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Resumo

Esta tese de doutorado propõe novas formulações dos controladores H2 e H∞ nos
espaços ponderado de Sobolev. As novas abordagens, aqui chamadas de W2 e W∞, são
desenvolvidas levando em consideração a norma ponderada de Sobolev da variável de custo
com o objetivo de alcançar uma rápida atenuação de perturbação com um desempenho
transiente aprimorado.

Inicialmente, os controladores W2 e W∞ não lineares são formulados para sistemas
autônomos em malha fechada, e os problemas de controle são desenvolvidos por meio de
programação dinâmica, resultando em equações de Hamilton-Jacobi (HJ) complexas a
serem resolvidas. Devido à dificuldade de resolver analiticamente essas equações, o al-
goritmo de aproximação sucessiva de Galerkin é estendido aos controladores W2 e W∞,
e usados para aproximar soluções das equações de HJ. Experimentos numéricos são re-
alizados com um veículo autobalanceado de duas rodas, e uma análise comparativa com
o controlador H∞ clássico é apresentada. Os resultados demonstram que os controla-
dores resultantes das abordagens no espaço ponderado de Sobolev alcançam um melhor
desempenho transiente com uma atenuação mais rápida de perturbação.

Esta tese também propõe novas formulações das abordagens de controle ótimo não
linear H2 e H∞ no espaço ponderado de Sobolev para lidar com duas classes de sistemas
mecânicos subatuados: a classe de sistemas mecânicos subatuados reduzidos, com o ob-
jetivo de obter rastreamento de trajetória de um número reduzido de graus de liberdade,
denominado graus de liberdade controlados; e a classe de sistemas mecânicos subatuados
com acoplamento de entradas, com o objetivo de conduzir os graus de liberdade controla-
dos ao longo da trajetória desejada enquanto estabiliza os restantes. Para esses sistemas,
os problemas de controle ótimo são novamente formulados via programação dinâmica, e
soluções particulares são apresentadas para as equações de HJ resultantes com a análise
de estabilidade correspondente. Além disso, os conceitos de ganho Wm,p,σ e estabilidade
Wm,p,σ são estabelecidos e aplicados para o caso particular de estudo. Adicionalmente, é
mostrado que para a classe particular de sistemas mecânicos subatuados, cujas entradas
de controle e o vetor de perturbação abrangem o mesmo espaço vetorial no vetor de forcas
generalizadas, os controladores W2 e W∞ tornam-se equivalentes. Resultados numéricos
são obtidos com um manipulador totalmente atuado, um veículo autobalanceado de duas



rodas e um veículo aéreo não tribulado (VANT) do tipo quadrotor, para demonstrar a
eficiência dos controladores propostos. Eles mostram que os controladores W2 e W∞ pro-
porcionam uma melhor resposta transiente com uma rápida atenuação de perturbações
externas em comparação com o controlador H∞ clássico não linear, além de serem de fácil
implementação.

Esta tese de doutorado também formula o controlador W∞ linear no espaço ponderado
de Sobolev para sistemas lineares invariantes no tempo. São abordados os projetos de
controladores lineares baseado em realimentação de estados e de saída, e é apresentado
uma nova abordagem em que o comportamento dinâmico das perturbações é levado em
consideração na fase de projeto de controle por meio de um modelo de perturbação.
Restrições de posicionamento de pólos também são desenvolvidas, permitindo a síntese de
controladores W∞ com os pólos de malha fechada alocados em uma região prédefinida do
plano complexo. Experimentos numéricos são realizados com um sistema linear simples,
um veículo autobalanceado de duas rodas e um VANT quadrotor, eles mostram que as
abordagems de controle linear W∞ obtem um melhor desempenho quando comparado com
um controlador H∞ clássico linear.

Por fim, o controlador W∞ é empregado no estudo de caso dos VANTs conversíveis do
tipo Tilt-rotor. Uma modelagem detalhada da dinâmica não linear multicorpo do VANT
Tilt-rotor é conduzida usando o formalismo de Euler-Lagrange, e as forças e torques não
conservativos gerados pelas hélices, servomotores, fuselagem, asas, superfícies da cauda e
interferência aerodinâmica são calculados e mapeados para o vetor de forças generalizadas.
Controladores W∞ lineares baseado em realimentação de estado e de saída são sintetizados
para resolver o problema de rastreamento de trajetória no modo de voo de helicóptero,
sendo o modelo de turbulência de Von kármán usado para emular o vento do ambiente e
considerado como modelo de perturbação para projeto dos controladores. Além disso, um
controlador W∞ não linear é projetado para resolver o problema de rastreamento da tra-
jetória ao longo do envelope de vôo completo. Para projetar esse controlador não linear, a
abordagem proposta para sistemas mecânicos subactuados com acoplamento de entrada,
mencionado anteriormente, é estendida, o sistema mecânico é particionado em relação aos
graus de liberadade estabilizados, regulados e controlados, com o objetivo de alcançar o
rastreamento da trajetória dos graus de liberdade controlados, e definir referências para
os graus de liberdade regulados, enquanto os graus de liberdade restantes são estabiliza-
dos. O controlador não linear é implementado levando em consideração um esquema de
alocação de controle, que é proposto para lidar com o rank variável no tempo da matriz
de acoplamento de entrada do VANT conversível Tilt-rotor, levando em consideração a
magnitude e a orientação da velocidade do vento relativo para mapear adequadamente
as entradas generalizadas para os sinais de controle. Experimentos numéricos são con-
duzidos em um simulador de alta fidelidade, eles demonstram que os controladores W∞

propostos alcançam rastreamento de trajetória no modo de voo de helicóptero, utilizando



os controladores W∞ lineares, e rastreamento de trajetória ao longo de todo o envelope
de vôo, utilizando o controlador W∞ não linear, além de atenuar adequadamente efeitos
de distúrbios externos e rajadas de vento.



Abstract

This Ph.D. thesis proposes new formulations of the H2 and H∞ controllers in the
weighted Sobolev spaces. The novel approaches, here called W2 and W∞, are developed
taking into account the weighted Sobolev norm of the cost variable, aiming to achieve an
improved transient performance with a faster disturbance attenuation.

Initially, the nonlinear W2 and W∞ control problems are formulated for closed-loop
autonomous nonlinear systems, and the control problems are developed via dynamic-
programming, resulting in complex Hamilton-Jacobi (HJ) equations to be solved. Due to
the difficulty of solving analytically these HJ equations, the Successive Galerkin Approx-
imation Algorithm is extended to the W2 and W∞ controllers, and used to approximate
solutions. Numerical experiments are performed with a Two-wheeled Self-balanced vehi-
cle, and a comparative analysis with the classic H∞ controller is presented. The results
demonstrate that the controllers resulting from the weighted Sobolev approach achieve a
better transient performance with a faster disturbance attenuation.

This doctoral thesis also proposes new formulations of the nonlinear H2 and H∞ opti-
mal control approaches in the weighted Sobolev spaces, in order to handle two classes of
underactuated mechanical systems: the class of reduced underactuated mechanical sys-
tems, with the objective of achieving trajectory tracking for a reduced number of Degrees
Of Freedom (DOF), called controlled DOF; and the class of underactuated mechanical
systems with input coupling, with the objective of driving the controlled DOF along a
desired trajectory while stabilizing the remaining ones. For these systems, the optimal
nonlinear W2 and W∞ control problems are formulated via dynamic-programming, and
particular solutions are presented for the resulting HJ equations with the correspond-
ing stability analysis. In addition, the concepts of Wm,p,σ-gain and Wm,p,σ-stability are
established and applied to the particular case studies. It is shown that, for the partic-
ular class of underactuated mechanical systems, whose control inputs and disturbances
vector span the same space in the vector space of generalized forces, the W2 and W∞ con-
trollers become equivalent. The efficacy of the proposed W2 and W∞ control strategies for
mechanical systems are demonstrated via numerical experiments conducted with a fully
actuated manipulator, a Two-wheeled Self-balanced vehicle, and a Quadrotor unmanned
aerial vehicle (UAV). It is verified that these controllers provide a better transient perfor-



mance with a faster response against external disturbances, in comparison with a more
traditional nonlinear H∞ controller, in addition to be of simpler design.

This thesis also formulates the linear W∞ controller in the weighted Sobolev space
for linear time-invariant systems. The design of state and output feedback controllers
is addressed, and a new approach in which the dynamic behavior of the disturbances
is taken into consideration in the control design stage by means of a disturbance model
is introduced. Pole placement constraints are also developed, allowing the synthesis of
linear W∞ controllers with the closed-loop poles allocated in a predefined region of the
complex plane. Numerical experiments are performed with a simple linear system, a Two-
wheeled Self-balanced vehicle, and a Quadrotor UAV, which demonstrate that the state
and output feedback linear W∞ controllers achieve a better transient performance with a
faster disturbance attenuation in comparison with a linear H∞ controller.

Lastly, the W∞ controller is employed in the case study of convertible Tilt-rotor UAVs.
A detailed modeling of the nonlinear multi-body dynamics of the Tilt-rotor UAV is con-
ducted using the Euler-Lagrange formalism, and the nonconservative forces and torques
generated by the propellers, servomotors, fuselage, wings, tail surfaces, and aerodynamic
interference are computed and mapped to the vector of generalized forces. State and
output feedback linear W∞ controllers are synthesized to solve the trajectory tracking
problem of the convertible Tilt-rotor UAV in the helicopter flight mode, being the Von
Kármán wind turbulence model used to emulate the environment wind and considered
as disturbance model in the linear control design. Besides, a nonlinear W∞ controller is
designed to solve the full flight envelope trajectory tracking problem of the convertible
Tilt-rotor UAV. To design the nonlinear controller, the approach proposed for underac-
tuated mechanical systems with input coupling, previously mentioned, is extended, the
mechanical system is partitioned with respect to stabilized, regulated, and controlled
DOF, aiming to achieve trajectory tracking of the controller DOF, and set references to
the regulated DOF, while stabilizing the remaining DOF. The nonlinear controller is im-
plemented taking into account a control allocation scheme, which is proposed to handle
the time-varying rank of the convertible Tilt-rotor UAV input coupling matrix, taking into
account the magnitude and orientation of the relative wind-speed to properly map the
generalized inputs to the control signals. Numerical experiments are conducted in a high
fidelity simulator, they demonstrate that the proposed W∞ controllers achieve trajectory
tracking in the helicopter flight mode, regarding the linear W∞ controllers, and trajectory
tracking throughout the full flight envelope, regarding the nonlinear W∞ controller, while
attenuating effects of external disturbances and wind gusts.
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Notation

a italic lower case letters denote scalars

a boldface italic lowercase letters denote vectors

A boldface italic uppercase letters denote matrices

N the set of natural numbers, N ≜ {1, 2, 3...}

C the set of complex numbers

Z the set of integers, Z ≜ {...,−3,−2,−1, 0, 1, 2, 3, ...}

R the set of real numbers, R ≜ (−∞, ∞)

R>0 the set of positive real numbers, R>0 ≜ (0, ∞)

R≥0 the set of positive real numbers including zero, R≥0 ≜ [0, ∞)

Rn the set of real vectors with dimension n, Rn ≜ {r = [r1 ... rn]′ : ri ∈
R, i ∈ {1, ..., n}}

Rn×m the set of real matrices with dimension n×m, Rn×m ≜ {R = [r1 ... rm] :
ri ∈ Rn, i ∈ {1, ...,m}}

a ∈ Ω a is an element of the set Ω

Ω1 × Ω2 denotes the Cartesian product between the sets Ω1 and Ω2

(.)′ denotes the transpose of (.)

(.)−1 denotes the inverse of the square matrix (.)

(.)† denotes the pseudo-inverse of matrix (.)

trace{A} Trace of A

diag() Diagonal matrix whose diagonal elements are given in the paren-
theses



blkdiag(.) represents a block diagonal matrix whose diagonal elements are the
matrices or vectors given in the parentheses, and all off-diagonal
blocks are zero matrices.

0 zeros matrix with appropriate dimension

I identity matrix with appropriate dimension

1 ones matrix with appropriate dimension

z(·) : Ω → Γ a function that maps the domain space Ω to the image space Γ

U : Ω → Γ the set of functions that maps the space Ω to Γ

ż(t) the time-derivative of the function z(t) : R≥0 → Rnz , in which t ∈ R≥0

is the time variable

||z(t)||Lp the Lebesgue Lp − norm of z(t)

||z(t)||Wm,p the Sobolev Wm,p − norm of z(t)

||z(t)||Wm,p,σ the weighted Sobolev Wm,p,σ − norm of z(t)

z(t) ∈ Lp[0,∞) the function z(t) belongs to the Lp-space, i.e. ||z(t)||Lp < ∞

z(t) ∈ Wm,p[0,∞) the function z(t) belongs to the Sobolev Wm,p-space, i.e. ||z(t)||Wm,p <

∞

z(t) ∈ Wm,p,σ[0,∞) the function z(t) belongs to the weighted Sobolev Wm,p,σ-space, i.e.
||z(t)||Wm,p,σ < ∞

inf S infimum of set S, i.e. s ∈ S, s ≤ s0, ∀s0 ∈ S.
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1
Introduction

1.1 Motivation

The design of controllers aiming to attenuate disturbances is one of the main challenges
in the control area due to an inevitable need to deal with the presence of uncertainties.
In general, the control design is conducted based on mathematical models; however, it is
a complex, if not impossible, task to obtain a mathematical model that describes with
perfection a real-life phenomenon. Mathematical models usually are approximations of the
system, presenting unmodeled dynamics and parameter uncertainties. Besides, physical
systems are often subject to external disturbances and noise added to the measurement
reported by sensors, which make the control design even more complex. Robust control
strategies emerges due to the inevitable need to deal with uncertainties when it is required
to achieve acceptable performance.

Two usual approaches to deal with disturbances and imperfections on the mathemat-
ical model in the control design stage are the well known H2 (Johansson, 1990) and H∞

(Van Der Schaft, 1992) control strategies. They have been originally formulated in the
frequency domain to cope with single-input-single-output systems represented by trans-
fer functions (Doyle et al., 2013). The H2 controller designed on the frequency domain
seeks to minimize the energy of the disturbance impulse response (Geromel et al., 1999),
while the H∞ controller minimizes the maximum gain given by the closed-loop system to
a disturbance signal (Francis and Doyle, 1987). Due to the need to deal with multiple-
input-multiple-output systems, efforts were made to extend these control strategies to
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systems represented in state-space, which were firstly introduced in (Doyle et al., 1989)
and received considerable attention in the past decades as the initial point to the de-
velopment of H2 and H∞ controllers based on linear matrix inequalities (Gahinet and
Apkarian, 1994). For nonlinear systems, the H∞ control strategy was first introduced in
Van der Schaft (1991), where the problem is formulated in the L2 space using the theory
of dissipative systems.

Although the H2 and H∞ control strategies have been applied successfully and their
effectiveness verified experimentally (Van der Linden and Lambrechts, 1993; Nichols et al.,
1993; Sedhom et al., 2020), these methods may present drawbacks. As stated in Chilali
and Gahinet (1996), the H2 and H∞ control strategies deal mostly with the aspects of
stabilization and disturbance attenuation and provide little control over the transient
behavior. On one hand, pole placement constraints can be imposed into the control design
stage of linear systems (Chilali and Gahinet, 1996) to achieve a satisfactory transient
behavior. On the other hand, just a few works deal with the transient behavior in the
control design for nonlinear systems. An alternative approach to overcome this issue is
the formulation of both H2 and H∞ controllers in the Sobolev spaces Wm,p, which are the
spaces of functions in the Lp space whose generalized derivatives up to order m are also
in the Lp space (Treves, 2016). In the control area, the properties of the Sobolev spaces
have been successfully employed, for example, to design state observers (Alessandri and
Sanguineti, 2007; Zemouche and Boutayeb, 2008). Furthermore, in Bourles and Colledani
(1995), a new input-output stability definition is presented based on the Sobolev spaces,
as a local version of the small gain theorem, besides the relationship between W-stability
and asymptotic stability. He and Wang (2004) extended the W-stability criterion for the
class of nonlinear systems with bounded delay. The idea behind these works relies on the
fact that in this kind of space all properties of Lp space are satisfied.

For control design, Aliyu and Boukas (2011a) proposed the reformulation of the H2

and H∞ control approaches in a Sobolev space to achieve improved transient performance.
In their formulation, instead of the L2-norm, the W1,2-norm of the cost variable is con-
sidered.1 The control problems are developed via dynamic programming, from which the
related Hamilton-Jacobi (HJ) equations must be solved to obtain the resulting controllers.
Nevertheless, these HJ equations are hard to solve analytically. In particular, Aliyu and
Boukas (2011a) consider the HJ equation resulting from the H∞ control formulation in the
Sobolev space to be intractable and propose an alternative approach through the back-
stepping technique to simplify the problem. However, the latter approach is quite similar
to the classic nonlinear H∞ one, differing by an integrator added to the cost variable.
Thus, as the rate of change of the cost variable is not considered in the cost functional,

1The Sobolev Wm,p−norm of a function z(t) : R≥0 → R, for m ∈ N and p ∈ N ∪ {∞}, is defined
as ||z(t)||Wm,p =

( m∑
α=0

|| dαz(t)
dtα

||pLp
)1/p, where || · ||Lp stands for the Lp − norm, N = {1, 2, 3...}.
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the improvements on the transient behavior are not achieved. In addition, the approaches
presented in Aliyu and Boukas (2011a) lack in the capacity of distinguishing the influences
of the cost variable and its time derivatives in the control objectives.

In this context, this doctoral thesis designs the classic H2 and H∞ control approaches
in the weighted Sobolev spaces Wm,p,σ (Kufner, 1985), aiming to improve the transient
performance and allow tuning component-wise the influences of the cost variable and its
time derivatives in the cost functional. The W2 and W∞ control problems2 are developed
via dynamic-programming resulting in complex HJ equations to be solved. HJ Partial
Differential Equations (PDEs) are hard to solve analytically for the general class of sys-
tems. Therefore, to simplify the process of achieving the controller, it is usual to compute
either a solution using numerical algorithms or to particularize the control problem to
a special class of systems. This work explores both possibilities, initially, the nonlinear
W2 and W∞ control problems are formulated for nonlinear systems, and the Successive
Galerkin Approximation Algorithm (SGAA) (Beard and McLain, 1998) is extended to
solve the HJ equations. In addition, the W2 and W∞ control problems are particularized
for mechanical systems represented by the Euler-Lagrange equation, and particular solu-
tions are proposed to the resulting HJ equations for the classes of fully actuated, reduced
underactuated, and underactuated mechanical systems with input coupling.

It is worth highlighting that, as stated in Chen et al. (1994), the standard formulation
of the nonlinear H∞ control and, consequently, of the nonlinear H2 control for Euler-
Lagrange mechanical systems presents a limitation in the way to weight the cost variable.
For its appropriate formulation, the weighting matrices must be considered positive real
scalars multiplied by the identity matrix, limiting the adjustment of the control law for
systems with multiple DOF with similar dynamics. To overcome this shortcoming, in
Raffo et al. (2011a) an approach based on diagonalization of the inertia matrix is proposed
in order to provide some flexibility to tune the nonlinear H∞ controller. That issue does
not arise in the proposed W2 and W∞ controllers for mechanical systems and, besides,
they are of simpler design.

This doctoral thesis also formulates the linear W∞ controller in the weighted Sobolev
space for linear time-invariant systems via semidefinite programming written as Linear
Matrix Inequalities (LMI) constraints, for which a series of numerical methods can be
used to achieve a solution. It is addressed the design of state and output feedback lin-
ear controllers, and is introduced a new approach in which the dynamic behavior of the
disturbances is taken into consideration in the control design stage by means of a dis-
turbance model. Pole placement constraints are also developed to allow the synthesis of
W∞ controllers with the closed-loop poles allocated in a predefined region of the complex
plane.

2In this work, the H2 and H∞ controllers formulated in the weighted Sobolev space are called W2

and W∞ controllers, respectively.
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This doctoral thesis also designs a nonlinear W∞ controller to solve the full flight enve-
lope trajectory tracking problem of a convertible Tilt-rotor UAV. The Tilt-rotor UAV is
a kind of convertible UAV, which can perform hovering and Vertical Take-off and Land-
ing (VTOL) as helicopters and, by tilting the rotors to the horizontal position, improved
cruise flight as a fixed-wing aircraft (Maisel et al., 2000; Liu et al., 2017). The relative
wind generated by the motion substantially changes the dynamic behaviour of this aircraft
between hovering and cruise flight modes. In helicopter-flight mode (VTOL and hover-
ing), the deflections of the aerodynamic control surfaces (aileron, rudder, and elevator) do
not produce significant forces and torques, whereas in cruise-flight mode, small deflections
produce significant aerodynamic forces that can be used to generate both the necessary
forces to sustain forward flight, and the moments that allow control and guidance. These
facts pose some challenges for the control design of convertible Tilt-rotor UAVs, which
cannot usually be solved using classical linear controllers when it is required to achieve
good performance throughout the full flight envelope trajectory tracking. Furthermore,
control techniques designed for mechanical systems, such as Johansson (1990); Raffo et al.
(2011a), cannot be directly applied to solve this problem since they were developed for
systems whose input coupling matrix rank does not vary with time. In addition, convert-
ible plane Tilt-rotor UAVs are usually subjected to uncertainties from many sources as
wind gusts, unmodeled dynamics, and parametric uncertainties, which make the design
of controllers for these systems even less trivial when it is required to achieve good per-
formance. To the best of the author’s knowledge and as commented in Morin (2015), the
design of a controller for convertible Tilt-rotor UAVs to accomplish transition between
hover and cruise flight modes fully exploiting the aircraft nonlinear dynamics is an open
problem. To solve this problem, this doctoral thesis designs a nonlinear W∞ controller
that is implemented taking into account a control allocation scheme. The control allo-
cation scheme is proposed to handle the time-varying rank of the convertible Tilt-rotor
UAV input coupling matrix, taking into account the magnitude and orientation of the
relative wind-speed to properly map the generalized inputs to the control signals.

1.2 Justification

In view of the drawbacks of the H2 and H∞ control strategies, this doctoral thesis
introduces the W2 and W∞ controllers. These novel controllers are formulated taking into
account the weighted Sobolev norm of the cost variable to allow tuning component-wise
the influences of the cost variable and its time derivatives in the cost functional. They
aggregate an improved transient performance to the H2 and H∞ controllers, providing
a faster disturbance attenuation to the closed-loop system. The control problems are
developed via dynamic-programming resulting in HJ equations to be solved, for which
particular solutions are presented for special classes of mechanical systems and numerical
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algorithms are proposed to attain solutions. The state and output feedback linear W∞

control problems are also formulated for linear time-invariant systems via semidefinite
programming written as LMI constraints, for which several numerical methods can be
used to achieve a solution. It is proposed a robust control framework in the weighted
Sobolev space that allows handling a wide variety of systems.

1.3 Objectives

The main objective of this thesis is to formulate the classic H2 and H∞ controllers
in the weighted Sobolev space, for both linear and nonlinear systems, aiming to achieve
faster disturbance attenuation with improved transient performance.

1.3.1 Specific Objectives

Specifically, it is intended to:

1. Formulate the H2 and H∞ control problems in the weighted Sobolev spaces;

2. Develop the W2 and W∞ optimal control problems via dynamic-programming, and
propose numerical algorithms to attain solutions of the resulting HJ equations;

3. Formulate the nonlinear W2 and W∞ controllers for mechanical systems represented
by the Euler-Lagrange equations, develop the optimal control problems via dynamic-
programming, and propose particular solutions to the resulting HJ equations;

4. Formulate the state and output feedback linear W∞ controllers in the weighted
Sobolev spaces via semidefinite programming written as LMI, and develop pole
placement constraints that allow synthesizing these linear controllers with the closed-
loop poles allocated in a predefined region D of the complex plane;

5. Demonstrate the effectiveness of the W2 and W∞ control strategies via numerical
experiments and perform comparison analysis with the classic H∞ controller.

6. Design W∞ controllers for a convertible Tilt-rotor UAV, in order to solve the full
flight envelope trajectory tracking problem.

1.4 List of publications

During this Ph.D. research the following scientific works have been elaborated.

Journal papers:
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1.5 Content of this manuscript

The following chapters are structured as:

• Chapter 2 concerns the literature review on the H2 and H∞ control frameworks,
Sobolev spaces and its application in the control theory, and approximate solutions
to the HJ equation.

• Chapter 3 presents some preliminary concepts necessary to better comprehend
this manuscript, which include the Lebesgue and the Sobolev spaces, interesting
features of the W2 and W∞ control formulations in the weighted Sobolev spaces, the
Hamilton-Jacobi-Bellman equation, the method of Galerkin, and the Euler-Lagrange
formulation of mechanical systems.

• Chapter 4 formulates the nonlinear H2 and H∞ control approaches in the weighted
Sobolev space, namely W2 and W∞ controllers, for continuous autonomous nonlinear
systems that are affine in the control inputs and disturbances. The control problems
are developed via dynamic-programming resulting in complex HJ equations to be
solved. Numerical algorithms are proposed to attain solutions of the HJ partial



1.5 Content of this manuscript 30

differential equations (PDE). The efficiency of the proposed controllers and algo-
rithms are demonstrated via numerical experiments conducted with a two-wheeled
self-balanced vehicle.

• Chapter 5 particularizes the W2 and W∞ control approaches for mechanical sys-
tems represented by the Euler-Lagrange equations. The control problems are again
formulated via dynamic-programming, and particular solutions are proposed to the
classes of fully actuated mechanical systems, reduced underactuated mechanical sys-
tems, and underactuated mechanical systems with input coupling. The controllers
are synthesized for a fully-actuated manipulator, a two-wheeled self-balanced vehi-
cle, and a quadrotor UAV. The results of numerical experiments are presented to
corroborate the efficiency of the controllers.

• Chapter 6 formulates the linear W∞ control approach in the weighted Sobolev
space via semidefinite programming written as LMI constraints. It addresses the
design of state and output feedback controllers, and introduces a new approach in
which the disturbance behavior is taken into consideration in the control design
stage by means of a disturbance model. In addition, pole placement constraints
are formulated to allow the synthesis of W∞ controllers with the closed-loop poles
allocated in a predefined region of the complex plane. The effectiveness of the
control strategies are corroborated with numerical experiments conducted with a
simple linear system, a two-wheeled self-balanced vehicle and a quadrotor UAV.

• Chapter 7 employs the W∞ control framework into the case study of convert-
ible Tilt-rotor UAVs. A detailed modeling of the nonlinear multi-body dynamics
of a convertible Tilt-rotor UAV is conducted using the Euler-Lagrange formalism,
and the nonconservative forces and torques generated by the propellers, servomo-
tors, fuselage, wings, tail surfaces, and aerodynamic interference are computed and
mapped to the vector of generalized forces. The state and output feedback linear W∞

controllers introduced in Chapter 6 are synthesized to solve the trajectory tracking
problem of the convertible Tilt-rotor UAV operating in the helicopter flight mode.
The Von Kármán wind turbulence model used to emulate the environment wind and
considered as disturbance model in the linear control design. In addition, a non-
linear W∞ controller is designed to solve the full flight envelope trajectory tracking
problem of the convertible Tilt-rotor UAV. Numerical experiments are conducted
in a high fidelity simulator to corroborate the controllers’ efficiency.

• Chapter 8 concludes the work and presents the final considerations.



2
Literature Review

This chapter presents a literature review on the main topics of interest of this doctoral
thesis. It is concerned with the following topics: (i) the H2 and H∞ control frameworks;
(ii) Sobolev spaces and their applications in control theory; and (iii) approximate solutions
to the HJ equation.

2.1 The H2 and H∞ control frameworks

As commented previously, the classic H2 and H∞ (Van Der Schaft, 1992) control
strategies intrinsically provide disturbance attenuation to the closed-loop system. These
control strategies were originally formulated based on the frequency domain to cope with
single-input-single-output (SISO) systems represented by transfer functions (Doyle et al.,
2013). In this domain, the H2 controller seeks to minimize the energy of the disturbance
impulse response (Geromel et al., 1999), while the H∞ controller minimizes the maximum
gain given by the closed-loop system to a disturbance signal (Francis and Doyle, 1987).

The necessity of dealing with multiple-input-multiple-output (MIMO) systems re-
quired the extension of the H2 and H∞ control strategies to systems represented in the
state-space, which were first introduced in Doyle et al. (1989). These strategies received
considerable attention in the past decades as the initial point to the development of
H∞ controllers based on a convex optimization problem with Linear Matrix Inequalities
(LMIs) constraints (Gahinet and Apkarian, 1994; Hu et al., 2003). Still regarding sys-
tems represented in the state-space, the multi-objective linear mixed H2/H∞ controller
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(Khargonekar and Rotea, 1991) was formulated to aggregate an H2 performance to the
H∞ control strategy.

Concerning the nonlinear H∞ control, it was first introduced in Van der Schaft (1991).
In this case, the control problem is formulated based on the L2-space using the theory of
dissipative systems (Willems, 2007). For the H2 control, Dullerud and Paganini (2013) (p.
191) demonstrated that building the optimizing index based on the H2-norm of the output
variable gives us a direct measure of the energy of the system’s outputs. Therefore, one
that selects the disturbances equal to a impulse signal, and considers the initial conditions
equal to zero, will conclude that the nonlinear H2 control is a generalization of the Linear
Quadratic Regulator (LQR) controller.

In the literature, the optimization problems resulting from the formulation of the
nonlinear H2 and H∞ controllers are commonly developed via dynamic-programming re-
sulting in a Hamilton-Jacobi (HJ) equation to be solved. HJ Partial Differential Equations
(PDEs) are hard to solve analytically for the general class of systems. Therefore, to sim-
plify the process of achieving the controller, it is usual to compute either a solution using
numerical algorithms or to particularize the control problem to a special class of systems.
Concerning the former, in Section 2.3 a literature review about approximate solutions to
the HJ equation is presented. Regarding the latter, this work is interested in the particular
class of mechanical systems represented by the Euler-Lagrange equations.

When dealing with the nonlinear H2 and H∞ control design for mechanical systems, a
pioneering work is Johansson (1990). In that work, the nonlinear H2 control strategy is
designed for the special class of fully-actuated mechanical systems represented by Euler-
Lagrange equations, with a particular solution being proposed to the HJ PDE related to
the problem. Based on this solution and using the same tracking error model, Chen et al.
(1994) formulate the nonlinear H∞ control strategy for the same class of systems. In the
same year, Feng and Postlethwaite (1993) propose a similar approach for robotic systems,
where the cost variable considers the coupling between the controlled variables and the
control inputs, giving more degrees of freedom to the control design.

From these initial approaches for mechanical systems, several works have been pro-
posed. Chen et al. (1996) present a procedure to develop an H∞ controller aiming to
achieve robust tracking of perturbed nonholonomic mechanical systems. Aguilar et al.
(2003) extend the H∞ approach for nonsmooth time-varying mechanical systems with
friction. Ortega et al. (2005) enhance the nonlinear H∞ control strategy with an integral
action on the error vector and establish conditions to formulate the controller in the form
of a nonlinear PID. A survey about robust control of robot manipulators, with a brief
overview of nonlinear H∞ control, is presented in Sage et al. (1999).

Concerning underactuated mechanical systems, the design of nonlinear H2 and H∞

controllers often explore the characteristic of mechanical systems. In Siqueira and Terra
(2004) and Siqueira et al. (2006), for example, the nonlinear H∞ controller is developed
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considering underactuated manipulators. These works explore the passive-active proper-
ties of mechanical systems. The active degrees of freedom are defined as the ones that
are actuated directly by the control inputs, while the passive ones are unactuated. The
control design is conducted considering the dynamic coupling between the passive and
active degrees of freedom and it is assumed that the passive joints are equipped with
brakes. The strategy consists in controlling all the passive joints in order to reach their
desired position by applying torques in the active ones, and then turn the brakes on. After
that, all the active joints are controlled as if the manipulator was fully actuated. Also, in
Raffo et al. (2011b) the passive-active property of mechanical systems is again explored
aiming to design a cascade controller for a quadrotor UAV. In that work, a nonlinear H∞

controller is designed to control the active degrees of freedom, while a model predictive
controller (MPC) is used to generate references for the active degrees of freedom to guide
the passive ones throughout the desired trajectory.

Moreover, in Raffo et al. (2011a), a nonlinear H∞ control strategy is proposed to
deal with the class of underactuated mechanical systems with input coupling (Olfati-
Saber, 2001). In that work, the dynamics of the system are partitioned in controlled and
stabilized degrees of freedom, from which the controller is designed to perform trajectory
tracking of the controlled degrees of freedom, while the remaining ones are stabilized. The
efficiency of the control strategy is corroborated by numerical experiments conducted with
a quadrotor UAV. In order to provide input coupling to the dynamics of the system, the
authors propose a modification on the mechanical structure of the quadrotor UAV by
tilting the thrusters with a small inclination angle towards the geometric center of the
aircraft. This small inclination guarantees full controllability to the quadrotor UAV. In
Raffo et al. (2015), a similar approach is employed to design a nonlinear H∞ controller
for a two-wheeled self-balanced vehicle. The objective is to ensure the inclination angle of
the pendulum (controlled degrees of freedom) is led to the upper vertical position, while
the angular velocity of the wheels (time derivative of the remaining degrees of freedom)
is set in a desired reference value.

The nonlinear H2 and H∞ control strategies have been applied successfully to mechan-
ical systems in several experiments. Nevertheless, these methods may present significant
drawbacks. As stated in Chen et al. (1994); Raffo et al. (2011a), the standard formu-
lation of the nonlinear H∞ control and, consequently, of the nonlinear H2 control for
Euler-Lagrange mechanical systems presents a limitation in the way to weight the cost
variable. For its appropriate formulation, the weighting matrices must be considered like
positive real scalars multiplied by the identity matrix, limiting the adjustment of the con-
trol law for systems with multiple degrees of freedom with different dynamics, such as the
tilt-rotor UAV. Secondly, as stated in Chilali and Gahinet (1996), the H∞ control strategy
deals mostly with the aspect of the highest gain of the disturbances, and provides little
control over the transient behavior of the system. Regarding the first drawback, in Raffo
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(2011) an approach based on diagonalization of the inertia matrix is proposed in order to
give flexibility to tune the nonlinear H∞ controller. On the other hand, few works deal
with the second drawback for control designing of nonlinear systems.

A singular paper that proposes the reformulation of the nonlinear H2 and H∞ control
approaches by making use of signals in the Sobolev space to improve the transient perfor-
mance of the nonlinear H2 and H∞ controllers is Aliyu and Boukas (2011a). A literature
review about the Sobolev space and its application in control theory is presented in the
next section.

2.2 Sobolev spaces and applications in control theory

The Sobolev spaces Wm,p and the weighted Sobolev spaces Wm,p,σ are normed vector
spaces. They are composed of functions in Lp whose generalized derivatives up to order
m are also in Lp (Adams and Fournier, 2003; Dlotko, 2014; Maz’ya, 2013; Treves, 2016;
Kufner, 1985; Goldshtein and Ukhlov, 2009). These spaces have been widely used in
the field of partial differential equations. For example, Pavel (2013) considers the global
classical solvability of a mixed initial-boundary value problem for semilinear hyperbolic
systems with nonlinear reaction coupling of Lotka-Volterra type. He develops mathe-
matical results in Sobolev spaces that can be used as the basis for developing further
boundary control results for this type of system. González De Paz (2009) presents a vari-
ational principle for several free boundary value problems using a relaxation approach.
The equivalence of the solution of the relaxed problem with the solution of several free
boundary value problem is proved. Some inequality properties of the weighted Sobolev
spaces are discussed in Kilpeläinen (1994).

In the control area, properties of Sobolev spaces have been employed in the design of
state observers. In Alessandri and Sanguineti (2007), the optimal estimation problems
for nonlinear systems are considered, in which the Luenberger observer is used as case of
study. The optimality criterion is taken as the norm of the estimation error in a function
space and is dependent on a chosen innovation function. In particular, Lp and Sobolev
optimality criteria are adopted. Relationships between internal (asymptotic and exponen-
tial) stability and input-output stability are studied, and upper bounds on the estimation
error are given. Zemouche and Boutayeb (2008) deal with an unknown input observer de-
sign method for nonlinear systems. The proposed method takes into account the presence
of disturbances in both equations of states and output. The main result lies in the use of
Sobolev norms to define a new criterion of robustness, called the modified H∞ criterion.
Contrarily to the standard H∞ filtering method (Simon, 2006), the modified H∞ criterion
offers the possibility to solve the unknown input observer synthesis problem in a noisy
context. Aliyu and Boukas (2011b) propose the W1,2 and W1,∞ estimation problems as an
extension of the H2 and H∞ optimization problems. Proportional, proportional-derivative,
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and proportional-integral (PI) filters are presented for each problem, and sufficient con-
ditions for the existence of optimal filter gains in terms of new HJB and HJBI equations
are provided.

Also, in Bourles and Colledani (1995), a new type of input-output stability is defined
based on the use of Sobolev space Wm,p, with a local version of the small gain theorem be-
ing established in this framework and the relationship between W-stability and asymptotic
stability being presented. In He and Wang (2004), the W-stability criterion is extended
for a class of nonlinear systems with nonlinear finite time-delay. The idea behind these
works relies on the fact that in this kind of space all properties of L2 space are satisfied.
Additionally, Guillard and Bourlès (2000) propose a robust feedback linearization that
transform the original nonlinear system into its linear approximation around a given op-
eration point. In this work, the idea of W-stability is employed to prove the improvements
of the robust feedback linearization.

Furthermore, seeking to overcome the drawbacks of the nonlinear H2 and H∞ control
approaches mentioned in Section 2.1, Aliyu and Boukas (2011a) redesign these control
strategies in the Sobolev space. In their work, instead of the L2-norm, the W1,2-norm of the
cost variable is considered. The control problems are developed via dynamic-programming
from which the HJ PDE might be solved. In particular, Aliyu and Boukas (2011a) con-
sider the HJ PDE resulting from the redesign of the nonlinear H∞ control approach in the
Sobolev space to be “horrendous and impossible to compute the solution”, proposing an
alternative approach using the backstepping technique to simplify the problem. However,
since the rate of change of the cost variable is not considered in the cost functional, the im-
provements on the transient performance are not achieved. Additionally, the approaches
addressed in Aliyu and Boukas (2011a) lack in the sense of distinguishing the influences
of the cost variable and its time derivatives in the control objectives.

To overcome the drawbacks of the approaches proposed by Aliyu and Boukas (2011a),
this thesis formulates the nonlinear H2 and H∞ control approaches in the weighted Sobolev
space, which allows tuning component-wise the influences of the cost variable and its
time derivative in the cost functional. The control problems are developed via dynamic-
programming and numerical algorithms are proposed to attain solutions of the resulting
HJ PDEs. In addition, the W2 and W∞ control problems are particularized to the class of
mechanical systems represented by the Euler-Lagrange equations, and particular solutions
are proposed to the resulting HJ PDEs. The linear version of the W∞ controller is also
formulated via semidefinite programming written as LMI constraints, for which a series
of numerical algorithms can be used to achieve a solution.
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2.3 Approximate solutions to the HJ equation

Since HJ PDEs are difficult to solve analytically, several methods have been proposed
to approximate solutions. The Taylor series expansion was the first one used with this
purpose (Lukes, 1969), which was also used by Van Der Schaft (1992) to achieve approx-
imate solutions to the HJ PDE resulting from the nonlinear H∞ control approach. Based
on this approach, optimal controllers have been designed for several systems, as for in-
stance: fixed-wing aircrafts (Kang et al., 1992), robot manipulators (Yazdanpanah et al.,
1998), jet engine compressors (Hardt et al., 2000), magnetic levitator (Sinha and Pechev,
2004), among others. A systematic procedure to obtain an approximate solution of the
HJ PDE via Taylor series expansion is presented in Huang and Lin (1995). Although the
approach via Taylor series expansion is attractive from the computational effort point of
view, the solution is usually obtained considering a finite number of terms, not ensuring
stability to nonlinear systems. Besides, the difficulty to attain a solution increases with
respect to the degree of the considered term. In this context, Yazdanpanah et al. (1999)
present studies to determine the stability region of the solution obtained via Taylor series
expansion truncated in low order terms.

