.
Therefore, some fuzzy sensor FTC approaches are proposed to deal with unmeasured
premises [173, 174]. However, most of the fuzzy and LPV fault hiding approaches
do not consider unmeasured parameters even when they are affected by sensor faults.
In this regard, the very recent work [105] presents a first complete solution using
LMI-based design conditions for VSs and VAs considering unmeasured premises and
premise variables affected by sensor faults. Moreover, [151] also considers errors in the
scheduling parameters to design LPV VAs while guaranteeing stability recovery by fault
hiding.

It is worth mentioning that there are a few works [175, 176, 177] that use
fuzzy RBs for fault hiding which is applied to nonlinear systems without representing
them as T-S fuzzy systems. Instead of designing the fuzzy RBs with fault hiding formal
guarantees, they are used as expert systems whose fuzzy rule base and membership
degrees are empirically tuned to compensate for faults.

2.3.3 Fault Hiding for Input-affine Nonlinear Systems

As mentioned before, most of the results on fault hiding for nonlinear systems are
valid for systems that can be represented by polytopic differential inclusions. However,
some few fault hiding approaches deal with more general nonlinear systems [121, 122,
106, 129].

In [145], it is proposed a nonlinear VA for fault hiding of a class of input-affine
nonlinear systems as described in (2.1) with constant input map and linear output,
i.e., g (x(t)) = B and yp(t) = Cx(t). In that paper, it is shown that if the nominal
closed-loop system (ΣP,ΣC) is ISS and the residual dynamics (between the states of VA
and faulty plant ΣPf ) is also ISS, then the proposed nonlinear VA solves the Problem 2.1.
Thus [121] presents a backstepping design methodology for the nonlinear VA which
guarantees the ISS of the residual dynamics. In [122], the fault hiding problem is posed
for input affine full-state linearizable MISO systems in a feedback linearization scheme.
For this purpose, re-linearizing terms and a nonlinear static VA are inserted in the loop
after the fault occurrence to guarantee trajectory recovery by fault hiding.

In [106], it is presented a two-step methodology for passivity and (Q,S,R)



Chapter 2. Reconfiguration blocks and fault hiding 48

dissipativity recovery by fault hiding (Problems 2.1, 2.4 and 2.5) for dissipative systems.
Firstly, a dissipativity (passivity) analysis is performed for obtaining valid storage and
supply rate functions which satisfy the dissipation inequality. Second, the RB is designed
to guarantee that the same dissipation inequality holds for the reconfigured system.
Moreover, it is shown that solving Problem 2.1 can be a consequence of solving
Problems 2.4 and 2.5, since the nominal closed-loop system (ΣP,ΣC) is stable. Finally,
the KYP Lemma and the linear (Q,S,R) disipativity condition [178] are used to obtain
constructive LMI-based conditions for the particular case of linear fault hiding. More
recently, in [129], a novel RB, denominated PB, is presented for stability recovery by
fault hiding for input-affine systems. PBs perform passivation of the faulty system to
guarantee some dissipativity properties for the reconfigured systems.

In [54, 47], an adaptive VA is proposed for fault hiding of nonlinear MASs. That
paper extends to input-affine nonlinear systems with constant input map the results
of [47, 48, 49, 53, 52, 50], which present adaptive update laws for the VA parameters
such that the trajectories are asymptotically recovered by fault hiding.

2.3.4 Fault Hiding for Distributed and Networked Control Systems

One of the advantages of the fault hiding FTC approach is the plug-and-play
application of RBs. Such a property is particularly interesting in distributed or LSS,
since distributed blocks can be used for reconfiguration of only a part of the network.
In this sense, there are several fault hiding results for distributed systems [179, 142,
143, 180, 181, 100, 182, 48, 183, 127, 52, 50, 54]. In [179], a cooperative fault-hiding
approach is proposed for Large-Scale Systems (LSSs), in which an admissibility criteria
(related to stabilizability or controllability) is used to select a subset of subsystems of
the LSS for which a VA is designed to recover the stability of the LSS.

In [181], the FTC of collaborating underwater robots is addressed by means of
centralized and decentralized static VAs. The results indicated that both centralized
and decentralized VAs can effectively hide the fault occurrence and recover trajectory
tracking after the reconfiguration. For linear LSSs, a distributed fault hiding approach
is presented in [180], which designs local linear VA for stability recovering by fault
hiding of the network performing reconfiguration only for the local subsystem. Similarly,
distribute VAs and Luenberger observer are proposed for FTC of MASs in [184].
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Moreover, in [142, 143], the distributed fault hiding is proposed for power systems
whose electric machines dynamics are represented by L’ure systems. In that case,
a L’ure VA is connected to a specific faulty machine which guarantees the network
stability. Still, for power systems, the fault-tolerant wide-area damping control is
addressed in [185], which designs a bank of VAs for voltage stability by fault hiding
after actuator faults.

In [182], a two-layer distributed fault-hiding approach for linear LSSs subject
to both sensor and actuator faults is designed. The first layer consists of decentral-
ized VAs and VSs which guarantees the stability recovery by fault hiding. The second
layer uses a different block, the virtual reference generator, which is responsible for
modifying the reference signals and ensuring the reference tracking recovery by fault
hiding with disturbance rejection. In [127], the stability recovery by fault hiding for
distributed T-S fuzzy systems is achieved by means of fuzzy Static Reconfiguration
Blocks (SRBs) which can be used equally for faults in sensors, actuators, or both, i.e.,
it is not necessary different RBs for sensor (VS) and actuator (VA) fault recovery.

For MASs, adaptive VAs are proposed in [48, 52, 50, 54]. All those papers present
the guarantees for asymptotic trajectory recovery by fault hiding with decentralized VAs
whose parameters are updated online based on adaptive rules. An advantage provided by
the proposed decentralized fault hiding approach over other distributed FTC approaches
in the literature is the recovery of the nominal performance independently of the mission
(e.g., consensus, coverage, and formation). In this spirit, the fault hiding problem
is solved for MASs with identical linear agents in [48], heterogeneous linear agents
in [52, 50], and heterogeneous nonlinear agents in [54].

Some fault hiding approaches are also aware of the phenomenons which af-
fect Networked Control Systems (NCSs) [135, 186, 187, 188], where a communication
network is used in the data exchange between the system’s elements (e.g., actuators,
sensors, RBs, and controllers). Among the phenomenons which affect NCSs, the
aperiodic sampling and network-induced delay can be highlighted. In particular, a
predictive VA structure is proposed in [135] for stability and trajectory recovery by fault
hiding for NCSs subject to network-induced delays. Moreover, the reference tracking
recovery by fault hiding for NCSs with varying sampling rate VAs and controllers is
addressed in [187, 188].
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2.3.5 Integration between Fault Hiding and FDI systems

Like any other AFTC approach, the fault hiding approaches require an FDI
system to provide fault estimations which are used for designing or choosing the
correct RB. However, most of the results on fault hiding assume the existence of an
ideal FDI and address exclusively the FTC problem. But it is worthy to mention the
relevant advances in the integration between fault hiding and FDI systems.

The earliest result which considers both fault hiding and FDI problems is
provided by [113]. In that paper, there is no fault estimation, but only a fault isolation
(classification) approach and a set-membership FDI system is proposed based on the
separation of invariant sets which characterize the nominal and each faulty operation,
assumed to be binary, i.e., each actuator is assumed to be totally healthy or lost. Thus,
the VA is designed to recover the isolated fault. In [189], the integration between
set-membership fault diagnosis, estimation, and hiding is proposed. For this purpose,
an algorithm to check the correctness of fault classification is proposed and positively
invariant sets are computed for the closed-loop stability for an interval of fault indicators.

A similar set-membership FDI mechanism is also integrated to VA for fault
hiding in NCSs with aperiodic sampling in [188]. In [160], an FDI system based on
an LPV interval predictor is integrated to VAs and VSs is used for fault hiding of wind
turbines. In the integration with fault isolation systems, the online design of RBs may
be inconvenient due to the computational costs for online design. For this reason,
banks of RBs are proposed to aid the integration between fault hiding and FDI, since
it allows to simply select the corresponding RB of the bank after the fault isolation.
In this sense, the literature presents results for designing banks of linear VAs [116],
linear VSs [190], LPV VAs [152], and LPV VSs [119, 153]. It is worthy to mention
that the switching between RBs of the same bank is performed according to the FDI
results. If the faults are intermittent or the FDI temporarily provides a wrong fault
isolation, the reconfigured system may lose performance or even become unstable due
to the excessive switching. For this purpose, in [191], dwell-time conditions for the
reconfiguration mechanism are provided to guarantee the stability of the reconfigured
system. An alternative to banks of RBs is presented in [128, 105], robust LPV VAs
and VSs are proposed, where the fault estimates are also embedded as scheduling
parameters.
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In [149], an integrated fault estimation and hiding framework is proposed to
design VA for LTI systems. In this case, recursive LSM is used for providing the
estimation of fault parameters. Similarly, in [146], the online fault estimation based
on windowed LSM is performed for obtaining switching LPV VAs for fault hiding
of quasi-LPV systems. However, those papers do not analyze the impacts of fault
estimation errors in the fault hiding performance nor provide convergence guarantees
for the integrated system. In [148], another integrated fault estimation and hiding
with VAs is presented for asymptotic trajectory recovery by fault hiding based on a
model-reference control approach. In that paper, a set-membership fault estimation is
used to provide confidence intervals for the fault parameters, and the effects of fault
estimation errors are analyzed, although they are not compensated or attenuated. Some
other research also integrates the fault estimation and hiding without dealing with the
fault estimation error effects in the reconfiguration [192, 193]. Otherwise, in [194] , an
interval estimation for the fault parameters (including additive faults) is also performed
and an interval VA with model reference control is designed to guarantee the trajectory
recovery by fault hiding. Interval VAs have been also proposed in [195] to deal with
the interval of actuator faults. For nonlinear systems represented by quasi-LPV models,
including the T-S fuzzy ones, it is worthy to notice that not only the fault estimation
errors but also the sensor faults affect the fault hiding performance since the measured
scheduling parameters are subject to deviations due to sensor faults. In this sense,
the robust RBs proposed in [105] are able to deal with both problems, since the fault
parameters are embedded as scheduling parameters and the fault hiding conditions take
into account the unmeasured parameters, including that affected by faulty sensors.

When integrating FDI and fault hiding systems, it is also important to consider
the time delays due to the late fault diagnosis. This problem is considered in [123, 157],
which provides a design methodology for VAs which guarantee the stability recovery by
fault hiding considering input saturation and FDI delays.

Some fault hiding approaches based on sensor reconciliation blocks [44, 45,
158, 159, 46] or adaptive VAs [47, 48, 49, 53, 52, 50, 54, 51] inherently merge the
fault estimation and FTC tasks. In particular, the sensor reconciliation approaches
integrate Unknown Input Observers (UIOs) with LSM: the UIO is used to decouple
disturbances and estimate the system states and additive faults; and Least Squares
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Methods (LSMs) are used to estimate the multiplicative fault parameters which are fed
back to the UIO. Otherwise, adaptive fault hiding approaches are based on adaptive
rules for the VA parameters which guarantees their convergence to the parameters of
the faulty system. Notice that UIOs are also employed in other fault hiding approaches
for fault estimation [147, 196].

2.4 Structures of Reconfiguration Block

Most of the fault hiding approaches are based on the canonical RBs, which are
the VSs and VAs. VSs and VAs present the following basic characteristics:

a) VSs and VAs structures are based on the internal model principle, i.e., their
parameters are directly related to the plant parameters;

b) they can be used only for strictly proper systems with sensor or actuator
faults, i.e., considering that ΣP and ΣPf represent, respectively, the nominal
and faulty plant model, then f (x(t)) = ff (x(t)) and j (x(t),up(t)) =
jf (x(t),up(t)) = 0.

However, a few RBs independent from the internal model principle have been
proposed, for instance the PBs [129] and generic SRBs [127, 106]. The advantages
of RBs free from internal model principle are their flexibility and less sensitivity with
respect to FDI errors and delays.

In this section, the main structures of RBs found in the literature for fault hiding
are presented.

2.4.1 Static Reconfiguration Blocks

The VSs are the RB structures used for correcting the sensor measurements
when sensor faults occur. The simplest VS structure is the SVS proposed by [17] and
inspired by the so-called pseudo-inverse method for control reconfiguration [197]. The
linear SVS structure ΣSV S for an LTI system is described as follows

ΣSV S : yr = CC†
f y. (2.13)

Otherwise, the VAs structures can be used to recover the system from actuator
faults by reallocating the control effort required by the controller between the healthy
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actuators. Just like SVS, the SVA proposed by [17] is the simplest VA structure and is
also based on the pseudo-inverse method. The SVA structure ΣSV A is described as
follows

ΣSV A : ur = B†
f Buc. (2.14)

For quasi-LPV systems, the following LPV or T-S fuzzy versions of the SRBs
are proposed [162, 120]

ΣSV S : yr = C (ẑ(x(t))) Cf (ẑ(x(t)))† y, (2.15)
ΣSV A : ur = Bf (ẑ(x(t)))† B (ẑ(x(t))) uc, (2.16)

where ẑ(x(t)) is the estimate of the vector of scheduling parameters (membership
functions). Most of the fault hiding approaches consider ẑ(x(t)) = z(x(t)), which
may be unrealistic particularly in systems subject to sensor faults or disturbances as
in [120, 145, 156, 119, 114, 153, 163].

According to the inactivity principle, it would be desirable that the RBs for
fault hiding do not change the system dynamics in the absence of faults. The static
blocks described in (2.13)–(2.15) naturally meet the inactivity principle. For example,
if Bf = B (Cf = C), the product BB†

f (C†
f C) is equivalent to the identity matrix.

However, the SRBs, i.e., SVS and SVA, are not enough to ensure the recovery of
faulty system, for instance, when the faulty part of the system is required for stabilization
of the remaining part [17]. For this reason, in [109, 17, 18], it is proposed the use of
Dynamic Reconfiguration Blocks (DRBs) for fault hiding.

2.4.2 Dynamic Reconfiguration Blocks

The general structure of DRBs is presented in (2.4). In particular, the DVS
function is analogue to state estimators, and the structure proposed in [17] is similar to
the Luenberguer observer. The structure of the DVS ΣDV S is described as follows

ΣDV S :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = (A−LCf)xr(t) + Ly(t) + Bfuc(t),
yr(t) = (C − JCf)xr(t) + Jy(t),
ur(t) = uc(t),

(2.17)

where the matrix gains L ∈ Rn×p and J ∈ Rp×p are designed to achieve the fault
hiding goals after sensor faults.
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Note that the DVS is based on the internal model principle and requires the
nominal plant model as well as the appropriate fault estimation expressed by the matrix
Bf . Due to the similarity between the DVS described in (2.17) and the state observers,
the design methodologies are also similar, for instance, the stability of the closed-loop
system can be ensured by simply choosing a L gain such that (A−LCf) is Hurwitz.

The structure of Dynamic Virtual Actuators (DVAs) is also based on the internal
model principle. The structure of the DVA ΣDV A is described as follows

ΣDV A :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = (A−BfM )xr(t) + (B −BfN )uc(t),
yr(t) = Cxr(t) + y(t),
ur(t) = Mxr(t) + Nuc(t),

(2.18)

where the matrix gains M ∈ Rm×n and N ∈ Rm×m are designed to achieve the fault
hiding goals after actuator faults.

In [55], it is shown that the design of DVA is analogous to the dual observer
problem described in [56]. Thus, the choice of M such that (A−BfM ) is Hurwitz is
also sufficient to ensure the stability of the reconfigured system.

As discussed in Subsection 2.4.1 for Static Virtual Sensors (SVSs) and Static
Virtual Actuators (SVAs), the Dynamic Virtual Sensors (DVSs) and DVAs can be
slightly modified for obtaining the LPV or T-S fuzzy versions to deal with quasi-LPV
systems. The LPV (or the T-S fuzzy) DVSs and DVAs are described as follows:

ΣDV S :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = A∆,S (ẑ(x(t))) xr(t) + L (ẑ(x(t))) y(t) + Bf (ẑ(x(t))) uc(t),
yr(t) = C∆ (ẑ(x(t))) xr(t) + J (ẑ(x(t))) y(t),
ur(t) = uc(t),

(2.19)

ΣDV A :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = A∆,A (ẑ(x(t))) xr(t) + B∆ (ẑ(x(t))) uc(t),
yr(t) = C (ẑ(x(t))) xr(t) + y(t),
ur(t) = M (ẑ(x(t))) xr(t) + N (ẑ(x(t))) uc(t),

(2.20)



Chapter 2. Reconfiguration blocks and fault hiding 55

ΣPf

L

∫︂

A

−Cf

C

+

+

J

+

+

ΣC

+

w2 w1Faulty Plant

Virtual Sensor ΣDVS

Nominal Controller

yp

y

yc yr

ur

uc
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Figure 2.5 – Fault hiding by using a VS ΣDVS.

where

A∆,S (ẑ(x(t))) = A (ẑ(x(t)))−L (ẑ(x(t))) Cf (ẑ(x(t))) ,

C∆ (ẑ(x(t))) = C (ẑ(x(t)))− J (ẑ(x(t))) Cf (ẑ(x(t))) ,

A∆,A (ẑ(x(t))) = A (ẑ(x(t)))−Bf (ẑ(x(t))) M (ẑ(x(t))) ,

B∆ (ẑ(x(t))) = B (ẑ(x(t)))−Bf (ẑ(x(t))) N (ẑ(x(t))) ,⎡⎣L (ẑ(x(t)))
J (ẑ(x(t)))

⎤⎦ ∈ Co

⎧⎨⎩
⎡⎣Li

Ji

⎤⎦⎫⎬⎭ , i ∈ N≤r,[︂
M (ẑ(x(t))) N (ẑ(x(t)))

]︂
∈ Co

{︂[︂
Mi Ni

]︂}︂
, i ∈ N≤r.

Notice that the gains of LPV or T-S fuzzy RBs in (2.19) and (2.20) also depend on
the time-varying scheduling parameters (or premise variables in T-S fuzzy models)
z(x(t)) and belongs to a polytopic domain. Therefore, the matrix gains L (ẑ(x(t))),
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Figure 2.6 – Fault hiding by using a VA ΣDVA.

J (ẑ(x(t))), M (ẑ(x(t))), and N (ẑ(x(t))) are vertex-wise designed to guarantee the
fault hiding goal.

2.4.3 Internal Model-based Nonlinear Reconfiguration Blocks

In the literature, several nonlinear RBs have been proposed, for example:
L’ure [118], Hammerstein-Wiener [18], and input-affine [121] VSs and VAs. The
rule of thumb for building those RBs is the internal model principle. In this regard, the
general RB representation in (2.4) is written as a function of the state-space maps of
the nominal and faulty plant models, respectively, ΣP (cf. (2.1)) and ΣPf (cf. (2.2)).
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In particular, the DVSs for a faulty system ΣPf described as (2.2) are:

ΣDV S :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = f (xr(t)) + gf (xr(t),uc(t)) + l (y(t))− l (yr(t)) ,
yr(t) = hf (xr(t)) + j (y(t))− j (yr(t)) ,
ur(t) = uc(t),

(2.21)

where the vector-valued maps l and j with appropriate dimensions are designed to
achieve the fault hiding objectives after sensor faults. Moreover, the general nonlinear
form of DVAs based on the internal model principle is described as follows

ΣDV A :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = f (xr(t)) + g (xr(t),uc(t))− gf (xr(t),ur(t)) ,
yr(t) = h (xr(t)) + y(t),
ur(t) = m (xr(t)) + n (uc(t)) ,

(2.22)

where the vector-valued maps m and n with appropriate dimensions are designed to
achieve the fault hiding objectives after actuator faults.

Indeed one can notice that the linear, LPV, and T-S fuzzy DVSs and DVAs
described in (2.17)–(2.20) are particular cases of the nonlinear DVSs and DVSs based on
the internal model principle described in (2.21) and (2.22). Moreover, other nonlinear
fault hiding strategies in the literature are also based on those structures (2.21)–(2.22),
namely: the L’ure VAs used in [118, 142, 143]; the Hammerstein-Wiener VSs and VAs
used in [18, 111, 102, 198], PWA VSs and VAs used in [18, 112, 136], input-affine VAs
used in [121], and Lipschitz VAs used in [140, 141].

2.4.4 Reconfiguration Blocks Independent of Internal Model

All the RBs discussed in Subsections 2.4.1–2.3.3 reuse the parameters from
nominal and faulty models ΣP and ΣPf . It means that any model inaccuracy and
fault estimation error result in bad-tuned RBs. It is clear that for static VAs and VSs
in (2.13)–(2.16) the direct use of C,Cf ,B, and Bf is a straightforward application
of the pseudo-inverse method which is already a well-known alternative for control
reconfiguration. However, the pseudo-inverse of faulty matrices Cf and Bf is particularly
sensitive to FDI errors. Therefore, generic SRBs structures that do not use pseudo-
inverse of faulty matrices are welcome [106]. In particular, the following generic SRB
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structure can be used

ΣR :

⎧⎨⎩ yr(t) = R1y(t) + R2uc(t),
ur(t) = R3y(t) + R4uc(t),

(2.23)

where R1, R2, R3, and R4 are the matrix gains of ΣR which are designed to achieve
the fault hiding goals.

This SRB can also be represented as linear transformation of controller input-
output signals:

ΣR :
⎡⎣ yr

ur

⎤⎦ = R

⎡⎣ y

uc

⎤⎦ , (2.24)

R ≜

⎡⎣ R1 R2

R3 R4

⎤⎦ . (2.25)

Moreover, a dynamic version of the RB presented in (2.23) can also be used for
fault hiding. In this case, the generic DRB structure exhibits parameters independent of
the internal model principle. Although, the use of the internal model principle for VSs
and VAs is natural due to their relation with the Luenberger observer design. Indeed,
the use of an internal model eases the mathematical manipulation of the error dynamics
between the blocks and plant states and allows to obtain design separability conditions.
However, the internal model also makes the VSs and VAs more sensitive to faults and
makes the conditions more conservative. Although the fault model must be considered
in the design of DRBs that does not depend on internal models, their absence in the
block structure provides degrees of freedom and reduces the impact of eventual FDI
errors. The generic DRB is described as follows:

ΣR :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = Arxr(t) + Br,yy(t) + Br,uuc(t),
yr(t) = Cr,yxr(t) + R1y(t) + R2uc(t),
ur(t) = Cr,uxr(t) + R3y(t) + R4uc(t),

(2.26)

with xr(t) ∈ Rnr and gain matrices Ar, Br,y, Br,u, Cr,y, Cr,u with proper dimensions.

When the static and dynamic RBs, described in (2.23) and (2.26), respectively,
are designed for passivation of the faulty system, they are also referred as passiva-
tion [129] or dissipation [199] blocks. Indeed the concept of passivation blocks is
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borrowed from [200] that proposes the static passivation blocks which perform simulta-
neously feedback, feed-forward, and cascade passivation to guarantee that the plant
will present the desirable dissipative properties. Moreover, this concept is also employed
for data-driven FTC in [201].

LPV (T-S fuzzy) versions of (2.23) and (2.26) are also possible [127]:

ΣR :

⎧⎨⎩ yr(t) = R1 (ẑ(x(t))) y(t) + R2 (ẑ(x(t))) uc(t),
ur(t) = R3 (ẑ(x(t))) y(t) + R4 (ẑ(x(t))) uc(t),

(2.27)

ΣR :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = Ar (ẑ(x(t))) xr(t) + Br,y (ẑ(x(t))) y(t) + Br,u (ẑ(x(t))) uc(t),
yr(t) = Cr,y (ẑ(x(t))) xr(t) + R1 (ẑ(x(t))) y(t) + R2 (ẑ(x(t))) uc(t),
ur(t) = Cr,u (ẑ(x(t))) xr(t) + R3 (ẑ(x(t))) y(t) + R4 (ẑ(x(t))) uc(t),

(2.28)

where,⎡⎢⎢⎢⎣
Ar (ẑ(x(t))) Br,y (ẑ(x(t))) Br,u (ẑ(x(t))) ,
Cr,y (ẑ(x(t))) R1 (ẑ(x(t))) R2 (ẑ(x(t))) ,
Cr,u (ẑ(x(t))) R3 (ẑ(x(t))) R4 (ẑ(x(t)))

⎤⎥⎥⎥⎦ ∈ Co

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

Ar,i Br,y,i Br,u,i

Cr,y,i R1,i R2,i

Cr,u,i R3,i R4,i

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

for i ∈ N≤r. However, in those cases, (2.27) and (2.28) become dependent on the
nonlinear map ẑ(x(t)) which is related to the nonlinearities of the plant nominal and
faulty models ΣP and ΣPf .

2.4.5 Other Reconfiguration Blocks

In addition to the RBs presented in the previous sections, some other structures
for RBs have been proposed to address specific problems or deal with a particular class
of system. Those alternative structures are listed as follows:

a) Prediction-based VA [135] uses the prediction of the VA states in the
reconfigured input to compensate for actuator faults in NCSs subject to
networked-induced delays.

b) Reconfiguration Blocks for discrete-event systems [202], where the
nominal control strategy is frequently implemented by human operators,
which accommodates the fault in the plant while mimicking its nominal
behavior for the nominal controller.
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c) Decentralized VAs [181, 180] for fault hiding in LSSs which allow the
local reconfiguration to guarantee the recovery of whole LSS.

d) Switching VAs [146] for fault-hiding of plants represented by switching
models.

e) PI VAs [168, 163] that are DVAs with an integral term to compensate for
the error and improve the fault hiding performance.

f) Varying sampling rate VAs [188] for fault hiding of NCSs which allows
its integration to aperiodic control approaches, e.g., event-triggered control.

g) Sensor reconciliation blocks [44, 45, 46] are particular structures for
fault hiding of sensor faults inspired by the sensor data reconciliation ap-
proaches [40]. Sensor reconciliation blocks integrate the fault estimation,
disturbance decoupling, and fault hiding by providing the rectified sensor
measurements.

h) Reduced-order VAs [203] are designed to address the fault hiding of
subsystems in which the VA design is admissible;

i) Adaptive VAs [47, 48, 49] integrate the fault estimation and fault hiding
mechanisms for systems with actuator faults. Their parameters are updated
online based on update rules, which are designed offline to ensure the fault
hiding objectives.

j) Descriptor VAs[126, 204] are used for fault hiding of descriptor systems
with actuator faults.

k) Adaptive Nonlinear VAs [54] are the nonlinear version of the adaptive
VAs [47, 48, 49].

l) Moving horizon VAs [130, 131] are DVAs whose computed reconfigured
inputs are obtained by solving a Model Predictive Controls (MPCs) problem
considering input constraints.

m) Anti-windup RBs [205] are blocks that act as virtual thrusters with the
anti-windup structure to handle thruster faults and input saturation.

n) Geometric RBs [206] use geometric control theory for trajectory recovery
after actuator faults.
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2.5 Design Methodologies and Applications

In this section, an overview of the design methodologies for RBs to guarantee
the fault hiding objectives.

2.5.1 Model Matching

First, the model matching approaches to design VSs and VAs for stability
recovery by fault hiding. Here the concepts will be illustrated for quasi-LPV systems
and blocks, but they can be adapted to other classes of systems without loss of
generality.

For VSs, the design techniques are based on the analysis of the dynamics of the
error eVS(t) = xr − x between the VS and plant states considering (2.11) and (2.19):

ėVS(t) =ẋr − ẋ (2.29)
=A∆,S (ẑ(x(t))) xr(t) + L (ẑ(x(t))) y(t) + Bf (ẑ(x(t))) uc(t)

− (Af (z(x(t))) x(t) + Bf (z(x(t))) uc(t)) + A∆,S (ẑ(x(t))) x(t)

−A∆,S (ẑ(x(t))) x(t)

=A∆,S (ẑ(x(t))) eVS(t) + (A∆,S (ẑ(x(t)))−A∆,S (z(x(t)))) x(t).

