
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Mariana de Oliveira Santos Silva

Collaboration-Aware Hit Song
Analysis and Prediction

Belo Horizonte
2020



Mariana de Oliveira Santos Silva

Collaboration-Aware Hit Song
Analysis and Prediction

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Mirella Moura Moro

Belo Horizonte
2020



Mariana de Oliveira Santos Silva

Collaboration-Aware Hit Song
Analysis and Prediction

Versão Final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do t́ıtulo de Mestre
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Resumo

As músicas de sucesso são mais bem-sucedidas do que a média, onde fatores-chave tor-

nam essas músicas qualitativamente superiores às outras. As técnicas atuais para prever

músicas de sucesso exploram recursos que descrevem músicas individualmente. Propo-

mos abordar esse problema de previsão através de uma forma multimodal, com a fusão

de recursos musicais. Especificamente, descrevemos as músicas através de recursos de

três modalidades: música, artista e álbum. Inicialmente, identificamos perfis de colab-

oração em uma rede musical composta por artistas de sucesso, revelando como os artistas

se conectam profissionalmente pode impactar significativamente seu sucesso. Para apro-

fundar essas análises, usamos séries temporais e o teste de causalidade de Granger para

avaliar se há uma relação causal entre perfis de colaboração e popularidade dos artis-

tas. Finalmente, modelamos o problema de previsão de hits como duas tarefas distintas:

classification e placement. A primeira é um problema clássico de classificação binária

de aprendizado de máquina e é uma aplicação direta de nossas estratégias de fusão. A

posterior é uma abordagem de modelagem que posiciona uma música em relação a um

determinado ranking, prediz músicas de sucesso e fornece informações comparativas de

popularidade de um conjunto de músicas. Além disso, enfatizamos os perfis dos artis-

tas colaboradores como caracteŕısticas importantes ao descrever suas músicas. Estudos

emṕıricos extensos, usando diferentes features de cada modalidade, mostram a eficácia de

nosso método que combina dados heterogêneos para ambas as tarefas.

Palavras-chave: Hit Song Science, Ciência de Dados, Aprendizado de Máquina, Redes

Complexas, Mineração de Dados Musicais.



Abstract

Hit songs are more successful than average, where key factors make such songs qualita-

tively superior to others. Current techniques to predict hit songs exploit features that

describe songs individually. We propose tackling this prediction problem through a mul-

timodal form with songs’ features fused, together. Specifically, we describe songs through

features from three modalities: music, artist and album. Initially, we identify collabo-

ration profiles in a musical network composed of successful artists, unveiling how artists

professionally connect can significantly impact their success. Then, to deepen such anal-

yses, we use time series and the Granger Causality test for assessing whether there is

a causal relationship between collaboration profiles and artists’ popularity. Finally, we

model the Hit Song Prediction problem as two distinct tasks: classification and place-

ment. The former is a classical machine learning binary classification problem and is a

direct application of our fusion strategies. The latter is a modeling approach that ranks

a song relative to a given chart, then predicts hit songs and provides comparative pop-

ularity information of a set of songs. Furthermore, we emphasize collaboration artists’

profiles as important features when describing their songs. Extensive empirical studies

using various features from the modalities confirm the effectiveness of our method, which

fuses heterogeneous data for both tasks.

Keywords: Hit Song Science, Data Science, Machine Learning, Complex Networks,

Music Data Mining.



List of Figures

1.1 Global Recorded Music Industry Revenues 2001-2018 (US$ Billions). . . . . . 14

1.2 Billboard Hot 100 songs (1958 - 2020). . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Topological network metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Boxplots and the intersection of success measures. . . . . . . . . . . . . . . . . 33

3.3 Bipartite graph projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Semantic characterization of four collaboration categories. . . . . . . . . . . . 35

3.5 Optimal number of clusters (k = 3). . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Clustering of collaboration profiles. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Collaboration profiles of each cluster. . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Visual representation of Kendall and Spearman correlation matrices. . . . . . 42

3.9 Boxplots of each cluster in relation to the success metrics. . . . . . . . . . . . 43

4.1 Ego network modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Time series created for each of the 30 ego networks. . . . . . . . . . . . . . . . 50

5.1 Multimodal data fusion approaches for Hit Song Prediction. . . . . . . . . . . 61

5.2 Framework for the defined three data fusion strategies. . . . . . . . . . . . . . 65

5.3 Pareto plot of the total number of artists on a song. . . . . . . . . . . . . . . . 66

5.4 Billboard Hot 100 songs (1958 - 2020). . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Data Preprocessing flowcharts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 ROC curve performance measurement and area under the curve (AUC). . . . 73

5.7 SHAP Values: top 20 most significant variables. . . . . . . . . . . . . . . . . . 74

5.8 Presence of average explicit lyrics in Billboard Hot 100 (1995–2018). . . . . . . 74

5.9 Quantile-Quantile (Q-Q) plots for EF-all and EF-music. . . . . . . . . . . . . 79

5.10 Ternary diagram plots for feature importance. . . . . . . . . . . . . . . . . . . 81

A.1 Radar Plots of each collaboration profile (Part 1). . . . . . . . . . . . . . . . . 87

A.2 Radar Plots of each collaboration profile (Part 2). . . . . . . . . . . . . . . . . 88

A.3 Scatterplot matrix of topological metrics and success measures. . . . . . . . . 89

A.4 Full Quantile-Quantile (Q-Q) plots for EF-all and EF-music. . . . . . . . . . . 91

A.5 Ternary diagram plots for feature importance. . . . . . . . . . . . . . . . . . . 92

A.6 Learning to Place flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Tables

2.1 A comparative analysis of existing Hit Song Science research studies . . . . . . 27

3.1 Collaboration social networks’ statistics . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Standard Collaboration Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Shapiro-Wilk test results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Statistical correlation between: Popularity on Spotify vs. Topological Metrics,

and Number of Spotify Followers vs. Topological Metrics. . . . . . . . . . . . . 41

3.5 Rule of Thumb for interpreting the size of a Correlation Coefficient. . . . . . . 41

4.1 Statistics of the top 30 artists selected. . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Granger causality test for the first analysis. . . . . . . . . . . . . . . . . . . . 54

4.3 Granger causality test for the second analysis. . . . . . . . . . . . . . . . . . . 55

4.4 Summary of main results regarding the four hypotheses. . . . . . . . . . . . . 57

5.1 Best classifiers for early fusion strategies (EF-music and EF-all). . . . . . . . . 71

5.2 Best classifiers for late fusion strategy. . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Performance evaluation for all months. . . . . . . . . . . . . . . . . . . . . . . 80

A.1 Standard Collaboration Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2 Parameter grid for tuning models’ hyperparameters. . . . . . . . . . . . . . . . 94



Contents

1 Introduction 14

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Related Work 21

2.1 Hit Song Science (HSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Overall Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Collaboration Profiles Characterization 28

3.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Overall Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Causality Analysis 46

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Overall Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Hit Song Prediction 60

5.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Hit Song Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Hit Song Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Overall Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion and Future Work 83

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Further Information 86

A.1 Collaboration Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2 Correlation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



A.3 Music Features Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.4 Quantile-Quantile (Q-Q) Plots . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5 Ternary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.6 Experimental Setup Details . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95



14

Chapter 1

Introduction

The fast evolution in technology continues to drive changes in the way people discover

and engage with music content. According to IFPI’s Global Music Report, global annual

revenues of physical music decreased from $23.3 billion units sold in 2001 to less than $5
billion units, as summarized in Figure 1.1. In contrast, revenue from digital music, mainly

subscription and streaming services, have been regularly increasing in the past years. For

example, in 2018, the music industry experienced steady and consistent growth with

overall volume up 9.7% over 2017, driven by a 34% increase in paid streaming that offset

track and album sales declines1. In the first half of 2019, this creative industry saw a

six-month record of over 507 billion on-demand streams2. Moreover, total revenues from

recorded music in the United States grew 18% to $5.4 billion at retail in the same period3.

In such a huge industry, becoming successful is challenging, but can lead to millions in

revenue.

1IFPI Global Music Report 2019, (January 01, 2020), bit.ly/GMR-2019
22019 Nielsen Music Mid-Year Report, (January 01, 2020), bit.ly/mid-year-report-2019
32019 RIAA Music Mid-Year Revenues Report, (January 01, 2020), bit.ly/riaa-mid-year-2019
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Perhaps the biggest challenge for music professionals in the industry is working

with unpredictability. When releasing a single, professionals may face a complex task

when trying to captivate different audiences. Besides offering unpredictable value to its

listeners, one song can lead to a new hit, such as “Hello” for Adele or “Poker Face” for

Lady Gaga. Moreover, some hit songs become acknowledged masterpieces, while other

hit songs fall into oblivion as so-called one-hit-wonders. Such information implies an

intriguing question: what are the reasons for a song to achieve success and remain it for

so long? Discovering such reasons may lead to predicting whether a song will become

popular, increase sales of physical and digital albums, improve the billing of on-demand

audio streams services, or even help to predict the next music star.

Indeed, the ability to predict musical success offers huge benefits for many domains

and audiences. For music industry CEOs, it may help maximize expected success by

helping to decide whom to invest in to produce potential hits. Also, by properly investing

in potential artist/music and distribution, the studio could increase sales of both physical

and digital albums, improve revenue from on-demand audio streaming services or even

launch the next popstar or Summer hit. Artists may also profit by identifying the most

suitable songs to lead the album to early stardom. For music consumers, it may help to

decide if an album is worth buying because it may potentially contain three to five hits,

instead of being an one-hit only. This ability is the intrinsic motivation for a relatively

new field of research known as Hit song science (HSS), which [51] define as “an emerging

field of science that aims at predicting the success of songs before they are released on

the market”.

HSS research is still in its infancy, and current attempts to solve the prediction

problem are far from consensus [28, 81]. Not surprisingly, there has been an increasing

interest in studying this burgeoning field. Its premise is that popular songs have similar

attributes that make them appealing to people. Such attributes could then be explored

to automatically predict whether a song will excel in popularity charts. However, there

have been failed attempts at effectively learning hit song prediction by analyzing different

factors that lead to the success of a song, with some researchers even concluding that such

a task is impossible or not science [52, 2, 38, 81]. Such unsatisfactory outcomes do not

mean, however, that popularity cannot be learned from analysing its intrinsic content or

other resources.

