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Abstract
Radiation Therapy (RT) is a treatment option for a large number of neoplasias. However, the effect of RT on the
level of hypoxia markers is poorly understood. The present study aimed to investigate the effect of RT on the levels
of hypoxic markers in Oral squamous cell carcinoma (OSCC). Evaluation of HIF-1α and miR-210 levels in OSCC
was performed. Then a proteomic analysis was performed to identify candidate hypoxic targets of RT. To validate
proteomic studies, the effect of RT on HIF-1α, miR-210, PDH-A and LDH-A levels under hypoxia was assessed by
qRT-PCR. The impact of RT in hypoxia markers was evaluated in patients to confirm in vitro results. An increase in
the HIF-1α levels was observed in OSCC. RT reduced OSCC cell proliferation and migration. Interestingly, hypoxia
could revert the effect of radiation on OSCC phenotype. However, proteomics analyses suggested that LDH is one
of the critical targets of RT even in hypoxia. Moreover, RT decreased HIF-1α, miR-210, and LDH even in hypoxia.
The current study demonstrated that hypoxia could revert the effects of RT in the OSCC context. However, RT
reduces the levels HIF-1α, miR-210 and LDH in vivo and in vitro. The consequences of RT in blood should be
carefully investigated.
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Introduction

Oral squamous cell carcinoma (OSCC) is a significant public
health problem in many countries [1] and is the most common
malignant neoplasia of the oral cavity [1]. Alcohol and tobac-
co consumption are the most critical risk factors currently
described for OSCC [2]. However, individual intrinsic factors
also play a significant role in the development and prognosis
of cancer [3–5]. The commonly used treatments for OSCC are
surgical resection and Radiation Therapy (RT) associated or
not with chemotherapy [6]. OSCC treatment may offer morbid
conditions, including functional deficits, as well as significant
aesthetic damages, such as speech deficiency, swallowing and
facial deformity [7].OSCC relapse is common despite com-
monly applied multimodal therapy [8, 9]. Hypoxia is a signif-
icant factor related to radioresistance [8]. Pyruvate is the final
product of aerobic glycolysis [10].

In different types of neoplastic cells, pyruvate is highly
converted to lactate, a phenomenon known as Warburg’s
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effect [11, 12]. The enzyme pyruvate dehydrogenase (PDH),
when activated, can alter the metabolism of neoplastic glycol-
ysis cells to glucose oxidation [13]. Lactate dehydrogenase
(LDH) is responsible for the interconversion of reduced pyru-
vate and nicotinamide adenine dinucleotide (NADH) generat-
ed by glycolysis to lactate and NAD [14, 15]. The direction of
the catalysis depends on the ratio of LDH-A and LDH-B.
LDH-A promotes the conversion of pyruvate to lactate to
regenerate NAD+ from NADH, whereas LDH-B facilitates
the reverse reaction [14, 15]. LDH-A is the key enzyme in-
volved in the Warburg effect and in maintaining the glycolytic
phenotype of cancer [12, 14, 16]. Hypoxia is the primary
factor responsible for the abnormal glycolytic flow in cancer
cells [10], with HIF-1α being the principal protein of the hyp-
oxia pathway [17]. HIF-1α induces transcription several tar-
gets genes that promote adaptations to hypoxia [18–23].
Genetic products transcribed by HIF-1α influence cell metab-
olism, cell survival, cell migration, pH regulation and cyto-
kine secretion to initiate the phenomenon called angiogenesis
[24, 25]. High levels of HIF-1α expression are associated with
a worse prognosis in breast cancer, upper aerodigestive tract
carcinoma and colorectal cancer [18, 20, 21]. Recent
s tud ies have ident i f ied essent ia l func t ions of
microRNAs in several cellular processes, including car-
cinogenesis [26] and the literature has shown that high
levels of miR-210 participate in the stabilization of HIF-
1α during hypoxia [27]. Overexpression of miR-210
was detected in patients with breast cancer and head
and neck cancer [28, 29]. Also, miR-210 on expression
is a crucial element in endothelial cell response to hyp-
oxia, affecting cell survival, migration, and differentia-
tion [30]. Studies have shown that hypoxia in the neo-
plasia, promotes higher resistance to RT [31–36].
However, RT can diminish the activity of HIF-1α [37].
The present study aimed to investigate the role of radi-
ation in the expression of HIF-1α, miR-210, PDH-A
and LDH-A and phenotype of OSCC cells under hyp-
oxic conditions.