For LTI systems or by assuming ẑ(x(t)) = z(x(t)) (which is the usual assump-
tion in literature), it is reduced to

ėVS(t) = A∆,S (ẑ(x(t))) eVS(t), (2.30)

and the asymptotic trajectory recovery is guaranteed by choosing L (ẑ(x(t))) such
that A (ẑ(x(t)))− L (ẑ(x(t))) Cf (ẑ(x(t))) is Hurwitz, which can be performed by
vertex-wise or based on Pólya-like relaxations. Moreover, to guarantee the model
matching with y(t) = yr(t), the matrix J (ẑ(x(t))) is chosen as follows

J (ẑ(x(t))) = C (ẑ(x(t))) Cf (ẑ(x(t)))† . (2.31)

If the assumption ẑ(x(t)) = z(x(t)) is not possible, then the term due
to the scheduling parameter (membership degree) estimation ( A∆,S (ẑ(x(t))) −
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A∆,S (z(x(t)))) must be handled [105]. Similarly, in the presence of disturbance,
J (ẑ(x(t))) should be modified to guarantee the disturbance decoupling [17, 18].

Likewise for VAs, under the assumption ẑ(x(t)) = z(x(t)), the stability recovery
by fault hiding is guaranteed if the A (ẑ(x(t)))−Bf (ẑ(x(t))) M (ẑ(x(t))) is Hurwitz.
Moreover, to guarantee the model matching with u(t) = ur(t), the matrix M (ẑ(x(t)))
is chosen as follows

N (ẑ(x(t))) = Bf (ẑ(x(t)))† B (ẑ(x(t))) . (2.32)

2.5.2 LMI-based Stability Recovery

As discussed in the previous section, the stability recovery of plants with sensor
faults by means of VSs is guaranteed by a Hurwitz A (ẑ(x(t)))−L (ẑ(x(t))) Cf (ẑ(x(t))).
In this sense, if the following LMI conditions are satisfied

YVS(i, j) = He
{︂
P Ai − L̄jCf,i

}︂
, (2.33)

YVS(i, j) ≺ 0, for i = j, i, j ∈ N≤r, (2.34)
YVS(i, j) + YVS(j, i) ≺ 0, for i < j, i, j ∈ N≤r, (2.35)

for some symmetric positive definite P and matrices L̄j, for j ∈ N≤r, then the VS
with gains given by Lj = P −1L̄j guarantees the stability recovery by fault hiding.

Similarly, for fault hiding of plants with actuator faults by means of VAs, if the
following LMI conditions

YVA(i, j) = He
{︂
AiX −Bf,iM̄ j

}︂
, (2.36)

YVA(i, j) ≺ 0, for i = j, i, j ∈ N≤r, (2.37)
YVA(i, j) + YVA(j, i) ≺ 0, for i < j, i, j ∈ N≤r, (2.38)

are satisfied for some symmetric positive definite X and matrices M̄ j, for j ∈ N≤r,
then the VA with gains given by Mj = M̄ jX

−1 guarantees the stability recovery by
fault hiding.

The aforementioned conditions (2.33)–(2.38) are sufficient for solving the sta-
bility recovery by fault hiding problem when there are no disturbances and under
assumption ẑ(x(t)) = z(x(t)). However, they can be adapted to deal with estimation
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errors in scheduling parameter ẑ(x(t)) ̸= z(x(t)) [105], minimizing the effect of
disturbances [18], or obtaining D-stabilization [162, 120, 119, 154, 146, 114, 115, 147]
and ISS conditions [145, 128].

2.5.3 Other methods

Although most of the design approaches in the literature are variations of those
discussed in Subsections 2.5.1 and 2.5.2, some other methods can be mentioned. The
main alternative design methods reported in the literature are listed as follows:

a) Sensor masking [38, 39, 207, 208] - it is the origin of the fault hiding for
sensor faults in which the sensor masking blocks act as nonlinear VSs, i.e.,
they act as observers which are able to recover the correct measurements
before injecting it into the nominal controller.

b) KYP Lemma [111] - it is used to guarantee the stability recovery as a
consequence of the passivity property for Hammerstein systems;

c) Control re-allocation [209, 210] - as in the control re-allocation, the VAs
can also be designed solving a constrained optimization problem to approxi-
mate the faulty actuator effectiveness with VA to the nominal effectiveness.

d) Backstepping [121] - is used for designing VAs for input-affine systems.

e) Feedback Linearization [122] - re-linearizing terms are designed to allow
the use nonlinear static VA for guaranteeing the fault hiding based on the
linearized dynamics.

f) Adaptive control [47, 48, 49, 53, 52, 54, 50, 51] - the update laws are
designed to guarantee the convergence of the adaptive VAs parameters and
the fault hiding goal.

g) Sensor reconciliation [44, 45, 158, 159, 46] - it is also an adaptive
approach which integrates the estimation of the fault parameters by LSM
with the disturbance decoupling based on UIO, and fault hiding for plants
with sensor faults.

h) MPC [131, 130, 211] - optimal receding horizon control is used to design
moving horizon VAs considering input and state constraints.
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i) Stability recovery independent of internal model [127, 129] - for RBs
independent of internal model principle, it is not simple to write the error
dynamics, and it is also not necessary to guarantee the convergence between
the RBs and faulty systems’ states. This thesis presents a solution to this
problem in chapter 3 and chapter 4 based on a two-step method, where in
the first step a Lyapunov function is obtained from an LMI stability analysis
for the nominal system, and then the same function is used to synthesize
the RBs for the faulty systems.

j) Expert knowledge [176, 177, 175] - In this case, fuzzy RBs are expert
systems designed based on a rule base extracted from an expert’s experience.

k) Passivation-based [129, 199] - the RBs are designed by means of LMI-
based conditions to ensure that the block dissipativity properties is able to
compensate for the lack of passivity due to the fault occurrence. Passivation
can be used either to design the canonical RBs (VSs and VAs), or RBs
independent of internal model, the latter are also known as PBs or dissipation
blocks [199]. This is another contribution of this thesis presented in chapter 6.

2.6 Applications

Clearly, fault hiding is the main motivation for the existence of RBs. In particular,
the practical applications of RBs for fault hiding include power systems, wind turbines,
aerospace systems, vessels, robots, industrial processes, etc. Table 2.1 summarizes
most of the literature on fault hiding and classifies them by applications, class of
mathematical model used to represent the faulty plant, and the design methods.

Table 2.1 indicates the dominance of LMI-based design methods, in particular
for plants represented by fuzzy and LPV systems. However, most of the approaches for
those systems, as well as for other differential polytopic inclusions (e.g., Lipschitzian,
L’ure, and PWA), are based on the internal model principle. It is still lacking applications
to generic nonlinear systems, in particular without the dependence on the internal model
principle.

In addition to the fault hiding applications of RBs, the recent literature exhibits
alternative applications such as performance improvement of power grids and cyber-
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secure control [212, 213, 214].
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Table 2.1 – Literature on fault hiding, design methods and applications.
Design methods

Model-matching LMI-based Adaptive and Nonlinear Methods Stability recovery w/o internal
model and Passivation Other methods

Cl
as

se
s

of
sy

st
em

s

LTI

Thermofluid processes [108, 132, 16,
134, 203], Hydraulic systems [17,
110, 7, 133, 215], Aerospace sys-
tems [109, 17, 16, 116, 193, 216,
191, 183], Power systems [210, 217],
Boiler-turbine [218], Numerical exam-
ples [113, 219, 220]

Vessels [18], Aircrafts [189], Ther-
mofluid processes [103], Power sys-
tems [221, 204, 185], Flexible manipu-
lators [222], Wind turbines [223], Hy-
draulic systems [103, 224, 189], Nu-
merical examples [126, 168, 225, 104,
195, 206]

a) Adaptive: Vessels [53, 49]
b) Sensor reconciliation: Numerical

example [45]

a) Stability recovery: Vessel [226]
b) Passivation: Aircraft [106], Heat

exchange system [106], and Hy-
draulic system [199]

a) Control re-allocation: Hydraulic
systems [209], Vessels [76, 77],
Aerospace vehicles [192]

b) Sensor masking: Winding ma-
chine [207]

c) KYP Lemma: Aircraft [106]
d) MPC: Hydraulic systems [211],

and Chemical processes [130, 131,
227]

Hammerstein-
Wiener -

Thermofluid processes [18], Ves-
sels [18], Hydraulic systems [102],
Aerospace systems [196]

- a) Stability recovery: Vessel [226] a) KYP Lemma: Hydraulic sys-
tems [111], Electric motors [198]

PWA -
Thermofluid processes [18], Ves-
sels [18], Hydraulic systems [18, 112,
136]

- - -

LPV Wind turbines [160], and Numerical
examples [228]

Aerospace vehicles [114, 115, 147, 149,
148], Hydraulic systems [120, 128],
Wind turbines [119], Ground mobile
robots [146], Fuel cells [154], Induction
motors [145], Turbofan engines [229,
161], and Numerical examples [144,
150, 152, 123, 155, 153, 157, 156, 194]

a) Sensor reconciliation: Hydraulic
systems [46], and Numerical exam-
ples [44, 159, 158] -

a) Sensor masking: Hot rolling
mill [208]

Fuzzy -

Aerospace vehicles [167], Fuel
cells [162], Hydraulic sys-
tems [164, 165, 163], Hydraulic
systems [105], Microgrids [166], and
Numerical examples [117]

-
a) Stability recovery: Power sys-

tem [127]
a) Expert knowledge: Green-

houses [175], Ground mobile
robots [176, 177]

L’ure and
Lipschitzian -

Drilling gear [118], Power systems [142,
143], Robot manipulators [140, 141,
230]

a) Adaptive: Aircrafts [47], Numeri-
cal examples [51] - -

Distributed,
MASs, LSSs
and NCSs

Hydraulic systems [187, 188],
Aerospace vehicles [183, 101], and
Numerical examples [135, 182]

Power systems [179], Industrial pro-
cesses [100], Hydraulic systems [180],
and Numerical examples [186, 184]

a) Adaptive: Aircrafts [48, 54, 52],
Vessels [50], Flexible manipula-
tors [54]

a) Stability recovery: Network of pen-
dulums [129] -

Other
nonlinear
systems

- -
a) Backstepping: Vessels [121]
b) Feedback linearization: Ther-

mofluid processes [122]
a) Passivation: Numerical exam-

ples [106, 106]
a) Sensor masking : Vessels [38, 39]
b) Control re-allocation: Ves-

sels [205]
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3 STABILITY RECOVERY OF LINEAR SYSTEMS WITH INPUT SATU-
RATION

This chapter addresses the problem of stability recovery by fault hiding of linear
systems by means of SRBs whose parameters do not depend on internal model principle
or pseudo-inverse method. In particular, novel conditions for stability recovery by
fault hiding are presented based on the a novel SRB structure and on the Lyapunov
stability theory. In section 3.1, the stability recovery by fault hiding problem is presented.
In section 3.2, the general idea for obtaining RBs structures that are able to ensure the
recovery is provided. In section 3.4, conditions for stability recovery for linear systems
and systems with input saturation are given. The results presented in this chapter are
based on those ones previously published in [226].

3.1 Problem statement

Consider the plant whose nominal (fault-free) dynamics is described by the
following linear model ΣP with input saturation

ΣP :

⎧⎨⎩ ẋ(t) = Ax(t) + Bsat (up(t)) ,
yp(t) = Cx(t),

(3.1)

where x(t) ∈ Rn is the state vector, up(t) ∈ Rm is the plant input vector, yp(t) ∈ Rp

is the plant output vector, A, B, and C are state-space matrices with appropriate
dimensions, and the input up(t) is subject to the component-wise saturation map
sat (·) : Rm → Rm defined as

sat
(︂
up,(l)

)︂
= max {min {up,(l), ūp,(l)},−ūp,(l)}, ∀l ∈ N≤m, (3.2)

where ūp,(l) ∈ R>0 is the bound of the l-th entry up,(l) of the control input up(t) due
to the actuator saturation.

As depicted in Figure 3.1, the plant is connected to the output-feedback controller
ΣC described as follows

ΣC :

⎧⎨⎩ ẋc(t) = Acxc(t) + Bcyc(t),
uc(t) = Ccxc(t),

(3.3)
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ΣP/ΣPf+

ΣC

r = 0 yp
up

ycuc

Figure 3.1 – Feedback interconnection between ΣP (or ΣPf ) and ΣC.

where xc(t) ∈ Rnc , and Ac, Bc, and Cc are matrices with appropriate dimensions.
For the same plant whose nominal model is given by (3.1) , the faulty dynamics is
described by the following model ΣPf :

ΣPf :

⎧⎨⎩ ẋ(t) = Ax(t) + Bfsat (up(t)) ,
yp(t) = Cfx(t),

(3.4)

where Bf and Cf are state-space matrices which represent the effects of, respectively,
actuator and sensor multiplicative faults. In particular, let the nominal model matrices
B and C be

B = [B1 B2 . . . Bm] ,

C =
[︂
C⊤

1 C⊤
2 C⊤

p

]︂⊤
.

if the i-th actuator fails, the i-th column of B (Bi) is modified. A total loss in the
i-th actuator is represented by replacing Bi with 0, and efficiency loss is represented by
replacing Bi with fs,i · Bi, for 0 ≤ fa,i ≤ 1, where fa,i is the i-th element of fa. In
other words, the actuator fault matrix Bf is

Bf = Bdiag {fa} .

Similarly, for sensor faults in the i-th sensor, the fault model is obtained by
substituting Ci with fa,i · Ci, for 0 ≤ fs,i ≤ 1, where fs,i is the i-th element of fs, i.e.,

Cf = diag {fs}C.

In this chapter, the faulty model’s parameters fa and fs are assumed to be
precisely and timely known, as stated in the next assumption.
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Assumption 3.1. The estimation of fault parameters fa and fs is assumed to be
always available and accurate.

Remark 3.1. This assumption is considered because this thesis is focused only on
the FTC problem. Although the approaches proposed in this thesis are based on RBs
whose parameters are not explicitly dependent on the fault model’s parameters, it is
still necessary to use them for tuning the RB gains. In practice, those parameters are
provided by a FDI system that classifies and estimates the fault parameters. Naturally,
the FDI is subject to estimation errors, delays, and fault misclassification which may
lead to the loss of reconfiguration guarantees. Only a few works address the fault hiding
under those FDI imperfections, for example, the FDI delays are considered in [123], and
the design of RBs robust to several classes of faults is addressed in [128, 105]. The
novel RBs proposed in this thesis can ease the development of fault hiding approaches
aware of FDI imperfections, however, it is out of the scope of this thesis.

To recover the stability after fault occurrence, the following SRBs ΣR is inserted
between ΣPf and ΣC:

ΣR :

⎧⎨⎩ yr(t) = R1yp(t) + R2uc(t),
ur(t) = R3yp(t) + R4uc(t),

(3.5)

where R1, R2, R3, and R4 are the matrix gains of ΣR which are designed to solve the
following problem. The RB in (3.5) can be used for both sensor and actuator faults,
what does not occur in the classic static VSs and VAs presented in [17].

Problem 3.1. Asymptotic Stability Recovery by Fault Hiding for Linear Systems
with Input Saturation
Let ΣP and ΣPf be the nominal and the faulty models, respectively, with dynamics

described by (3.1) and (3.4) for a plant interconnected by feedback to controller ΣC.
Assume that the origin of (ΣP,ΣC) is asymptotically stable. Find the gains R1, R2,
R3, and R4 of the RB ΣR (cf. (3.5)), such that the origin of the reconfigured system
(ΣPf ,ΣR,ΣC) is also asymptotically stable.

In the remainder of this chapter, for the sake of simplicity, the time dependence
is omitted in some variables, e.g., x(t) is simply denoted x.
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3.2 Overview of stability recovery

This section presents the concept of stability recovery by fault hiding in Def-
inition 3.1. In addition, it is presented a general procedure for obtaining sufficient
conditions for the existence of ΣR that is able to recover the stability of faulty system
by fault hiding when the origin of interconnected autonomous nominal system (ΣP,ΣC)
is stable before the fault occurrence.

Definition 3.1. Stability recovery by fault hiding
Let ΣP and ΣPf be nominal and faulty models with dynamics described respectively

as (3.1) and (3.4) for the same system interconnected by feedback to a controller ΣC

as depicted in Figure 3.1. Assuming that the origin of (ΣP,ΣC) is asymptotically stable,
then ΣPf is stable by fault hiding if there exists a reconfiguration block ΣR described
by (3.5) such that the origin of (ΣPf ,ΣR,ΣC) is also asymptotically stable. In this
case, ΣR is a solution of Problem 3.1.

The stability recovery by fault hiding problem is usually solved in the litera-
ture [18] through the stability analysis of the error dynamics between the nominal system
response and reconfigured system response. According to this analysis, ΣPf is stable
if there exists some ΣR such that the origin of the error dynamics is asymptotically
stable [18]. In this thesis proposal, a different procedure is used for obtaining a ΣR

that solves the stability recovery by fault hiding problem. In the proposed solution,
a Lyapunov function that it is used to show the asymptotic stability of the origin of
(ΣP,ΣC) is found, i.e., the derivative of Lyapunov function is negative definite. Then,
the origin of the reconfigured system (ΣPf ,ΣR,ΣC) is also stable if there is a ΣR

such that the derivative of the same Lyapunov function is also negative-definite for
(ΣPf ,ΣR,ΣC). This procedure is formalized by means of Lemma 3.1.

Lemma 3.1. Let ΣP and ΣPf be nominal and faulty models, respectively, with dynamics
described in (3.1) and (3.4) considering the same plant. Let ΣC be an output feedback
controller interconnected as depicted in Figure 3.1, such that the origin of (ΣP,ΣC)
is asymptotically stable. If there exist a ΣR and a positive definite continuously
differentiable V (·) such that ∂V

∂x
f(x,uc) ≤ 0 and ∂V

∂x
ff(x,ur) < 0, then ΣPf is stable

by fault hiding with the proposed ΣR.
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Proof. Figure 3.1 depicts the interconnection between ΣP (ΣPf ) and ΣC with zero input.
According to [139, Theorem 4.14], if the unforced origin of (ΣP,ΣC) is stable, then there
exists a positive definite continuously differentiable V (·) such that ∂V

∂x
f (x,uc) ≤ 0.

Assume that the same V (x) is a Lyapunov candidate for (ΣPf ,ΣR,ΣC). If there
exists ΣR such that ∂V

∂x
ff(x,ur) ≤ 0, then the unforced origin of (ΣPf ,ΣR,ΣC) is

asymptotically stable. Therefore ΣPf is stable by fault hiding according to Definition 3.1.

Lemma 3.1 provides the general procedure for obtaining sufficient conditions for
stability by fault hiding from a Lyapunov function inherited from the nominal system
which is assumed stable. It proposes a two-steps procedures, where the Lyapunov
function that indicates the stability of the nominal synthesis is obtained in the first
analysis step, that is followed by a synthesis step wherein the RB is designed to guarantee
the stability recovery according to the same Lyapunov function. This procedure is
employed in the next sections to obtain conditions for stability by fault hiding with the
SRBs in (3.5) as depicted in Fig. 3.1.

Remark 3.2. In this chapter, it is exploited the idea of re-using the same Lyapunov
function to induce the asymptotic stability recovery by inserting an RB in the loop
which also guarantees the negativity of ∂V

∂x
ff(x,ur). This approach is convenient to

guarantee the linearity of the matrix inequalities, presented in the next results of this
chapter, used to obtain sufficient stabilization by fault hiding conditions. However, it
is clear that several solutions could be employed to achieve similar guarantees with a
different Lyapunov function for the RB design. One can notice the similarity between
this synthesis problem with the LMI-based design of SOF controllers. The design of SOF
controllers is challenging per si due to the non-convex characterization [231]. Several
studies have been carried out attempting to provide numerically tractable solutions
for SOF control design, such as two-step and iterative methods [232], and the use
of slack variables with a lower-triangular structure [233]. SOF H∞ gain-scheduling
control design conditions are presented for LPV systems in [234, 231]. In particular,
those conditions are not based on iterative methods and do not require constraints over
the system’s structure or the gain-scheduled control law. Those approaches could be
adapted to deal with the problem of LMI-based design of RBs proposed in this thesis
for fault hiding of polytopic differential inclusions. Indeed, the re-use of the Lyapunov
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function obtained at the analysis poses some pros and cons. On the one hand, it
guarantees some local properties. The level sets of this Lyapunov function are also
positively invariant after the reconfiguration, which guarantees the same estimation of
the domain of attraction. On the other hand, it increases the conservativeness of the
design conditions that may become unfeasible for the same Lyapunov function.

3.3 Static Reconfiguration Blocks for Stability Recovery of Linear Systems

The following Theorem 3.1 is an original contribution of this thesis. It provides
condition to design the SRB ΣR in (3.5) for solving the Problem 3.1 for LTI systems
(cf. (3.1), (3.2) and (3.4)) without input saturation, i.e., up,(l) =∞, ∀l ∈ N≤m and
interconnected to the controller ΣC (cf. (3.3)).

Theorem 3.1. Let ΣP and ΣPf be the nominal and faulty models for a plant intercon-
nected to an output feedback controller ΣC such that there exists a symmetric positive
definite matrices P11 and P22, and a matrix P12 satisfying

P Ã + Ã⊤P ≺ 0, (3.6)

where

P =
⎡⎣ P11 P12

⋆ P22

⎤⎦ , (3.7)

Ã ≜

⎡⎣ A BCc

BcC Ac

⎤⎦ . (3.8)

ΣPf is stable by fault hiding, with ΣR described in (3.5), if there exist R1, R2, R3,
and R4 satisfying the following inequality:⎡⎣ L11 L12

⋆ L22

⎤⎦ ≺ 0, (3.9)

L11 = He {P11(A + BfR3Cf) + P12BcR1Cf} ,

L12 = He {P11BfR4Cc + P12(Ac + BcR2Cc)}

L22 = He {P12BfR4Cc + P22(Ac + BcR2Cc)}
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Proof. The interconnection between (3.1) and (3.3) is equivalent to consider u = uc

and yc = y, thus the following autonomous system is obtained

(ΣP,ΣC) :

⎧⎨⎩ ẋ = Ax + BCcxc,

ẋc = BcCx + Acxc.
(3.10)

By defining x̃ ≜ [x⊤ x⊤
c ]⊤, (3.10) is equivalent to ẋ̃ = Ãx̃. If the origin of

(ΣP,ΣC) is asymptotically stable, then there exists a Lyapunov function V (x̃) = x̃⊤P x̃

(cf. [139, Theorem 4.14]), such that

P = P ⊤ =
⎡⎣ P11 ⋆

P12 P22

⎤⎦ ≻ 0,

P Ã + Ã⊤P ≺ 0,

The reconfigured interconnection of faulty system (ΣPf ,ΣR,ΣC) is the following
autonomous system obtained by applying yc = yr and u = ur to (3.4) and (3.3)

(ΣPf , ΣR, ΣC) :

⎧⎨⎩ ẋ = (A + BfR3Cf)x + BfR4Ccxc,

ẋc = BcR1Cfx + (Ac + BcR2Cc)xc,
(3.11)

that is equivalent to ẋ̃ = Ãrx̃ where

Ãr ≜

⎡⎣ A + BfR3Cf BfR4Cc

BcR1Cf Ac + BcR2Cc

⎤⎦ , (3.12)

According to Lemma 3.1, the same Lyapunov function V (x̃) = x̃⊤P x̃ (with
the same positive definite matrix P ) may be used for the reconfigured system. Then,
the origin of (ΣP,ΣR,ΣC) is asymptotically stable if

P Ãr + Ã⊤
r P ≺ 0. (3.13)

Notice that (3.13) is equivalent to (3.9). Therefore, if there exist R1, R2, R3,
and R4 satisfying (3.9), then ΣPf is stable by fault hiding.

The next Corollary 3.1 extends the result of Theorem 3.1 for the case wherein
the output feedback controller is static.
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Corollary 3.1. Let ΣP and ΣPf be the nominal and faulty models for a plant intercon-
nected to a static output feedback controller ΣC described as follows

ΣC : uc = Kyc, (3.14)

such that the following inequality is satisfied for some symmetric positive definite matrix
P :

P (A + BKC) + (A + BKC)⊤ P ≺ 0. (3.15)

ΣPf is stable by fault hiding, with ΣR described in (3.5) with R1 = I and
R2 = 0, if there exist matrices R3 and R4 satisfying the following inequality:

P Ãr + Ã⊤
r P ≺ 0, (3.16)

where Ãr = A + BfR3Cf + BfR4KCf .

Proof. The same reasoning of the proof of Theorem 3.1 can be used here. However,
if ΣC is a static output feedback controller as (3.14), it is redundant to compensate
uc and y, since these signals are proportional due to the controller structure, then
it is chosen yr = y, therefore R1 = I and R2 = 0. In addition, (ΣP,ΣC) and
(ΣPf ,ΣR,ΣC) are changed to

(ΣP,ΣC) : ẋ = (A + BKC) x,

(ΣPf ,ΣR,ΣC) : ẋ = (A + BfR3Cf + BfR4KCf)x,

i.e., (3.16) is equivalent to (3.13) for Ãr = A + BfR3Cf + BfR4KCf .

Example 3.1. Consider the closed-loop system (ΣP,ΣC) connected as Fig. 3.1, where
ΣP is described by (3.1) and

ΣC :

⎧⎨⎩ ẋc = (A + LC)xc −Lyc,

uc = Kxc,

A =
⎡⎣ 1 2

2 −1.5

⎤⎦ , B =
⎡⎣ 4 1

0.5 1

⎤⎦ , C =
[︂

1 0
]︂
,

K =
⎡⎣ −0.2357 −0.8071
−0.8071 1.1536

⎤⎦ , L =
⎡⎣ −0.9000
−3.5333

⎤⎦ .
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In this simulation, it is considered the complete loss of the first actuator due to
an actuator fault that changes matrix B to Bf occurs at t = 0.75 s, such that:

Bf =
⎡⎣ 0 1

0 1

⎤⎦ .
By using V (x̃) = x̃⊤P x̃, it is possible to show that the origin of (ΣP,ΣC)

is stable since there is a P = P ⊤ ≻ 0 that satisfies P Ã + Ã⊤P ≺ 0 for Ã given
by (3.8), where Ac = A + LC, Bc = −L, and Cc = K. Solving that LMI in
MATLAB environment using the YALMIP parser [235] with the MOSEK solver [236],
the following P matrix is obtained:

P =

⎡⎢⎢⎢⎢⎢⎢⎣
2.0065 0.6773 −0.6369 −0.7026
0.6773 1.2657 −0.6606 −1.1612
−0.6369 −0.6606 0.8784 0.7570
−0.7026 −1.1612 0.7570 1.5028

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.17)

According to Theorem 3.1, the same P matrix in (3.17) can be used to
solve (3.9) and find R1, R2, R3, and R4 to reconfigure ΣPf . Then, solving (3.9) in
MATLAB environment using the YALMIP parser [235] with the MOSEK solver [236],
the following reconfiguration block gains are obtained:

R1 = 0.9947 R2 =
[︂

0.6938 −0.0742
]︂
,

R3 =
⎡⎣ 0
−0.0475

⎤⎦ R4 =
⎡⎣ 0 0

3.8429 0.8129

⎤⎦ .
Figures 3.2-3.7 present the simulation results with the proposed RB for ΣPf for

initial conditions x̃(0) = [1.5 − 0.25 0 0]⊤. In particular, Figure 3.2 compares the
output of ΣPf with and without the proposed RB. Note that, the system response
without RB becomes unstable after the fault occurrence (t = 0.75 s) while the response
with the proposed RB converges to the equilibrium point.

The proposed SRB provides to corrective faults during the reconfiguration. The
first action is the reconfiguration of the measurement signal yp by injecting a signal
yr into the controller by hiding the fault effects from this controller. Figures 3.3
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Figure 3.2 – Comparison between the output of faulty plant with and without
RB.

and 3.4 depict the controller signals with and without SRB, and Figure 3.5 depicts
the measurement signal injected into the controller with and without reconfiguration.
Notice that the signal yr is slightly modifies the plant output to reduce the impact of
the fault in the controller signals.