Other usual approaches to solve the HJ PDEs are the method of characteristics (Wise
and Sedwick, 1996), finite differences (Fleming and Soner, 2006; Wise and Sedwick, 1994),
and finite elements (Xiao and Basar, 1997). The first one tries to find an open-loop
solution by integrating the problem forward considering a given initial condition, while
the latter consist in obtaining viscosity solutions to the problem. Additionally, Lu and
Doyle (1995) and Patpong et al. (1996) characterize the nonlinear H∞ control problem
as a convex optimization problem and present solutions in terms of nonlinear matrix
inequalities. In these methods, the computational effort and memory used to achieve
the solution increase exponentially with respect to the states of the system. Approaches
based on neural networks have recently received great attention due to the computational
efficiency (Vamvoudakis and Lewis, 2010; Zhu and Zhao, 2018; Walters et al., 2018; Xiao
et al., 2018).

According to Beard and McLain (1998), the main features to be considered in order
to select the numerical procedure are: i) guaranteed stability for finite truncations of
the approximation; ii) a simple closed-loop control to be implemented; iii) to guarantee
the approximation error goes to zero as the order of the approximation increases; iv) a
well-defined region of the state-space where the approximation is guaranteed to work;
v) low run-time computation and memory requirements; vi) to effectively deal with the
curse of dimensionality. Regarding these features, the Successive Galerkin Approximation
Algorithm (SGAA) is among the most interesting numerical procedures, mainly due to
the guarantee of stability, which is crucial from the control point of view (Beard, 1995;
Beard et al., 1996, 1997; Beard and McLain, 1998; Beard et al., 1998).
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SGAA was first introduced in Beard (1995), with the purpose of solving the HJB equa-
tion resulting from the development of the nonlinear H2 control approach via dynamic-
programming. Thereafter, in Beard and McLain (1998), it was extended to solve the
HJBI equation that arises from the formulation of the nonlinear H∞ controller via game
theory. SGAA is applicable to a general class of autonomous systems and consists to per-
forming Sucessive Galerkin approximations in order to approximate the solution of the
HJ PDE, but with the shortcomings of depending on a chosen initial stabilizing control
law. Besides, it requires the calculation of L2 inner products, which can be significantly
time-intensive for higher dimensional systems.

Regarding the Galerkin method, the literature also presents a few works that employ
it to solve HJ equations. In Curtis and Beard (2001), for example, a successive colloca-
tion approximation algorithm (SCAA) is proposed to solve the HJ equation. Instead of
seeking for an approximation to the HJ PDE in a domain, like SGAA, a local approxima-
tion is obtained via Galerkin method by solving the HJ equation at a local point of the
state space. This approximation does not require the use of inner product, which reduce
considerably the computational effort to attain the solution. Also, Wernrud and Rantzer
(2005) replace the HJ equation by two inequalities, with the optimal problem replaced by
a suboptimal problem in order to simplify computations. In Cheng and Wang (2014) and
Cheng and Shu (2007), the Galerkin method is employed to solve the HJ PDE considering
one-dimensional and two-dimensional problems.

To the best of the author’s knowledge, there are no works in the literature that propose
numerical methods to achieve the solution to the HJ PDEs resulting from the formulation
of the nonlinear H2 and H∞ controllers in weighted Sobolev spaces. Therefore, this work
extends the SGAA to achieve such solutions for the corresponding HJ PDEs.

2.4 Final Remarks

This chapter presented a literature review on the main topics of interest in this doctoral
thesis.

Section 2.1 concerned with the state of the art of the H2 and H∞ controllers, and
addressed some relevant works that were taken as theoretical basis to the development of
this doctoral thesis. It exposed the disadvantage of H2 and H∞ controllers in providing
little control over the transient behavior of the system, which motivated the development
of the W2 and W∞ control frameworks in weighted Sobolev spaces.

Section 2.2 addressed some relevant works related to Sobolev spaces and their applica-
tions in control theory, including the work by Aliyu and Boukas (2011a), which introduced
the redesign of the H2 and H∞ controllers in a Sobolev space. It was commented that the
approaches introduced in Aliyu and Boukas (2011a) lacked in the sense of distinguishing
the influences of the cost variable and its time derivatives in the control objective, and
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resulted in HJ PDEs that were hard to solve algebraically.
Finally, Section 2.3 addressed a brief review of the literature on the most popular

techniques used to obtain numerical solutions for HJ equations, including the Successive
Galerkin Approximation Algorithm, which is extended in this doctoral thesis to achieve
solutions of the W2 and W∞ control problems.

The next chapter presents some basic concepts and definitions used in this doctoral
thesis.



3
Mathematical background

This chapter presents some preliminary concepts and definitions necessary to the de-
velopment of this doctoral thesis. The following topics are introduced: (i) the Lebesgue
and Sobolev spaces; (ii) interesting features of the W2 and W∞ control formulations in the
weighted Sobolev space; (iii) the Hamilton-Jacobi-Bellman equation; (iv) the method of
Galerkin; and (v) the Euler-Lagrange formulation.

3.1 The Lebesgue and Sobolev spaces

This section is concerned with the definitions of the Lebesgue, Sobolev, and weighted
Sobolev spaces. The latter is used to formulate the nonlinear W2 and W∞ control strate-
gies proposed in this work. For further details, we refer the readers to Adams and
Fournier (2003); Dlotko (2014); Maz’ya (2013); Treves (2016); Kufner (1985); Goldshtein
and Ukhlov (2009).

As commented, the nonlinear H2 and H∞ control strategies can be formulated in the
Lebesgue space making use of the Lp−norm. The Lp−norm of a function z(t) : R≥0 → Rnz ,
in which t ∈ R≥0 is the time variable, is computed by

||z(t)||Lp≜

(∫ ∞

0

nz∑
j=1

|zj(t)|pdt
) 1
p

, (3.1)

for p ∈ N ∪ {∞}, where zj(t) stands for the j-th element of the vector z(t).



3.1 The Lebesgue and Sobolev spaces 40

Remark 1. Regarding (3.1), one can show that ||z(t)||2
L2

=
∫∞

0 z′(t)z(t)dt and ||z(t)||L∞ =
inf{a ≥ 0 : |zj(t)| ≤ a,∀t ∈ R≥0, j ∈ {1, ..., nz}}.

The Lp space is composed of functions whose Lp − norm is bounded and is defined as
follows.

Definition 1. (Adapted from van der Schaft (2000)) A function z(t) : R≥0 → Rnz , for
some nz ∈ N, belongs to the Lp space (i.e. z(t) ∈ Lp[0,∞)) if and only if ||z(t)||Lp < ∞.

The weighted Lp,φ-norm of the function z(t) is computed as (Nielsen, 2012)

||z(t)||Lp,φ ≜
(∫ ∞

0
||φ1/pz(t)||pp dt

)1/p

, (3.2)

for p ∈ N ∪ {∞}, where φ is a symmetric matrix with appropriate dimension, in which
|φij| < ∞, ∀i, j ∈ {1, ..., nz}, and ||φ1/pz(t)||p ≜ (

∑nz
i=1 | (φ1/pz(t))

i
|p)1/p, in which (φ1/pz(t))

i

stands for the i-th element of the vector resulting from the product φ1/pz(t). Accordingly,
the Lp space is a subspace of the weighted Lp space, which is defined as follows.

Definition 2. A function z(t) : R≥0 → Rnz , for some nz ∈ N, belongs to the weighted Lp,φ

space (i.e. z(t) ∈ Lp,φ[0,∞)) if and only if ||z(t)||Lp,φ < ∞.

The formulation of the H2 and H∞ control approaches in the time-domain into the
Sobolev space is based on the Sobolev Wm,p−norm of functions. The Sobolev Wm,p−norm
of a function z(t) is computed as

||z(t)||Wm,p≜

(
m∑
α=0

∣∣∣∣∣∣∣∣dαz(t)
dtα

∣∣∣∣∣∣∣∣p
Lp

) 1
p

, (3.3)

where p ∈ N ∪ {∞} and m ∈ N.
It is worth highlighting that (3.3) takes into account the Lp−norm of the function z(t)

and of its time derivatives. Consequently, the Wm,p space is a subspace of the Lp space
that is composed of functions whose generalized derivatives up to degree m are also in the
Lp space. The Wm,p space is defined as follows:

Definition 3. A generic function z(t) : R≥0 → Rnz , for some nz ∈ N, belongs to the Wm,p

space (i.e. z(t) ∈ Wm,p[0,∞)) if and only if ||z(t)||Wm,p < ∞.

The W2 and W∞ controllers proposed in this doctoral thesis are formulated on the
weighted Sobolev space, they require the satisfaction of the weighted Sobolev Wm,p,σ−norm
of the function z(t), that is given by

||z(t)||Wm,p,σ =
(

m∑
α=0

∣∣∣∣∣∣∣∣dαz(t)
dtα

∣∣∣∣∣∣∣∣p
Lp,σα

) 1
p

, (3.4)
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where σ = (σ0, ...,σm) is a set of positive definite matrices with appropriate dimension
and ||(·)||Lp,σα stands for the Lp − norm of function (·) weighted by the matrix σα, for
α ∈ {0, 1, ...,m}.

Remark 2. Regarding (3.4), it is of special interest of this work the case ||z(t)||2
Wm,2,σ

=

||z(t)||L2,σ0 + · · · +
∣∣∣∣∣∣∣∣dmz(t)

dtm

∣∣∣∣∣∣∣∣
L2,σm

=
∫∞

0 z′(t)σ0z(t)dt+ · · · +
∫∞

0

(
dmz(t)
dtm

)′

σm

dmz(t)
dtm

dt, which

is used to formulate the proposed W2 and W∞ controllers in the next chapters.

Then, the Wm,p,σ space is defined as follows:

Definition 4. A generic function z(t) : R≥0 → Rnz , for some nz ∈ N, belongs to the Wm,p,σ

space (i.e. z(t) ∈ Wm,p,σ[0,∞)) if and only if ||z(t)||Wm,p,σ < ∞.

Since it is a weighted space, one can show that any function that belongs to this space
also belongs to the Sobolev space. Besides, the Wm,p-norm is a particular case of the
Wm,p,σ-norm, in which σα = I, for α ∈ {0, 1, ...,m}.

3.2 Interesting features of the W2 and W∞ control
formulations in weighted Sobolev spaces

This section highlights some interesting features of W2 and W∞ control formulation in
weighted Sobolev space.

Consider the following linear system represented in state-space

P :

ẋ(t) = Ax(t) + Bττ (t) + Bww(t),

h(t) = Qx(t) + Rτ (t),
(3.5)

where x(t) : R≥0 → Rnx is the state vector, τ (t) : R≥0 → Rnτ is the input vector, w(t) :
R≥0 → Rnw is the disturbance vector, h(t) : R≥0 → Rnx is the output vector, A ∈ Rnx×nx ,
Bτ ∈ Rnx×nτ , and Bw ∈ Rnx×nw are matrices with appropriate dimensions that give the
dynamics of the linear system, and Q > 0 and R > 0 are weighting matrices.

Regarding (3.5), the classic H2 control strategy is formulated in the frequency domain
in order to find a control law that minimizes the energy of the output vector h(t) when
the system is subjected to an impulsive disturbance w(t). In this domain, the H2 control
problem can be stated as the following optimization problem (Dullerud and Paganini,
2013):

min
τ∈C

1
2π

∫ ∞

−∞
trace [H∗(jω)H(jω)] dω, (3.6)

where H(jω) is the transfer function of P from w(t) to h(t).
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This work is interested in the formulation of the H2 controller in the time-domain.
Therefore, making use of Parseval’s Theorem, and assuming w(t) ∈ L2[0,∞), the opti-
mization problem (3.6) can be written as (Trofino et al., 2003)

min
τ∈L2

∫ ∞

0
trace [h′(t)h(t)] dt,

s.t. P . (3.7)

In addition, Khalaf et al. (2006) have demonstrated that if we let x(0) = 0, h(t) =

W̄

x(t)
τ (t)

, with W̄ ≜

Q 0
0 R

, and w(t) = δ(t), in which δ(t) is a vector with appropri-

ate dimension composed of delta Dirac functions, the classic H2 control problem can be
equivalently posed for P as

min
τ(t)∈L2

1
2 ||h(t)||2

L2
, (3.8)

s.t. P ,

which is the so-called formulation of the H2 controller in the Lebesgue space.

Remark 3. In H2 control problem (3.8) the output vector is required to belong to the L2

space, i.e. h(t) ∈ L2[0,∞), but there are no requirements for its rate of change. The rate
of change is tuned indirectly by weighting the energy of the states and control action in
the cost functional.

Note that, the control problem (3.8) can be employed, for example, to synthesize a H2

controller for the nonlinear system

Y :


ẋ(t) = f(x(t), t) + g(x(t), t)τ (t) + k(x(t), t)w(t),

h(t) = W̄

x(t)

τ (t)

 , (3.9)

where x(t), τ (t), w(t), and h(t) are defined as in (3.5), and f(x(t), t), g(x(t), t), and
k(x(t), t), with f(0, t) = 0, are matrices with appropriate dimension that represent the
dynamics of the nonlinear system.

This doctoral thesis extends the H2 control problem (3.8) to the weighted Sobolev
space W1,2,σ. In this space, the control problem is posed as

min
τ(t)∈U

1
2 ||z(t)||2

W1,2,σ
, (3.10)

s.t. Y ,

where U : R≥0 → Rnτ , with the output variable given by z(t) = x(t), and σ = (σ0,σ1), in
which σ0,σ1 are weighting matrices.
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Remark 4. The H2 control approach in the Sobolev space proposed by Aliyu and Boukas
(2011a) is a particular case of (3.10), in which the control problem is posed regarding the
Sobolev norm W1,2 of the output variable.

Remark 5. The optimal control problem (3.10) weights component-wise the output vector
and its rate of change in the optimizing index. Therefore, the resulting controller tends to
generate less oscillating behavior, in addition to provide a faster response to disturbances,
in comparison to the classic H2 controller.

Note that, in the H2 control problem (3.8) the cost functional can be expanded as

JL = 1
2 ||h(t)||2

L2
,

= 1
2

∫ ∞

0
h′(t)h(t)dt,

=
[
x′(t) u′(t)

]
W̄ ′W̄

x(t)
u(t)

 , (3.11)

while in the W2 control problem (3.10) one has that

JW = 1
2 ||z(t)||2

W1,2
,

= 1
2 ||z(t)||2

L2,σ0
+ 1

2 ||ż(t)||2
L2,σ1

,

=
[
x′(t) ẋ′(t)

] σ0 0
0 σ1

x(t)
ẋ(t)

 . (3.12)

From (3.11) and (3.12), one can see that the H2 approach requires that x(t),u(t) ∈ L2[0,∞),
while the W2 approach requires that x(t), ẋ(t) ∈ L2[0,∞). This is an interesting feature
of the latter approach, which relaxes the necessity of u(t) ∈ L2[0,∞) and, consequently,
limt→∞ u(t) = 0. For example, notice that

||ẋ(t)||L2 = ||f(x(t), t) + g(x(t), t)τ (t) + k(x(t), t)w(t)||L2 ,

̸= ||f(x(t), t)||L2 + ||g(x(t), t)τ (t)||L2 + ||k(x(t), t)w(t)||L2 . (3.13)

This feature allows the design of the W2 controller for system (3.9) when f(0, t) ̸= 0, since
to keep such system at the origin of the state space the controller must inject energy
indefinitely, even when in the steady state, requiring a control signal that is not in L2

space in order to achieve asymptotic stability.

Remark 6. The case in which f(0, t) ̸= 0 in (3.9) is quite common in nonlinear systems,
especially for mechanical systems as highlighted in Chapter 5.

Remark 7. Regarding the case in which f(0, t) ̸= 0 in system (3.9), in order to design
an H2 controller it is usual to split f(x(t), t) = f̄(x(t), t) + f̂(x(t), t), with f̄(0, t) = 0 and
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f̂(0, t) ̸= 0, then perform the following change of variables in the control input vector:
u(t) = f̂(x(t), t) + v(t). The controller is designed considering the new input vector v(t).

Similarly to the H2 controller, the classic H∞ controller is originally formulated in
the frequency domain in order to find a control law that minimizes the maximum ratio
between the norm of the performance output signal and the norm of the disturbance signal.
Regarding the LTI system (3.5), this control problem can be shown to be equivalent to

min
τ∈C

E{H(jω)}, (3.14)

where E{H(jω)} denotes the maximum singular value of H(jω), in which H(jω) is the
transfer function of P from w(t) to h(t).

Alternatively, from the Parseval’s theorem we have that

||z(t)||2
L2

= 1
2π

∫ ∞

−∞
Z ′(jω)Z(jω)dω, (3.15)

and

||w(t)||2
L2

= 1
2π

∫ ∞

−∞
W ′(jω)W (jω)dω. (3.16)

where Z(jω) and W (jω) are, respectively, the signals z(t) and w(t) represented in the
frequency domain. Thereby,

||z(t)||2
L2

= 1
2π

∫ ∞

−∞
W ′(jω)H ′(jω)H(jω)W (jω)dω,

≤ sup
ω

E{H(jω)}2 1
2π

∫ ∞

−∞
W ′(jω)W (jω)dω,

≤ sup
ω

E{H(jω)}2||w(t)||2
L2
,

≤ γ2||w(t)||2
L2
, (3.17)

in which γ = supω E{H(jω)} is the H∞ attenuation level.

Remark 8. In (3.17), the H∞ attenuation level γ can be seen as the maximum gain in
terms of the ratio between performance output and input signal energies that system (3.5)
gives to a disturbance signal.

Accordingly, the H∞ controller can be formulated in the time-domain as

min
τ∈L2

γ, (3.18)

s.t. ||h(t)||2
L2

− γ2||w(t)||2
L2

≤ 0.

The control problem (3.18) is the so-called H∞ control formulation in the Lebesgue space.
This problem can be employed, for example, to synthesize H∞ controllers for nonlinear
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systems (3.9).

Remark 9. In the H∞ control problem (3.18), the effects of the disturbances in the tran-
sient behavior of the closed-loop system are taken into account indirectly through the energy
of the output vector h(t).

This doctoral thesis extends the H∞ control problem (3.18) to the weighted Sobolev
space. In this space, the control problem is posed as

min
τ(t)∈U

γ, (3.19)

s.t.
1
2 ||z(t)||2

W1,2,σ
− γ2||w(t)||2

L2
≤ 0,

for all w(t) ∈ L2[0,∞), where γ is the W∞ attenuation level. Besides, U : R≥0 → Rnτ ,
z(t) = x(t), and σ = (σ0,σ1), in which σ0,σ1 are weighting matrices.

Remark 10. The H∞ control approach in the Sobolev space proposed by Aliyu and Boukas
(2011a) is a particular case of (3.19), in which the control problem is posed regarding the
Sobolev norm W1,2 of the output variable.

Remark 11. Remarks 5 also applies to the W∞ control problem (3.19).

Remark 12. In the control problem (3.19), the W∞ attenuation level γ can be seen as the
maximum gain in terms of energy that a disturbance signal induces on the output variable
and its time derivative.

Note that, the control problem (3.19) takes into account the cost variables and its
time derivative, therefore, the minimization of γ results in controllers that provide faster
disturbances attenuation. This is the main feature of the W∞ control formulation in the
weighted Sobolev space.

In this doctoral thesis, the optimal control problems are developed via dynamic-
programming resulting in Hamilton-Jacobi partial differential equations to be solved. The
next section presents the mathematical background for such development.

3.3 The Hamilton-Jacobi-Bellman equation

The content of this section was adapted from Kirk (2004).
Consider a nonlinear system

P :
{

ẋ(t) = a(x,u, t), (3.20)

for which it is desired to design a control law u(x, t) that minimizes the cost functional

J = h(x(tf), tf) +
∫ tf

t0

g(x(τ),u(τ), τ)dτ (3.21)
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where t ∈ [t0, tf ] is the time variable, x(t) : R≥0 → Rnx is the state vector, u(t) : R≥0 → Ru

is the input vector, and a(x,u, t) : Rnx ×Rnu ×R≥0 → Rnx , g(x,u, t) : Rnx ×Rnu ×R≥0 → R≥0

and h(x(tf), tf) : Rnx × R≥0 → R≥0 are specified functions. This control problem can be
stated as

J ∗(x(t0), t0) = min
u(t)∈U

[
h(x(tf), tf) +

∫ tf

t0

g(x(τ),u(τ), τ)dτ
]
, (3.22)

s.t. P ,

where U is a space where the control input signal belongs to.
The fundamentals of dynamic programming relies on Bellman’s Principle of Optimal-

ity, which can be summarized as follows (Raffo, 2011):
"Given an optimal trajectory between the initial time, t0, and an intermediate time, t,

the optimal trajectory between t0 and a terminal time tf > t can be found concatenating the
initial optimal trajectory to the computed one between t and tf for the system starting at
x(t) with u(t) at time t, which are the terminal states and control signals of the previous
computed trajectory between t0 and t."

Thus, by applying the Bellman principle of optimality to (3.22), yields

J ∗(x(t0), t0) = min
u(t)∈U

[
h(x(tf), tf) +

∫ t0+∆t

t0

g(x(τ),u(τ), τ)dτ +
∫ tf

t0+∆t
g(x(τ),u(τ), τ)dτ

]
,

= min
u(t)∈U

[∫ t0+∆t

t0

g(x(τ),u(τ), τ)dτ + J ∗(x(t0 + ∆t), t0 + ∆t)
]
, (3.23)

where J ∗(x(t0 + ∆t), t0 + ∆t) is the minimum cost of the process in the time interval
[t0 + ∆t, tf ], when starting from the initial state x(t0 + ∆t).

By assuming that the second partial derivatives of J ∗(x(t), t) exist and are bounded
for t ∈ [t0, tf ], the term J ∗(x(t0 + ∆t), t0 + ∆t) in (3.23) can be expanded using the Taylor
series at a generic point (x(t),t), yielding

J ∗(x(t), t) = min
u(t)∈U

[∫ t0+∆t

t0

g(x(τ),u(τ), τ)dτ + J ∗(x(t), t) + ∂J ∗(x(t), t)
∂t

∆t

+
(
∂J ∗(x(t), t)

∂x

)′

(x(t+ ∆t) − x(t)) + O(x(t), t)
]
, (3.24)

where O(x(t), t) is composed by terms of higher order of the Taylor series expansion.
Accordingly, for a small ∆t, it is possible to approximate (3.24) by

J ∗(x(t), t) = min
u(t)∈U

[
g(x(t),u(t), t)∆t+ J ∗(x(t), t) + ∂J ∗(x(t), t)

∂t
∆t+ (3.25)(

∂J ∗(x(t), t)
∂x

)′

a(x,u, t)∆t+ O(x,u, t)
]
.
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In addition, since the terms J ∗(x(t), t) and ∂J ∗(x(t), t)
∂t

∆t are not influenced directly by
the control inputs, they can be removed from the minimization, resulting in

∂J ∗(x(t), t)
∂t

∆t+ min
u(t)∈U

[
g(x(t),u(t), t)∆t+

(
∂J ∗(x(t), t)

∂x

)′

a(x,u, t)∆t+ O(x,u, t)
]

= 0,

(3.26)

Then, dividing (3.26) by ∆t and taking the limit of the resulting equation as ∆t → 0,
leads to

∂J ∗(x(t), t)
∂t

+ min
u(t)∈U

[
g(x(t),u(t), t) +

(
∂J ∗(x(t), t)

∂x

)′

a(x,u, t)
]

= 0, (3.27)

which is the so-called Hamilton-Jacobi-Bellman equation, with the boundary value J ∗(x(tf), tf) =
h(x(tf), tf).

Therefore, by defining the Hamiltonian as follows

H(x,u,J ∗, t) ≜ g(x(t),u(t), t) +
(
∂J ∗(x(t), t)

∂x

)′

a(x,u, t), (3.28)

and the optimized Hamiltonian as

H(x,u∗,J ∗, t) ≜ min
u∈U

(H(x,u∗,J ∗, t)) , (3.29)

where u∗(x, t) : Rnx ×R≥0 → Rnu is the optimal control law, the Hamilton-Jacobi equation
is given by

∂J ∗(x(t), t)
∂t

+ H(x,u∗,J ∗, t) = 0. (3.30)

Therefore, by using dynamic-programming one can represent the optimal control problem
(3.22) by the partial differential equation (3.30), whose solution is a function J ∗(x(t), t)
that satisfies the boundary condition J ∗(x(tf), tf) = h(x(tf), tf).

3.4 The method of Galerkin

The Galerkin’s method is commonly used to approximate the solution of Partial Dif-
ferential Equations (PDE) (Mikhlin and Smolitskiy, 1967). In this work, it is applied to
achieve solutions of the HJB and HJBI equations associated to the nonlinear W2 and W∞

control problems, respectively.
Therefore, consider a generic PDE in the compact form

A(V (x)) = 0, (3.31)
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with the boundary condition V (x0) = a, for some x0 ∈ Rnx and a ∈ R, where the function
V (x) : Rnx → R is an unknown solution of this PDE. The first step in applying the
method of Galerkin is to constrain the domain of (3.31) to a compact subset, Ω ⊂ Rnx ,
thus V (x) : Ω → R. In this context, if one select a complete vector of basis functions
Φ(x) =

[
ϕ1(x) ϕ2(x) ... ϕnϕ(x)

]
, nϕ ∈ N, and consider VN(x) =

∑nϕ
j=1 cjϕj(x) = c′Φ(x), with

VN(x0) = a, then there exist coefficients cj ∈ R, such that
∫

Ω
(V (x) − VN(x)) dΩ = 0, (3.32)

where ∫
Ω(·)dΩ stands for the integral over the domain of the problem. Nevertheless,

in practice the vector of basis functions is not usually a complete basis in the domain
of interest Thus, the following approximation error is obtained for any selection of the
coefficients cj,

A(VN(x)) = Error(x). (3.33)

In the Galerkin’s method the vector of coefficients c is determined by setting the
projection of the error on the finite basis Φ(x) to zero, ∀x ∈ Ω, as follows

< A(VN(x)),ϕj(x) >≜
∫

Ω
A(VN(x))ϕj(x)dΩ = 0, j = 1, 2, ... nϕ. (3.34)

The method of Galerkin is employed in this doctoral thesis to approximate the solution
of the HJB and HJBI equations that arise from the formulation of the W2 and W∞ control
strategies via dynamic-programming.

3.5 The Euler-Lagrange formulation

This section concerns some mathematical aspects of the Euler-Lagrange formulation of
mechanical systems. For further details about the Euler-Lagrange approach, the readers
may refer to Spong et al. (2006).

Mechanical systems can be described by the Lagrangian function

L(q, q̇) = K(q, q̇) − P(q, q̇), (3.35)

where K(q, q̇) : (Rnq × Rnq) → R is the kinetic energy, P(q, q̇) : (Rnq × Rnq) → R is the
potential energy, q(t) : R≥0 → Rnq is the vector of generalized coordinates that describes
the position and orientation of rigid bodies composing a mechanical system with respect to
the inertial reference frame I, and q̇(t) : R≥0 → Rnq is the vector of generalized velocities,
in which nq is the number of degrees of freedom of the mechanical system.

Regarding (3.35) and through the D’Alembert’s principle, the Euler-Lagrange equa-
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tions that describe the mechanical system are given by

d

dt

(
∂L(q, q̇)
∂q̇(t)

)
− ∂L(q, q̇)

∂q(t) = ϑ(t), (3.36)

where ϑ(t) : R≥0 → Rnq is the vector of generalized forces, which is composed by noncon-
servative forces and torques that actuate on the system.

For the special class of mechanical systems whose kinetic energy can be written as a
quadratic function of the generalized velocities and the potential energy is independent
of them, the Lagrangian function (3.35) can be written as

L(q, q̇) = 1
2 q̇′(t)M(q)q̇(t) − P(q), (3.37)

where M(q) : Rnq → Rnq×nq is the inertia matrix, which possess the following properties
(Spong et al., 2006):

Property 1. The inertia matrix in (3.37) is positive definite, i.e. M(q) > 0.

Property 2. The inertia matrix in (3.37) is symmetric, i.e. M ′(q) = M(q).

Consequently, by replacing equation (3.37) in (3.36), yields

d

dt

(
∂

∂q̇(t)

(1
2 q̇′(t)M(q)q̇(t)

))
−
(

∂

∂q(t)

(1
2 q̇′(t)M(q)q̇(t)

))
+ ∂P(q)

∂q(t) = ϑ(t),

M(q)q̈(t) + ∂M(q)q̇(t)
∂t

− ∂

∂q(t)

(1
2 q̇′(t)M(q)q̇(t)

)
︸ ︷︷ ︸

C(q,q̇)q̇

+ ∂P
∂q(t)︸ ︷︷ ︸

g(q)

= ϑ(t), (3.38)

which, when considering input affine mechanical systems, can also be written in the
canonical form of the Euler-Lagrange equations as

M(q)q̈(t) + C(q.q̇)q̇(t) + g(q) = B(q, q̇)τ (t) + w(t), (3.39)

where C(q, q̇) : (Rnq × Rnq) → Rnq×nq is the Coriolis and centripetal forces matrix, g(q) :
Rnq → Rnq is related to the gravitational forces, and ϑ(t) = B(q, q̇)τ (t) + w(t), in which
τ (t) : R≥0 → Rnτ is the vector of control inputs, B(q, q̇) : (Rnq ×Rnq) → Rnq×nτ is the input
coupling matrix, and w(t) : R≥0 → Rnq is the disturbances vector, that represents the
total effects of unmodeled dynamics, parametric uncertainties and external disturbances
actuating on the mechanical system.

The Coriolis and centrifugal forces matrix C(q.q̇) is not unique. Thus, for the sake of
convenience, in this manuscript this matrix is computed through the Christoffel symbols
of first kind, which is defined as

Ck,j(q, q̇) =
nq∑
l=1

1
2

[
∂Mk,j(q)
∂ql(t)

+ ∂Mk,l(q)
∂qj(t)

− ∂Ml,j(q)
∂qk(t)

]
q̇l(t), (3.40)
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where Ck,j(q, q̇), Mk,j(q), and qk(t) are elements of the Coriolis and centripetal forces
matrix, the inertia matrix, and the vector of generalized coordinates, respectively, corre-
sponding to the k-th row and j-th column. By computing the Coriolis and centripetal
forces matrix through the Christoffel symbols of first kind (3.40), it ensures that the
following property holds for the mechanical system (3.39),

Property 3. (Adapted from Spong et al. (2006)) If the Coriolis and centripetal forces
matrix C(q, q̇) in (3.39) is computed through the Christoffel symbols (3.40), then the ex-
pression Ṁ(q) − 2C(q, q̇) is a skew-symmetric matrix.

In order to compute the generalized forces, consider an external force actuating at the
point P belonging to a rigid body D of the mechanical system. This force can be mapped
as follows (Kane and Levinson, 1985, pag. 106)

ϑ(t) = (JP(q))′f I(t), (3.41)

where f I(t) : R≥0 → RnP is the applied external force expressed in the inertial reference
frame I, JP(q) : Rnq → RnP ×nq is the linear velocity Jacobian of P in I, given by

JP(q) ≜
∂vI

I,P(q, q̇)
∂q̇(t) =

∂pI
I,P(q)
∂q(t) , (3.42)

with vI
I,P(q, q̇) = ṗI

I,P(q, q̇) : (Rnq × Rnq) → RnP , being the vector of linear velocity of P
with respect to I expressed in I, and pI

I,P(t) : R≥0 → RnP the position vector of P with
respect to I expressed in I.

Similarly, the external torque actuating on a rigid body D of the mechanical system
can be mapped to the generalized forces through (Kane and Levinson, 1985, pag. 106)

ϑ(t) = (WD(q))′τ I(t), (3.43)

where τ I(t) : R≥0 → RnD is the applied torque expressed in the inertial reference frame I,

WD ≜
∂wI

I,D(q, q̇)
∂q̇

, (3.44)

is the angular velocity Jacobian, and wI
I,D(q, q̇) : Rnq ×Rnq → RnD is the angular velocity of

D with respect to I expressed in I, this angular velocity can be obtained doing ṘI
D(RI

D)′ =
S(wI

I,D), where S(·) : R3 → R3×3 denotes a skew-symmetric matrix (Spong et al., 2006)
and RI

D the rotation matrix that gives the orientation of D with respect to I.
The mechanical system (3.39) can be classified according to its degree of actuation.

Definition 5. The mechanical system (3.39) is fully actuated in the domain Ω ⊆ (Rnq ×
Rnq) if q(t) : R≥0 → Rnq and rank(B(q, q̇)) = nq, ∀(q, q̇) ∈ Ω, where nq ∈ N is the number of
DOF of the system.
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Definition 6. The mechanical system (3.39) is underactuated in the domain Ω ⊆ (Rnq ×
Rnq) if q(t) : R≥0 → Rnq and rank(B(q, q̇)) < nq, ∀(q, q̇) ∈ Ω, where nq ∈ N is the number of
DOF of the system.

Remark 13. The degree of actuation of a mechanical system in the domain Ω is given
by inf{rank(B(q, q̇))}, ∀(q, q̇) ∈ Ω, in which the rank of a input coupling matrix is the
dimension of the image space spawned by its columns.

Remark 14. According to definitions 5 and 6, overactuated mechanical systems are a
particular case of fully actuated mechanical systems, that possess q(t) : R≥0 → Rnq , τ (t) :
R≥0 → Rnτ , rank(B(q, q̇)) = nq, with nτ , nq ∈ N, and nτ > nq. In addition, a mechanical
system that possess q(t) : R≥0 → Rnq , τ (t) : R≥0 → Rnτ , rank(B(q, q̇)) < nq, with nτ , nq ∈ N,
and nτ > nq is also underactuated.

3.6 Final Remarks

This chapter introduced most of the required concepts, notations, and definitions used
in this doctoral thesis. The following topics were addressed: (i) the Lebesgue and Sobolev
spaces; (ii) interesting features of the W2 and W∞ control formulations in the weighted
Sobolev space; (iii) the Hamilton-Jacobi-Bellman equation; (iv) the method of Galerkin;
and (v) the Euler-Lagrange formulation.

The next chapter develops the nonlinear W2 and W∞ controllers in the weighted
Sobolev space via dynamic-programming, and proposes numerical algorithms to achieve
solutions of the resulting Hamilton-Jacobi equations. In addition to present results of nu-
merical experiments with a Two-wheeled Self-balanced vehicle, and perform comparative
analysis with the classic H∞ controller.



4
W2 and W∞ controllers formulated in the

weighted Sobolev space and approximate
solutions

This chapter presents novel formulations of the nonlinear H2 and H∞ control in the
weighted Sobolev space for nonlinear systems, here called W2 and W∞ control problems.
These formulations allow to weight component-wise the influences of the cost variable and
its time derivatives in the cost function. The W2 and W∞ control problems are developed
using dynamic-programming, and the Successive Galerkin Approximation Algorithm is
extended to achieve solutions of the resulting HJ equations. Numerical results with a
Two-wheeled Self-balanced vehicle are presented, and comparison analysis are performed
with a nonlinear H∞ controller. The content presented in this chapter was published in
Cardoso and Raffo (2018) and Cardoso et al. (2018c).

4.1 The nonlinear W2 control problem

In this section, the nonlinear W2 control approach is formulated in the weighted
Sobolev space for nonlinear systems represented in the form

P1 :

ẋ(t) = f(x) + g(x)u(t), x(0) = x0,

z(t) = h(x),
(4.1)
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where t ∈ R≥0 is the time variable, x(t) : R≥0 → Rnx is the state vector, u(t) : R≥0 → Rnu is
the input vector, and z(t) : R≥0 → Rnz is the cost variable. It is assumed that,

Assumption 1. System P1 is controllable (See Definition 13),

Assumption 2. The state vector x is available,

Assumption 3. The origin of the state-space is an equilibrium point, i.e. f(0) = 0, with
h(0) = 0.

Assumption 4. The matrices ∂h(x)
∂x

and g(x) have full column rank.

Remark 15. Assumption 4 ensures that all states are observable from the cost variable
z(t), and also that the column vectors in g(x) are linearly independent.

The nonlinear H2 controller formulated in the weighted Sobolev space is designed in
order to obtain a state feedback control law that minimizes the following cost functional:

J2 = 1
2 ||z(t)||2

W1,2,σ
,

= 1
2 ||z(t)||2

σ0
+ 1

2 ||ż(t)||2
σ1
, (4.2)

where σ = (σ0,σ1), in which σ0,σ1 ∈ Rnz×nz are symmetric and positive definite weighting
matrices.

Remark 16. In the nonlinear W2 and W∞ control approaches presented here, the control
inputs are not weighted directly in the optimizing index. The transient and steady-state
performance are reached by tuning component-wise the influence of the cost variable and
its time derivative in the cost functional.

In this context, the control problem is stated as

V2 = min
u∈U

J2,

= min
u∈U

1
2

∫ ∞

0

(
||z(t)||2

σ0
+ ||ż(t)||2

σ1

)
dt, (4.3)

s.t. P1,

in which U : Rnx → Rnu .
In order to solve this problem, in this doctoral thesis, the W2 optimal control problem

is formulated via dynamic-programming (Kirk, 2004), from which the associated Hamil-
tonian is given by

H2 (V2,x,u) =
(
∂V2(x)
∂x

)′

[f(x) + g(x)u] + 1
2
(
||z(t)||2

σ0
+ ||ż(t)||2

σ1

)
, (4.4)
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with the boundary condition V2(0) = 0. Equation (4.4) in the expanded form yields1

H2 (V2,x,u) =
(
∂V2

∂x

)′

[f + gu] + 1
2h′σ0h + 1

2 ẋ′∇h′σ1∇hẋ

=
(
∂V2

∂x

)′

[f + gu] + 1
2h′σ0h + 1

2f ′∇h′σ1∇hf + u′g′∇h′σ1∇hf

+ 1
2u′g′∇h′σ1∇hgu, (4.5)

where ∇h ≜
∂h(x)
∂x

.
The Hamilton-Jacobi-Bellman equation is obtained from (4.3) using the Hamiltonian

(4.5), which in a compact form is given by

∂V2(x, t)
∂t

+ min
u∈U

{H2 (V2,x,u)} = 0. (4.6)

Consequently, the optimal control law u∗ can be obtained by minimizing the Hamil-
tonian (4.5) with respect to the control inputs as follows

∂H2

∂u
= g′∂V2

∂x
+ g′∇h′σ1∇hf + g(x)′∇h′σ1∇hgu∗ = 0, (4.7)

which leads to

u∗ = −R−1g′
(
∂V2

∂x
+ Bf

)
, (4.8)

where R ≜ g′Bg, with B ≜ ∇h′σ1∇h > 0. The invertibility of R is ensured by Assumption
4.

