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A B S T R A C T

Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an
important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the
potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell car-
cinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the
underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, im-
munocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9,
Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis
(casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid de-
creased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA
expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin
secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression.
Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by inter-
fering with leptin pathway.

1. Introduction

Leptin (Lep), a hormone secreted by adipose tissue, is known to be a
component of the homeostatic loop of body weight regulation [1,2].
This hormone signaling can lead to the metabolic features associated
with cancer malignancy, such as switching in cell energy balance from
mitochondrial β-oxidation to the aerobic glycolytic pathway [3,4].
Furthermore, Lep provides the tumor microenvironment, mainly
through its ability to potentiate both endothelial cells migration and
angiogenesis and to sustain the recruitment of macrophages and

monocytes, which in turn secrete vascular endothelial growth factor
and proinflammatory cytokines [5]. Lep has been associated with in-
creased risk of several cancers, as well as proliferative and anti-apop-
totic effects on cancer cells [6,7].

Despite the scarcity of studies, Lep pathway has emerged as an
important target, possibly involved in oral carcinogenesis. Surveys were
conducted to assess serum Lep level in oral squamous cell carcinoma
patients, suggesting that Lep can contribute to oral cancer-induced loss
of body mass [8–10]. Besides, gene polymorphisms of Lep and its re-
ceptor LepR revealed an increased risk to oral carcinogenesis [11].
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Therefore, Lep can be pointed as a possible target for new therapeutic
investigations. Current strategies to inhibit Lep pathway, such as so-
luble Lep receptors (LRs), synthetic Lep-antagonists, and anti-LR
monoclonal antibodies (anti-LR mAbs) [12] can be limited due to
toxicity, as well as low efficacy.

Currently, there is substantial interest in understanding the ther-
apeutic potential of herbal extracts in cancer. Several extracts have
demonstrated activity against different kinds of cancer [13]. Gallic acid
(3,4,5-trihydroxybenzoic acid; GA) is a polyphenol found widely in
fruits and plants; it has been shown to have anticancer effects in human
leukemia HL-60RG [14], lung cancer [15], stomach cancer, colon
cancer [16], prostate cancer [17], melanoma [18] and esophageal
cancer [19], pheochromocytoma [20], mouse leukemia WEHI-3 cells
[21] and oral cancer [22,23]. In oral carcinogenesis, the real effect of
GA on neoplastic cells is not well understood.

Given the above, we hypothesized that GA interacts with compo-
nents of Lep signaling pathways, and it can interfere with the neoplastic
role of this hormone. So, the study purpose was to investigate the po-
tential of GA to modulate Lep-induced proliferation and migration of
OSCC cell lines and the underlying molecular mechanisms. We also
explored GA effect on Lep secretion by OSCC cells.

2. Material and methods

2.1. Bioinformatics analysis and in silico docking experiments

The hypothesis that GA interacts with Lep was first explored by in
silico analysis, aiming to conduct the in vitro functional assays.

For the molecular docking simulation, the atomic coordinates of the
GA structure were taken from the Zinc Database [24] under the code
ZINC0000104, in the mol2 format. The structures of the human Lep and
LepR were taken from the Protein Data Bank (PDB) codes 1ax8 [25] and
3v6o [26], respectively. Before our docking simulations, the protein
structures were prepared with the addition of hydrogens taking into
account the most likely protonation state of each titrable residue
(considering a pH of 7.2), using the PROPKA program [27], inside the
pdb2pqr program [28,29]. All molecular docking calculations were
performed using the Autodock Vina program [30], in a two-step ap-
proach: i. a blind docking procedure and ii.a pocket search method. The
blind docking procedure consisted of searching the entire protein sur-
face to determine the potential binding pocket(s). This was achieved
using the grid center as the center of each protein, using a grid size big
enough to cover the entire protein surface. After finding the binding
pockets, we centered the grid center within the discovered binding
pocket where the best-scored conformation is located, and performed a
more accurate search (the pocket search procedure), using the fol-
lowing parameters: energy_range=10, num_modes= 20 and exhaus-
tiveness= 800.