The second action of the proposed SRB is the control re-allocation which
redistributes the controller signals into the remaining healthy actuators. Figures 3.6
and 3.7 depict the signals injected into, respectively, the first and the second plant
actuator. Although Figures 3.3 and 3.4 indicate that the controller require some control
effort from both actuators, the RB re-allocate the whole control effort to the second
actuator, since the first has failed.

The results presented in this example indicates the efficacy of the proposed
fault hiding approach and reveal the idea behind the use of RBs. However, it is worthy
to notice that the reconfiguration requires more effort from the remaining actuators,
which may be a problem in real world applications, since there are constraints related
to the actuators operation, e.g., saturation. The next section provides a way to deal
with saturating inputs.
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Figure 3.3 – Comparison between the controller signal uc,(1) with and without
RB.
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Figure 3.4 – Comparison between the controller signal uc,(2) with and without
RB.
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Figure 3.5 – Measurement signal yc injected into the controller with and without
RB.
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Figure 3.6 – Control signal up,1 injected into the plant with and without RB.
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Figure 3.7 – Control signal up,2 injected into the plant with and without RB.

3.4 Fault Hiding of Linear Systems with Input Saturation

It is shown in 3.1 that control reconfiguration with VA tends to reallocate the
control effort to the remaining actuators. Eventually, this reallocation may overburden
the healthy actuator or result in saturation. Thus, it is important to deal with the
input saturation issue when fault hiding FTC approaches are employed. Indeed, the
design of virtual actuators by considering input saturation is already considered in the
literature [18, 123, 237, 55].

To deal with the input saturation, it is usual to write it as a function of a
dead-zone nonlinearity ψ : Rm → Rm:

ψ(u) = sat(u)− u, (3.18)

for which the following condition holds.

Lemma 3.2 (Adapted from [238]). Let the control input be defined as u = Mx for
all x ∈ Rn and a given M ∈ Rm×n, and the set Du be defined as

Du =
{︂
x ∈ Rn :

⃓⃓⃓(︂
M(l) −W(l)

)︂
x

⃓⃓⃓
≤ ūp,(l), l ∈ N≤m

}︂
, (3.19)

for a given matrix W ∈ Rm×n.
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If x ∈ Du, then

ψ (u)⊤ T −1 (ψ( u )+W x̃) ≤ 0, (3.20)

holds for any diagonal T ≻ 0.

Thus, the next theorem provides sufficient conditions for stability recovery by
fault hiding of linear systems with input saturation. In this result, the Problem 3.1 is
solved considering the nominal model ΣP (cf. (3.1) and faulty model ΣPf (cf. (3.4))
for a plant interconnected with the dynamic output feedback controller ΣC (cf. (3.3)).

Theorem 3.2. Let ΣP and ΣPf be respectively the nominal and fault models for the
same plant connected by feedback to an output feedback controller ΣC, such that there
exist some symmetric positive definite matrices P11 and P22, and matrices P12, W1,
and W2 satisfying ⎡⎣ He

{︂
Ã⊤P

}︂
P B̃ −W

∗ −2Im

⎤⎦ ⪯ 0, (3.21)

⎡⎣P C̃⊤
c,(l) −W ⊤

(l)

⋆ ū2
p,(l)

⎤⎦ ≻ 0, ∀l ∈ N≤m, (3.22)

where

P =
⎡⎣P11 P12

⋆ P22

⎤⎦ , Ã =
⎡⎣ A BCc

BcC Ac

⎤⎦ , B̃ =
⎡⎣B

0

⎤⎦ ,
C̃c =

[︂
0 Cc

]︂
, W =

[︂
W1 W2

]︂
,

If there exist some matrices W̄1, W̄2, R1, R2, R3 and R4, and diagonal matrix
T that satisfy ⎡⎢⎢⎢⎣

L11 L12 P11BfT ,−W̄ ⊤
1

⋆ L22 P12BfT − W̄ ⊤
2

⋆ ⋆ −2T

⎤⎥⎥⎥⎦ ≺ 0, (3.23)

⎡⎣P R̃⊤
(l) − W̄ ⊤

(l)

⋆ ū2
p,(l)

⎤⎦ ≻ 0, ∀l ∈ N≤m (3.24)
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where

L11 = He
{︂
P11(A + BfR3Cf) + P12BcR1Cf + C⊤

f R⊤
1 B⊤

c P12
}︂
,

L12 = P11BfR4Cc + He {P12(Ac + BcR2Cc)}+ C⊤R⊤
1 B⊤

c P22,

L22 = He {P12BfR4Cc + P22(Ac + BcR2Cc)} ,

R̃ =
[︂
R3C R4Cc

]︂
, W̄ =

[︂
W̄1 W̄2,

]︂
then ΣPf is stable by fault hiding with ΣR described by (3.5). Moreover, the following set
Dx is an estimate of the domain of attraction of the reconfigured system (ΣP,ΣR,ΣC):

Dx = {x̃ ∈ Rn+nc : V (x̃) ≤ 1}. (3.25)

Proof. Considering (3.18) to deal with the saturating actuators, and substituting it
in (3.1), the following closed-loop model for (ΣP,ΣC) is obtained

ẋ̃ = Ãx̃ + B̃ψ(uc). (3.26)

Choose the Lyapunov candidate function V (x̃) = x̃⊤P x̃ whose derivative is

V̇ (x̃) = x̃⊤(Ã⊤P + P Ã)x̃ + ψ⊤(uc)B̃⊤P x̃ + x̃⊤P B̃ψ(uc). (3.27)

Based on the Schur’s complement Lemma, the inequalities (3.22) imply

P − ū−2
p,(l)

(︂
C̃c,(l) −W(l)

)︂⊤ (︂
C̃c,(l) −W(l)

)︂
≻ 0, , ∀l ∈ N≤m. (3.28)

It follows that

x̃⊤P x̃ >
∥

(︂
C̃c,(l) −W(l)

)︂
x̃∥2

ū2
p,(l)

, (3.29)

V (x̃) >
∥

(︂
C̃c,(l) −W(l)

)︂
x̃∥2

ū2
p,(l)

.

Notice that the set Dx, given by (3.25), is a level set of V (x̃). The inequality (3.29)
implies Dx ⊂ Du, such that Du is defined as follows

Du =
{︂
x̃ ∈ Rn+nc :

⃓⃓⃓(︂
C̃c,(l) −W(l)

)︂
x̃

⃓⃓⃓
≤ ūp,(l), l ∈ N≤m

}︂
.. (3.30)
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Thus, according to Lemma 3.2 and for x̃ ∈ Dx, if the inequalities (3.22) are
satisfied, then

ψ⊤(uc)(ψ(uc) + W x̃) ≤ 0. (3.31)

Considering (3.27), the inequality (3.21) is equivalent to

V̇ (x̃) < 2ψ⊤(uc)(ψ(uc) + W x̃), (3.32)

Thus, assuming that (3.22) and x̃(0) ∈ Dx, (3.32) and (3.31) imply V̇ (x̃) < 0,
which ensures that Dx is positively invariant. Therefore, the origin of (ΣP,ΣC) is
asymptotically stable and Dx is an estimate of its domain of attraction.

Furthermore, the same P matrix that satisfies (3.21) can be used to find a
sufficient condition for stability recovery of the reconfigured system (ΣP,ΣR,ΣC):

ẋ = Ãrx̃ + B̃rψ (ur) , (3.33)

Ãr ≜

⎡⎣ A + BfR3Cf BfR4Cc,

BcR1Cf Ac + BcR2Cc

⎤⎦ B̃r ≜

⎡⎣ Bf

0

⎤⎦ ,
Using the same arguments used for nominal closed-loop system, assuming

x̃ ∈ Dx, and considering Lemma 3.2, if (3.30) is satisfied, then the following sector
inequality holds

ψ⊤ (ur) T −1(ψ (ur) + W x̃) ≤ 0. (3.34)

Thus, the origin of (3.33) is asymptotically stable if there exist R1, R2, R3, R4, W̄1,
W̄2, and diagonal matrix T that satisfy the following inequality

V̇ (x̃) = He
{︂
x̃⊤Ã⊤P x̃ + ψ⊤ (ur) B̃⊤

f P x̃
}︂
< 2ψ⊤ (ur) T −1(ψ (ur) + W̄ x̃), (3.35)

that is equivalent to

⎡⎣ He
{︂
Ã⊤

r P
}︂

P B̃r − W̄
⊤

T −1

⋆ −2T −1

⎤⎦ ⪯ 0, (3.36)

Pre- and post-multiplying (3.36) by diag {In+nc ,T }, it follows that⎡⎣ He
{︂
Ã⊤

r P
}︂

P B̃fT − W̄
⊤

⋆ −2T

⎤⎦ ⪯ 0, (3.37)
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Note that Ã⊤
r P + P Ãr is presented in the proof of Theorem 3.1

Ã⊤
r P + P Ãr =

⎡⎣ L11 L12

∗ L22

⎤⎦ , (3.38)

The block P B̃rT −W ⊤ is equivalent to⎡⎣ P11BfT − W̄
⊤
1

P12BfT − W̄
⊤
2

⎤⎦ (3.39)

finally, (3.23) is obtained by substituting (3.38) and (3.39) in (3.36). Consequently, if
there exist R1, R2, R3 and R4 that satisfy (3.23), then the origin of (ΣP,ΣR,ΣC) is
asymptotically stable, therefore, ΣPf is stable by fault hiding with ΣR described by (3.5)
(cf. Definition 3.1), and Dx is also an estimate of its domain of attraction.

Example 3.2. Consider the same plant and controller models in 3.1 with saturating
input. Again, it is simulated the total lost of the first actuator, such that f1 = 0, which
occurs at t = 0.75 s. Note that the origin of (ΣP,ΣC) is asymptotically stable and
(3.21) is satisfied with

P =

⎡⎢⎢⎢⎢⎢⎢⎣
1.5414 0.4459 −0.6546 −0.4316
0.4459 1.0937 −0.6367 −0.9712
−0.6546 −0.6367 0.7946 0.7417
−0.4316 −0.9712 0.7417 1.2551

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.40)

computed in MATLAB environment using the YALMIP parser [235] with the MOSEK
solver [236]. The same P matrix in (3.40) is used to find R1, R2, R3, and R4 by
means of Theorem 3.2 for actuator saturation bounds ūp,(1) = ūp,(2) = 1.5. Then, the
following gains are obtained

R1 = 0.9218 R2 =
[︂

1.0493 0.0182
]︂
,

R3 =
⎡⎣ 0
−1.1363

⎤⎦ R4 =
⎡⎣ 0 0

3.5814 0.9202

⎤⎦ .
To illustrate the advantage of the approach proposed for systems with input

saturation, another RB is designed using the Theorem 3.1 and provided in 3.1. In this
simulation example, the initial conditions are also x̃(0) = [1.5 − 0.25 0 0]⊤.
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Figure 3.8 – Comparison of output responses for 3.2 with RBs obtained by Theo-
rem 3.1, Theorem 3.2, and without RB.
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Figure 3.9 – Comparison of effective input signals up,(2) injected into the plant
considering input saturation for 3.2 with RBs obtained by Theo-
rem 3.1, Theorem 3.2, and without RB.
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Figure 3.10 – Comparison of controller signals for the first actuator uc,(1) for 3.2
with RBs obtained by Theorem 3.1, Theorem 3.2, and without RB.

The results for this example including comparisons between the block designed
by Theorem 3.1, Theorem 3.2, and the faulty system without SRB are depicted in
Figures 3.8–3.12. In particular, Figure 3.8 depicts the plant output response. Notice
that both blocks, designed by Theorem 3.1 and Theorem 3.2, are able to guarantee
the stabilization of the system after the fault occurrence. However, the block whose
design is achieved based on Theorem 3.1 which ignores the input saturation presents
some oscillation and takes more time to converge. It occurs, because the reconfigured
control signal produces more saturation as depicted in Figure 3.9 which compares
the control signal of the healthy actuator considering the input saturation. Notice,
that Theorem 3.2 is not proposed to avoid saturation, but its design improve the
response since it is aware of the saturating actuators and guarantees the stability
recovery. Therefore, as depicted Figure 3.9, the reconfigured control signal provided by
the SRB designed by means of Theorem 3.2 is subject to fast saturation just after the
fault occurrence and the reconfiguration, but it does not affect the recovery ability of
that block.

The controller signals are depicted in Figure 3.10 and Figure 3.11. They indicate
that both SRBs are able to effectively hide the fault effects from the controllers,
whose signals are smooth even after the fault occurrence. It occurs because of the
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Figure 3.11 – Comparison of controller signals for the first actuator uc,(2) for 3.2
with RBs obtained by Theorem 3.1, Theorem 3.2, and without RB.

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

Figure 3.12 – Comparison of measurement signals injected into the controller for
3.2 with RBs obtained by Theorem 3.1, Theorem 3.2, and without
RB.
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compensation in the output measurements by injecting yr into the controller. The
reconfigured measurement signals injected into the controller are depicted in Figure 3.12
that shows the modifications on the measurements to hide the fault effects from the
controller.
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4 STABILITY RECOVERY OF TAKAGI-SUGENO FUZZY SYSTEMS

This chapter presents novel centralized and decentralized T-S fuzzy SRB for
control reconfiguration of plants represented by NT-S fuzzy models. In particular, novel
conditions for stability recovery by fault hiding are presented based on a novel SRB
structure and on the Lyapunov stability theory. section 4.1 presents the problem of
centralized and distributed fault hiding for NT-S fuzzy model. section 4.2 presents
Lyapunov-based conditions to design T-S fuzzy SRBs for stability recovery of NT-S
fuzzy models. section 4.3 presents Lyapunov-based conditions to design distributed
T-S fuzzy SRBs, and a centralized alternative to address the same problem. Finally,
section 4.4 provides application examples to evaluate the proposed approach and
compare with other approaches in the literature. The results presented in this chapter
are based on those ones previously published in [127].

The following notation is also used in addition to that defined in section 1.5.

The operator
N⨁︂

i=1
Mi denotes the horizontal concatenation of the matrices M1, . . . ,MN ,

i.e.,
N⨁︂

i=1
Mi ≜ [M1| . . . |MN ]; and I[ρ] denotes the indicator function, which is equal to

1 if the logical proposition ρ is true and is equal to 0 otherwise. For a nonlinear map
φ : Rn → Rφ, the notation φ (x) ∈ [V1,V2] indicates that φ (x) ∈ Co {V1,V2}.

4.1 Problem statement

4.1.1 Fault hiding of Takagi-Sugeno Fuzzy Systems with Nonlinear Consequent

Let ΣP be the nominal NT-S fuzzy model for a plant described as follows

ΣP :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

µkp(z)
(︂
Akpx + Bkpup + GkpΦ(x)

)︂
,

yp =
r∑︂

kp=1
µkp(z)Ckpx,

(4.1)

where r is the number of fuzzy rules, z ∈ Rnz is the measured premises vector,
µkp : Rnz → [0, 1] is the normalized membership function of the kp-th fuzzy set that
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holds the convex sum property, i.e., ∑︁r
kp
µkp(z) = 1, Akp , Bkp , and Ckp are real

state-space matrices of the kp-th rule with adequate dimensions, x ∈ Rn is state vector,
u ∈ Rm is the input vector, y ∈ Rp is the measured output vector, Gkp is a constant
matrix related to the nonlinearity Φ of the kp-th rule with appropriate dimensions, and
the nonlinear map Φ : Rn → Rn satisfies the following sector bound condition.

Definition 4.1. Sector nonlinearity [139] – The nonlinear mapping Φ(·) : Rn → Rng

is said to satisfy the inclusion Φ (x) ∈ [0,E] if and only if it satisfies the following
inequality for any diagonal positive definite matrix W ∈ Rng×ng

Φ⊤ (x) W (Φ (x)−Ex) ≤ 0, ∀x ∈ Rn. (4.2)

Remark 4.1. The matrix E is chosen to ensure that the nonlinearity Φ(x) is bounded
by 0 and Ex, i.e., Φ (x) ∈ [0,E]. The procedure for computing the E matrix for a
wide class of continuously differentiable nonlinear mappings is presented in [239].

ΣP is connected to an OF-PDC ΣC described as follows

ΣC : uc =
r∑︂

kc=1
µkc(z)Kkcyc, (4.3)

where yc is the controller input from the plant sensors measurements, uc is the control
signal to the plant actuators, µkc : Rnz → [0, 1] is the normalized membership function
of the kc-th fuzzy set that holds the convex sum property, for kc ∈ N≤r, Kkc ∈ Rm×p

is the controller gain of the kc-th rule. Nominally, the resulting fault-free closed-loop
system (ΣP,ΣC) is obtained by the following connections: yc ← y and u← uc.

In addition, let ΣPf be the following fault model for the same plant described
by ΣP

ΣPf :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

µkp(z)
(︂
Akpx + B

kp

f up + GkpΦ(x)
)︂
,

yp =
r∑︂

kp=1
µkp(z)Ckp

f x,
(4.4)

where B
kp

f and C
kp

f are kp-th rule matrices which represent the effects of, respectively,
actuator and sensor multiplicative faults. In particular, let the nominal model matrices
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Bkp and Ckp for all kp ∈ N≤r be

Bkp =
[︂
B

kp

1 B
kp

2 . . . Bkp
m

]︂
,

Ckp =
[︃
C

kp

1
⊤

C
kp

2
⊤

Ckp
p

⊤
]︃⊤
.

if the i-th actuator fails, the i-th column of each Bkp (Bkp

i ) is modified. A total loss
in the i-th actuator is represented by replacing B

kp

i with 0, and effectiveness loss is
represented by replacing B

kp

i with fs,i · Bkp

i , for 0 ≤ fa,i ≤ 1, where fa,i is the i-th
element of fa. In other words, the actuator fault matrix Bf is

B
kp

f = Bkpdiag {fa} .

Similarly, for sensor faults in the i-th sensor, the fault model is obtained by
substituting C

kp

i with fa,i · Ci, for 0 ≤ fs,i ≤ 1, where fs,i is the i-th element of fs,
i.e.,

C
kp

f = diag {fs}Ckp .

In this chapter, the following static TSRB is proposed to be inserted between
the faulty plant and the nominal controller aiming at mitigating the fault effects:

ΣR :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yr =

r∑︂
kr=1

µkr(z)(Rkr
1 yp + Rkr

2 uc),

ur =
r∑︂

kr=1
µkp(z)(Rkr

3 yp + Rkr
4 uc),

(4.5)

or equivalently ⎡⎣ yr

ur

⎤⎦ ≜
r∑︂

kr=1
µkr(z)

⎡⎣ Rkr
1 Rkr

2

Rkr
3 Rkr

4

⎤⎦ ⎡⎣ yp

uc

⎤⎦. (4.6)

where yr ∈ Rp is the vector of reconfigured measurements, ur ∈ Rp is the vector of
reconfigured control inputs, µkr : Rnz → [0, 1] is the normalized membership function
of the kr-th fuzzy set that holds the convex sum property, for kr ∈ N≤r, and the real
matrices Rkr

1 , Rkr
2 , Rkr

3 , and Rkr
4 are the TSRB gains of the kr-th rule.

The TSRB described by (4.5) and (4.6) can be generically employed as VAs
and VSs for reconfiguration of system with both sensor and actuator faults. Figure 4.1
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depicts the equivalent reconfigured loop when the proposed TSRB in (4.5) is inserted.
Furthermore, the conditions provided in the next section eases the achievement of
feasible solutions for the proposed static RB disregarding the use of pseudoinverse
calculations.

ΣPf

ΣC

+ ∑︁r
kr=1 µ

kr(z)Rkr
1

∑︁r
kr=1 µ

kr(z)Rkr
4

∑︁r
kr=1 µ

kr(z)Rkr
3

∑︁r
kr=1 µ

kr(z)Rkr
2 +

ur yp

yruc

Figure 4.1 – Equivalent block diagram for (ΣPf ,ΣR,ΣC).

To support the results presented in this chapter, the following underlying
assumptions are considered.

Assumption 4.1. The measurement of the vector of premise variables µkr(z) is always
available even during fault occurrences.

Assumption 4.2. The estimation of fault parameters fa and fs is assumed to be
always available and accurate.

Thus, for plants represented by NT-S fuzzy model, the following fault hiding
problem is addressed here.

Problem 4.1. Asymptotic Stability Recovery by Fault Hiding for NT-S fuzzy model

Let ΣP and ΣPf be the nominal and the faulty NT-S fuzzy models, respectively,
with dynamics described by (4.1) and (4.4) for a plant interconnected by feedback
to an OF-PDC ΣC (cf. (4.3)). Assume that the origin of (ΣP,ΣC) is asymptotically
stable. Find the gains Rkr

1 , Rkr
2 , Rkr

3 , and Rkr
4 for kr ∈ N≤r of the RB ΣR (cf. (4.5)),
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such that the origin of the reconfigured system (ΣPf ,ΣR,ΣC) is also asymptotically
stable.

A solution for Problem 4.1 is proposed in section 4.2 based on the procedure
provided by Lemma 3.1.

4.1.2 Fault hiding of Distributed Takagi-Sugeno Fuzzy Systems with Nonlinear Conse-
quent

In this section, the stability recovery by fault hiding problem (Problem 4.1)
presented in subsection 4.1.1 is extended for LSSs represented by distributed NT-
S fuzzy models. For this purpose, consider the distributed system composed of N
interconnected NT-S fuzzy models, such that the nominal model ΣP = {ΣP1 , . . . ,ΣPN

}
and the faulty model ΣPf =

{︂
ΣPf,1 , . . . ,ΣPf,N

}︂
have their i-th subsystem dynamics

described as follows

ΣPi
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi =
r∑︂

kp=1
µ

kp

i (z)
(︂
A

kp

i xi + B
kp

i up,i

)︂
+

r∑︂
kp=1

µ
kp

i (z)
N∑︂

j = 1,

j ̸= i

αij

(︂
Hixj + G

kp

i Φj(xj)
)︂

+ G
kp

i Φi(xi),

yp,i =
r∑︂

kp=1
µ

kp

i (z)Ckp

i xi,

(4.7)

ΣPf,i
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi =
r∑︂

kp=1
µ

kp

i (z)(Akp

i xi + B
kp

f,iup,i)+

N∑︂
j = 1,

j ̸= i

αij(Hixj + G
kp

i Φi(xj)) + G
kp

i Φi(xi)),

yp,i =
r∑︂

kp=1
µ

kp

i (z)Ckp

f,i xi,

(4.8)

where, for the i-th subsystem, µkp

i : Rnz → [0, 1] is the normalized membership function
of the kp-th fuzzy set that holds the convex sum property, A

kp

i , B
kp

i (Bkp

f,i), and C
kp

i
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(Ckp

f,i ) are real state-space matrices of the kp-th rule with adequate dimensions, xi ∈ Rn

is the state vector, up,i ∈ Rm is the input vector, yp,i ∈ Rp is the measured output
vector, the nonlinear map Φi : Rn → Rn satisfies the sector bound condition described
in Definition 4.1, G

kp

i is a constant matrix with appropriate dimensions of the kp-th
rule related to the nonlinearities of the local subsystem and the other subsystems
connected to it, and Hi is a constant matrix with appropriate dimensions of the kp-th
rule related to the linear interconnection with other subsystems. Moreover, the existing
interconnections are described by the network adjacency matrix A = [αij]N×N , such
as αij = 1 if there is a connection between the i-th and j-th subsystem, and αij = 0,
otherwise.

Furthermore, this plant is controlled by a distributed OF-PDC ΣC = {ΣC1 , . . . ,ΣCN
}

that has its i-th subsystem dynamics described as follows

ΣCi
: uci

=
r∑︂

kc=1
µkc

i Kkc
i yp,i +

N∑︂
j = 1,

j ̸= i

αijFijyp,j, (4.9)

where Kkc
i ∈ Rm×p, for all the rules kc ∈ N≤r, is the i-th local controller gain

with respect to the local measurements for the kc-th rule, and Fij ∈ Rm×p is the i-th
controller gain with respect to the measurements from the j-th subsystem interconnected
to it.

Differently, the second approach uses a centralized reconfiguration block, i.e., an
unique ΣR as described in (4.5) for all the interconnected system. The first approach
is based on the Theorem 4.3.

Two approaches are presented in this chapter to recover the stability of the
distributed system described in (4.7) and (4.8). The first approach uses distributed
reconfiguration blocks, and the second approach uses a centralized reconfiguration
block, i.e., a unique ΣR as described in (4.5) for the whole interconnected system by
solving the Problem 4.1. For the first approach, a different ΣR,i is used for each i-th
subsystem for i = N≤N , i.e., a decentralized TSRB ΣR = {ΣR1 , . . . ,ΣRN

} is used in
the reconfigured distributed system (ΣPf ,ΣR,ΣC). In this case, the TSRB for the i-th
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subsystem is described as follows

ΣRi
:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yr,i =

r∑︂
kr=1

µkr
i (z)(Rkr

1,iyp,i + Rkr
2,iuc,i),

ur,i =
r∑︂

kr=1
µkr

i (z)(Rkr
3,iyp,i + Rkr

4,iuc,i),
(4.10)

where, for the i-th block, µkr
i : Rnz → [0, 1] is the normalized membership function

of the kr-th fuzzy set that holds the convex sum property, for kr ∈ N≤r, and the real
matrices Rkr

1,i, Rkr
2,i, Rkr

3,i, and Rkr
4,i are the gains of the i-th TSRB.

For the first approach based on the decentralized static TSRB (4.10), the
following distributed fault hiding problem is also addressed in this chapter.

Problem 4.2. Asymptotic Stability Recovery by Decentralized Fault Hiding
for Distributed NT-S fuzzy model
Let ΣP = {ΣP1 , . . . ,ΣPN

} and ΣPf =
{︂
ΣPf,1 , . . . ,ΣPf,N

}︂
be the nominal and the

faultyNT-S fuzzy models, respectively, for a distributed plant whose dynamics for
the i-th subsystem are described by (4.7) and (4.8). This distributed plant is inter-
connected by feedback to a decentralized OF-PDC ΣC = {ΣC1 , . . . ,ΣCN

} described
by (4.9). Assume that the origin of (ΣP,ΣC) is asymptotically stable. Find the
gains Rkr

1,i, Rkr
2,i, Rkr

3,i, and Rkr
4,i for kr ∈ N≤r and i ∈ N≤N of the distributed TSRB

ΣR = {ΣR1 , . . . ,ΣRN
} (cf. (4.10)), such that the origin of the reconfigured system

(ΣPf ,ΣR,ΣC) is also asymptotically stable.

4.2 Fault hiding of Takagi-Sugeno Fuzzy Systems

In this section, a solution for the Problem 4.1 is presented. For this purpose, novel
conditions for stability recovery of nonlinear systems represented by means of T-S fuzzy
by using the T-S fuzzy SRBspresented in (4.5). In particular, NT-S fuzzy model is
described by (4.1) and allows to obtain a T-S fuzzy for exact representation of nonlinear
systems that reduces the number of rules maintaining the affordability of designing
tools of T-S fuzzys with linear consequent.

In the sequel, Theorem 4.1 provides sufficient conditions for the existence of ΣR

described by (4.5) for stability recovery by fault hiding of NT-S fuzzy model described
by (4.1) and (4.4) with Gkp = 0 for kp ∈ N≤r.
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Theorem 4.1. Let ΣP and ΣPf be the nominal and faulty T-S fuzzy with dynamics
described, respectively, in (4.1) and (4.4) for the same plant, with Gkp = 0, intercon-
nected by feedback to an OF-PDC ΣC described in (4.3). Assume that there exists
P = P ⊤ ≻ 0 such that

P Akp,kc + Akp,kc
⊤

P ≺ 0, kp, kc ∈ N≤r, (4.11)

where
Akp,kc ≜ Akp + BkpKkcCkp , (4.12)

For given Kkc and P satisfying (4.11), if there exist Rkr
3 and Rkr

4 such that the
following inequalities hold

P Akp,kc,kr
r + Akp,kc,kr

⊤
P ≺ 0 , kp, kc, kr ∈ N≤r, (4.13)

with

Akp,kc,kr ≜ Akp+B
kp

f Rkr
3 C

kp

f +B
kp

f Rkr
4 KkcC

kp

f , Rkr
1 = Ip, and Rkr

2 = 0p×m,∀kr ∈ N≤r,

then ΣPf is stable by fault hiding with ΣR described by (4.5).