The HJ equation associated with this optimal control problem is obtained by re-
placing the optimal control law (4.8) in the HJB equation (4.6), and assuming the now
autonomous system (4.1), which is written in the compact form

∂V2(x, t)
∂t

+ H2(V2,x,u
∗) = 0. (4.9)

Consequently, the control problem (4.3) results in finding a function V2(x, t) that sat-
isfies (4.9).

4.2 The nonlinear W∞ control problem

In this section, the nonlinear W∞ control approach is formulated in the weighted
Sobolev space for autonomous nonlinear systems. Now, the control law is designed con-
sidering perturbed systems represented by the following standard form of input-affine

1For the sake of simplicity, throughout the manuscript, some functional dependencies are omitted.
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systems:

P2 :

ẋ(t) = f(x) + g(x)u(t) + k(x)w(t), x(0) = x0,

z(t) = h(x),
(4.10)

where x(t), u(t), z(t) are defined as in (4.1), and w(t) : R≥0 → Rnw is the disturbance
vector. In addition, Assumptions 1-4 hold for P2.

The nonlinear H∞ control problem in the weighted Sobolev space is posed as finding
an optimal control law that ensures the following inequality

||z(t)||2
W1,2,σ

≤ γ2||w(t)||2
L2
, (4.11)

where γ ∈ R≥0 is a given sufficiently large W∞ attenuation level.
Accordingly, the controller is designed based on the following cost functional:

J∞ = 1
2 ||z(t)||2

W1,2,Σ
− 1

2γ
2||w(t)||2

L2
. (4.12)

Therefore, the optimal control problem is stated as

V∞ = min
u∈U

max
w∈W

∫ ∞

0

1
2
(
||z(t)||2

σ0
+ ||ż(t)||2

σ1
− γ2||w(t)||2

)
dt, (4.13)

in which U : Rnx → Rnu and W = L2[0,∞).
The control design is derived by solving a Min-Max optimization problem, which can

be formulated via differential game theory. The associated Hamiltonian is given by

H∞ =
(∂V∞(x)

∂x

)′[
f(x) + g(x)u(t) + k(x)w(t)

]
+ 1

2
(
||z(t)||2

σ0
+ ||ż(t)||2

σ1
− γ2||w(t)||2),

(4.14)

which in its expanded form yields

H∞ =
(
∂V∞

∂x

)′

[f + gu + kw] + 1
2h′σ0h + 1

2f ′∇h′σ1∇hf − γ2w′w + 1
2f ′∇h′σ1∇hgu

(4.15)

+ 1
2f ′∇h′σ1∇hkw + 1

2u′g′∇h′σ1∇hgu + +u′g′∇h′σ1∇hkw + 1
2w′k′∇h′σ1∇hf

+ 1
2w′k′∇h′σ1∇hgu + 1

2w′k′∇h′σ1∇hkw.

The Hamilton-Jacobi-Bellman-Isaacs equation is obtained from (4.13) using the Hamil-
tonian (4.15), which in a compact form is given by

∂V∞(x, t)
∂t

+ min
u∈U

max
w∈W

{H∞ (V∞,x,u,w)} = 0. (4.16)
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The worst case of the disturbance, w∗, and the optimal control law, u∗, are obtained
by computing the partial derivatives of (4.15) with respect to these variables as follows

∂H∞

∂u
= g′∂V∞

∂x
+ g′∇h′σ1∇hf + g′∇h′σ1∇hgu∗ + g′∇h′σ1∇hkw∗ = 0 (4.17)

∂H∞

∂w
= k′∂V∞

∂x
+ k′∇h′σ1∇hf + k′∇h′σ1∇hgu∗ + k′∇h′σ1∇hkw∗ − γ2w∗ = 0. (4.18)

Thereby, by manipulating algebraically (4.17) and (4.18), yields

w∗ = (γ2I−k′Bk + k′BgR−1g′Bk)−1
k′
[
∂V∞

∂x
+ Bf − BgR−1

(
g′∂V∞

∂x
+ g′Bf

)]
, (4.19)

u∗ = −R−1g′
(
∂V∞

∂x
+ Bf + Bkw∗

)
, (4.20)

in which (u∗,w∗) is the saddle-point solution to the problem (4.16). This can be verified
by computing the second order partial derivative of (4.17) and (4.18), which results in

∂2H∞

∂u2
= g′∇h′∇hg > 0, (4.21)

∂2H∞

∂w2
= k′∇h′∇hk − γ2I < 0. (4.22)

Remark 17. The W∞ attenuation level must be selected appropriately such that the in-
equality (4.22) holds, ensuring feasibility to the optimization problem.

In order to obtain the HJ equation associated with the problem, it is necessary to
replace (4.19) and (4.20) in (4.16) and, assuming now the autonomous system (4.10), it
yields to the partial differential equation

∂V∞(x, t)
∂t

+ H∞ (V∞,x,u
∗,w∗) = 0, (4.23)

which is hard to solve analytically for the general case.
In Aliyu and Boukas (2011a), a similar HJ equation is presented, which results from the

original formulation of W∞ control problem in the Sobolev space. The authors assume it to
be analytically intractable and propose an alternative approach to simplify the problem,
which makes use of the backstepping technique. From the best knowledge of the author,
there are no works in the literature proposing analytical solutions for this HJ equation.
Therefore, in the next section a numerical algorithm is proposed to approximate solutions
to the HJB and HJBI PDEs resulting from the W2 and W∞ control approaches in the
weighted Sobolev space for input-affine autonomous nonlinear systems.
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4.3 Successive Galerkin Approximation Algorithm

The HJ equations resulting from the formulation of the nonlinear W2 and W∞ control
problems in the weighted Sobolev space are represented in a quadratic form, which is not
suitable to apply directly the Galerkin’s method, since it leads to multiple solutions in
which one generates an optimal control law. In order to ensure that the obtained solution
corresponds to a stabilizing control law, the Sucessive Galerkin Approximation Algorithm
is applied. This algorithm decreases the complexity of the problem to a non-quadratic
form, leading to a single solution.

In this doctoral thesis, we present two SGAAs which are based on the algorithms
proposed in Beard and McLain (1998). On one hand, Algorithm 4.1 is developed to find
a solution of the HJ equation derived from the nonlinear W2 control approach. On the
other hand, for the nonlinear W∞ control problem, the proposed SGAA is described in
Algorithm 4.2. The convergence proofs of the presented SGAAs follow the same procedure
as in Beard and McLain (1998).

Remark 18. In Algorithms 4.1 and 4.2, although the number of iterations goes from 1
to ∞, the stopping criterion V (i) = V (i+1) can be used when seeking for the approximate
solution of the HJ equations.

Remark 19. In particular, u(i) will ensure stability of the system (4.1) in the same region
of the state space as u(0) does, even though in the experiments the final optimal control
law have presented an enlarged domain of attraction. In addition, as stated in Beard et al.
(1998), it is not possible to find an admissible control that can stabilize an initial condition
that is unstable.

Remark 20. Algorithm 4.2 does not converge if Remark 17 is not satisfied.

Algorithm 4.1 SGAA to the nonlinear W2 control problem.
1: Let u(0) be any initial stabilizing control law for system (4.1) with stability region Ω.
2: for i = 0 to ∞ do
3: Solve for V (i)

2 from:(
∂V

(i)
2
∂x

)′ [
f(x) + g(x)u(i)

]
+ 1

2
(
||z||2σ0 + ||ż(u(i))||2σ1

)
= 0

4: Update the Control:

u(i+1) = −R−1g′(x)
(
∂V

(i)
2
∂x

+ Bf(x)
)

5: end for

In order to use the proposed algorithms and approximate the solutions of the HJ
equations (4.9) and (4.23), the Galerkin’s method is applied to solve numerically the
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Algorithm 4.2 SGAA to nonlinear W∞ control problem.
1: Let u(0) be any initial stabilizing control law for the system (4.1) with w = 0 and

stability region Ω.
2: Set w(0,0) = 0
3: for i = 0 to ∞ do
4: for j = 0 to ∞ do
5: Solve for V (i,j)

∞ from:(
∂V

(i,j)
∞
∂x

)′ [
f(x) + g(x)u(i) + k(x)w(i,j)]+ 1

2
(
||z||2σ0+||ż(u(i),w(i,j))||2σ1 − γ2||w(i,j)||2

)
= 0

6: Update the Disturbance:

w(i,j+1)= (γ2I−k′Bk+k′BgR−1g′Bk)−1
[
k′∂V

(i,j)
∞

∂x
+k′Bf−k′BgR−1

(
g′∂V

(i,j)
∞

∂x
+g′Bf

)]
7: end for
8: Update the Control:

u(i+1) = −R−1
(
g′∂V

(i,∞)
∞
∂x

+g′(x)Bf(x) + g′(x)Bk(x)w(i,∞)
)

9: end for

respective PDEs. The general formulation of the Galerkin’s method is briefly presented
in Chapter 3, Section 3.4, taking into account this formulation and Algorithm 4.1, which
is proposed to solve the nonlinear W2 control problem and the HJB equation (4.9), the
procedure to achieve an approximate solution V2(x), ∀x ∈ Ω, is performed as follows.
First, we require that the residual resulting from the use of the approximate solution in
the HJ equation (4.9) will be orthogonal to the vector of basis function in the domain Ω,
as

∫
Ω

[(
∂Φ′c

∂x

)′

[f(x) + g(x)u] + 1
2
(
||z||2

σ0
+ ||ż||2

σ1

)]
Φ′dΩ = 0, (4.24)

which, after some manipulation, can be rewritten as

c′
∫

Ω
∇Φ′[f(x) + g(x)u

]
Φ′dΩ = −1

2

∫
Ω

(
||z||2

σ0
+ ||ż||2

σ1

)
Φ′dΩ. (4.25)

Hence, the vector of coefficients c is obtained by

c′ =
(

− 1
2

∫
Ω

(
||z||2

σ0
+ ||ż||2

σ1

)
Φ′dΩ

)( ∫
Ω

∇Φ′
[
f(x) + g(x)u

]
Φ′dΩ

)−1
. (4.26)

Similarly, for Algorithm 4.2 and considering the HJ equation (4.23), the procedure to
obtain an approximated solution of V∞(x), ∀x ∈ Ω, is conducted as follows. Initially, we
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have that
∫

Ω

[(∂Φ′c

∂x

)′[
f(x) + g(x)u + k(x)w

]
+ 1

2
(
||z||2

σ0
+ ||ż||2

σ1
− γ2||w||2)]Φ′dΩ = 0, (4.27)

leading to

c′
∫

Ω
∇Φ′[f(x) + g(x)u + k(x)w

]
Φ′dΩ = −1

2

∫
Ω

(
||z||2

σ0
+ ||ż||2

σ1
− γ2||w||2)Φ′dΩ. (4.28)

Consequently, in this case the vector of coefficients c is obtained as

c′ =
(
−1

2

∫
Ω

(
||z||2

σ0
+||ż||2

σ1
−γ2||w||2)Φ′dΩ

)( ∫
Ω

∇Φ′[f(x)+g(x)u+k(x)w
]
Φ′dΩ

)−1
. (4.29)

Remark 21. The finite set of basis functions must be selected to provide small approxi-
mation error in the domain of interest, ensuring convergence of the algorithms.

In the a following section, equations (4.26) and (4.29) are computed with Algorithms
4.1 and 4.2 in order to design the nonlinear W2 and W∞ controllers for a Two-wheeled
Self-balanced vehicle.

4.4 Numerical examples

This section corroborates the efficacy of the nonlinear W2 and W∞ controllers, by using
Algorithms 4.1 and 4.2, via numerical experiments with a Two-wheeled Self-balanced
vehicle. The objective is to keep the Two-wheeled Self-balanced vehicle standing in the
upper vertical position, while it is subject to external disturbances.

The equations of motion of the Two-wheeled Self-balanced vehicle (see Figure 4.1)
were obtained from (Madero et al., 2010; Raffo et al., 2015) and are given by the Euler-
Lagrange equations

M(q)q̈ + C(q, q̇)q̇ + K(q̇) + G(q) = F (q)u+ w, (4.30)

with

M(q) =

(M +m)r2 + Ir mlr cos(θ)
mlr cos(θ) ml2 + Ip

 , q =

ϕ
θ

 ,
C(q, q̇) =

0 −mlr sin(θ)θ̇
0 0

 , K(q̇) =

 kϕ̇

−kϕ̇

 ,
G(q) =

 0
−mgl sin(θ)

 , F (q) =

 1
−1

 , w =

wϕ
wθ

 ,
where u ∈ R is the torque applied on vehicles’ wheels, w1, w2 ∈ R are disturbances applied
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to the system, m is the mass of the pendulum, M is the mass of the wheels, l is the
distance from the axle to the pendulum center of mass, r is the wheel’s radius, Ip is the
pendulum moment of inertia, Ir is the inertia of the wheel, k is the static friction of the
motor, and g is the gravity acceleration. The physical parameters used in the numerical
simulations are presented in Table 4.1.

θ

ϕ

Figure 4.1: The Two-wheeled Self-balanced vehicle.

Table 4.1: Vehicle parameters.

Parameter Value Unit of Measure
Ir 0.0421 kg· m2

Ip 0.201 kg· m2

k 0.00215 N· m · s/rad
m 2.75 kg
M 3.75 kg
l 0.1435 m
r 0.25 m
g 9.8 m/s2

In order to design the nonlinear W2 and W∞ controllers, initially, the Two-wheeled Self-
balanced vehicle equations of motion (4.30) are represented in the state-space standard
form (4.10), yielding

f(x) =

 θ̇

−M −1(q) [C(q, q̇)q̇ + K(q̇) + G(q)]

 , g(x) =

 0
M −1(q)F (q)

 ,k(x) =

0 0
M −1(q)

 ,
with x =

[
θ ϕ̇ θ̇

]′
.

The controllers are designed by iterating Algorithms 4.1 and 4.2 and considering the
Galerkin’s approximations (4.26) and (4.29). A complete polynomial basis with degree
four is used as basis functions, which is given by

Φ(x) =
[
θ ϕ̇ θ̇ ϕ̇θ θθ̇ ϕ̇θ̇ ϕ̇2 θ2 θ̇2 · · · θ4 ϕ̇4 θ̇4

]
. (4.31)
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In order to decrease the computational time taken to obtain the solution, it is used the
stopping criteria ||ci−1 − ci||2 < 0.1.

The set Ω is the domain in which the approximation is valid, and it must be selected
as the region of the state-space in which the system evolves with time. In this experiment,
it is chosen as Ω = θΩ × ϕ̇Ω × θ̇Ω = [−π

4 ,
π

4 ] × [−3, 3] × [−1.2, 1.2].
The integrals of domain, presented in (4.26) and (4.29), were computed using rectan-

gular integration using the midpoint rule, which is illustrated in Figure 4.2, and computed
as

∫ b

a

ψ(ξ)dξ = (b− a)ψ
(
b+ a

2

)
. (4.32)

a b

ψ(a+b
2 )

(a+b
2 )

ψ(ξ)

ξ

Figure 4.2: Gaussian Quadrature with one point.

In order to apply the Gaussian quadrature, the domain Ω is split in several squares
with width ∆ = 0.1. The function is approximated as uncoupled, such that the following
holds:

∫ b

a

∫ d

c

∫ f

e

ψ(θ, ϕ̇, θ̇)dθ dϕ̇ dθ̇ =
∫ b

a

ψ(θ)dθ
∫ d

c

ψ(ϕ̇)dϕ̇
∫ f

e

ψ(θ̇)dθ̇. (4.33)

During the iterations of Algorithms 4.1 and 4.2, the coefficients c of the Galerkin’s
method converge asymptotically to the solution (Beard and McLain, 1998).

In addition, a linear state feedback LQR controller was designed as the initial stabi-
lizing control law for both controllers, which resulted in

u(0) =
[
11.3132 1.0022 3.2589

]
x. (4.34)

For comparison purposes, an H∞ controller is designed through the SGAA presented
in Beard and McLain (1998). The W∞ and H∞ attenuation levels were set as γ = 5.
Besides, the controllers were tuned to provide almost the same settling time, using the
criteria of 5%, as shown in Figure 4.3. This choice resulted in the following adjustments
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σ0 = I and σ1 = diag([0.64 0.1 0.1]).

0 0.5 1 1.5 2 2.5 3
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W∞
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θ : 1.986
t : −0.04056

Time

Figure 4.3: Settling time of the Two-wheeled Self-balanced vehicle, resulting from the
application of the H∞, W∞ and W2 controllers.

The system was simulated starting from the initial condition x(0) = [π4 0 0]′. The
results are presented in Figure 4.4.

At the beginning, the pendulum starts displaced from the desired upper vertical po-
sition and asymptotically converges to it, remaining in this position until external dis-
turbances wϕ(t) = 1 N·m, for t ∈ [7, 14], and wθ(t) = 1 N·m, for t ∈ [22, 32], are applied
to the wheels and to the pendulum, respectively. Due to the coupled dynamics of the
system, the effects of external disturbances affect all states. Moreover, since the nonlin-
ear W2 and W∞ controllers considers the time derivative of the cost variable in the cost
functional, they react faster to external disturbances than the H∞ controller, presenting
smaller overshoots with faster transients, as can be seen in Figures 4.4 and 4.5.

The control effort and the system error were evaluated by means of the Integral of the
Absolute Derivative of the control signal (IADU) and the Integral of the Square Error
(ISE) performance indexes, which are shown in Table 4.2. Note that, although the results
do not present significant differences on states θ(t) and θ̇(t), the W∞ controller achieved
considerable improvement on the angular velocity of the wheels with less control effort.

4.5 Final remarks

In this chapter, the nonlinear W2 and W∞ control strategies were formulated in the
weighted Sobolev space for autonomous nonlinear systems, and numerical algorithms
were proposed to solve the resulting HJB and HJBI equations. The efficiency of these
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Figure 4.4: Time evolution of the states of the Two-wheeled Self-balanced vehicle, result-
ing from the application of the H∞, W∞ and W2 controllers.
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Figure 4.5: Control inputs, resulting from the application of the H∞, W∞, and W2 con-
trollers to the Two-wheeled Self-balanced vehicle, and the disturbance signals.

controllers and numerical algorithms were demonstrated via numerical experiments con-
ducted with a Two-wheeled Self-balanced vehicle, and comparison analysis were performed
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Table 4.2: Table of performance indexes computed from the results of the H∞, W∞ and
W2 controllers applied to the Two-wheeled Self-balanced vehicle.

P. Index Computed by H∞ W∞ W2

IADU ∫ tf
0

∣∣∣du(t)
dt

∣∣∣dt 16.809 (100%) 16.117 (95%) 18.1953 (108%)

ISE

∫ tf
0 θ2(t)dt 1.199 (100%) 1.217 (101%) 1.2125 (101%)∫ tf
0 ϕ̇2(t)dt 85.254 (100%) 49.682 (58.2%) 61.8686 (72%)∫ tf
0 θ̇2(t)dt 1.604 (100%) 1.736 (108%) 1.6393 (102%)

with a nonlinear H∞ controller. It was demonstrated that the W2 and W∞ controllers pro-
vided better transient responses with smaller overshot, besides a faster reaction to external
disturbances.

Unfortunately, the algorithms presented in this chapter depend on a feasible initial
solution to be iterated, are limited to an admissible domain of the state-space, and suf-
fer from the curse of dimensionality. Therefore, aiming to propose analytical solutions
to the resulting HJ equations, in the next chapter the W2 and W∞ control strategies
are particularized for the class of mechanical systems described by the Euler-Lagrange
equations.



5
Nonlinear W2 and W∞ control of mechanical

systems

This chapter proposes new formulations of the nonlinear H2 and H∞ optimal control
approaches in weighted Sobolev spaces in order to handle two classes of underactuated
mechanical systems: the reduced ones, aiming achieve trajectory tracking of a reduced
number of DOF; and the underactuated mechanical systems with input coupling, in order
to drive the controlled DOF along a desired trajectory while stabilizing the remaining ones.
Additionally, to improve the closed-loop performance with robustness against parametric
uncertainties and constant disturbances, an integral action is considered in the problem
formulation. The optimal control problems are formulated via dynamic-programming and
particular solutions are presented for the resulting Hamilton-Jacobi equations with the
corresponding stability analysis. Also, the concepts of Wm,p,σ-stability and Wm,p,σ-gain for
a general class of systems are established, with the demonstration for the particular case
studies. The novel W2 and W∞ controllers are synthesized for a fully actuated manipulator,
a Two-wheeled Self-balanced vehicle, and a Quadrotor UAV. The results demonstrate
that these controllers provide better transient performance with faster response against
external disturbances in comparison with a classic nonlinear H∞ controller, in addition
to have a simple design. The content presented in this chapter was published in Cardoso
et al. (2021a).
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5.1 Control of fully actuated and reduced underac-
tuated mechanical systems

The development in this Chapter is conducted by considering mechanical systems
represented by the Euler-Lagrange equations in the canonical form (Spong et al., 2006)

M(q)q̈(t) + C(q, q̇)q̇(t) + g(q) = B(q, q̇)τ (t) + w(t), (5.1)

where q(t) : R≥0 → Rnq is the vector of generalized coordinates, M(q) : Rnq → Rnq×nq is the
inertia matrix, C(q, q̇) : (Rnq ×Rnq) → Rnq×nq is the Coriolis and centripetal forces matrix,
g(q) : Rnq → Rnq is the gravitational force vector, B(q, q̇) : (Rnq × Rnq) → Rnq×nτ is the
input coupling matrix, τ (t) : R≥0 → Rnτ is the control input vector, and w(t) : R≥0 → Rnq

is the vector of generalized disturbances.
In the case of underactuated mechanical systems (See Definition 6 in Section 3.5),

it is well known that no more than nτ DOF can be controlled (i.e. to be regulated at
a desired position or to track a reference trajectory) simultaneously through the control
inputs, since the system has fewer manipulated variables than DOF. Due to the inability
of performing simultaneous tracking of all DOF, for control design purposes, in this section
we partition the system (5.1) in controlled and uncontrolled DOF as follows (Raffo, 2011),
Muu(q) Muc(q)

Mcu(q) Mcc(q)


︸ ︷︷ ︸

M(q)

q̈u

q̈c


︸ ︷︷ ︸

q̈(t)

+

Cuu(q, q̇) Cuc(q, q̇)
Ccu(q, q̇) Ccc(q, q̇)


︸ ︷︷ ︸

C(q,q̇)

q̇u

q̇c


︸ ︷︷ ︸

q̇(t)

+

gu(q)
gc(q)


︸ ︷︷ ︸

g(q)

=

Bu(q, q̇)
Bc(q, q̇)


︸ ︷︷ ︸

B(q,q̇)

τ+

wu

wc


︸ ︷︷ ︸

w(t)

,

(5.2)

in which q(t) = [q′
u(t) q′

c(t)]′, where qu(t) : R≥0 → (Rnq−nτ = Rnu) corresponds to the
uncontrolled DOF and qc(t) : R≥0 → Rnτ corresponds to the controlled ones.

Considering this partition, it is possible to deal only with the controlled DOF. There-
fore, from the first row of (5.2), we have

q̈u=−M −1
uu Mucq̈c−M −1

uu Cuuq̈u−M −1
uu Cucq̇c−M −1

uu Gu+M −1
uu Buτ+M −1

uu wu. (5.3)

By replacing q̈u in the second row of (5.2), yields to

Mcu(−M −1
uu Mucq̈c − M −1

uu Cuuq̇u − M −1
uu Cucq̇c − M −1

uu gu + M −1
uu Buτ + M −1

uu wu) (5.4)
+Mccq̈c + Ccuq̇u + Cccq̇c + gc = Bcτ + wc.

Then, the equations of motion that describe the dynamics of the controlled DOF, here
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called the reduced underactuated mechanical system, are written as

M̄(q)q̈c(t) + C̄(q, q̇)q̇c(t) + ē(q, q̇) = B̄(q, q̇)τ (t) + δ̄(t), (5.5)

where M̄ (q) ≜ Mcc−McuM
−1
uu Muc, C̄(q, q̇) ≜ Ccc−McuM

−1
uu Cuc, ē(q, q̇) ≜ gc−McuM

−1
uu gu+(

Ccu − McuM
−1
uu Cuu

)
q̇u, B̄(q, q̇) = Bc − McuM

−1
uu Bu, and δ̄(t) ≜ wc + McuM

−1
uu wu.

Accordingly, the system (5.2) must be partitioned such that the following assumption
holds for the reduced underactuated mechanical system (5.5).

Assumption 5. The matrix B̄(q, q̇) is invertible, i.e. rank(B̄(q, q̇)) = nτ , ∀(q, q̇) ∈ Ω ⊆
(Rnq × Rnq).

Remark 22. The control approaches presented in this section are developed for reduced
underactuated mechanical systems described by (5.8). It is assumed the remaining uncon-
trolled DOF have stable dynamics or are input to state stable with respect to qc; hence,
they can be stabilized through an additional control strategy imposed on the time evolution
of qc(t).

Remark 23. Regarding a fully-actuated mechanical system (See Definition 5), the con-
trolled DOF are given by qc = q, yielding M̄(q) = M(q), C̄(q, q̇) = C(q, q̇), ē(q, q̇) = g(q),
B̄(q, q̇) = B(q, q̇), and δ̄(t) = w(t). Consequently, (5.5) becomes equal to (5.1). Then, the
approaches presented in this section are also valid for fully-actuated mechanical systems.

Additionally, aiming to perform trajectory tracking, the error dynamics can be written
as

M̄(q̃c + qcr, qu)
(¨̃qc + q̈cr

)
+ C̄(q̃c + qcr, ˙̃qc + q̇cr, qu, q̇u)

( ˙̃qc + q̇cr
) (5.6)

+ē(q̃c + qcr, ˙̃qc + q̇cr, qu, q̇u) = B̄(q̃c + qcr, ˙̃qc + q̇cr, qu, q̇u)τ + δ̄(t),

with q̃c(t) ≜ qc(t) − qcr(t), and qcr(t), q̇cr(t) and q̈cr(t) being the desired values of the
controlled DOF and their time derivatives, in which qcr(t) ∈ C2.

Besides, given the state vector x(t) : R≥0 → Rnx , with

x(t) ≜
[ ˙̃q′

c(t) q̃′
c(t)

∫ t

0
q̃′
c(τ)dτ

]′
, (5.7)

in which an integral action is considered over the error of the controlled DOF to provide
parametric uncertainty and constant disturbance rejection capability for the closed-loop
system, equation (5.6) can be represented in the state-space form as

ẋ(t) =


−M̄ −1C̄ 0 0

I 0 0
0 I 0

x(t)

︸ ︷︷ ︸
f(x,qu,q̇u)

+


−M̄ −1d̄

0
0


︸ ︷︷ ︸

f̄(x,qu,q̇u,t)

+


M̄ −1B̄

0
0


︸ ︷︷ ︸

g(x,qu,q̇u)

τ (t) +


M̄ −1

0
0


︸ ︷︷ ︸
k(x,qu,q̇u)

δ̄(t), (5.8)
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where d̄ ≜ M̄(q̃c + qcr, qu)q̈cr(t) + C̄(q̃c + qcr, ˙̃qc + q̇cr, qu, q̇u)q̇cr(t) + ē(q̃c + qcr, ˙̃qc + q̇cr, qu, q̇u),
and I and 0 are the identity and zeros matrices, respectively, with appropriate dimensions.

5.1.1 Nonlinear W2 control approach

In order to derive the nonlinear W2 optimal control law, the following standard form
is obtained from (5.8), considering no disturbances affecting the system (δ̄(t) = 0),

P3 :

ẋ(t) = f(x, qu, q̇u) + f̄(x, qu, q̇u, t) + g(x, qu, q̇u)τ (t),

z(t) =
∫ t

0 q̃c(τ)dτ,
(5.9)

in which z(t) is the cost variable, chosen in order to ensure that all states and the system
dynamics are included in the cost functional.

The nonlinear W2 controller is designed in order to obtain a control law τ (x, qu, q̇u, t)
that minimizes the cost functional

J2 = 1
2 ||z(t)||2

W3,2,Y
,

= 1
2

∫ ∞

0

(
||z(t)||2

Y0
+ ||ż(t)||2

Y1
+ ||z̈(t)||2

Y2
+ || ...

z (t)||2
Y3

)
dt, (5.10)

where ||(·)||2
Yi

≜ (·)′Y i(·), with Y i, for i ∈ {0, 1, 2, 3}, being a symmetric positive definite
tuning matrix, that weights the influence of the states in the control objective.

Remark 24. In (5.10), the weighted Sobolev norm takes into account tree time-derivatives
of the cost variable z(t). The objective is to include the dynamics of the system, i.e. ¨̃qc,
in the cost functional.

Hence, the optimal control problem is stated as finding τ ∗(x, qu, q̇u, t) that leads to

V2 = min
τ∈U

1
2 ||z(t)||2

W3,2,Y
, (5.11)

s.t. P3,

with U : (Rnx ×Rnu ×Rnu ×R≥0) → Rnτ . The goal is to provide a smooth decay of the error
between the generalized coordinates (as well as their time derivatives) and their references
over time.

Remark 25. The presence of the time derivatives of the cost variable into the cost func-
tional (5.10) provides improved transient performance for the closed-loop system.

Remark 26. In contrast to the nonlinear H2 and H∞ control approaches for mechanical
systems (Johansson, 1990; Chen et al., 1994; Feng and Postlethwaite, 1993; Raffo et al.,
2011a), the proposed W2 and W∞ controllers do not include the control inputs directly in
the cost functional, which relaxes the requirement that τ(t) ∈ L2[0,∞). In addition, this
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relaxation allows formulating the control problem without any prior compensation of the
gravity vector and the terms related to the desired trajectory.

Remark 27. In the nonlinear W2 and W∞ control approaches the control inputs are not
weighted directly in the optimizing index. The transient and steady-state performance are
reached by tuning component-wise the influence of the cost variable and its time derivatives
into the cost functional.

Therefore, aiming to solve (5.11), it is formulated via dynamic-programming (Kirk,
2004), the associated Hamiltonian is given by

H2 = ∂′V2

∂x
ẋ + 1

2z′Y0z + 1
2 ż′Y1ż + 1

2 z̈′Y2z̈ + 1
2

...
z ′Y3

...
z , (5.12)

with the boundary condition V2(0, t) = 0. Expanding (5.12) with (5.9) yields

H2 = ∂′V2

∂x

(
f(x, qu, q̇u, t) + f̄(x, qu, q̇u, t) + g(x, qu, t)τ

)
+ 1

2x′


Y2 0 0
0 Y1 0
0 0 Y0

x (5.13)

+ 1
2
[

˙̃q′
cC̄

′ΠC̄ ˙̃qc + 2 ˙̃q′
cC̄

′Πd̄ − 2τ ′B̄′ΠC̄ ˙̃qc − 2τ ′B̄′Πd̄ + τ ′B̄′ΠB̄τ + d̄′Πd̄
]
,

where Π ≜ M̄ −1Y3M̄
−1. The HJB equation is obtained from (5.11) using the Hamiltonian

(5.13), which in a compact form is given by

∂V2(x, t)
∂t

+ min
τ∈U

{H2(V2,x, qu, q̇u, τ , t)} = 0. (5.14)

The optimal control law τ ∗(x, qu, q̇u, t) can be obtained by minimizing the Hamiltonian
(5.13) with respect to τ as follows

∂H2

∂τ
= g′∂V2

∂x
− B̄′ΠC̄ ˙̃qc − B̄′Πd̄ + B̄′ΠB̄τ ∗ = 0, (5.15)

leading to

τ ∗ = B̄−1M̄
([

− Y−1
3 0 0

]∂V2

∂x
+ M̄ −1C̄ ˙̃qc + M̄ −1d̄

)
. (5.16)

This is indeed a minimum value of the optimization problem, since ∂2H∞

∂τ 2
= B̄′ΠB̄ > 0.

The HJ equation associated with the problem is obtained by replacing the optimal
control law (5.16) in (5.13), and considering the time-varying nonlinear system (5.9),

∂V2(x, t)
∂t

+ H2(V2,x, qu, q̇u, τ
∗, t) = 0. (5.17)

A particular solution V2(x, t) of the HJ equation (5.17) is proposed in the following theo-
rem.
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Theorem 1. Let V2 be the parameterized scalar function

V2(x) = 1
2x′


Q K T

K R S

T S P

x > 0, (5.18)

such that the matrices Q, K, T , R, S, and P are positive definite and verify Q−KR−1K >

0 and
Q K

K R

−

T

S

P −1
[
T S

]
> 0, with T , Q, and K obtained by solving the following

Riccati equations

−T Y−1
3 T + Y0 = 0, (5.19)

−QY−1
3 Q+2K+Y2 = 0, (5.20)

−KY−1
3 K+2QY−1

3 T + Y1 = 0, (5.21)

and R, S, and P , are given by

R = QY−1
3 K − T , (5.22)

S = QY−1
3 T , (5.23)

P = KY−1
3 T . (5.24)

Then, function V2(x) is a solution of the HJ equation (5.17).

Proof. The proof is conducted by replacing (5.18) in (5.17) and using the properties of
the inertia matrix. In the following the computation is performed by parts. Consider the
HJ equation (5.17). Since (5.18) is a time-invariant function, we have that ∂V2

∂t
= 0, and

(5.17) results in

∂′V2

∂x
ẋ + 1

2x′


Y2 0 0
0 Y1 0
0 0 Y0

x + 1
2

¨̃q′
cY3 ¨̃qc = 0. (5.25)

In addition, considering the candidate solution (5.18), the optimal control law (5.16) is
given by

τ ∗=B̄−1
( [

−M̄Y−1
3 Q −M̄Y−1

3 K −M̄Y−1
3 T

]
x+C̄ ˙̃qc+d̄

)
, (5.26)

which leads to the following acceleration error dynamics

¨̃qc = −M̄ −1C̄ ˙̃qc − M̄ −1d̄ + M̄ −1B̄τ ∗,

=
[

− Y−1
3 Q − Y−1

3 K − Y−1
3 T

]
x.
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Accordingly, the closed-loop dynamics are given by

ẋ =


−Y−1

3 Q −Y−1
3 K −Y−1

3 T

I 0 0
0 I 0

x, (5.27)

which is a closed-loop time-invariant system. Then, by replacing (5.27) in the first term
of (5.25) yields

∂′V2

∂x
ẋ = x′


−QY−1

3 Q + K −QY−1
3 K + T −QY−1

3 T

−KY−1
3 Q + R −KY−1

3 K + S −KY−1
3 T

−T Y−1
3 Q + S −T Y−1

3 K + P −T Y−1
3 T

x. (5.28)

Moreover, the last term of (5.25) is computed as

1
2

¨̃q′Y3 ¨̃q = 1
2x′


QY−1

3 Q QY−1
3 K QY−1

3 T

KY−1
3 Q KY−1

3 K KY−1
3 T

T Y−1
3 Q T Y−1

3 K T Y−1
3 T

x. (5.29)

Thus, considering (5.28) and (5.29), the HJ equation (5.25) results in

x′Nx = x′


N11 N12 N13

N21 N22 N23

N31 N32 N33

x = 0, (5.30)

with N11 ≜ − 1
2 QY−1

3 Q + K + 1
2 Y2, N12 ≜ − 1

2 QY−1
3 K + T , N13 ≜ − 1

2 QY−1
3 T , N21 ≜

− 1
2 KY−1

3 Q + R, N22 ≜ − 1
2 KY−1

3 K + S + 1
2 Y1, N23 ≜ − 1

2 KY−1
3 T , N31 ≜ − 1

2 T Y−1
3 Q + S,

N32 ≜ − 1
2 T Y−1

3 K + P , N33 ≜ − 1
2 T Y−1

3 T + 1
2 Y0.

The matrix N is decomposed by its symmetric and skew-symmetric components, re-
sulting in

1
2x′(N + N ′)x = x′


A11 A12 A13

∗ A22 A23

∗ ∗ A33

x = 0, (5.31)

where the * terms indicate the corresponding symmetric block matrix component. One
way to satisfy (5.31) is by solving the following set of algebraic Riccati equations

A11 = −QY−1
3 Q+2K + Y2 = 0, (5.32)

A12 = −QY−1
3 K+T +R = 0, (5.33)

A13 = −QY−1
3 T +S = 0, (5.34)
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A22 = −KY−1
3 K+2S+Y1 = 0, (5.35)

A23 = −KY−1
3 T +P = 0, (5.36)

A33 = −T Y−1
3 T +Y0 = 0. (5.37)

Firstly, T is computed by solving (5.37). Afterwards, equations (5.22), (5.23) and (5.24)
are obtained through (5.33), (5.34), and (5.36), respectively. Finally, Q and K are com-
puted through (5.32) and (5.35) by solving the following pair of cross-coupled Riccati
equations

−QY−1
3 Q+2K+Y2 = 0, (5.38)

−KY−1
3 K+2QY−1

3 T + Y1 = 0. (5.39)

Thus, with the solutions of (5.32)-(5.37), we conclude the proof.

Furthermore, the stability of the closed-loop system (5.27) is verified by the following
Theorem.

Theorem 2. Let V2(x) > 0 be a solution of (5.17) given by the parameterized scalar
function (5.18). Therefore, the closed-loop system, formed by the control law (5.16) and
system (5.9), is asymptotically stable within the domain Ω.

Proof. From (5.17) and (5.18) we have that

dV2

dt
= −1

2z′Y0z − 1
2 ż′Y1ż − 1

2 z̈′Y2z̈ − 1
2

...
z ′Y3

...
z , (5.40)

= −1
2x′


QY−1

3 Q+Y2 QY−1
3 K QY−1

3 T

KY−1
3 Q KY−1

3 K+Y1 KY−1
3 T

T Y−1
3 Q T Y−1

3 K T Y−1
3 T +Y0

x, (5.41)

= −1
2x′Gx, (5.42)

where

G = Λ1


Y−1

3 Y−1
3 Y−1

3

Y−1
3 Y−1

3 Y−1
3

Y−1
3 Y−1

3 Y−1
3

Λ1 +


Y2 0 0
0 Y1 0
0 0 Y0

 , (5.43)

with Λ1 ≜ blkdiag(Q,K,T ), and blkdiag(·) represents a block diagonal matrix whose
diagonal elements are square matrices given in parentheses, and all off-diagonal blocks are
zero matrices. Matrix (5.43) is composed of two terms, where the first is positive semi-
definite and the second is positive definite, yielding G > 0. Then, V̇2(x) < 0, which ensures
asymptotic stability for the closed-loop system in the Lyapunov sense. Accordingly, from
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(5.42) we have that
∫ ∞

0

dV2(x)
dt

dt = lim
t→∞

V2(x(t)) − V2(x(0)), (5.44)

= −
∫ ∞

0

1
2x′(t)Gx(t)dt

= −1
2 ||z(t)||2

W3,2,Y
= −c1,

where x(0) is the value of the states x at the time instant t = 0, and c1 ∈ R≥0. Then,
the W3,2,Y weighted Sobolev norm of the cost variable exists and is finite, consequently
lim
t→∞

x(t) = 0.