Investigation of putative target genes of GA was obtained from
STITCH 3.1 (http://stitch.embl.de/) [31]. Briefly, this server predicts
interactions of chemical compounds with proteins based on known
interactions from metabolic pathways, crystal structures, binding ex-
periments, and drug–target relationships. It also allows the use of in-
formation from phenotypic effects, text mining and chemical structure
similarity in order to predict relations between chemicals.

2.2. Cell culture

Two human OSCC cell lines, SCC9 and SCC4 (CRL-1629 and
CRL1624, ATCC cell bank, USA), were cultured in DMEM/Ham's F-12
(Gibco, USA), supplemented with 10% fetal bovine serum and 0.4 μg/
ml hydrocortisone (Gibco, South America). All experiments were per-
formed in triplicate and at least three independent experimental times.

2.3. Cell proliferation assay

Cell proliferation assay was performed as described before [32] with
necessary adaptations. A density of 2×105 OSCC cells was plated in
60mm dish and incubated at 37 °C for approximately 24 h to establish
adherent monolayers. Then, cells were treated with 100 ng/ml of
human recombinant leptin (Invitrogen, USA) and 10 μg/ml of GA
(Sigma-Aldrich, USA) for 72 h. The GA concentration was previously
defined through a dose-response curve in another study of our group
[32]. The comparing groups, as Lep-treated cells, GA-treated cells and
cells cultivated only in culture medium were included in study design.
Cell proliferation was determined by trypan-blue exclusion. The pro-
liferation assay was performed under normoxia, and mimicking hy-
poxia by the addition of 100 μM CoCl2 (Sigma-Aldrich, USA).

2.4. Cell dead/viability assay

Acridine orange/ethidium bromide (AO/EB) staining was used to
visualize dead and viable cells [33]. A volume of 25 μl of cell suspen-
sion (2.0×106cells/ml) was incubated with 1.0 μl of a solution con-
taining 1 part of l00 μg/ml acridine orange in PBS; (AO, Sigma, St.
Louis, USA) and 1 part of 100 μg/ml ethidium bromide in PBS (EB,
Sigma, St. Louis, USA). The cell suspension was placed onto a micro-
scopic slide and covered with a glass coverslip. Cells were observed in a
fluorescence microscope FSX100 (Olympus, Center Valley, PA, USA).
Intense EB staining (Ex360-370, Em420-460, filter DM400) indicates
cell death, while intense AO (Ex460-495, Em510-550, filter DM505)
indicate live cells.

2.5. Migration assay

Cell migration was assayed by wound healing method [34]. Briefly,
at the full confluence, OSCC cells were scraped away horizontally using
a 200 μl tip. Culture medium was then replaced by serum-free medium,
adding 100 ng/ml leptin and/or10 μg/ml of GA for 72 h. The migration
characteristic of cells treated with Lep and/or GA was also evaluated
under hypoxia condition. In order to measure the wound covered area
by migrating cells, images of the wounded cell monolayers were taken
using an Olympus IX81 inverted microscope (Olympus, Center Valley,
PA, USA) coupled to camera SC30 (Olympus, Center Valley, PA, USA) at
0 and 72 h after wounding.

2.6. Clonogenic assay

Treated or untreated OSCC cells were plated in 60mm dish at a
density of 1.0× 102cells and maintained in culture for 14 days. Then,
cells were fixed with 70% ethanol at 4 °C and stained for the counting of
colonies formed. Colonies with over 50 cells were considered for ana-
lysis. Survival fraction (SF) was calculated as previously described [35].

2.7. Secreted leptin dosing

In all experimental groups, secreted Lep level by OSCC cells in
culture medium, under normoxia condition, was measured by enzyme-
linked immunosorbent assay (ELISA) using a commercial kit (Leptin
Human ELISA-LDN®). This ELISA kit shows a limit of quantification
around 100 ng/ml. Secreted leptin dosing was performed as re-
commended by the commercial kit manufacturer. To this analysis,
leptin dosage was adjusted by cell number in each group.