In this dissertation, our premise is: music represents a multimodal item, and each

of its facets may be mapped to a popularity aspect (e.g., melody, harmony, rhythm, artist’s

reputation, musical collaboration profiles, and album information); next each aspect can

be addressed, compared by statistical methods, and analyzed by an automated learner for

a final decision on the popularity of a particular song. Overall, the goal is to determine

whether or not we can predict hit songs before they are released through a collaboration-

aware characterization analysis and prediction.
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1.1 Motivation

Hit songs still make up the majority of a record company’s profits, and as a result,

labels invest billions into finding talent in hopes of achieving that gold. Creating a reliable

scientific measure to predict whether a song offers the potential to become popular and

commercially successful is a powerful and lucrative endeavor. One of the earliest studies on

Hit Song Prediction [13] focuses on extracting acoustic and lyrical features from songs and

using standard classifiers to separate hits from non-hits. The purpose was to determine

if such a task was feasible or if the claims about the songs considered hits could be

confirmed. A few years later, [52] stated that some subjective categories such as style

and character mood of the song can be reasonably learned through techniques, but not

popularity. However, after this study, many authors persisted in discussing the feasibility

of predicting the popularity of a song by considering a suitable set of attributes.

Other approaches explore complementary perspectives on the same problem. For

example, [45] highlight the changing musical tastes, then leading to an evolving popularity

pattern. [11] also insert the video-clip of a song as a characteristic capable of affecting

popularity. Moreover, [7] point out factors such as the preferential attachment by the

artist, and [39] highlight the psychological parameters on the reasons why people prefer

and are willing to listen to certain tracks. Likewise, [37] use Billboard rankings specifically

for Rock music, analyze the complexity of a song based on audio signals to measure

its impact on the popularity, and examine the popularity of a song track in the early

days of release to predict future popularity. [29] confirm that the breadth of features

leading to the popularity of a song exceeds the content of the track (audio and lyrics).

Finally, [57] predict the popularity of a song by focusing on the social network Last.fm.

They investigate three factors that could impact on popularity: lyrics content, artist’s

reputation and social context.

Even with such a diverse background, existing research in the area agrees that, be-

sides the complex features to be measured, there are quantifiable qualities that contribute

to the popularity of a song. Nonetheless, the range of song attributes that lead to popu-

larity exceeds its intrinsic content, i.e., its audio-based features. Although popularity is

affected by internal factors [13, 55, 28], some external factors have been ignored. For ex-

ample, how artists connect professionally may be one of those untreated aspects. Indeed,

artist collaboration is a strong force driving music today, as digital media enables musical

collaboration among various artists. Specifically, according to data from the Billboard

Hot 100, the number of songs executed by more than one artist has been experiencing a

significant increase in recent years, as depicted in Figure 1.2A. By the end of 2018, these

collaborations represented about 40% of the hit songs on average. In 2019, this number

reached about 42% of songs on the chart. There is a recent trend in increasing even more
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in the upcoming years.

In fact, in the 1960s, 70s, and 80s, collaborations were relatively rare (about 5%

of charted songs) and generally took the form of duets (Figure 1.2B). The boom in

collaborations started in the mid-1990s, when the number of collaborations increased

significantly, with the duets dying and the artists on display taking over. Although such

associations help artists bridge the gap between styles and genres then crossing over to

new fan bases, they often run the risk of sounding artificial and non authentic as defined by

professional critics. Nevertheless, there is no denying that collaborations are on their way

to conquering the popular music domain. Despite such a rise in musical collaborations,

factors driving the success of a collaborative process are not entirely understood [62,

27]. Therefore, investigating how music collaboration profiles can positively impact an

artist’s popularity is still worth pursuing. For instance, while talent and status attract

social connections, the researchers usually ignore that social networks can independently

promote success [44]. Still, previous research assesses the beneficial influence of social

information and artistic quality in the Hit Song Prediction problem [59, 56, 28]. Such
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studies encourage the idea that non-musical factors can fulfill a key role as a popularity

driver.

1.2 Research Goals

Music involves many features related to the composition (melody, harmony,

rhythm, lyrics) and the social context (reachability and style of the artist, collabora-

tion profiles, culture, etc.). With so many variables at hand, predicting song popularity

remains a complex task that requires achieving a balance between different musical fea-

ture sources. Learning from heterogeneous information can offer the possibility to capture

correspondences between different features and gain an in-depth understanding of musical

success. Hence, this general objective can be divided into four specific Research Goals

(RG), defined as follows:

Research Goal 1 (RG1). Identify the (potentially) topological measures and indicators

that influence the popularity of both songs and artists (Chapter 3);

Research Goal 2 (RG2). Investigate the impact of these features on popularity over

time, i.e., dynamically analyze whether features affect the popularity of an artist/song

(Chapter 4);

Research Goal 3 (RG3). Verify the causal relationship between collaboration profiles

and music success (Chapter 4); and

Research Goal 4 (RG4). Propose a machine learning approach to derive a song’s

popularity based on these groups of features and determine the best way for combining

them to predict the success of a song (Chapter 5).

1.3 Main Contributions

The main contributions are summarized according to each RG, as follows.

RG1

1. We detect artists’ clusters and their respective patterns of collaboration, focusing

on analyzing the impact of such profiles on successful music artists;
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2. We define four main categories of collaboration profiles: Interaction, Distance, In-

fluence and Similarity; and

3. Our experimental analysis provides evidence that (i) there are, in fact, distinct

success factors for musical collaboration profiles that are socially measurable, and

(ii) there are common factors for successful collaboration in the music market.

RG2 and RG3

1. We explore the causal relationship between collaborative profiles and artist’s success,

by conducting two analyses in parallel based on daily time series of collaborative

songs and musical success, and solo songs and musical success;

2. We validate that artistic popularity strongly affects establishing musical collabora-

tions in a diverse profile;

3. We also confirmed some results obtained in the first research objective.

RG4

1. To the best of our knowledge, we are the first to define Hit Song Prediction problem

as two independent tasks: binary classification and hit song placement ;

2. We model Hit Song Prediction as a multimodal machine learning problem by con-

sidering three modalities: music, artist and album;

3. For both tasks, we evaluate the performance of our proposed representations and

interpret the learned models to identify the most important features. Shortly, our

empirical results show

a) our proposed multimodal representation for songs outperforms state of the art

algorithms in the Hit Song Prediction problem; and

b) the features extracted from the artist modality, mainly collaborative informa-

tion, are the most significant predictors of songs popularity.

1.4 Organization

The remainder of this work is organized as follows.

• Chapter 2: We review related work and summarize the main differences that

distinguish this dissertation from previous research.
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• Chapter 3: We identify collaboration profiles in a musical network composed of

successful artists, arguing that the way in which artists professionally connect with

each other can significantly impact their success.

• Chapter 4: We present deeper analyses using time series and Granger causality

test for assessing whether there is a causal relationship between collaboration profiles

and artist’s popularity.

• Chapter 5: We present an unified framework for predicting musical success by

using machine learning methods.

• Chapter 6: We conclude this dissertation by highlighting our findings and pointing

out the future research directions.
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Chapter 2

Related Work

Research over the music industry typically falls within the areas of recommendation sys-

tems [75, 74, 31, 77], human-centered computing [21, 26] and music retrieval [42, 47].

Nevertheless, ongoing efforts still try to solve a relevant and complex problem: Hit Song

Prediction. Over the years, the number of artists and musical productions has consider-

ably increased; and so has the number of attempts to discover the recipe for turning a

song into a hit. Indeed, there are plenty of analyses on factors that potentially influence

musical success from varied perspectives. These analyses are part of the emerging field

of science known as Hit Song Science (HSS). In this chapter, the related work is divided

into sections referring to the HSS (Section 2.1) and the final considerations, indicating

the points where our work differs from the others (Section 2.2).

2.1 Hit Song Science (HSS)

Predicting song’s popularity before its release is especially important for the music

industry, as it allows improving revenues by focusing on potential hits. It may also help

to identify key factors for a song to become popular and commercially successful. This

task drives an emerging research field that aims to predict a song becoming a chart-

topping hit, Hit Song Science (HSS). In HSS, popularity is regarded as a feature of a

song, and the problem then is to map this feature to other resources that can be measured

objectively [51]. Especially, related work follows two main directions. The first focuses on

extracting general acoustic and lyric-based features (Section 2.1.1). However, such studies

disregard the hypothesis that the song’s popularity can be achieved indirectly through,

for example, the reputation of the artist/album, social context, collaboration profiles, and

so on. In this sense, the second direction considers more subjective information, that is,

social information (Section 2.1.2). Such studies usually focus on a very specific social

attribute, hence restricting the analysis of factors’ on general musical success. Despite

existing studies, there is still room for improvement in Hit Song Science and, subsequently,
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there is still much to gain.

2.1.1 Acoustic and Lyric-Based Features

In one of the earliest studies in the field, [13] extracted acoustic as well as lyric-

based features, and then used standard classifiers to separate hit songs from non-hits. The

authors show lyric-based attributes are slightly more useful than acoustic features for Hit

Song Prediction problem. However, according to [52] and [51], the idea that song popu-

larity can be predicted from such technical information contradicts the natural intuitions

of any musically-trained composer. They describe a large-scale experiment to validate

the state-of-the-art methods’ ability to predict the popularity of musical titles based on

global acoustic or human features. Both studies suggest acoustic features commonly used

for music analysis are not informative enough to offer judgments on notions related to

subjective aesthetics. Furthermore, they suspect that the previously cited study [13] is

based on spurious data or biased experiments.

Following a similar path but contesting the results found by [52] and [51], [50] argue

the viability of popularity prediction once it considers a set of relevant attributes. The

authors investigated the UK top 40 singles chart from the past 50 years, distinguishing

the top 5 from less popular (peak position 30 - 40) songs. The experiments show positive

results using Machine Learning algorithms. Based on such a work, the site Score a hit1

was created. Similarly, [23] used basic audio features, as well as more advanced features

that capture a temporal aspect to tackle the dance hit song prediction problem. They

explore several different classifiers to build and test prediction models. They obtained a

good performance with logistic regression (AUC score: 0.81 and Accuracy: 80%). Along

these lines, [37] use data collected from the Billboard Rock Songs Chart to investigate

Hit Song Prediction problem. They analyze the song complexity based on audio signals,

including chroma, rhythm and timbre, as well as the early stage popularity. They found

that both groups of features (i.e., complexity and early stage popularity) are effective for

different popularity patterns and combining the two types of features can be synergetic.