Patients and Methods

Patients

Ethical approval for this study was obtained from the
Institutional Review Board, and a signed informed consent
form was obtained from all patients (process number CAAE
62425316.0.0000.5146). Sample calculation was based on the
service data and literature [1, 38]. According to radiation ther-
apy dentistry service OSCC is 90% of all oral malignant neo-
plasia, so the sample size calculation was performed as de-
scribed before [39] to have alpha 0.05, beta 0.4 and study
power 0.6.

Groups

The 26 OSCC patients were enrolled in the current study.
OSCC patients were divided into two groups. Group 1 (n =
17) OSCC patients without any cancer treatment. On the other
hand, Group 2 (N = 9) OSCC patients followed during radia-
tion therapy. A third Group was comprised of 18 volunteers
without OSCC.

The inclusion criteria for group 1 and 2 was the was the
histopathological confirmation of the diagnosis according to
the World Health Organization criteria [40, 41]. Specifically,
Squamous cell carcinoma of the base of the tongue, Squamous
cell carcinoma of other or unspecified parts of tongue,
Squamous cell carcinoma of gum, Squamous cell carcinoma
of floor of mouth, Squamous cell carcinoma of palate,
Squamous cell carcinoma of other or unspecified parts of
mouth and Squamous cell carcinoma of oropharynx were in-
cluded in OSCC group. As exclusion criteria, all OSCC lesion
with lip involvement were excluded.

Group 3 was comprised of individuals without oral cancer.
The exclusion criteria for group 3 was individuals who pre-
sented past cancer medical history. All groups were collected
between February 2016 to May 2017, met the requirements
for participation in the study. Detailed clinical information
about the subjects is disposed of in Table 1.

Tissue Specimens

The specimens from group 1 were10 primary lesions and 7
blood samples. From Group 2 only blood samples (N = 9)
were ethically possible to be obtained. Two blood samples
from all group 2 patients were taken after first and the last
radiation therapy section. The oral mucosa samples (n = 10)
from group 3 were collected during third molar surgery.
Additionally, group 3 was comprised of blood samples from
another 8 healthy donors. For all groups, qRT-PCR tissue
specimens samples that presented the expression of lower en-
dogenous expression or incompatible melting curve were also
excluded from analyses qRT-PCR.

Cell Culture and Hypoxia

Cells were maintained as described before [10, 42]. Briefly,
SCC9 cells were maintained in Dulbecco’s modified Eagles
medium (DMEM / F12, GIBCO, Billings, MT, USA) supple-
mented with 10% fetal bovine serum (FBS, GIBCO, Billings,
MT, USA)*, 400 ng / ml hydrocortisone and an antibiotic /
antimycotic solution (Invitrogen, Carlsbad, CA, USA) at
37 °C with 5% CO2 in an atmosphere of humidified air. The
cells were seeded into a 12-well plate and synchronized for
24 h by the absence of fetal bovine serum to obtain synchro-
nized cultures of SCC9 cells (1 × 105). All treatments were
performed in the lack of SBF. SCC9 cells were cultured in
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medium with the addition of 100 μM cobalt chloride (CoCl2,
Sigma, St. Louis, MO, USA) over a 24 h period to mimic
hypoxic conditions. All culture experiments were performed
in triplicate.