Proof. The closed-loop system (ΣP,ΣC) is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

r∑︂
kc=1

µkp(z)µkc(z)(Akp + BkpKkcCkp)x,

y =
r∑︂

kp=1
µkp(z)Ckpx,

If there exists P = P ⊤ ≻ 0 that satisfies (4.11), then the origin of (ΣP,ΣC)
(described above) is asymptotically stable. Following Lemma 3.1, the same Lyapunov
function V (x) = x⊤P x will be used to investigate the stability of the reconfigured
system (ΣPf ,ΣR,ΣC), that is described by follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
r∑︂

kp=1

r∑︂
kc=1

r∑︂
kr=1

µkp(z)µkc(z)µkr(z)
[︂
Akp + B

kp

f Rkr
3 C

kp

f

+B
kp

f Rkr
4 (Im −KkcRkr

2 )−1KkcRkr
1 C

kp

f

]︂
x,

y =
r∑︂

kp=1
µ

kp

i (z)Ckp

f x,



Chapter 4. Stability Recovery of Takagi-Sugeno Fuzzy Systems 96

According to [Theorem 1][20], the origin of (ΣPf ,ΣR,ΣC) is asymptotically
stable if the following set of inequalities is satisfied for kp, kc, kr ∈ N≤r:

P Ã + Ã
⊤

P ≺ 0, (4.14)

where

Ã = Akp + B
kp

f Rkr
3 C

kp

f + B
kp

f Rkr
4 (Im −KkcRkr

2 )−1KkcRkr
1 C

kp

f , (4.15)

Considering that ΣC is a static output feedback controller, it is redundant
to compensate uc and y, since these signals are proportional due to the controller
structure. Then, ΣR is chosen such that yr = y, therefore Rkr

1 = Ip and Rkr
2 = 0p×m

for all kr ∈ N≤r. Thus, (4.15) is equivalent to

Ã = Akp + B
kp

f Rkr
3 C

kp

f + B
kp

f Rkr
4 KkcC

kp

f = Akp,kc,kr ,

Finally, (4.14) is equivalent to (4.13), i.e., the origin of the reconfigured sys-
tem (ΣPf ,ΣR,ΣC) is asymptotically stable if there exist Rkr

3 and Rkr
4 , kr ∈ N≤r,

satisfying (4.13), therefore ΣPf is stable by fault hiding according to Definition 3.1.

The next theorem provides conditions for the existence of ΣR described by (4.5)
to recover the stability of the closed-loop system (ΣPf ,ΣR,ΣC), given that (ΣP,ΣC) is
stable, for ΣP and ΣPf described by (4.1) and (4.4), respectively. Unlike Theorem 4.1,
the next theorem considers that the consequent of T-S fuzzy ΣP and ΣPf are nonlinear,
i.e., Gkp ̸= 0.

Theorem 4.2. Let ΣP and ΣPf be the nominal and faulty NT-S fuzzy models with
dynamics described in (4.1) and (4.4), respectively, and considering the same plant
interconnected by feedback to a static OF-PDC ΣC described in (4.3), such that the
origin of (ΣP,ΣC) is asymptotically stable. Assume that there exist P = P ⊤ ≻ 0, a
diagonal matrix W ≻ 0, and a matrix Y satisfying the following inequalities:⎡⎣ Akp,kc

⊤
P + P Akp,kc ⋆

Gkp
⊤

P + Y −2W

⎤⎦ ≺ 0 , kp, kc ∈ N≤r, (4.16)

with
Akp,kc ≜ Akp + BkpKkcCkp .
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For given Kkc , P , W and Y satisfying (4.16), if there exist Rkr
3 and Rkr

4 , such that
the following inequalities hold⎡⎣ Akp,kc,kr

⊤
P + P Akp,kc,kr ⋆

Gkp
⊤

P + Y −2W

⎤⎦ ≺ 0 , kp, kc, kr ∈ N≤r, (4.17)

with
Akp,kc,kr ≜ Akp + B

kp

f Rkr
3 C

kp

f + B
kp

f Rkr
4 KkcC

kp

f

then ΣPf is stable by fault hiding with ΣR described in (4.5).

Proof. The following closed-loop model for (ΣP,ΣC) is obtained using (4.3) and (4.1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

r∑︂
kc=1

µkc(z)
(︂
Akp(z)µkc(z)Akp,kcx + GkpΦ(x)

)︂
,

y =
r∑︂

kp=1
µkc(z)Ckpx,

(4.18)

for Akp,kc ≜ Akp + BkpKkcCkp .

Consider now the quadratic Lyapunov candidate V (x) = x⊤P x and −ρ ≤
x−Ex ≤ ρ for some E and ρ. Then, according to Definition 4.1, for some diagonal
matrix W ≻ 0

Φ⊤(x)W (Φ(x)−Ex) ≤ 0, (4.19)

The derivative of V (x) is

V̇ (x) = x⊤(Akp,kcP + P Akp,kc)x + Φ⊤(x)Gkp
⊤

P x + x⊤P GkpΦ(x), (4.20)

From (4.20) and (4.19), the origin of (ΣP,ΣC) is asymptotically stable if there
exist any P = P ⊤ ≻ 0 such that

V̇ (x) < 2Φ⊤(x)W (Φ(x)−Ex), (4.21)

considering
Φ⊤(x)W Ex = Φ⊤(x)W Ex + x⊤E⊤W Φ

2 ,
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the inequality (4.21) is equivalent to
⎡⎣ x

Φ(x)

⎤⎦⊤ ⎡⎣ Akp,kcP + P Akp,kc ⋆

Gkp
⊤

P + W E −2W

⎤⎦ ⎡⎣ x

Φ(x)

⎤⎦ ≺ 0,

Defining Y ≜ W E, the above inequality implies (4.16).

The same Lyapunov function with the same P can be used, according to
Lemma 3.1, to investigate the stability of the reconfigured system (ΣPf ,ΣR,ΣC).
Considering Rkr

1 = Ip and Rkr
2 = 0p×m for all kr ∈ N≤r, the reconfigured system is

described as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

r∑︂
kc=1

r∑︂
kr=1

µkc(z)
(︂
Akp(z)µkc(z)µkr(z)Akp,kc,krx+ GkpΦ(x)

)︂
,

y =
r∑︂

kp=1
µkc(z)Akp(z)Ckpx,

(4.22)

where Akp,kc,kr ≜ Akp + B
kp

f Rkr
3 Ckc

f + B
kp

f Rkr
4 KkcC

kp

f , Rkr
1 = I, Rkr

4 = 0, for all
kp, kc, kr ∈ N≤r. In this case, the derivative of V (x) is

V̇ (x) = x⊤(Akp,kc,krP + P Akp,kc,kr
⊤)x + Φ⊤(x)Gkp

⊤
P x + x⊤P GkpΦ(x). (4.23)

The reconfigured system (ΣPf ,ΣR,ΣC) is asymptotically stable if

V̇ (x) < 2Φ⊤(x)W (Φ(x)−Ex)

for the same W and Y that satisfy (4.16) and considering E = W −1Y . Therefore, if
there exist some Rkr

3 and Rkr
4 satisfying the inequalities⎡⎣ Akp,kc,kr

⊤
P + P Akp,kc,kr ⋆

Gkp
⊤

P + W E −2W

⎤⎦ ≺ 0. (4.24)

Since that Y = W E, inequalities (4.24) are equivalent to (4.17). If (4.17)
hold, then ΣPf is stable by fault hiding according to Definition 3.1.
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4.3 Stability Recovery of Distributed Takagi-Sugeno Fuzzy Systems

4.3.1 Distributed Fault Hiding

In this Section, Problem 4.2 is addressed. For this purpose, this Section provides
sufficient conditions for stability recovery, by means of a distributed TSRB ΣR =
{ΣR1 , . . . ,ΣRN

} (cf. (4.10)), of a distributed system composed of N interconnected
T-S fuzzy, such that the nominal and fault dynamics, ΣP = {ΣP1 , . . . ,ΣPN

} and ΣPf ={︂
ΣPf,1 , . . . ,ΣPf,N

}︂
, respectively, of the i-th subsystem are given by (4.7) and (4.8).

Theorem 4.3. Let ΣP = {ΣP1 , . . . ,ΣPN
} and ΣPf =

{︂
ΣPf,1 , . . . ,ΣPf,N

}︂
be, re-

spectively, the nominal and faulty model for a distributed plant, whose subsystems’
dynamics are described in (4.7) and (4.8), interconnected by feedback to distributed
static OF-PDC ΣC = {ΣC1 , . . . ,ΣCN

} described in (4.9). Assume that the origin of
(ΣP,ΣC) is asymptotically stable and there exist P = P ⊤ ≻ 0, diagonal matrices
Wi ≻ 0, and matrices Yi, for i ∈ N≤N , satisfying the following inequalities:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã
kp,kc ⊤P + P Ã

kp,kc
⋆ . . . ⋆ ⋆

G̃
kp

1
⊤P + Y1 2W −1

1 ⋆ . . . ⋆

G̃
kp

2
⊤P + Y2 0 2W −1

2 . . . ⋆
... ... ... . . . ...

G̃
kp

N
⊤P + YN 0 0 . . . 2W −1

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0, (4.25)

where kp, kc ∈ N≤r, G̃
kp

i ≜
N⨁︂

j=1
(αij + I[j = i])Gkp

i , and

Ã
kp,kc ≜

⎡⎢⎢⎢⎢⎢⎢⎣
A

kp,kc

11 A
kp,kc

12 . . . A
kp,kc

1N

A
kp,kc

21 A
kp,kc

22 . . . A
kp,kc

2N
... ... . . . ...

A
kp,kc

N1 A
kp,kc

N2 . . . A
kp,kc

NN

⎤⎥⎥⎥⎥⎥⎥⎦ (4.26)

A
kp,kc

ij ≜

⎧⎨⎩ A
kp

i + B
kp

i KkcC
kp

i , if i = j,

B
kp

i αijFijC
kp

j + αijHi, otherwise.
(4.27)

For given Kkc
i and P , Wi and Yi satisfying (4.25), if there exist Rkr

3,i and Rkr
4,i

such that the following inequalities hold for kp, kc, kr ∈ N≤r
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã
kp,kc,kr ⊤P + P Ã

kp,kc,kr
⋆ . . . ⋆ ⋆

G̃
kp ⊤

1 P + Y1 2W −1
1 ⋆ . . . ⋆

G̃
kp ⊤

2 P + Y2 0 2W −1
2 . . . ⋆

... ... ... . . . ...
G̃

kp ⊤
NP + YN 0 0 . . . 2W −1

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0, (4.28)

with

Ã
kp,kc,kr ≜

⎡⎢⎢⎢⎢⎢⎢⎣
A

kp,kc,kr

11 A
kp,kc,kr

12 . . . A
kp,kc,kr

1N ,

A
kp,kc,kr

21 A
kp,kc,kr

22 . . . A
kp,kc,kr

2N ,
... ... . . . ...

A
kp,kc,kr

N1 A
kp,kc,kr

N2 . . . A
kp,kc,kr

NN ,

⎤⎥⎥⎥⎥⎥⎥⎦ (4.29)

A
kp,kc,kr

ij ≜

⎧⎨⎩ A
kp

i + B
kp

f,iR
kr
3,iC

kp

f,i + B
kp

f,iR
kr
4,iK

kc
i C

kp

f,i , if i = j,

B
kp

f,iR
kr
4,iαijFijC

kp

f,i + αijHi, otherwise,
(4.30)

Rkr
1,i = Ip Rkr

2,i = 0p×m,

then ΣPf is stable by fault hiding with ΣR = {ΣR1 , . . . ,ΣRN
} given by (4.10).

Proof. The following closed-loop model for each subsystem (ΣPi
,ΣCi

) is obtained
using (4.7) and (4.9):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi =
r∑︂

kp=1

r∑︂
kc=1

µkp(z)µkc(z)

⎡⎢⎢⎢⎢⎢⎣(Akp

i + B
kp

i KkcC
kp

i )xi +
N∑︂

j = 1,

j ̸= i,

(Bkp

i αijFijC
kp

j + αijHi)xj

⎤⎥⎥⎥⎥⎥⎦
+

N∑︂
j=1

G
kp

i Φi(xj)

yi =
r∑︂

kp=1
µkc(z)Ckp

i xi,

(4.31)
the overall interconnected system dynamics is described as follows

ẋ =
r∑︂

kp=1

r∑︂
kc=1

µkp(z)µkc(z)Ãkp,kc
x +

N∑︂
j=1

G̃
kp

j Φ̄j(x), (4.32)
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for Akp,kc defined in (4.26) and (4.27),

x ≜

⎡⎢⎢⎢⎣
x1
...

xN

⎤⎥⎥⎥⎦ , Φ̄i(x) ≜

⎡⎢⎢⎢⎣
Φi(x1)

...
Φi(xN)

⎤⎥⎥⎥⎦ , G̃
kp

i ≜
N⨁︂

j=1
(αij + I[j = i])Gkp

i .

Consider that all nonlinearities are sector bounded and can be expressed as
indicated by Definition 4.1 for appropriate Ei and diagonal Wi

Φ̄⊤
i (x)Wi(Φ̄i(x)−Eix) ≤ 0, (4.33)

for i ∈ N≤N . Choosing the quadratic Lyapunov candidate V (x) = x⊤P x, the
derivative of V (x) is

V̇ (x) = x⊤
(︃

Ã
kp,kc ⊤P + P Ã

kp,kc

)︃
x+

N∑︂
j=1

(︃
Φ̄⊤

j (x)G̃kp

j
⊤P x + x⊤P G̃

kp

j Φ̄j(x)
)︃
,

(4.34)

From (4.34) and (4.33), the origin of the overall interconnected system (ΣP,ΣC)
is asymptotically stable if there exists any P = P ⊤ ≻ 0 such that

V̇ (x) <
N∑︂

j=1
2Φ⊤

j (x)Wj(Φj(x)−Ejx). (4.35)

Given that 2Φ⊤
j (x)WjEjx is scalar, the following fact holds

2Φ⊤
j (x)WjEjx =

Φ⊤
j (x)WjEjx + x⊤E⊤

j WjΦj(x)
2 , (4.36)

then, (4.35) implies

⎡⎢⎢⎢⎢⎢⎢⎣
x

Φ̄1(x)
...

Φ̄N(x)

⎤⎥⎥⎥⎥⎥⎥⎦

⊤
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã
kp,kcT

P + P Ã
kp,kc

⋆ . . . ⋆ ⋆

G̃
kp

1
⊤P + W1E1 2W −1

1 ⋆ . . . ⋆

G̃
kp

2
⊤P + W2E2 0 2W −1

2 . . . ⋆
... ... ... . . . ...

G̃
kp

N
⊤
NP + WNEN 0 0 . . . 2W −1

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x

Φ̄1(x)
...

Φ̄N(x)

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0,
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Defining Yi ≜ WiEi, the above inequality is equivalent to (4.25).

The dynamics of each reconfigured subsystem (ΣPf,i
,ΣRi

,ΣCi
) is obtained by

combining (4.9), (4.10), and (4.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi =
r∑︂

kp=1

r∑︂
kc=1

r∑︂
kr=1

µkp(z)µkc(z)µkr(z)
[︂
(Akp

i + B
kp

f,iR
kr
3,iC

kp

f,i + B
kp

f,iR
kr
4,iK

kcC
kp

f,i )xi

+
N∑︂

j = 1,

j ̸= i

αij(Bkp

f,iR
kr
4,iFijC

kp

f,j + Hi)xj

⎤⎥⎥⎥⎥⎥⎦
+

N∑︂
j = 1,

j ̸= i

G
kp

i Φi(xj)

yi =
r∑︂

kp=1
µkc(z)Ckp

f,i xi

,

(4.37)
for Rkr

1,i = I, Rkr
2,i = 0, and i ∈ N≤N .

Based on (4.37), the dynamics of the overall interconnected faulty system
(ΣPf ,ΣR,ΣC) is described as follows

ẋ =
r∑︂

kp=1

r∑︂
kc=1

r∑︂
kr=1

µkp(z)µkc(z)µkr(z)Ãkp,kc,kr
x+

N∑︂
j=1

G̃
kp

j Φ̄j(x), (4.38)

where Ã
kp,kc,kr is defined as (4.29) and (4.30).

The same Lyapunov function V (x) = x⊤P x with the same P of the nominal
system can be used, following Lemma 3.1, to find reconfiguration blocks that ensure
the stability of the reconfigured system (ΣPf ,ΣR,ΣC). In this case, the derivative of
V (x) is

V̇ (x) = x⊤
(︃

Ã
kp,kc,kr

⊤

P + P Ã
kp,kc,kr

)︃
x+

N∑︂
j=1

(︃
Φ̄⊤

j (x)G̃kp

j
⊤P x + x⊤P G̃

kp

j Φ̄j(x)
)︃
.

(4.39)



Chapter 4. Stability Recovery of Takagi-Sugeno Fuzzy Systems 103

The reconfigured system (ΣPf ,ΣR,ΣC) is asymptotically stable if

V̇ (x) <
N∑︂

j=1
2Φ̄⊤

j (x)Wj(Φ̄j(x) + Ejx)

for the same Wj and Yj that satisfy (4.25) and considering Ej = W −1
j Yj. Therefore,

if there exist some Rkr
3 and Rkr

4 satisfying the inequalities (4.28), then ΣPf is stable
by fault hiding according to Definition 3.1.

4.3.2 Centralized Fault Hiding

The second approach for fault hiding of distributed systems is based on Theo-
rem 4.2 and uses a single centralized TSRB described in (4.5). An overall T-S fuzzy is
obtained for the distributed system by gathering the models of every subsystem. Then,
the overall interconnected nominal and fault model can be described by (4.1) and (4.8)
from (4.7). In this sense, the following nominal and faulty model is obtained

ΣP :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

µ
kp

i (z)(Akpx + Bkpup) + GkpΦi(x),

yp =
r∑︂

kp=1
µ

kp

i (z)Ckpx,
(4.40)

ΣPf :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =

r∑︂
kp=1

µ
kp

i (z)(Akpx+ B
kp

f up) + GkpΦi(x),

yp =
r∑︂

kp=1
µ

kp

i (z)Ckp

f x,
(4.41)

where

Akp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
kp

1 α12H1 α13H1 . . . α1NH1

α21H2 A
kp

2 α23H1 . . . α2NH2

α31H3 α32H3 A
kp

3 . . . α3NH3
... ... ... . . . ...

αN1HN αN2HN αN3HN . . . A
kp

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x ≜

⎡⎢⎢⎢⎣
x1
...

xN

⎤⎥⎥⎥⎦ ,

Bkp =

⎡⎢⎢⎢⎢⎢⎢⎣
B

kp

1 0 . . . 0
0 B

kp

2 . . . 0
... ... . . . ...
0 0 . . . B

kp

N

⎤⎥⎥⎥⎥⎥⎥⎦ , B
kp

f =

⎡⎢⎢⎢⎢⎢⎢⎣
B

kp

f,1 0 . . . 0
0 B

kp

f,2 . . . 0
... ... . . . ...
0 0 . . . B

kp

f,N

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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Ckp =

⎡⎢⎢⎢⎢⎢⎢⎣
C

kp

1 0 . . . 0
0 C

kp

2 . . . 0
... ... . . . ...
0 0 . . . C

kp

N

⎤⎥⎥⎥⎥⎥⎥⎦ , C
kp

f =

⎡⎢⎢⎢⎢⎢⎢⎣
C

kp

f,1 0 . . . 0
0 C

kp

f,2 . . . 0
... ... . . . ...
0 0 . . . C

kp

f,N

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Gkp =
N⨁︂

i=1

N⨁︂
j=1

(αij + I[j = i])Gkp

i , up =

⎡⎢⎢⎢⎣
up,1

...
up,N

⎤⎥⎥⎥⎦ , yp =

⎡⎢⎢⎢⎣
yp,1

...
yp,N

⎤⎥⎥⎥⎦ .

Therefore, Theorem 4.2 can be directly used to design the centralized block ΣR

given by (4.5) that guarantees the stability recovery by fault hiding of (4.40).

4.4 Application examples

4.4.1 Interconnected generators

Consider a nonlinear model of a power system with two interconnected generators
as described in [240]. The model described in [240] is adapted here in order to simulate
sensor and actuator faults. The nonlinear model is described as follows:⎧⎨⎩ ẋ1 = x2,

ẋ2 = − 1
H
Ps sin x1 − D

H
x2 + u+ d,

(4.42)

where x1 is the relative voltage angle between the electrical machines, x2 is the relative
electrical angular speed between them, d is a disturbance, H is the inertia constant of
the generators, D is the damping coefficient of machines, and Pm is the mechanical
power of the generator.

An equivalent T-S fuzzy model, as given in (4.1), with two rules can be obtained

A1 =
⎡⎣ 0 1
−a1

H
Ps −D

H

⎤⎦ , A2 =
⎡⎣ 0 1
−a2

H
Ps −D

H

⎤⎦ ,

G1 = G2 = 0,

B1 = B2 =
⎡⎣ 0

1

⎤⎦ ,
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C1 = C2 = I2,

µ1(z) = z − a2

a1 − a2
, µ2(z) = a1 − z

a1 − a2
,

where z = sin x1
x1

H = 0.06, D = 0.1, Ps = 3, a1 = 1, a2 = −0.22.

A fault T-S fuzzy described in (4.4) is obtained for kp = 1, 2:

C
kp

f =
⎡⎣ 1− f1 0

0 1− f2

⎤⎦ Ckp ,

B
kp

f = (1− f3)Bkp ,

where f1 and f2 are multiplicative fault indicators in the sensors that represent attenua-
tion of measurements of x1 and x2, respectively, and f3 represents a loss in the actuator
effectiveness, such that f1, f2, f3 ∈ [0, 1].

4.4.1.1 Fault hiding based on TSRBs for interconnected generators

Three fault scenarios are investigated. In all those scenarios the fault occurs
at t = 5 s. Moreover, it is inserted impulsive disturbances d (cf. (4.42)) at t = 2.5 s,
t = 5.25 s, and t = 15 s. In the first scenario, an actuator fault occurs at t = 0.3
s such that f3 = 0.9, i.e. there is an effectiveness loss of 90% in the plant actuator.
In the second and third scenarios, sensor faults occur at t = 5 s with f2 = 0.75 and
f3 = 0.8, respectively. In all scenarios, the initial condition is x(0) = [ 0.25 −0.5 ]⊤

and an impulsive disturbance d is added at t = 4 s.

In both scenarios, the OF-PDC described in (4.3) is employed with the following
gains

K1 =
[︂
−73.7723 −2.9152

]︂
, K2 =

[︂
17.5804 −3.4554

]︂
.

In those experiments, the proposed TSRB is compared to the static TSRB
proposed in [162] for multiplicative faults. In [162], it is presented the following
Takagi-Sugeno static virtual actuator structure based on pseudoinverse

ΣR : ur =
⎛⎝ r∑︂

kr=1
µkr(z)Bkr

⎞⎠†
r∑︂

kr=1
µkr(z)Bkr

f uc . (4.43)
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The VA in (4.43) is used to handle the multiplicative actuator faults as the fault
that occurs in the fist simulation scenario (f3 = 0.9). In [162], it is not presented a
similar static TSRB for sensor faults, however, the same fault compensation idea can
be easily used to derive the following static VS for multiplicative faults:

ΣR : yr =
r∑︂

kr=1
µkr(z)Ckr

⎛⎝ r∑︂
kr=1

µkr(z)Ckr
f

⎞⎠†

yp . (4.44)

Figures 4.2–4.4 depict the power system time response comparing its behavior
with the proposed TSRB (4.5), with the static VA proposed in [162] and described
in (4.43), and without any FTC strategy.

Particularly the results for the first scenario (fault instant t = 0.3 s and f3 = 0.9)
is obtained using the proposed TSRB described in (4.5), with the following gains

Rkr
1 = I2 , Rkr

2 = 02×1, ∀kr,

R1
3 = R2

3 =
[︂
−0.9225 −3.7616

]︂
× 104,

R1
4 = R2

4 = −2.7183× 10−12.

obtained using Theorem 4.1. The results of Figure 4.2 indicate that the fault occurrence
is compensated for in both approaches, even without RB. However, the recovery and
the disturbance rejection ability of the reconfigured system with the proposed TSRB,
and the performance of the VA proposed in [162] is only slightly better than the faulty
system without RB.

In the second scenario, it occurs a sensor fault with magnitude f2 = 0.75. The
proposed TSRB obtained for this scenario using Theorem 4.1 presents the following
gains

Rkr
1 = I2 , Rkr

2 = 02×1, ∀kr,

R1
3 = R2

3 =
[︂
−0.0923 −1.5047

]︂
× 104,

R1
4 = R2

4 = −2.645× 10−14.

The results depicted in Figure 4.3 also indicate that both, reconfigured systems
and faulty system without the reconfiguration block, maintain the stability of the origin.
The reconfigured system with the proposed TSRB is not affected by the disturbance at
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Figure 4.2 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f3 = 0.9.

t = 4s, but the speed of the faulty system without reconfiguration blocks and that of
the reconfigured system with the VS described in (4.44) is affected and oscillates for a
few seconds. It is worth noting that the reconfigured system with the proposed TSRB
presents better oscillations damping performance after the fault occurrence.

The last scenario also considers a sensor fault that affects the angle sensor
with magnitude f1 = 0.75. Theorem 4.1 is used to obtain a T-S fuzzy simplified
reconfiguration block with the following gains

Rkr
1 = I2 , Rkr

2 = 02×1, ∀kr,

R1
3 = R2

3 =
[︂
−4.6125 −3.7616

]︂
× 103,

R1
4 = R2

4 = −2.166× 10−13.
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Figure 4.3 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f2 = 0.75.

Figure 4.4 depicts the results for this scenario comparing the faulty system with-
out RB with the reconfigured systems using the proposed TSRB and the VS described
in (4.44). Similarly to the previous scenarios, the faulty system without reconfiguration
block and the reconfigured system with the VS described in (4.44) present more intense
oscillations after the fault occurrence. Furthermore, the reconfigured system with the
proposed TSRB is able to avoid the disturbance in t = 4 s but the faulty system
without RB and the reconfigured system with the VS described in (4.44) exhibit some
oscillations after the disturbance occurrence.

4.4.1.2 Effect of FDI delays and fault estimation errors

In this subsection, the same simulations of Subsection 4.4.1.1 are repeated and
it is considered the existence of some imperfections on the FDI system which provides
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Figure 4.4 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f1 = 0.8.

the information on the fault occurrence and its magnitude. In particular, it is considered
that the fault information is available for the fault hiding mechanisms only 2 s after
the fault occurrence, i.e., the faults occurs at t = 5 s but the reconfiguration will not
occur before of t = 7 s. Moreover, although the fault magnitudes in the three scenarios
previously investigated are, respectively, f3 = 0.9, f2 = 0.75, and f1 = 0.8, the RBs
will be designed and implemented based on wrong estimates: f̂ 3 = 0.72, f̂ 2 = 0.9, and
f1 = 0.96.

Figures 4.5, 4.6, and 4.7 depict the simulation results for the first, second, and
third scenarios respectively. Those figures also provides the trajectories of the nominal
(fault-free) system which may be compared to the response of the faulty system, and
the reconfigured systems (with the proposed RB and with the RB proposed in [162]).