Recently, there were also attempts to apply deep learning to predict whether a

song can be a hit. For instance, [79] used Convolutional Neural Networks (CNNs) with

the Mel-spectrogram2 of a song as the input for feature learning to predict a song’s play-

count in a music streaming platform. Their results unveiled that CNNs are indeed more

1Score a hit: www.scoreahit.com
2Mel-spectrogram is a Spectrogram with the Mel Scale (a perceptual scale of pitches judged by

listeners to be equal in distance from one another).

www.scoreahit.com
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effective than shallow models in predicting musical success. To provide a more comprehen-

sive understanding and deeper insight into predicting music popularity based on acoustic

information, [38] build classification models considering conventional acoustic features in-

cluding MPEG-7 and Mel-frequency cepstral coefficient (MFCC) features. Their results

show that, although there is still room for improvement, it is feasible to predict the popu-

larity metrics of a song significantly better than random chance based on its audio signal.

Recently, [81] assessed the potential success of a given song exploiting low- and high-level

audio features and model Hit Song Prediction as a regression task. Particularly, using

a wide and deep neural network model enabled the proposed approach to outperform

baselines as well as approaches using low- or high-level features individually.

Unlike the previously described works, [3] tackle the problem of predicting hit

songs as a classification task based on past information from the Spotify Top 50 Global

chart, as well as acoustic features. Their main objective is to predict whether a song

will be successful in the future, by making predictions in long term. The authors noticed

that when considering acoustic information, the model’s performance does not improve

with a statistical significance, indicating that acoustic information may be completely

overlooked. Finally, [43] introduced an innovative multimodal end-to-end Deep Learn-

ing architecture for predicting popularity in music recordings named as HitMusicNet.

Their conducted experiments outperform previous studies by incorporating three musical

modalities: audio, lyrics and metadata. Therefore, such findings validates the benefits of

adopting multimodal strategies in prediction tasks.

2.1.2 Listener’s Information

Previous knowledge of a song’s success or about community’s preferences can in-

fluence the musical taste of listeners. This was exactly the phenomenon studied by [59]

through an impressive experiment. The authors created an artificial “music market”,

where 14, 341 participants downloaded unknown songs with or without knowledge of the

choices of previous participants. Their conclusions confirm the hypothesis that social in-

fluence contributes both to inequality and unpredictability in cultural markets. Moreover,

the real reason of experts fail to predict success is: when individual decisions are subject

to social influence, markets do not simply aggregate pre-existing individual preferences.

That is, social factors may play an important role in determining whether a song will

be popular or not. Recognizing the importance of social influence in musical popularity,

related work proposes predictive models for hit songs using only social information, ig-

noring the intrinsic features of songs. In particular, [11] investigate statistical patterns in
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people’s musical tastes without considering the attributes of music track content. They

also predict how long an album would remain in the popularity charts as well as position a

new album on a chart in a certain week in the future by using sales data from the first few

weeks. Their main findings include some interesting correlations, one of which emphasizes

the role of marketing. Specially, good investment on marketing before starting sales of an

album is crucial, since the data shows the higher the starting position of an album, the

longer it is likely to stay in chart.

Likewise, [7] propose predicting success of songs through exploring social interac-

tions. According to the authors, the success of a hit depends entirely on two factors: (1)

its initial popularity observed after one week, and (2) contextual information of the al-

bum, the general popularity of the artist and the popularity of other tracks present in the

album. Their method is based on data extracted from Last.fm and from the relationship

among tracks, artists and albums. That is, their approach also does not use any infor-

mation concerning the actual content of the songs. The method achieves good results in

terms of AUC score, about 28% improvement compared with previous comparable work.

In a different scenario, [33] compare peer-to-peer file sharing information from songs

with the popularity given by Billboard charts. The experiments indicate popularity trends

for the songs on Billboard having a strong correlation with their respective popularity in

the peer-to-peer network. Based on such a result, the authors propose a methodology

that uses the aforementioned correlation to predict the success of a song. Focusing on

blogosphere information (i.e., blogging behavior patterns), [1] investigate how blog posts

can be used to predict the success of music and movies. Their experiments showed that

traditional machine learning algorithms successfully learn to predict the trends of movie

box office revenues and Amazon Sales Ranks, with a precision of 79.84% and 59.7%,

respectively.

Still on social media information, [32] propose to collect the behavior of Twitter

users-listeners based on hashtags related to songs for predicting popularity rankings. The

reported results show high correlations between behavior in listening to music by Twitter

users and the trend of song popularity in general. Following a similar approach, [57]

predict the popularity of a song by focusing on the social network Last.fm. They also

investigate three factors of a song that could impact its popularity: music content, artist’s

reputation and social context. Their main findings indicate that the content of the music is

an important determinant of a music track’s time duration in terms of weeks of popularity

online. In addition, social attention of music listeners is another important determinant

of future popularity online based on what happens during the early stage of a music

track’s diffusion. [64] also use data from social networks spanning music as well as books,

photos, and URLs. Their results reveal that predictive models using temporal features

achieve higher accuracy on various item types (network structure, early adopters’ features

and similarity) than all other feature types combined. Another study using Twitter users-
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listeners features was conducted by [2]. Based on comments posted on Twitter for 30 days

before a given album released, the authors found it is possible to estimate the performance

of an album. However, considering the Billboard ranking, they were unable to identify a

statistically significant correlation.

In contrast with most aforementioned studies, [28] included songs both in and out of

the top charts, endowing hence a larger predictive power. With such a diverse dataset, the

authors correlate success with acoustic features and explore the predictability of musical

success. Furthermore, they added a non-acoustic feature, the ‘superstar’ variable (i.e.,

whether the song’s artist had appeared in the top charts recently), which greatly improve

the prediction accuracy. These findings suggest social factors can play a significant role

in the success of songs. Finally, with a different final task, [80] also use artist-based

features but to explore popularity prediction for artists. They compared the performance

of different methods including Support Vector Machines (SVMs) and long short-term

memory (LSTM) neural networks.

Collaboration Networks. On a broader perspective, explaining or predicting the suc-

cess of creative individuals through social network analysis has been a hot topic for

decades. In a breakthrough work, [20] suggests the topology of an individual’s social

network impacts on personal success. Following approaches also focus on social collabo-

rations [73, 8]. The connection between network topology and success was also found in

the musical context. [73] analyze a network of creative collaboration among Broadway

musical artists from 1945 to 1989. By applying statistical methods, they find that net-

work measures significantly affect creativity in terms of financial and artistic success. In

another setting, [8] measured creative collaboration in a music community where individ-

uals compose songs together through overdubbing. The authors evaluate the relationship

between metrics related to song- and individual-related measures and the likelihood of a

song being overdubbed (i.e., add a track to a recording).

2.2 Overall Considerations

In general, approaches that consider only acoustic features and/or lyric-based in-

formation do not imply a proper musical representation for the prediction task (Section

2.1.1). Such unimodal representations disregard how external factors influence the pop-

ularity of a song. For example, the artists’ reputation, social influence, the historical

context or any other extrinsic feature that led a song to have a peak of success and be-

come a hit. Further studies investigated music success with a joint representation by

including non-musical factors, and the relationship between musical and social informa-



2.2. Overall Considerations 26

tion (Section 2.1.2). Mostly, they found that the prediction accuracy can be improved

when incorporating external factors. However, such studies generally focus on a specific

social attributes which can represent limited musical representation.

Overall, our work differs fundamentally from those as we go further by introducing

collaboration-aware modalities towards hit song prediction. Moreover, there is still no

systematic and temporal study on collaboration information in the musical success context

that could efficiently contribute to a song being a hit or not. In fact, most of the proposed

works on HSS are limited to considering specific contexts (a given genre or a certain

period); focusing on one or two attributes (acoustics and/or on lyric content), or relying

on data of a particular social network. Hence, there is a strong potential for modeling

music success through a multimodal and suitable combination of heterogeneous data.

In this sense, our study is innovative because it proposes to merge the music content

and subjective social attributes and collaboration influence in order to predict success.

This becomes explicit in Table 2.1, which shows a comparative analysis of existing HSS

research studies. We are the first authors to consider collaboration profiles as predictors

to assess the Hit Song Prediction problem. Furthermore, our work is the first one to

employ the Learning to Place machine learning approach in the HSS context.
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Table 2.1: A comparative analysis of existing Hit Song Science research studies

Task Musical Features Social Information Year Reference

Classification
acoustic and lyric-based

features
none 2005 [13]

Experimental artificial music market listeners’ information 2006 [59]
Regression albums’ average lifecycle none 2006 [11]

Classification
global acoustic and

manually-entered labels
none 2008 [52]

Classification P2P queries listeners’ information 2009 [33]
Classification listeners’ music tastes listeners’ information 2009 [7]

Classification
blog posts, genre, artist
and album information

listeners’ information
and artists’ metadata

2010 [1]

Classification acoustic features none 2011 [50]

Classification
meta-information, basic
acoustic features and
temporal features

none 2014 [23]

Regression music listening behaviors listeners’ information 2014 [32]
Classification audio signal features none 2015 [37]

Classification
music content, artists’
reputation and social

context

artists’ reputation
and social context

2016 [57]

Classification data from social networks listeners’ information 2016 [64]
Regression tweets listeners’ information 2017 [2]
Regression acoustic features none 2017 [79]

Classification
acoustic features and
artists’ reputation

artists’ reputation 2018 [28]

Classification acoustic features none 2018 [38]

Classification &
Regression

user songs operations and
relations between songs

and artists
listeners’ information 2019 [80]

Classification
popularity information and

acoustic features
none 2019 [3]

Regression
low- or high-level audio

features
none 2019 [81]

Classification &
Regression

text, audio and metadata none 2020 [43]

Classification
& Placement

music-, artist- and
album- related features

collaboration
profiles and artists’

metadata
2020 This dissertation
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Chapter 3

Collaboration Profiles and their

Impact on Music Success

To further our understanding of how music collaboration affects artists’ popularity, in

this initial part of our research, we analyze and identify collaboration profiles in a mu-

sical success-based network; that is, a network composed only of successful artists. By

detecting communities within this network, we identify collaboration profiles and analyze

the impact of such profiles on musical success. Considering topological metrics, we define

four main categories of collaboration profiles: Interaction, Distance, Influence and Sim-

ilarity. Among them, we find that the first three affect musical success more intensely

than Similarity. These findings provide evidence that (i) there are indeed distinct suc-

cess factors for music collaboration profiles that are socially measurable, and (ii) there

are common factors to successful collaboration in the music market. Such findings are

important to motivate and set foundations for the contributions of this work, as described

in the upcoming chapters.

Next, this chapter is organized as follows. In Section 3.1, we summarize fundamen-

tal concepts used in this work. In Section 3.2, we describe the dataset and introduce the

proposed methodology. In Section 3.3, we detail the results and experimental evaluation.

Finally, in Section 3.4, we discuss the overall considerations.