5.1.2 Nonlinear W∞ control approach

Consider again system (5.8), from which the following compact standard form is ob-
tained

P4:

ẋ(t) = f(x, qu, q̇u)+f̄(x, qu, q̇u, t) + g(x, qu, q̇u)τ (t)+k(x, qu)δ̄(t),

z(t) =
∫ t

0 q̃c(τ)dτ,
(5.45)

with z(t) being the cost variable. The nonlinear W∞ control in the weighted Sobolev space
is posed in order to achieve the control law τ (x, qu, q̇u, t) that minimizes the following cost
functional

J∞ = 1
2 ||z(t)||2

W3,2,Y
−1

2γ
2||δ̄(t)||2

L2
, (5.46)

for the worst case of the disturbances δ̄(t) ∈ L2[0,∞), considering a given sufficiently large
W∞-index γ ∈ R≥0, where ||δ̄(t)||2

L2
=
∫∞

0 δ̄′(t)δ̄(t) dt.

Remark 28. It is assumed that the time derivatives of the disturbance vector are un-
known, and because of that, only the L2-norm of the disturbance vector is considered into
the cost functional (5.46).

Therefore, the optimization problem is posed as

V∞ = min
τ∈U

max
δ̄∈D

{1
2 ||z(t)||2

W3,2,Y
−1

2γ
2||δ̄(t)||2

L2

}
, (5.47)

s.t. P4,

with U : (Rnx × Rnu × Rnu × R≥0) → Rnτ and D = L2[0,∞). The goal is to provide trajec-
tory tracking for the controlled DOF while being robust against external disturbances,
unmodeled dynamics, and parametric uncertainties.

The control law is obtained by solving a Min-Max optimization problem, which can
be formulated via dynamic programming, using differential game theory. The HJBI
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(Hamilton-Jacobi-Bellman-Isaacs) equation associated to this problem is

∂V∞

∂t
+ min

τ∈U
max
δ̄∈D

{H∞(V∞, qu, q̇u,x, τ , δ̄, t)} = 0, (5.48)

with the Hamiltonian

H∞ ≜
∂′V∞

∂x
ẋ + 1

2
(
z′Y0z + ż′Y1ż + z̈′Y2z̈ + ...

z ′Y3
...
z − γ2δ̄′δ̄

)
, (5.49)

and boundary condition V∞(0, t) = 0. The equation (5.49), in its expanded form, is written
as

H∞ = ∂′V∞

∂x

(
f(x, qu, q̇u, t) + f̄(x, qu, q̇u, t) + g(x, qu, t)τ

)
+ 1

2x′


Y2 0 0
0 Y1 0
0 0 Y0

x − 1
2γ

2δ̄′δ̄

+ 1
2
[

˙̃q′
cC̄

′ΠC̄ ˙̃qc + 2 ˙̃q′
cC̄

′Πd̄ − 2τ ′B̄′ΠC̄ ˙̃qc − 2τ ′B̄′Πd̄ (5.50)

+ τ ′B̄′ΠB̄τ + d̄′Πd̄ − 2 ˙̃q′
cC̄

′Πδ̄ − 2d̄′Πδ̄ + 2τ ′B̄′Πδ̄ + δ̄′Πδ̄
]
.

The optimal control law, τ ∗, and the worst case of the disturbances, δ̄∗, are obtained by
computing the partial derivatives of (5.50) with respect to these variables and equaling
them to zero as follows

∂H∞

∂τ
= g′∂V∞

∂x
−B̄′ΠC̄ ˙̃q−B̄′Πd̄+B̄′Πδ̄∗+B̄′ΠB̄τ ∗ = 0, (5.51)

∂H∞

∂δ̄
= k′∂V∞

∂x
−ΠC̄ ˙̃q−Πd̄+ΠB̄τ ∗+Πδ̄∗−γ2δ̄∗ = 0. (5.52)

Thus, considering (5.51), the optimal control law is given by

τ ∗ = −
(
B̄′ΠB̄

)−1
g′∂V∞

∂x
+ B̄C̄ ˙̃q + B̄d̄ − B̄δ̄∗. (5.53)

In addition, the worst case of the disturbances can be computed by premultiplying both
sides of (5.52) by B̄′(q, q̇), and using (5.53), which yields

δ̄∗ = (B̄′)−1

γ2

(
kB̄ − g

)′∂V∞

∂x
. (5.54)

Furthermore, through the second order partial derivatives of (5.50), which are given
by

∂2H∞

∂τ 2
= B̄′ΠB̄ > 0, (5.55)

∂2H∞

∂δ̄2
= Π − γ2I < 0, (5.56)

it can be verified that (5.53) and (5.54) are a Min-Max extremum of the optimization



5.1 Nonlinear W2 and W∞ control of mechanical systems 75

problem for a sufficiently large γ.

Remark 29. The W∞-index γ must be selected appropriately such that the inequality
(5.56) holds, ensuring feasibility to the optimization problem.

The HJ PDE associated to this problem is obtained by replacing the optimal control
law (5.53) and the worst case of the disturbances (5.54) in (5.48), yielding

∂V∞(x, t)
∂t

+ H∞(V∞,x, τ
∗, δ̄∗, t) = 0. (5.57)

Therefore, the optimal control problem (5.47) results in finding a function V∞(x, t) that
solves (5.57).

Remark 30. For the particular case of interest (see (5.8)) kB̄ = g in (5.54), which leads
the W2 and W∞ controllers being equivalent. Therefore, the particular solution proposed
in Theorem 1 is also a solution to (5.57).

The stability of the closed-loop system is stated in the following Theorem.

Theorem 3. Let V∞(x) > 0 be a solution of (5.57) given by the parameterized scalar
function (5.18). Therefore, the closed-loop system, with the control law (5.53) and system
(5.45), is asymptotically stable.

Proof. From (5.57) and (5.18) we have that

dV∞(x)
dt

= −1
2z′Y0z − 1

2 ż′Y1ż − 1
2 z̈′Y2z̈ − 1

2
...
z ′Y3

...
z + 1

2γ
2δ̄∗′

δ̄∗,

= −1
2x′Gx + 1

2γ
2δ̄∗′

δ̄∗, (5.58)

where G > 0 is given by (5.43). In addition, from (5.8) in which kB̄ = g, the worst
case of the disturbances is δ̄∗(t) = 0 (see (5.54)). This implies that V̇∞(x) < 0, ensuring
asymptotic stability for the closed-loop system in the Lyapunov sense. Consequently,
similarly to (5.44), the W3,2,Y weighted Sobolev norm of the cost variable exists and is
finite, which implies that limt→∞ x(t) = 0.

In the following we extend the definitions of Lq-stability and Lq-gain (van der Schaft,
2000) and also of W-stability and W-gain (Bourles and Colledani, 1995), considering the
weighted Sobolev norm.

Definition 7. Suppose δ̄(t) : R≥0 → Rnq , z(t) : R≥0 → Rnτ , for some nq, nτ ∈ N, and
z(t) = Ψ(δ̄(t)), such that Ψ : Rnq → Rnτ . The map Ψ is said to be Wm,p,σ-stable if there
exist finite constants γ, v ∈ R≥0 such that the inequality

||z(t)||2
Wm,p,σ

≤ γ2||δ̄(t)||2
Lp + v (5.59)
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holds for any δ̄(t) ∈ Lp[0,∞). Moreover, if γ = inf S in which S = {γ̄ ∈ R≥0 : ||z(t)||2
Wm,p,σ

≤
γ̄2||δ̄(t)||2

Lp + v, ∀δ̄(t) ∈ Lp[0,∞), v ∈ R≥0}, then γ is said to be the Wm,p,σ-gain of the
system.

Note that, δ̄∗ is the worst case of the disturbances, thus it maximizes the Hamiltonian.
Consequently, from (5.58), for a generic δ̄(t) ∈ L2[0,∞), we have that

dV∞(x)
dt

+ 1
2x′Gx − 1

2γ
2δ̄

′
δ̄ ≤ 0,

dV∞(x)
dt

≤ −1
2x′Gx + 1

2γ
2δ̄

′
δ̄. (5.60)

Thus, by integrating both sides of (5.60) in time, we have that
∫ ∞

0

dV∞(x)
dt

dt ≤
∫ ∞

0

(
−1

2x′Gx + 1
2γ

2δ̄′δ̄

)
dt,

lim
t→∞

V∞(x(t)) − V∞(x(0)) ≤ −1
2 ||z(t)||2

W3,2,Y
+ 1

2γ
2||δ̄(t)||2

L2
, (5.61)

which implies ||z(t)||2
W3,2,Y

≤ γ2||δ̄(t)||2
L2

+ 2V∞(x(0)). Then, from (5.59) and assuming a
finite initial condition, the closed-loop system is W3,2,Y-stable. The related W3,2,Y-gain, i.e.
the smallest γ ∈ R≥0, can be obtained from inequality (5.56).

5.2 Control of underactuated mechanical systems with
input coupling

Another class of special interest in this work is the underactuated mechanical system
with input coupling. Examples of mechanical systems with input coupling include the
Quadrotor UAV with tilted rotors (Raffo et al., 2011a), two-wheeled self-balanced pen-
dulum (Raffo et al., 2015), autonomous helicopter (Olfati-Saber, 2001), VTOL aircraft
(Olfati-Saber, 2001; Cardoso, Esteban and Raffo, 2019), among others. This class com-
prehends underactuated mechanical systems whose all DOF of the system are directly
affected by the control inputs due to the input coupling matrix.

As commented previously, when dealing with underactuated mechanical systems, no
more than nτ degrees of freedom can track a desired reference simultaneously. However,
for systems with input coupling one can select nτ DOF to track a desired trajectory while
the remaining ones are stabilized at an equilibrium point.

Therefore, by assuming the mechanical system (5.1) with input coupling, for control
design purposes, it can be partitioned in controlled and stabilized DOF as (Raffo et al.,
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2011a)
Mss(q) Msc(q)

Mcs(q) Mcc(q)


︸ ︷︷ ︸

M(q)

q̈s

q̈c


︸ ︷︷ ︸

q̈(t)

+

Css(q, q̇) Csc(q, q̇)
Ccs(q, q̇) Ccc(q, q̇)


︸ ︷︷ ︸

C(q,q̇)

q̇s

q̇c


︸ ︷︷ ︸

q̇(t)

+

gs(q)
gc(q)


︸ ︷︷ ︸

g(q)

=

Bs(q, q̇)
Bc(q, q̇)


︸ ︷︷ ︸

B(q,q̇)

τ (t) + w(t),

(5.62)

in which q(t) = [q′
s(t) q′

c(t)]′, with qs(t) : R≥0 → (Rnq−nτ = Rns) corresponding to the
stabilized DOF and qc(t) : R≥0 → Rnτ to the controlled ones. The controlled DOF must
be selected so that the following assumptions hold.

Assumption 6. The matrix Bc(q, q̇) is invertible within the domain Ω ⊆ (Rnq ×Rnq), i.e.
rank(Bc(q, q̇)) = nτ , ∀(q, q̇) ∈ Ω.

Assumption 7. The rows of Bs(q, q̇) are linearly independent within the domain Ω ⊆
(Rnq × Rnq), i.e. rank(Bs(q, q̇)) = ns, ∀(q, q̇) ∈ Ω.

Remark 31. Assumption 6 ensures that matrix Bc(q, q̇) is square and span a image space
with dimension nτ , the same as qc, that allows to perform tracking of the controlled DOF.
In addition, Assumption 7 ensures the image space generated by the matrix Bs(q, q̇) is not
null, which provides actuation on the stabilized DOF by the control inputs. Physically,
these assumptions ensure the system has input coupling, so the control inputs directly
influence all system DOF.

Aiming trajectory tracking, the error dynamics are written considering the entire sys-
tem dynamics

M(qs, q̃c+qcr)

 q̈s
¨̃qc+q̈cr

+ C(qs, q̃c+qcr , q̇s, ˙̃qc+q̇cr)

 q̇s
˙̃qc+q̇cr


+g(qs, q̃c+qcr) = B(qs, q̃c+qcr , q̇s, ˙̃qc+q̇cr)τ + w, (5.63)

with q̃c(t) ≜ qc(t) − qcr(t), where qcr(t), q̇cr(t) and q̈cr(t) are the desired values of the
controlled DOF and their time derivatives, in which qcr(t) ∈ C2.

Hence, by defining the state vector

x(t) ≜
[
q̇′
s(t) ˙̃q′

c(t) q̃c
′(t)

∫ t

0
q̃c

′(τ)dτ
]′
, (5.64)

equation (7.64) is represented in the state-space form as

ẋ(t) =


−M −1C 0 0

[0 I] 0 0
0 I 0

x(t)

︸ ︷︷ ︸
f(x,qs)

+


−M −1d

0
0


︸ ︷︷ ︸

f̄(x,qs,t)

+


M −1

0
0


︸ ︷︷ ︸

g(x,qs)

u(t) +


M −1

0
0


︸ ︷︷ ︸

k(x,qs)

w(t), (5.65)
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where d ≜ g(qs, q̃c + qcr) + M(qs, q̃c + qcr)

 0
q̈cr

 + C(qs, q̃c + qcr , q̇s, ˙̃qc + q̇cr)

 0
q̇cr

, and

u = B(x, qs)τ is the generalized input vector.
In order to design the W2 and W∞ controllers for underactuated mechanical systems

with input coupling, we also assume that the desired trajectory is feasible and the forces
and torques induced on the system by gravity and external disturbances can be handled
using the control inputs. Accordingly, the following assumption is posed.

Assumption 8. There exists qs such that B⊥(x, qs) (w − d) = 0, where B⊥(x, qs) is a full
rank left annihilator of B(x, qs) (i.e B⊥B = 0).

Remark 32. The vector d comprehends three terms, the first is related to the generalized
forces induced on the mechanical system by gravity, the others are the generalized forces
required to perform the desired trajectory.

Remark 33. Assumption 8 ensures that there exists the image space (or exact map using
pseudo-inverse (Ortega et al., 2002)) of vectors d and w from the generalized inputs u to
the control inputs τ , for some configuration of the stabilized DOF.

5.2.1 Nonlinear W2 control approach

In order to derive the nonlinear W2 optimal control law, system (5.65) is written in
the following compact form

P5 :


ẋ(t) = f(x, qs) + f̄(x, qs, t) + g(x, qs)u(t),

zc(t) =
∫ t

0 q̃c(τ)dτ,

zs(t) = q̇s(t),

(5.66)

where zc(t) and zs(t) are the cost variables related to the controlled and stabilized DOF,
respectively. They allow the appearance of the states and both, stabilizable and control-
lable, dynamics in the cost functional. Besides, it is assumed no disturbances affecting
the system (w(t) = 0).

The nonlinear W2 controller is designed in order to obtain the control law u(x, qs) ∈ U
that minimizes the cost functional

J2 = 1
2 ||zc(t)||2

W3,2,Γ
+ 1

2 ||zs(t)||2
W1,2,Υ

, (5.67)

with U : (Rnx × Rns) → Rnq .
Therefore, the optimal control problem is posed as finding the optimal control law u∗

that leads to

V2 = min
u∈U

{1
2 ||zc(t)||2

W3,2,Γ
+ 1

2 ||zs(t)||2
W1,2,Υ

}
, (5.68)
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s.t. P5,

in which Γ = {Γ0, ...,Γ3} and Υ = {Υ0,Υ1}, where Γi and Υj, for i ∈ {0, 1, 2, 3} and
j ∈ {0, 1}, are symmetric, positive definite tuning matrices, that weight the influence of
the states in the control objective.

Remark 34. In the optimal control problem (5.68), the time derivatives of the stabilized
DOF are required to converge to zero, but there are no references for the stabilized DOF.
This allows the controller to manipulate qs(t) in order to achieve B⊥(x, qs) (w − d) = 0.

Aiming to solve this problem, it can be formulated via dynamic programming, from
which the HJB PDE is obtained

∂V2(x, t)
∂t

+ min
u∈U

{H2(V2(x, t),x, qs,u, t)} = 0, (5.69)

where the associated Hamiltonian is given by

H2 ≜
∂′V2

∂x
ẋ + 1

2z′
cΓ0zc + 1

2 ż′
cΓ1żc + 1

2 z̈′
cΓ2z̈c + 1

2
...
z ′
cΓ3

...
z c + 1

2z′
sΥ0zs + 1

2 ż′
sΥ1żs,

=∂′V2

∂x

(
f + f̄ + gu

)
+ 1

2x′Dx + 1
2

¨̃q′E ¨̃q, (5.70)

with D ≜ blkdiag(Υ0,Γ2,Γ1,Γ0), E ≜ blkdiag(Υ1,Γ3), and the boundary condition V2(0, t) =
0.

By expanding (5.70), yields

H2 =∂′V2

∂x
ẋ + 1

2x′


Υ0 0 0 0
0 Γ2 0 0
0 0 Γ1 0
0 0 0 Γ0


︸ ︷︷ ︸

D

x + 1
2

¨̃q′

Υ1 0
0 Γ3


︸ ︷︷ ︸

E

¨̃q,

=∂′V2

∂x

(
f + f̄ + gu

)
+ 1

2x′Dx + 1
2

¨̃q′E ¨̃q,

=∂′V2

∂x

(
f + f̄ + gu

)
+ 1

2x′Dx

+1
2
[

˙̃q′C ′ΠC ˙̃q + 2 ˙̃q′C ′Πd − 2u′ΠC ˙̃q − 2u′Πd + u′Πu + d′Πd
]
, (5.71)

in which ˙̃q =
[
q̇′
s

˙̃q′
c

]′
and Π ≜ M −1EM −1.

Then, the optimal control law, u∗, is obtained by minimizing (5.70) with respect to
u, as follows

∂H2

∂u
= g′∂V2

∂x
− Πd − ΠC ˙̃q + Πu∗ = 0, (5.72)



5.2 Nonlinear W2 and W∞ control of mechanical systems 80

yielding

u∗ = −Π−1
(
g′∂V2

∂x
− ΠC ˙̃q − Πd

)
,

= −Π−1g′∂V2

∂x
+ C ˙̃q + d, (5.73)

which is a minimum value of the optimization problem, since ∂2H2

∂u2
= Π > 0. The HJ

equation associated to the problem, obtained by replacing the optimal control law (5.73)
in (5.70), is written as

∂V2(x, t)
∂t

+ H2(V2,x, qs,u
∗, t) = 0. (5.74)

Therefore, the optimal control problem (5.68) results in solving the PDE (5.74) to ob-
tain the solution V2(x, t). Then, similar to Theorem 1, a particular solution to (5.74) is
proposed in the following theorem.

Theorem 4. Let V2 be the parametrized scalar function

V2(x) = 1
2x′


U 0 0 0
0 Q K T

0 K R S

0 T S P

x > 0, (5.75)

such that U , Q, K, T , R, S, and P are positive definite matrices and verify Q−KR−1K >

0 and
Q K

K R

−

T

S

P −1
[
T S

]
> 0, with U , Q, K, and T obtained from the following

Riccati equations

−UΥ−1
1 U + Υ0 = 0, (5.76)

−T Γ−1
3 T + Γ0 = 0, (5.77)

−QΓ−1
3 Q + 2K + Γ2 = 0, (5.78)

−KΓ−1
3 K + 2S + Γ1 = 0, (5.79)

and R, S, and P are given by

R = QΓ−1
3 K−T , (5.80)

S = QΓ−1
3 T , (5.81)

P = KΓ−1
3 T . (5.82)

Then, function V2(x) is a solution to the HJ equation (5.74).

Proof. The proof is conducted similarly to the proof of Theorem 1, by replacing (5.75)
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in (5.74) and using the properties of inertia matrix. In the following, it is computed by
parts.

Consider the HJ equation (5.74), since (5.75) is a time-invariant function, ∂V2

∂t
= 0, it

leads to

H2(V2,x,u
∗, t) = 0,

∂′V2

∂x
ẋ+1

2x′Dx + 1
2

¨̃q′E ¨̃q, = 0. (5.83)

In addition, considering the candidate solution (5.75), the optimal control law (5.73) yields

u∗=C ˙̃q + d−M

Υ−1
1 U 0 0 0
0 Γ−1

3 Q Γ−1
3 K Γ−1

3 T

x. (5.84)

Accordingly, the acceleration dynamics are given by

¨̃q = −M −1C ˙̃q − M −1d + M −1u∗, (5.85)

=

−Υ−1
1 U 0 0 0
0 −Γ−1

3 Q −Γ−1
3 K −Γ−1

3 T

x,

leading to the following closed-loop dynamics

ẋ =


−Υ−1

1 U 0 0 0
0 −Γ−1

3 Q −Γ−1
3 K −Γ−1

3 T

0 I 0 0
0 0 I 0

x, (5.86)

which is a time-invariant system. Then, by replacing (5.86) in the first term of (5.83),
results in

∂′V2

∂x
ẋ = x′


−UΥ−1

1 U 0 0 0
0 −QΓ−1

3 Q+K −QΓ−1
3 K+T −QΓ−1T

0 −KΓ−1
3 Q+R −KΓ−1

3 K+S −KΓ−1T

0 −T Γ−1
3 Q+S −T Γ−1

3 K+P −T Γ−1T

x. (5.87)

Moreover, by replacing (5.85) in the last term of (5.83) yields

1
2

¨̃q′E ¨̃q = 1
2x′


UΥ−1

1 U 0 0 0
0 QΓ−1

3 Q QΓ−1
3 K QΓ−1

3 T

0 KΓ−1
3 Q KΓ−1

3 K KΓ−1
3 T

0 T Γ−1
3 Q T Γ−1

3 K T Γ−1
3 T

x. (5.88)

Therefore, considering (5.87) and (5.88), the equation (5.83) is written in the compact
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form

x′Nx = x′


N11 0 0 0
0 N22 N23 N24

0 N32 N33 N34

0 N42 N43 N44

x = 0, (5.89)

with

N11 ≜ −1
2UΥ−1

1 U+1
2Υ0, N22 ≜ −1

2QΓ−1
3 Q+K+1

2Γ2,

N23 ≜ −1
2QΓ−1

3 K + T , N24 ≜ −1
2QΓ−1

3 T ,

N32 ≜ −1
2KΓ−1

3 Q+R, N33 ≜ −1
2KΓ−1

3 K+S + 1
2Γ1,

N34 ≜ −1
2KΓ−1

3 T , N42 ≜ −1
2T Γ−1

3 Q + S,

N43 ≜ −1
2T Γ−1

3 K + P , N44 ≜ −1
2T Γ−1

3 T + 1
2Γ0.

Thereafter, the matrix N is represented by its symmetric and skew-symmetric parts,
yielding

x′


A11 0 0 0
∗ A22 A23 A24

∗ ∗ A33 A34

∗ ∗ ∗ A44

x =0, (5.90)

where the * terms indicates symmetry.
One way to satisfy the equality (5.90) is by solving the following set of algebraic Riccati

equations:

A11 = −UΥ−1
1 U + Υ0 = 0, (5.91)

A22 = −QΓ−1
3 Q + 2K+Γ2 = 0, (5.92)

A23 = −QΓ−1
3 K + T + R = 0, (5.93)

A24 = −QΓ−1
3 T + S = 0, (5.94)

A33 = −KΓ−1
3 K + 2S + Γ1 = 0, (5.95)

A34 = −KΓ−1
3 T + P = 0, (5.96)

A44 = −T Γ−1
3 T + Γ0 = 0. (5.97)

First, from (5.93), (5.94), and (5.96), we have R = QΓ−1
3 K−T , S = QΓ−1

3 T , and
P = KΓ−1

3 T . In addition, U and T are computed from (5.91) and (5.97). Then, K and
Q are computed through the pair of cross-coupled Riccati equations (5.92) and (5.95).
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Therefore, with the solutions of (5.91)-(5.97), we conclude the proof.

The stability of the closed-loop system is demonstrated in the following Theorem.

Theorem 5. Let V2(x, t) > 0 be a solution of (5.74) given by the parametrized scalar
function (5.75). Therefore, the closed-loop system, with the control law (5.73) and system
(5.66), is asymptotically stable.

Proof. From (5.74) and (5.75), we have that

dV2(x, t)
dt

= −1
2z′

cΓ0zc − 1
2 ż′

cΓ1żc − 1
2 z̈′

cΓ2z̈c − 1
2

...
z ′
cΓ3

...
z c − 1

2z′
sΥ0zs − 1

2 ż′
sΥ1żs,

= −1
2x′F x, (5.98)

in which

F ≜ Λ2


Υ−1

1 0 0 0
0 Γ−1

3 Γ−1
3 Γ−1

3

0 Γ−1
3 Γ−1

3 Γ−1
3

0 Γ−1
3 Γ−1

3 Γ−1
3

Λ2 + D, (5.99)

with Λ2 ≜ blkdiag(U , Q, K, T ). Matrix (5.99) is composed of two terms, where the first
is positive semidefinite and the second is positive definite (the matrix D is defined in
(5.71)), yielding F > 0. Then, V̇2(x, t) < 0, which ensures asymptotically stability for the
closed-loop system in the Lyapunov sense. Accordingly, the weighted Sobolev norms of
the cost variables zc(t) and zs(t) exist, such that 1

2 ||zc(t)||2
W3,2,Γ

+ 1
2 ||zs(t)||2

W1,2,Υ
< ∞ and,

consequently, lim
t→∞

x(t) = 0.

As commented in Remark 34, there are no desired trajectory for the stabilized DOF,
they are accommodated by the controller to physically provide disturbance rejection while
the controlled DOF track the trajectory. The following proposition analyzes the conver-
gence of the stabilized DOF to a bounded stable condition.

Proposition 1. Let qs(t) : R≥0 → Rns, for some ns ∈ N, be differentiable and its time
derivative, q̇s(t), be a uniformly continuous function, and ||q̇s(t)||2

W1,2,Υ
< ∞. Suppose

||qs(0)|| < ∞, and Υ = {Υ0,Υ1}, such that ||Υ0|| + ||Υ1|| < ∞. Therefore, limt→∞ qs(t) = cs,
for some cs ∈ R, requires that limt→∞ q̇s(t) = 0.

Proof. Suppose ||qs(0)|| < ∞, cs ∈ R, and let q̇s(t) be a uniformly continuous function,
from Barbalat’s lemma (Slotine et al., 1991), limt→∞ qs(t) = cs implies limt→∞ q̇s(t) = 0. In
addition, from the definition of the W1,2,Υ-norm, ||q̇s(t)||2

W1,2,Υ
< ∞ implies limt→∞ q̇s(t) =

0.
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Thus, assuming the system starts from a finite initial condition, ||qs(0)|| < ∞, and
since the closed-loop system ensures ||q̇s(t)||2

W1,2,Υ
< ∞, Lemma 1 applies to the closed-

loop system composed of (5.66) with the control law (5.73).
Under Assumptions 6, 7, and 8, the applied control inputs are obtained by mapping

the generalized inputs (5.73) provided by W2 controllers as follows

τ = B†(x, qs)u∗, (5.100)

where (.)† denotes the pseudo-inverse operation.

5.2.2 Nonlinear W∞ control approach

Consider again system (5.65) to obtain the plant P6 as follows

P6 :


ẋ(t) = f(x, qs)+f̄(x, qs, t)+g(x, qs)u(t)+k(x, qs)w(t),

zc(t) =
∫ t

0 q̃c(τ)dτ,

zs(t) = q̇s(t).

(5.101)

The nonlinear W∞ control of underactuated mechanical systems with input coupling is
posed as finding the control law u ∈ U that minimizes the cost functional,

J∞ = ||zc(t)||2
W3,2,Γ

+ 1
2 ||zs(t)||2

W1,2,Υ
− 1

2γ
2||w(t)||2

L2
, (5.102)

for the worst case of the disturbances w(t) ∈ L2[0,∞), considering a given sufficiently large
γ ∈ R≥0. Hence, the optimal control problem is given by

V∞ = min
u∈U

max
w∈D

{1
2 ||zc(t)||2

W3,2,Γ
+1

2 ||zs(t)||2
W1,2,Υ

−γ2||w(t)||2
L2

}
, (5.103)

s.t. P6.

The optimal control law is obtained by solving a Min-Max optimization problem, which
is formulated again via dynamic programming using differential game theory. Therefore,
the HJBI PDE is given by

∂V∞(x, t)
∂t

+ min
u∈U

max
w∈D

{
H∞(V∞,x, qs,u,w, t)

}
=0, (5.104)

where the associated Hamiltonian is defined as

H∞ ≜
∂V∞(x, t)

∂x
ẋ + 1

2z′
cΓ0zc + 1

2 ż′
cΓ1żc + 1

2 z̈′
cΓ2z̈c + 1

2
...
z ′
cΓ3

...
z c

+ 1
2z′

sΥ0zs + 1
2 ż′

sΥ1żs − 1
2γ

2w′w,
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= ∂′V∞

∂x

(
f + f̄ + gu + kw

)
+ 1

2x′Dx + 1
2

¨̃q′E ¨̃q − 1
2γ

2w′w (5.105)

with the boundary condition V∞(0, t) = 0.
In order to obtain the worst case of the disturbances, w∗, and the optimal control

law, u∗, the partial derivatives of (5.105) with respect to these variables are computed as
follows

∂H∞
∂u

= g′∂V∞
∂x

−ΠC ˙̃q−Πd+Πw∗+Πu∗ = 0, (5.106)

∂H∞
∂w

= k′∂V∞
∂x

−ΠC ˙̃q−Πd+Πu∗+Πw∗−γ2w∗ = 0. (5.107)

Thus, from (5.106), the optimal control law is given by

u∗ = −Π−1g′∂V∞
∂x

+ C ˙̃q + d − w∗. (5.108)

In addition, the worst case of disturbance is computed by subtracting (5.107) from (5.106),
leading to

w∗ = 1
γ2

(
k′ − g′

)∂V∞
∂x

. (5.109)

Through the second order partial derivatives of (5.105), it is possible to verify that
(5.108) and (5.109) are a Min-Max extremum of the optimization problem,

∂2H∞
∂u2 = Π > 0, (5.110)

∂2H∞
∂w2 = Π − γ2I < 0. (5.111)

Remark 35. Remark 29 holds similarly for (5.111).

The HJ PDE associated to the problem is obtained by replacing the optimal control
law (5.108) and the worst case of disturbance (5.109) in (5.104), which in a compact form
is written as

∂V∞(x, t)
∂t

+ H∞(V∞,x, qs,u
∗,w∗, t) = 0. (5.112)

The optimal control problem (5.103) results in solving the PDE (5.112) in order to find
the solution V∞(x, t) .

Remark 36. For the underactuated mechanical system with input coupling (5.62), assum-
ing u = B(x, qs)τ , the error dynamics (5.65) possess k(x, qs, t) = g(x, qs, t). Therefore,
from (5.109) the W2 and the W∞ controllers become equivalent and the particular solution
(5.75) proposed in Theorem 4 is also a solution to (5.112).

From equation (5.109), one verifies that the worst case of the disturbances w∗ is a
vector that depends on the difference k(x) − g(x). By analyzing this equation, it can bee
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seen that two cases can occur: k(x) and g(x) span the same columns space; and k(x) and
g(x) span different columns spaces.

If k(x) and g(x) span the same columns space, i.e. ∃n ∈ N, rank(k(x)) = rank(g(x)) =
n, ∀x ∈ Rx, there are three possibilities, k(x) = g(x), k(x) = g(x)a(x), or g(x) = k(x)a(x),
in which a(x) is a matrix with appropriated dimension and rank(a(x)) ≥ n. The first
possibility leads straightforward to w∗ = 0. For the second possibility, the state-space
system (5.101) is given by

ẋ(t) = f(x, qs)+f̄(x, qs, t)+g(x, qs)u(t)+k(x, qs)a(x)w(t). (5.113)

So, there exists a transformation over the disturbances vector such that the system can
be expressed as (We used a similar transformation to derive the W∞ controller for reduced
underactuated mechanical system, see Subsection 5.1.2)

ẋ(t) = f(x, qs)+f̄(x, qs, t)+g(x, qs)u(t)+k(x, qs)w̄(t), (5.114)

in which w̄ = a(x)w. Accordingly, one can see that the computation of (5.109) for (5.114)
leads to w∗ = 0. The same idea can be used to show that w∗ = 0 also holds for the third
possibility.

These results mean that any disturbance w ∈ L2[0,∞) can be handled by an appro-
priated control input u ∈ Rc, since both actuate in the same space. This justifies Remark
36, which states, in this case, that the W2 and W∞ controllers become equivalent.

The closed-loop stability is proven in the following Theorem.

Theorem 6. Let V∞(x, t) > 0 be a solution of (5.112) given by (5.75). Therefore, the
closed-loop system, with the control law (5.108) and system (5.101), is asymptotically
stable.

Proof. The proof of this Theorem is similar to the proof of Theorem 5, since w∗(t) = 0.

In addition, for a generic w(t) ∈ L2[0,∞) and a finite initial condition x(0), considering
the control law (5.108) and the function V∞(x, t) given by (5.75), from (5.112) one can
obtain

∫ ∞

0

dV∞(x, t)
dt

dt ≤
∫ ∞

0

(
−1

2x′F x + 1
2γ

2w′w

)
dt, (5.115)

lim
t→∞

V∞(x(t), t)−V∞(x(0), 0) ≤ −1
2 ||zc(t)||2

W3,2,Γ
−1

2 ||zs(t)||2
W1,2,Υ

+1
2γ

2||w(t)||2
L2
,

and so ||zc(t)||2
W3,2,Γ

+ ||zs(t)||2
W1,2,Υ

≤ γ2||w(t)||2
L2

+ 2V∞(x(0), 0). Accordingly, the following
inequalities are true

||zc(t)||2
W3,2,Γ

≤ γ2||w(t)||2
L2

+ 2V∞(x(0), 0) − ||zs(t)||2
W1,2,Υ

, (5.116)
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||zs(t)||2
W1,2,Υ

≤ γ2||w||2
L2

+ 2V∞(x(0), 0) − ||zc(t)||2
W3,2,Γ

. (5.117)

Thus, from Theorem 6, we have that ||zc(t)||2
W3,2,Γ

+ ||zs(t)||2
W1,2,Υ

< ∞, which implies
||zc(t)||2

W3,2,Γ
< ∞ and ||zs(t)||2

W1,2,Υ
< ∞. Thereby, we can verify, from Definition 7 and

through inequalities (5.116) and (5.117), that the closed-loop system is W3,2,Γ-stable from
the disturbance to the output zc(t), and W1,2,Υ-stable from the disturbance to the output
zs(t). In addition, the W3,2,Γ/W1,2,Υ-gain is the smallest γ ∈ R≥0 that satisfies ∂2H∞

∂w2
=

Π − γ2I < 0.
Finally, under Assumptions 6, 7, and 8, the applied control inputs are obtained by

mapping the generalized input (5.108) provided by the W∞ controller as follows

τ = B†(x, qs)u∗. (5.118)

5.3 Numerical examples

This section corroborates the efficacy of the nonlinear W2 and W∞ control strategies
proposed in this chapter with numerical experiments conducted with a fully actuated
manipulator, a Two-wheeld Self-balanced vehicle, and a Quadrotor UAV. In addition
it performs a comparative analysis of these controllers with respect to a nonlinear H∞

controller.

5.3.1 Fully actuated and reduced underactuated mechanical sys-
tems

In this subsection, the approaches addressed in Section 5.1 are employed to synthesize
controllers for a fully actuated manipulator and for a Quadrotor UAV in order to achieve
trajectory tracking of the attitude (Euler angles) and altitude motion.

Fully actuated manipulator

The fully actuated manipulator equations of motion were obtained from Spong et al.
(2006) and are given by the Euler-Lagrange equations

M(q)q̈(t) + C(q, q̇)q̇(t) + g(q) = B(q)τ (t) + w(t), (5.119)

where q(t) =
[
q1(t) q2(t)

]′
, τ (t) =

[
τ1(t) τ2(t)

]′
, w(t) =

[
w1(t) w2(t)

]′
,

M(q) =

d11 d12

d21 d22

 , (5.120)
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d11 ≜ m1

(
l1
2

)2

+m2

(
l21 +

(
l2
2

)2

+ 2l1
(
l2
2

)2

+ 2l1
(
l2
2

)
cos(q2)

)
+ I1 + I2,

d12 ≜ m2

((
l2
2

)2

+ l1

(
l2
2

)2

cos(q2)
)

+ I2,

d21 ≜ d12,

d22 ≜ m2

(
l2
2

)2

+ I2,

C(q) =

 hq̇2 hq̇2 + hq̇1

−hq̇1 0

 , (5.121)

h ≜ −m2l1

(
l2
2

)
sin(q2),

g(q) =


(
m1

(
l1
2

)
+m2l1

)
g cos(q1) +m2

(
l2
2

)
g cos(q1 + q2)

m2

(
l2
2

)
g cos(q1 + q2)

 , (5.122)

in which qi is angular position of joint i, for i ∈ {1, 2}, τi is the torque applied at joint i, wi
is the disturbance applied at joint i, Ii is the moment of inertia of link i, Li is the length
of link i, mi is the mass of link i, and g is the gravity acceleration. The fully actuated
manipulator is illustrated in Figure 5.1 and the parameters used to perform the numerical
experiments are presented in Table 5.1.

Figure 5.1: The fully actuated manipulator.

Table 5.1: Fully actuated manipulator physical parameters

Parameter Value Unit of measurement
I1, I2 1 Kg.m2

m1, m2 1 Kg

l1, l2 1 m

g 9.8 m/s2
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In order to synthesize the controllers proposed in Section 5.1 for this manipulator,
initially, the system (5.119) is partitioned with qc(t) = q(t) =

[
q1(t) q2(t)

]′
and no uncon-

trolled DOF, and rewritten in the form of system (5.8). It is noteworthy that, Remark 23
applies in this case. Thereafter, the optimal control law (5.53) is applied to the system
considering the particular solution (5.18) of the HJ PDE proposed in Theorem 5.18. The
controller was tuned via trial and error with Y0 = diag([100 200]

), Y1 = diag([500 400]
),

Y2 = diag([40 40]
), and Y3 = diag([0.0720 0.0126]

). For this particular case, Remark 30
applies and, consequently, the W2 and W∞ controllers are equivalent, from now on called
W2/∞ controller.

For the sake of comparison analysis, a nonlinear H∞ controller was also designed and
tuned to achieve almost the same control effort as the W2/∞ controller, measured by the
Absolute Derivative of the control signal (IADU) index. In order to analyze the results,
the integral of the square error (ISE) index was evaluated over the controlled DOF. The
resulting values are shown in Table 5.3.

The simulation was conducted with the manipulator starting from the initial condi-
tions q(0) = [π4 0]′ and q̇(0) = 0 and designated to perform trajectory tracking of the
desired trajectory described in Table 5.2. In addition, constant and time-varying external
disturbances, w1(t) = 40 N·m, for 10 ≥ t ≥ 20 s, and w2(t) = −40 sin( 2πt

10 ) N·m, for 25 ≥ t ≥ 35
s, are applied to the system. The time evolution of the states, external disturbances and
control signals are shown in Figure 5.2.

Table 5.2: Desired trajectory for the fully actuated manipulator.

q1r(t) q2r(t)

t≥0 π

2
π

2 sin
(2π

10 t
)

Table 5.3: Table of performance indexes computed from the results of nonlinear W2/∞ and
H∞ controllers applied to the fully actuated manipulator.