In addition to the observations Subsection 4.4.1.1, those figures show the
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Figure 4.5 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f3 = 0.9 considering FDI delays and fault estimation error.

conceptual differences between the proposed RB and the RB proposed in [162], as well
as to assess their sensitivity with respect to the FDI delays and fault estimation errors.

The classic SRBs, which includes these proposed in [162], are based on the
pseudoinverse method, thus they are able to guarantee exact trajectory recovery since
the fault estimation is perfect. For this reason, when the FDI is assumed to be perfect
as in Subsection 4.4.1.1, the response with the TSRB proposed in [162] is identical to
the fault-free response. Otherwise, the RBs proposed in this thesis are not concerned
with the exact trajectory recovery, but with the recovery of properties, in particular,
the asymptotic stability recovery. Indeed, it was able to recover the stability and
provided better disturbance rejection than the fault-free system and the faulty system
reconfigured by means of the RBs proposed by [162].

However, when the reconfiguration is subject to FDI delays and fault estimation
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Figure 4.6 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f2 = 0.75 considering FDI delays and fault estimation error.

errors one can see that the trajectories of the faulty system reconfigured by means of
the RBs proposed by [162] are strongly affected by those effects. Although that RBs
are still able to guarantee the stability, its performance appears to be very sensitive to
the fault parameters, since they are explicitly used in their structures. Indeed, one can
notice in Figures 4.5, 4.6, and 4.7 that the responses provided by the RBs proposed
by [162] are closer to the responses of the faulty system without FTC than to the
responses of the healthy system. It does not occur in the trajectories provided by the
Takagi-Sugeno Fuzzy Reconfiguration Blocks (TSRBs) proposed in this thesis, since
they were insensitive to the FDI delays and fault estimation errors. It suggests that the
proposed is naturally more robust to the integration with imperfect FDI systems.

It is worth to mention that the interconnected generators are open-loop stable
which reduces the impacts of the abovementioned sensitivity. It is expected that it can
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Figure 4.7 – Comparison of the interconnected generators’ behavior with the
proposed TSRB, with the TSRB in [162] and without reconfiguration
block for f1 = 0.8.

be fatal for the reconfiguration of unstable systems.

4.4.2 Inverted pendulum network

In order to evaluate the proposed T-S fuzzy simplified reconfiguration block
structure as well as the proposed stability recovery results presented in Theorems 4.1,
4.2, and 4.3, consider a distributed pendulum system with nonlinear interconnections
whose model for the i-th pendulum is described as follows:⎧⎪⎪⎨⎪⎪⎩

ẋi1 = xi2,

ẋi2 = g
l
sin xi1 − 1

mil2i

N∑︂
j=1

(︂
klαij(xi1 − xj1)− knαij(xi1 − xj1)3

)︂
+ 1
mil2i

up,i,

(4.45)
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where i, j = 1, . . . , N , xi1 is the rod angle with respect to the upright position, xi2 is
the angular velocity, ui is the torque applied to the base of the i-th pendulum, g is
the gravitational acceleration, mi and li are the mass and rod length of i-th pendulum,
and kl and kn are the linear and nonlinear elastic coefficients of springs between two
pendulums respectively.

The dynamics of each pendulum subsystem in this network can be described by
the following T-S fuzzy with nonlinear consequent:

ΣPi
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi =
r∑︂

kp=1
µ

kp

i (z)(Akp

i xi + B
kp

i up,i) +
N∑︂

j = 1,

j ̸= i

αij [Hi(xi − xj) + GiΦi(xj)] ,

yi =
r∑︂

kp=1
µ

kp

i (z)Ckp

i xi,

(4.46)
with

Φi(xj) =
⎡⎣ 0

k2
n

mil2i
(x2i − x2j)3

⎤⎦ ,
A1

i =
⎡⎣ 0 1

g
li
b1 0

⎤⎦ , A2
i =

⎡⎣ 0 1
g
li
b2 0

⎤⎦ ,
B1

i = B2
i =

⎡⎣ 0
1

mil2i

⎤⎦ , C1
i = C2

i =
⎡⎣ 1 0

0 1

⎤⎦ ,
Hi =

⎡⎣ 0 0
− kl

mil2i
0

⎤⎦ ,
G1

i = G3
i =

⎡⎣ 0 − kn

mil2i

−αij
kij

mil2i
0

⎤⎦ ,
xi = [xi1 xi2]⊤, zi ∈

[︂
2
π
, 1

]︂
is a sector bounded nonlinearity, such that zi = sin xi1 for

i = 1, . . . , N .

The system parameters are listed as follows: N = 3, g = 9.81 m/s2, m1 =
m2 = 0.35 kg, m3 = 0.30 kg, l1 = l2 = 1.2 m, l3 = 1.3 m, b1 = 1, b2 = 0.9329, and
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the adjacency matrix is:

A =

⎡⎢⎢⎢⎣
0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎦ .
The network is stabilized by a distributed OF-PDC described by (4.9). It is

considered the occurrence of faults related to the loss of effectiveness of some subsystem
actuator. The fault is modeled such that the fault fi represents a fault on the i-th
subsystem with Bf,i = (1 − fi)Bi. It is worth mentioning that the results of this
simulation are not compared to the other RBs in the literature because to the best of
the authors’ knowledge, there is no other fault hiding solutions that supports NT-S
fuzzy models.

4.4.2.1 Inverted pendulum network with linear interconnections

In this first example, the nonlinearities of the interconnections between the
pendulums as described in (4.46) are disregarded, i.e., it is assumed that Gi = 0
for i ∈ N≤N and only linear interconnections are considered. The decentralized
reconfiguration block described by (4.10) is evaluated and its matrices are obtained
using Theorem 4.1.

In this simulation scenario, the linear elastic coefficient is kl = 120 N/m and
the OF-PDC described by (4.9) presents the following gains

F1,2 =
[︂
−119.1167 2.2736

]︂
, F2,1 =

[︂
−119.1901 −2.0729

]︂
,

F2,3 =
[︂
−119.3863 −4.9073

]︂
, F3,3 =

[︂
−119.1106 5.1507

]︂
,

F1,1 = F1,3 = F2,2 = F3,1 = F3,3 =
[︂

0 0
]︂
,

K1
1 =

[︂
108.3942 −1.4159

]︂
, K2

1 =
[︂

109.8914 −1.4159
]︂
,
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K1
2 =

[︂
228.7719 −5.1547

]︂
, K2

2 =
[︂

230.2691 −5.1547
]︂
,

K1
3 =

[︂
108.2058 −0.5758

]︂
, K2

3 =
[︂

109.5960 −0.5758
]︂
,

It is simulated a loss in the actuator effectiveness of the second actuator such
that f2 = 0.8 after t = 6 s. Using Theorem 4.1, the following reconfiguration blocks
are obtained

Rkr
1,i = I2 Rkr

2,i = 02×1 ∀i, kr,

R1
3,1 = R2

3,1 =
[︂

2.5678 −5.4589
]︂
,

R1
3,2 = R2

3,2 =
[︂
−67.6674 1.6714

]︂
,

R1
3,3 = R2

3,3 =
[︂

6.5446 −6.6242
]︂
,

R1
4,1 = R2

4,1 = 1.0016, R1
4,2 = R2

4,2 = 5.0837, R1
4,3 = R2

4,3 = 0.9945.

Figures 4.8a–4.9b depict the simulation results with T-S fuzzy distributed re-
configuration block (Figures 4.8b and 4.9b) and without it (Figures 4.8a and 4.9a).
Impulsive perturbations are applied over the angular position dynamics (xi1) at the
instant t = 3 s (before the fault occurrence) and t = 12 s (after the fault occurrence),
and the initial condition is x(0) = [0.1 0 − 0.05 0 0.05 0]⊤. The closed-loop system
without reconfiguration block tends to reject the first perturbation but became unstable
after the fault occurrence. Differently, the closed-loop system with reconfiguration
block oscillates after the fault occurrence, but it is able to recover the stability, and the
second perturbation is rejected even without an actuator for the third pendulum.

4.4.2.2 Inverted pendulums network with nonlinear interconnections

Now the decentralized reconfiguration block described in (4.10) is obtained
using Theorem 4.2 for the pendulum network described by (4.46).

In this simulation scenario, the interconnection is nonlinear, i.e., Gi ̸= 0, and
the elastic coefficients are kl = 60 N/m and kn = 2.4 N/m3. The controller used is
described in (4.9), with:
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Figure 4.8 – Comparison of angles trajectories of the network of pendulums with
and without reconfiguration block when a fault occurs in the second
actuator such that f2 = 0.8.

F1,2 =
[︂
−65.1830 2.6251

]︂
, F2,1 =

[︂
−84.3104 −2.7612

]︂
,

F2,3 =
[︂
−69.7608 1.6384

]︂
, F3,2 =

[︂
−84.7336 −1.7220

]︂
,

F1,1 = F1,3 = F2,2 = F3,1 = F3,3 =
[︂

0 0
]︂
,
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Figure 4.9 – Comparison of the velocities trajectories of the network of pendulums
with and without reconfiguration block when a fault occurs in the
second actuator such that f2 = 0.8.

K1
1 =

[︂
15.6604 −2.6304

]︂
, K2

1 =
[︂

17.1576 −2.6304
]︂
,

K1
2 =

[︂
12.0243 −4.0508

]︂
, K2

2 =
[︂

13.5215 −4.0508
]︂
,

K1
3 =

[︂
15.8759 −2.6403

]︂
, K2

3 =
[︂

17.2662 −2.6403
]︂
.
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A fault occurs in the first actuator at t = 6 s such that f3 = 0.9. Using
Theorem 4.2, the following reconfiguration blocks are obtained

Rkr
1,i = I2 , Rkr

2,i = 02×1, ∀i, kr

R1
3,1 = R2

3,1 =
[︂

18.1709 −16.4871
]︂

R1
3,2 = R2

3,2 =
[︂

62.5708 −19.1694
]︂

R1
3,3 = R2

3,3 =
[︂
−58.3747 −157.3098

]︂
R1

4,1 = R2
4,1 = 0.9032, R1

4,2 = R2
4,2 = 0.8434, R1

4,3 = R2
4,3 = 7.0303,

Figures 4.10a–4.11b depict the simulation results with the T-S fuzzy distributed
reconfiguration block (Figures 4.10b and 4.11b) and without it (Figures 4.10a and 4.11a).
Impulsive perturbations at angle position (xi1) are considered at t = 3 s and t = 12 s,
and the initial condition is x(0) = [0.1 0 − 0.05 0 0.05 0]. The closed-loop system
without reconfiguration block is able to reject the first perturbation again but it became
unstable after the second perturbation due to the effects of the fault occurrence in a
single pendulum. The closed-loop system with reconfiguration block is able to reject
both perturbations and mitigate the fault effects.

4.4.2.3 Reconfiguration with centralized reconfiguration blocks

In this subsection, the centralized approach for decentralized T-S fuzzy is applied
to the pendulum network.

In the first set of experiments, the interconnections are linear, i.e., Gi = 0, for
i ∈ N≤N . The linear elastic coefficients are kl = 70 N/m. An OF-PDC is used as
described in (4.9) with

F1,2 =
[︂
−45.6545 9.8429

]︂
, F2,1 =

[︂
−89.4600 −10.0421

]︂
,

F2,3 =
[︂
−60.2578 6.1591

]︂
, F3,2 =

[︂
−88.4860 −6.3235

]︂
,
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Figure 4.10 – Comparison of angles trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the third actuator
(f3 = 0.9).

F1,1 = F1,3 = F2,2 = F3,1 = F3,3 =
[︂

0 0
]︂
,

K1
1 =

[︂
57.8405 −1.1288

]︂
, K2

1 =
[︂

59.3377 −1.1288
]︂
,

K1
2 =

[︂
116.4197 −1.6873

]︂
, K2

2 =
[︂

117.9169 −1.6873
]︂
,
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Figure 4.11 – Comparison of velocities trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the third actuator
(f3 = 0.9).

K1
3 =

[︂
58.0869 −1.1355

]︂
, K2

3 =
[︂

59.4772 −1.1355
]︂
.

In this scenario, a fault occurs in the first actuator at t = 6 s, such that f1 = 0.25,
i.e., an effectiveness loss of 25%. Using the Theorem 4.1, the reconfiguration block
described in (4.5) is obtained such that

Ri
1 = I6, Ri

2 = 06×3,
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Ri
3 =

⎡⎢⎢⎢⎣
0.0000 −0.5979 1.3612 0.3608 −0.2947 −1.1314
−0.4688 −0.1171 −0.3496 −0.0142 0.4018 0.4207
0.3563 0.4985 −0.7044 −0.2409 −0.1041 0.4538

⎤⎥⎥⎥⎦× 103,

Ri
4 =

⎡⎢⎢⎢⎣
0.4238 −0.3829 −0.5531
0.1259 0.4249 −0.0190
−0.2475 0.2905 0.2998

⎤⎥⎥⎥⎦× 10−11,

for i = 1, . . . , 8

Figures 4.12a–4.13b depict the simulation results with reconfiguration block
(Figures 4.12b and 4.13b) and without it (Figures 4.12a and 4.13a). Impulsive
perturbations are added at t = 3 s and t = 12 s and the initial condition is
x(0) = [−0.05 0 0.2 0 − 0.2 0]⊤. The closed-loop system without reconfigura-
tion block compensates the first perturbation, but presents a small oscillation after
the fault occurrence, and became clearly unstable after the second perturbation that
occurs during the fault occurrence. However, the closed-loop system with the proposed
reconfiguration block is able to reject both perturbations and mitigate the fault effects.

In the second set of experiments, the interconnections are nonlinear. The linear
and nonlinear elastic coefficients are kl = 90 N/m and kn = 8.1 N/m3. An OF-PDC is
used as described in (4.9) with

F1,2 =
[︂
−138.0934 1.6586

]︂
, F2,1 =

[︂
−156.2654 −1.8629

]︂
,

F2,3 =
[︂
−138.0111 0.9168

]︂
, F3,2 =

[︂
−162.4693 −1.1184

]︂
,

F1,1 = F1,3 = F2,2 = F3,1 = F3,3 =
[︂

0 0
]︂
,

K1
1 =

[︂
−151.8591 −4.3598

]︂
, K2

1 =
[︂
−150.3619 −4.3598

]︂
,
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Figure 4.12 – Comparison of angles trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the first actuator
(f1 = 0.25).
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Figure 4.13 – Comparison of velocities trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the first actuator
(f1 = 0.25).
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K1
2 =

[︂
−395.0900 −6.3589

]︂
, K2

2 =
[︂
−393.5928 −6.3589

]︂
,

K1
3 =

[︂
−151.7622 −4.3821

]︂
, K2

3 =
[︂
−150.3720 −4.3821

]︂
,

In this simulation, an effectiveness loss of the second pendulum actuator happens
such that f2 = 0.9. This fault occurs at t = 6 s. Using Theorem 4.2, the reconfiguration
block described in (4.5) is obtained with the following gains

Ri
1 = I6, Ri

2 = 06×3, i = 1, . . . , 8,

Ri
3 = R2

3 = R4
3 = R5

3 = R6
3 = R7

3 = R8
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

381.7312 −102.3317 82.7076
23.3249 −221.5593 128.8239
−645.3332 98.7467 135.5241
−99.4251 −736.6991 −42.8216
554.1545 −101.2848 −135.1592
−37.0876 1.5529 −33.6795

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

,

R3
3 =

⎡⎢⎢⎢⎣
311.2 34.7 −146.7 −253.6 195.8 1055.4
−1885.9 2565.6 −2738.7 978.7 −2.462 −2.9353
−484 −1056.3 −1221.8 −195 90.4 −142

⎤⎥⎥⎥⎦ ,

R1
4 = R2

4 = R4
4 = R5

4 = R6
4 = R7

4 = R8
4 =

⎡⎢⎢⎢⎣
20.7938 −16.2770 18.5871
−7.7736 16.4341 −7.9980
−0.4179 0.5062 0.0349

⎤⎥⎥⎥⎦ ,

R3
4 ≈ 0
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Figure 4.14 – Comparison of angles trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the second actuator
(f2 = 0.9).

Figures 4.14a–4.15b depict the simulation results with reconfiguration block
(Figures 4.14b and 4.15b) and without it (Figures 4.14a and 4.15a). Impulsive
perturbations are added at t = 3 s and t = 12 s, and the initial condition is
x(0) = [−0.05 0 0.2 0 − 0.2 0]⊤. The closed-loop system without reconfigura-
tion block is unable to reject the second perturbation when there is an actuator fault.
Differently, the closed-loop system with reconfiguration block is able to reject both
perturbations and mitigate the fault effects.



Chapter 4. Stability Recovery of Takagi-Sugeno Fuzzy Systems 126

0 5 10 15 20 25

-3

-2

-1

0

1

2

3

Velocity of pendulums with nonlinear interconnections and without RB

x
12

x
22

x
32

(a)

0 5 10 15 20 25

-3

-2

-1

0

1

2

3

Velocity of pendulums with nonlinear interconnections and with RB

x
12

x
22

x
32

(b)

Figure 4.15 – Comparison of velocities trajectories of the network of pendulums
with nonlinear interconnections with and without reconfiguration
block when occurs an effectiveness loss fault in the second actuator
(f2 = 0.9).
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5 DISSIPATIVITY RECOVERY BY FAULT HIDING

Dissipativity and passivity theory [241] is an important paradigm in nonlinear
system analysis due to its relation with input-output stability [178, 139] and also because
these properties are preserved under compositions such as parallel and feedback intercon-
nections. In particular, the passivity indices [242] and passivation techniques [243, 244]
are studied to obtain closed-loop systems with desired passivity properties.

The dissipativity/passivity framework is already used to design controllers for
various classes of systems, e.g., switched [245], multi-agent systems [246], stochastic
systems [247] and networked systems [248], but there are few results for process
monitoring and FTC. The general idea of dissipativity-based control synthesis is to
find control laws that ensure the closed-loop system dissipativity with respect to a
given supply rate. Particular cases of dissipativity may be related to specific supply
rate families and could imply in special conclusions, e.g., supply rates whose structure
depends on passivity indices allow to analyze the input/output passivity of a system,
and the values of passivity indices provide a notion about the excess or shortage of
passivity. Then, the desired passivity condition can be obtained for a closed-loop system
by synthesizing a controller that ensures the dissipativity with respect to a supply rate
with related passivity indices. This kind of result is derived from dissipativity analysis of
interconnected systems assuming the dissipativity of each subsystem [249, 178, 250, 242]
and can be used to ensure asymptotic stability, input-output stability, and even robust
performance [200].

Despite the potential of the dissipativity- and passivation-based control, there
are only few applications in the context of FTC. In [251], the concepts of global
dissipativity and passivity are proposed to quantify the fault tolerance of dynamical
systems and decide if it is necessary to design an FTC law for each fault mode. In [252] is
presented a fault diagnosis methodology based on the analysis of the system dissipativity.
Dissipativity and passivity theory is also used to obtain PFTC systems in some recent
works [253, 254, 255, 256]. However, to the best of the of our knowledge, there is no
application of dissipativity theory and passivation for fault hiding before of [106], whose
content is the basis of this chapter.
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In this chapter, a SRB is used to mitigate the fault effects and ensure the
stability of the reconfigured system by means of passivity and dissipativity recovery
for faulty (linear or nonlinear) systems. Compared with the previously published fault
hiding approaches in the literature, the proposed dissipativity-based approach and SRB
are able to mitigate both sensor and actuator faults simultaneously by means of the
same RB and to ensure the recovering of exactly the same dissipativity properties as
the healthy scenario, implying the recovering of stability and robustness properties.
Furthermore, it is able to handle even nonlinear systems without employing differential
polytopic inclusions, unlike the results of the previous chapters. In summary, the main
contributions in this chapter are:

a) to define the passivity and (Q,S,R)-dissipativity recovery by fault hiding;

b) to establish the relation between passivity and (Q,S,R)-dissipativity re-
covery by fault hiding and the asymptotic stability recovery for nonlinear
systems;

c) to provide conditions for stability recovery after sensor, actuator, and plant
faults.

The results presented in this chapter are based on those ones previously published
in [106]. This chapter is organized as follows. section 5.1 provides some basic concepts
on dissipativity and passivity, and it describes the problem solved in this chapter,
and concepts the dissipativity recovery by fault hiding procedure. section 5.2 uses
that concept for passivity and stability recovery by fault hiding of nonlinear systems.
Moreover, section 5.2 presents new LMI-based conditions for designing SRBs which
guarantee the stability recovery by recovering the passivity of the faulty system. Similarly,
section 5.3 uses the same concept for (Q,S,R)-dissipativity and stability recovery for
nonlinear systems and provides LMI-based design conditions for SRBs which guarantee
the stability recovery by recovering the (Q,S,R)-dissipativity of the faulty system.
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5.1 Preliminaries

5.1.1 Dissipativity and passivity

Consider the nonlinear system Σ described as follows

Σ :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),u(t)) ,
y(t) = h (x(t)) + j (x(t),u(t)) ,

(5.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are, respectively, the state, input and
output vectors, and the maps f , g, h, and j, such that f(0) = 0 and h(0) = 0,
are sufficiently smooth to ensure that (5.1) is well defined, i.e., for any x (t0) and
admissible u(t), there exists a unique solution for t ≥ t0 such that y(t) is locally
integrable. Furthermore, assume also Σ is ZSD [19].

Dissipativity is a useful concept for dynamic system analysis that allows to
investigate their stability by means of the energy balance, i.e., the difference between
the stored and supplied energy.

Definition 5.1. Dissipative systems [241]
The system Σ described in (5.1) is dissipative with respect to a supply rate function (t)

if there exists a positive semidefinite continuously differentiable function V (x), called
storage function, such that the following dissipation inequality is satisfied

∂V

∂x
f (x(t)) + ∂V

∂x
g (x(t),u(t)) ≤ (u,y). (5.2)

Different supply functions can be used for dissipativity analysis. An important
case is the (Q,S,R)-dissipativity that is defined as follows.

Definition 5.2. (Q,S,R)-dissipative systems [241]
The system Σ is (Q,S,R)-dissipative if it is dissipative with respect to the following

supply rate:
(u,y) = y⊤Qy + 2u⊤Sy + u⊤Ru. (5.3)

An important property of (Q,S,R)-dissipativity is its relation to asymptotic
stability as stated in Lemma 5.1. In particular, if the system Σ described by (5.1) is
ZSD and (Q,S,R)-dissipative, the all the storage functions V (x) that satisfy the
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dissipation inequality (5.2) are positive definite [19, Lemma 1]. It enables the relation
between the storage and Lyapunov functions when u = 0. Based on this relation,
the following theorem establishes the relation between (Q,S,R)-dissipativity and
asymptotic stability.

Lemma 5.1. Stability of (Q,S,R)-dissipative systems [19, Theorem 2] Let the
system Σ be (Q,S,R)-dissipative and ZSD. Then the unforced origin of Σ is stable if
Q ⪯ 0 and asymptotically stable if Q ≺ 0.

Passivity is a special case of dissipativity for which the storage function is positive
semidefinite storage functions V (x). In particular, a system is said to be passive if it is
dissipative with respect to the supply rate (u,y) = u⊤y for some positive semidefinite
V (x). Moreover, it is said strictly passive if it is dissipative with respect to the supply
rate (u,y) = u⊤y − ψ(x) for some positive definite function ψ and for some positive
semidefinite V (x). Additionally, it is said output strictly passive if it is dissipative with
respect to the supply rate (u,y) = u⊤y − y⊤ρ(y) and y⊤ρ(y) > 0 for all y ≠ 0 for
some positive semidefinite V (x). The stability of the origin of a system can be also
related to the passivity. In this case, if a system is passive then its unforced origin is
stable [139, Lemma 6.6]. Finally, if a system is strictly passive or if it is output strictly
passive and ZSD, its unforced origin is asymptotically stable [139, Lemma 6.7].

Dissipativity theory provides an effective tool for analysis of interconnected
systems. Lemma 5.2 summarizes some results on dissipativity and stability of a
feedback interconnection between two systems.

Lemma 5.2. [178, 257, 258] Consider two systems, interconnected by feedback as

Σa+

Σb +

wa ya

wbyb

ua

ub

ya

yb

−

Figure 5.1 – Feedback interconnection between Σa and Σb.

depicted in Figure 5.1, Σa : (ya(t),xa(t)) = Ωa(xa(0),ua(t)) and Σb : (yb(t),xb(t)) =
Ωb(xb(0),ub(t)) such that (Σa,Σb) : (ȳ(t), x̄(t)) = Ω̄ (x̄(0), w(t)), where x̄ =
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[︂
xa(t)⊤ xb(t)⊤

]︂⊤
, w̄ =

[︂
wa(t)⊤ wb(t)⊤

]︂⊤
, ȳ =

[︂
ya(t)⊤ yb(t)⊤

]︂⊤
, ua(t) =

wa(t)− yb(t), and ub(t) = wb(t) + ya(t).

a) If Σa is strictly passive and Ωb is a passive memoryless function, then the origin
of (Σa,Σb) is asymptotically stable with wa(t) = wb(t) = 0.

b) If Σa and Σb are strictly passive, then the origin of (Σa,Σb) is asymptotically
stable with wa(t) = wb(t) = 0.

c) If Σa and Σb are, respectively, (Qa,Sa,Ra)-dissipative and (Qb,Sb,Rb)-dissipative,
then (Σa,Σb) is (Q̄,S̄,R̄)-dissipative with

Q̄ =
⎡⎣ Qa + Rb Sb − S⊤

a

S⊤
b − Sa Qb + Ra

⎤⎦ , S̄ =
⎡⎣ Sa

1
2He {Rb}

−1
2He {Ra} Sb

⎤⎦ ,
R̄ =

⎡⎣ Ra 0
0 Rb

⎤⎦ .
Furthermore, for wa(t) = wb(t) = 0, if Σa and Σb are ZSD and Q̄ ≺ 0, then
(Σa,Σb) is asymptotically stable.

5.1.2 Problem Statement

Let a fault-free plant be represented by the following nominal model ΣP:

ΣP :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),up(t)) ,
yp(t) = h (x(t)) + j (x(t),up(t)) ,

(5.4)

associated to the operator ΣP : (yp(t),x(t)) = Ω (up(t),x0), where x(t) ∈ Rn,
u(t) ∈ Rm, and y(t) ∈ Rm are, respectively, the vectors of state, input, and output
variables; x0 = x (0); and the matrix-valued maps f , g, h, and j are sufficiently smooth
with appropriate dimensions. The same plant under faulty operation is represented by
the following faulty model ΣPf :

ΣPf :

⎧⎨⎩ ẋ(t) = ff (x(t)) + gf (x(t),up(t)) ,
yp(t) = hf (x(t)) + jf (x(t),up(t)) ,

(5.5)

associated to the operator ΣPf : (yp(t),x(t)) = Ωf (up(t),xf,0), where xf,0 = x (tf),
tf is the time when the fault begins, x(t) ∈ Rn, up(t) ∈ Rm, and y(t) ∈ Rm are,
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respectively, the vectors of state, input, and output variables; the matrix-valued maps
ff , gf , hf , and jf are sufficiently smooth with appropriate dimensions.

The plant is interconnected by feedback to a dynamic output feedback controller
ΣC described as follows:

ΣC :

⎧⎨⎩ ẋc(t) = fc (xc(t)) + gc (x(t)) yc(t),
uc(t) = hc (x(t)) + jc (xc(t)) yc(t).

(5.6)

where xc,0 = xc (0); the matrix-valued maps fc, gc, hc, and jc are sufficiently smooth
with appropriate dimensions.

To recover the system properties after fault occurrence, the following SRBs ΣR

is inserted between ΣPf and ΣC:

ΣR :

⎧⎨⎩ yr(t) = R1yp(t) + R2uc(t),
ur(t) = R3yp(t) + R4uc(t),

(5.7)

where yr(t) ∈ Rm and ur(t) ∈ Rm are, respectively, the vectors of reconfigured
measurements injected into controller and reconfigured control signals injected into the
plant; and the real matrices R1, R2, R3, and R4 are gains of the SRB ΣR which are
designed to solve the fault hiding problem.