3.1 Fundamental Concepts

In this section, we present some fundamental definitions and concepts necessary

for understanding this chapter. We start by describing all seven topological metrics used

to characterize collaboration. Next, we summarize three types of correlation coefficients.
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Figure 3.1: Topological metrics of a synthetic social network with 77 nodes and 254 edges.
The nodes are colored by each topological measure.

3.1.1 Topological Metrics

In our study, we consider well known metrics related to individual graph nodes

(Clustering Coefficient, Eigenvector, Degree and Weighted Degree) and to the whole graph

(Closeness, Eccentricity, and Betweenness). We refer to related literature for complete def-

initions [49]. Nonetheless, we briefly define and put each in the musical context, whereas

Figure 3.1 presents a synthetic social network colored by each measure’s values.

Clustering Coefficient. Also known as the transitivity measure, it captures the degree

to which the neighbors of a given node bind to each other. In other words, it measures the

density of local links in the graph: the more interconnected the neighborhood of a node

i, the greater its local clustering coefficient Ci. In the music context, the metric captures

how connected an artist’s collaborations are.

Eigenvector Centrality. It measures the influence of a node within a graph. It cal-

culates the centrality degrees of each node in the graph, but not always with the same

equivalence, as the central nodes that connect to other central nodes receive more weight

than those that do not. Here, it gives more weight to artists who collaborate with central

artists (that is, other highly collaborative artists).

Degree and Weighted Degree. Degree is the number of edges incident on a given

node. Weighted degree is defined similarly by summing the weights of the incident edges.

In our network, the degree measures the number of connections to other artists (nodes),

while the weighted degree measures the number of interactions.

Closeness Centrality. It is a node centrality index based on the shortest path. Specifi-

cally, the value given to each node corresponds to the average of the shortest path between

that node and all others in the graph. High (low) values of closeness should indicate that
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all other nodes are close (distant) to the one being measured. That is, the closeness of

a node can be interpreted as a measure of the possibility of an artist to be relevant (in

terms of collaboration) for several other artists, but with the possibility to be irrelevant

for few others as well.

Eccentricity. It is also a node centrality index. For each node n, it calculates the

shortest path between n and all other nodes in the graph, then the “longest” shortest

path is chosen. Having such path identified, its reciprocal is calculated. High values

indicate a positive meaning in terms of node proximity: if the eccentricity of n is high,

all other nodes are close; if it is low, there is at least one node (and all its neighbors)

that is far from n. The eccentricity of a node in a musical collaboration network can be

interpreted as the easiness of an artist to be reached by all other artists in the network to

collaborate in the future.

Betweenness Centrality. It is a different way to measure the node centrality using

the shortest path by considering how many times a given node appears in the shortest

path of the other nodes in the graph. High scores mean that the node is crucial to

maintaining node connections for certain paths. Such connectors have the potential to be

highly influential by inserting themselves into the dealings of other parties. In the music

context, it indicates the capability of an artist to bring in communication with distant

artists.

3.1.2 Correlation Coefficients

Correlation tests evaluate association between two variables, which can be per-

formed using correlation coefficients. The Pearson correlation coefficient is the most

commonly used, and is a parametric test recommended for normally distributed variables.

Otherwise, non-parametric Kendall and Spearman correlation tests should be used. These

methods are summarized as follows.

Pearson’s correlation (r) [54] measures a linear dependence between two variables (x

and y). The coefficient (r) varies between −1 (perfect negative correlation) and 1 (perfect

positive correlation). The value 0 indicates there is no linear correlation, but does not

guarantee the independence between the variables.

Spearman’s correlation (ρ) [69] does not give any assumptions about the distribution

of the data, but analyzes the appropriate correlation when the variables are measured

on a scale that is at least ordinal. The method calculates the correlation between the

classification of variables x and y. Its interpretation is similar to Pearson’s: the closer ρ
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is to ±1, the stronger the monotonous relationship is.

Kendall’s correlation (τ) [30] is a non-parametric test that measures the statistical

dependence between two variables (x and y). Intuitively, the τ correlation between two

variables is high when the observations return a similar (or identical, with τ = 1) clas-

sification, and low when the observations have a different (or completely different, with

τ = −1) classification.

3.2 Methodology

This section presents our methodology for analyzing the impact of collaboration

on musical artists’ success. The dataset and results of such analyses are crucial to the

next steps in our research.

First, we describe the process of building a dataset in Section 3.2.1. Then, we

propose our definition of successful artists in Section 3.2.2. Next, we model a social

network in Section 3.2.3. Finally, in Section 3.2.4, we perform semantic characterization

to group similar topological metrics (summarized in Section 3.1.1) in categories, to later

use them to detect collaboration profiles.

3.2.1 Data Collection

Billboard is a weekly American magazine specialized in music. Its website provides

countless internationally recognized rankings that classify songs and popular albums. To

model a success-based network of collaborations, we collected all the artists on Billboard’s

Artist 1001 chart, a weekly ranking that lists the top 100 artists. We use the billboard.py2

Python API for access Billboard’s rankings and perform the data collection. In total, we

collected 211 rankings between 2014 (July 26, 2014) and 2018 (July 28, 2018). As each

chart consists of 100 artists’ names, we collected 21,100 artists’ names in total, which

were deduplicated to achieve 1,135 distinct names.

For more information on each artist, we also collected data from Spotify, one of the

most popular and used music streaming platforms. With Spotipy library3, we obtained

1Billboard’s Artist 100: www.billboard.com/charts/artist-100
2billboard.py : github.com/guoguo12/billboard-charts
3Spotipy : spotipy.readthedocs.io

www.billboard.com/charts/artist-100
github.com/guoguo12/billboard-charts
spotipy.readthedocs.io
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full access to all of the music data provided by the Spotify platform. Then, for each

artist collected on the Billboard chart, we also collected features and her/his ten most

popular songs. In the same way, the artists (and their features) that collaborate in the

execution of the top 10 songs were also collected. Therefore, the total number of artists

grew to 2,152. For each artist, the following information was recovered4: the Spotify ID,

name, popularity (a numeric value between 0 and 100, with 100 being the most popular),

the total number of followers, and a list of the genres the artist is associated with. For

example, Adele (the English singer-songwriter) has a popularity score of 87, about 20

million followers, and is associated with genres british soul, pop and uk pop. In contrast,

Joss Stone (another English singer-songwriter) has a popularity score of 64, only 775,778

followers, and is associated with pop rock, neo soul and british soul.

3.2.2 Definition of Success

To evaluate the association between collaboration and the artist’s success, we must

first define artists’ success, which may correspond to popularity on social media and music

platforms, sales profit, awards, etc. Here, we use two metrics collected from Spotify to

define it as: a successful artist presents both a high level of popularity and a large number

of followers. To establish a threshold, we use the upper quartile of each success metrics’

distribution (popularity and number of followers).

In Figures 3.2a and 3.2b, the upper quartiles of the popularity and number of

followers distributions are around 70 and 1, 000, 000, respectively. Specifically, 25% of

artists have a popularity greater than 72, but not necessarily more than 1 million followers.

For instance, the American singer Janelle Monáe has a popularity score of 70, but only

511, 119 followers (that according to data collected on January 2019; after her killing

opening act at the Oscars 2020, her number of followers is above 800, 000 as of March

2020). Similarly, 25% of artists have more than 1 million followers, but they do not

necessarily score 70 or more in popularity. A great example is the American singer Prince

with 2, 493, 242 followers, but 69 in popularity.

Furthermore, Figure 3.2c shows the intersection between both measures. That is,

in our dataset, there are 354 artists who have a popularity greater than or equal to 70,

as well as at least 1 million followers (e.g., the Canadian rapper Drake, with a popularity

score of 100 and 23, 732, 186 followers). Finally, we formally define the success si of an

artist i as high if his/her popularity index pi ≥ 70 and number of followers fi ≥ 1, 000, 000.

4Full dataset openly available at bit.ly/apoena_datasets

bit.ly/apoena_datasets
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Figure 3.2: (a,b) Boxplots of success measures. The boxes represent the lower and upper
quartiles while whiskers show values below the 25th and above the 75th. (c) UpSet plots
depicting quantitative intersection of the sets of each success measure across artists. The
numbers above the bars show (left) the intersection of artists presenting both a high level
of popularity and a large number of followers; (center) the set of artists with only a high
level of popularity; and (right) the set of artists with only a large number of followers.

3.2.3 Social Network Modeling

To model the music collaboration network, we collected all the artists who partic-

ipated in the execution of a single —either as participation (featuring) or collaboration

(with). This is because, aside from Spotify not distinguishing the artists’ role in a song

execution, all the artists who collaborated in it represent an essential part in the success

of a single. For example, “Despacito” (the most played song in history through streaming

platforms as of March 2020) is stored as “Luis Fonsi featuring Daddy Yankee and Justin

Bieber”; whereas “Under Pressure” (Queen’s second number-one hit in their home coun-

try, after 1975’s “Bohemian Rhapsody”) is stored as a collaboration between Queen and
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Figure 3.3: Bipartite graph projection: the two-mode social network for songs S1−5 and
artists Aa−h (a) is projected onto a single one-mode social network (b).

Table 3.1: Collaboration social networks’ statistics

Original Network Filtered Network

# Artists 2, 152 354
# Songs 10, 706 2, 144
# Collabs 5, 335 922
Modularity 0.793 0.478

David Bowie.

The dataset was modeled as a bipartite graph with nodes for songs and artists and

edges connecting the individuals who collaborated in the execution of each song. As most

network analysis techniques cannot be applied to bipartite graphs, we project the social

network into an one-mode model, as explained next. In the bipartite graph, there are two

groups of nodes: S the set of songs; and A the set of successful artists who collaborated

in the execution of the songs present in S. Following the methodology proposed by [48],

the bipartite model is then designed as a unimodal non-directed graph: every two nodes

in A are connected by a link if they are connected to the corresponding node in S (in

the bipartite representation). In other words, only artists are present as nodes, and edges

exist between artists who worked on the same song in such a projection. In addition,

songs that do not have more than one artist in their execution are modeled as self-loops

on the artist’s node. Figure 3.3 shows a simple example of such projection.

Before proceeding to the next step, we perform a network filtering for keeping only

successful artists (definition in Section 3.1.2) on the network and getting rid of potential

outliers. For instance, Lacy Mandigo, a contestant on Season 10 of the American reality

talent show named The Voice, would be filtered out for scoring a popularity of only 10.