Radiation Assay and Groups

X- rays beam from GAMMATRON-S80, source CO-60 GK
60 T03 was used in this study. The cells were irradiate using
the iso-centric technique with the linear accelerator positioned
at the base of the adhered cell. Two vertical parallel opposed
fields were used. The Source-axis distance (SAD) was 80 cm.
The field size of 10 × 10 cm2 at the isocenter plane was the

same for both areas. The cells were irradiated with doses of
6 Gy. T25 tissue flasks were filled with DMEN/F12 to main-
tain the electronic equilibrium during X-rays irradiation. The
effect of radiation on SCC9 cells was evaluated in all assays
after 24 h of radiation. Comparisons were among the four
groups, which included control, CoCl2, Radiation, and
Radiation+ CoCl2.

RNA Isolation and qRT-PCR

RNA isolation and qRT-PCR were described before [10, 42].
RNA was isolated using the Trizol reagent (Thermo Fisher
Scientific, Waltham, MA, USA), according to the

Table 1 Detailed clinical information about the subjects

ID Group Tissue Age Sex Alcohol use Smoking T N M ICD Daily/
Total
(cG )

Follow up
(days)

1 OSCC in RT Blood 64 Male Yes Yes T3-T4 N0 M0 2B61.0 200/7000 386
2 OSCC in RT Blood 58 Male Quit Yes T3-T4 N1-N2-N3 Mx 2B61.0 200/7800 677
3 OSCC in RT Blood 51 Male Quit Quit T3-T4 N1-N2-N3 M0 2B6A.0 200/6600 822
4 OSCC in RT Blood 70 Male Quit Yes T3-T4 N0 Mx 2B62.0 200/6600 691
5 OSCC in RT Blood 88 Male Quit Yes T3-T4 N0 M0 2B6A.0 200/7000 602
6 OSCC in RT Blood 58 Male Quit Quit T1-T2 N0 Mx 2B62.0 200/6600 533
7 OSCC in RT Blood 55 Male Yes Yes T3-T4 N1-N2-N3 Mx 2B6A.0 200/7000 348
8 OSCC in RT Blood 59 Female Quit Quit T3-T4 N1-N2-N3 Mx 2B62.0 200/7000 704
9 OSCC in RT Blood 60 Male Quit Yes T3-T4 N1-N2-N3 Mx 2B63.0 200/6600 783
10 OSCC Blood 65 Male Yes Quit T1-T2 Nx Mx 2B62.0 N/A N/A
11 OSCC Blood 57 Male Quit Quit T3-T4 N0 Mx 2B6A.0 N/A N/A
12 OSCC Blood 63 Male Yes Yes T3-T4 N1-N2-N3 Mx 2B6A.0 N/A N/A
13 OSCC Blood 60 Female No Quit T3-T4 N0 Mx 2B64.0 N/A N/A
14 OSCC Blood 75 Female Yes Yes T3-T4 N1-N2-N3 Mx 2B62.0 N/A N/A
15 OSCC Blood 51 Male Quit Quit T3-T4 N1-N2-N3 M0 2B6A.0 N/A N/A
16 OSCC Blood 56 Male Yes No T1-T2 N0 Mx 2B62.0 N/A N/A
17 OSCC Lesion 57 Male Yes Yes Tx N1-N2-N3 M0 2B66.0 N/A N/A
18 OSCC Lesion 68 Male Yes No T3-T4 N0 M0 2B62.0 N/A N/A
19 OSCC Lesion 41 Female No No T3-T4 N0 M0 2B66.0 N/A N/A
20 OSCC Lesion 72 Male Yes No T3-T4 N0 M0 2B66.0 N/A N/A
21 OSCC Lesion 54 Male No No T3-T4 Nx M0 2B66.0 N/A N/A
22 OSCC Lesion 56 Male Yes No T3-T4 Nx M0 2B66.0 N/A N/A