5.1.3 Overview of Dissipativity Recovery

The idea behind of dissipativity recovery is to find RB that ensures that the
reconfigured plant (ΣPf ,ΣR) exhibits the same dissipativity properties of the nominal
(fault-free) system ΣP. To illustrate it, suppose that ΣP described in (5.4) is dissipative
with respect to the supply rate function S : Rm × Rm → R, i.e., there exist a non-
negative continuously differentiable storage function V : Rn → R≥0 such that the
following dissipation inequality holds

V̇ (x) ≤ (up,yp). (5.8)

The dissipativity of ΣP may be related to several other properties, such as
asymptotic stability, L2-stability, and passivity. Moreover, the combination of dissipa-
tivity properties of the controller ΣC and the plant ΣP, interconnected as depicted in
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Figure 5.2, is related to the closed-loop guarantees which motivate the controller design.
Indeed, the closed-loop guarantees can be usually expressed as dissipation inequalities
and some control strategies are based on the manipulation of those dissipation proper-
ties, e.g., interconnection and damping assignment passivity based control [259] and
energy shaping [260].

ΣP/ΣPf

Σc

up

yc

yp

uc

Figure 5.2 – Control loop with ΣP/ΣPf and ΣC and without reconfiguration.

In addition to the evident effects in the parameters of ΣPf described in (5.5),
the fault effects may also lead to the loss of the dissipativity, i.e., ΣPf may no longer
meet dissipation inequality (5.8) anymore. The dissipativity recovery by fault hiding
using an RB consists of inserting the RB in the control loop as depicted in Figure 5.3 to
guarantee that the reconfigured plant (ΣPf ,ΣR) meets the dissipation inequality (5.8).

ΣPf

ΣC

+ R1R4

R3

R2 +

ur yp

yr

ycuc

(ΣPf ,ΣR)

Figure 5.3 – Equivalent reconfigured loop of (ΣPf ,ΣR,ΣC).

Therefore, the following fault hiding problem is addressed in this chapter related
to the dissipativity recovery.
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Problem 5.1. – Dissipativity Recovery by Fault Hiding
Let ΣP and ΣPf be the nominal and the faulty models, respectively, with dynamics

described by (5.4) and (5.5) both interconnected by feedback to controller ΣC. Assume
ΣP is dissipative with respect to a supply rate function (up,yp). Find an SRB ΣR,
described by (5.7), such that the origin of (ΣPf ,ΣR) is also dissipative with respect to
(uc(t),yr(t)).

This chapter provides solutions to Problem 5.1 by considering two particular
cases of dissipativity: the passivity and the (Q,S,R)-dissipativity. Moreover, the
dissipativity recovery is used for recovering also the asymptotic stability. For solving
Problem 5.1, the following definitions are used to characterize the faulty system ΣPf

whose dissipativity and stability were recovered by fault hiding.

Definition 5.3. Dissipativity recovery by fault hiding
Let ΣP and ΣPf be the nominal and the faulty models with dynamics described,

respectively, by (5.4) and (5.5). Assume that ΣP is dissipative with respect to a supply
rate function (up,yp) with a non-negative continuously differentiable storage function
V (x), i.e., ΣP satisfies the dissipation inequality (5.8). ΣPf is dissipative by fault
hiding if there exists an RB ΣR such that (ΣPf ,ΣR) is also dissipative with respect to
(uc(t),yr(t)). Therefore, ΣR is a solution of Problem 5.1.

Definition 5.4. Stability recovery by fault hiding
Let ΣP and ΣPf be nominal and faulty models with dynamics described respectively

as (5.4) and (5.5) for the same system interconnected by feedback to a controller ΣC

as depicted in Figure 5.2. Assuming that the origin of (ΣP,ΣC) is asymptotically stable,
then ΣPf is stable by fault hiding if there exists a reconfiguration block ΣR described
by (5.7) such that the origin of (ΣPf ,ΣR,ΣC) is also asymptotically stable.

5.2 Passivity Recovery by Fault Hiding

The following lemma provides sufficient conditions for asymptotic stability of
faulty systems by means of passivity recovery by fault hiding.

Lemma 5.3. Let ΣP and ΣPf be the nominal and the faulty models, respectively,
with dynamics described by (5.4) and (5.5) for a plant that is interconnected, as
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depicted in Figure 5.2, to an strictly passive output feedback controller ΣC. Assume
that ΣP is strictly passive and there exists a positive definite continuously differentiable
V (·) such that V̇ (x) < u⊤

p (t)yp(t). If there exist R1,R2,R3, R4, such that the
reconfigured plant (ΣPf ,ΣR), as depicted in Figure 5.3, is also strictly passive and
V̇ (x) < u⊤

c (t)yr(t) for the same V (·), then ΣPf is stable by fault hiding with ΣR

described in (5.7).

Proof. Since ΣP and ΣC are strictly passive, Lemma 5.2 ensures that the origin of
feedback interconnection (ΣP,ΣC) is asymptoticaly stable. Given that V (x) is positive
definite, assume that it is taken as storage function for (ΣPf ,ΣR). If there exists any
ΣR, such that

V̇ (x) ≤ W2(x),

then ΣPf is dissipative by fault hiding with respect to (uc(t),yr(t)) = W2(x) =
u⊤

c (t)yr(t) − ψ2(x), according to Definition 5.3, and (ΣPf ,ΣR) is strictly passive.
Finally, given that (ΣPf ,ΣR) and ΣC are strictly passive systems with positive definite
storage functions interconnected as depicted in Figure 5.3, it follows that (ΣPf ,ΣR,ΣC)
is strictly passive and its unforced origin is asymptotically stable, therefore ΣPf is stable
by fault hiding according to Definition 3.1.

Example 5.1. Let ΣP and ΣPf be, respectively, the nominal and faulty model for the
same system described as follows

ΣP :

⎧⎨⎩ aẋ(t) = −x(t) + up(t),
yp(t) = h(x(t)),

, ΣPf :

⎧⎨⎩ aẋ(t) = −x(t) + f · up(t),
yp(t) = h(x(t)),

such that h(·) ∈ (0,∞] and 0 < f < 1. Consider that the origin of (ΣP,ΣC) is
asymptotically stable with the strictly passive output feedback controller ΣC connected
as depicted in Figure 2.2.

Considering V (x) =
∫︁ x

0 h(σ)dσ, it is possible to show that V̇ (x) < uc(t)yp(t),
thus, ΣP is passive.

Using the same storage function V (x) =
∫︁ x

0 h(σ)dσ for the configuration
(ΣPf ,ΣR), it follows that:

V̇ (x)− ucyr = h(x)[−x+ f(R3h(x) +R4uc)]− (R1h(x) +R2uc)uc < 0,
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Thus, if R1 = f · R4, R2 > 0, and R3 < 0, then V̇ (x) < uc(t)yr(t) implies that
(ΣPf ,ΣR) is passive. Given that ΣC is strictly passive, the origin of (ΣPf ,ΣR,ΣC) is
asymptotically stable, i.e., ΣPf is stable by fault hiding with ΣR such that R1 = f ·R4,
R2 > 0, and R3 < 0.

The next theorem tackles the particular case of passivity recovery for linear
systems.

Theorem 5.1. Let ΣP and ΣPf be the nominal and faulty models, respectively, with
dynamics described as follows

ΣP :

⎧⎨⎩ ẋ(t) = Ax(t) + Bup(t),
yp(t) = Cx(t),

(5.9)

ΣPf :

⎧⎨⎩ ẋ(t) = Afx(t) + Bfur(t),
yp(t) = Cfx(t),

(5.10)

for the same plant interconnected, as depicted in Figure 2.2, to a strictly passive
output feedback controller ΣC. Assume that there exists P = P ⊤ ≻ 0, such that
A⊤P + P A ≺ 0 and B⊤P = C. The faulty system ΣPf is stable by fault hiding with
ΣR described by (5.7) if there exist R1, R2, R3, and R4 that satisfy, with the same
P , the following inequality:⎡⎣ He {P (Af + BfR3C)} P BfR4 −C⊤

f R⊤
1

⋆ −He {R2}

⎤⎦ ≺ 0. (5.11)

Proof. According to KYP lemma [241, Lemma 2.16], if there exists P = P ⊤ ≻ 0,
such that A⊤P + P A ≺ 0 and B⊤P = C, then ΣP is strictly passive. Given that
ΣC is also strictly passive, then Lemma 5.2 ensures that (ΣP,ΣC) is asymptotically
stable, since it is an interconnection of strictly passive systems.

Lemma 5.3 indicates that the same storage function, with the same matrix P ,
can be used to ensure the passivity of the reconfigured plant (ΣP,ΣR). The reconfigured
system (ΣPf ,ΣR) is described as follows, with AR = Af + BfR3Cf , BR = BfR4,
CR = R1Cf , and DR = R2:

(ΣPf ,ΣR) :

⎧⎨⎩ ẋ(t) = ARx(t) + BRuc(t)
yr(t) = CRx(t) + DRuc(t)

. (5.12)
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Thus, according to KYP Lemma [241, Lemma 2.16], (ΣPf ,ΣR) is strictly
passive if (5.11) is satisfied for some R1, R2, R3, and R4. In this case, the closed-loop
reconfigured system (ΣPf ,ΣR,ΣC) is asymptotically stable according to Lemma 5.2,
since ΣC is also a strictly passive system. Therefore, according to Lemma 5.3, ΣPf is
stable by fault hiding with ΣR defined as (5.7).

Remark 5.1. If ΣP is an SISO strictly passive system, ΣC is a static output feedback
controller such that uc(t) = kyc(t) and k > 0, then the result of Theorem 5.1 is also
valid, since it is a passive memoryless function.

Example 5.2. Let ΣP be a heat exchange system model [241], controlled by a static
output feedback controller ΣC : uc = yr, and described by (5.9) with

A =
⎡⎣ −690.87 279.17

69.254 −375.29

⎤⎦ , B =
⎡⎣ 411.7 0

0 306.03

⎤⎦ , C =
⎡⎣ 1 0

0 1

⎤⎦ .
According to KYP lemma, ΣP is strictly passive for the storage function V (x) =

xT P x with

P =
⎡⎣ 0.0008 0.0003

0.0003 0.0017

⎤⎦ . (5.13)

Consider that an actuator fault occurs such that Σ2
Pf

is described by (5.10) with

A1
f = A, B1

f =
⎡⎣ 0 0

0 275.427

⎤⎦ , C1
f = C.

The following RB Σ1
R is obtained based on Theorem 5.1 by solving the LMI (5.11)

using (5.13) and the LMILAB

R1
1 =

⎡⎣ 0.7179 0.3951
0.1019 1.3910

⎤⎦ , R1
2 =

⎡⎣ 0.9715 0
0 0.9715

⎤⎦ ,
R1

3 =
⎡⎣ 0 0
−0.1327 −0.8374

⎤⎦ , R1
4 =

⎡⎣ 1.9431 −1.0235
1.0235 2.1976

⎤⎦ .
Consider now that a plant fault occurs such that Σ2

Pf
is described by (5.10)

with

A2
f =

⎡⎣ −461.7000 50.0000
69.2540 −375.2900

⎤⎦ , B2
f = B, C2

f = C.
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In this case, an RB Σ2
R is obtained based on Theorem 5.1 by means of LMILAB.

The computed gains of Σ2
R are described as follows:

R2
1 =

⎡⎣ 41.8884 −7.0504
17.3065 57.8189

⎤⎦ , R2
2 =

⎡⎣ 38.3822 0
0 38.3822

⎤⎦ ,

R2
3 =

⎡⎣ −127.0821 45.0768
24.1794 −86.7559

⎤⎦ , R2
4 =

⎡⎣ 87.1790 34.6017
−32.6280 85.8490

⎤⎦ .
Consider a third scenario with sensor fault occurrence such that Σ3

Pf
is described

by (5.10) with

A3
f = A, B3

f = B, C3
f =

⎡⎣ 1 0
0 0

⎤⎦ .
In this case, according to Theorem 5.1, an RB Σ3

R is obtained with the following
gains

R3
1 =

⎡⎣ 1.0669 −0.0476
0.0476 1.8886

⎤⎦ , R3
2 =

⎡⎣ 0.9443 0
0 0.9443

⎤⎦ ,
R3

3 =
⎡⎣ −1.5051 0

0.4646 0

⎤⎦ , R3
4 =

⎡⎣ 2.0816 −0.2607
−0.0764 1.2709

⎤⎦ .
Finally, supposes that the three faults above described occurs simultaneously,

i.e., Σ4
Pf

is described by (5.10) with

A4
f = A2

f , B4
f = B1

f , C4
f = C3

f .

In this case, according to Theorem 5.1, an RB Σ4
R is obtained by means of

LMILAB with the following gains

R4
1 =

⎡⎣ 0.4968 −0.0986
0.0986 1.4511

⎤⎦ , R4
2 =

⎡⎣ 0.7255 0
0 0.7255

⎤⎦ ,

R3
3 =

⎡⎣ 0 0
−0.0560 0

⎤⎦ , R3
4 =

⎡⎣ 1.4511 −0.1907
0.1907 0.9579

⎤⎦ .
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5.3 (Q,S,R)-dissipativity Recovery by Fault Hiding

The next lemma provides conditions for asymptotically stabilization with RBs
after a fault occurrence by means of dissipativity recovery by fault hiding.

Lemma 5.4. Let ΣP and ΣPf be nominal and faulty models, respectively, with dynamics
described by (2.1) and (2.2) for the same plant interconnected, as depicted in Figure 2.2,
to an output feedback controller ΣC. Assume that ΣP, ΣPf , and ΣC are ZSD; ΣP is
(Q,S,R)-dissipative; ΣC is (Qc,Sc,Rc)-dissipative; and the following inequality holds⎡⎣ Q + Rc Sc − S⊤

S⊤
c − S Qc + R

⎤⎦ ≺ 0. (5.14)

If there exist R1, R2, R3, R4, such that (ΣPf ,ΣR) is also (Q,S,R)-dissipative, then
ΣPf is stable by fault hiding with ΣR described in (5.7).

Proof. Assuming that ΣP is (Q,S,R)-dissipative, ΣC is (Qc,Sc,Rc)-dissipative, ΣP

and ΣC are ZSD, and (5.14) is satisfied, then the unforced origin of (ΣP,ΣC) is
asymptotically stable according to Lemma 5.2. Similarly, if there exists any ΣR, such
that (ΣPf ,ΣR) is also (Q,S,R)-dissipative, then (5.14) is still satisfied. Given that
(ΣPf is ZSD, (ΣPf ,ΣR) is also ZSD, and the unforced origin of (ΣPf ,ΣR,ΣC) is also
asymptotically stable according to Lemma 5.2. Therefore ΣPf is stable by fault hiding
according to Definition 3.1.

Example 5.3. Consider the nonlinear system with nominal and fault models, respectively
ΣP and ΣPf , described as follows:

ΣP :

⎧⎨⎩ ẋ(t) = −4x3(t)− 4upx(t),
yp(t) = x2(t),

ΣPf :

⎧⎨⎩ ẋ(t) = 2x3(t)− 4upx(t),
yp(t) = x2(t),

interconnected as depicted in Figure 2.2 to an output feedback controller described as
follows

ΣC :

⎧⎨⎩ ẋc(t) = −xc(t) + yc(t),
uc(t) = 1

2xc(t).
(5.15)

Adopting V (x(t)) = 1
2x

2(t) as the storage function, ΣP is (Q,S,R)-dissipative,
i.e., V̇ (x) ≤ (yp, up) for the supply function (yp, up) defined in (5.3), if the following
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inequality is satisfied for some Q, S, and R

x(−4x3 − 4upx) ≤ Qx4 + 2Sx2up +Ru2
p,

or equivalently

V̇ (x)− (x, up) = −(Q+ 4)x4 − (2S + 4)upx
2 −Ru2

p ≤ 0. (5.16)

Therefore (5.16) is satisfied with Q = −4, S = −2, and R = 0. Similarly,
adopting Vc(xc) = 1

2x
2
c, ΣC is (Qc,Sc,Rc)-dissipative if

V̇ c(xc)− (xc, yr) = −
(︃
Qc

4 + 1
)︃
x2

c − (Sc − 1) yrxc −Rcy
2
r ≤ 0,

is satisfied for some Qc, Sc, and Rc, implying that Qc = −4, Sc = 1, and Rc = 0. Note
that Q, S, R, Qc, Sc, and Rc satisfy (5.14), then the nominal system is asymptotically
stable. According to Lemma 5.4, ΣPf is stable by fault hiding if (ΣPf ,ΣR), as depicted
in Figure 5.3, is also (Q,S,R)-dissipative. The model of (ΣPf ,ΣR) is described as
follows

(ΣPf ,ΣR) :

⎧⎨⎩ ẋ = (2− 4R3)x3 − 4R4upx

yr = R1x
2 +R2up

(5.17)

(ΣPf ,ΣR) is (Q,S,R)-dissipative with the same storage and supply functions used for
ΣP if there exist R1, R2, R3, and R4 that satisfy V̇ (x)− (x, uc) ≤ 0, or equivalently

−
(︂
4R3 − 4R2

1 − 2
)︂
x4 − (4R4 − 8R1R2 − 4)upx

2 +
(︂
4R2 + 4R2

2

)︂
u2

p ≤ 0. (5.18)

Therefore, any ΣR satisfying (5.18) recovers the asymptotic stability of ΣPf ,
e.g., R1 = 1

4 , R2 = −1
2 , R3 = 3

2 , and R4 = 3
4 .

The next Theorem provides LMI-based conditions to design an SRBs ΣR (cf.
(5.7)) that guarantees the stability recovery by fault hiding of LTI systems.

Theorem 5.2. Let ΣP and ΣPf be the nominal and faulty models, respectively, with
dynamics described in (5.9) and (5.10) interconnected (as depicted in Figure 2.2) to
an output feedback (Qc,Sc,Rc)-dissipative controller ΣC. Assume that there exist
P = P ⊤ ≻ 0, Q = Q⊤ ≺ 0, S, and R = R⊤ that satisfy the inequalities (5.14) and⎡⎣ He {P A} −C⊤QC P B −C⊤S⊤

⋆ −R

⎤⎦ ⪯ 0. (5.19)
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For given P , Q, S and R satisfying (5.19), if there exist R1, R2, R3, and R4

that satisfy the following inequality with AR = Af + BfR3Cf⎡⎢⎢⎢⎣
Q−1 R1Cf R2

⋆ He {P AR} P BfR4 −C⊤
f R⊤

1 S⊤

⋆ ⋆ −R

⎤⎥⎥⎥⎦ ≺ 0, (5.20)

then ΣPf is stable by fault hiding with ΣR described by (5.7).

Proof. According to [178], ΣP is (Q,S,R)-dissipative with the storage function
V (x) = x⊤P x if and only if there exist P = P ⊤ ≻ 0, Q = Q⊤ ≺ 0, S, and R = R⊤

that satisfy (5.19). According to Lemma 5.2, assuming that ΣC is (Qc,Sc,Rc)-
dissipative, the unforced origin of nominal closed-loop system (ΣP,ΣC), interconnected
as depicted in Figure 2.2, is asymptotically stable if (5.14) is satisfied.

According to [178], the reconfigured system (ΣP,ΣR), described by (5.12), is
(Q,S,R)-dissipative if and only if the following inequality is satisfied⎡⎣ He {P AR} −C⊤

R QCR P BR −C⊤
R S⊤ −C⊤

R QDR

⋆ −R− He
{︂
D⊤S

}︂
−D⊤

RQDR

⎤⎦ ⪯ 0. (5.21)

According to Schur complement lemma, if (5.20) is satisfied, given that Q ≺ 0,
then the following inequality is also satisfied, considering L ≜

[︂
R1Cf R2

]︂
:

⎡⎣ A⊤
RP + P AR P BfR4 −C⊤

f R⊤
1 S⊤

⋆ −R− He
{︂
D⊤S

}︂ ⎤⎦−L⊤QL ≺ 0,

that is equivalent to (5.21), i.e., (5.20) is sufficient to (ΣPf ,ΣR) be (Q,S,R)-
dissipative. Finally, if (5.14) and (5.20) are satisfied, then the unforced origin of
(ΣPf ,ΣR,ΣC) is asymptotically stable by fault hiding, and ΣPf is stable by fault hiding
with ΣR described by (5.7).

Example 5.4. Consider the aircraft yaw control described in [16], where the following
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simplified and linearized model is considered for the yaw angle ϕ

ΣP :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
ẋR

ẋT

ϕ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−1 0 0
0 −1 0

0.27 0.13 −10−3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xR

xT

ϕ

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
1 0
0 1
0 0

⎤⎥⎥⎥⎦
⎡⎣ uR

uT

⎤⎦ ,

yp =
[︂

0 0 1
]︂ ⎡⎢⎢⎢⎣

xR

xT

ϕ

⎤⎥⎥⎥⎦
,

where the rudder and turbine actuation have their own dynamics, which are approx-
imated, as proposed in [16], by first-order models with states variables xR and xT

and time constants of 1 s; uR and uT denote respectively the rudder and differential
thrust inputs. The yaw dynamics is controlled by an output feedback controller ΣC

interconnected as depicted in Figure 2.2

ΣC :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋc = −0.05xc + 0.05yr,

up =
⎡⎣ 25

0

⎤⎦xc,

The controller ΣC is chosen to highlight the efficacy of the proposed fault hiding
approach. One can notice that ΣC is nominally designed to use only the rudder actuator,
as proposed in [16], which is unusual for real applications. However, it serve to the
purpose of illustrating the effect of a fault in the rudder controller and the ability of
stability recovery provided by the proposed RBs designed following the dissipativity
recovery approach presented in this chapter. Figure 5.4 depicts the system response
in a 3000 s numerical simulation. It indicates that the output slowly, since in nominal
operation, the origin of (ΣP,ΣC) is asymptotically stable.

Consider that such system is subject to an actuator fault, such that its matrix
Bf is described as follows

Bf =

⎡⎢⎢⎢⎣
0 0
0 1
0 0

⎤⎥⎥⎥⎦ ,
that corresponds to loss the rudder actuator.

Two RBs are designed for this fault scenario. The RB Σp
R is designed for passivity

recovery based on Theorem 5.1, and the second one Σd
R is designed for dissipativity
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Figure 5.4 – Output response of aircraft yaw control under nominal (fault-free)
operation.

recovery based on Theorem 5.2. Their gains are described as follows

Rp
1 =

⎡⎣ 0.6202 −0.0556
0.0556 2.2842

⎤⎦ , Rp
2 =

⎡⎣ 1.4630 0.4650
−0.3470 1.5252

⎤⎦ ,

Rp
3 =

⎡⎣ 0 0
−0.4187 0

⎤⎦ , Rp
4 =

⎡⎣ 2.2842 −0.1227
0.1227 0.8143

⎤⎦ ,
Rd

1 =
⎡⎣ 0.5003 0

0 5.7735× 108

⎤⎦ , Rd
2 =

⎡⎣ 0.4477 0.0049
0 0

⎤⎦ ,
Rd

3 =
⎡⎣ 0 0
−1.0675 0

⎤⎦ , Rd
4 =

⎡⎣ 0 0
−0.0494 −0.0028

⎤⎦ .
The results of the actuator fault simulation comparing the reconfigured systems

with Σp
R, Σd

R, and without RB are depicted in Figures 5.5–5.7 with initial condition[︂
−1.25 1 0.15

]︂⊤
, and the fault occurs from t = 50 s. An impulse disturbance is

inserted at the output at t = 65s.

Figure 5.5 depicts the output signals indicating that the aircraft yaw becomes
unstable without reconfiguration, but both, Σp

R and Σd
R, recovers the stability after the

fault occurrence. Figures 5.6 and 5.7 depict the control efforts during the simulation
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Figure 5.5 – Comparison of the output responses of aircraft yaw control without
FTC, with the RBs designed for passivity recovery, with the RBs
designed for (Q,S,R)-dissipativity recovery, and without fault oc-
currence (healthy).

of the rudder actuator uR and differential thrust uT , respectively. Since the controller
ΣC initially does not use the differential thrust, when the fault occurs the uR tends
to increase and becomes unstable when there is not an RB. However, Figures 5.6
and 5.7 indicate that the RBs perform a control reallocation using the other actuator
to compensate for the fault and recover the aircraft yaw dynamics stability.
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Figure 5.6 – Comparison of reconfigured control signals of the rudder actuator uR

of aircraft yaw control system without FTC, with the RBs designed for
passivity recovery, with the RBs designed for (Q,S,R)-dissipativity
recovery, and without fault occurrence (healthy).
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Figure 5.7 – Comparison of reconfigured control signals of the differential thrust
uT of aircraft yaw control system without FTC, with the RBs de-
signed for passivity recovery, with the RBs designed for (Q,S,R)-
dissipativity recovery, and without fault occurrence (healthy).
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6 PASSIVATION-BASED FAULT HIDING OF NONLINEAR SYSTEMS

Dissipativity and passivity theory and their relation with input-output stability
is an important paradigm of dynamical system analysis and synthesis [178, 250].
Dissipativity and passivity-based approaches are established on a generalized notion of
energy balance for dynamical systems considering the supplied and stored energy from
the perspective of input and output signals. In this context, the passivity indices [242]
and passivation techniques [243, 244] have been studied for obtaining closed-loop
systems with desired passivity properties. Passivation is the use of controllers in order
to ensure that a closed-loop system will present some desired dissipation or passivity
properties.

In this work, a novel RB called PB is presented. It can be generically used
for actuator and sensor faults and to perform simultaneously series, feedback and
feedfoward passivation of the controller for mitigation of fault effects. In addition,
LMI-based conditions are obtained for designing the PB to ensure asymptotic stability
of the reconfigured system based on dissipativity theory. Unlike previous approaches,
the proposed PB is suitable for different classes of nonlinear systems since their passivity
indices can be determined. In summary, the main contributions of this chapter are:

a) the concept of PB for FTC of nonlinear systems is introduced and compared
to other passivation strategy for fault mitigation in [200];

b) a (Q,S,R)-dissipativity and passivity indices analysis for the interconnection
between faulty plant, controller, and PB is presented;

c) it is shown that the proposed PB structure generalizes the VAs and VSs for
linear systems, although it can also be used for nonlinear systems;

d) new LMI-based stability recovery conditions after sensor or actuator fault
occurrence are established.

The remainder of this chapter is organized as follows: Section 6.1 presents the
problem of stability recovery by fault hiding based on passivity indices; Section 6.2
presents the concept of PB; Section 6.3 provides the condition for asymptotic stability
recovery with PBs; and Section 6.4 presents numerical simulation results.
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6.1 Preliminaries

6.1.1 Dissipativity and Passivity Indices

Consider the nonlinear system Σ described as follows

Σ :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),u(t)) ,
y(t) = h (x(t)) + j (x(t),u(t)) ,

(6.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are, respectively, the state, input and
output vectors, and the maps f , g, h, and j satisfy Assumption 6.1. Assume also that
Σ is ZSD [19].

Assumption 6.1. The maps f , g, h, and j are sufficiently smooth to ensure that (6.1)
is well defined, i.e., for any x (t0) and admissible u(t), there exists a unique solution
for t ≥ t0 such that y(t) is locally integrable. Furthermore, f(0) = 0 and h(0) = 0.

Remark 6.1. For the concept of passivity indices that is discussed in the following, it
is required that the number of inputs is equal to the number of outputs. If it is not
possible to have the same number of inputs and outputs, it is still possible to extend
u(t) or y(t) by adding virtual inputs/output that are negligible in the system dynamics.

The system Σ is dissipative if its stored energy, represented by the time derivative
of a non-negative continuously differentiable function V (x(t)), is always less than or
equal to the supplied energy, represented by a supply rate function (u(t),y(t)). A
special case of dissipativity is the (Q,S,R)-dissipativity introduced in Definition 5.2.