P. Index computed as W2/∞ H∞

IADU ∫ τ
0

∑2
i=1 | dτi(t)

dt
|dt 845.8 (100.3%) 843.29 (100%)

ISE
∫ τ

0 (q1(t) − q1r(t))2dt 0.2545 (44%) 0.5686 (100%)

∫ τ
0 (q2(t) − q2r(t))2dt 0.1370 (58%) 0.2362 (100%)

As can be observed in Figure 5.2, the W∞ controller achieved a faster convergence to
the reference and a better disturbances attenuation. It is worth mentioning that although
both controllers, W2,∞ and H∞, were tuned to achieve the similar control effort measured
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Figure 5.2: Time evolution of the controlled DOF errors, resulting from the application
of the nonlinear W2/∞ and H∞ controllers to the fully actuated manipulator, and the
disturbance signals.

by the IADU index (See Table 5.3), the W∞ controller achieved better results with respect
to the ISE index.

Quadrotor UAV

The Quadrotor UAV equations of motion were obtained from Raffo et al. (2011a) and
are given by the Euler-Lagrange equations

M(q)q̈(t) + C(q, q̇)q̇(t) + g(q) = B(q)τ (t) + w(t), (5.123)

where q(t) = [ϕ(t) θ(t) ψ(t) x(t) y(t) z(t)]′, g(q) = [0 mg]′,

M(q) =

W ′
ηIWη 0
0 mI

 , W ′
η =


1 0 −s(θ)
0 c(ϕ) s(ϕ)c(θ)
0 −s(ϕ) c(ϕ)c(θ)

 ,
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B(q) =

W ′
η 0

0 R





0 lbc(α) 0 −lbc(α)
−lbc(α) 0 lbc(α) 0
dc(α) −dc(α) dc(α) −dc(α)

−bs(α) 0 bs(α) 0
0 −bs(α) 0 bs(α)

bc(α) bc(α) bc(α) bc(α)


,

in which s(·) ≜ sin(·); c(·) ≜ cos(·); I = diag([Ixx Iyy Izz]), with Ixx, Iyy, Izz the Quadrotor’s
moments of inertia; R = Rz,ψRy,θRx,ϕ, with Ra,β the rotation matrix of angle β about the
a axis, for β ∈ {ψ θ ϕ} and a ∈ {z⃗, y⃗, x⃗}; x, y and z are the Quadrotor UAV planar position
and altitude, respectively; ϕ, θ and ψ are the Quadrotor UAV orientation described by
Euler angles using ZYX convention about the local axes; τ=[Ω2

1 Ω2
2 Ω2

3 Ω2
4]′ is the

vector of control inputs with Ωi, for i = {1, 2, 3, 4}, the propellers’ angular velocities;
w=[δϕ δθ δψ δx δy δz]′ is the vector of generalized disturbances; m is the Quadrotor mass; g
is the gravitational acceleration; α is a small propellers inclination angle, which provides
the mentioned input coupling in the control input matrix; l is the displacement between
the Quadrotor center of mass and the propellers application point of forces; d and b are
the propellers drag and thrust constants.

The Coriolis and centrifugal force matrix C(q, q̇), can be obtained from the Christoffel
symbols of first kind as

Ck,j =
8∑
l=1

1
2

[
∂Mk,j

∂ql
+ ∂Mk,l

∂qj
− ∂Ml,j

∂qk

]
q̇l,

where Ck,j and Mk,j are elements of the Coriolis and inertia matrices, respectively, corre-
sponding to the k-th row and j-th column. The quad-rotor UAV parameters are presented
in Table 5.4.

Table 5.4: Quadrotor UAV physical parameters

Parameter Value Unit of measurement
Ixx, Iyy, Izz {0.0363, 0.0363, 0.0615} Kg.m2

m 2.2 Kg
α 5 deg
l 0.21 m
g 9.8 m/s2

b 2.9 · 10−5 N.s2

d 6 · 10−6 N.m.s2

In order to synthesize the controllers proposed in Section 5.1 for the Quadrotor
UAV, initially, the system (5.123) is partitioned with qc(t) = [z(t) ϕ(t) θ(t) ψ(t)]′ and
qu(t) = [x(t) y(t)]′ and rewritten in the form of system (5.8). Based on this partition,
Assumption 5 is ensured with ϕ ̸= π

2 + 2πnϕ, for any nϕ ∈ Z (the well known Euler angles
singularity). Thereafter, the optimal control law (5.53) is applied to the system con-
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sidering the particular solution (5.18) of the HJ PDE proposed in Theorem 5.18. The
controller was tuned via trial and error with Y0 = diag([1 1 1 1]

), Y1 = diag([1 1 1 1]
),

, Y2 = diag([0.61 0.6 0.6 0.6]
), and Y3 = diag([2·10−3 1·10−7 1·10−7 1·10−7]

). For this
particular case, Remark 30 applies and, consequently, the W2 and W∞ controllers are also
equivalent, from now on called again W2/∞ controller.

For comparison analysis, the nonlinear H∞ controller presented in Raffo et al. (2011b)
was used. Both, the W2/∞ and the H∞ controllers, were tuned to achieve the same control
effort, which was measured by the Absolute Derivative of the control signal (IADU) index.
In order to analyze the results, the integral of the square error (ISE) was evaluated over
the controlled DOF. These performance indexes are shown in Table 5.6.

The simulation was conducted with the Quadrotor UAV starting from initial conditions
qc(0) = [4.5 π/4 −π/4 π/4]′, q̇c(0) = 0, and q̇u(0) = qu(0) = 0 and designated to
perform trajectory tracking of the desired trajectory described in Table 5.5. In addition,
constant and time-varying external disturbances, δz(t) = −10[N ], for 10 ≥ t ≥ 15, and
δϕ(t) = −3sin(2πt), for 16 ≥ t ≥ 20, are applied to the system. The external disturbances
and control signals are shown in Figure 5.3, and the time evolution of the states are
showed in Figure 5.4.

Table 5.5: Desired trajectory for the Quadrotor UAV altitude and attitude.

zr(t) ϕr(t) θr(t) ψr(t)

t≤8 5−sin
(2π

8 t
)
/2 π

4 sin
(2π

5 t
) π

4 sin
(2π

5 t
) π

4 sin
(2π

5 t
)

8<t≤30 5 0 π

4 sin
(2π

5 t
)

2π sin
(2π

40 t
)

At the beginning of the simulation, the Quadrotor UAV starts displaced from the
desired trajectory and is designated to track a sinusoidal signal on the altitude and attitude
dynamics. The purpose is to evaluate the capacity of tracking a time-varying trajectory.
Note that, it converges to the reference along with time. After eight seconds of simulation,
the altitude and roll dynamics are required to track constant references. The changes from
the sinusoidal to the constant stretches are not smooth. Consequently, the Quadrotor
UAV is pushed out of the trajectory due to its inertia, converging again to it after some
seconds.

Note that, the W2/∞ controller reacts faster than the H∞ controller when the system is
affected by external disturbances and provides better disturbance attenuation. Further,
when the disturbance δz affects the Quadrotor UAV, the H∞ controller achieves oscillatory
behavior on the altitude motion. This is because the nonlinear H∞ control approach
weights all the dynamics of the mechanical system equally in the cost functional, while
the proposed controllers allow a component wise tuning of the system dynamics, achieving
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Figure 5.3: Time evolution of the control inputs, resulting from the application of the
nonlinear W2/∞ and H∞ controllers to the Quadrotor UAV, and the disturbance signals.

better performance.
Finally, as shown in Table 5.6, even both controllers have been adjusted to obtain the

same control effort, the W2/∞ controller achieved better results with respect to the ISE
performance index in comparison with the classic nonlinear H∞ controller.

5.3.2 Underactuated mechanical systems with input coupling

In this subsection, the approaches addressed in Section 5.2 are employed to synthesize
controllers for a Two-wheeled Self-balanced vehicle in order to keep it standing in the
upper vertical position, while subject to external disturbances, and a Quadrotor UAV in
order to achieve trajectory tracking of the translational position and yaw angle while the
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Figure 5.4: Time evolution of the controlled DOF resulting from the application of the
nonlinear W2/∞ and H∞ controllers to the Quadrotor UAV.

roll and pitch dynamics are stabilized.

Two-wheeled self-balanced vehicle

The Two-wheeled Self-balanced vehicle equations of motion are presented in Section
4.4. In order to synthesize the controllers proposed in Section 5.2 for this system, initially,
the equation (4.30) is partitioned with qc(t) = θ(t) and qs(t) = ϕ(t). Thereafter, considering
(5.118) and the particular solution of the HJ PDE proposed in Theorem 4, the control
law (5.73) is applied to the system. The controller was tuned via trial and error with
Υ0 = 0.1, Υ1 = 1.1, Γ0 = 1000, Γ1 = 300, Γ2 = 2, Γ3 = 0.001. It is worth mentioning that,
Remark 36 applies to this particular case, thus, from now on this controller is also called
W2/∞ controller.
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Table 5.6: Table of performance indexes computed from the results of the nonlinear W2/∞

and H∞ controllers applied to the Quadrotor UAV.

P. Index computed by W2/∞ H∞

IADU ∫ τ
0

∑4
i=1 | dΩi(t)

dt
|dt 5.4 × 104 (100%) 5.4 × 104 (100%)

ISE

∫ τ
0 (z(t) − zr(t))2dt 0.093 (95%) 0.097 (100%)

∫ τ
0 (ϕ(t) − ϕr(t))2dt 0.202 (83%) 0.243 (100%)

∫ τ
0 (θ(t) − θr(t))2dt 0.153 (84%) 0.181 (100%)

∫ τ
0 (ψ(t) − ψr(t))2dt 0.151 (84%) 0.178 (100%)

The nonlinear H∞ controller presented in Raffo et al. (2015) was also designed for this
system. For the sake of comparison analysis, this controller was tuned to achieve similar
ISE performance index as the W2/∞ controller, computed for the variable θ.

The numerical experiment was conducted with the Two-wheeled Self-balanced vehicle
starting from q̇s(0) = qs(0) = 0, qc(0) = π

4 , q̇c(0) = 0 and designated to stand at the upper
vertical position. Along the experiment, time-varying and constant disturbances with
magnitudes wϕ(t) = 4 sin(2πt

5 ) N·m, for 7 ≤ t ≤ 14 s, and wθ(t) = 4 N·m, for 22 ≤ t ≥ 32 s,
are applied to the system. The results are shown in Figure 5.5.

Table 5.7: Table of performance indexes computed from the results of the nonlinear W2/∞

and H∞ controllers applied to the Two-wheeled Self-balanced vehicle.

P. Index computed by W2/∞ H∞

IADU
∫ τ

0 |du(t)
dt |dt 79.5 (73%) 108.3 (100%)

ISE

∫ τ
0 θ

2(t)dt 0.047 (100.4%) 0.0468 (100%)

∫ τ
0 ϕ̇

2(t)dt 4.975 · 104 (98%) 5.032 · 104 (100%)

As can be observed from the results of Figure 5.5 and Table 5.7, both controllers
attenuated the effects of the external disturbances and achieved a similar performance
with respect to the ISE index. However, in this case, the W2/∞ controller employed a
smaller control effort, with respect to the IADU index.
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Figure 5.5: Time evolution of the states and control inputs, resulting from the application
of the nonlinear W2/∞ and H∞ controllers to the Two-wheeled Self-balanced vehicle, and
the disturbance signals.

Quadrotor UAV

The Quadrotor UAV equations of motion are presented in Section (5.3) and are given
by (5.123).

In order to synthesize the controllers proposed in Section 5.2 for the Quadrotor UAV,
initially, the system (5.123) is partitioned with qc(t) = [ψ(t) x(t) y(t) z(t)]′ and qs(t) =
[ϕ(t) θ(t)]′. This partition ensures Assumptions 6 and 7 with ϕ ̸= π

2 + 2πnϕ for any nϕ ∈ Z.
Thereafter, considering (5.118) and the particular solution of the HJ PDE proposed in
Theorem 4, the control law (5.73) is applied to the system. Note that Remark 36 applies
to this particular case, thus, from now on the controller is also called W2/∞ controller.

The controller was tuned again via trial and error with Υ0 = diag([2 2]), Υ1 =
diag([0.01 0.01]), Γ0 = diag([10 10 10 10]), Γ1 = diag([12.8 18.8 18.8 12.8]), Γ2 = diag([0.01 0.1
0.1 0.1]), Γ3 = diag([0.00004 0.08 0.07 0.09]). In addition, to verify the robustness of the con-
troller against parametric uncertainties, the emulated Quadrotor was considered without
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tilted rotors, which denies Assumption 7 and cancels the input coupling of the emulated
system (see Raffo (2011)). Also, disturbances are applied to the system according to
Figure 5.7.

Table 5.8: Desired trajectory for the Quadrotor UAV translational position and yaw angle.

xr(t) yr(t) zr(t) ψr(t)

t≥0 8 cos
(πt

20
)

8 sin
(πt

10
)

3 − cos
(πt

20 t
)

0

For comparison analysis, the nonlinear H∞ controller presented in Raffo et al. (2011a)
was used. The numerical experiment was conducted with the UAV starting from q̇s(0) =
qs(0) = 0, qc(0) = [0 7 0 1]′, q̇c(0) = 0 and designated to track the 8-shape trajectory shown
in Figure 5.6 and described in Table 5.8.

From Figures 5.6 and 5.8 it is observed that the Quadrotor UAV starts far from the
desired trajectory and converges to it, remaining on the trajectory until the external dis-
turbances are applied to the system. The effects of the constant external disturbances
were rejected because both W2/∞ and H∞ controllers consider an integral action on the
controlled DOF. In adition, the effects of the time-varying disturbance and parametric
uncertainty were attenuated, the latter not being perceptible through the results. For this
particular case, although the small tilt angle of the rotors is mathematically necessary to
achieve Assumption 7 and provide the image space which allows to actuate on the stabi-
lized DOF, it is not physically necessary to be implemented in the mechanical structure
of the Quadrotor UAV.

Again, the W2/∞ controller achieved less oscillatory behavior with faster disturbance
attenuation. In addition, although both W2/∞ and H∞ controllers were tuned to achieve
the same control effort, the W2/∞ controller achieved better results with respect to the
ISE performance index of the controlled DOF, as shown in Table 5.9.
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Table 5.9: Table of performance indexes computed from the results of the nonlinear W2/∞

and H∞ controllers applied to the Quadrotor UAV.

P. Index computed by W2/∞ H∞

IADU
∫ τ

0
∑4
i=1 |dΩi(t)

dt |dt 2.4 · 104 (100%) 2.4 · 104 (100%)

ISE

∫ τ
0 (x− xr)2dt 0.496 (44%) 1.105 (100%)

∫ τ
0 (y − yr)2dt 0.030 (29%) 0.102 (100%)

∫ τ
0 (z − zr)2dt 0.313 (77%) 0.404 (100%)

∫ τ
0 (ψ − ψr)2dt 9.5 · 10−5 (20%) 4.6 · 10−4 (100%)

Figure 5.7 shows the control inputs and external disturbances applied to the system
along the simulation. Besides, the time evolution of the norm ||B⊥ (w − d) ||2

2 is presented,
which is related to Assumption 8, where ||(·)||2

2 ≜ (·)′(·). Note that, when the external
disturbances affect the system this norm increases, and the controller manipulates the
stabilized DOF to achieve B⊥(x, qs) (w − d) = 0, i.e. the exact map that allows handling
with the forces and torques induced by gravity and rejecting the disturbances, while
tracking the desired trajectory.
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Figure 5.6: Three-dimensional view of the Quadrotor UAV trajectory, resulting from the
application of the nonlinear W2/∞ and H∞ controllers.
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Figure 5.7: Time evolution of the control inputs and the norm of the projection of the
vectors w and d on the null space of the input coupling matrix B⊥(qs, q̃c + qcr), resulting
from the application of the nonlinear W2/∞ and H∞ controllers to the Quadrotor UAV,
and the disturbance signals.



5.3 Numerical examples 100
x

−
x
r

[m
]

y
−
y
r

[m
]

ψ
−
ψ
r

[r
ad

]
ϕ

[r
ad

]
θ

[r
ad

]
z

−
z r

[m
]

W2/∞ H∞

-0.5

0

0.5

-1

0

1

-1

0

1

-0.5

0

0.5

-1

-0.5

0

0.5

Time

-0.05

0

0.05

0 5 10 15 20 25 30 35 40

Figure 5.8: Time evolution of the stabilized DOF and tracking error of the controlled
DOF, resulting from the application of the nonlinear W2/∞ and H∞ controllers to the
Quadrotor UAV.
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5.4 Final remarks

This section formulated the nonlinear W2 and W∞ control approaches in the weighted
Sobolev space for mechanical systems represented by the Euler-Lagrange equations. An-
alytical solutions were proposed to the classes of fully actuated and reduced underac-
tuated mechanical systems, and underactuated mechanical systems with input coupling.
Numerical experiments conducted with a fully actuated manipulator, a two-wheeled self-
balanced vehicle, and a Quadrotor UAV corroborated the efficiency of the proposed control
strategies and demonstrated that they provided better transient performance with faster
reaction to external disturbances, in comparison with the H∞ controller.

In the next chapter, the linear W∞ control approach is developed via convex optimiza-
tion problem with linear matrix inequality constraints. In addition, a new approach is
introduced, in which the dynamic behavior of the disturbances is taken into consideration
in the control design stage by means of a disturbance model.



6
Linear W∞ control

This chapter formulates the full-state and dynamic output feedback linear W∞ control
problems in weighted Sobolev spaces. The control problems are developed and repre-
sented by semidefinite programming problems written as LMIs to simplify the process of
achieving a solution. It also introduces a new approach in which the effects of the time
derivative of the disturbances are taken into consideration in the control design stage by
means of a disturbances model. Pole placement constraints are formulated in order to
allow the synthesis of W∞ controllers with the closed-loop poles allocated in a predefined
region of the complex plane.

6.1 Full-state feedback linear W∞ control approach

In this section, the full-state feedback W∞ control problem is formulated for closed-loop
time-invariant linear systems represented by the following standard form:

P1:


ẋ(t) = Ax(t) + Bu(t) + Dw(t),

u(t) = Kx(t),

z(t) = x(t),

(6.1)

where t ∈ R≥0 is the time variable, A ∈ Rnx×nx , B ∈ Rnx×nu , and D ∈ Rnx×nw are matrices
that represent the dynamics of the system, x(t) : R≥0 → Rnx is the state vector, u(t) : R≥0 →
Rnu is the input vector, w(t) : R≥0 → Rnw is the disturbance vector, z(t) : R≥0 → Rnx is the
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cost variable, and K ∈ Rnu×nx is the state feedback gain to be designed, with nx, nu, nw ∈ N.
For the sake of formulating the control problem, the following assumptions are con-

sidered:

Assumption 9. The pair (A,B) is controllable.

Assumption 10. The state vector x(t) is available for feedback.

Assumption 11. The disturbance vector belongs to the L2-space, i.e. w(t) ∈ L2[0,∞) or,
equivalently, ||w(t)||L2 < ∞.

Assumption 12. The matrix D has full column rank, i.e. rank(D) = nw.

The W∞ controller is designed in order to ensure the smallest γ ∈ R≥0 that satisfies
the inequality

γ > sup
||z(t)||W1,2,Γ

||w(t)||L2

= sup

(
||z(t)||2

L2,Γ0
+ ||ż(t)||2

L2,Γ1

) 1
2

||w(t)||L2

, (6.2)

subject to P1, ∀w(t) ∈ L2[0,∞) and ||w(t)||L2 ̸= 0, where γ is the W∞ attenuation level,
and Γ = {Γ0, Γ1}, where Γα, for α ∈ {0, 1} is a tuning matrix with appropriate dimension.

The control problem is posed based on inequality (6.2), as

min
K,γ

γ, (6.3)

s.t. :

P1,

||z(t)||2
W1,2,Γ

− γ2||w(t)||2
L2
< 0.

Remark 37. In contrast to the classic linear H∞ controller, the linear W∞ controller is
designed by explicitly taking into account the time derivative of the cost variable. The aim
is to achieve improved transient performance with a faster disturbances attenuation. The
reason is that when minimizing γ in (6.3), we are reducing the influence of the disturbances
in the time evolution of the cost variable.

In what follows, we perform some algebraic manipulations to (6.3), in order to repre-
sent this control problem by a semidefinite programming problem written as LMI.

Initially, aiming an asymptotic stable closed-loop system, i.e. limt→∞ x(t) = 0, assuming
the origin as the initial condition, i.e. x(0) = 0, and considering the candidate Lyapunov
function V (x) = x′P x > 0, where the matrix P is a decision variable of the optimization
problem, one can represent (6.3) as1

min
K,P ,γ

γ, (6.4)

1For the sake of simplicity, along this manuscript some function dependencies are omitted.
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s.t. :


P1,

x′P x > 0,

V̇ (x) + x′Γ0x + ẋ′Γ1ẋ − γ2w′w < 0,

in which V̇ (x) = ẋ′P x + x′P ẋ.

Remark 38. The last inequality in (6.3) can be obtained by integrating the last inequality
in (6.4) in the time interval t ∈ [0,∞) and assuming the asymptotic stability condition,
which implies that limt→∞ V (x(t)) = 0.

Taking into account system (6.1) and the candidate Lyapunov function V (x), the last
inequality (6.4) results in

x

w

′ M11 ∗
M21 M22

x

w

 < 0, (6.5)

where the ∗ term can be deduced by symmetry, M11 ≜ A′P + P A + K ′B′P + P BK +
Γ0 + A′Γ1A + A′Γ1BK + K ′B′Γ1A + K ′B′Γ1BK, M21 ≜ P D + A′Γ1D + K ′B′Γ1D, and
M22 ≜ D′Γ1D − γ2I.

Thereafter, considering the similarity transformation x = P −1y and the change of
variables γ∗ ≜ γ2, R ≜ KS and S ≜ P −1, one can represent (6.4) as

min
R,S,P ,γ∗

γ∗, (6.6)

s.t. :



γ∗ > 0,

S > 0,M̄11 ∗

M̄21 M̄22

 < 0,

where M̄11 ≜ SA′ + AS + R′B′ + BR + SΓ0S + SA′Γ1AS

+ SA′Γ1BR + R′B′Γ1AS + R′B′Γ1BR, M̄21 ≜ D′ + D′Γ1AS + D′Γ1BR, and M̄22 ≜

D′Γ1D − γ∗I.
Then, by applying the Schur complement in the last inequality of (6.6), the full-

state feedback linear W∞ control problem results in solving the following semidefinite
programming problem written as LMIs:

min
R,S,γ∗

γ∗, (6.7)
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s.t. :



γ∗ > 0,

S > 0,

Ξ1 ∗ ∗ ∗

D′ −γ∗I ∗ ∗

AS + BR D −Γ−1
1 ∗

S 0 0 −Γ−1
0


< 0,

in which Ξ1 ≜ SA′ + AS + R′B′ + BR. After solving (6.7), the state feedback gain is
computed by K = RS−1, the matrix P = S−1, and the W∞ index by γ = √

γ∗.

Theorem 7. Let Assumptions 9-12 hold for system (6.1), and consider x(0) ∈ Rnx. If
K = RS−1, P = S−1, and γ = √

γ∗ are obtained by solving the semidefinite programming
problem (6.7), then the closed-loop system (6.1) is asymptotically stable.

Proof. Note that after solving the semi definite programming problem (6.7), the param-
eters K, P , and γ satisfy the related LMIs, consequently,

V (x) = x′P x > 0, ∀x ̸= 0. (6.8)

In addition, from the last LMI in (6.4), and assuming w(t) = 0, we have that

V̇ (x) < −

x

ẋ

′ Γ0 0
0 Γ1

x

ẋ

 < 0, ∀(x, ẋ) ̸= 0, (6.9)

where Γ0 and Γ1 are positive definite matrices. Accordingly, the closed-loop system (6.1)
is asymptotically stable in the sense of Lyapunov, and V (x) is a Lyapunov function.

Definition 7 also applies to the linear W∞ controller. Note that by integrating both
sides of the last inequality in (6.4) in the time interval t ∈ [0,∞), and considering that
x(0) ∈ R and Assumption 11 hold, with a few algebraic manipulations, one can obtain

||z(t)||2
W1,2,Γ

< γ2||w(t)||2
L2

+ V (x(0)) = γ2c2 + c1, (6.10)

for some c1, c2 ∈ R≥0. Therefore, according to Definition 7, and considering that K, P ,
and γ is a solution of (6.7), the closed-loop system (6.1) is W1,2,Γ-stable, with γ being the
W1,2,Γ-gain.
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6.2 The linear W∞ control approach with dynamic
output feedback

The control strategy presented in the previous section is designed based on the as-
sumption that all states of the system are available. However, this is not usually the case.
Therefore, in this section, the dynamic output feedback W∞ control problem is formulated
for time-invariant linear systems represented by

P2:


ẋ(t) = Ax(t) + Bu(t) + Dw(t),

y(t) = Cx(t),

z(t) = x(t),

(6.11)

in closed-loop with the dynamic controller

K1:

ẋf(t) = Afxf(t) + Bfy(t),

u(t) = Cfxf(t) + Dfy(t),
(6.12)

where A, B, D, x(t), u(t), w(t), and z(t) are defined as in (6.1), and y(t) : R≥0 → Rny is the
vector of measured outputs, with C ∈ Rny×nx . Besides, xf(t) ∈ Rnx represents the states
of the dynamic controller, and Af , Bf , Cf and Df , are real matrices with appropriate
dimension to be determined.

In addition to Assumptions 9, 11, and 12 that hold for (6.11), the following ones are
considered to formulate the control problem:

Assumption 13. The pair (A,C) is observable.

Assumption 14. The vector y(t) is available.

The closed-loop system resulting from P2 and K1 is denoted by P2(K1) and is written
as

P2(K1):

Ẋ a(t) = AaXa(t) + Daw(t),

z(t) = x(t),
(6.13)

where Aa ≜

A + BDfC BCf

BfC Af

, Da ≜

D

0

 , and X a(t) ≜
[
x′(t) x′

f(t)
]′

.

Therefore, aiming asymptotic stability in closed-loop, i.e. limt→∞ X a(t) = 0, assuming
the origin of the state space as initial condition, i.e. X a(0) = 0, and proposing the
candidate Lyapunov function V (X a) = X ′

aP X a > 0, where P is a matrix with appropriate
dimension, the control problem is formulated in order to achieve the smallest γ that



6.2 The linear W∞ control approach with dynamic output feedback 107

satisfies the inequality (6.2), as follows:

min
Af ,Bf ,Cf ,Df ,P ,γ

γ, (6.14)

s.t. :


P2(K1),

X ′
aP Xa > 0,

V̇ (Xa) + x′Γ0x + ẋ′Γ1ẋ − γ2w′w < 0,

in which V̇ (Xa) = Ẋa

′
P Xa + X ′

aP Ẋa.
In order to represent (6.14) by a semidefinite programming problem written as Linear

Matrix Inequalities (LMI), the last inequality in (6.14) is expanded, yielding
Xa

w

′ A′
aP + P Aa + F + U ′Γ1U ∗

D′
aP + D′Γ1U D′Γ1D − γ2I

Xa

w

 < 0, (6.15)

where F ≜

Γ0 0
0 0

 and U ≜
[
A + BDfC BCf

]
.

Then, by performing the similarity transformation Xa = P −1M ′Ya, where P −1 ≜S T

T ′ R

 and M ≜

I 0
I −T R−1

, the first inequality in (6.14) and the inequality (6.15)

result in

Y ′
aMP −1M ′Ya =

 S S − Q

S − Q S − Q

 > 0, (6.16)
Ya

w

′ MP −1 (A′
aP +P Aa+F +U ′Γ1U) P −1M ′ ∗

(D′
aP +D′Γ1U) P −1M ′ D′Γ1D−γ2I

Ya

w

<0, (6.17)

where Q ≜ T ′R−1T .
By applying the Schur complement in inequality (6.17), and defining L ≜

[
S′ S′ − Q′

]′
,

one obtains 
MP −1 (A′

aP +P Aa) P −1M ′ ∗ ∗ ∗
D′

aM
′ −γ2I ∗ ∗

L′ 0 −Γ−1
0 ∗

UP −1M ′ D 0 −Γ−1
1

 < 0 (6.18)

Then, inequality (6.18) is represented by


Ψ1 ∗ ∗
Ψ2 − Am Ψ3 ∗

Ψ4 Ψ5 Ψ6

 < 0, (6.19)
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where
 Ψ1 ∗

Ψ2 − Am Ψ3

 ≜ MP −1 (A′
aP + P Aa) P −1M ′, with Ψ1 ≜ AS+B(DfCS+CfT

′)+

(AS + B(DfCS + CfT ))′, Ψ2 ≜ (S−Q)(A+BDfC)′+(A+BDfC)S′+BCfT
′−T R−1BfCS′,

Am ≜ T R−1AfT
′, Ψ3 = (S − Q)A′ + A(S − Q)′ + (S − Q)C ′(DfB

′ − B′
fR

−1T ′) + (BDf −

T R−1Bf)C(S − Q)′,
[
Ψ4 Ψ5

]
≜


D′

aM
′

L′

UP −1M ′

, Ψ6 ≜


−γ2I ∗ ∗

0 −Γ−1
0 ∗

D 0 −Γ−1
1

.

In addition, choosing Am = Ψ2, considering γ2 = γ∗, Cs ≜ DfCS + CfT , Bs ≜

W (BDf − T ′R−1Bf), with W ≜ (S − Q)−1, and applying the following congruent trans-
formations to the inequalities (6.16) and (6.19),

I 0
0 W

 S S − Q

S − Q S − Q

I 0
0 W ′

 > 0, (6.20)


I 0 0
0 W 0
0 0 I




Ψ1 ∗ ∗
0 Ψ3 ∗

Ψ4 Ψ5 Ψ6




I 0 0
0 W ′ 0
0 0 I

 < 0, (6.21)

these become linear in the parameters. Therefore, the dynamic output feedback linear
W∞ controller can be designed by solving the following semidefinite programing problem
written as LMIs:

min
γ∗,S,W ,Bs,Cs,Df

γ∗, (6.22)

s.t. :



γ∗ > 0,S I

I W ′

 > 0,


Ψ1 ∗ ∗

0 W Ψ3W
′ ∗

Ψ4 Ψ5W
′ Ψ6

 < 0,

where Ψ1 ≜ AS + BCs + (AS + BCs)′, W Ψ3W
′ ≜ A′W + C ′B′

s + W A + BsC, Ψ′
4 ≜

[
D S SA′ + C ′

sB
′
]
, W Ψ′

5 ≜
[
W D I A′ + C ′D′

fB
′
]
, Ψ6 ≜


−γ∗I 0 D′

0 −Γ−1
0 0

D 0 −Γ−1
1

. Af-

ter solving (6.22), the W∞-index is obtained as γ = √
γ∗, and the controller variables

as

R = T (S − W −1)−1T ′, (6.23)
Af = T (S − W −1)−1(AS + BCs − (BDf − W −1Bs) CS (6.24)
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+ (W −1)′(A + BDfC)′)T −1 (6.25)
Bf = T (S − W −1)−1 (BDf − W −1Bs) , (6.26)
Cf = (Cs − DfCS) T −1, (6.27)

where T is a symmetric and positive definite matrix that can be arbitrarily chosen.

Remark 39. The invertible matrix T defines a similarity transformation over the state
of the dynamic controller, xf , therefore, does not affect the closed-loop transfer function.

Theorem 8. Let Assumptions 9, 11, 12, 13, and 14 hold, and consider x(0) ∈ Rnx. If
Af , Bf , Cf , Df , S, T , R, and γ are obtained by solving the semidefinite programming
problem (6.22), then the closed-loop system (6.13) is asymptotically stable.

Proof. The proof follows the same steps of the proof of Theorem 7.

With a few manipulations, one can demonstrate that Definition 7 applies to the dy-
namic output feedback W∞ controller, therefore, the closed-loop system (6.13) is W1,2,Γ-
stable, with γ being the W1,2,Γ-gain of the system.

6.3 The linear W∞ control approach formulated con-
sidering the dynamics of the disturbance

The control approaches addressed in the previous sections are useful for a wide variety
of linear systems. Nevertheless, when a disturbance model is available, it can be used in
the cost functional to improve the results of the W∞ controller. Therefore, in this section,
the full-state and dynamic output feedback linear W∞ control problems are formulated
taking into account disturbance model.

6.3.1 Full-states feedback approach

In this subsection, the full-states feedback W∞ controller is designed taking into ac-
count the linear time-invariant system (6.1) together with a disturbance dynamic model,
as follows:

P3:



ẋ(t) = Ax(t) + Bu(t) + Dw(t),

u(t) = Kx(t),

ḋ(t) = Add(t) + Bdv(t),

w(t) = Cdd(t),

z(t) = x(t),

(6.28)
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where Ad ∈ Rnd×nd , Bd ∈ Rnd×nv , and Cd ∈ Rnw×nd are matrices describing the disturbance
dynamics, d(t) : R≥0 → Rnd is the disturbance states, and v(t) : R≥0 → Rnv is an exogenous
signal that excites the disturbance behavior. In addition to Assumptions 9, 10 and 12
that hold for P3, the following ones are also considered to formulate the control problem:

Assumption 15. The disturbance vector w(t) belongs to the Sobolev space, i.e. w(t) ∈
W1,2[0,∞).

Assumption 16. Ad has negative eigenvalues.

Assumption 17. The matrix Bd has full column rank, i.e. rank(Bd) = Rnv .

Remark 40. The vector of disturbances, w(t), and the disturbances states, d(t), are not
measured.

In this case, the W∞ controller is designed in order to ensure the smallest γ such that

γ > sup
||z(t)||W1,2,Γ

||w(t)||W1,2,Υ

= sup

(
||z(t)||L2,Γ0

+ ||ż(t)||L2,Γ1

) 1
2

(
||w(t)||L2,Υ0

+ ||ẇ(t)||L2,Υ1

) 1
2
, (6.29)

with ||w(t)||W1,2 ̸= 0, ∀w(t) ∈ W1,2[0,∞), and subject to P9, where Γ is defined as in (6.2),
and Υ = {Υ0, Υ1}.

Remark 41. The W∞ controller is now designed taking into account the time derivative
of the disturbances, consequently, the minimization of γ in (6.29), implies in less influence
of the disturbances and its time derivative in the closed-loop system (6.28).

Similarly to Section 6.1, one can formulate the control problem as

min
K,P ,γ

γ, (6.30)

s.t. :


P3,

x′P x > 0,

V̇ (x) + x′Γ0x + ẋ′Γ1ẋ − γ2 (w′Υ0w + ẇ′Υ1ẇ) < 0.

Moreover, by employing the same transformations and change of variables that are con-
sidered in Section 6.1, with some manipulations and using the Schur complement, the
full-state feedback W∞ control problem results in solving the following semidefinite pro-
gramming problem written as LMIs:

min
R,S,γ∗

γ∗, (6.31)
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s.t. :



γ∗ > 0,

S > 0,

Ξ3 ∗ ∗ ∗ ∗

C ′
dD

′ Ξ4 ∗ ∗ ∗

0 Ξ5 Ξ6 ∗ ∗

AS + BR DCd 0 −Γ−1
1 ∗

S 0 0 0 −Γ−1
0


< 0,

in which Ξ3 ≜ SA′+AS+R′B′+BR, Ξ4 ≜ −γ∗(C ′
dΥ0C

′
d+A′

dC
′
dΥ1CdAd), Ξ5 ≜ −γ∗B′

dC
′
dΥ1CdAd,

and Ξ6 ≜ −γ∗B′
dC

′
dΥ1CdBd. After solving (6.31), the state feedback gain is computed by

K = RS−1, the matrix P = S−1, and the W∞-index is given by γ = √
γ∗.

Theorem 9. Let Assumptions 9,10, 12-17 hold for (6.28), and consider x(0) ∈ Rnx. If
K = RS−1, P = S−1, and γ = √

γ∗ are obtained by solving the semidefinite programming
problem (6.31), then the closed-loop system (6.28) is asymptotically stable.

Proof. The proof follows similar to the proof of Theorem (7).

In the following, Definition 7 is extended to a more general case.

Definition 8. Suppose w(t) : R≥0 → Rnw , z(t) : R≥0 → Rnx, for some nw, nx ∈ N, and
z(t) = G(w(t)), with G : Rnw → Rnx. The map G is said to be Wm,p,Γ

n,q,Υ-stable if there exist
finite constants γ, v ∈ R≥0, such that the inequality

||z(t)||2
Wm,p,Γ

≤ γ2||w(t)||2
Wn,q,Υ

+ v (6.32)

holds for any w(t) ∈ Wn,q[0,∞) and some matrices Γ = {Γ0, ...Γp} and Υ = {Υ0, ...Υn},
where m,n ∈ N ∪ {0} and p, q ∈ N ∪ {∞}. Moreover, if γ = inf S in which S = {γ ∈
R≥0 : ||z(t)||2

Wm,p,Γ
≤ γ2||w(t)||2

Wn,q,Υ
+ v, ∀w(t) ∈ Wn,q[0,∞), v ∈ R≥0}, then γ is called the

Wm,p,Γ
n,q,Υ-gain of the system.

Remark 42. Definition 7 is a particular case of Definition 8, in which n = 0, q = p, and
Υ = {I}.

Regarding the control problem (6.31), with a few manipulations, one can show that

||z(t)||2
W1,2,Γ

< γ2||w(t)||2
W1,2,Υ

+ V (x(0)) = γ2c2 + c1, (6.33)

∀w(t) ∈ W1,2[0,∞), for some c1, c2 ∈ R≥0. Therefore, according to Definition 8, one can
conclude that the closed-loop system (6.28) is W-stable with the W1,2,Υ

1,2,Γ -gain γ.
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6.3.2 Output feedback approach

This subsection considers linear time-invariant systems represented by

P10:



ẋ(t) = Ax(t) + Bu(t) + Dw(t),

y(t) = Cx(t),

ḋ(t) = Add(t) + Bdv(t),

w(t) = Cdd(t),

z(t) = x(t),

(6.34)

in closed-loop with the dynamic controller K1 given by (6.12), where A, B, C, D, x(t),
u(t), w(t), y(t) and z(t) are defined as in (6.11), and Ad, Bd, Cd, d(t), and v(t) are defined
as in (6.28). Additionally, Assumptions 9, 12-14 hold for (6.34).

Accordingly, aiming to achieve the condition (6.29), the control problem is posed as

min
Af ,Bf ,Cf ,Df ,P ,γ

γ, (6.35)

s.t. :


P10(K1),

X ′
aP Xa > 0,

V̇ (Xa) + x′Γ0x + ẋ′Γ1ẋ − γ2 (w′Υ0w + ẇ′Υ1ẇ) < 0,

where P10(K1) denotes the closed-loop dynamics of system (6.34) with the dynamic con-
troller (6.12).

Thereafter, regarding the same transformations and change of variables considered in
Section (6.2), and using the Schur complement, with some algebraic manipulations, the
optimal control problem results in solving

min
γ∗,S,W ,Bs,Cs,Df

γ∗, (6.36)

s.t. :



γ∗ > 0,S I

I W ′

 > 0,


Ψ1 ∗ ∗

0 W Ψ3W
′ ∗

Ψ7 Ψ8W
′ Ψ9

 < 0,

where Ψ1 ≜ AS + BCs + (AS + BCs)′, W Ψ3W
′ ≜ A′W + C ′B′

s + W A + BsC, Ψ′
7 ≜
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[DCd 0 S SA′+C ′
sB

′], W Ψ′
8 ≜ [W DCd 0 I A′ + C ′D′

fB
′], and

Ψ9 ≜


Ξ8 ∗ ∗ ∗

−γ∗B′
dC

′
dΥ1C

′
dAd −γ∗B′

dC
′
dΥ1CdBd ∗ ∗

DCd 0 −Γ−1
1 0

0 0 0 −Γ−1
0

 ,

in which Ξ8 ≜ −γ∗(C ′
dΥ0C

′
d + A′

dC
′
dΥ1CdAd). After solving (6.36), the controller parame-

ters are computed as in (6.23)-(6.27).

