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For many years lactate was seen as a metabolite from glucose metabolism. However, since the last century
researchers have shown that this molecule has an important role on liver, muscle, and brain metabolism. Lactate
traffics along whole body mediating many biological processes depending on specific situations. For example,
glucose is the main substrate used during exercise but lactate released by striated skeletal muscle is used by own
muscle as secondary fuel. On the other hand, neuronal firing in the brain is almost totally lactate-dependent. In
addition, lactate has an important role on BDNF-mediated neuroplasticity. As this molecule has a pleiotropic role

in the body, it was called as “lactormone” in 2009. Here we show basic concepts on peripheral and central
metabolism and discuss neurobiological pathways of lactate, including an alternative hypothesis on lactate re-

leased during exercise.

Introduction

Brain neuroplastic response has being target of many studies espe-
cially focused in preventive strategies and new neurodegenerative dis-
ease treatments. In the last two decades the exercise training was one of
the most investigated low-cost interventions related to neuroplasticity
[1,2]. While studies with animal models have shown evidences that
exercise stimulates neuroplasticity in hippocampus, human studies has
shown an increase of hippocampus volume of individuals with high
physical fitness [3-6], as well as increased metabolism in precuneus
and entorhinal cortex [7]. Furthermore, many studies showed an im-
proved memory and executive functions in people who exercised
[8-15].

Literature has shown that trophic factors are synthesized by active
muscles during exercise, which would provide neural substrate for
neuroplastic responses [1,2]. Furthermore, myokines released by
muscle have anti-inflammatory and regenerative effects. Therefore, a
lot of biological mechanisms are redundant in the body response. Ad-
ditional substrates released through exercise may have potential

contributions for brain metabolism (e. g. lactate) [16]. For example,
lactate is a substrate synthesized and used as fuel by muscle, heart,
central nervous system (CNS), and other tissues [16-18]. Each cell from
any of the aforementioned tissues can use its own lactate through a
mechanism known as intracellular shuttle [16]. Additionally cells of the
same tissue can oxidize the lactate released by their neighbors. In the
CNS lactate is a molecule originated from glycolysis and glycogenolysis
in the astrocytes, which traffics to neurons to be oxidized, supplying
energy demand [19]. On the other hand, lactate released by muscle
cells can be stored or oxidized in the hepatocytes [16]. Therefore,
lactate is described by Brooks [16] as “lactormone” considering its
blood distribution and systemic effects.

An interesting question arises from the exercise physiology and its
perspective with neurobiology: is the “lactormone” a key-factor for
neuroplasticity-related exercise? Our hypothesis is that peripheral lac-
tate released through exercise is a signaling molecule in the brain
through an alternative neurobiological pathway. To address this hy-
pothesis we will approach different topics.

It is important to emphasize that there are many interactions among
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molecules in the human body. For instance, glucose-glycogen-lactate
complex is modulated by zinc especially influenced by exercise [23,24].
In this article a special focus will be done to exercise-induced lactate
and its role on human brain.

A brief overview of brain metabolism

Glucose is the preferred human body substrate to supply energetic
demands because its feasibility to generate ATP [16]. Although brain
represents 2% of body weight it has high energy demand. About 20%
and 25% of oxygen and glucose, respectively, are addressed to cerebral
activity [20]. When the neurons firing, the contribution of lactate to
brain metabolism range from 7 to 60% [21,22]. Although peripheral
glucose and glycogen traffic towards the brain, they are oxidized into
the astrocytes via glicolysis and glycogenolyis, respectively [16,17,19].
Astrocytes cover synapses and detect their firing supplying neurons
metabolic demand using lactate from glicolysis/glycogenolysis. There-
fore, lactate is the preferred substrate used by active neurons [17-19].

Astrocytes select glucose/glycogen from intraparenchimal vascu-
lature and blood brain barrier (BBB), which come from periphery.
Furthermore, glutamate released by neurons is uptake by astrocytes
through specific transporters. When glutamate is captured by astrocytes
it also stimulates glucose's uptake [17,19]. Glutamate transporters are
activated by a gradient that stimulates Na* K* pump to triggers a
signaling cascade for glicolysis, resulting in lactate production in as-
trocytes. Each glutamate molecule caught results in one uptake glucose
molecule that generates two ATPs (used by Na* K* pump and gluta-
mine synthetase) and two lactate molecules, respectively. Lactate is
transported through monocarboxilase transporters (MCT1, MCT2, AND
MCT4) and oxidized at Krebs cycle (via pyruvate) then via oxidative
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phosphorilation in neuronal mitochondria [17-19] (See Fig. 1).