Hence, the network includes only artists with a popularity rating greater or equal than

70, and at least 1,000,000 followers. A good example is the Canadian rapper Drake, the

most popular artist in our dataset. Table 3.1 presents statistics of the originally collected

network and the new, filtered one: total number of artists, total number of songs, total

number of musical collaborations, and network modularity.
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Figure 3.4: Semantic characterization of four collaboration categories (Interaction, Dis-
tance, Similarity and Influence), their composing metrics and magnitude range.

3.2.4 Semantic Characterization

From the topological metrics (Section 3.1.1) of the modeled collaborative success-

based network, we define four categories that semantically characterize collaboration.

Each category has two levels of subcategories indicating its magnitude. They are defined

according to the specific social metrics’ features as follows.

1. Interaction (degree and weighted degree). This first category is based on

the artist (node) connectivity and is directly related to Degree and Weighted Degree

metrics (quantify the number of connections/interactions of a node). High values of these

metrics suggest a collaboration composed by more than one artist; likewise, low values

indicate non-collaborative artists. Thus, the category ranges from single-artist (or band)

to multi-artist collaborations.

2. Distance (closeness and eccentricity). The Distance category is based on

proximity by Closeness and Eccentricity metrics. Note that Closeness should always be

compared to Eccentricity [60]: a node with high eccentricity and high closeness is very

likely to be central in the graph. In fact, the values of such metrics can be considered as

an “average tendency to node proximity or isolation” [60]. Therefore, high values indi-

cate pivotal artists in the graph, which are close to the other nodes. This suggests central

artists in the network collaborate with individuals from different places; in contrast, iso-

lated nodes (i.e., that are locally connected) represent artists who collaborate with fellow

countrymen. In other words, the concept of proximity here refers to the reachability of

different cultures, indicating a greater geographical distance between connections. Thus,

the artist can have a nearby (low degree of proximity, therefore less central in the network)

or a distant (high degree of proximity, more central) collaboration.

3. Similarity (clustering coefficient). Similarity is the most complex category

and related to the Clustering Coefficient (captures the density of edges in the neighbor-

hood of a node/artist). The more local links within the neighborhood of a node, the

higher its local clustering will be. In our case, a link represents a musical collaboration.

Therefore, an edge can be defined by a collaboration between artists who are present in
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the same professional/social circle. It is safe to say that these associations are usually

made up of artists from the same musical genre, where they often share the same pro-

ducer, events, audience, and so on. Consequently, a high clustering coefficient indicates

similar connections (probably, of the same musical genre); furthermore, low values imply

in more diverse collaborations and, in general, between different genres. For example,

country singers usually collaborate among themselves, such as Bryan White and Shania

Twain; the same is true for other genres, such as Pop and many collaborations of Lady

Gaga.

4. Influence (betweenness and eigenvector). As the name already says, this cate-

gory incorporates the concept of network influence. Betweenness and Eigenvector metrics

accurately explore this concept, quantifying the importance of a node in a social network.

A node with high values of these metrics has the potential to be highly influential, having

access to different network regions not reachable by other vertices. For that reason, the

category is composed of influential and non-influential artists.

Overall, Figure 3.4 illustrates the semantic characterization, by showing how indi-

vidual metrics are combined into each category (exception of Similarity) and the range of

their magnitude.

3.3 Results and Evaluation

Our goal is to identify collaboration profiles and assess their impact on the success

of musical artists. To do so, we need to detect groups of artists and their respective

collaborative patterns. Hence, in Section 3.3.1, we conduct a cluster analysis based on the

four categories described in Section 3.2.4. Finally, we perform the statistical correlation

analysis to evaluate the correlation between collaboration profiles and the artist’s success

measure in Section 3.3.2.

3.3.1 Cluster Analysis

Cluster analysis or clustering is an unsupervised Machine Learning technique that

involves grouping data points into specific clusters based on similar properties and/or

features. These clusters may reveal patterns related to the phenomenon under study.

In our context, we are studying musical collaboration from four categories: Interaction,
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Figure 3.5: The optimal number of clusters (k = 3), according to Elbow Method (left)
and the NbClust R Package (right).

Distance, Similarity and Influence (described in Section 3.2.4). To do so, we can use a

clustering algorithm to classify each data point (i.e., artist) into a specific collaboration

profile, according to such categories. Specifically, we calculate the topological metrics of

each artist present in the musical collaboration network and then apply the clustering

algorithm to group those with similar topological characteristics.

There are different clustering algorithms that can be applied to finding subgroups

of observations within a dataset. Here, we use K-means, which is the simplest and most

commonly used cluster method for dividing a dataset into a set of k groups. The first

steps of this algorithm is to define the number of clusters to work with. We do so by

using a common solution to identify the optimum number of clusters: the Elbow method.

It runs K-means on the dataset for a range of values of k (e.g., k from 1 to 10); for each

value of k, it calculates the sum of squared errors (SSE); it then considers a line chart of

the SSE for each value of k; finally, if the line looks like an arm, then the “elbow” on the

arm is the best k value. The results are shown in Figure 3.5. In the left panel, there is

a clear bend (or “elbow”) at k = 3. This bend indicates that additional clusters beyond

the third one would negatively affect the results by increasing k.

The Elbow method is often ambiguous and not very reliable, especially if the data

is not very clustered. Hence, we also consider a complementary approach to verify the

previous results. Here, we use the NbClust [10] for computing about 30 methods at

once, to find the optimal number of clusters. It provides 30 indices (e.g., Gamma [5],

Silhouette [58], Gap [71], and so on) that determine the relevant number of clusters in a

dataset and offers the best clustering scheme from different results. Moreover, it provides

a function to perform K-means and hierarchical clustering with different distance metrics

and aggregation methods. It can simultaneously compute all the indices and determine

the number of clusters in a single function call.

Figure 3.5 (right panel) shows the NbClust method produced a histogram of up to
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Figure 3.6: Clustering of collaboration profiles. The results are generated with K-means
algorithm with number of clusters k = 3. The algorithm is based on the topological
metrics of each artist.

10 possible number of clusters (cluster configurations never selected are omitted from the

X-axis as their frequency would be zero). Atop each vertical bar is the total number of

the 30 indices used to estimate the optimal number of clusters. Note that seven of the 30

indices proposed 3 as the best number of clusters. Therefore, we can safely affirm that

k = 3 is the optimal number of clusters for our dataset.

We now apply K-means again on the dataset with k = 3 and illustrate the clustering

results by using different colors according to each cluster assignment in Figure 3.6. As

the dataset is multi-dimensional, we perform Principal Component Analysis (PCA) to

plot data points according to the first two principal components coordinates. According

to Figure 3.6, there is a natural division of three clusters: Cluster 1 in the upper left

corner; Cluster 2 in the opposite lower corner to the right; and Cluster 3 in the upper

right corner. Note K-means clusters data into k groups based on their similarity. Hence,

each group is represented by its center that corresponds to the mean of points assigned

to the group.

To identify the collaboration profiles of each cluster, we examine the behavior of

each pattern according to the four main categories defined in Section 3.2.4. We can infer

16 different standard collaboration profiles from the four categories and their two levels

of magnitude, and Table 3.2 presents their characteristics (represented by a collaboration

category). In summary, to define the standard profiles, we use the characteristics to

represent threshold levels: 1 for a high metric value, that is, greater than or equal to 0.5;
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Table 3.2: Standard Collaboration profiles inferred from the four categories of collabora-
tion and their two levels of magnitude. The last column shows the corresponding profile
for each cluster identified in the dataset (colored according to the radar plots in Figure
3.7).

Profiles
Interaction Distance Genre Influence

Discovered Cluster
Degree Weighted Degree Eccentricity Closeness Clustering Betweenness Eigencentrality

1A 2A 3A 4A 0 0 0 0 0 0 0 Absent
1A 2A 3A 4B 0 0 0 0 0 1 1 -
1A 2A 3B 4A 0 0 0 0 1 0 0 -
1A 2A 3B 4B 0 0 0 0 1 1 1 -
1A 2B 3A 4A 0 0 1 1 0 0 0 -
1A 2B 3A 4B 0 0 1 1 0 1 1 -
1A 2B 3B 4A 0 0 1 1 1 0 0 Regular
1A 2B 3B 4B 0 0 1 1 1 1 1 -
1B 2A 3A 4A 1 1 0 0 0 0 0 -
1B 2A 3A 4B 1 1 0 0 0 1 1 -
1B 2A 3B 4A 1 1 0 0 1 0 0 -
1B 2A 3B 4B 1 1 0 0 1 1 1 -
1B 2B 3A 4A 1 1 1 1 0 0 0 -
1B 2B 3A 4B 1 1 1 1 0 1 1 Diverse
1B 2B 3B 4A 1 1 1 1 1 0 0 -
1B 2B 3B 4B 1 1 1 1 1 1 1 -

or 0 for low metric values, that is, less than 0.5. Then, we plot radar charts for each

profile, as well as for each cluster detected5. In the latter, we first calculate the average

of each topological metrics and normalize the values into a [0, 1] range. Radar charts

are extremely suitable for showing outliers and similarities; then, we can clearly identify

which profile each cluster belongs to based on the generated plots (Appendix A.1).

Figure 3.7 shows the result of comparing collaboration profiles with each cluster.

Note that Cluster 1 presents high metric values related to the Interaction, Distance and

Influence categories. However, it has an intermediate value for Similarity. On the other

hand, Cluster 2 only presents high values for Distance and Similarity. Finally, Cluster

3 presents only minimum values for all the categories. To summarize, we name each

identified cluster as follows: Cluster 1 as Diverse Collaboration (Diverse); Cluster 2 as

Regular Collaboration (Regular); and Cluster 3 as No Collaboration (Absent). According

to the radar plots, the collaborative characteristics of Diverse are more similar to profile

1B 2B 3A 4B; the Regular cluster is more similar to the 1A 2B 3B 4A pattern; and

the Absent cluster is identical to profile 1A 2A 3A 4A, as identified by their color in

Table 3.2.