Theorem 10. Let Assumptions 9, 12-14 hold for the system (6.34), and consider x(0) ∈
Rnx. If Af , Bf , Cf , Df , S, T , R, and γ are obtained by solving the convex optimization
problem with LMI constraints (6.36), then the closed-loop system (6.34) with the dynamic
controller (6.12) is asymptotically stable.

Proof. The proof follows the same steps of the proof of Theorem 7.

Regarding Definition 8, with a few manipulations, it is possible to demonstrate that
after solving the control problem (6.36), the closed-loop system achieve inequality (6.33).

6.4 Linear W∞ control synthesis with pole placement
constraints

It is well known that the behavior of a linear system can be characterized by the
location of its poles and zeros. Therefore, this section incorporates the pole placement
constraints that allows to synthesize a W∞ controller with the closed-loop poles allocated
in a predefined region D of the complex plane.

We begin by recalling the following definitions and theorem from Chilali and Gahinet
(1996).

Definition 9. (Adapted from Chilali and Gahinet (1996)) Let D be a subregion of the
complex plane. The dynamic system ẋ(t) = Ax(t) is called D-stable if all poles of A lie in
D.

Definition 10. (Adapted from Chilali and Gahinet (1996)) A subset D of the complex
plane is called an LMI region if there exist symmetric matrices α ∈ Rni×ni and β ∈ Rni×ni

such that

D = {s ∈ C : α + sβ + s∗β′ < 0}. (6.37)



6.5 Numerical examples 114

Theorem 11. (Adapted from Chilali and Gahinet (1996)) The matrix A ∈ Rnx×nx is
D-stable if and only if there exists a symmetric matrix P ∈ Rnx×nx such that

α ⊗ P + β ⊗ (P A) + β′ ⊗ (P A)′
< 0, P > 0, (6.38)

where ⊗ stands for the Kronecker product.

Accordingly, regarding Theorem 11 and the change of variables R ≜ KS and S ≜ P −1,
a pole placement constraint can be considered by adding the following LMI into the convex
optimization problems (6.7) or (6.31):

(I ⊗ P −1)
(
α ⊗ P + β ⊗ P (A + BK) + β′ ⊗ (A + BK)′

P
)

(I ⊗ P −1) < 0,

α ⊗ S + β ⊗ (AS + BR) + β′ ⊗ (AS + BR)′
< 0. (6.39)

If inequality (6.39) is satisfied, the poles of A + BK belongs to a sub-region D of the
complex plane determined by the matrices β and α (See Definitions 9 and 10).

Also, from Theorem 11, Definition 10, the output feedback controllers can be synthe-
sized with the closed-loop poles allocated in a predefined region D of the complex plane
by adding the following LMI into the convex optimization problems (6.22) and (6.36):

Ψ
(
α ⊗ P + β ⊗ P Aa + β′ ⊗ (P Aa)′

)
Ψ′ < 0,

α ⊗

S I

I W ′

+ β ⊗ Ak + β′ ⊗ A′
k < 0, (6.40)

where Ψ≜

I ⊗

I 0
0 W

MP −1

, and Ak≜

I 0
0 W

MAaP
−1M ′

I 0
0 W ′


=

 AS + BCs A + BDfC

−A′ − C ′D′
fB

′ W A + BsC

 , which was computed using the equality Am = Ψ2.

6.5 Numerical examples

This section presents numerical results of three experiments. In the first experiment,
the linear W∞ controllers are synthesized for a simple linear system. The aim is to corrob-
orate the efficiency of these controllers and to demonstrate the advantages of approaches
in which the dynamics of the disturbance are considered in the controller formulation (pro-
posed in Section 6.3). In the second experiment, full-state and dynamic output feedback
linear W∞ controllers are synthesized for a Two-wheeled Self-balanced vehicle considering
pole placement constraints, and a comparative analysis with classic linear H∞ controllers
is presented. Finally, in the third experiment, a state feedback linear W∞ controller is
synthesized for a Quadrotor UAV considering uncertainties in the system’s parameters.
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As in the previous experiment, a comparative analysis with the classic linear H∞ controller
is presented.

6.5.1 Simple example

This subsection corroborates the effectiveness of the proposed linear W∞ controllers
with numerical experiments conducted with the following linear system:

P13:



ẋ(t) =

 0 50

−50 −50

x(t) +

0

1

u(t) +

0

1

w(t),

ḋ(t) =

 0 100

−100 −100

d(t) +

 0

100

v(t),

w(t) =
[
10 10

]
d(t),

y(t) =
[
1 1

]
x(t).

(6.41)

The linear W∞ controllers were synthesized by solving (6.7), (6.22), (6.31), and (6.36).
For the sake of comparison analysis, all the controllers were tuned with the same tuning
matrices, with Γ0 = diag(10, 10

), Γ1 = diag(1, 1
) and Υ0 = diag(1). Nevertheless, the W∞

controllers addressed in Section 6.3, that consider the disturbance dynamic model, were
also tuned with Υ1 = diag(1000

) for the state feedback approach and Υ1 = diag(500
) for

the output feedback approach.
In the numerical experiments, the system starts with the initial condition x(0) = [3 1]′.

Besides, a white noise Gaussian signal v(t) with zero mean and unitary variance is applied
during 1 ≤ t ≤ 9 s. The results are shown in Figure 6.1, and a quantitative analysis of
these results is presented in Table 6.1.

As can be observed in Figure 6.1, the system starts displaced from the origin of the
state-space and asymptotically converges to it. Along the experiment, all the controllers
were able to provide stability to the system. However, the W∞ controllers that were
formulated considering the disturbance dynamic model in the cost functional achieved
better disturbance attenuation with faster transient response and smaller control effort.
These controllers achieved better performance for all analyzed indexes in comparison with
the linear W∞ controllers without considering the disturbance dynamic behavior in their
formulations, see Table 6.1.

6.5.2 Two-wheeled Self-balanced vehicle

This subsection synthesizes the state feedback and the output feedback W∞ controllers,
considering pole placement constraint for the Two-wheeled Self-balanced vehicle. In ad-
dition, a comparison analysis is performed with the classic linear H∞ controller (Chilali
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Figure 6.1: Time evolution of the states and control inputs, resulting from the application
of the state feedback W∞ and output feedback W∞-O.F. controllers, and the state feedback
W∞-D. and output feedback W∞-O.F.D. controllers with the disturbance model, and the
disturbance signal.

and Gahinet, 1996).
In order to design the linear controllers, initially, the Two-wheeled Self-balanced vehicle

equations of motion, which are described by the Euler-Lagrange equations (4.30) given in
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Table 6.1: Table of performance indexes computed from the results of the state feedback
W∞ and output feedback W∞-O.F. controllers, and the state feedback W∞-D. and output
feedback W∞-O.F.D. controllers with the disturbance model.

P. Index computed by W∞ W∞−D. W∞−O.F. W∞ −O.F.D.

ISE

∫ τ
0 x

2
1(t)dt 5.4(100%) 3.4(64%) 1.5(100%) 0.3(21%)∫ τ

0 x
2
2(t)dt 0.13(100%) 0.10(74%) 0.12(100%) 0.07(63%)

IADU×103
∫ t

0 |du(τ)
dτ

|dτ 2.0(100%) 1.8(90%) 1.5(100%) 1.1(77%)

H∞×10−3 ||x(t)||L2/||w(t)||L2 5.2(100%) 4.1(77%) 2.8(100%) 1.1(40%)

Section 4.4, are represented in the state-space,

ẋ(t) = f(x) + g(x)u(t) + k(x)w(t), (6.42)

with

f(x) =

 θ̇

−M −1(q) [C(q, q̇)q̇ + K(q̇) + G(q)]

 , g(x) =

 0
M −1(q)F (q)

 ,k(x) =

0 0
M −1(q)

 ,
and x(t) =

[
θ(t) ϕ̇(t) θ̇(t)

]′
. Then, the state-space system (6.42) is linearized around the

equilibrium point x = 0 and represented by the standard forms (6.1) and (6.13). The state
feedback and output feedback W∞ controllers are synthesized through (6.7) and (6.22).

For the sake of comparison analysis, the W∞ and the classic H∞ controllers are designed
to achieve, similar settling time for the pendulum angular position when the closed-
loop system starts from the initial condition x(0) = [π4 0 0]′ (it was used the criteria
of 2%), as shown in Figure 6.2. With this objective, the state feedback W∞ controller
is tuned with Γ0 = diag(0.2, 2, 0.3

), Γ1 = diag(2.6, 0.25, 0.625
), and Υ0 = diag(1, 1

),
while the output feedback W∞ controller is tuned with Γ0 = diag(10, 1, 10

), and Γ1 =
diag(0.66, 0.35, 0.3355

).
In order to design the output feedback controllers, it was considered that the pendulum

angular velocity is not available, which implies that C =

1 0 0
0 1 0

 in (6.11).

All the controllers are designed with the poles allocation region constrained by a ball
with radius r centered at the origin of the complex plane. This region is defined by (6.37),
with

α =

−r 0
0 r

 , β =

0 1
0 0

 . (6.43)
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From (6.43), the LMIs (6.39) and (6.40) are added, respectively, to (6.7) and (6.22). The
state feedback W∞ and H∞ controllers are synthesized with r = 40 and the output feedback
controllers with an enlarged radius r = 150. This allows the poles related to the dynamic
controller be faster than the poles related to the physical system.

In the numerical experiment, the system starts with the pendulum inclined in the
initial condition x(0) = [π4 0 0]′, and is subjected to the disturbances wϕ(t) = 2 N·m, for
5 ≤ t ≤ 10 s, and wθ(t) = 2 sin( 2πt

5 ) N·m, for 15 < t ≤ 20 s. The results are shown in Figure
6.3, and a quantitative analysis is presented in Table 6.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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W∞-O.F.

θ
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Figure 6.2: Settling time of the pendulum angular position resulting from the application
of the state feedback H∞ and W∞ controllers, and the output feedback H∞-O.F. and W∞-
O.F. controllers to the Two-wheeled Self-balanced vehicle.

It is noteworthy that, since the W∞ and H∞ controllers were tuned to achieve similar
settling time of the pendulum angular position, they achieved a similar results with respect
to the ISE index computed for this variable. However, the former achieved faster transient
response with improved ISE index of the wheels’ velocity, and a better H∞ performance
index, in addition to less control effort.
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Figure 6.3: Time evolution of the pendulum angular position, wheels velocity, and control
inputs signals resulting from the application of the state feedback H∞ and W∞ controllers,
and the output feedback H∞-O.F. and W∞-O.F. controllers to the Two-wheeled Self-
balanced vehicle.

Table 6.2: Table of performance indexes computed from the results of the state feedback
H∞ and W∞ controllers, and output feedback H∞-O.F. and W∞-O.F. controllers applied
to the Two-wheeled Self-balanced vehicle.

P. Index computed by H∞ W∞ H∞ −O.F. W∞ −O.F.

ISE

∫ τ
0 θ

2(t)dt 1.7(100%) 1.8(109.5%) 1.6(100%) 1.8(112.5%)

∫ τ
0 ϕ̇

2(t)dt 82.9(100%) 65.8(79.4%) 96.1(100%) 71.6(74.5%)

IADU
∫ t

0 |du(τ)
dτ

|dτ 48.2(100%) 33.5(69.6%) 4544(100%) 682(15.0%)

H∞ ||x(t)||L2/||w(t)||L2 1.47 (100%) 1.32 (90%) 13.5 (100%) 9.2 (68%)
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6.5.3 Quadrotor UAV

This subsection synthesizes the linear state feedback W∞ controller for a Quadrotor
UAV, considering parametric uncertainties. In addition, a comparative analysis with
respect to the classic H∞ controller is presented. The aim is to evaluate the performance
of these control strategies under the effects of parametric uncertainties.

In order to design the controller, initially, the Quadrotor UAV equations of motion,
which are given in Section 5.3 and described by the Euler-Lagrange equations (5.123), are
represented in the state-space

˙̂x(t) = f(x̂) + g(x̂)τ (t) + k(x̂)w(t), (6.44)

with

f(x̂) =

 θ̇

−M −1(q) [C(q, q̇)q̇ + G(q)]

 , g(x̂) =

 0
M −1(q)B(q)

 ,k(x̂) =

0 0
M −1(q)

 ,
and x̂(t) = [ϕ θ ψ x y z ϕ̇ θ̇ ψ̇ ẋ ẏ ż]′.

Then, the state-space system (6.44) is linearized around the equilibrium point with
ϕ = θ = ψ = 0, and represented by the Linear Parameter Varying (LPV) system

P11:


ẋ(t) = A(ϵ)x(t) + B(ϵ)u(t) + D(ϵ)w(t),

u(t) = Kx(t),

z(t) = x(t),

(6.45)

with K = RS−1, in which it is assumed the Quadrotor UAV mass and inertia tensors
as uncertain parameters, ϵ = [m Ixx Iyy Izz]′, with 10% of uncertainty. Consequently,
ϵ ∈ Ω, such that m ∈ [2.0160, 2.4640], Ixx ∈ [0.0346, 0.0422], Iyy ∈ [0.0346, 0.0422], and
Izz ∈ [0.0554, 0.0677].

The linear W∞ controller is designed taking into account the following theorem.

Corollary 1. Consider the LPV system (6.45) in which ϵ is an affine uncertain parameter
that belongs to a known compact convex set

Ω = {ϵ ∈ Rnϵ : ϵmin ≤ ϵ ≤ ϵmax}. (6.46)

Suppose that matrices R and S, and the W∞-index γ∗ satisfy

min
R,S,γ∗

γ∗, (6.47)

s.t. : Ψ(R,S, γ∗,Aj,Bj,Dj) < 0, for j = 1, · · · , q,

in which Ψ(·) < 0 is a compact representation of all inequalities in (6.7), and Aj, Bj, Dj
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represent the dynamics of (6.45) evaluated at the j − th vertex of Ω. Then, the system
(6.45) is asymptotically stable for any ϵ ∈ Ω.

Proof. Since Ω is a known compact convex set, the system (6.45) can be precisely repre-
sented by the convex polytopic representation (Boyd et al., 1994; Hamdi et al., 2009)

P12:


ẋ(t) = A(δ)x(t) + B(δ)u(t) + D(δ)w(t),

u(t) = Kx(t),

z(t) = x(t),

(6.48)

where A(δ) ≜
∑q

j=1 δjAj, B(δ) ≜
∑q

j=1 δjBj, D(δ) ≜
∑q

j=1 δjDj, in which the matrices Aj,
Bj, Dj represent the dynamics of (6.45) evaluated at the j-th vertex of Ω, and δj is the
j-th element of the vector δ ∈ Rq satisfying 0 ≤ δj ≤ 1 and ∑q

j=1 δj = 1. In addition, nϵ = 2q

is the number of vertices of the convex set Ω.
Taking into account the similarity transformation x = Sy and the change of variables

R = KS, in which S = P −1, one can propose the following candidate Lyapunov function
for (6.48):

V (x) = x′P x = y′Sy > 0, (6.49)

whose time derivative is given by

V̇ (x) = ∂V (x)
∂x

ẋ = ∂V (x)
∂x

((A(δ) + B(δ)K) x(t) + D(δ)w(t)) ,

=
q∑
j=1

δj
∂V (x)
∂x

((Aj + BjK) x(t) + Djw(t)) . (6.50)

Therefore, regarding Theorem 7, if R, S and γ∗ satisfy (6.47) for all the vertices of Ω, we
have that

∂V (x)
∂x

((Aj + BjK) x(t) + Djw(t)) < 0, for j = 1, · · · , q. (6.51)

Consequently, since 0 ≤ δj ≤ 1 and ∑q

j=1 δj = 1, the equation (6.49) is a Lyapunov function
for (6.48) and, consequently, for (6.45).

To perform the numerical experiments, the linear W∞ controller is tuned with Γ0 =
diag(0.3183 0.3183 5.093 10 10 10.159 0.159 1.91 0.05 0.05 0.5), Γ1 = diag(0.159 0.159 1.91 0.05
0.05 0.5 7.194 7.194 0.248 0.0327 0.0327 0.3597), and Υ0 = diag(1 1 1 1 1 1). In addition,
aiming to bound the fastest poles, this controller is designed considering (6.43) with
r = 100.

A linear H∞ controller is also designed for the Quadrotor UAV (Chilali and Gahinet,
1996). For comparison analysis purposes, this controller is also synthesized to be robust
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Table 6.3: Desired trajectory for the Quadrotor UAV translational position.

xr(t) yr(t) zr(t)

t≥0 8 cos
(πt

20
)

8 sin
(πt

10
)

3 − cos
(πt

20
)

for ϵ ∈ Ω, with the same pole placement constraints as the W∞ controller. In addition,
the linear H∞ controller is tuned to achieve similar ISE performance index to the W∞

controller, as shown in Table 6.4.
The simulation is conducted with the Quadrotor UAV starting from the initial con-

dition q̇(0) = 0 and q(0) = [0 0 0 4 0 1]′, and designated to track the desired trajectory
present in Table 6.3. Along the numerical experiments, the disturbances δy(t) = 10 N, for
10 < t < 15 s, and δz(t) = 10 sin(0.4πt) N, for 25 < t < 30 s, are applied to the system. The
results are shown in Figures 6.4-6.6.

As can ben observed, in this experiment, the W∞ controller achieved again better
disturbance attenuation with faster transient response. In addition, although both con-
trollers presented similar ISE, the proposed linear state feedback W∞ controller demanded
less control effort. It achieved the same performance with respect to the ISE index, but
with a smaller control effort.

Table 6.4: Table of performance indexes computed with the results of the linear H∞ and
W∞ controllers applied to the Quadrotor UAV.

P. Index computed as H∞ W∞

ISE ∫ τ
0 x′(t)x(t)dt 68.3 (100%) 67.9 (99.4%)

IADU
∫ t

0

∑4
i=1 |dΩi(τ)

dτ
|dτ 22635 (100%) 10025 (44.29%)

6.6 Final remarks

This section proposed linear W∞ controllers in weighted Sobolev spaces for linear
time-invariant systems via semidefinite programming problems written as LMIs. They
were designed considering full-state and dynamic output feedback. In addition, a new
approach in which the disturbance dynamic behavior is taken into consideration in the
control design stage by means of a disturbance model was presented, and pole placement
constraints were formulated to allow the synthesis of W∞ controllers with the closed-loop
poles allocated in a predefined region of the complex plane.
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Figure 6.4: Three dimensional view of the trajectory performed by the Quadrotor UAV,
resulting from the application of the W∞ and H∞ controllers.
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Figure 6.5: Time evolution of the Quadrotor UAV attitude, resulting from the application
of the linear W∞ and H∞ controllers, and the disturbance signals.
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Figure 6.6: Time evolution of the Quadrotor UAV control inputs, resulting from the
application of the W∞ and H∞ controllers.

Numerical experiments were conducted with a simple linear system, a Two-wheeled
Self-balanced vehicle, and a Quadrotor UAV which corroborated the efficacy of the linear
W∞ control framework, proposed in this chapter. In addition, it was demonstrated that the
proposed controllers achieved better results when compared with a linear H∞ controller.

The next chapter concerns a case study with tilt-rotor UAV. Initially, it employs
linear W∞ control techniques to design controllers for a tilt-rotor UAV operating in the
helicopter-flight mode. Then, the nonlinear W∞ controller is incremented with a control
allocation to handle the tilt-rotor UAV full flight envelope trajectory tracking problem.



7
Case study: convertible Tilt-rotor UAV

This chapter designs W∞ controllers for a convertible Tilt-rotor UAV. Initially, the
equations of motion of the convertible Tilt-rotor UAV are derived through the Euler-
Lagrange approach. The full-state and dynamic output feedback linear W∞ controllers
addressed in Chapter 6 are synthesized in order to perform trajectory tracking in the
helicopter-flight mode. Then, a nonlinear W∞ controller is proposed to solve the full flight
envelope trajectory tracking problem of the Tilt-rotor UAV. The nonlinear controller is
designed regarding the nonlinear W∞ control approach for mechanical system with input
coupling, addressed in Section 5.2, but in this case, the vector of generalized coordinates is
divided into controlled, regulated, and stabilized degrees of freedom. A control allocation
scheme is also proposed to map the optimal control law to the appropriated control inputs
signals according to the magnitude of the relative wind speed.

7.1 Introduction

Designing Unmanned Aerial Vehicles (UAVs) is among the most active fields of re-
search. Lately results achieved on related areas, like sensors fusion, state estimation,
robotics, aeronautics, and control, have improved UAVs performance and their reliability,
making them attractive to several civilian applications such as search and rescue (Ryan
and Hedrick, 2005), remote inspection (Metni and Hamel, 2007), load transportation
(Rego and Raffo, 2019), public security (Daniel and Wietfeld, 2011), mapping (Zongjian,
2008), agriculture (Saari et al., 2011), among others. The increasing demand of applica-
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tions has required UAVs with the capability of accomplishing long-range missions with
rapid deployment, higher flight endurance, and able to perform hovering and Vertical
Take-off and Landing (VTOL). To comply with these tasks, convertible UAVs such as the
Quad-tilting rotor (Flores et al., 2012), the Tail-sitter (Verling et al., 2016), the Tilt-wing
(Dickeson et al., 2005), and the Tilt-rotor (Maisel et al., 2000) have gained considerable
attention. A review about convertible UAVs can be found in Morin (2015).

Besides the aforementioned advantages, the design of control laws to successfully ex-
ecute tasks of convertible UAVs is challenging, since the relative wind generated by the
aircraft’s motion substantially changes the vehicle dynamic behavior between helicopter
and cruise flight modes (Morin, 2015; Yuksek et al., 2016). In helicopter flight mode
(VTOL and hovering), the aerodynamic surfaces do not produce significant forces and
moments, whereas, in cruise flight mode, the wing generates significant aerodynamic
forces that sustain forward flight, enabling conversion to the airplane mode, and small
deflections of the aerodynamic control surfaces (aileron, rudder, and elevator) produce
forces and moments that allow control and guidance. This fact poses some challenges
for the control design of convertible UAVs, which cannot usually be solved using classical
linear controllers when it is required to achieve good performance throughout the full
flight envelope trajectory tracking. Furthermore, nonlinear control techniques designed
for mechanical systems, such as Johansson (1990); Raffo et al. (2011a), cannot be directly
applied to solve the problem since they were developed for systems whose input coupling
matrix rank does not vary with time. In addition, convertible UAVs are usually subjected
to uncertainties from many sources as wind gusts, unmodeled dynamics, and parametric
uncertainties, which make the design of controllers for these systems even less trivial.

This chapter deals with the full flight envelope trajectory tracking problem of con-
vertible UAVs through the Tilt-rotor configuration. A review about Tilt-rotor UAVs can
be found in Liu et al. (2017); Hegde et al. (2019). This kind of vehicle is a multi-body,
highly-coupled underactuated mechanical system that is often modeled as a single-body
(Kendoul et al., 2005; Papachristos et al., 2011; Sanchez et al., 2008). Although the re-
sulting dynamic model is simpler to handle, it is based on questionable simplifications.
The single-body model neglects the coupling between the thrusters’ groups and the main
body, including the servomotors’ dynamics (tilting mechanism dynamics), assuming that
it can reach any inclination instantaneously. Besides, these simplified dynamics result in
non-affine models with respect to the control inputs that make control design difficult. To
overcome such simplification, works such as Rego and Raffo (2019); Almeida and Raffo
(2015); Raffo and Almeida (2018) have proposed the modeling of the Tilt-rotor UAV as a
multi-body mechanical system. The corresponding model is more accurate and takes into
account the dynamics of servomotors. In the present work, the Tilt-rotor UAV equations
of motion are obtained through the Euler-Lagrange formalism considering it as a multi-
body mechanical system. Nevertheless, different from Rego and Raffo (2019); Almeida
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and Raffo (2015); Raffo and Almeida (2018), here we take into account the aerodynamics
effects generated by the fuselage, wings, tail-surfaces and propellers.

Concerning the control design of Tilt-rotor UAVs, due to the rank of the input coupling
matrix that varies according to the flight mode, some works limit the control problem to
the helicopter-flight mode and propose linear controllers. In Donadel et al. (2014) and
Donadel (2015), for example, linear H∞ and mixed H2/H∞ controllers are designed to
perform trajectory tracking of the Tilt-rotor UAV. The authors in, Papachristos et al.
(2013) propose a proportional-integral-derivative (PID) controller in order to stabilize the
Tilt-rotor UAV attitude dynamics. Papachristos et al. (2012) synthesize a Proportional-
Derivative (PD) controller for the Tilt-rotor UAV altitude and attitude dynamics, present-
ing experimental results. Almeida et al. (2014) address the trajectory tracking problem
of the Tilt-rotor UAV carrying a suspended load. A linear H∞ controller with D-stability
constraints is designed in order to guide the aircraft through the trajectory, maintaining
stabilized the load. Santos and Raffo (2016) and Rego and Raffo (2016) propose a Model
Predictive Controller (MPC) and a discrete-time linear quadratic regulator (DLQR), re-
spectively, to solve the trajectory tracking problem of a Tilt-rotor UAV carrying a sus-
pended load.

Another common strategy used to design controllers for Tilt-rotor UAVs operating
in the helicopter-flight mode is the cascade approach. However, since the dynamics of
the Tilt-rotor UAV are highly-coupled, the development of such controllers usually relies
on mathematical model simplifications in order to decouple it. In Sanchez et al. (2008),
a cascade controller is designed based on the Lyapunov theory aiming to perform hover
flight. The control strategy is validated through experimental results. Additionally, Small
et al. (2016) propose a cascaded P-PI and PID based control structure to achieve hover
flight of a tilt-wing UAV. Chen et al. (2017) design a cascade control strategy to achieve
trajectory tracking of a tricopter tiltrotor UAV. The inner loop is designed for attitude
control based on a PID control strategy, while the outer loop is designed to control the
translational position, which generates the desired references to be executed by the inner
loop.

The first nonlinear controller designed to deal with the multi-body dynamics of the
Tilt-rotor UAV in helicopter-flight mode was proposed by Almeida and Raffo (2015). As
the aforementioned works, a cascade control strategy is designed based on simplifications
on the mathematical model that aim of decoupling it. The control system is partitioned in
three loops: the inner loop, that controls the servos’ angles, roll motion and the altitude;
the middle loop that controls the pitch and yaw angles; and the outer loop controls the
x and y motions while stabilizes the load dynamics. For each loop a nonlinear controller
is designed based on feedback linearization. This control strategy is improved in Raffo
and Almeida (2018), by applying feedback linearization with dynamic extension, which
reduces the number of cascade loops to two.
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In Gress (2002), an alternative mechanical structure to the Tilt-rotor UAV is presented
to improve the controllability of the system in helicopter-flight mode. This mechanical
structure allows the thrusters to tilt in two degrees of freedom. The works of Kendoul et al.
(2005) and Amiri et al. (2011) are developed based on the same Tilt-rotor UAV structure.
In these works, the controllers are designed via backstepping. The first one aims to
regulate the position and yaw dynamics and stabilize the remaining degrees of freedom,
while the second one regulates the attitude dynamics. In both works, simplifications are
performed over the mathematical model in order to decouple the dynamics of the system.

In addition to the literature dealing with helicopter-flight mode, there are few works
concerning the cruise flight mode. In Calise and Rysdyk (1998), an attitude controller is
proposed for the Tilt-rotor XV-15 aircraft (Nasa, 1975). The model is linearized around
the equilibrium point by the first order Taylor series, from which a neural network is ap-
plied to estimate the unmodelled dynamics generated by the linearization. The controller
uses information given by the neural network to improve its efficiency. In Mehra et al.
(2001), the same mathematical model is considered in order to design a Model Predictive
Controller (MPC) based on Linear Parameter Varying (LPV) model representation of the
system. Numerical results are presented.

Regarding the difficulty to accomplish the transition between helicopter and cruise
flight modes, some works focus on the problem of computing the optimal transition ma-
neuvers. In Naldi and Marconi (2011), the minimum-time and minimum-energy optimal
transition problems are formulated and solved numerically in order to compute reference
maneuvers to be executed by the UAV. Just a few works consider the full flight envelope
of Tilt-rotor UAVs, which are often based on gain-scheduling strategies. In Peng et al.
(2010), for example, the V-22 Osprey aircraft (Norton, 2004) is controlled assuming a sim-
plified single-body model of the x and z dynamics of the aircraft. Twenty controllers are
synthesized to cover the entire aircraft flight envelope, being a gain-scheduling performed
by combining the Optimum Preemptive Static Algorithm and the Optimum Preemptive
Dynamic Scheduling Algorithms. In Lee et al. (2007), a Tilt-rotor UAV developed by
the Korea Airspace Research Institute - (KARI) is presented. They explore the use of
a gain-scheduling strategy to design a controller for the roll and pitch dynamics of the
Tilt-rotor UAV, solving online an optimization problem by means of the Particle Swarm
Optimization (PSO).

Still concerning the control of Tilt-rotor UAV throughout the full flight envelope, in
Papachristos et al. (2013), a model predictive controller is proposed for a quad-tiltrotor
UAV. The conversion control problem is solved by representing the system as a Linear
Parameter Varying (LPV) and designing an LMPC (Linear Model Predictive Controller).
Cardoso et al. (2016a) design linear state feedback mixed H2/H∞ controllers to cover the
Tilt-rotor UAV full flight envelope. In this work, a gain-scheduling scheme is performed
by means of a neural network, applied in order to accomplish forward flight. This control
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strategy is improved in Cardoso et al. (2016b), replacing the neural network by a robust
adaptive mixing scheme. References Czyba et al. (2018); Kong and Lu (2018) perform
gain-scheduling of controllers especially designed to cope with each flight mode. The
classical PID method was used during the phase of VTOL, while a nonlinear control law
based on backstepping was proposed to achieve a stable transition from vertical flight to
horizontal flight. Although good experimental and numerical results have been obtained
in these works, they do not present stability analysis of the proposed strategies. From the
best knowledge of the author and as commented in Morin (2015), the design of a controller
for convertible Tilt-rotor UAVs to accomplish transition between hover and cruise flight
modes fully exploiting the aircraft multi-body nonlinear dynamics is an open field for
researches.

In this context, this chapter designs a nonlinear W∞ controller to solve the full flight
envelope trajectory tracking problem of the Tilt-rotor UAV. In order to design this con-
troller, the approach addressed in Section 5.2 is extended to the case in which the vector
of generalized coordinates is divided into controlled, regulated, and stabilized degrees of
freedom. In addition, a control allocation scheme is proposed to map the optimal control
law to the appropriated control inputs signals according to the magnitude of the relative
wind speed. Control allocation (Durham, 1993) has been widely used to handle actuators
redundancy (Harkegard and Glad, 2005) and fault tolerant control (Temiz et al., 2018)
in over actuated mechanical systems. Regarding applications to convertible UAVs, the
readers are directed to Fuhrer et al. (2019); Chen et al. (2017); Shi et al. (2018). This
technique comprehends in mapping the vector of generalized forces to the control inputs
via predefined rules. A survey about control allocation is found in Johansen and Fos-
sen (2013). Here, the control allocation is designed via the solution of an optimization
problem with dynamic constraints.

7.2 Tilt-rotor UAV modeling

This section derives the equations of motion of a Tilt-rotor UAV using the Euler-
Lagrange formulation. The aircraft is depicted in Figure 7.1 and is composed of: (i) the
fuselage, where electronic components like battery, sensors, microprocessors, and others
are assembled; (ii) two groups of thrusters, one at each side of the aircraft, that include
propellers, DC brushless motors, and servomotors; (iii) the wings; and (iii) the V-tail
surfaces.

7.2.1 Forward kinematics and generalized coordinates

In this work, the Tilt-rotor UAV is considered as a multi-body mechanical system
composed of three rigid bodies, the main body, that includes the fuselage, wings and V-
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Figure 7.1: The Tilt-rotor UAV details.

tail surfaces, and the two groups of thrusters. Accordingly, in order to obtain the forward
kinematics, seven reference frames are rigidly attached to the system (as depicted in
Figure 7.2): the inertial reference frame I; the aircraft’s reference frame B; frame C1,
which is attached to the main body center of mass; frames C2 and C3 which are attached,
respectively, to the right and left thruster’s groups centers of mass; and two auxiliary
frames, A2 and A3, placed at the axes of rotation of the right and left servomotors,
respectively.

The Tilt-rotor UAV has eight degrees of freedom and is described by the vector of
generalized coordinates q(t) : R≥0 → R8 with q(t) ≜ [α′(t) η′(t) ξ′(t)]′, where α(t) ≜

[αR(t) αL(t)]′ is the vector of the tilting mechanisms’ angles, which are measured from the
tilting axis of each servomotor1; η(t) ≜ [ϕ(t) θ(t) ψ(t)]′ is the orientation vector of B with
respect to I, described by the Euler angles with ZY X convention about the local axes;
and ξ(t) ≜ [x(t) y(t) z(t)]′ is the position of B with respect to I.

Accordingly, the position and orientation of frames C1, C2, and C3 with respect to the
inertial frame are computed by2

pI
I,C1

=RI
BdB

B,C1
+ξ, (7.1)

RI
C1

=RI
B, (7.2)

pI
I,C2

=RI
B

(
RB

A2
d

A2
A2,C2+dB

B,A2

)
+ξ, (7.3)

1Throughout the manuscript the subscripts R and L will be used to differentiate between the right
and left components of the aircraft.

2For the sake of simplicity, throughout the manuscript some time dependencies are omitted.
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Figure 7.2: The Tilt-rotor UAV kinematic definitions.

RI
C2

=RI
BRB

A2
, (7.4)

pI
I,C3

=RI
B

(
RB

A3
d

A3
A3,C3+dB

B,A3

)
+ξ. (7.5)

RI
C3

=RI
BRB

A3
, (7.6)

where ppn,m(q) : R8 → R3 and dpn,m ∈ R3 are the position of the origin of the frame m

w.r.t n, expressed in p, and Rn
m ∈ SO(3) is the rotation matrix from frame m to n, for

m,n, p ∈ {I,B, C1, C2, C3,A2,A3}. Moreover, RI
B(q) ≜ Rz,ψRy,θRx,ϕ, RB

A2
(q) ≜ Ry,αR

Rx,−β,
and RB

A3
(q) ≜ Ry,αL

Rx,β, where β ∈ R≥0 is a small inclination angle of the thrusters groups
toward the fuselage, added during the mechanical design in order to improve the system
controllability (Raffo et al., 2011a).

The linear velocity3 vI
I,i(q, q̇) : (R8 × R8) → R3 of each center of mass is computed by

the time derivative of its position pI
I,i(q), for i ∈ {C1, C2, C3}, as follows

vI
I,C1

= ṗI
I,C1

= RI
BS(wB

I,B)dB
B,C1

+ ξ̇,

=
[
0 0 −RI

BS(dB
B,C1

)Wη I
]

q̇,

= JC1(q)q̇, (7.7)
vI

I,C2
= ṗI

I,C2
= RI

C2
S(wC2

I,C2)dA2
A2,C2 + RI

BS(wB
I,B)dB

B,A2
+ ξ̇,

= [−RI
C2

S(dA2
A2,C2)ayR

0 − RI
BS(RB

A2
d

A2
A2,C2 + dB

B,A2
)Wη I]q̇,

= JC2(q)q̇, (7.8)
3Throughout the text the notations vln,m and wl

n,m are used to represent, respectively, the linear and
angular velocities of frame m with respect to n, expressed in l.
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vI
I,C3

= ṗI
I,C3

= RI
C3

S(wC3
I,C3)dA3

A3,C3 + RI
BS(wB

I,B)dB
B,A3

+ ξ̇,

= [0 −RI
C3

S(dA3
A3,C3)ayL

− RI
BS(RB

A3
d

A3
A3,C3 + dB

B,A3
)Wη I]q̇,

= JC3(q)q̇, (7.9)

where RI
A2

= RI
C2

, RI
A3

= RI
C3

, ayR
≜ (Rx,−β)′ay and ayL

≜ (Rx,β)′ay, with ay ≜ [0 1 0]′,
Ji(q) : R8 → R3×8 is the linear velocity Jacobian, and

Wη ≜


1 0 − sin(θ)
0 cos(ϕ) cos(θ) sin(ϕ)
0 − sin(ϕ) cos(ϕ) cos(θ)

 . (7.10)

Besides, it was used the property Ṙj
i = Rj

iS(wi
j,i), where S(·) : R3 → R3×3 denotes a

skew-symmetric matrix (Spong et al., 2006).
In addition, the angular velocities of the centers of mass are given by

wI
I,C1

= RI
C1

w
C1
I,C1 = RI

BWηη̇,

=
[
0 0 RI

BWη 0
]

q̇,

= WC1(q)q̇, (7.11)
wI

I,C2
= wI

I,B + wI
B,C2

= RI
BwB

I,B + RI
C2

w
C2
B,C2 ,

=
[
RI

C2
ayR

0 RI
BWη 0

]
q̇,

= WC2(q)q̇, (7.12)
wI

I,C3
= wI

I,B + wI
B,C3

= RI
BwB

I,B + RI
C3

w
C3
B,C3 ,

=
[
0 RI

C3
ayL

RI
BWη 0

]
q̇,

= WC3(q)q̇, (7.13)

where Wi(q) : R8 → R3×8 is the angular velocity Jacobian.

7.2.2 Equations of motion

The equations of motion of the Tilt-rotor UAV illustrated in Figures 7.1 and 7.2 are
written in the Euler-Lagrange canonical form

M(q)q̈(t) + C(q, q̇)q̇(t) + g(q) = ϑ(q, q̇, τ , ζ), (7.14)

where M(q) : R8 → R8×8 is the inertia matrix, C(q, q̇) : (R8 ×R8) → R8×8 is the Coriolis and
centripetal forces matrix, g(q) : R8 → R8 is the gravitational force vector, and ϑ(q, q̇, τ , ζ) :
(R8 × R8 × Rnτ × Rnζ ) → R8 is the vector of generalized forces that actuate on the system.
For details of the Euler-Lagrange formulation, see Section 3.5.

The inertia matrix is obtained from the Tilt-rotor UAV total kinetic energy, which is
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computed as

K(q, q̇) ≜ 1
2
∑
i

(
mi(vI

I,i)′vI
I,i + (wI

I,i)′RI
i Ii(RI

i )′wI
I,i

)
= 1

2 q̇′M(q)q̇, (7.15)

where i ∈ {C1, C2, C3}, mi ∈ R≥0 is the i-th body mass, and Ii ∈ R3×3 is the inertia tensor
matrix with respect to its respective center of mass attached frame.