Experimental animal studies showed the increase of the pool of
lactate in extracellular space when synapses are electrically stimulated
in the rats' hippocampus, suggesting substrate release from astrocytes
and its metabolism in neurons [18-20]. Therefore, lactate supplies the
major metabolic demands in neuronal circuitry. Although lactate is our
target in this paper, it is important to highlight that glucose is also used
(lesser than lactate) by neurons [19].

A brief view of lactate as a signaling molecule into the brain

Although lactate participates mainly in metabolic pathways several
molecular signals are triggered for it. There are many specific lactate
receptors in neurons, such as hydrocarboxylic acid receptor 1 (HCAR1)
that is coupled to inhibitory G protein (Gi). Gi deactivates adenylyl
cyclase (AC), reducing neuronal activity and gene regulation. On the
other hand, noradrenergic neurons have an unidentified lactate re-
ceptor coupled to G protein, which positively regulates AC promoting
an excitatory potential and gene expression [19].

Lactate shuttle from astrocyte-to-neuron triggers oxidation which
modulates redox mechanism through NADH™, stimulating NMDA re-
ceptors. Therefore a Ca™ influx occurs promoting a lot of neuroplasti-
city-associated signaling pathways, which encode genes as activity-
regulated cytoskeleton-associated protein (ARC), early growth response
protein 1 (EGR1) and brain-derived neurotrophic factor (BDNF)
[19,25]. Neurons from locus coeruleus are linked to memory con-
solidation in rats hippocampus, thus lactate appears having a main role
on long-term potentiation (LTP) [19].

Lactate can be a supplemental fuel for the injured brain. People with
traumatic brain injury who received lactate infusion improved brain

Astrocyte

Fig. 1. Brain metabolism: Synapses activation. Glucose (Glu) and Glycogen (Gly) from circulation cross blood-brain-barrier (BBB) and are metabolized by astrocyte
(Glycol - glycolisysis/Glycog — glycogenolysis). Lactate (LA) is produced as a result of glycolysis and glycogenolysis and traffics to pre-synaptical neuron through
monocarboxilate transporter (MCT) (dashed arrow). Lactate is converted in pyruvate (Pyr) through lactate dehydrogenase (LDH) into the mithochondria (Mit)
resulting in adenosine triphosphate (ATP). Pre-synaptical terminal releases glutamate (G) that binds to AMPA and NMDA receptors, which increase post-synaptical
activity and molecular expression (e. g. BDNF). Blue and black arrows indicate autocrine and paracrine BDNF signaling, respectively. G is partially conducted
(continuous arrow) to the astrocyte through glutamate transporter (GT) to be converted in glutamine.



R. Sobral-Monteiro-Junior et al.

Pre-synaptical terminal

Medical Hypotheses 123 (2019) 63-66

Astrocyte

LA’—E alternative pathway,

Post-synaptical terminal

Fig. 2. Alternative neurobiological pathway. Brain metabolism remains unchanged but additional exercise-related lactate (LA-E) crosses blood-brain-barrier (BBB).
Monocarboxilate trasporter (MCT) transports LA-E from astrocyte to neuron that uses it as energy supply and signaling molecule for neuroplasticity. Blue and black
arrows indicate autocrine and paracrine BDNF signaling, respectively. This figure is restricted to show only the alternative neurobiological lactate pathway.

energetic but it was related a baseline lactate-pyruvate ratio. Cerebral
blood flow and glucose are modulated by lactate. Therefore, even
exogenous lactate seems to be a metabolic role on nervous system [26].

Lactate released through exercise and its relationship with
neuroplasticity

In the beginning of the last century lactate was seen as a metabolite
from glycolysis/glycogenolysis and a precursor of fatigue through ex-
ercise [16]. However, since the last quarter of the 20th century the
lactate reuse as substrate was discovered. Nowadays it is considered not
only a substrate, but also a signaling molecule [16-19,25]. In other
words the pleiotropic role of lactate is still not clearly understood.