3.3.2 Statistical Analysis

After identifying the collaboration profiles present in the network, we verify if there

is a correlation between an artist’s success and his/her collaboration profile by considering

5Visualizations available on the project page at bit.ly/comusic_visualizations

bit.ly/comusic_visualizations


3.3. Results and Evaluation 40

degree

weighted
degree

closeness

eccentricity betweeness

eigencentrality

clustering

0

0.25

0.5

0.75

1

cluster 1 1B 2B 3A 4B

INTERACTION SIMILARITY

DISTANCE INFLUENCE

(a) Cluster 1 vs. 1B 2B 3A 4B

degree

weighted
degree

closeness

eccentricity betweeness

eigencentrality

clustering

0

0.25

0.5

0.75

1

cluster 2 1A 2B 3B 4A

INTERACTION SIMILARITY

DISTANCE INFLUENCE

(b) Cluster 2 vs. 1A 2B 3B 4A

degree

weighted
degree

closeness

eccentricity betweeness

eigencentrality

clustering

0

0.25

0.5

0.75

1

cluster 3 1A 2A 3A 4A

INTERACTION SIMILARITY

DISTANCE INFLUENCE

(c) Cluster 3 vs. 1A 2A 3A 4A

Figure 3.7: Comparing the collaboration profiles of each cluster. Each topological metric
is represented as an axis starting at the center. Each metric value is plotted along its
individual axis, where all variables are connected to form a polygon. Here, the polygon
represents exactly the characterization of a collaboration profile.

a set of analyses from different perspectives. First, we perform the normality test of

Shapiro-Wilk [63] over the the whole dataset to verify if they follow a normal distribution.

The Shapiro-Wilk method provides a statistic test to assess whether a sample has a normal

distribution. It is based on the correlation between the data and the corresponding normal

scores. Then, we apply three different correlation metrics (Section 3.1.2) to inform the

intensity, direction, and significance of the association. Finally, we compute the t-test to

determine the statistical significance level. T-test (or Student’s T-test) is any hypothesis

test that uses statistical concepts to reject or not a null hypothesis when the statistic test

follows a Student’s t-distribution.

Initially, we present the results of the normality test, because such a method helps

to confirm the conclusions on the subsequent analyses. According to the results in Ta-

ble 3.3, all p-values are much smaller than the significance level of α = 0.05, informing

that the data distribution is significantly different from a normal distribution. In other

words, we cannot assume normality for any of the data samples.
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Table 3.3: Shapiro-Wilk test results. Null hypothesis H0: the distributions are Normal

Sample Statistic p-value Normal

Popularity 0.93788 5.269e−11 no
Followers 0.6737 < 2.2e−16 no
Degree 0.78467 < 2.2e−16 no
Weighted Degree 0.76878 < 2.2e−16 no
Eccentricity 0.74696 < 2.2e−16 no
Closeness 0.78364 < 2.2e−16 no
Clustering 0.87115 < 2.2e−16 no
Betweenness 0.58553 < 2.2e−16 no
Eigencentrality 0.66979 < 2.2e−16 no

Table 3.4: Statistical correlation between: Popularity on Spotify vs. Topological Metrics,
and Number of Spotify Followers vs. Topological Metrics, where ⋆ ⋆ ⋆ = Strong, ⋆⋆ =
Moderate, ⋆ = Weak, no star = Very Weak correlations

Popularity

Metric Pearson Spearman Kendall

Statistic P-value Statistic P-value Statistic P-value

Degree 0.5146218 ⋆ ⋆ ⋆ < 2.2e−16 0.5132529 ⋆ ⋆ ⋆ < 2.2e−16 0.3813272 ⋆ < 2.2e−16

Weighted Degree 0.4774128 ⋆⋆ < 2.2e−16 0.4562222 ⋆⋆ < 2.2e−16 0.3331673 ⋆ < 2.2e−16

Eccentricity 0.3134519 ⋆ 1.647e−09 0.2151929 4.457e−05 0.1623648 7.095e−05

Closeness 0.3315823 ⋆ 1.569e−10 0.4756752 ⋆⋆ < 2.2e−16 0.3450073 ⋆ < 2.2e−16

Clustering 0.04256444 0.4247 0.1071778 0.04388 0.06908103 0.07314
Betweenness 0.4412301 ⋆⋆ < 2.2e−16 0.5091025 ⋆ ⋆ ⋆ < 2.2e−16 0.3800098 ⋆ < 2.2e−16

Eigencentrality 0.4287696 ⋆⋆ < 2.2e−16 0.4875358 ⋆⋆ < 2.2e−16 0.3526067 ⋆ < 2.2e−16

Followers

Metric Pearson Spearman Kendall

Statistic P-value Statistic P-value Statistic P-value

Degree 0.1997008 0.0001554 0.1849627 0.0004688 0.1307009 0.0004795
Weighted Degree 0.2496251 1.979e−06 0.3029554 ⋆ 5.985e−09 0.2175485 4.906e−09

Eccentricity 0.1004326 0.05906 0.02492095 0.6403 0.01792927 0.6521
Closeness 0.1414757 0.007679 0.160929 0.00239 0.1100344 0.002724
Clustering 0.04100568 0.4418 0.07265466 0.1726 0.05100541 0.174
Betweenness 0.1932948 0.0002537 0.2147099 4.64e−05 0.1531739 5.268e−05

Eigencentrality 0.1589018 0.002716 0.1501669 0.004634 0.1038141 0.004559

Table 3.5: Rule of Thumb for interpreting the size of a Correlation Coefficient

Correlation Coefficient Strength Description

±0.81 – ±1.00 Strongest
±0.61 – ±0.80 Strong
±0.41 – ±0.60 Moderate
±0.21 – ±0.40 Weak
±0.00 – ±0.20 Weak to No Relationship

Note: Hair, J. F. Jr., Babin, B., Money, A., and Samouel, P. (2003). Essentials of Business Research
Methods. New York: John Wiley & Sons.

The statistical correlation evaluation of all three studied coefficients is summarized

in Table 3.4. Such metrics consider the null hypothesis that there is a correlation between

two variables. Considering only popularity, the results show only the p-value of the

Clustering metric is above α = 0.05. Therefore, all three correlation coefficients are

statistically significant for all social metrics, except for the clustering coefficient. On the

other hand, for the number of followers, both the clustering coefficient and the eccentricity

reach a p-value bigger than the significance level (α = 0.05), failing to reject the null

hypothesis. That is, we can conclude that there is not a significant linear correlation

between number of followers and those metrics.
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Figure 3.8: Visual representation of Kendall and Spearman correlation matrices. Colored
boxes represent a significant correlation coefficient between the variables (p < 0.05). Light
and dark blue represent respectively positive and negative correlation. Correlations with
p > 0.01 are considered as insignificant, then represented by a red cross. Full scatter plots
of the variables are given in the Appendix A.2.

As our data is not normally distributed, non-parametric Kendall and Spearman

correlation tests should be applied. Figure 3.8 shows the correlation matrices for both

tests. Analyzing only the correlation between popularity and the network metrics, we

notice there is a direct association between all the data points. In addition, the tests

achieve a moderate and weak (between ±0.60 and ±0.21) relationship between popularity

and most metrics with statistical significance (Table 3.5). In fact, only the eccentricity

measure exhibited a weaker (between ±0.21 and ±0.40) association in all three methods.

Regarding the number of followers, all three correlation coefficients are very low. However,

there is a strong correlation between popularity and the number of followers, as expected.

Figure 3.9 shows boxplots for each cluster related to the success metrics (popularity

and number of followers). In each plot, the central rectangle spans the first quartile to

the third quartile; a segment within the rectangle shows the median; and upper and

lower stems (whiskers) show the minimum and maximum locations. In summary, the

chart shows the localization of 50% of the most likely values, the median and the extreme

values. Figures 3.9a and 3.9b show the boxplots of the popularity’s measure and number

of followers of each cluster, respectively.

Figure 3.9a shows that all three clusters have different average levels of popularity,

decreasing from Diverse to Absent. In the first cluster, the mean and median are equiv-

alent to approximately 85. The second one shows the mean and median values less than

80. The last cluster has the lowest rates, close to the minimum values of each cluster

(around 70). In fact, 50% of the artists in this cluster are less popular than half of the

artists in Diverse. We also notice that all three clusters present outliers in their boxplots.

Nonetheless, the atypical values continue to follow a descending pattern from the first

to the third cluster. In addition, in Absent, the cluster has less dispersed data, with a
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Figure 3.9: Boxplots comparisons of each cluster in relation to the success metrics.

uniform popularity distribution.

On the other hand, the clusters in Figure 3.9b have equivalent median values

regarding the number of followers. Nevertheless, with respect to the mean, the rates are

also decreasing from Diverse to Absent. Diverse has median values close to 5,000,000 of

followers and a maximum value greater than 10,000,000. Regular has an average of less

than 5,000,000 and a maximum value around to 10,000,000 of followers. Absent is the

one that presents the smallest mean and maximum value. In fact, 75% of the artists in

this cluster have a number of followers less than 2,500,000. As the popularity boxplot,

the three clusters present outliers. In the opposite way, the outlying values escape the

descending pattern previously observed. Particularly, the most atypical data value belongs

to the second cluster (29,165,243). In addition, the third cluster also presents the lowest

variability and standard deviation, meaning a high predictability.

3.3.3 Discussion on Empirical Results

The results presented in this chapter show the collaboration profiles detected in

each cluster of the musical network. Since the average degree of the network is about

10 and the maximum degree value on the Regular cluster is equal to 30, we define that

highly collaborative profiles are those with a Degree value greater than or equal to 30;

profiles with moderate collaboration have between 10 and 30 musical collaborations; and

non-collaborative profiles with less than 10 collaborations. According to the data, the Di-

verse group is characterized by the profile 1B 2B 3A 4B: the artists of this cluster have

a profile with high interaction (collaborative), a high degree of distant collaborations, a



3.3. Results and Evaluation 44

medium level of connections between different genres (diversity), and musical collabora-

tions between influential artists (influence). The Regular cluster presents the profile 1A

2B 3B 4A: such artists are not very collaborative (low interaction), with a considerable

degree of distant collaboration and between the same musical genres (medium diversity),

and rare musical collaborations between influential artists (low influence). Finally, the

artists in Absent are characterized by the collaboration profile 1A 2A 3A 4A; which

means this cluster contains non-collaborative artists. In fact, the majority of this cluster

consists of bands, which usually do not collaborate by definition.

With the collaboration profiles of each cluster defined, we can discuss their impacts

on the artists’ success. According to the results in Section 3.3.2, there is a moderate to

strong relationship between the metrics of interaction, closeness and influence, and Spo-

tify’s measure of popularity. These results indicate such metrics may positively impact

an artist’s popularity. Therefore, successful artists are very likely to present highly col-

laborative profiles with distant and influential collaborations. We did not find correlation

between popularity and the clustering coefficient, thus we cannot infer that the diversity

of musical genres impacts on musical success. According to Figure 3.2, there is a weak

but statistically significant relationship between the interaction and influence metrics and

the number of followers. However, for the proximity and clustering metrics, no significant

relationship was detected. In this case, there is insufficient statistical evidence to support

the claim that the number of an artist’s followers impacts (positively or negatively) their

success. Then, Figure 3.2 also shows the number of followers is strongly correlated with

the popularity of the artist (which is expected to some degree).