2.8. Immunocytochemical assay

Immunocytochemical was performed as described before [36] with
necessary adaptations. A density of 2×104 OSCC cells was plated on
coverslips and submitted to the experimental treatments. At the end of
treatments, the cells were fixed with 70% ethanol for 30min.
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Endogenous peroxidase activity was blocked with 0.3% hydrogen per-
oxide. The polyclonal antibodies LepR (obR; clone H-300, sc-8325,
Santa Cruz Biotechnology, CA, USA), and p44/42 MAPK(ERK1/2)
(Clone 137F5, Cell Signaling Technology, USA) were detected using
LSAB kit (LSAB-Kit Plus Peroxidase, Dako, California, USA). Signals
were developed with 3′3-diaminobenzidine-tetrahydrochloride and
counterstained with Mayer's hematoxylin. For staining quantification,
10 fields were photographed at 400× magnification in a microscope
FSX100 (Olympus, Center Valley, PA, USA). Cell counting was then
performed in the software ImageJ (http://rsbweb.nih.gov/ij/).

2.9. Gene expression of LepR, HIF-1α, E-cadherin, Casp-3, MMP2, MMP9,
Col1A1and mir-210

In order to assess the molecular effect of leptin and/or GA on gene
expression in OSCC cells, we investigated, by qRT-PCR, cell migration-
related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis
(HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), and apop-
tosis (casp-3). Total RNA was isolated using Trizol (Invitrogen, USA).
Reverse transcription was conducted from 1,5 μg of total RNA by
Reverse Transcription Kit (Invitrogen, USA). Rt-synthesized cDNA was
amplified using specific primers (Table 1, Supplementary materials),
and SYBR Green following the manufacturer’s instructions on a StepOne
system (Applied Biosystems, Courtaboeuf, France). To mir210 analysis,
qRT-PCR was performed using Taqman™ microRNA assay/000512
(Applied Biosystems, USA). The comparative Ct method was applied to
analyses [37].

2.10. Statistical analyses

The analyses were carried out using SPSS 17.0 software. Statistical
tests were selected according to the characteristics of the samples and
the distribution of variables and probability values< 0.05 were con-
sidered statistically significant.

3. Results

3.1. In silico model shows possibility of interaction of gallic acid with leptin
pathway

Our in silico analysis points to two possibilities of molecular inter-
actions between GA and Lep. As an initial approach, we used molecular
docking, focusing two possibilities of action: i. GA interacts directly
with Lep; or ii. GA interacts with LepR.

Firstly, we considered the occurrence of a direct interaction be-
tween GA and Lep. To investigate this hypothesis, we performed mo-
lecular docking of GA against the structure of human Lep. We found
three major clusters with a binding score between −4.5 to −4.8 kcal/
mol. It is important to mention that none of them was located at the
Lep/LepR binding interface (Fig. 1 – Model 1).

Another hypothesis tested was that GA could bind to LepR. To ad-
dress this question, we docked the GA with the LepR structure. In
contrast to the GA docking experiments over the Lep structure, the best-
scored GA conformation obtained from blind docking over the entire
LepR surface was located at the Lep binding interface (Fig. 1 –Model 2).
A more accurate search addressing this particular cavity confirmed this
result, obtaining the best-scored GA conformation with a binding score
of −5.1 kcal/mol. In summary, these in silico results suggest that GA
probably binds to LepR (at a region coincident to the Lep binding in-
terface) and could interfere/impair the binding of Lep to the LepR.

The interaction network analyses of the putative proteins that in-
teract with GA obtained from STITCH also guide our actions in choosing
the proteins/genes evaluated in this study (Fig. 1). The 10 predicted
proteins that interacted with GA were: ABCB1, MMP9, JUN, EIF2AK3,
SULT1, ATM, PRKCA, CHUK, AKT1, MMP2.

These findings encouraged us to follow up with functional assays.

3.2. Gallic acid interferes with leptin-induced cell proliferation, cell death,
and colony formation of OSCC cells

To assess the potential of gallic acid (GA) to interfere with leptin-
induced cell proliferation, SCC-9 cells were treated with Lep and/or GA,
under normoxia (Fig. 2A) and hypoxia (Fig. 2B) conditions. GA treat-
ment was able to reduce cell proliferation, in both conditions, despite
the proliferative effect induced by leptin treatment.