23 OSCC Lesion 75 Male Yes Yes T3-T4 N1-N2-N3 M0 2B66.0 N/A N/A
24 OSCC Lesion 48 Male Yes Yes T3-T4 N1-N2-N3 M0 2B62.0 N/A N/A
25 OSCC Lesion 67 Male No No T3-T4 Nx M0 2B62.0 N/A N/A
26 OSCC Lesion 47 Male Yes Yes T1-T2 Nx M0 2B63.0 N/A N/A
27 Control Mucosa 38 Female No No N/A N/A N/A Control N/A N/A
28 Control Mucosa 19 Female No No N/A N/A N/A Control N/A N/A
29 Control Mucosa 19 Female No No N/A N/A N/A Control N/A N/A
30 Control Mucosa 22 Male No No N/A N/A N/A Control N/A N/A
31 Control Mucosa 32 Female No No N/A N/A N/A Control N/A N/A
32 Control Mucosa 24 Male No No N/A N/A N/A Control N/A N/A
33 Control Mucosa 57 Male No No N/A N/A N/A Control N/A N/A
34 Control Mucosa 29 Female No No N/A N/A N/A Control N/A N/A
35 Control Mucosa 18 Male No No N/A N/A N/A Control N/A N/A
36 Control Mucosa 56 Male Yes Yes N/A N/A N/A Control N/A N/A
37 Control Blood 20 Female No No N/A N/A N/A Control N/A N/A
38 Control Blood 28 Female No No N/A N/A N/A Control N/A N/A
39 Control Blood 24 Male Yes No N/A N/A N/A Control N/A N/A
40 Control Blood 19 Female No No N/A N/A N/A Control N/A N/A
41 Control Blood 28 Male No Yes N/A N/A N/A Control N/A N/A
42 Control Blood 30 Female No No N/A N/A N/A Control N/A N/A
43 Control Blood 32 Female No No N/A N/A N/A Control N/A N/A
44 Control Blood 34 Female No No N/A N/A N/A Control N/A N/A
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manufacturer Total RNA was treated with DNase I,
Amplification Grade (Invitrogen, cat number 18068015,
Carlsbad, CA, USA) and then 1.5 μg of RNA was reverse
transcribed with the SuperScript® First-Strand Synthesis
System for RT-PCR. (Invitrogen, cat number 11904018,
Carlsbad, CA, USA). For qRT-PCR, 66 ng of the cDNAwas
added to SYBER GREEN reagent (Life Technologies,
Carlsbad, CA, USA) with HIF-1α [43] LDHA and PDHA
[10] primers whose primer sequences described in
Supplementary Table 1. Amplification was performed on a
StepOne QRT-PCR System (Life Technologies, Carlsbad,
CA, USA). All reactions were done in triplicate, and Beta-
Actin [44] was used as an endogenous control for gene ex-
pression analysis. For experiments with patient tissues, the
normal mucosa was used as a calibrator group. For in vitro
studies, untreated cells (control group) were used as a calibra-
tor. The results were quantified as Ct values, where Ct was
defined as the threshold cycle of PCR at which the amplified
product is first detected and defined as relative gene expres-
sion (the ratio of target/endogenous). qRT-PCR was analyzed
by the 2^-ΔΔCt. method.