Exercise requires energy from ATP that is provided through three
main pathways: ATP-CP, glycolysis/glycogenolysis, and oxidative
phosphorilation [27]. Lactate is produced as a result of glucose oxida-
tion in glycolysis/glycogenolysis under low oxygen uptake. This pro-
duction is originated since a reduction of H" ions from NADH"* and
some pyruvate, through lactate dehydrogenase (LDH). This molecular
pathway has a main target: to buffer acidosis [27]. This mechanism is
the main (predominant) pathway that provides energy during moderate
to vigorous intense exercise. However, muscle cell uses the produced
lactate mitochondrial fuel to generate ATP. Moreover, other myocytes,
cardiomyocytes, and hepatocytes can use or restore lactate. It is pos-
sible due to intracellular and extracellular lactate shuttles [16]. If this
molecule has a peripheral pleiotropic role, is it possible the lactate
produced during exercise traffic from muscles to brain and trigger
neuroplasticity? The answer for this question is possibly yes.

A recent brief communication wrote by Coco [28] argued that brain
behaves as muscle, considering that lactate from myocytes could reach
the brain after an intense exercise being used as fuel. The main focus of
this communication was the central fatigue therefore the lactate con-
sumed by brain would preserve the activity of motor and sensory
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regions. It may be partially supported by the Quintard et al (2016) who
showed that an exogenous lactate administration in patients who suf-
fered of traumatic brain injury improved brain metabolism. In com-
plement, Dennis et al (2015) showed an increased availability of brain
lactate after a 15 min of an intense cycle ergometer. According to this
context, if the peripheral lactate can reach the brain working as fuel, it
can also trigger molecular signaling.

As aforementioned, lactate regulates HCAR1 coupled to G protein.
According with neuronal sources (ex. noradrenergic neurons) the lac-
tate modulation of G protein could stimulates AC, triggering molecular
cascades for gene expression and upregulation of NMDA glutamate
receptors promoting LTP on hippocampus [19]. In this context, a
memory formation and consolidation would occur improving learning.
Marston et al [29] investigated the effect of two different bouts of re-
sistance training on serum lactate and BDNF. Individuals who exercised
at high-intensity with short rest showed elevated serum lactate, which
was correlated with increased BDNF. It makes sense when we analyze
the fact that lactate signaling in NMDA receptors increases the influx of
Ca™, which regulates the synthesis of BDNF, ARC, and EGR1 [19].
Therefore, it is reasonable to suggest a link between exercise-related
lactate and neuroplasticity in the brain (Fig. 2). In addition, exercise
promotes an increase of PGCl-a synthesis that triggers a FNDC5 acti-
vation, which modulates cell metabolism and increases BDNF realizing
[30]. We speculated an alternative neurobiological pathway of exercise-
induced lactate on brain neuroplasticity. Lactate produced by exercised
muscle would traffic to blood brain barrier reaching astrocytes, which
would deliver it via MCT directly to neurons (details in Fig. 2)

Although lactate is one of the molecules which trigger neuroplas-
ticity, it is reasonable highlight its use as a biomarker in hypoxic pa-
thological conditions (e. g. cardiac failure, and cancer) [31,32]. As the
many tissues need of oxygen, when hypoxia occurs lactate is released as
a result of anaerobic metabolism. In these conditions lactate is a useful
marker related to tissue damage instead neuroplasticity. Therefore,
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health professionals need knowledge to distinguish applications of
lactate dosage and any other molecule which may influence many
signaling pathways in different cases.

Final considerations

Besides lactate is produced as a result of glucose/glycogen meta-
bolism, it is obvious that lactate is not only a metabolite but it is
probably a hormone, as postulated by Brooks (2009) as “lactormone”.
Lactormone has different cellular and molecular targets such as energy
supply and neuroplasticity signaling, respectively. Therefore, lactor-
mone produced as a result of exercise with moderate intensity (such as
strength training, cycling, and running) may have an important role to
sustain brain activity and neuroplasticity through an alternative
pathway modulated by astrocyte-neuron coupling. These mechanisms
may be associated to neurofunctional findings such as memory and
executive improvements. The present hypothesis is based on molecular
and clinical findings and presents an alternative neurobiological
pathway of exercise, which could elucidate neuroprotection against
neurodegenerative diseases as well the amelioration of symptoms in
dementia, Parkinson’s disease and depression.
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