Accordingly with this result, in the GA-treated group, we identified
an increased number of dead cells and higher levels of casp-3 mRNA
comparing to leptin group (Fig. 2C). Cell survival fractional was also
low in SCC-9 cells treated with GA regarding leptin-treated cells
(Fig. 2D).

The results were similar in SCC-4 cells (Fig. 1, Supplementary ma-
terial).

3.3. Gallic acid impairs cell migration in leptin-treated OSCC cells, reducing
gene expression of MMP9, MMP2, and Col1A1

The behavior of migration of cells treated with Lep and/or GA was
analyzed under normoxia (Fig. 3A) and hypoxia-mimicking (Fig. 3B).
GA reduced cell migration significantly, in both normoxia and hypoxia
conditions. Lep leads to the opposite effect of GA favoring cell migra-
tion. However, when OSCC cells were treated with Lep/GA under hy-
poxia condition, it was observed reduced migration and also an increase
of cell-free area. It can be due to the induction of cell death by GA.

The Fig. 3C–F show expression of genes MMP9, MMP2, Col1A, and
E-cadherin in SCC-9 cells treated with Lep and GA. It was observed a
significant reduction in genes related to cellular migration, such as
MMP2, MMP9, and Col1A1 in the group of cells treated with GA. The
opposite effect on the expression of these genes was observed in the
group Lep-treated OSCC cells. The expression of E-cadherin was in-
creased in the groups treated with Lep and GA.

3.4. Gallic acid reduces mRNA expression of angiogenesis-related genes

The expression of mRNA of HIF-1α was not affected by the addition
of the GA or Lep under normoxic conditions (Fig. 4A), but when the
experiment was carried out in hypoxia conditions, GA and Lep seem to
modify the expression of this transcript. GA impairs, and Lep stimulates
the HIF-1α expression (Fig. 4B).

Mir-210 expression was lower in AG-treated OSCC cells (Fig. 4C).

3.5. Gallic acid impairs LepR expression and leptin secretion by OSCC cells,
downregulating p44/42 MAPK expression

To verify if GA interferes with molecular components of leptin
pathway, we assessed LepR expression, secreted Lep levels by OSCC
cells, and MAPK expression.

Cells treated with GA show decreased LepR mRNA expression under
hypoxia condition (Fig. 5A). However, this transcript was not different
between experimental groups under normoxia (Fig. 5B).

GA treatment reduced Lep secreted level by OSCC cells into the
culture medium (Fig. 5C) comparing to all groups. Im-
munocytochemical expression of LepR was lower in GA group than Lep
group (Fig. 5D).

Interestingly, in GA-treated cells, showing lower secreted leptin le-
vels, we identified a downregulation in p44/42 MAPK(ERK1/2) ex-
pression (Fig. 5E). This finding was consistent with the reduced pro-
liferative behavior of cells in this group.

4. Discussion

GA has been shown to inhibit tumor growth and progression in
some cancer types, especially due to its antioxidant activity [13–19].
Likewise, GA treatment inhibited proliferation, migration, and invasion
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of OSCC cells [32]. However, the molecular pathways related to the
antineoplastic effect of GA in oral cancer are still not well clarified. So,
to understand this ‘knowledge gap’, initially, we designed an in silico
model to study the interaction between GA and the Lep/LepR pathway.
This particular molecular signaling was first considered as a possible
targeted of GA, once Lep has emerged as an important target for cancer
therapy. Furthermore, a bioinformatic survey showed an interacting
network between obesity-related genes and oral cancer [38], and gene
polymorphisms of Lep and its receptor LepR were also associated with
increased risk to oral carcinogenesis [11].

A possible modulator role for GA, especially in the Lep signaling
pathways, it was proposed by our in silico analyses (Fig. 1), which re-
vealed that GA interacts positively or negatively with genes that are
modulated by Lep, such as AKT, MMP2, and MMP9. Our molecular
docking analysis suggests that GA could directly bind to LepR (coin-
cident into the Lep binding site) and interfere/impair Lep binding to its
receptor.