For miR-210 (ID: Hs04231470_s1, Life Technologies,
Carlsbad, CA, USA), a TaqMan assay was performed accord-
ing to the manufacturer’s protocol. RNU44 was used as an
endogenous control for miR-210 analysis (ID: 001094, Life
Technologies, Carlsbad, CA, USA), All reactions were done
in triplicate. For experiments with patient tissues, samples of
healthy mucosa were used as calibrator. For in vitro studies,
untreated cells (control group) were used as a calibrator. The
following reaction steps were used for amplification: 95 °C for
10 min, 95 °C for 15 s and 60 °C for 1 min. The Ct values of
endogenous controls were subtracted from the Ct values of the
respective targets to calculate the ΔCt. The ΔCt values from
each experimental group were averaged and converted to log
base 2 using the eq. 2^-ΔΔCt to compare expression among
different samples.

Mass Spectrometry (MS): Preparation of Cell Samples

Cell lysates were treated with urea (Sigma, St. Louis, MO,
USA) at final concentration of 1.6 M followed by reduction
with dithiothreitol (Sigma, St. Louis, MO, USA) at 5 mM for
25 min at 56 °C, alkylation with iodoacetamide (Sigma, St.
Louis, MO, USA) at 14 mM for 30 min at room temperature
protected from light and digestion with trypsin (Promega,
Madison, WI, USA) for 16 h at 37(ratio enzyme: substrate,
1:50). The reaction was stopped with formic acid (Merck;
BDH Prolabo Chemicals Darmstadt Germany) to 0.4% and,
after desalination using SepPack, the dried samples in a vac-
uum concentrator model SPD 1010 speedvac system (Thermo
Fisher Scientific, Waltham, MA, USA). The samples were
stored at −20 for subsequent analysis in a mass spectrometer.

For protein analysis was used previously described
methods with appropriate modifications [45]. Briefly, an ali-
quot of 2.0 ul (4μg) of proteins resulting from peptide diges-
tion was were separated by C18 (100 mm 6100 mm) RP-
nanoUPLC nano Acquity (Waters, Borehamwood,
Hertfordshire, UK) coupled with a Q-Tof Premier mass spec-
trometer (Waters, Borehamwood, Hertfordshire, UK) with
nanoelectrospray source at a flow rate of 0.6 ul/min. The gra-
dient was 2–90% acetonitrile in 0.1% formic acid over 10 min
(spots) and 45 min (shotgun). The nanoelectrodes pray volt-
age was set to 3.5 kV, a cone voltage of 30 V and the source
temperature was 100uC. The instrument was operated in the
‘top three’ mode, in which one MS spectrum is acquired
followed by MS/MS of the top three most-intense peaks de-
tected. After MS/MS fragmentation, the ion was placed on the
exclusion list for 60 s and the analysis of endogenous cleavage
peptides; a real-time exclusion was used.

For data analysis, the spectra were acquired using
software Mass Lynx v.4.1 and the raw data files were
converted to a peak list format (mgf) without summing
the scans by the software Mascot Distiller v.2.3.2.0,
2009 (Matrix Science, London, UK) and searched
against the UniProt database, using Mascot engine
v.2.3.01 (Matrix Science, London, UK), with carbamido-
methylation as fixed modifications, oxidation of methi-
onine as variable modification, one trypsin missed
cleavage and a tolerance of 0.1 Da for both precursor
and fragment ions. After the data analyzed in Scaffold
4.8.4. The differentially expressed proteins between
samples from each of the study groups were analyzed
in MetaboAnalyst 3.0 with heatmap generation [46, 47].

Wound Scratch Assay

Cell migration was monitored in a wound risk assay as de-
scribed previously [10, 42]. The images were obtained with an
SC30 camera (Olympus, Center Valley, PA, USA) on an
inverted IX81 microscope (Olympus, Center Valley, PA,
USA). ImageJ software was used for analysis [48].

Acridine Orange/Ethidium Bromide Cell Death Assay

Simultaneous staining performed the detection of apoptotic
cells simultaneous staining with both acridine orange (AO,
Sigma, St. Louis, MO, USA) and ethidium bromide (EB,
Sigma, St. Louis, MO, USA) as described before [10, 42].
Briefly, cells were incubated with 10 μg/ml of AO and
20 μg/ml of EB on the darkroom for 5 min and observed
under a fluorescence microscope (FSX100, Olympus, Center
Valley, PA, USA). The automatic count and threshold were
performed in the merged image by ImageJ software [49].
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Statistical Analysis

Kolmogorov Smirnov and the Shapiro-Wilk Tests were carried
out to evaluate data distribution. After the definition of the data
distribution, an appropriate test was conducted. Statistical sig-
nificance was accepted at p < 0.05. Analyses were performed
using SPSS (Version 18.0) and GraphPad Prism software
(Version 5.0, GraphPad Software Inc., San Diego, CA, USA).

Results

HIF-1α and miR-210 Present Higher Levels in Patients
with OSCC

qRT-PCR was performed to compare HIF-1α and miR-210
levels in OSCC primary lesion and oral mucosa. Higher HIF-
1αmRNA level was increased in patients with OSCC primary
lesion compared to normal mucosa (Fig. 1a). On the other
hand, no differences in miR-210 levels were observed be-
tween OSCC lesion and normal mucosa (Fig. 1b).