Passivity is a special case of dissipativity, i.e., a system is said to be passive if it
is dissipative with respect to the supply rate (u(t),y(t)) = u(t)⊤y(t). In particular,
the framework of passivity indices is useful to obtain an indication of the passivity
degree [178] as shown in Definition 6.1 and to develop passivation strategies [200]. To
this purpose, the concept of IF-OFP systems is provided as follows.

Definition 6.1. [200] The system Σ described in (6.1) is input feedforward output
feedback passive (IF-OFP) if for some ν, ρ ∈ R it is dissipative with respect to

(u(t),y(t)) = u(t)⊤y(t)− νu(t)⊤u(t)− ρy(t)⊤y(t). (6.2)
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In this case, Σ is denominated IF-OFP(ν, ρ), where ν and ρ are called input feedforward
and output feedback passivity indices, respectively, which correspond to the excess of
passivity of Σ. If Σ is IF-OFP(ν, ρ) with ν > 0 and ρ > 0, then it is said VSP.

Particular cases of Definition 6.1 are used to describe IFP and OFP by removing,
respectively, the terms of ρy(t)⊤y(t) and νu(t)⊤u(t) respectively. The passivity indices
provide intuitiveness to the dissipativity framework because they are related to the
concept of lack (or excess) of passivity of a system. This means that ν indicates how
much feedfoward gain can be inserted preserving Σ stability given the excess of input
passivity νu(t)⊤u(t) and, similarly, ρ indicates how much feedback gain can be inserted
to preserve Σ stability given the excess of output passivity ρy(t)⊤y(t). In this sense,
every system is IF-OFP(ν, ρ) for some ν and ρ, but the maximum value that ν and
ρ can assume are indicators of the stability margins of that system. For instance, if
the maximum ρ that can be assigned for a system Σ is negative, then it is possible
to ensure that Σ is open-loop unstable and requires a negative feedback action to
compensate for such lack of passivity that results in the instability. Based on that, the
following fact is considered regarding the framework of passivity indices.

Lemma 6.1. If Σ is IF-OFP(ν, ρ) for some scalars ν and ρ, then Σ is also IF-OFP(ν⋆, ρ⋆)
for any ν⋆ ≤ ν and ρ⋆ ≤ ρ.

Proof. Defining

(u(t),y(t)) = u(t)⊤y(t)− νu(t)⊤u(t)− ρy(t)⊤y(t),

S̄(u(t),y(t)) = u(t)⊤y(t)− ν̄u(t)⊤u(t)− ρ̄y(t)⊤y(t),

it follows that S̄(u(t),y(t)) ≥ (u(t),y(t)) for any ν̄ ≤ ν and ρ̄ ≤ ρ. Thus, given
that Σ is dissipative with respect to (u(t),y(t)) it is also dissipative with respect to
S̄(u(t),y(t)), and therefore Σ is IF-OFP(ν̄, ρ̄).

The concepts of passivity indices and (Q,S,R)-dissipativity are closely related.
Indeed, it is observed that the supply function (6.2) is a special case of (5.3) by choosing
Q = −ρIm, S = −1

2Im, and R = −νIm. Furthermore, the feedback interconnection
of IF-OFP systems is (Q,S,R)-dissipative as stated in Lemma 6.2.
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Lemma 6.2. [250] Consider the systems Σ1 and Σ2 described as in (6.1) and inter-
connected by negative feedback. If Σ1 and Σ2 are IF-OFP(ν1,ρ1) and IF-OFP(ν2,ρ2),
respectively, then the interconnected system is (Q̄,S̄,R̄)-dissipative with matrices

Q̄ =
⎡⎣ −(ρ1 + ν2)Im 0m×m

0m×m −(ρ2 + ν1)Im

⎤⎦ , (6.3)

S̄ =
⎡⎣ 1

2Im ν1Im

−ν2Im
1
2Im

⎤⎦ , (6.4)

R̄ =
⎡⎣ −ν1Im 0m×m

0m×m −ν2Im

⎤⎦ , (6.5)

with input w(t) ≜
[︂
w1(t)⊤ w2(t)⊤

]︂⊤
and output y ≜

[︂
y1(t)⊤ y2(t)⊤

]︂⊤
. In addition,

the origin of (Σ1,Σ2) is asymptotically stable if ρ1 + ν2 > 0 and ρ2 + ν1 > 0.

6.1.2 Passivation blocks

However, eventually, the some usual dissipativity and passivity theorems require
the specific dissipativity (passivity) properties from the system under analysis. Then,
passivation techniques enable the use of these techniques for a wider class of systems.
In the literature, feedback, feedfoward and series passivation techniques have been
successfully employed to stabilize dynamical systems. In [200], a general passivation
technique expressed by a matrix transformation that comprises the feedback, feedforward,
and series passivation actions is presented.

Consider the system ΣC and the SRB that performs an input-output linear
transformation by means of the matrix M described as follows

ΣR :
⎡⎣ ur

yr

⎤⎦ = M

⎡⎣ y

uc

⎤⎦ , (6.6)

such that their interconnection is depicted in Fig. 6.1.

As shown in [200], the matrix transformation M can be expressed as the
combination of passivation gains in series, feedfoward, and feedback. In particular, Xia
et al. [200] define the matrix M as follows

M ≜

⎡⎣ mpI (ms −mpmf)I
I −mfI

⎤⎦ , ms ̸= mpmf , (6.7)
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Figure 6.1 – Passivation of ΣC.
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-
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(ΣC,ΣR)

Figure 6.2 – Equivalent interconnection with feedback, series, and feedfoward
passivation gains.
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where mp, mf , and ms are feedfoward, feedback, and series gains, such that the
(ΣC,ΣR) is equivalent to the system illustrated in Fig. 6.2.

Lemma 6.3, originally presented in [200], allows to design the matrix M to
ensure desired passivity indices for (ΣC,ΣR).

Lemma 6.3. [200] Let ΣC be finite-gain L2-stable with gain γ and ΣR described by
(6.6) and the passivation matrix M given by (6.7). The equivalent system (ΣC,ΣR) is

a) passive if M is chosen such that

mp > 0, ms = −mfmp, 0 < |mf |γ < 1; (6.8)

b) OFP (ρr) with ρr > 0, such that ρr = 1
2( 1

mp
+ mf

ms
), if M is chosen such that

mp ≥ msγ > 0, ms > mfmp > 0; (6.9)

c) IFP (νr) with νr > 0, such that νr = 1
2(mp + ms

mf
), if M is chosen such that

1 > mfγ > 0, mfmp > ms > 0; (6.10)

d) VSP with indices νr = a
2mp and ρr = a

2
1

mp
, if M is such that

mp >> 0, ms = −mfmp, m2
f γ

2 ≤ 1− a
1 + a

; (6.11)

for an arbitrary 0 < a < 1.

6.1.3 Problem statement

Consider the nominal system ΣP subject to faults whose faulty model is ΣPf

described as follows

ΣP :

⎧⎨⎩ ẋ(t) = f (x(t)) + g (x(t),up(t)) ,
yp(t) = h (x(t)) + j (x(t),up(t)) ,

(6.12)

ΣPf :

⎧⎨⎩ ẋ(t) = ff (x(t)) + gf (x(t),up(t)) ,
yp(t) = hf (x(t)) + jf (x(t),up(t)) ,

(6.13)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are, respectively, the vectors of state,
input, and output variables; x0 = x (0), xf,0 = x (tf), tf is the time when the fault
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begins, and the matrix-valued maps f , g, h, j, ff , gf , hf , and jf are sufficiently
smooth with appropriate dimensions under Assumption 6.1.

The plant is interconnected with an output feedback controller ΣC described as
follows

ΣC :

⎧⎨⎩ ẋc(t) = fc (xc(t)) + gc (x(t)) yc(t),
uc(t) = hc (x(t)) + jc (xc(t)) yc(t).

(6.14)

where xc(t) ∈ Rnc , uc(t) ∈ Rm, and yc(t) ∈ Rm are, respectively, the state, input and
output of ΣC, xc,0 = xc (0), the matrix-valued maps fc, gc, hc, and jc are sufficiently
smooth with appropriate dimensions.

As shown in Fig. 6.3, a RB denoted by ΣR is inserted between the faulty plant
and the controller to recover the fault-free performance or stability. In this work, ΣR is
used as a PB, i.e., ΣR performs series, feedback, and feedfoward passivation on ΣC

to ensure that the closed-loop system presents desired dissipativity properties. The
concept of passivation for fault mitigation proposed by [200] can be extended to a
dynamic structure called dynamic PB (DPB) whose model is described as follows

Σr :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = Arxr(t) + Br,yy(t) + Br,uuc(t),
yr(t) = Cr,yxr(t) + R1y(t) + R2uc(t),
ur(t) = Cr,uxr(t) + R3y(t) + R4uc(t),

(6.15)

with xr(t) ∈ Rnr and gain matrices Ar, Br,y, Br,u, Cr,y, Cr,u with proper dimensions.

During the fault-free operation, the nominal plant ΣP is connected by feedback
to the controller ΣC such that up ← uc and yc ← y (see fault-free system in Fig. 6.3).
However, if a fault occurs, the system dynamics is changed and a proper FDI system
can indicate the fault occurrence and obtain the passivity indices of ΣPf . Then, ΣR

is activated between ΣPf and ΣC such that up ← ur and yc ← yr (see reconfigured
system in Fig. 6.3).

In this chapter, the exact models of ΣP, ΣPf and ΣC do not need to be exactly
known but only the passivity indices of ΣPf and ΣC are.

Assumption 6.2. Assume that ΣC is IF-OFP(νc, ρc) with given νc and ρc. In addition,
there is no further knowledge about ΣP and ΣC beyond the passivity indices of ΣC.
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Figure 6.3 – Control reconfiguration by fault hiding.

Assumption 6.3. It is assumed that ΣPf is IF-OFP(νf , ρf) and there exists an FDI
system that is able to correctly detect the fault occurrence as soon as it occurs.
Furthermore, the FDI system provides the values of νf and ρf .

Remark 6.2. The results presented in this chapter are based on the knowledge of the
dissipative properties of the controller and the estimation of dissipativity properties of
the faulty system as stated in Assumptions 6.2 and 6.3. The estimation of dissipativity
properties of the faulty system is achieved by means of any efficient FDI strategy
(notice that the FDI design is not addressed in this chapter and it is supposed to
be available beforehand). The study of fault detection and control reconfiguration is
usually separated in the literature on AFTC [261, 136, 18], although both should be
implemented together. There are few results on the integrated design AFTC and FDI
systems [13]. Although it is still an open issue, the integration between FTC, FDI, and
passivity indices estimation is not addressed here.

Remark 6.3. The estimation of dissipativity properties is a challenging problem. It is
still lacking general procedures for estimating it for different classes of nonlinear systems.
There are some available methodologies for estimating dissipativity properties from
data [201, 262, 263, 264], although most of them are only applicable for linear time
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invariant systems [262, 263, 264]. There are few results for local dissipativity of nonlinear
systems under operational constraints based on polynomial approximations [265] and
for dissipativity with respect to a periodic orbit [266].

In the context of dissipativity theory, the following fault hiding problem can be
stated.

Problem 6.1. – Asymptotic Stability Recovery by Fault Hiding – Let ΣP be a
nominal system with fault model ΣPf and connected to a controller ΣC. Considering
Assumptions 6.2 and 6.3, find an RB ΣR such that the origin of (ΣPf ,ΣR,ΣC) is
asymptotically stable.

6.2 Passivation blocks for fault hiding

6.2.1 DPB and its relation with RBs

This chapter extends the concept of passivation for fault mitigation proposed
by [200] for a DPB described as (6.15) used for solving the FTC Problem 6.1.

The equivalent reconfigured loop obtained by means of the interconnection
(ΣPf ,ΣR,ΣC) with ΣR described as (6.15) is depicted in Fig. 6.4, where w1, w2, and
w3 are external disturbances and r is the reference signal.

Note that the RB proposed in [127] described as

ΣR :
⎡⎣ yr

ur

⎤⎦ =
⎡⎣ R1 R2

R3 R4

⎤⎦ ⎡⎣ y

uc

⎤⎦ , (6.16)

is a particular DPB case obtained from (6.15) if one defines Ar ≜ 0nr×nr , Br,y ≜ 0nr×p,
Br,u ≜ 0nr×m, Cr,y ≜ 0p×nr , Cr,u ≜ 0m×nr , and xr(0) ≜ 0nr×1.

Comparing (6.7) and (6.16), it is possible to note that M is a particular matrix
for ΣR, where R1 = I, R2 = −mfI, R3 = mpI, and R4 = (ms −mpmf)I. Thus,
the RB for passivation purpose is defined as a PB in this work.

Indeed, the PB proposed by [200] is employed in an adaptive control strategy for
fault mitigation [201] that is similar to fault hiding. However, the conditions for tuning
that kind of PB are too strict and nonconvex, making their design difficult. The PB
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Figure 6.4 – Equivalent interconnection of (ΣPf ,ΣR,ΣC) expressed as controller
passivation with DPB.

presented in this chapter can be easily obtained by solving a semi-definite programming
problem, such that LMI-based conditions are provided. In our numerical simulations,
the PB proposed in this thesis is compared to that proposed in [200].

The DPB described as (6.15) also generalizes the existing linear dynamic RBs
found in the literature [18]. However, these RBs, namely VSs and VAs, are usually
applicable only for linear and polytopic systems and are based on the internal model
principle. To show that, consider for the plant the nominal model, given by ΣP, and
fault models, given by ΣPf , described as follows

ΣP :

⎧⎨⎩ ẋ(t) = Ax(t) + Bup(t),
yp(t) = Cx(t),

(6.17)

ΣPf :

⎧⎨⎩ ẋ(t) = Ax(t) + Bfup(t),
yp(t) = Cfx(t).

(6.18)
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A VS is usually described as follows [18]:

ΣR ::

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = (A−LCf)xr(t) + Ly(t) + Bfuc(t),
yr(t) = (C − JCf)xr(t) + Jy(t),
ur(t) = uc(t),

(6.19)

and it is designed to compensate sensor faults. Note that the VS described in (6.19) is a
particular case of (6.15) taking Ar ≜ A−LC, Br,y ≜ L, Br,u ≜ Bf , Cr,y ≜ C−JCf ,
Cr,u ≜ 0m×nr , R1 ≜ Im, R2 ≜ J , R3 ≜ 0m×p, R4 ≜ Im and xr(0) ≜ 0nr×1. On
other hand, a VA is described as follows [18]:

ΣR :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋr(t) = (A−BfM)xr(t) + (B −BfN )uc(t),
yr(t) = Cxr(t) + y(t),
ur(t) = Mxr(t) + Nuc(t),

(6.20)

and is employed to compensate for actuator faults. The VA in (6.20) is also a
particular case of the DPB in (6.15) if one defines Ar ≜ A −BfM , Br,y ≜ 0nr×p,
Br,u ≜ B−Bf , Cr,y ≜ C, Cr,u ≜ M , R1 ≜ Im, R2 ≜ 0p×m, R3 ≜ 0m×p, R4 ≜ N

and xr(0) ≜ 0nr×1.

6.3 Dissipativity-based Asymptotic Stability Recovery by Fault Hiding

6.3.1 Stability Recovery with Dynamic Passivation Blocks

In this section, LMI-based conditions for computing the DPB are presented to
ensure the asymptotic stability recovery by fault hiding. For this purpose, it is worth to
obtain conditions for dissipativity analysis of DPB.

All the results described in this section deal with the reconfigured system
(ΣPf ,ΣR,ΣC) interconnected as Fig. 6.4, under Assumptions 6.2 and 6.3 where ΣPf ,
ΣC and ΣR are, respectively, described in (6.1), (6.14) and (6.15).

In particular, Lemma 6.4 provides conditions for ΣR in (6.15) to be IF-OFP(νr,ρr).

Lemma 6.4. ΣR is IF-OFP(νr,ρr) if there exist a matrix P = P ⊤, and scalars νr and
ρr such that the following inequalities are satisfied:

P ≻ 0 Θ ⪯ 0 (6.21)
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with

Θ ≜

⎡⎢⎢⎢⎣
He {P Ar}+ W11 P Br,y − 1

2C⊤
r,y + W12 P Br,u − 1

2C⊤
r,u + W13

⋆ νrIm − 1
2He {R1}+ W22 −1

2R2 − 1
2R⊤

3 + W23

⋆ ⋆ νrIm − 1
2He {R4}+ W33

⎤⎥⎥⎥⎦
W11 ≜ ρrC

⊤
r,yCr,y + ρrC

⊤
r,uCr,u, (6.22)

W12 ≜ ρrC
⊤
r,yR1 + ρrC

⊤
r,uR3, (6.23)

W13 ≜ ρrC
⊤
r,yR2 + ρrC

⊤
r,uR4, (6.24)

W22 ≜ ρrR
⊤
1 R1 + ρrR

⊤
3 R3, (6.25)

W23 ≜ ρrR
⊤
1 R2 + ρrR

⊤
3 R4, (6.26)

W33 ≜ ρrR
⊤
2 R2 + ρrR

⊤
4 R4. (6.27)

Proof. The DPB depicted in Fig. 6.4 and described in (6.15) is represented by using,
respectively, augmented input and output vectors: ūr(t) ≜

[︂
y(t)⊤ uc(t)⊤

]︂⊤
and

ȳr(t) ≜
[︂
yr(t)⊤ ur(t)⊤

]︂⊤
. Defining Vr (xr(t)) = xr(t)⊤P xr(t) as a storage function,

its time derivative is computed as

V̇ (xr(t)) = He
{︂
x⊤

r P Arxr + x⊤
r P Br,yy + x⊤

r P Br,uuc
}︂
. (6.28)

Consider the following supply function for ΣR

(ūr(t), ȳr(t)) = ū⊤
r ȳr − νrū

⊤
r ūr − ρrȳ

⊤
r ȳr. (6.29)

Taking into account that yr(t) = Cr,yxr(t)+R1y(t)+R2uc(t) and ur(t) = Cr,uxr(t)+
R3y(t) + R4uc(t), (6.29) results in

(ūr, ȳr) =− x⊤
r W11xr − y⊤ (−R1 + W22) y − νry

⊤y − u⊤
c (−R4 + W33) uc

− νru
⊤
c uc + y⊤Cr,yxr − He

{︂
x⊤

r W12y + x⊤
r W13uc + y⊤W23uc

}︂
+ u⊤

c Cr,uxr + y⊤R2uc + u⊤
c R3y. (6.30)

where Wij are defined by (6.22)–(6.27). Based on the identity x⊤W y = 1
2He

{︂
x⊤W y

}︂
,

(6.30) is equivalent to

(ūr, ȳr) =− y⊤
(︂
νrIm − 1

2He {R1}+ W22
)︂

y − u⊤
c

(︂
νrIm − 1

2He {R4}+ W33
)︂

uc

− x⊤
r W11xr − He

{︂
x⊤

r

(︂
−1

2C⊤
r,y + W12

)︂
y + x⊤

r

(︂
−1

2C⊤
r,u + W13

)︂
uc

}︂
+ He

{︂
y⊤

(︂
R2 + R⊤

3 + W23
)︂

uc
}︂
. (6.31)
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ΣR is dissipative with respect to (6.31) if V̇ (xr(t)) − (ūr, ȳr) ≤ 0 or, equivalently,
subtracting (6.31) from (6.28) one obtains:

x̄⊤
r Θx̄r ≤ 0 (6.32)

with x̄r =
[︂
xr(t)⊤ y(t)⊤ uc(t)⊤

]︂⊤
. If (6.21) is satisfied for some νr and ρr, then (6.32)

is satisfied and ΣR is IF-OFP(νr, ρr) according to Definition 6.1.

The next Lemma presents sufficient conditions for ensuring that the reconfigured
system (ΣPf ,ΣR,ΣC) is a (Q,S,R)-dissipative system.

Lemma 6.5. If ΣPf , ΣC, and ΣR are, respectively, IF-OFP(νf ,ρf), IF-OFP(νc,ρc), and
IF-OFP(νr,ρr), then the reconfigured system (ΣPf ,ΣR,ΣC) is (Q,S,R)-dissipative
with:

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
− (ρf + νr) Im 0m×m

1
2Im 0m×m

⋆ − (ρc + νr) Im
1
2Im

1
2Im

⋆ ⋆ − (νc + ρr) Im 0m×m

⋆ ⋆ ⋆ − (νf + ρr) Im

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.33)

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1
2Im 0m×m 0m×m νfIm

−νrIm 0m×m
1
2Im 0m×m

0m×m
1
2Im −νcIm 0m×m

−Im 0m×m 0m×m −νfIm

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.34)

R =

⎡⎢⎢⎢⎢⎢⎢⎣
−νfIm 0m×m 0m×m νfIm

0m×m −νrIm 0m×m 0m×m

0m×m 0m×m −νcIm 0m×m

νfIm 0m×m 0m×m −νfIm

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.35)

Proof. Define

X1 ≜
[︂

Im 0m×m 0m×m −Im

]︂
, X2 ≜

[︂
0m×m 0m×m 0m×m Im

]︂
,

X3 ≜
[︂

Im 0m×m 0m×m 0m×m

]︂
, X4 ≜

[︂
0m×m Im 0m×m 0m×m

]︂
,

X5 ≜
[︂

0m×m 0m×m Im 0m×m

]︂
, w̄⊤ ≜

[︂
r(t)⊤ w1(t)⊤ w2(t)⊤ w3(t)⊤

]︂
,

ȳ ≜
[︂

yp(t)⊤ uc(t)⊤ yr(t)⊤ ur(t)⊤
]︂⊤
.
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Considering the equivalent loop in Fig. 6.4, the inputs and outputs of ΣPf , ΣC, and
ΣR can be expressed as follows

u(t) = r(t)−w3(t)− ur(t) = X1w̄ −X2ȳ, (6.36)
yp(t) = X3ȳ, ur(t) = X2ȳ, yr(t) = X5ȳ, (6.37)
y(t) = yp(t) + w1(t) = X4w̄ + X3ȳ, (6.38)
uc(t) = X4ȳ,yc(t) = yr(t) + w2(t) = X5 (w̄ + ȳ) . (6.39)

Assuming that ΣPf is IF-OFP(νf ,ρf), the following inequality holds according to Defini-
tion 6.1:

V̇ f(x) ≤ u⊤
p yp − νfu

⊤
p up − ρfy

⊤
p yp, (6.40)

where Vf is a valid storage function for ΣPf . Substituting (6.36) and (6.37) into (6.40),
it follows that:

V̇ f(x) ≤ ȳ⊤Q̄f ȳ + 2w̄⊤S̄f ȳ + w̄⊤R̄fw̄, (6.41)
Q̄f = −νfX

⊤
2 X2 − ρfX

⊤
3 X3, (6.42)

Sf = 1
2X⊤

1 X3 −
1
2X⊤

2 X3 + νfX
⊤
1 X2, (6.43)

R̄f = −νfX
⊤
1 X1. (6.44)

Moreover, given that ΣC is IF-OFP(νc,ρc), then

V̇ c(xc) ≤ u⊤
c yc − νcy

⊤
c yc − ρcu

⊤
c uc, (6.45)

where Vc is a valid storage function for ΣC. Substituting (6.37) and (6.39) into (6.45),
it follows that:

V̇ c(xc) ≤ ȳ⊤Q̄cȳ + 2w̄⊤S̄cȳ + w̄⊤R̄cw̄, (6.46)
Q̄c = X⊤

5 X4 − νcX
⊤
5 X5 − ρcX

⊤
4 X4, (6.47)

Q̄c = X⊤
5 X4 − νcX

⊤
5 X5 − ρcX

⊤
4 X4, (6.48)

R̄c = −νcX
⊤
5 X5. (6.49)

Similarly, assuming that ΣR is IF-OFP(νr,ρr) and

w̄r ≜

⎡⎣ y

uc

⎤⎦ =
⎡⎣ X4

0m×4m

⎤⎦ w̄ +
⎡⎣ X3

X4

⎤⎦ ȳ, (6.50)

ȳr ≜

⎡⎣ yr

ur

⎤⎦ =
⎡⎣ X5

X2

⎤⎦ ȳ, (6.51)
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it follows that
V̇ r(xr) ≤ w̄⊤

r ȳr − νrū
⊤
r ūr − ρrȳ

⊤
r ȳr, (6.52)

where Vr is a valid storage function for ΣR. Substituting (6.50) and (6.51) into (6.52),
it is equivalent to

V̇ r(xr) ≤ȳ⊤Q̄rȳ + 2w̄⊤S̄rȳ + w̄⊤R̄rw̄, (6.53)
Q̄r =X⊤

3 X5 + X⊤
4 X2 − νr

(︂
X⊤

3 X3 + X⊤
4 X4

)︂
− ρr

(︂
X⊤

5 X5 + X⊤
2 X2

)︂
, (6.54)

S̄r =1
2X⊤

4 X5 − νrX
⊤
4 X3, (6.55)

R̄r =− νrX
⊤
4 X4. (6.56)

Thus, adopting the storage function V̄ (x,xr,xc) ≜ V̇ f(x) + V̇ r(xr) + V̇ c(xc)
for the reconfigured system (ΣPf ,ΣR,ΣC), the following inequality can be obtained by
summing the inequalities (6.41), (6.46) and (6.53)

V̄ (x,xr,xc) ≤ ȳ⊤
(︂
Q̄f + Q̄r + Q̄c

)︂
ȳ + 2w̄⊤

(︂
S̄f + S̄r + S̄c

)︂
ȳ + w̄⊤

(︂
R̄f + R̄r + R̄c

)︂
w̄.

It is straightforwardly obtained that S = S̄f + S̄r + S̄c and R = R̄f + R̄r + R̄c

are, respectively, equivalent to (6.34) and (6.35). In addition,

Q̄f + Q̄r + Q̄c = X⊤ΓX (6.57)

where X ≜
[︂

X⊤
3 X⊤

4 X⊤
5 X⊤

2

]︂⊤
and

Γ ≜

⎡⎢⎢⎢⎢⎢⎢⎣
− (ρf + νr) Im 0m×m

1
2Im 0m×m

⋆ − (ρc + νr) Im
1
2Im

1
2Im

⋆ ⋆ − (νc + ρr) Im 0m×m

⋆ ⋆ ⋆ − (νf + ρr) Im

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that since X is an identity matrix then (6.57) is equivalent to Q = Q̄f + Q̄r + Q̄c

which results in (6.33). Therefore, (ΣPf ,ΣR,ΣC) is (Q,S,R)-dissipative with Q, S

and R defined by (6.33)–(6.35), respectively.

Based on Lemma 6.5, the next Theorem provides sufficient conditions to ensure
the stabilization of faulty systems by means of DPB and based on passivity indices.
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Theorem 6.1. Assume that ΣPf is IF-OFP(νf , ρf) and ΣC is IF-OFP(νc,ρc) for given
νf , ρf , νc, and ρc. The origin of reconfigured system (ΣPf ,ΣR,ΣC) is asymptotically
stable if there exist scalars γ1, γ2, γ3, γ4, νr and µr, and matrices P = P ⊤, Z1, Z2,
Z3, Cr,y, Cr,u, R1, R2, R3 and R4 that satisfy the following inequalities:

P ≻ 0,

γ−1
1 ≤ ν−1

f , γ−1
2 ≤ ν−1

c , γ3 ≤ ρf , γ4 ≤ ρc, (6.58)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µrIm 0m×m Cr,y R1 R2

⋆ −µrIm Cr,u R3 R4

⋆ ⋆ He {P + Z1} Z2 − 1
2C⊤

r,y Z3 − 1
2C⊤

r,u

⋆ ⋆ ⋆ νrIm − 1
2He {R1} −1

2R2 − 1
2R⊤

3

⋆ ⋆ ⋆ ⋆ νrIm − 1
2He {R4}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0,

(6.59)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(γ3 + νr) 0 1
2µr 0 0 0

⋆ −(γ4 + νr) 1
2µr

1
2µr 0 0

⋆ ⋆ −µr 0 −µr 0
⋆ ⋆ ⋆ −µr 0 µr

⋆ ⋆ ⋆ ⋆ γ1 0
⋆ ⋆ ⋆ ⋆ ⋆ γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0. (6.60)

In this case, the gains Ar, Br,y, and Br,u of (6.15) are given by Ar = In + P −1Z1,
Br,y = P −1Z2, and Br,u = P −1Z3.