Thus, by manipulating (7.15) algebraically, yields

M(q) =


M11 ∗ ∗ ∗
M21 M22 ∗ ∗
M31 M32 M33 ∗
M41 M42 M43 M44

 , (7.16)

where the * term indicates symmetry, and

M11 = a′
yR

[
IC2 −mC2S(dA2

A2,C2)S(dA2
A2,C2)

]
ayR

,

M21 = 0,

M22 = a′
yL

[
IC3−mC3S(dA3

A3,C3)S(dA3
A3,C3)

]
ayL

,

M31 = W ′
η

[
RB

C2
Ic2−mC2S(dB

B,A2
+ RB

A2
d

A2
A2,C2)RB

A2
S(dA2

A2,C2)
]

ayR
,

M32 = W ′
η

[
RB

C3
IC3−mC3S(dB

B,A3
+ RB

A3
d

A3
A3,C3)RB

A3
S(dA3

A3,C3)
]

ayL
,

M33 = W ′
η

[
IC1 + RB

C2
IC2(RB

C2
)′ + RB

C3
IC3(RB

C3
)′ −mC1S(dB

B,C1
)S(dB

B,C1
)

−mC2S(dB
B,A2

+ RB
A2

d
A2
A2,C2)S(dB

B,A2
+ RB

A2
d

A2
A2,C2),

−mC3S(dB
B,A2

+ RB
A2

d
A3
A3,C3)S(dB

B,A3
+ RB

A3
d

A3
A3,C3)

]
Wη

M41 = −mC2RI
C2

S(dA2
A2,C2)ayR

,

M42 = −mC3RI
C3

S(dA3
A3,C3)ayL

,

M43 = −RI
B

[
mC1S(dB

B,C1
) +mC2S(dB

B,A2
+ RB

A2
d

A2
A2,C2) +mC3S(dB

B,A3
+ RB

A3
d

A3
A3,C3)

]
Wη,

M44 = (mC1 +mC2 +mC3)I.

The Coriolis and centripetal forces matrix is obtained from the inertia matrix (7.16)
by computing the Christoffel symbols of first kind (see section 3.5, equation (3.40)). In
addition, the gravitational force vector is obtained through the potential energy of the
system

P(q) = −
∑
i

mig
′
rpI

I,i, (7.17)

where g(q) = ∂P(q)/∂q, in which gr = [0 0 −9.8]′(m/s2) is the gravity acceleration vector,
given with respect to I.

7.2.3 Generalized forces

The vector of generalized forces ϑ(q, q̇, τ , ζ) in (7.14) is composed of non-conservative
forces and torques that actuate on the Tilt-rotor UAV. It is a function of the vector of
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generalized coordinates q(t), the vector of generalized velocities q̇(t), the control input
vector τ (t) : R≥0 → R8, and the environment wind speed vector ζ(t) : R≥0 → R3.

As illustrated in Figure 7.1, the control input vector is given by τ (t) = [nPR(t) nPL(t)
τsR(t) τsL(t) δWR

(t) δWL
(t) δTR(t) δTL(t)]′, where nPR(t) and nPL(t) are the angular velocities

of the propellers, τsR(t) and τsL(t) are the torques applied by the servomotors, δWR
(t)

and δWL
(t) are the right and left aileron deflections, respectively, and δTR(t) and δTL(t)

are the right and left ruddervator deflections, respectively. In addition, the environment
wind speed vector is given by ζ(t) =

[
ζx(t) ζy(t) ζz(t)

]′
, in which the elements are the

magnitude of the environment wind speed on the axes of I.
In order to compute the vector of generalized forces, this work splits this vector into

terms related to the contribution of the propellers, servomotors, fuselage, wings, tail
surfaces, and aerodynamic interference, as follows

ϑ(q̇, q, τ , ζ) = ϑP + ϑs + ϑF + ϑW + ϑT + ϑI . (7.18)

In the following the terms in (7.18) are computed.

Propellers

In order to compute the term in (7.18) related to the right and left propellers, initially,
the reference frames PR and PL are rigidly attached to the center of rotation of the
propellers, as depicted in Figure 7.3. The position of PR and PL with respect to the
inertial frame are described by

pI
I,PR

=RI
B

(
RB

A2
d

A2
A2,PR+dB

B,A2

)
+ξ, (7.19)

pI
I,PL

=RI
B

(
RB

A3
d

A3
A3,PL+dB

B,A3

)
+ξ. (7.20)

where d
A2
A2,PR ,d

A3
A3,PL ∈ R3 are the distances between frames A2 and A3 and the center of

rotation of the right and left propellers, respectively.
Consequently, the linear and angular velocities of PR and PL are given by

vI
I,PR

= ṗI
I,PR

= RI
PR

S(wPR
I,PR)dA2

A2,PR + RI
BS(wB

I,B)dB
B,A2

+ ξ̇,

=
[
−RI

A2
S(dA2

A2,PR)ayR
0 − RI

BS(RB
A2

d
A2
A2,PR + dB

B,A2
)Wη I

]
q̇,

= JPR(q)q̇, (7.21)
vI

I,PL
= ṗI

I,PL
= RI

PL
S(wPL

I,PL)dA3
A3,PL + RI

BS(wB
I,B)dB

B,A3
+ ξ̇,

=
[
0 −RI

A3
S(dA3

A3,PL)ayL
− RI

BS(RB
A3

d
A3
A3,PL + dB

B,A3
)Wη I

]
q̇,

= JPL(q)q̇, (7.22)
wI

I,PR
= wI

I,B + wI
B,PR

= RI
BwB

I,B + RI
PR

w
PR
B,PR ,

=
[
RI

A2
ayR

0 RI
BWη 0

]
q̇,
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= WPR(q)q̇, (7.23)
wI

I,PL
= wI

I,B + wI
B,PL

= RI
BwB

I,B + RI
PL

w
PL
B,PL ,

=
[
0 RI

A3
ayL

RI
BWη 0

]
q̇,

= WPL(q)q̇. (7.24)

in which RI
PR

≜ RI
C2

= RI
A2

and RI
PL

≜ RI
C3

= RI
A3

.

V air
PR

PR

φair
PR

uPR

wPR

vPR

V air
PL

PL

φair
PL

uPL

wPL

vPL

Figure 7.3: Angle of attack, φairPR
, φairPL

, and magnitude of the relative wind speed, V air
PR

,
V air

PL
, actuating on the right and left propellers.

The thrusts and torques generated by the propellers are computed by (Ortega et al.,
2021)

fPR = ρd4n2
PR
ct
(
JPR , φ

air
PR

)
, (7.25)

tPR = λPRρd
5n2

PR
cq
(
JPR , φ

air
PR

)
, (7.26)

fPL = ρd4n2
PL
ct
(
JPL , φ

air
PL

)
, (7.27)

tPL = λPLρd
5n2

PL
cq
(
JPL , φ

air
PL

)
, (7.28)

where ρ ∈ R≥0 is the air density, d ∈ R≥0 is the diameter of the propeller, and λPR , λPL ∈
{1,−1} are given according to the direction of rotation of the corresponding propeller: if
clockwise, -1, if counter-clockwise, 1. In order to cancel the gyroscope effect generated by
the propellers, it is considered λR = 1, and λL = −1. In addition, ct, cq : (R≥0 × R≥0) → R

are estimated thrust and torque coefficients. These are functions of JP(V air
P , nP) = V air

P

d nP
,

in which V air
P is the magnitude of the relative wind speed actuating on the propeller P,

and φairP is the angle of attack of the propeller P, for P ∈ {PR,PL}, as illustrated in Figure
7.3.

Remark 43. For control purposes, the dynamics of the rotors are neglected. The thrusts
and torques applied by the propellers (7.25)-(7.28) are computed assuming the rotors in
steady-state.
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The magnitude of the relative wind speed actuating on the propeller P is computed
as

V air
P =

√
u2

P + v2
P + w2

P , (7.29)

and the angle of attack is given by

φairP = acos
(
wP

V air
P

)
, (7.30)

where 
uP

vP

wP

 = (RI
P)′ (

ṗI
I,P − ζ

)
, (7.31)

with ṗI
I,P = JP(q)q̇, RI

PR
≜ RI

C2
, and RI

PL
≜ RI

C3
.

Thus, regarding the mappings (3.41) and (3.43), the terms in the vector of generalized
forces (7.18) related to the propellers are computed as follows

ϑP =

right prop. force︷ ︸︸ ︷
J ′

PR
RI

PR

 0
fPR

+

right prop. drag torque︷ ︸︸ ︷
W ′

PR
RI

PR

 0
λPRtPR

+

left prop. force︷ ︸︸ ︷
J ′

PL
RI

PL

 0
fPL

+

left prop. drag torque︷ ︸︸ ︷
W ′

PL
RI

PL

 0
λPLtPL

 . (7.32)

Servomotors

The vector of generalized forces generated by the servomotors are computed through
the law of action and reaction, and is given by

ϑs =

Right serv. action︷ ︸︸ ︷
W ′

C2
RI

C2


0
τsR

0

−

Body’s reaction︷ ︸︸ ︷
W ′

C1
RI

C2


0
τsR

0

+

Left serv. action︷ ︸︸ ︷
W ′

C3
RI

C3


0
τsL

0

−

Body’s reaction︷ ︸︸ ︷
W ′

C1
RI

C3


0
τsL

0

−

Friction︷ ︸︸ ︷νI 0
0 0

 q̇, (7.33)

where the last term concerns the friction, in which ν ∈ R≥0 is the coefficient of viscosity
of the servomotors.

Fuselage, wings, and tail-surfaces

In order to compute the vectors of generalized forces generated by the fuselage, wings,
the tail-surfaces, the Tilt-rotor UAV is split into five aerodynamic surfaces and five frames
are rigidly attached to the system, one at each aerodynamic center. These are given by
S ∈ {F , WR, WL, TR, TL}, in which F denotes the fuselage, WR and WL the right and left
wings, and TR and TL the right and left tail-surfaces.
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Accordingly, the position of the aerodynamic center S with respect to I is computed
as

pI
I,S = RI

BdB
B,S + ξ, (7.34)

where dB
B,S ∈ R3 is the position of the aerodynamic center S with respect to B, expressed

in B.
The velocity of the aerodynamic center S is computed as the time derivative of its

position (7.34), as follows

vI
I,S = ṗI

I,S = RI
BS(wB

I,B)dB
B,S + ξ̇ = −RI

BS(dB
B,S)Wηη̇ + ξ̇

=
[
0 0 −RI

BS(dB
B,S)Wη I

]
q̇ = JS q̇, (7.35)

where JS(q) : R8 → R3×8 is the linear velocity Jacobian of the aerodynamic center S. The
angular velocity of the aerodynamic center S with respect to I is given by

wI
I,S = RI

BwS
I,S = RI

BWηη̇,

=
[
0 0 RI

BWη 0
]

q̇ = WS(q)q̇, (7.36)

where WS(q) : R8 → R3×8 is the angular velocity Jacobian.

Assumption 18. The positions of aerodynamic centers remain constant with respect to
B during the flight.

In addition, before computing the aerodynamic forces and torques, the magnitude and
orientation of the relative wind speed must be computed for every aerodynamic surface.
Similarly to (7.31), the relative wind speed vector actuating on the aerodynamic center
S is given by 

uS

vS

wS

 = (RI
S)′ (

ṗI
I,S − ζ

)
, (7.37)

where the rotation matrices RI
F , RI

WR
, RI

WL
, RI

TR
, RI

TL
∈ SO(3) are given according to

the orientation of each aerodynamic center frame4. In the particular case in which these
frames are oriented according to the aerodynamic surface, these matrices are given by
RI

F ≜ RI
B, RI

WR
≜ RI

BRx,−ϵ, RI
WL

≜ RI
BRx,ϵ, RI

TR
≜ RI

BRx,−µ, and RI
TL

≜ RI
BRx,µ, where

ϵ, µ ∈ R are the dihedral angles of the wings and tail-surfaces, respectively, with respect
to the aircraft reference frame B.

4The frame of the aerodynamic center must be oriented taking into account the wind tunnel experi-
ments, and are related to the aerodynamic coefficients.
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V airS

S

βairS

αairS

uS

vS

wS

Aerodynamic center

Figure 7.4: Illustration of the relative wind speed vector and its orientation for a generic
aerodynamic surface.

From (7.37), the magnitude of the relative wind speed actuating at the aerodynamic
center S is given by

V air
S =

√
w2

S + v2
S + u2

S . (7.38)

In addition, the orientation of the relative wind speed actuating at the aerodynamic
centers S is given by the angle of attack and the side-slip angle, which are compute,
respectively, by5

αairS = atan
(wS

uS

)
, (7.39)

βairS = asin
( vS

VS

)
. (7.40)

The relative wind speed vector, angle of attack, and side-slip angle are illustrated in Figure
7.4.

Taking into account the expressions (7.34)-(7.40), the aerodynamic forces and mo-
ments generated by each surface S are then computed as

f dS = −κairS sS cdS , (7.41)
f yS = κairS sS cyS , (7.42)
f lS = κairS sS clS , (7.43)
LS = κairS sS cLS , (7.44)
MS = κairS sS cMS , (7.45)

5In this work, the angle of attack and side-slip angle do not follow the North-East-Down (NED)
aerodynamic convention.
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NS = κairS sS cNS , (7.46)

where κairS = 1
2ρ (V air

S )2, f dS is the drag force, f yS is the side force, f lS is the lift force, LS is the
rolling moment, MS is the pitching moment, and NS is the yawing moment. In addition,
cdS , c

y
S , c

l
S , c

L
S , c

M
S , c

N
S are estimated aerodynamic coefficients of the surface S. These are

functions of the angle of attack, side-slip angle, and may also be function of the deflection
of the aerodynamic control surfaces, depending on the considered surface. In addition,
these coefficients are assumed adimensionalized with respect to the surface area sS ∈ R.
The aerodynamic coefficients of the fuselage, wings, and tail-surfaces are presented in
Appendix B. Figure 7.5 illustrates the aerodynamic forces and moments actuating on a
generic aerodynamic surface S.

S

fd
S

fl
S

f
y
S

LS

MS

NS

uS

vS

wS

V air
S

αair
S

βair
S

αair
S

βair
S

Figure 7.5: Forces and moments actuating on a generic aerodynamic surface due to the
relative wind speed. The drag force is parallel with the relative wind speed vector, the
lift and the side forces are oriented according to the angle of attack and side-slip angle,
respectively.

Concerning the mappings (3.41) and (3.43), and (7.41)-(7.46), the vector of generalized
forces generated by the aerodynamic forces and moments due to the fuselage, wings, and
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tail surfaces, are computed as follows

ϑF = J ′
FRI

F

RF
WF


f dF

f yF

f lF


+ W ′

FRI
F


LF

MF

NF

 , (7.47)

ϑW = J ′
WR

RI
WR

R
WR
WWR


f dWR

f yWR

f lWR


+ W ′

WR
RI

WR


LWR

MWR

NWR



+ J ′
WL

RI
WL

R
WL
WWL


f dWL

f yWL

f lWL


+ W ′

WL
RI

WL


LWL

MWL

NWL

 , (7.48)

ϑT = J ′
TR

RI
TR

R
TR
WTR


f dTR
f yTR

f lTR


+ W ′

TR
RI

TR


LTR

MTR

NTR



+ J ′
TL

RI
TL

R
TL
WTL


f dTL
f yTL

f lTL


+ W ′

TL
RI

TL


LTL

MTL

NTL

 , (7.49)

where the rotation matrix RS
WS

≜ Ry,−αairS
Rz,−βairS

is used to express the lift, drag, and side
forces from the wind orientation to the aerodynamic center frame. Also, the linear and
angular velocity Jacobians JS and WS are computed according to (7.35) and (7.36).

It is noteworthy that the forces and moments generated by the aerodynamic surfaces
(7.41)-(7.46) are dependent on the dynamic pressure κairS , which increases with the square
of the magnitude of the relative wind speed. When performing VTOL and hovering, the
magnitude of the relative wind speed is very small. Consequently, the thrusters’ groups
must provide the moments and forces necessary to perform the flight maneuvers. On
the other side, during the transition and while performing cruise flight, the aircraft can
take advantage of the lift generated by the wings, and the roll, pitch, and yaw moments
generated by the aerodynamic control surfaces. These forces and moments, added to
the ones generated by the propulsion system, allow the Tilt-rotor UAV to tilt the rotors
towards the horizontal position and convert to the airplane mode.

Aerodynamic interference

The vectors of generalized forces (7.47)-(7.49) take into account forces and moments
generated by each aerodynamic surface individually and disregard the coupling effects
between these surfaces, as well as the wind interference generated by one surface on the
others. On one hand, these interferences can be assumed as external disturbances, which
must be compensated by the controller. On the other hand, the vector of generalized
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forces generated by aerodynamic interferences can be modeled and considered into the
vector of generalized forces. In the latter case, this vector can be computed as

ϑI = J ′
IR

I
I

RI
WI


f dI

f yI

f lI


+ W ′

IR
I
I


LI

MI

NI

 , (7.50)

with

f dI = −κairI sI c
d
I , (7.51)

f yI = κairI sI c
y
I , (7.52)

f lI = κairI sI c
l
I , (7.53)

LI = κairI sI c
L
I , (7.54)

MI = κairI sI c
M
I , (7.55)

NI = κairI sI c
N
I , (7.56)

where cdI , cyI , clI , cLI , cMI , cNI are aerodynamic coefficients of the interference, adimensionalized
with respect to the surface area sI ∈ R. These coefficients may be estimated via wind-
tunnel experiments or in flight and, then, can complement the aerodynamic model.

The forces and moments generated by the aerodynamic interference can be assumed
applied at the center of gravity of the aircraft. In this case, the magnitude and orientation
of the relative wind speed for the aerodynamic interference is computed through (7.37),
(7.38), (7.39) and (7.40), considering S = C1 and RI

I = RI
C1

.

Remark 44. The modeling presented in this work is general enough for Tilt-rotor UAVs.
Any forces and moments resulting from additional effects can be considered in the model
by adding their contributions to the generalized forces vector (7.18).

7.2.4 The ProVANT Simulator

The Tilt-rotor UAV used to perform the numerical experiments in this chapter is
the ProVANT-Emergentia Tilt-rotor UAV (see Figure 7.6). This aircraft is currently
being built in the ProVANT Emergentia research project, whose goal is developing Tilt-
rotor UAVs for load transportation and search-and-rescue missions with rapid deployment,
which is available on the ProVANT Simulator6. The ProVANT Simulator is a software
developed at Federal University of Minas Gerais (UFMG) and released under the MIT
open-source license (Lara et al., 2019, 2017). This software was created with the pri-
mary goal of providing high-fidelity simulations with visual feedback of control strategies
designed for UAVs.

6https://github.com/Guiraffo/ProVANT-Simulator

https://github.com/Guiraffo/ProVANT-Simulator
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Figure 7.6: The ProVANT-Emergentia Tilt-rotor UAV mechanical structure.

The mechanical design of the ProVANT-Emergentia Tilt-rotor UAV was developed in
the Computer-Aided Three-Dimensional Interactive Application (CATIA) software and
exported to the ProVANT simulator, which was developed using ROS (Quigley et al.,
2009) and Gazebo (Koenig and Howard, 2004) platforms. The simulator has a set of
plugins that provide the states of the system for the controller and receive the control
input signals. A schematic of the simulator is presented in Figure 7.7.

Controller

Instrumentation

Controller algorithm

Tilt-rotor UAV
SensorsActuators

(a) Information flow in the ProVANT Sim-
ulator.

Controller
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Servomotor L

Aileron R

Aileron L

Rudder R

Rudder L

Thurster R

Thruster L

(b) Communication between the simulation
elements.

Figure 7.7: Schematic of the ProVANT Simulator.

As Gazebo platform does not allow electronic circuit and fluid simulation, the elec-
trical dynamics of the brushless motors are neglected, the thrust and torques applied by
the propellers are computed through (7.25)-(7.28), and the aerodynamic forces and mo-
ments generated by the fuselage, wings, tail-surfaces, and aerodynamic interference, are
computed through (7.41)-(7.46) and (7.51)-(7.56).
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The nonlinear aerodynamic coefficients used to compute the forces and moments gen-
erated by the propellers, fuselage, wings, and tail-surfaces, were obtained via wind tunnel
experiments and are presented in Appendix B.

7.3 Robust control design for the Tilt-rotor UAV

This section proposes robust controllers for the ProVANT-Emergentia Tilt-rotor UAV.
Initially, the state-feedback and output feedback linear W∞ controllers addressed in

Chapter 6 are synthesized for the Tilt-rotor UAV, in order to achieve trajectory tracking in
the helicopter-flight mode. These controllers are synthesized by assuming the environment
wind as disturbance, and the Von Kàrmàn wind turbulence model is used as disturbance
model. A comparative analysis of the controllers are presented.

In addition, a nonlinear W∞ controller is also proposed to solve the full flight envelope
trajectory tracking problem of the Tilt-rotor UAV. To design this controller, the nonlinear
W∞ control approach addressed in Section 5.2 is extended to the case in which the vector
of generalized coordinates is divided into controlled, regulated, and stabilized degrees of
freedom. Besides, a control allocation scheme is proposed to map the optimal control law
to the appropriated control inputs signals according to the magnitude of the relative wind
speed.

7.3.1 Linear W∞ control design for helicopter-flight mode

This section verifies the efficacy of the full-state and dynamic output feedback linear
W∞ controllers proposed in Chapter 6 in the case study of Tilt-rotor UAV.

In order to design the linear W∞ controllers, the nonlinear dynamic equations (7.14)
are linearized around the generic trajectory xr(t), yr(t), zr(t), which results in the following
trimming point of system (7.14), qr = [−0.137 − 0.137 0 0.137 0 xr(t) yr(t) zr(t)]′, q̇r = 0,
and τr = [51.9 51.9 −0.127 −0.127 0 0 0 0], assuming ζr = 0. The linearized state-space
model is given by

∆ẋ(t) = A∆x(t) + B∆u(t) + D∆ζ(t), (7.57)

where ∆x = [∆q′(t) ∆q̇′(t)
∫ t

0 ∆ψ(τ)dτ
∫ t

0 ∆x(τ)dτ
∫ t

0 ∆y(τ)dτ
∫ t

0 ∆z(τ)dτ ]′, in which
∆(·) ≜ (·) − (·)r. The linear W∞ controllers are designed to handle with the Tilt-rotor
UAV operating in the helicopter-flight mode. Therefore, due to the low magnitude of
the relative wind speed in this flight mode, the deflection of the aerodynamic control
surfaces are assumed as fixed and removed from the control input vector, yielding ∆u(t) =
[∆nPR ∆nPL ∆τsR ∆τsL ]′.

In this section, the environment wind is simulated through the von Kàrmàn wind
turbulence model (Tatom et al., 1982). In this turbulence model, the linear velocities
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of the wind gusts are characterized by power spectral densities, that are implemented
through the following transfer functions:

ζx(s)
v1(s)

=
σu
√

2Lu
πV

(
1 + 0.25Lu

V
s
)

1 + 1.357Lu
V
s+ 0.1987

(
Lu
V
s
)2 (7.58)

ζy(s)
v2(s)

=
σv
√

2Lv
πV

(
1 + 2.7478 2Lv

V
s+ 0.3398

( 2Lv
V
s
)2
)

1 + 2.9958 2Lv
V
s+ 1.9754

( 2Lv
V
s
)2 + 0.1539

( 2Lv
V
s
)3 (7.59)

ζz(s)
v3(s)

=
σw
√

2Lw
πV

(
1 + 2.7478 2Lw

V
s+ 0.3398

( 2Lw
V
s
)2
)

1 + 2.9958 2Lw
V
s+ 1.9754

( 2Lw
V
s
)2 + 0.1539

( 2Lw
V
s
)3 (7.60)

in which v1(s), v2(s), and v3(s) are white Gaussian noise signals with zero mean, unitary
variance, and the sampling time 0.01 seconds. In addition, σu = 1, σv = 5, and σw = 3
are the turbulence intensity, Lu, Lv, Lw = 20 are the scale length, and V = 5.1 is the speed
with which the vehicle is moving through the gust field.

For the sake of control design, the linear system (7.57) is represented in the stan-
dard forms (6.1) and (6.11), and the controllers addressed in Sections 6.1 and 6.2, are
synthesized for this system by solving the convex optimization problems with LMI con-
straints (6.7) and (6.22), respectively. The output feedback controller is designed over
the assumption that the Tilt-rotor UAV velocities ẋ and ẏ are not measured, which re-
sults in the output vector y(t) = [∆q′(t) ∆α̇R(t) ∆α̇L(t) ∆ϕ̇(t) ∆θ̇(t) ∆ψ̇(t) ∆ż(t)∫ t

0 ∆x(τ)dτ
∫ t

0 ∆y(τ)dτ
∫ t

0 ∆z(τ)dτ
∫ t

0 ∆ψ(τ)]′. Both the state and output feedback con-
trollers, are tuned via trial-and-error with Γ0 = diag(4.77, 4.77, 0.47, 3.82, 1.27, 5, 10,
10, 7.32, 7.32, 1.91, 6.36, 2.54, 1.66, 1.66, 1.66, 100, 100, 100, 100

),
Γ1 = diag(6.59, 6.59, 1.72, 5.73, 2.29, 1.5, 1.5, 1.5, 0.57, 0.57, 2.86, 0.57, 4.58, 9, 9,
18, 1.14, 4.5, 9, 9

), and Υ0 = diag(5, 5, 5).
Moreover, in order to synthesize the state and output feedback W∞-D controllers7 pro-

posed in Section 6.3, the von Kàrmàn wind turbulence model (7.58)-(7.60) is represented
in the state-space and, together with system (7.57), rewritten in the standard forms (6.28)
and (6.34). For the sake of comparison analysis, the W∞-D controllers are tuned with the
same tuning matrices as the W∞ controllers, but considering Υ1 = diag(16, 9.5, 14.7) for the
state feedback controller, and Υ1 = diag(0.1, 0.1, 0.1) for the output feedback controller.
The W∞-D controllers are obtained by solving the convex optimization problems with
LMI constraints (6.31) and (6.36).

In the particular case of the Tilt-rotor UAV, the design of the output feedback W∞

controller leads to undesired fast poles of the closed-loop system. Thus, the LMI (6.40)
7In this section the controllers that are designed assuming the knowledge of the dynamics of the

disturbance will be called W∞-D controllers
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is added into the convex optimization problems (6.22) and (6.36), considering

α =

−r 0
0 r

 , β =

0 1
0 0

 , (7.61)

with r = 250 which limits the poles allocation space to a ball with radius r centered at
the origin of the complex plane.

In the numerical experiment, the Tilt-rotor UAV starts displaced from the desired
trajectory, with the initial conditions q(0) = [0 0 0 0 0 − 1 20 0]′ and q̇(0) = 0, and is
designated to track the desired trajectory given in Table 7.1, with ψr = ϕr = 0, αRr =
αLr = −0.137, and θr = 0.137. The results of the numerical experiment are presented in
Figures 7.8-7.12, and a quantitative analysis of the results is presented in Table 7.2.

As shown in Figure 7.10, the von Kàrmàn wind turbulence model (7.58)-(7.60) is
applied to emulate the environment wind vector ζ(t) = [ζx(t) ζy ζz(t)]′ during the time
interval 30 ≤ t ≤ 170 s. In addition, in order to satisfy the range αairS , βairS ∈ [−π

2 ,
π

2 ] rad,
for which the aerodynamic coefficients are valid, the component ζx(t) of the environment
wind speed vector is decremented by 3 [m/s].

From the results of Figures 7.8-7.12, one can observe that all the controllers (W∞,
W∞-D, W∞-O.F., W∞-O.F.D) are able to track the desired trajectory and reach the final
destination. Nevertheless, the controllers that are designed considering the dynamics of
the disturbance in the cost functional achieved a less oscillatory behavior and a better
disturbance attenuation, with a smaller control effort, which can also be verified though
the ISE and IAVU indexes, shown in Table 7.2.

Table 7.1: Desired trajectory for the Tilt-rotor UAV translational position.

xr(t) yr(t) zr(t)

t≤105 20 sin(2πt
35 ) 20 cos(2πt

35 ) 2t
5 + 1

105 < t ≤ 125 3.59(t− 105) − 1
20.1795(t− 105)2 20 43

125 < t ≤ 186.5 35.9 20 43 − 0.7(t− 125)

t ≥ 186.5 35.9 20 0

Table 7.2: Table of performance indexes.

P. Index computed by W∞ W∞ −D. W∞ −O.F. W∞ −O.F.D.

ISE
∫ τ

0 (∆x(t))′∆x(t)dt 21.4 (100%) 10.9 (51%) 60.7 (100%) 39.2 (64%)
IADU

∫ t
0

∑4
i=1 | d∆ui(τ)

dτ
|dτ 2182 (100%) 1541.8 (70%) 1376.2 (100%) 1317.3 (95%)
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Figure 7.8: 3D view of the Tilt-rotor UAV trajectory resulting from the application of
the state feedback W∞, output feedback W∞-O.F., state feedback with disturbance model
W∞-D., and output feedback with disturbance model W∞-O.F.D. controllers.

7.3.2 Nonlinear W∞ control design with control allocation

In this subsection, a nonlinear W∞ controller is proposed to achieve robust trajectory
tracking throughout the full flight envelope of the Tilt-rotor UAV.

For control design purposes, initially, the vector of generalized forces (7.18) is manip-
ulated and represented by the input-affine representation

ϑ(q̇, q, τ , ζ) = B(q, q̇, ζ)τ̄ (t) + ϑpassive(q, q̇, ζ) + w(t), (7.62)

where τ̄ ≜ [fPR fPL τsR τsL δWR
δWL

δTR δTL ]′ is the vector of control inputs, w(t) : R≥0 →
R8 represents the total effects of unmodeled dynamics and external disturbances, and
ϑpassive(q, q̇, ζ) comprehends all the terms in ϑP , ϑs, ϑF , ϑW , ϑT and ϑI not influenced
by the control inputs. The algebraic manipulation of the generalized forces (7.18) to
represented in the input affine form (7.62) is presented in Appendix C.

Assumption 19. The environment wind speed vector, ζ, is available.

Remark 45. The control input vector τ̄ considers the forces applied by the propellers as
control inputs and τ̄ ̸= τ (See (7.25) and (7.27)).

As commented previously, when the Tilt-rotor UAV operates in the helicopter-flight
mode, i.e. V air

S ≈ 0, the thrusters’ groups are in charge of providing the forces and mo-
ments necessary to guide the aircraft, and the deflection of the aerodynamic surfaces does
not generate enough forces and moments to be used by the control system, therefore,
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Figure 7.9: Tilt-rotor UAV tracking error, resulting from the application of the state
feedback W∞, output feedback W∞-O.F., state feedback with disturbance model W∞-D.,
and output feedback with disturbance model W∞-O.F.D. controllers.

rank(B(q, q̇)) = 4. On the other hand, when the aircraft is cruising and transitioning,
the aerodynamic control surfaces can be used to improve the control system performance,
therefore, rank(B(q, q̇)) ≥ 4. Consequently, one can verify that the relative wind speed
affects the rank of the input coupling matrix. It is noteworthy that, in order to design
the nonlinear W∞ controllers proposed in Chapter 5, one must choose the number of
controlled DOF taking into account the inf{rank(B(q, q̇))},∀(q, q̇) ∈ Ω, such that Ω con-
cerns all the flight envelope of the Tilt-rotor UAV, complying with Assumptions 5 and
6. Nevertheless, in the case of the nonlinear W∞ controller formulated considering the
whole dynamical model of the mechanical system, proposed in Section 5.2, this implies in
several feasible choices to manipulate the stabilized DOF such that Assumption 8 holds
when transitioning and cruising, which may lead to undesired values for the stabilized de-
grees of freedom. One undesired situation, for instance, is when the tilting angles of the
servomotors are selected as stabilized DOF, then the controller can choose to point the
group of thrusters down in cruising. To handle these issues, this section proposes a new
nonlinear W∞ controller with the generalized coordinates vector partitioned in stabilized,
regulated, and controlled DOF, allowing also to set references for the regulated DOF.



7.3 Robust control design for the Tilt-rotor UAV 148
α

R
[d

eg
]

20 400 60 80 100 120 140 160 180 200
-100

-50

0

50

100

α
L

[d
eg

]

20 400 60 80 100 120 140 160 180 200
-100

-50

0

50

100

w
in

d
[m

/s
]

20 40 600 80 100 120 140 160 180 200
-10

-5

0

5

10
ζx

ζy

ζz

Time [s]

Desired trajectory
W∞
W∞ - D
W∞ - O.F.
W∞ - O.F.D.

Figure 7.10: Tilt-rotor UAV tilting angles of the servomotors, resulting from the applica-
tion of the state feedback W∞, output feedback W∞-O.F., state feedback with disturbance
model W∞-D., and output feedback with disturbance model W∞-O.F.D. controllers, and
the environment wind.

Note that in the previous controllers, the vector of generalized coordinates is partitioned
in stabilized and controlled DOF.

Accordingly, in order to design the nonlinear W∞ controller, and taking into account
the input-affine representation of the vector of generalized forces (7.62), the Tilt-rotor
UAV equations of motion (7.14) are partitioned in stabilized, regulated, and controlled
DOF, as follows

Mss(q) Msr(q) Msc(q)
Mrs(q) Mrr(q) Mrc(q)
Mcs(q) Mcr(q) Mcc(q)


︸ ︷︷ ︸

M(q)


q̈s

q̈r

q̈c


︸ ︷︷ ︸

q̈(t)

+


Css(q, q̇) Csr(q, q̇) Csc(q, q̇)
Crs(q, q̇) Crr(q, q̇) Crc(q, q̇)
Ccs(q, q̇) Ccr(q, q̇) Ccc(q, q̇)


︸ ︷︷ ︸

C(q,q̇)


q̇s

q̇r

q̇c


︸ ︷︷ ︸

q̇(t)

+


gs(q)
gr(q)
gc(q)


︸ ︷︷ ︸

g(q)

=


Bs(q, q̇, ζ)
Br(q, q̇, ζ)
Bc(q, q̇, ζ)


︸ ︷︷ ︸

B(q,q̇)

τ̄ (t) + ϑpassive(q, q̇, ζ) + w(t), (7.63)

with q(t) = [q′
s(t) q′

r(t) q′
c(t)]′, in which qs(t) = [ϕ(t) θ(t)]′ corresponds to the stabilized
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Figure 7.11: Tilt-rotor UAV attitude in the Euler angles, resulting from the application
of the state feedback W∞, output feedback W∞-O.F., state feedback with disturbance
model W∞-D., and output feedback with disturbance model W∞-O.F.D. controllers.

DOF, qr(t) = [ψ(t) αR(t) αL(t)]′ the regulated DOF, and qc(t) = [x(t) y(t) z(t)] the con-
trolled ones. The aim is to achieve trajectory tracking of the Tilt-rotor UAV translational
position (controlled DOF) and set references for the tilting angles of the servomotors
and yaw angle (regulated DOF) while stabilizing the roll and pitch dynamics (Stabilized
DOF).

Accordingly, the tracking error dynamics are written as

M




qs

q̃r+qrr

q̃c+qcr





q̈s
¨̃qr+q̈rr
¨̃qc+q̈cr

+ C




qs

q̃r+qrr

q̃c+qcr

 ,


q̇s
˙̃qr+q̇rr
˙̃qc+q̇cr





q̇s
˙̃qr+q̇rr
˙̃qc+q̇cr



+g




qs

q̃r+qrr

q̃c+qcr


 = B




qs

q̃r+qrr

q̃c+qcr

 ,


q̇s
˙̃qr+q̇rr
˙̃qc+q̇cr

 , ζ
 τ̄ (t) + w(t), (7.64)

with q̃c(t) ≜ qc(t) − qcr(t) and q̃r(t) ≜ qr(t) − qrr(t), where qcr(t), q̇cr(t), q̈cr(t), qrr(t), q̇rr(t)
and q̈rr(t) are the desired values of the controlled and regulated DOF and their time
derivatives, in which qcr(t), qrr(t) ∈ C2.
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Figure 7.12: Tilt-rotor UAV control inputs signal resulting from the application of the
state feedback W∞, output feedback W∞-O.F., state feedback with disturbance model
W∞-D., and output feedback with disturbance model W∞-O.F.D. controllers.

Similarly to Section 5.2, by defining the state vector x(t) ≜
[
q̇′
s(t) ˙̃q′

r(t) ˙̃q′
c(t) q̃′

c(t) q̃′
r(t)∫ t

0 q̃c
′(τ)dτ

]′, equation (7.64) is manipulated in order to obtain the following state space
representation:

ẋ(t) =



−M −1C

0 0 0
0 0 0
0 0 0

0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0


x(t)

︸ ︷︷ ︸
f(x,qs)

−


M −1d

0
0
0


︸ ︷︷ ︸

f̄(x,qs,ζ,t)

+


M −1

0
0
0


︸ ︷︷ ︸

g(x,qs)

u(t) +


M −1

0
0
0


︸ ︷︷ ︸

k(x,qs)

w(t), (7.65)
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with d ≜ g(q) − ϑpassive(q, q̇, ζ) + M(q)


0

q̈rr

q̈cr

 + C(q, q̇)


0

q̈rr

q̇cr

, and u(t) = B(q, q̇, ζ)τ̄ (t) is

the generalized input vector.
Then, the system (7.65) is represented in the standard form

P14 :



ẋ(t) = f(x, qs)+f̄(x, qs, t)+g(x, qs)u(t)+k(x, qs)w(t),

zc(t) =
∫ t

0 q̃c(τ)dτ,

zr(t) = qr(t),

zs(t) = q̇s(t),

(7.66)

where the cost variable zc(t) is related to the trajectory tracking of the controlled DOF
with disturbance rejection capability, zr(t) is related to set-point tracking of the regu-
lated DOF, and zs(t) is defined in order to ensure remaining DOF are stabilized in some
equilibrium point.

The nonlinear W∞ control problem for full flight envelope trajectory tracking of the
Tilt-rotor UAV, based on plant P1, is posed as finding the control law u(x, qs, ζ, t) ∈ U
that minimizes the cost functional

J∞ = 1
2
(
||zc(t)||2

W3,2,Γ
+ ||zr(t)||2

W2,2,Σ
+ ||zs(t)||2

W1,2,Υ
− γ2||w(t)||2

L2

)
, (7.67)

for the worst case of the disturbances w(t) ∈ L2[0,∞), considering a given sufficiently large
γ ∈ R≥0. The optimal control problem is written as

V∞ = min
u∈U

max
w∈D

J∞

s.t. P1. (7.68)

with U : (Rnx × Rns × Rnζ × R≥0) → Rnu and D = L2[0,∞), where nx, ns, nζ. and nu are the
dimensions of the vectors x, qs, ζ, and u, respectively.

Remark 46. In (7.67), the number of derivatives taken by the weighted Sobolev norm is
different for each cost variable. The objective is to include the dynamics of the system,
i.e. q̈s, ¨̃qr, ¨̃qc, in the cost functional.

Remark 47. In the optimal control problem (7.68), the time derivatives of the stabilized
DOF are required to converge to zero, but there are no references for the stabilized DOF.
This allows the controller to manipulate the roll and pitch angles to achieve trajectory
tracking and attenuate disturbances.

Remark 48. The cost variable zr(t) is chosen to allow setting references for the regulated
DOF without forcing null steady-state error when the system is subjected to constant dis-
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turbances. This gives the controller the capability of manipulating these variables around
their desired references to attenuate the effects of disturbances.

A particular solution to (7.68) is proposed in the following theorem.