Effects of Radiation on OSCC Cell Phenotype
under Hypoxic Conditions

The wound scratch assay was performed to clarify the impact
of radiation on OSCC cells phenotype in a hypoxic environ-
ment. Radiation under normoxic conditions reduced OSCC
migration. On the other hand, hypoxia could revert the effect
of radiation after 24 h (Fig. 2a, b). In the same way, the cell
death assay demonstrated that radiation under normoxic con-
ditions increased OSCC cell death but, hypoxia could revert
the effect of radiation after 24 h (Fig. 2c-d).

Proteomic Analyses Demonstrated that Radiation
Therapy Could Change LDH Levels

LDH was the unique protein related to glycolytic metabolism
which presented significant changes in expression for RT

(Fig. 3a). In detail, LDH levels were drastically changed in
hypoxic cells submitted to RT (Fig. 3b).

Radiation Reduced Hypoxic Factors and LDH Levels
under Hypoxia In Vitro

Hypoxia is the primary stimulus that increases the expression
of HIF-1α and mir-210. An in vitro assay was performed to
assess if RT could interfere with HIF-1α, mir-210, LDH, and
PDH level sin OSCC cells under hypoxia. RT did not promote
changes in HIF-1α or mir-210 levels in normoxia. Moreover,
RT did not improve LDH levels under normoxia (Fig. 4c).
Hypoxia increased HIF-1α, mir-210 and LDH levels. On the
other hand, RT reduced HIF-1α and mir-210 levels under
hypoxia. (Fig. 4a, b respectively). Interesting enough RT also
decreased LDH levels under hypoxia (Fig. 4c). Neither radia-
tion nor hypoxia changed PDH level (Fig. 4d).

Radiation Therapy Reduced Hypoxic Factors and LDH
Blood Levels in OSCC Patients

Blood levels of HIF-1α, miR-210, and LDH in patients under
RTand its respective controls were evaluated to test the systemic
effects of RT and confirm in vitro studies. Untreated OSCC
patients presented higher blood levels of HIF-1α, miR-210,
and LDH in comparison to the control group (Fig. 5a-c). RT
reduced Blood levels HIF-1α, miR-210 and LDH (Fig. 5a-c).
Additionally, no differences between control and RT patients
were observed regarding HIF-1α, miR-210, and LDH blood
levels. There were no differences between HIF-1α, miR-210,
and LDH blood levels after RT treatment (Fig. 5a-c).

Discussion

Oral squamous cell carcinoma (OSCC) is characterized by its
higher incidence worldwide [50]. Also, OSCC development
and treatment produce distortions in the ability to interact so-
cially [7, 51]. Thus, it is necessary to fully understand OSCC
molecular signatures to improve the treatment [52]. The

Fig. 1 HIF-1α and miR-210 ex-
pression in patients with OSCC
primary lesion. In (a), the
expression of HIF-1α was higher
in OSCC patients with OSCC.
HIF-1α mRNA levels were in-
creased in comparison to control.
In (b), no differences in miR-210
levels observes between OSCC
and control
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current study is the first to investigate the impact of radiation
therapy in miR-210, HIF-1α, and LDH in the context of
OSCC under hypoxia.

In the current study, no differences in miR-210 levels were
observed between OSCC and oral mucosa. Only one previous
study [53] evaluated the levels of miR-210 in OSCC, but the
comparison was performed with a lymph node. On the other
hand, it was found that OSCC patients presented higher local
and systemic levels of HIF-1α in comparison to control group.
It was demonstrated that HIF-1α promotes OSCC develop-
ment and metastasis [3]. Moreover, HIF-1α mediates adapta-
tion to hypoxia by actively downregulating mitochondrial

oxygen consumption in neoplastic cells [54, 55]. As the lead-
ing consequence, HIF-1α acts in favor of the Warburg’s effect
allowing higher pyruvate conversion to lactate [10].
Interestingly, lactate only activates HIF-1α in normoxic oxi-
dative tumor cells [56].