In the present study, we demonstrate for the first time that GA in-
terferes with the pro-neoplastic effects of Lep on OSCC cells. Treatment
with GA leads to the inhibition of leptin-induced cell proliferation in the
immediate period and the late period, as shown in cell proliferation and
clonogenic assay, respectively. A previous study indicated that treat-
ment with GA resulted in the inhibition of cell proliferation, migration,
and invasion in neoplastic cells [32]. Furthermore, GA induced apop-
tosis in oral cancer cells [39]. In our study, we show that GA increased
cell death and caspase-3 mRNA expression, overlapping to the reducing
in the frequency of dead cells associated with the action of Lep in OSCC
cells. Similarly, GA was able to decrease cell migration, independently

of treatment with Lep. These effects were associated with MMP-2,
MMP-9, and Col1A1 expression. MMP-2 and MMP-9 play a critical role
in cancer cell migration and invasion [40,41] and overexpression of
both enzymes increases migration and invasion of cancer cells [42].

Mir210 overexpression, specifically under hypoxia, was found to
affect many processes involved in tumor development, including the
promotion of angiogenesis and a reduction in DNA repair capabilities
[43]. In our study, mir210 was overexpressed in the group of cells
treated with Lep, suggesting a significant relationship between Lep and
mir210 to potentiate angiogenesis. The GA, in turn, appears to inhibit
the expression of mir210 in Lep-treated cells.

The LepR mRNA expression under normoxia condition did not differ
between the study groups. However, the immunocytochemistry ex-
pression of LepR protein was higher in the group treated with Lep being
reduced after treatment with GA. These data suggest that expression of
LepR protein can be a regulated phenomenon by posttranslational
processing. Furthermore, these results strongly propose that the GA
may be a significant anti-angiogenic agent acting through LepR and
mir210, attenuating the neoplastic phenotype of OSCC cells.

These findings could be better evidenced in hypoxia condition in
which GA alone or combined with Lep significantly decreased the HIF-
1α and LepR expression, whereas treatment with Lep significantly in-
creased this expression. Interestingly, the leptin, when combined with
GA, is not able to counteract the GA effect on OSCC cells. Leptin ex-
pression can be up-regulated through HIF-1α, which controls tumor
angiogenesis in many solid tumors [44]. Furthermore, leptin-receptor is
activated directly by HIF-1α [45]. A previous study showed that GA
inhibits HIF-1α and VEGF expression through blocking the

Fig. 1. Bioinformatics analyses showing the interaction between GA and Lep. Panel I (left) – Model 1 shows a putative binding mode of GA in the human leptin structure (PDB ID 1ax8)
achieved from blind docking experiments. In A, on the left, the superposition of the 20 best-scored GA docked conformations. On the right, the complex structure of leptin bound to its
receptor. It is important to mention that none of the docked conformations was located in the leptin receptor binding site. In B, two different orientations of the leptin/leptin receptor
complex with the predicted GA binding mode showing the three main clusters on the leptin structure surface. Model 2 shows a putative binding mode of GA in the human leptin receptor
structure from blind and site-directed docking experiments. All the docking experiments were performed with the leptin receptor structure in two steps: i. a blind docking scheme
searching the entire leptin receptor surface; and ii. using a grid centered on the best-scored conformation of the gallic acid from the previous blind docking scheme. In A and B, the
superposition of the 20 best-scored GA docked conformations. In B, it is also represented the structure of the leptin bound to its receptor (just for visualization pourpouses). The best-
scored docked conformations were all located in the leptin binding site on the Lep receptor surface. In C, is shown the best-scored docked conformation. In D, this conformation is zoomed
and, on the right, the ligand-protein interaction diagram is shown. Panel II (right). Interaction network profile between GA and predicted functional partners, showing its action
possibilities from STITCH program. Down-regulation is a red bar and up-regulation is a green arrow. Yellow circle represents that the directionality of the interaction is known, but the
result of the interaction is unknown (e.g., if it is up- or down-regulated). Black circle at both ends means some kind of interaction exists. The bar colors depend on the source of the data (in
deep blue: binding; in blue: phenotype; in indigo blue: catalysis; in violet: post-translation; in black: reaction; and in yellow: expression.).
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phosphorylation of AKT [46], which is an essential protein of the Lep
signaling pathway that leads to cell proliferation and migration.