Theorem 12. Let V∞ be the parametrized scalar function

V∞(x, t) = 1
2x′



U 0 0 0 0 0
0 A 0 B 0 0
0 0 Q 0 K T

0 B 0 C 0 0
0 0 K 0 R S

0 0 T 0 S P


x > 0, (7.69)

such that U , A, B, Q, K, T , R, S, and P are positive definite matrices and verify

Q − KR−1K > 0, A − BC−1B > 0, and
Q K

K R

 −

T

S

P −1
[
T S

]
> 0, with U , B, T ,

A, K, and Q obtained from the following Riccati equations

−UΥ−1
1 U + Υ0 = 0, (7.70)

−BΣ−1
2 B + Σ0 = 0, (7.71)

−T Γ−1
3 T + Γ0 = 0, (7.72)

−AΣ−1
2 A + 2B + Σ1 = 0, (7.73)

−KΓ−1
3 K + Γ1 + 2T Γ−1

3 Q = 0, (7.74)
−QΓ−1

3 Q + 2K + Γ2 = 0, (7.75)

Besides, C, S, P , and R are given by

C = BΓ−1
2 A, (7.76)

S = QΓ−1
3 T , (7.77)

P = T Γ−1
3 K, (7.78)

R = KΓ−1
3 Q − T , (7.79)

(7.80)

Then, function V∞(x, t) is a solution to the HJ equation (7.68).

Proof. The proof follows similar to one of Theorem 4.

From (7.68) and (7.69), the optimal control law is given by

u∗ = −Π−1g(x, qs)′∂V∞

∂x
+ C ˙̃q + d − w∗, (7.81)
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(7.82)

with Π ≜ M −1EM −1 and E ≜ blkdiag(Υ1,Σ2,Γ3), with the worst case of the disturbances
given by

w∗ = 1
γ2

(
k′ − g′

)∂V∞

∂x
. (7.83)

In order to handle the varying rank of the input coupling matrix, the W∞ controller
is implemented taking into account the control allocation scheme

min
τ̄∈T

(u∗(t) − B(q, q̇, ζ)τ̄ (t))′ (u∗(t) − B(q, q̇, ζ)τ̄ (t)) , (7.84)

s.t. lo(t) ≤ τ̄ (t) ≤ up(t),

where T : R≥0 → Rnτ̄ , and

up(t) ≜
[
fmaxPR

fmaxPL
τmaxsR

τmaxsL
δmaxWR

δmaxWL
δmaxTR

δmaxTL

]′
, (7.85)

lo(t) ≜
[
fminPR

fminPL
τminsR

τminsL
δminWR

δminWL
δminTR

δminTL

]′
, (7.86)

in which fminPR
, fmaxPR

, fminPL
, fmaxPL

, τminsR
, τmaxsR

, τminsL
, τmaxsL

∈ R are the minimum and maximum
values of thrust and torque, which can be applied by the propellers and servomotors,
respectively, and δminWR

, δmaxWR
, δminWL

, δmaxWL
, δminTR

, δmaxTR
, δminTL

, δmaxTL
: R → R are functions that

determine the maximum and minimum deflection of the aerodynamic control surfaces,
they are computed taking into account the magnitude of the relative wind-speed, as
follows,

δminA = δminsigmf(V air
A ), (7.87)

δmaxA = δmaxsigmf(V air
A ), (7.88)

for A ∈ {WR,WL, TR, TL}, where δmin, δmax ∈ R are the maximum and minimum deflection
of the ailerons and ruddervators, and

sigmf(V air
A ) = 1

1 + e−s(V airA −c) , (7.89)

in which c, s ∈ R are tuning parameters that determine the magnitude and interval of the
relative wind-speed in which the transition occurs, as illustrated in Figure 7.13.

Remark 49. The control allocation scheme (7.84) can be seen as a pseudo-inverse map-
ping with parameter varying saturation constraints. These constraints adapt the mapping
according to the magnitude of the relative wind speed allowing to use the control aerody-
namic surfaces when they are effective.
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Figure 7.13: Illustration of the sigmf function.

The control input fP , for P ∈ {PR,PL}, generated by the control allocation (7.84) is
then mapped to the angular velocity of the propeller by solving the nonlinear function:

fP − ρd4n2
Pct (JP , αP) = 0, (7.90)

for nP > 0.

Remark 50. Equation (7.90) comes from (7.25) and (7.27).

In order to verify the efficacy of the proposed nonlinear W∞ controller, numerical
experiments are conducted considering two different kind of scenarios. The first scenario
devotes to verify the capabilities of the Tilt-rotor UAV to operate in the helicopter-flight
mode. The second scenario concerns a more general case in which the Tilt-rotor UAV must
take-off from a home base, accelerate in forward motion while transitioning from helicopter
to cruise flight mode, perform a circular trajectory, then decelerate while transitioning
from cruise to helicopter-flight mode, and land at the final destination.

To perform the numerical experiments, the W∞ controller is tuned via trial-and-
error with Υ0 = diag(180, 10), Υ1 = diag(2, 0.02), Σ0 = diag(20, 20, 0.01), Σ1 =
diag(15, 15, 400), Σ2 = diag(0.1, 0.1, 15), Γ0 = diag(0.05, 0.05, 0.5), Γ1 = diag(1, 1, 1),
Γ2 = diag(400, 400, 200), Γ3 = diag(500, 500, 50), and the generalized inputs (7.81) are
computed taking into account the solution (7.69), which is given in Theorem (12), of
the HJBI equation (5.104). The control signals are computed from the generalized in-
puts (7.81) by solving the control allocation problem (7.84), with fmaxPR

= fmaxPL
= 100,

fminPR
= fminPL

= 0, τmaxsR
= τmaxsL

= 2, τminsR
= τminsL

= −2, δmax = 5π
36 , δmin = −5π

36 , and with the
parameters s = 2 and c = 12 in (7.89), then solving the nonlinear function (7.90).

In the first experiment, the Tilt-rotor UAV is designated to track the desired trajectory
present in Table 7.1. The experiment is conducted with the aircraft starting displaced
from the desired trajectory, with initial conditions q(0) = q̇(0) = 0. Along the exper-
iment, a constant environment wind with magnitude ζ = [0 3 0]′ affects the system.
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Figure 7.14: Environment wind and external disturbances applied in the first scenario.

In addition, the external disturbance w(t) = J ′
C1

(q)fC1
I (t) is applied to the system, with

fI
C1

(t) = [fxC1
(t) f yC1(t) f zC1

(t)]′, in which fxC1
, f yC1 , f

z
C1

∈ R≥0 → R are forces applied to the
center of mass of the aircraft and oriented according to the inertial frame, I, whose mag-
nitudes are given in Figure 7.14. The results of the experiment are shown in Figures
7.15-7.20.

As can be observed, at the beginning of the experiment, the Tilt-rotor UAV starts
far from the desired trajectory and converges to it. From 20 to 30 seconds, and 40 to
50 seconds, external forces with magnitude −15 N, given according to the y⃗ − axis and
z⃗ − axis of the inertial frame, respectively, are applied at the center of gravity of the
aircraft. At these intervals, the aircraft is pushed out from the desired trajectory and
the W∞ controller manipulates the control signals together with the stabilized degrees of
freedom to attenuate these disturbances.

It is noteworthy that to handle the lateral environmental wind, the Tilt-rotor UAV
performs the experiment with a displacement in the yaw angle. Moreover, as illustrated
in Figures 7.19 and 7.20, since the control aerodynamic surfaces are not employed by
the control system, the experiment is carried out with the controller making use only of
the group of thrusters and the servomotors. In the first experiment, the Tilt-rotor UAV
accomplished the mission and reach the final destination.

In the second experiment, the Tilt-rotor UAV is designated to track the desired trajec-
tory present in Table 7.3. This trajectory is composed of six stretches. In the first stretch,
the UAV must take-off from a home point while accelerating in forward motion. In the
second stretch, the UAV reaches the cruise speed (33 m/s) and performs forward flight
with constant altitude. In the third stretch, it performs a circular path with constant
altitude and cruise speed. At the end of this stretch, the UAV performs forward flight
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Figure 7.15: Tilt-rotor UAV trajectory in the 3D view, resulting from the application of
the nonlinear W∞ controller in the first scenario.
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Figure 7.16: Tilt-rotor UAV translational position, resulting from the application of the
nonlinear W∞ controller in the first scenario.
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Figure 7.18: Tilt-rotor UAV tilting angles of the servomotors and yaw angle, resulting
from the application of the nonlinear W∞ controller in the first scenario.

again. Then, in the fifth and sixth stretches it decelerates and lands at a final destina-
tion, remaining at this position. In addition, during the experiment, the Tilt-rotor UAV
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from the application of the nonlinear W∞ controller in the first experiment.

is subjected to disturbances from wind gusts8.
In the numerical experiments, the Tilt-rotor UAV starts with the initial condition

q(0) = q̇(0) = 0. Similarly to the previous experiment, the aircraft is subjected to a
constant environment wind, with magnitude ζx = −3 m/s, and also to wind gusts ζx, ζy
with profile according to Figure 7.21. The results of the second numerical experiment are
present in Figures 7.22-7.27.

Note that, at the beginning of the experiment, during the transition from helicopter
to cruise flight mode, and also at the end of the experiment, during the transition from
cruise to helicopter-flight mode, external disturbances and wind gusts are applied to the
aircraft, as illustrated in Figure 7.21. All these disturbances were attenuated by the
control system.

Observe that the circular path is performed with a roll angle. This behavior is physi-
cally necessary to project lift forces at the horizontal plane, allowing the Tilt-rotor UAV
to perform turning flight. Moreover, as in the previous experiment, the yaw angle is

8In the numerical experiments, the changes in the magnitude of the relative wind speed, angle of
attack, and side-slip angle originated from wind gusts are not measured, contradicting Assumption 19,
so are considered as external disturbances by the control system.
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Figure 7.20: Tilt-rotor UAV deflection of the aerodynamic surfaces, resulting from the
application of the nonlinear W∞ controller in the first scenario. For the sake of simplicity,
the tail control surfaces are represented by the equivalent deflection in the elevator and
rudder, which are computed as δe = 1

2(δTR + δTL) and δr = 1
2(δTR − δTL).

displaced from the desired value due to the lateral wind affecting the system.
It is noteworthy that, due to the high magnitude of the relative wind speed, when

the aircraft is in cruising, the propellers lose efficiency requiring a higher angular velocity
(see Figure 7.26). Besides, the aerodynamic control surfaces are not employed when the
Tilt-rotor UAV is in helicopter-flight mode (see Figure 7.27).

In the second experiment, the W∞ controller was able to stabilize the stabilized DOF
and manipulate the control inputs to attenuate the effects of the disturbances and track
the desired trajectory. As in the previous experiment, the Tilt-rotor UAV attenuated
disturbances and successfully reached the final destination.

Finally, it is worth highlighting that the Tilt-rotor UAV achieved better tracking
performance in the second experiment, in comparison with the first. This is because the
Tilt-rotor UAV have different dynamics in hovering, transition, and cruise flight modes,
however, controller considers the same tuning for all the flight modes.
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Table 7.3: Desired trajectory for the Tilt-rotor UAV translational position and yaw angle.
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Figure 7.21: Environment wind and external disturbances applied in the second scenario.

7.4 Final Remarks

This chapter presented the modeling and the design of linear and nonlinear controllers
for the Tilt-rotor UAV performing trajectory tracking when in hovering and for the full
flight envelope.
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Figure 7.22: Tilt-rotor UAV trajectory in the 3D view, resulting from the application of
the nonlinear W∞ controller in the second scenario.
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Figure 7.23: Tilt-rotor UAV translational position, resulting from the application of the
nonlinear W∞ controller in the second scenario.
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Figure 7.24: Tilt-rotor UAV roll and pitch angles, resulting from the application of the
nonlinear W∞ controller in the second scenario.
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Figure 7.25: Tilt-rotor UAV tilting angles of the servomotors and yaw angle, resulting
from the application of the nonlinear W∞ controller in the second scenario.
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Figure 7.26: Tilt-rotor UAV propellers angular velocities and servomotor torques, result-
ing from the application of the nonlinear W∞ controller in the second scenario.

A detailed modeling of the nonlinear multi-body dynamics of the Tilt-rotor UAV
was conducted using the Euler-Lagrange formalism. Also, the non-conservative forces
and torques generated by the propellers, servomotors, fuselage, wings, tail surfaces, and
aerodynamic interference were computed and mapped to the vector of generalized forces.
This aircraft was implement on the ProVANT Simulator using the CAD model and data
from wind tunnel experiment, in which numerical experiments were conducted.

Initially, full-state and dynamic output feedback linear W∞ controllers were synthe-
sized for the Tilt-rotor UAV considering all the approaches addressed in Chapter 6. For
the sake of control design, the Von Kàrmàn wind turbulence model was used to simulate
the environment wind. The dynamics of this turbulence model was then used to design the
controllers addressed in Section 6.3 (here called W∞-D controllers). Comparison analysis
was performed between the controllers, which verified that, although all the controllers
achieved good results dealing with the helicopter-flight mode of the Tilt-rotor UAV, the
W∞-D controllers achieved a better disturbance attenuation with a smaller control effort.

Moreover, a nonlinear W∞ controller was proposed to solve the full flight envelope
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Figure 7.27: Tilt-rotor UAV deflection of the aerodynamic surfaces, resulting from the
application of the nonlinear W∞ controller in the second scenario. For the sake of simplic-
ity, the tail control surfaces are represented by the equivalent deflection in the elevator
and rudder, which are computed as δe = 1

2(δTR + δTL) and δr = 1
2(δTR − δTL).

trajectory tracking problem of the convertible Tilt-rotor UAV. In order to design this
controller, the nonlinear control approach addressed in Section 5.2 was extended to the
case in which the mechanical system is partitioned with respect to stabilized, regulated,
and controlled DOF. Additionally, a control allocation scheme was also proposed to handle
with the time-varying rank of the input coupling matrix, mapping the generalized optimal
control law to the control inputs signals properly, by taking into account the magnitude
of the relative wind speed. The efficiency of the nonlinear controller was verified in two
different kind of scenarios. The first scenario concerns the operation of the Tilt-rotor
UAV in the helicopter-flight mode, while the second scenario concerns the transition from
hovering to cruise flight mode, and vice-versa, and turning flight level. The Tilt-rotor
UAV was able to satisfactorily track the desired trajectory and attenuate the effects of
external disturbances in both scenarios. From the best knowledge of the author, this
is the first work that proposes a single nonlinear controller to cope with the full flight
envelope of the Tilt-rotor UAV continuously, dealing with multi-body dynamics without
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using any cascade strategy or simplifications on the mathematical model.
The next chapter concludes the thesis and presents some future work proposals.



8
Conclusions

This chapter summarizes the main contributions obtained in this doctoral thesis, and
concludes the text. Future work proposals are also presented and detailed at the end of
this chapter.

8.1 Overview and contributions

This doctoral thesis proposed new formulations of the H2 and H∞ controllers in
weighted Sobolev spaces with the aim of aggregating an improved transient performance
to the closed-loop system. This manuscript was divided into eight chapters, whose content
and contributions are detailed below.

Chapter 1 motivated the development of the W2 and W∞ controllers and exposed the
gap of the classic H2 and H∞ controllers in providing little control over the transient
performance of the closed-loop. Also, it presented the justification, and the objectives of
this doctoral thesis.

Chapter 2 presented a detailed literature review on the main topics of interest in this
doctoral thesis, namely the H2 and H∞ control approaches, the Sobolev space and its
applications in control theory, and approximate solutions to the Hamilton-Jacobi (HJ)
equation. It was presented all the works used on the basis of this doctoral thesis.

Chapter 3 presented some preliminary concepts and definitions necessary to the de-
velopment of this doctoral thesis. It was addressed the following topics: the Lebesgue
and Sobolev spaces, interesting features of the W2 and W∞ control formulations in the
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weighted Sobolev space, the Hamilton-Jacobi-Bellman equation; the method of Galerkin;
and the Euler-Lagrange formulation. In addition, this chapter highlighted interesting fea-
tures of the W2 and W∞ control formulation in the Sobolev space, such as the nonnecessity
of the resulting control signal to belong on the L2-space, and gives the interpretation of
the W∞-attenuation level.

Chapter 4 introduced the nonlinear W2 and W∞ control approaches in the weighted
Sobolev space. The control problems were formulated for autonomous nonlinear systems
and the control problems were developed via dynamic-programming, resulting in complex
HJ equations to be solved. Due to the difficult to solve analytically these HJ equations,
numerical algorithms were proposed to achieve solutions. Numerical experiments were
performed with a Two-wheeled Self-balanced vehicle, and a comparative analysis with the
classic H∞ controller was presented. The results demonstrated that the controllers result-
ing from the weighted Sobolev approach achieved a better transient performance with a
faster disturbance attenuation. The contributions of this chapter can be summarized as:

• The extension of the W2 and W∞ control approaches proposed in Aliyu and Boukas
(2011a) to the weighted Sobolev space;

• The extension of the Successive Galerkin Approximation Algorithm proposed in
Beard and McLain (1998) to approximate solutions of the HJ equations resulting
from the W2 and W∞ control approaches;

• The design of the W2 and W∞ controllers for a Two-wheeled Self-balanced vehicle
with a comparative analysis with the classic H∞ controller.

Chapter 5 proposed new formulations of the nonlinear H2 and H∞ optimal control
approaches in the weighted Sobolev space in order to handle two classes of underactuated
mechanical systems: the class of reduced underactuated mechanical systems, with the ob-
jective of achieving trajectory tracking of a reduced number of degrees of freedom, called
controlled DOF; and the class of underactuated mechanical systems with input coupling,
with the objective of driving the controlled DOF along a desired trajectory while stabi-
lizing the remaining ones. The optimal control problems were formulated via dynamic-
programming, and particular solutions were presented for the resulting HJ equations with
the corresponding stability analysis. The concepts of Wm,p,σ-gain and Wm,p,σ-stability were
established and applied for the particular case of studies. Moreover, it was shown that
for the particular class of underactuated mechanical systems, whose control inputs and
the disturbances vector span the same space in the vector of generalized forces, the W2

and W∞ controllers become equivalent. Numerical results obtained with a fully actuated
manipulator, a Two-wheeled Self-balanced vehicle, and a Quadrotor UAV demonstrated
the efficiency of the proposed control strategies, and that they provided better transient
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performance with faster response against external disturbances in comparison with a clas-
sic nonlinear H∞ controller, in addition to have a simple design. The contributions of this
chapter are summarized as follows:

• The proposal of the nonlinear W2 and W∞ control problems and their formulations
via dynamic programming for reduced underactuated mechanical systems, and the
analytical solutions for the resulting HJ equation with the corresponding stability
analysis;

• The proposal of the nonlinear W2 and W∞ control problems and their formula-
tions via dynamic programming for underactuated mechanical systems with input
coupling, and the analytical solutions for the resulting HJ equation with the corre-
sponding stability analysis;

• The establishment of the concepts of Wm,p,σ-stability and Wm,p,σ-gain for a general
class of systems, with the demonstration for the particular case of studies;

• The design of the nonlinear W2 and W∞ controllers for a fully actuated manipulator,
a Two-wheeled Self-balanced vehicle, and a Quadrotor UAV;

• A comparative analysis of the results with a classic nonlinear H∞ controller.

Chapter 6 formulated the linear W∞ controller in the weighted Sobolev space, for
linear time-invariant systems, via convex optimization problem with Linear Matrix In-
equality (LMI) constraints. It addressed the design of full-state and dynamic output
feedback controllers and introduced a new approach in which the dynamic behavior of
the disturbances is taken into consideration in the control design stage by means of a
disturbance model. In addition, pole placement constraints were incorporated, allowing
the synthesis of W∞ controllers with the closed-loop poles allocated in a predefined region
of the complex plane. Also, the linear W∞ control approach was extended to deal with
uncertain systems. Numerical experiments with a simple linear system, a Two-wheeled
Self-balanced vehicle, and a quadrotor UAV corroborated the efficiency of the linear W∞

control approaches and demonstrated that they achieved better performance in compar-
ison with a linear H∞ controller. The contributions of this chapter are summarized as
follows:

• The formulation of the W∞ control strategy in the weighted Sobolev space for linear
systems via semi-definite programming with LMI constraints, considering state and
output feedback approaches;

• The formulation of the W∞ control strategy taken into account the dynamics of the
disturbance;



8.1 Overview and contributions 169

• The development of pole placement constraints that allow the synthesis of W∞ con-
trollers with the closed-loop poles allocated in a predefined region D of the complex
plane;

• The extension of these controllers to deal with uncertain systems.

Chapter 7 synthesized W∞ controllers for the Tilt-rotor UAV. Initially, a detailed
modeling of the nonlinear multi-body dynamics of this UAV was conducted using the
Euler-Lagrange formalism, and the non-conservative forces and torques generated by the
propellers, servomotors, fuselage, wings, tail surfaces, and aerodynamic interference were
computed and mapped to the vector of generalized forces. Then, the state and output
feedback linear W∞ controllers proposed in Chapter 6 were synthesized for the Tilt-rotor
UAV, with the Von Kármán wind turbulence model being considered as the disturbance
model. Numerical experiments were conducted in a high fidelity simulator. Although
all the controllers achieved good results when flying in the helicopter-flight mode, the
controllers designed considering the disturbance model in the cost functional achieved
better disturbance attenuation with a smaller control effort and improved IADU and ISE
performance indexes.

Still in Chapter 7, a nonlinear W∞ controller was proposed to solve the full flight enve-
lope trajectory tracking problem of a convertible Tilt-rotor UAV. In order to design this
controller, the nonlinear control approach addressed in Section 5.2 was extended to the
case in which the mechanical system is partitioned with respect to stabilized, regulated,
and controlled DOF. In addition, a control allocation scheme was proposed to handle the
time-varying rank of the Tilt-rotor UAV input coupling matrix, mapping the generalized
optimal control law to the control input signals properly, by taking into account the mag-
nitude of the relative wind-speed. This controller was also implemented in a high fidelity
simulator, and the performance was evaluated when the Tilt-rotor UAV is performing
the following maneuvers: transition from hovering to cruise-flight mode, and vice-versa,
turning flight level, and hovering. The Tilt-rotor UAV was able to satisfactorily track the
desired trajectory and attenuate the effects of external disturbances. The contributions
of this chapter are summarized as follows:

• A detailed modeling of the nonlinear multi-body dynamics of the Tilt-rotor UAV
using the Euler-Lagrange formalism;

• The design of state and output feedback linear W∞ controllers for the Tilt-rotor
UAV to handle the helicopter-flight mode;

• The extension of the nonlinear W∞ control approach addressed in Section 5.2 to
the case in which the mechanical system is partitioned with respect to stabilized,
regulated, and controlled DOF.
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• The design of a nonlinear W∞ controller for the Tilt-rotor UAV to achieve trajectory
tracking through the full flight envelope;

8.2 Future work

This section describes some possible directions for future work derived from the con-
tributions presented in this doctoral thesis.

• As commented in Chapter 7, the tilt-rotor UAV is being constructed at the Federal
University of Minas Gerais. Therefore, an immediately goal is the implementation
of the control strategies presented in this thesis in the real aircraft.

• The numerical algorithms proposed in Chapter 4 to approximate solutions of the
HJ equations suffer from the curse of dimensionality, which may prevent their ap-
plication for systems with several states, as for example the Tilt-rotor UAV. To cir-
cumvent this issue, an immediate future work is the implementation of the proposed
algorithm using parallelization procedures in Graphics Processing Units (GPUs).

• Following the research line presented above, a future work is to approximate solu-
tions of the HJ equations using Neural networks.

• The nonlinear W2 and W∞ controllers proposed in Section 5.2 for underactuated
mechanical systems with input coupling uses pseudo-inverse mapping to compute
the control input vector. Therefore, future works include the reformulation of these
controllers to avoid the use of pseudo-inverse mapping.

• One drawback when designing controllers for UAVs is whether all states are ac-
cessible. Therefore, a future work is the extension of the nonlinear W2 and W∞

controllers to the output feedback case.

• Finally, another future work is the design of a Robust Adaptive Mixing Controller
(RAMC) controller (Cardoso et al., 2021c) to solve the full fight envelope trajectory
tracking problem of the convertible plane Tilt-rotor UAV. In this case, the candidate
controllers can be synthesized through the linear W∞ controllers proposed in Chapter
6, with the linear parameter-varying (LPV) model of the Tilt-rotor UAV obtained
through Tensor Product (TP) transformations (Baranyi, 2004). In addition, the
magnitude of the relative wind speed, the angle of attack, and the side-slip angle
are taken into account in the design of the RAMC.
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Appendices



A
Linear systems theory

This Appendix presents some preliminary concepts and definitions necessary into the
development of the state and output feedback linear W∞ controllers proposed in Chapter
6. The content of this section was adapted from Chen and Chen (1984); Trofino et al.
(2003).

Consider the linear system

S:


ẋ(t) = Ax(t) + Bu(t) + Dw(t), x(0) = x0

u(t) = Kx(t),

y(t) = Cx(t).

(A.1)

where x(t) : R≥0 → Rnx is the state vector with x0 ∈ Rnx , u(t) : R≥0 → Rnu is the input
vector, w(t) : R≥0 → Rnw is the disturbance vector, y(t) : R≥0 → Rny is the output vector,
and A ∈ Rnx×nx , B ∈ Rnx×nu , D ∈ Rnx×nw ,K ∈ Rnu×nx , C ∈ Rny×nx are constant matrices
that represents the closed-loop dynamics of this system.

A fundamental tool to the analysis of linear systems is the eigenvalues and eigenvectors.
A real or complex number λ ∈ C is called an eigenvalue of the matrix A if there exists a
nonzero vector x such that Ax = λx. Any nonzero vector x satisfying Ax = λx is called
a right eigenvector of A associated with the eigenvalue λ. Consequently, the eigenvalues
of matrix A are all λ that satisfy

det(λI − A) = 0. (A.2)
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Another fundamental tool into the linear system’s analysis is the notion of asymptotic
stability in the sense of Lyapunov, as established by the following definition.

Definition 11. The closed-loop system (A.1) is asymptotically stable if and only if all
eigenvalues of (A + BK) have negative real parts.

The asymptotic stability of a linear system can be verified through the Lyapunov
equation. For the closed-loop system (A.1), all eigenvalues of (A + BK) have negative
real parts if and only if the Lyapunov equation

(A + BK)′P + P (A + BK) = −N (A.3)

has a unique symmetric solution P > 0, for any given positive definite symmetric matrix
N , with P ,N ∈ Rnx×nx .

A higher restrictive concept of stability is the exponential stability, which is defined
as follows.

Definition 12. (Adapted from Khalil and Grizzle (2002)) The closed-loop system (A.1)
is exponentially stable if it is asymptotically stable and there exist constants c,k, b ∈ R≥0

such that

||x(t)|| ≤ k||x(0)||e−bt, ∀||x(0)|| < c. (A.4)

In addition, this system is globally exponentially stable if (A.4) holds for any finite initial
condition x(0) ∈ Rnx.

The solution of the linear time-invariant closed-loop system (A.1) is computed by
(Chen and Chen, 1984)

x(t) = e(A+BK)tx(0) +
∫ t

0
e(A+BK)(t−τ)Dw(τ)dτ. (A.5)

Therefore, according to Definition 12 and by assuming no disturbances actuating on the
system, if all eigenvalues of (A + BK) have negative real part, the closed-loop system
(A.1) is exponentially stable with x(t) = e(A+BK)tx(0).

The following definition introduce the notion of controllability for linear systems.

Definition 13. (Adapted from Chen and Chen (1984)) A state-space system is locally
controllable in the space Ω if for any initial state x0 ∈ Ω and any final state xf ∈ Ω,
there exists a control input signal that transfers x0 to xf in a finite time. Otherwise, the
system is locally uncontrollable. If Ω concerns all the state space, these terms change to
controllable and uncontrollable, respectively.
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Regarding the open-loop system from (A.1), one can state that the pair (A,B) is
controllable if the controllability matrix

C(B,A) = [B AB A2B · · · Anx−1B] (A.6)

has full row rank, i.e. rank(C) = nx.
Moreover, the following definition introduces the notion of observability.

Definition 14. The state space system (A.1) is said to be observable if for any unknown
initial state x(0) = x0, there exists a finite time instant t1 > 0 such that the knowledge of
the input u(t) and the output y(t) over t ∈ [0, t1] suffices to determine uniquely the initial
state x(0). Otherwise, the system is said to be unobservable.

Regarding the open-loop system from (A.1), one can state that the pair (A,C) is
observable if the observability matrix

O(C,A) =


C

CA
...

CAnx−1

 , (A.7)

has full column rank, i.e. rank(O) = nx.
Another concept important for this doctoral thesis is the, similarity transformation,

which is performed to transform a matrix inequality into a linear matrix inequality. In
order to present this transformation, consider the system

ẋ(t) = Ax(t), (A.8)

and the transformation

x̄(t) = P x(t), (A.9)

where x(t) and A are defined as in (A.1) and P > 0. In (A.9) the matrix P maps x(t)
into x̄(t) with respect to the orthonormal basis composed of the columns of P . In the
new basis, the system (A.8) is represented by

˙̄x(t) = P AP −1︸ ︷︷ ︸
Ā

x̄(t) = Āx̄(t). (A.10)

This is the so-called similarity transformation, and matrices A and Ā are said to be
similar. It is noteworthy that using (A.9), one can go from (A.10) to (A.8).

Also, to transform matrix inequalities into linear matrix inequalities, the Schur com-
plement can be used. According to the Schur complement, the following inequalities are
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equivalents: U E′

E F

 > 0, (A.11)

F − EU −1E′ > 0, (A.12)
U − E′F −1E > 0, (A.13)

where U ∈ Rnu×nu , E ∈ Rnf×nu , F ∈ Rnf×nf , with U ,F > 0. Then, from the Schur
complement, one can transform the nonlinear inequalities (A.12) and (A.13), with respect
to the variables U , E and F , into the linear inequality (A.11).



B
ProVANT-Emergentia Tilt-rotor UAV

physical parameters

This appendix presents the physical parameters and aerodynamic coefficients used into
the dynamic model of the ProVANT-Emergentia Tilt-rotor UAV to obtain the numerical
experiments of Chapter 7. All the coefficients used to computed the aerodynamic forces
and moments were obtained via wind tunnel experiments conducted at the University of
Seville (See Figure B.1). For more details about the experiments, the readers may refer to
Ortega et al. (2021). In addition, the physical parameters of the ProVANT-Emergentia
Tilt-rotor UAV were obtained from the CAD model.

The thrust and torque coefficients of the propellers, that are used to compute (7.25)-
(7.28), are presented in Figure B.2.

In order to obtain the aerodynamic coefficients of the fuselage, wings, tail-surfaces
and aerodynamic interference, the aerodynamic surfaces illustrated in Figure B.3 were
experimented in wind tunnel. Experiments were conducted for each surface considering
the longitudinal and the lateral wind, as illustrated in Figure B.4. The coefficients were
obtained considering the North-East-Down (NED) axes convention, and are presented in
Figures B.5 and B.6.

The NED axes convention differs from the axes convention employed into the Tilt-rotor
UAV modeling presented in Chapter 7 by rotating the aerodynamic forces and moments
in 180 degrees around the x⃗-axis. Therefore, by conducting the procedure illustrated in
Figure (B.7), the aerodynamic forces and moments are computed through the following
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Figure B.1: Illustration of the wind tunnel experiment conducted to obtain the thrust
and torque coefficients of the propellers.
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Figure B.2: Thrust and torque coefficients of the propellers.

equations:

f dF

f yF

f lF

 = R
WF
NED


−κairF sF

(
cdFxy(βNEDF ) + cdFxz(αNEDF )

)
−κairF sF cyF(βNEDF )
−κairF sF clF(αNEDF )

 , (B.1)


f dWR

f yWR

f lWR
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WWR
NED


−κairWR

sWR

(
cdWRxy

(βNEDWR
) + cdWRxz

(αNEDWR
)
)

−κairWR
sWR
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−κairWR
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(
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 , (B.2)


f dWL

f yWL

f lWL
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WWL
NED


−κairWL

sWL

(
cdWLxy

(βNEDWL
) + cdWLxz
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−κairWL
sWL
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sWL

(
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(αNEDWL
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)
 , (B.3)
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Figure B.3: Aerodynamic surfaces experimented in wind tunnel .

Figure B.4: Wind tunnel experiment with the connected parts, for the longitudinal and
lateral dynamics.
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Figure B.5: Aerodynamic coefficients obtained from the wind tunnel experiments for the
longitudinal wind dynamics.
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Figure B.6: Aerodynamic coefficients obtained from the wind tunnel experiments for the
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f dTR
f yTR

f lTR

 = R
WTR
NED


−κairTR

sTR

(
cdTRxy(β

NED
TR

) + cdTRxz(α
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TR

)
)

−κairTR
sTR
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) + cδrδr
)
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sTR

(
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) + cδeδe
)

 , (B.4)


f dTL
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sWR
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LTR

MTR

NTR

 = R
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NED
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LTL

MTL

NTL

 = R
WTL
NED


0

κairTL
sTL c̄ cMTL(αNEDTL

)
κairTL

sTL b cNTL(βNEDTL
)

 (B.11)

where δe ≜
1
2(δTR + δTL) and δr ≜

1
2(δTR − δTL), as illustrated in Figure B.8. Besides, c̄ ∈ R≥0

is the mean geometric chord of the wings, b ∈ R≥0 is the wing span, cδa , cδe , cδr ∈ R are
stability derivatives associated with the deflection of the aerodynamic control surfaces,
αNEDS = −αairS , βNEDS = −βairS , and R

WS
NED = Rx,π, for S ∈ {F ,WR,WL, TR, TL, I}. The

aerodynamic parameters and control surfaces stability derivatives are presented in Table
B.1. The coefficients illustrated in Figures B.5 and B.6 were obtained considering the
entire wing and tail-surface, as illustrated in Figure B.3. Therefore, a half of the surface
area was considered to compute the contribution of the left and right components.

Concerning the aerodynamic forces and moments (B.1)-(B.11), the terms in (7.18)
related to the fuselage, wings, tail surfaces, and aerodynamic interference, are computed
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Figure B.8: T-tail and V-tail aerodynamic control surfaces equivalences (back view).
In picture (a), both ruddervators are deflected down, which is equivalent to deflect the
elevator down. In picture (b), both ruddervators are deflected up, which is equivalent to
deflect the elevator up. In picture (c), the right and left ruddervators are deflected down
and up, respectively, which is equivalent to deflect the rudder right. In picture (d), the
right and left ruddervators are deflected up and down, respectively, which is equivalent
to deflect the rudder left.
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as follows

ϑF = J ′
FRI

F

RF
WF


f dF

f yF

f lF


+ W ′

FRI
F


LF

MF

NF

 , (B.12)
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WR

RI
WR

R
WR
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f dWR

f yWR

f lWR


+ W ′

WR
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f dWL
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f lWL
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WL
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WL


LWL

MWL

NWL
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ϑT = J ′
TR

RI
TR

R
TR
WTR


f dTR
f yTR

f lTR


+ W ′

TR
RI

TR


LTR

MTR

NTR
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f dTL
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LTL
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ϑI = J ′
IR

I
I

RI
WI


f dI

f yI

f lI


 (B.15)

where the rotation matrix RS
αWS

≜ Ry,−αairS
Rz,−βairS

, for S ∈ {F , WR, WL, TR, TL}, is used
to express the lift, drag, and side forces from the wind orientation to the aerodynamic
center frame, and the linear and angular velocity Jacobians JS and WS are given according
to (7.35) and (7.36). In addition, to comply with the orientation of the aerodynamic
centers that are considered in the wind tunnel experiments, the following rotation matrix
is considered RI

S = RI
B, for S ∈ {F ,WR,WL, TR, TL, I}.

The physical parameters of the ProVANT-Emergentia Tilt-rotor UAV were obtained
from the computer-aided-design (CAD) model, which are presented in Table B.1.
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Table B.1: ProVANT-Emergentia Tilt-rotor UAV physical parameters.

System Parameters
g′

r

[
0 0 −9.87

]
[m/s2]

β, ϵ, µ {5, 5, 30} [deg]
ν 0.005 [N · m · s / rad]

mc1 ,mc2 ,mc3 {7, 0.3, 0.3} [kg]
dB

B,C1

[
0.05 0 0.12

]′
[m]

dB
B,A2

[
0.03 −1.025 0.292

]′
[m]

dA2
A2,C2

[
0 0 0.07

]′
[m]

dA2
A2,PR

[
0 0 0.1

]′
[m]

dB
B,A3

[
0.03 1.025 0.292

]′
[m]

dA3
A3,C3

[
0 0 0.07

]′
[m]

dA3
A3,PL

[
0 0 0.1

]′
[m]

dB
B,F

[
0.1960 0 0.1200

]′
[m]

dB
B,WR

[
0.0060 −0.4650 0.2620

]′
[m]

dB
B,WL

[
0.0060 0.4650 0.2620

]′
[m]

dB
B,TR

[
−0.4823 −0.2952 0.3532

]′
[m]

dB
B,TL

[
−0.4823 0.2952 0.3532

]′
[m]

IC1

 2.727 0 −0.002
0 7.447 0

−0.002 0 9.95

 [kg·m2]

IC2 , IC3 diag(0.005, 0.005, 0.002) [kg·m2]
Aerodynamic parameters and stability derivatives
ρ 1.21 [kg/m3]
d 0.6096 [m]
b 1.7592 [m]
c̄ 0.1366 [m]

sF , sWR
, sWL

, sTR , sTL , sI 0.1250 [m]
cδa 0.7104
cδe 0.3759
cδr −0.0730



C
Tilt-rotor UAV Input coupling matrix

This Appendix manipulates the vector of generalized forces (7.18) to represent it into
the input affine form (7.62), taking into account the aerodynamic coefficients presented
in Appendix B.

Initially, one can manipulate (7.32) as follows,

ϑP =J ′
PRRI

PR

 0
fPR

+W ′
PRRI

PR

 0
λPRtPR

+ J ′
PLRI

PL

 0
fPL

+ W ′
PLRI
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 0
λPLtPL

 ,
=
(
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cq
ct

)
RI

PRazfPR+
(
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PLλPLd
cq
ct

)
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PLazfPL ,

=

Ξ1︷ ︸︸ ︷[(
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cq
ct

)
RI

PRaz

(
J ′
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cq
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)
RI

PLaz

] fPR

fPL

 , (C.1)

= Ξ1

fPR

fPL

 , (C.2)

with tP = d
cq (JP , φ

air
P )

ct (JP , φairP )fP , for P ∈ {PR,PL}.
In addition, (7.33) can be written as

ϑs = W ′
C2RI

C2


0
τsR

0

−W ′
C1RI

C2


0
τsR

0

+W ′
C3RI

C3


0
τsL

0

−W ′
C1RI

C3


0
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−
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0 0
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=
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Moreover, the aerodynamic forces (B.2), (B.3), (B.4), and (B.5) are represented by
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where the superscripts active and passive stand for the terms influenced and uninfluenced,
respectively, by the deflection of the aerodynamic control surfaces.

From (C.4), (C.5), (C.6), and (C.7), the vector of generalized forces (B.12), (B.13),
(B.14), and (B.15), can be written as
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Therefore, taking into account (C.2), (C.3), and (C.8), the vector of generalized forces
(7.18) can be written as
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with τ̄ ≜
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