The efficacy of radiotherapy depends on several factors,
such as the mechanism of oxygenation of neoplastic cells
[57]. There is a healthy relationship between poor prognosis
and low oxygenation levels in neoplasias [3, 9]. Previous
studies that suggest that RT of OSCC cells under hypoxia
presented higher levels of HIF-1α when compared to OSCC
cells only to radiated under normoxia [58]. Here, OSCC cells

Fig. 2 Effect of Radiation and hypoxia in OSCCmigration and death
under hypoxic conditions. In (a, b) radiation decreases migration but
hypoxia revert radiation effect. The scale represents 100 μm. AO/EB

quantification (c) and representative figs. (d). Radiation increases cell
death but hypoxia revert radiation effect. The scale represents 92 μm
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under hypoxia presented higher levels of HIF-1α, miR-210,
and LDH. Additionally, In the current study, hypoxia reverts

the phenotypic effect of RT in OSCC cells. The hypoxia in
neoplasia microenvironment is an essential mechanism of

Fig. 3 Proteomic analyses. In (a) the essential proteins associated with hypoxia and Radiation Therapy. In (b) a selection of leading proteins related to
OSCC. LDH was the unique protein associated with glycolytic metabolism which presented significant changes in expression for RT.

Fig. 4 Effect of radiation and hypoxia on HIF-1α, miR-210, LDH
and PDH levels in OSCC cells. Radiation in hypoxia condition
increases HIF-1α (4a) and miR-210 (4b) and LDH (4c) levels.

Radiation reduced HIF-1α (4a) and miR-210 (4b) and LDH (4c) levels
under hypoxia. Nighter radiation or hypoxia changed PDH levels. (4d)
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radioresistance and recurrence [9]. Activation and stabiliza-
tion of the HIF-1α trigger angiogenesis, proliferation and gly-
colytic metabolism [36]. Also, HIF-1α can prevent pyruvate
from entering the Krebs cycle [36].

RT, which is widely used as an OSCC treatment, promote
the reduction of LDH activity [59, 60]. RT acts both, directly
and indirectly, DNA strand break [61]. In the direct effect, the
energy of the radiation works directly on atoms to promote
breaking the DNA strand [61]. Divergently, RT indirect effect
is a consequence of the increase in the production of Reactive
Oxygen Species (ROS), which promotes DNA strand break
[36]. RT dose reaches levels eliciting DNA damage, p53 is
activated and diminishes the activity of HIF-1α and glycolysis
[37]. In the current study, for the first time, a proteomic ap-
proach was performed to identify if there is any effect of RT
in OSCC cells under hypoxia. The current study identified that
LDH was the unique protein related to glycolytic metabolism
which presented significant changes in expression for RT. It
was demonstrated that RT might change levels of HIF-1α,
miR-210, and LDH under hypoxia in vitro.

Additionally, in vivo results also demonstrated that RT pro-
motes a reduction in blood levels of HIF-1α, miR-210, and
LDH. The abscopal effect is defined as the capacity of ionizing
radiation reduce tumor growth outside the radiation field, gen-
erating a systemic anti-tumor response [62]. LDH is responsible
for malignant neoplasia maintenance and progression [16, 63].
Moreover, LDH-depletion promotes HIF-1α, reduction and
consequently changes in the tumormicroenvironment that mod-
ulates the immune [64]., In the current study, RT reduced sys-
temic levels of LDH, HIF-1α, and miR-210. The systemic HIF-
1α reduction might be associated with metastasis reduction [3]
and might be a rationale for the abscopal effect. Moreover, frac-
tionated RT might reduce HIF-1α and miR-210 because of the
promotion of reoxygenation [65, 66]. Some preclinical studies
had focused on the demonstration of an abscopal effect [67].
However, the exact mechanism of RT abscopal effects, specifi-
cally in OSCC, still needs to be clarified.

In conclusion, the current study demonstrated that hypoxia
could revert the effects of RT in the OSCC context. However,
RT reduces the levels HIF-1α, miR-210 and LDH in vivo and
in vitro. The consequences of RT in blood should be carefully
investigated.
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