The GA effect on inhibiting the Lep signaling pathway might be
reinforced by our results of secreted Lep by OSCC cells. In the group

treated with Lep/GA, secreted Lep amount reduced more than 50%
when compared with the group treated with only Lep. In the group
treated with GA, the amount of secreted Lep was minimal, much less
than the amount of Lep emitted in the control group. These results are

Fig. 2. Changes in proliferative and mi-
gratory behavior of SCC9 cell line following
treatment with human recombinant leptin
and/or GA for 72 h. Alterations in cell pro-
liferation under normoxia (A) and hypoxia
(B) conditions. (C) Colorimetric Assay by
Acridine/Orange (A/O) and Ethidium
Bromide (EB), indicating cell death or viabi-
lity of leptin and/or GA-treated SCC9 cells.
A/O is able to penetrate into cells emitting
green fluorescence. EB emits red fluorescence
due to intercalation with DNA only in cells
showing changes in the plasma membrane.
The graph also shows qRT-PCR results of
caspase-3 mRNA in SCC-9 cells. (D) Colony
formation assay. Graph and photography re-
presentatives of colony formation leptin and/
or GA-treated SCC9 cells. Error bars represent
standard error of the mean of two in-
dependent experiments, each consisting of
three replicates. Significance was determined
using ANOVA One-way (Symbol :
P < 0.05 vs. the control). Lep: leptin-treated
cells. GA: Gallic acid-treated cells.
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supported by literature data showing that Lep mRNA expression and
serum Lep levels were reduced following treatment with GA or deri-
vatives [47,48].

Based on this evidence, along with modeling obtained from the
analysis in silico, we suggested that both GA and Lep may compete or
interact with a common signal intracellular pathway. As previously
reported, in osteosarcoma cells, the chemopreventive activity of GA
may be mediated by its ability to modulate the mitogen-activated
protein kinase (MAPK) cascade [49]. Interestingly, the LepR is known
to activate MAPK cascade after Lep binding [50,51]. In some cell types,
the activation of MAPK cascade is crucial for induction of cell death,

growth arrest and apoptosis [52,53]. Therefore, we show that GA ap-
pears to interfere with the Lep/LepR pathway and the Lep binding ac-
tivity leading to harm the Lep anti-apoptotic activity in the OSCC cells.
All these events mediated by GA and recombinant human Lep may be
associated with a similar activation of MAPKs. In our study, expression
of p44/42 MAPK (ERK1/2) in cells treated with GA and Lep confirms
these reports.

We highlighted a novel role of GA as an inhibitor of secretion of Lep
by OSCC cells, at the same time decreases the expression of LepR pro-
tein and increases the expression of caspase-3, possibly leading to the
reducing of cell proliferation. Besides, GA can reduce Lep-induced

Fig. 3. Wound healing assay. It assesses the invaded area by SCC9 cells treated with Lep and/or GA under normoxia (A) and hypoxia (B) conditions. (C to F) mRNA expression of genes
involved in the cell migration. In all analyses, gene expression is shown as the mean ± SE. All reactions were normalized to β-actin. MMP9 (C), MMP2 (D), Col1A1 (E), and E-cadherin
(F). ANOVA One-way, symbol : p < 0.05.

Fig. 4. mRNA expression of genes involved in angiogenesis in SCC-9 cells treated with Lep (Lep) and/or gallic acid (GA). HIF-1α under normoxia (A) and hypoxia (B) conditions, and
mir210 (C). In all analyses, gene expression is shown as the mean ± SE. All reactions were normalized to β-actin.
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migration and angiogenesis, through decreasing gene expression of
mir210, MMP2, MMP9, Col1A1 and higher expression of E-cadherin.

Thus, we provide evidence that both GA and Lep play a role in the
neoplastic phenotype and gene expression in OSCC cells. The GA-
mediated activities suppress the proliferative and the anti-death roles
promoted by Lep. In this scenario, GA acts as a potent antagonist of pro-
carcinogenic activities of Lep and may represent an adjuvant substance
for therapy of patients with OSCC.
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