Proof. Using a Schur’s complement argument, for µr > 0 given, if (6.59) is satisfied
then⎡⎢⎢⎢⎣

He {P + Z1} Z2 − 1
2C⊤

r,y Z3 − 1
2C⊤

r,u

⋆ νrIm − 1
2He {R1} −1

2R2 − 1
2R⊤

3

⋆ ⋆ νrIm − 1
2He {R4}

⎤⎥⎥⎥⎦ + µ−1
r T ⊤

1 T1 ≺ 0, (6.61)

where

T1 ≜

⎡⎣ Cr,y R1 R2

Cr,u R3 R4

⎤⎦ .
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Furthermore, define

W ≜

⎡⎢⎢⎢⎣
W11 W12 W13

⋆ W22 W23

⋆ ⋆ W33

⎤⎥⎥⎥⎦ ,
where Wij are defined as in (6.22)–(6.27), i, j = 1, 2, 3. Defining ρr ≜ µ−1

r , it follows
that

W = µ−1
r T ⊤

1 T1.

Defining Z1 ≜ P Ar−P , Z2 ≜ P Br,y, and Z3 ≜ P Br,u, (6.61) is equivalent to (6.21).
Thus, according to Lemma 6.4, if (6.59) is satisfied for some µr > 0, then (6.21) is
also satisfied and ΣR is IF-OFP(νr,ρr). Lemma 6.5 ensures that if ΣPf , ΣC and ΣR

are, respectively, IF-OFP(νf , ρf), IF-OFP(νr,ρr) and IF-OFP(νc,ρc), then (ΣPf ,ΣR,ΣC)
is (Q,S,R)-dissipative with Q, S and R defined, respectively, by (6.33), (6.34), and
(6.35). Using the Schur’s complement Lemma, if (6.60) is satisfied then⎡⎢⎢⎢⎢⎢⎢⎣

−(γ3 + νr) 0 1
2µr 0

⋆ −(γ4 + νr) 1
2µr

1
2µr

⋆ ⋆ −µr 0
⋆ ⋆ ⋆ −µr

⎤⎥⎥⎥⎥⎥⎥⎦− T ⊤
2 Y1T2 ≺ 0. (6.62)

is also satisfied for T2 ≜ [02×2 µrI2] and Y −1
1 ≜ diag {γ2, γ1}. Thus (6.62) is

equivalent to

Y2 ≜

⎡⎢⎢⎢⎢⎢⎢⎣
−(γ3 + νr) 0 1

2µr 0
⋆ −(γ4 + νr) 1

2µr
1
2µr

⋆ ⋆ −µr − µ2
rγ2 0

⋆ ⋆ ⋆ −µr − µ2
rγ1

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0. (6.63)

Considering (6.58) and Lemma 6.1, it is clear that ΣPf and ΣC are, respec-
tively, IF-OFP(γ−1

1 , γ3) and IF-OFP(γ−1
2 , γ4). Adopting the congruence transformation

T ⊤
3 Y2T3 with T3 ≜ diag {1, 1, µ−1

r , µ−1
r } and µ−1

r = ρr, then notice that T ⊤
3 Y2T3 ⪰ Q

with Q defined by (6.33). Thus, it demonstrates that (6.60) implies that Q ≺ 0,
which it is sufficient to ensure the asymptotic stability of (ΣPf ,ΣR,ΣC) according to
Lemma 5.1. Finally, any ΣR described as (6.15) with matrix gains that satisfy (6.58)–
(6.60) with P ≻ 0 ensures the asymptotic stability of (ΣPf ,ΣR,ΣC) and this concludes
the proof.
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Remark 6.4. The key result of this chapter is provided by Theorem 6.1 for passivation-
based fault hiding. The main advantage is that it allows to decouple the analysis of
the subsystems based on dissipativity theory that allows to design RBs that ensure
dissipativity properties for the global system. Although it focuses on the problem of
FTC for nonlinear systems with multiplicative faults, it can be also applied to other
problems, for example systems with unknown control directions [267] and variable
structure systems [268], possibly with system’s order modifications.

6.3.2 DPB as virtual sensors and actuators

Note that in the literature, VS and VA are usually used as dynamic RBs. It is
shown in [18] that a sufficient condition for ensuring the stability recovery after sensor
(actuator) faults occurrence by means of a VS (VA) is that A−LCf (A−BfM ) is
Hurwitz.

Note that the proof of Theorem 6.1 implies that the DPB ΣR satisfies (6.21)
with ρ > 0, and consequently

He {P Ar}+ W11 ≺ 0.

Considering that W11 ≻ 0 for any ρ > 0, then the above inequality implies that
He {P Ar} ≺ 0 that is sufficient for Ar being Hurwitz. In Subsection 6.2.1, it is
shown that the VS and VA are particular cases of the DPB where Ar ≜ A−LCf and
Ar ≜ A−BfM respectively. Therefore, any VS or VA that satisfy Theorem 6.1 also
satisfies the stabilization conditions in the literature.

6.4 Numerical example

Consider the following nonlinear faulty system ΣPf :

ΣPf :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = −0.5x3

1 + 0.5x2

ẋ2 = −0.5x1 − 1.25x2 − 4faup

yp = −fsx2 − 0.5fsup

(6.64)

where the signals fa and fs denote, respectively, actuator and sensor multiplicative
faults such that fa = 1 and fs = 1 represent the fault-free operation.
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Let V (x1, x2) = 1
2x

2
1 + 1

2x
2
2 be a storage function for ΣPf . Taking its time-

derivative, it follows that:

V̇ (x1, x2) = −0.5x4
1 − 1.25x2

2 − 4faupx2. (6.65)

Furthermore, given that ΣPf is IF-OFP(νf ,ρf), (u,y) is the supply rate function in (6.2)
for (6.64):

(up,yp) =−
(︃1

2fsfa + f 2
a νf + 1

4fsρf

)︃
u2

p − (fsfa + fsρf) upx2 − fsρfx
2
2. (6.66)

Disregarding the negative term −0.5x4
1 in (6.65), the following condition, obtained

from (6.65) and (6.66), is sufficient to ensure that the passivation indices satisfy
V̇ (x1, x2)− (up,yp) ≤ 0

⎡⎣x2

up

⎤⎦⊤ ⎡⎣−1.25 + fsρf
1
2 (fsfa + fsρf − 4fa)

⋆ 1
2fsfa + f 2

a νf + 1
4fsρf

⎤⎦ ⎡⎣x2

up

⎤⎦ ≤ 0 (6.67)

Thus, the above condition allows computing ρf and νf by means of semi-definite
programming (SDP) for both the fault-free and faulty operation modes since the fault
estimates fs and fa are known (cf. Assumption 6.3). To test different fault scenarios
(fault-free; actuator, sensor or simultaneous faults), fs and fa are chosen as follows:

fs =

⎧⎪⎨⎪⎩0.75, if 10 < t ≤ 85,

1, otherwise
, fa =

⎧⎪⎨⎪⎩1, if t ≤ 55,

−0.2, if t > 55
.

Notice that the fault-free operation happens until t = 10s, when a sensor attenuation
fault starts. While the sensor fault still is present, an actuator fault with fa = −0.2
starts at t = 10s. For t > 85s, the sensor fault is no longer occurring but only the
actuator fault affects the system. The passivity indices are computed solving the
maximization of the cost J = ρf +νf with constraint (6.67). Then, the passivity indices
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Figure 6.5 – Comparison between the trajectories of the state x1 with the proposed
DPB and the PB in [200] for the nonlinear system.

are:

νf =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.563, if t ≤ 10,

−0.249, if 10 < t ≤ 55,

−2.843, if 55 < t ≤ 85,

0.686, if t > 85,

ρf =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.375, if t ≤ 10,

0.512, if 10 < t ≤ 55,

0.001, if t > 55.

For simulation purposes, a controller ΣC (that is IF-OFP(−0.25,2.75)) is used to
stabilization and disturbance rejection for the fault-free system. It is given by:

ΣC :

⎧⎨⎩ ẋc = −3.517xc − 4.5yc

uc = xc + 0.2045yc
(6.68)

The proposed DPB described in (6.15) is designed based on Theorem 6.1 by
using the LMILAB. The computed gains of the Dynamic Passivation Blocks (DPBs) Σi

R
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Figure 6.6 – Comparison between the trajectories of the state x2 with the proposed
DPB and the PB in [200] for the nonlinear system.
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Figure 6.7 – Comparison between the trajectories of the output with the proposed
DPB and the PB in [200] for the nonlinear system.
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Figure 6.8 – Comparison between the trajectories of the reconfigured input in-
jected into the plant with the proposed DPB and the PB in [200]
for the nonlinear system.

for the scenarios i = 1, 2, 3 are presented in the sequel. Notice that Scenario 1 denotes
the case when only the sensor fault occurs (10 < t ≤ 55s). Scenario 2 corresponds
to the case when only the actuator fault occurs (t ≥ 85s). And Scenario 3 is the
case when both sensor and actuator faults occur simultaneously (55 < t ≤ 85s). The
superscript indices in the matrices indicate the scenario

A1
r =

⎡⎣−0.5 0
0 −0.5

⎤⎦ , A2
r = A3

r =
⎡⎣−1.4142 0

0 −1.4142

⎤⎦ ,
B1

r,u = B2
r,u = B3

r,u = B1
r,y = B2

r,y = B3
r,y =

[︂
0 0

]︂⊤
,

C1
r,u = C2

r,u = C3
r,u = C1

r,y = C2
r,y = C3

r,y =
[︂
0 0

]︂
,

R1
1 = R1

4 = 0.126, R2
1 = R2

4 = 0.0181,

R3
1 = R3

4 = 0.0207, R1
2 = R1

3 = R2
2 = R2

3 = R3
2 = R3

3 = 0,

The procedure proposed in [201] and the PB in (6.6) proposed by [200] can also
be employed to recover the stability of the reconfigured system. For this purpose,
Lemma 6.2 indicates that the passivation controller must be OFP(ρr) with ρr > −νf

for Scenarios 1 and 3. In the Scenario 2, it is sufficient (ΣC,ΣR) to be passive since
νf > 0 and ρf > 0. According to Lemma 6.3, given that ΣC is finite gain L2-stable
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with gain γ = 0.9688, the passivation gains may be chosen as

m1
p = 0.25, m1

f = 0.2, m1
s = 0.1,

m2
p = 2, m2

f = 0.5, m2
s = −1,

m3
p = 0.3, m3

f = 0.25, m3
s = 0.05.

The numerical simulation results are depicted in Figs. 6.5–6.8 and compare the faulty
system response with the reconfigured system responses with the PB proposed by [200]
and with the proposed DPB designed based on Theorem 6.1. Disturbances w3 = 10
are added in the system output at t = 45 s, t = 80 s and t = 90 s with duration of
0.1 s. The initial states are x1(0) = 1.5 and x2(0) = −2. The results illustrate that
the proposed DPB is able to recover the stability in all the fault scenarios and presents
good disturbance rejection action without requiring much control effort. Otherwise,
the system without PB became oscillatory in Scenario 2 and unstable in Scenario 3.
The PB proposed by [200] also recovers the stability, but it became too sensitive to
the disturbance when both faults are occurring (Scenario 2).
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7 CONCLUSIONS

7.1 Summary

This thesis addressed the problem of fault-tolerant control based on the fault
hiding approach using novel RBs structures. The fault hiding approach consists of
inserting an RB between the faulty plant and the nominal controller, which remains
unaltered. In the literature, the RBs are usually described as VSs, for dealing with
sensor faults, and VAs for dealing with actuator faults, and their structures are based
on the internal model principle to enable their design by stabilizing the error dynamics
between the plant and the RBs states. Although effective, those structures are too
sensitive to FDI uncertainties and model uncertainties. Moreover, there are still few
methodologies available to deal with fault hiding of nonlinear systems. In this regard,
this thesis contributed to the fault hiding literature by providing novel RB structures
and design methodologies that allow the stability recovery by fault hiding of nonlinear
systems. In short, this thesis provided the following original contributions.

a) Nonlinear fault hiding. This thesis presented novel methodologies for fault
hiding of plants represented by nonlinear models, such as systems with input
saturation (cf. chapter 3), NT-S fuzzy models (cf. chapter 4), distributed
NT-S fuzzy models (cf. chapter 4), and input affine systems (cf. chapter 5
and chapter 6).

b) Novel RB structures. This thesis presented alternative RB structures
which can substitute the VAs and VSs and not incorporating the fault
model parameters in its gains. In particular, this thesis presented SRBs (cf.
chapter 3 and chapter 5), fuzzy SRBs (cf. chapter 4), fuzzy distributed
SRBs (cf. chapter 4), and PBs (cf. chapter 6). All those blocks can be
used for dealing with both sensor and actuator faults simultaneously.

c) Design methodologies. This thesis presented three main novel design
methodologies for fault hiding of nonlinear systems by means of the new
RBs proposed and concerning: i) Lyapunov-based stability recovery (cf.
chapter 3 and chapter 4), wherein an analysis condition is used to obtain a
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Lyapunov function which certifies the stability of the nominal closed-loop
system, and also the same Lyapunov function is used to synthesize the RB
for the reconfigured system to recover the stability property after the fault
occurrence; ii) dissipativity recovery (cf. chapter 5), wherein the same idea
is applied to obtain the storage and the supply rate functions in the analysis
step used to synthesize RBs which recover the system’s passivity, dissipativity
and stability; and iii) passivation-based fault hiding which designs PBs with
sufficient passivity indices to compensate for the fault effects in the energy
balance of the closed-loop system. For all those methodologies, constructive
LMI-based sufficient design conditions are provided.

7.2 Related publications

The content of this thesis is mainly based on results presented in the publi-
cations [129, 127, 106, 226, 269]. In particular, [226] proposes the SRB structure
which is used in chapter 3 and chapter 5, and presents the results for fault hiding
of linear systems with input saturation which are described in chapter 3. In [127],
this concept is extended to nonlinear systems represented by NT-S fuzzy models by
using centralized and distributed fuzzy SRBs as presented in chapter 4. In [106], the
concept of dissipativity and passivity recovery by fault hiding is proposed as presented in
chapter 5. Finally, in [129, 269], the concept of PBs, their relation with the canonical
RBs, and the passivation-based fault hiding are presented and their content is the basis
of chapter 6.

7.3 Parallel and ongoing works

During the doctoral term to which this thesis refers to, some other related topics
were investigated, and some results obtained in collaboration with other members of
the D!FCOM (Federal University of Minas Gerais) and SAC (Polytechnic University of
Catalonia) laboratories, but they were kept apart this thesis for the sake of brevity and
cohesion. In this subsection, these parallel researches will be briefly discussed.

During the doctoral studies, the concept of RBs was extended to other appli-
cations without the scope of FTC. In [214], the RBs are employed in a cyber-secure
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dual-rate control framework with active cyber-attack detection based on watermarking
injection. Indeed, the active attack detection methods (inspired by the active fault
detection methods) are the most effective way to detect stealthy attacks, however,
the signal injection degrades the system performance. In this framework, the RBs are
used to mitigate the degradation effect of the watermarking without compromising
the attack detection. Moreover, the RBs are also employed in damping control of DC
microgrids in [270], where their ability of compensating disturbances is explored to
improve the converter stability and damping ability under abrupt power variations in
Constant Power Loads (CPLs).

In particular, several collaborations have been established on the broad topic of
supervision and safety of systems which, in addition to FTC, includes fault detection,
and PHM. As a consequence, the following papers were published or submitted within
this scope of: fault hiding [128], fault detection [271], and PHM [272, 273, 274, 275].
Part of the doctoral studies were also interested in the problem of cyber-security of
control systems, whose techniques are close to the FTC techniques. Those studies
resulted in the following publications and submissions [214, 276, 277, 278].

In addition, since the initial idea of this thesis was related to reduce the
dependence of FTC techniques on physical models, the problems of learning-based
modeling and control were also investigated during this doctoral term, and resulted in
the following published and submitted papers [279, 280, 281, 282]. Finally, within the
scope of nonlinear control and estimation, some researches were conduct in collaboration
with D!FCOM team resulting in the following publications and submissions [231, 283,
284, 285].

7.4 Future research directions

This section discusses some possibilities of further research directions related to
the fault hiding of nonlinear systems and some other emerging applications for RBs
which extrapolate the domain of of FTC.
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7.4.1 Tolerance to FDI imperfections

Although most of the fault hiding approaches in the literature assume the
existence of a perfect FDI system, recent results consider the integration between FDI
and fault hiding systems. However, the FDI system is also subject to failures, which
are usually ignored in the literature.

In practical applications may be impossible to perform the online design of RBs.
In this sense, two options are possible to enable the online fault hiding: i) employing
banks of RBs, where there is one pre-designed RB for each possible fault scenario;
ii) using RBs whose parameters are able to be updated by the fault estimates, such
as adaptive [47, 48, 49, 53, 52, 50, 54, 51] and robust [128, 105] blocks. Within the
fault hiding framework, the integration with FDI systems must be able to perform the
following tasks

a) Fault classification for indicating if it is an actuator or sensor fault and,
particularly, what is the actuator/sensor affected by the fault.

b) Fault estimation which provides an estimate of the fault magnitude.

c) Loop reconfiguration to insert the RB in the control loop.

On the one hand, fault classification and estimation tasks may fail in two
ways: inaccuracy and time delay. But on the other hand, the loop reconfiguration
may also induce additional delays in addition to harmful consequences of consecutive
switching operations. An inaccurate fault classification may lead to a wrong loop
reconfiguration command, whose consequences can be fatal since most of the fault
hiding approaches are unable to guarantee stability using wrong RB for a given fault.
Indeed, the inaccurate fault classification is rarely addressed in fault hiding literature, and
the proposed approaches, such as establishing dwell-time conditions [191] or checking
the classification sanity, are not able to formally guarantee the safe reconfiguration.
Due to the inherent robustness, some inaccuracies in fault estimates should be tolerated,
however, their effects must be adequately quantified and analyzed to guarantee the
safety of the reconfiguration operation. Similarly, all the delays induced by classification,
estimation, and reconfiguration tasks may be somehow tolerated, but it requires
rigorous analysis. In general, the analysis of the tolerance and the effects of delays and
fault estimation errors are performed by computing positively invariant sets for which
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the reconfigured system convergence is ensured despite delays [123] and estimation
errors [189].

Although there are sparse solutions that deal with the FDI delays, fault estimation
error and fault misclassification, they are still incipient which results in conservative
conditions and the inability to deal simultaneously with all those failures. Based on
the discussion presented above, the following open challenge related to the tolerance
to FDI imperfections is identified.

Research Direction 1. To develop FTC frameworks that integrate fault diagnosis,
estimation, and hiding considering FDI and reconfiguration delays, reconfiguration
switching, fault estimation errors, and fault misclassification.

In particular, the fault hiding approaches for polytopic differential inclusions,
whose representation validity is typically local, must consider the inclusion of those
invariant sets within the domain of validity of the differential inclusions. Unfortunately,
that issue has not been considered in the fault hiding literature yet. In this sense, the
following challenge can be also considered.

Research Direction 2. For plant models which are only locally valid, obtain design
conditions for fault hiding with local guarantees considering FDI, reconfiguration delays
and fault estimation errors.

During the doctoral studies to which this thesis is related, some results were
obtained for fault hiding approaches robust with respect to a range of fault indica-
tions [128]. Those results can be combined with the RBs indpendent of internal
model principle, which were investigated in this thesis, to develop robust fault hiding
approaches with respect to FDI failures.

7.4.2 Reduce the model dependence

In general, the fault hiding approaches reported in the literature are based
on mathematical models. The dependence occurs in two ways: first, the design
methodologies require the healthy and faulty plant models to design the RBs gains
which guarantee the fault hiding objectives; second, most of the RBs are based on the
internal model principle, therefore those structures embed the plant parameters when
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they are implemented for online use. However, these models are not always available
and sometimes they are not reliable or are too complex to allow the use of existing
control techniques. Indeed, this is the main motivation for developing data-driven
and model-free methods. Although data-driven FTC and FDI become popular, there
are still no data-drive fault hiding approaches proposed in the literature. It is worth
mentioning that the concept of data-driven VSs has already been proposed out of the
fault hiding context. For example, data-driven VSs are learned from data based on
system identification, machine learning or digital twins techniques to solve problems
related to: estimation of immeasurable parameter [286]; fault diagnosis [287]; fault
detection [288, 289]; fault prognostics [184]; and fault accommodation [290]. Moreover,
the VAs designed as fuzzy expert systems also indicate a way for achieving data-driven
fault hiding design approaches in the future.

Research Direction 3. To develop data-driven fault hiding approaches for dealing
with plants with unknown dynamics subject to faults whose modeling is uncertain and
estimates are inaccurate.

The results presented in chapter 6 and published in [129, 269] indicates a way
to reduce the dependence on models. It can be extended by using some results for
data-driven input-output properties as those described in [291, 292, 201, 262, 263, 264].
Moreover, learning-based fuzzy modeling can be adapted to obtain polytopic differential
inclusions which eases the estimation of dissipativity properties based on sum of squares
or LMIs. Indeed, during the doctoral studies to which this thesis is related, some relevant
results were obtained and published related to evolving fuzzy modeling [281] and its
application to ETC [280], fuzzy control [282], fault prognostics [273, 275, 274, 272],
and fault diagnostics [271]. Those evolving fuzzy modeling are polytopic differential
inclusions which can be also applied to the problem of data-driven estimation of
dissipativity properties for developing passivation-based data-driven fault hiding.

Since most of the fault hiding approaches are based on the internal model
principle, the additional issue to reduce the dependence on models is the sensitivity
of those RB structures concerning the fault estimation error. It occurs because the
effective faulty model parameters are obtained from the fault estimator, which may
not be reliable as discussed in subsection 7.4.1. Even for a good fault estimator, the
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estimates take some time to converge, and even a small estimation error should result
in a block whose guarantees do not cover the real fault scenario. Therefore, obtaining
design methodologies for RBs independent of the internal model principle is also an
open challenge.

Research Direction 4. To develop design methodologies for fault hiding approaches
based on RBs independent of the internal model principle.

In this regard, some recent advances are presented in this thesis and the
publications [127, 106], related to this thesis, which propose RBs structures independent
of the internal model principle for stability and dissipativity recovery by fault hiding.
To design them, procedures consisting of two steps are proposed - first, an analysis
step is used to obtain valid storage or Lyapunov functions and, second, a synthesis step
is performed based on the function obtained previously. Further works may include
less conservative approaches without using the same Lyapunov functions in the second
step. Those further approaches can be inspired by design conditions used to obtain
SOF controllers, for example, those provided in [231].

Moreover, the PBs are also presented in [129] which may be independent of the
internal model principle and generalizes the canonical RBs (VSs and VAs) as indicated
in [269]. Indeed, those blocks are designed to perform the passivation of the faulty
system without requiring an explicit fault model, but only the faulty system’s passivity
indices.

7.4.3 Safety constraints

For several applications, the states and inputs of the system are not allowed to
violate some boundaries, usually called safety constraints. While most of the fault hiding
approaches are concerned with recovering desired stability, tracking, and performance
properties, there are few results concerning the maintenance of safety constraints. In
particular, the reconfiguration delays and the switching usually lead the reconfigured
system to overshoot and high control efforts required from the remaining actuators. In
this sense, safety constraints might be violated even when the stability and performance
are asymptotically recovered. Indeed, the approach proposed in this thesis and in the
related publication [226] is able to deal with input saturation, which is a way to address
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the problem of input constraints. Moreover, to deal with safety constraints, MPC-based
fault hiding approaches have been recently proposed [211, 130, 131, 227], however,
they do not consider the design of the MPC ingredients to guarantee the stability [293].
Therefore to deal simultaneously with the conventional fault hiding objectives and safety
constraints is also an open challenge.

Research Direction 5. To develop fault hiding approaches which are able to recover
nominal properties while deal with safety constraints after the control reconfiguration.

7.4.4 Emerging Applications

In addition to the fault hiding, RBs have been recently applied to solve other
problems in the spirit of hiding disturbance effect and improve the system dynamics
without modifying the pre-designed controllers. Therefore, these applications are
discussed below.

7.4.4.1 Cyber-secure control

With the advances in communication networks, the resilience of dynamic systems
against cyber-attacks is attracting interest from academia and industry. To address
that issue, cyber-secure control systems are proposed. Most of the results in this regard
are inspired by FTC techniques, due to the similarities between the effects of faults and
cyber-attacks in dynamic systems.

In this sense, denial-of-service attacks in the controller to the actuator channel
can be represented as an efficiency loss of the actuator. In [212], VAs are used to
mitigate the effects of those denial-of-service attacks. In addition, for DC microgrids
subject to sensor deception attacks, the use of VSs is proposed to recover the correct
measurements in [294]. For MASs wherein some agents are subject to attack, a
virtual network block is proposed in [295] for hiding the attack effect from the other
agents in the network. Moreover, an effective way to detect cyber-attack occurrence
is by injecting watermarking signals. However, the signal injection also has disruptive
effects. For handling those effects, RBs are used to attenuate the nocive effects of the
watermarking signal injection in [213, 214].
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Given those recent advances, the application of RBs and fault hiding techniques
for cyber-secure control seem to be promising and additional efforts are welcome to
develop those ideas.

7.4.4.2 Stabilizing and Damping Control

In power systems, supplementary control loops (e.g., power system stabilizers and
power oscillation damping controllers) are usually employed to improve the performance
and oscillation damping and guarantee stability. In particular, to deal with the negative
impedance effect of CPLs in microgrids, virtual elements are commonly employed,
such as virtual impedance [296, 297], inductance [95, 298, 299], capacitance [96], and
inertia [300, 301]. Moreover, the performance improvement in power system networks
is also obtained by inserting supplementary control loops in a retrofit control scheme
in [84, 85, 86, 87, 88], whose similarities with the fault hiding are already discussed
in section 2.3.

For load frequency fault-tolerant control, VAs are already used and their effec-
tiveness for damping the frequency oscillations is indicated by the results in [210, 179].
Indeed, RBs are suitable for the context of power systems and microgrids in which highly
distributed systems with complex multi-loop control schemes are found. In particular,
the possibility of employing RBs that allow the recovery and performance improvement
in part of the grids, without changing the baseline controllers or affecting the properties
of the remainder of the network, is very attractive and motivates further studies on the
application of RBs for stabilizing and damping control of power systems.

7.4.4.3 Networked Control Systems

The absolute majority of fault hiding approaches are designed in continuous-time
or discrete-time systems, for which traditional time-triggered sampling and transmissions
are employed. However, in NCSs [283], the use of resource-aware control methods is
usual, including ETC methods in opposition to the traditional time-triggered methods.
Some exceptions are the approaches in [187, 188] that consider the design of RBs for
fault-hiding of NCSs that consider varying-rate control schemes. Therefore, it is still
necessary to develop effective fault hiding approaches applicable to ETC schemes.
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In addition, the RBs may play an alternative role in NCSs [302]. Although
the ETC schemes are usually designed by emulation (the event generators design is
independent of the controllers’ design) or co-design (the event generators and controller
are designed simultaneously) methods, in [303] a different approach is proposed. In
this paper, given the event generators and the system (plant and controller) models,
static PBs are designed to guarantee the stability of the network (considering delays and
quantization) without modifying the controllers or the event generators. In general, the
co-design conditions are less conservative and lead to better performance in terms of
reduction of the number of transmissions but it requires the design of a new controller
with the event generator. Otherwise, the approach proposed by [303] designs an
additional block to guarantee closed-loop properties and improve its performance
without re-design the controller but providing some degrees of freedom to the design
process. Indeed, RBs can be useful to achieve novel design methods for NCS and ETC
schemes.
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