Finally, with Figure 3.8, we validate some outcomes. For instance, Diverse presents

the profile that more likely infers musical success, and this is the exact cluster composed

of the most successful artists. Likewise, Absent has the less collaborative profile, which

does not necessarily expand musical success. As reported in Figure 3.8, this is the cluster

that presents the lowest values of success metrics in comparison to the other clusters.

Therefore, we may conclude that successful artists are more likely to have a high degree

of collaboration between influential and diversified artists. Similarly, for most cases, those

who prefer to pursue a non-collaborative musical career may be missing an opportunity

to enhance and expand their potential. Also, these success characteristics affect more sig-

nificantly than the musical genre factor. While the first observations may seem intuitively

obvious, the latter conclusion is less evident. This is because, typically, highly connected

entities tend to achieve some metrics of popularity (regardless of how popularity is defined

and what it implies). However, it is counter-intuitive to believe that musical genres are

not as influential in an artist’s success.
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3.4 Overall Considerations

In this chapter, we identified collaboration profiles present in a musical network.

Moreover, we analyzed the relationship between such collaborative patterns and the

artists’ success. Specifically, using data from Billboard and Spotify, we modeled a social

network and defined a measure of success. Then, to identify the collaborative profiles, we

applied six topological metrics and defined four main categories: Interaction, Distance,

Similarity and Influence. Next, by using the K-Means algorithm, we identified three

clusters with distinct collaboration profiles. To measure the relationship between these

profiles and musical success, we conducted a statistical analysis.

Through an extensive data analysis, we identified moderate and statistically signif-

icant correlations between popularity and metrics for degree and centrality. However, we

found no substantial relationship in terms of the number of followers and social metrics.

Our results provide strong evidence that clusters with a high degree of interaction, influ-

ence, and diversity, are more likely to present successful artists. Moreover, these success

features affect more significantly than the musical genre factor.

Limitations. Despite the relevant results, we cannot forget that correlation does not

imply causation. If there is a direct mathematical correlation between variables, it does

not indicate a relationship. Other factors can represent the cause and not all success

factors were covered here. Examples of factors include the number of awards received

by artists, the number of views of music clips, the success of the songs, among others.

Such external factors can improve the correlation analysis between musical success and

collaborative patterns. Therefore, in the next chapter, we further investigate the causality

relationship using the Granger causality test.



46

Chapter 4

Causality Analysis on Collaboration

Profiles and Music Success

The broad range of characteristics that lead to the success of a song exceeds its intrinsic

content, namely the audio features and the lyrics. Factors such as the artist’s preferred

attachment [7], society and culture [13] or psychological parameters on the reasons for

preferring a track and listening exposure to tracks [51], can also fulfill a key role. Fol-

lowing an alternate direction, we argued that the way artists connect professionally can

significantly affect musical success. Using data from Billboard and Spotify, we identified

(Chapter 3) three collaboration profiles in a musical network composed of 354 successful

artists: Diverse, Regular and Absent. Through a statistical analysis, we observed that

the most successful artists are more likely to have highly collaborative profiles among

influential and diverse artists (belonging to the Diverse profile). On the other hand, those

who prefer to pursue a non-collaborative music career (belonging to the Absent profile)

may be missing an opportunity to improve and expand their potential.

Though the correlation between collaboration profiles and musical success is well

established, there is no research into the causality in such relationship. Understanding

both statistical terms (together) is very important, not only for drawing insights but

more importantly, for a correct conclusion at the end. However, determining causation is

never perfect in the real world, and there are different methods to find evidence on causal

relationships, including the Granger causality1 test. Overall, we explore the potential of

Granger causality [19] to assess the existence of a causal relation between collaboration

profiles and musical success.

The remainder of this chapter is organized as follows. In Section 4.1, we describe

the dataset and introduce the proposed methodology. Next, we detail the results and

experimental evaluation in Section 4.2. Finally, we conclude with overall insights in

Section 4.3.

1Granger’s causality is a statistical concept of cause-and-effect relationship that is based on prediction.
Note: it is different than the term causality in other contexts such as Pearl Causal Model (PCM) [53]
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Table 4.1: Statistics of the top 30 artists selected (Col = Collaborations)

Diverse Regular Absent
Artist Solo Col Artist Solo Col Artist Solo Col

Carlos Vives 188 71 XXXTENTACION 61 32 5 Seconds of Summer 186 4
Drake 142 97 Ariana Grande 88 77 Adele 52 2
Future 202 134 Bad Bunny 22 57 Arctic Monkeys 131 0
J Balvin 91 141 Ed Sheeran 170 57 One Direction 125 17
Kanye West 124 89 Eminem 333 150 Panic! At The Disco 172 8
Kendrick Lamar 111 70 Khalid 42 38 Queen 893 72
Nicki Minaj 188 170 Marshmello 29 75 Red Hot Chili Peppers 438 0
Travis Scott 45 32 Nicky Jam 102 112 Sebastian Yatra 38 69
Ty Dolla $ign 44 167 Ozuna 33 71 The Beatles 825 14
Wiz Khalifa 204 130 Post Malone 47 31 Twenty One Pilots 67 5

4.1 Methodology

Our methodology aims at investigating if there is a causal relationship between col-

laboration profiles and musical success. In summary, our methodology is: build a dataset

containing 30 popular artists from three different collaboration profiles (Section 4.1.1);

from this data, use ego networks to model such artists’ collaborations (Section 4.1.2),

and define a temporal success measure (Section 4.1.3); create three time series of musical

success, musical collaborations and solo songs of the selected artists (Section 4.1.4); and

apply the Granger causality test to check if patterns of collaboration can influence the

musical success or vice versa (Section 4.1.5).

4.1.1 Data Collection

In the previous chapter, we detected three collaboration profiles: Diverse, Regular

and Absent. From such profiles, we now select the 10 most popular artists. That is,

in total, 30 successful artists are chosen. Using the Spotipy library, we collected the

entire discography of such artists. The Spotipy provides the Spotify catalog information

about a certain artist’s work, where four types of albums are available: album, single,

appears on and compilation. Here, we did not filter for a specific type, then considering

all four. Table 4.1 lists the names of all the artists present in our dataset2, as well as

the total number of solo and collaborative songs of each one. Note that in the Diverse

profile, the number of solo songs and collaborations are high and similar, in general; in

the Regular profile, the number of solo songs and collaborations is slightly lower, but also

well balanced. However, for the Absent profile, the number of solo songs is extremely

2Full dataset openly available at https://homepages.dcc.ufmg.br/~mirella/projs/bade

https://homepages.dcc.ufmg.br/~mirella/projs/bade
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Figure 4.1: (a) A generic example of the ego network model: a top 30 artist, (ego), and
his/her collaborating artists, (altera−g). (b) A real ego network example for the rapper
Post Malone.

higher than the number of collaborations, which is very limited in relation to the other

profiles.

4.1.2 Ego Network Modeling

From the dataset, we create ego networks for each of the 30 selected artists. Ego

networks have proved to be a valuable tool for understanding the relationships that in-

dividuals establish with their peers. In an ego network, the individual (termed ego) is

at the center of the graph, and the edges connect her/his to the peers (termed alters)

with whom she/he interacts [70]. As depicted in Figure 4.1, we model 30 ego networks,

where the top 30 artists represent the ego nodes and their musical collaborations, the

alter nodes.

4.1.3 Temporal Success Measure

Musical success can be defined through popularity on social media and music

platforms, sales profit, awards, etc. Another common approach is to rely on pop charts,

such as the Billboard charts3. In this case, the ranking of a song/album/artist in a chart is

a time domain signal, describing its popularity over time. To define the temporal success

measure, we first collected and grouped rankings of 18 top Billboard charts by the name

3Billboard charts: https://www.billboard.com/charts

https://www.billboard.com/charts
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of the top 30 artists. Next, we calculate the popularity over time of these artists from the

rank score of the artists/albums/songs top charts. The rank score is the inverted rating

on a chart. That is, the rank scorejt(i) of a chart j at time t of a song/album/artist i is

obtained by Equation 1.

rank scorejt(i) = max rankjt − rankjt(i) + 1, (4.1)

where max rankjt is the lowest rank of the j chart at time t, and rankjt(i) is the rank

of the song/album/artist i. For instance, in a weekly Top Album Sales chart, the album

ranked highest has a rank score of 100 and the album ranked lowest has a rank score of

1. After calculating the rank scores for each of the 18 charts for each of the artists over

time, we aggregate these scores to obtain our temporal success measure, St. Then, we

define the temporal success measure of an artist i with Equation 4.2.

St(i) =
18∑
j=1

rank scorejt(i). (4.2)

4.1.4 Time Series

Time series analysis is a powerful technique that helps to understand the distinct

temporal data patterns and to predict how levels of a variable shall change in the future,

by considering what has happened in the past. To study the dynamic properties of the

ego networks modeled in Section 4.1.2, we conduct two parallel analyses based on daily

time series of (i) collaborative songs and musical success, and (ii) solo songs and musical

success. Hence, in the end, each of the 30 ego networks produces three time series defined

as follows.

• Collaborative songs. Daily time series with the total number of musical collabora-

tions normalized over time. The elapsed time of each of these series was collected from

the release dates of all the artist’s songs. See Figure 4.2a.

• Solo songs. Daily time series with the total number of solo songs normalized over

time. The elapsed time of each of these series was collected from the release dates of

all the artist’s songs. See Figure 4.2b.

• Musical success. Daily time series with the artist’s success measure defined in Sec-

tion 4.1.3 normalized over time. See Figure 4.2c.
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Figure 4.2: The three time series created for each of the 30 ego networks. Each color
represents a top 30 artist’s time series. The time series vary from 1963 to 2019.

4.1.5 Granger Causality Analysis

Finally, we analyze the effect of musical collaborations on musical success over time,

applying the Granger causality test. Technically, the Granger causality test is a method to

determine if one time series is useful in forecasting another. Since predictability remains

a fundamental feature of causal attribution, Granger causality (GC) is also frequently

interpreted in cause-effect context. However, GC should not be confused with the deep

meaning of the word. GC is limited exclusively to identifying a statistical cause-and-

effect relationship between two variables when there is a temporal precedence relationship

between them.

The basic principle of the Granger causality test is to check if there is a lagged

cause relationship between two or more variables. For example, we can investigate the

causality between two time series of world prices of Arabica and Robusta coffees [72]. Let

Xt and Yt be the Arabica and Robusta coffees variables, respectively. Xt Granger-causes

Yt, if the forecast obtained in the current price of Robusta coffee can be improved by
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considering the lagged price information for Arabica coffee. In order to test the Granger

causality, the series Yt and Xt must be stationary, i.e., the series must be integrated with

order zero I(0). According to [14], the following VAR (Vector Autoregression) model can

be estimated to test the causality between two variables:

Yt = β1 + β2Yt−1 + β3Xt−1 + ε1t (4.3)

Xt = β4 + β5Xt−1 + β6Yt−1 + ε2t, (4.4)

where ε1t and ε2t are white noises, (β2, β5) are the current and lagged coefficients of en-

dogenous variables (determined within the model) and (β3, β6) are the current and lagged

coefficients of exogenous variables (determined outside the model). These coefficients

measure the influence of past values of each variable. In this system of equations, each

variable is a function of its value with a lag and the value of the other variable with a lag.

After verifying if all the variables are stationary, we can use the VAR model with n lags

in Equations 4.5 and 4.6.

Yt =
n∑

i=1

αiYt−i +
n∑

j=1

βjXt−j + ε1t (4.5)

Xt =
n∑

k=1

γkYt−k +
n∑

l=1

δlXt−l + ε2t (4.6)

Equation 4.5 postulates that current values of Yt are related to past values of Yt as well as

to lagged values of Xt. On the other hand, Equation 4.6 postulates a similar behavior for

the variable Xt. In general terms, since the future cannot predict the past, if the variable

Xt Granger-causes the variable Yt, then changes in Xt must temporarily precede changes

in Yt. In order to test whether Xt Granger-causes Yt, we attempt to reject or accept the

following hypotheses by means of F-tests as follows:

H0 :
n∑

j=1

βj = 0

H1 : βj ̸= 0, for at least one j,

where j is the number of lags. Hence, the Null Hypothesis (H0) in which Xt does not

Granger-cause Yt is tested against the Alternative Hypothesis (H1) in which at least one

lag of the variable Xt Granger-causes Yt.

Based on the estimated coefficients for Equations 4.5 and 4.6, four different hy-

potheses about the relationship between Yt and Xt can be formulated, as follows.

Unidirectional Granger-causality Xt → Yt: when the estimated coefficients of the

lags of Xt in Equation 4.5 are jointly different from zero (
∑n

j=1 βj ̸= 0), and the estimated

coefficients of the lags of Yt in Equation 4.6 are jointly zero (
∑n

k=1 γk = 0).
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Unidirectional Granger-causality Yt → Xt: when the estimated coefficients of the

lags of Xt in Equation 4.5 are jointly zero (
∑n

j=1 βj = 0), and the estimated coefficients

of the lags of Yt in Equation 4.6 are jointly different from zero (
∑n

k=1 γk ̸= 0).

Bidirectional (or feedback) Granger-causality : when the sets of lagged coefficients

of Xt and Yt are statistically different from zero in both regressions (
∑n

j=1 βj ̸= 0 and∑n
k=1 γk ̸= 0).

Independence between Xt and Yt: when, in both regressions, the sets of lagged

coefficients of Xt and Yt are not statistically different from zero (
∑n

j=1 βj = 0 and∑n
k=1 γk = 0).

4.2 Results and Evaluation

This section goes over our analyses through the times series evaluation and a

discussion over the results. Following [72], the first step in the Granger causality test is

to verify if the time series are stationary. Hence, we apply the Augmented Dickey-Fuller

(ADF) [17] and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [35] tests. For both time

series, the null hypothesis H0 of non-stationary can be rejected at the 5% significance

level. Tables 4.2 and 4.3 present, respectively, the results for ADF and KPSS to verify

the order of integration of the level series for the two analyses. According to the results,

all POP series are integrated of order one I(1) at a significance level of 5%. However, the

great majority of COLLAB and SOLO series are stationary with I(0) at a significance

level of 5%. For all the time series group, we consider the maximum integration order

m = 1.

In cases where both series have the same integration order, the co-integration test

must be applied between the variables. Therefore, we perform the Johansen co-integration

test for the 14 pairs of time series that presented the same integration order (See Tables

4.2 and 4.3). As highlighted by [72], the lag selection procedure is a crucial step for the

Granger causality test. In this methodology, in order to determine the number of lags, p,

we first estimate an unrestricted VAR(p) model and select the model that minimized the

information criteria of Akaike (AIC), [22] (HQ) and [61] (SC).

Based on Tables 4.2 and 4.3 and following [72], we add to the VAR(p) models,

additional m lags in each of the variables of each of the equations – where p is the

appropriate maximum lag for the variables, and m represents the maximum integration

order for the time series. Next, we test the Granger causality as follows. For expository

purposes, suppose VAR(p) has two equations, for Xt and for Yt. We test the hypothesis



4.2. Results and Evaluation 53

that (only) the coefficients of the first lagged values of Xt are zero in equation Yt, using

the F-test. Subsequently, we perform the same analysis for the coefficients of the lagged

values of Yt in equation Xt.

4.2.1 Hyphoteses

As mentioned earlier, we conduct two parallel analyses based on daily time series

of collaborative songs and musical success, and solo songs and musical success, from each

of the top 30 artists selected from the three collaboration profiles (Diverse, Regular and

Absent). In both analyses, we test the null hypothesis H0 that collaborative profiles do

not Granger-cause artistic success. From the results of both analyses, we can distinguish

four hypotheses as follows.

Hypothesis 1. The way in which artists professionally connect with each

other is useful in forecasting their musical success. This hypothesis imagines

a situation in which an artist’s collaborative patterns have a direct impact on his/her

success.

Hypothesis 2. The musical success of an artist is useful in forecasting

his/her collaborative profile. This hypothesis imagines a situation in which the mu-

sical success of artists drives the way in which they collaborate.

Hypothesis 3. The musical success of an artist assists in forecasting their

collaborative profile, as well as their profile helps in forecasting their success.

This hypothesis imagines a situation in which artists, before collaborating with other

people, consider the success level of such individuals. In the same way, the growth of

artistic success is affected by the way artists collaborate professionally.

Hypothesis 4. There is no causality relationship (in the Granger sense)

between collaboration profiles and musical success.

4.2.2 Discussion

For clarification purposes, we start our discussion by summarizing the three base

profiles: Diverse has highly collaborative and important artists; Regular has collaborative,

regular artists; and Absent has non-collaborative artists. Now, we further discuss the
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Table 4.2: Granger causality test for the first analysis. Column 1 groups the results by profile. Column 2 shows the selected top 30
artists. Columns 3 and 4 show the data characteristics of the series COLLAB (number of musical collaborations) and POP (musical
success) respectively. If the series itself is stationary, we represent it by I(0). If the series is integrated with order n, we represent it by
I(n). Column 5 shows the lag orders, where the lag order chosen is underlined. Column 6 uses ✓ to indicate that the two series are
co-integrated. Columns 7 and 8 represent the P-value of the Granger causality test: ***, **, * and . statistically significant at 0%, 1%,
5% and 10%, respectively

Artist COLLAB POP Lag Co-integration COLLAB → POP POP → COLLAB

D
iv
er
se

Drake I(0) I(1) 15 — 7 5.756e−07 *** 0.9831
J Balvin I(1) I(1) 20 — 14 ✓ 4.988e−06 *** 4.988e−06 ***
Carlos Vives I(1) I(1) 17 — 15 ✓ 0.2477 < 2.2e−16 ***
Nicki Minaj I(0) I(1) 14 0.032 * 0.9881
Kanye West I(0) I(1) 56 — 14 — 7 < 2.2e−16 *** 1
Kendrick Lamar I(0) I(1) 14 — 10 — 9 5.827e−1 *** 2.571e−06 ***
Future I(0) I(1) 61 — 7 < 2.2e−16 *** < 2.2e−16 ***
Ty Dolla $ign I(0) I(1) 14 — 7 0.491 * 0.5503 **
Travis Scott I(0) I(1) 21 — 14 — 7 0.3772 0.7933
Wiz Khalifa I(0) I(1) 20 — 14 6.872e−10 *** 6.872e−10 ***

R
eg
u
la
r

XXXTENTACION I(0) I(1) 7 0.6671 0.7559
Post Malone I(0) I(1) 14 — 7 0.2291 5.379e−11 ***
Ozuna I(1) I(1) 20 — 14 ✓ 0.000236 *** 0.003717 **
Bad Bunny I(1) I(1) 7 ✓ 0.2568 0.994
Khalid I(1) I(1) 17 — 14 ✓ 4.359e−07 *** 3.546e−14 ***
Ed Sheeran I(1) I(1) 19 — 17 — 14 ✓ 1.371e−11 *** < 2.2e−16 ***
Ariana Grande I(0) I(1) 7 0.6814 0.0009666 ***
Nicky Jam I(1) I(1) 99 — 59 — 15 — 14 ✓ < 2.2e−16 *** < 2.2e−16 ***
Eminem I(0) I(1) 54 — 14 — 7 3.344e−15 *** 1
Marshmello I(1) I(1) 97 — 21 — 14 — 7 ✓ 0.112 8.122e−07 ***

A
b
se
n
t

Panic! At The Disco I(1) I(1) 14 — 7 ✓ < 2.2e−16 *** 0.1697
5 Seconds of Summer I(1) I(1) 7 ✓ 0.3544 5.002e−15 ***
Twenty One Pilots I(0) I(1) 7 0.0001239 *** 0.9952
The Beatles I(0) I(1) 20 — 17 — 14 1 1.711e−14 ***
Queen I(1) I(1) 98 — 21 — 14 — 7 ✓ 0.9869 0.9922
Red Hot Chili Peppers I(0) I(1) 1 – –
Arctic Monkeys I(0) I(1) 20 — 15 — 14 0.7243 2.728e−12 ***
Sebastian Yatra I(1) I(1) 16 — 8 — 7 ✓ 6.852e−11 *** 0.722
Adele I(0) I(1) 20 — 15 — 14 0.7243 2.728e−12***
One Direction I(0) I(1) 36 — 7 0.001496 ** 2.043e−05 ***
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Table 4.3: Granger causality test for the second analysis. Column 1 groups the results by profile. Column 2 shows the selected top 30
artists. Columns 3 and 4 show the data characteristics of the series SOLO and POP series respectively. If the series itself is stationary,
we represent it by I(0). If the series is integrated with order n, we represent it by I(n). Column 5 shows the lag orders, where the lag
order chosen is underlined. Column 6 uses ✓ to indicate that the two series are co-integrated. Columns 7 and 7 represent the P-value of
the Granger causality test: ***, **, * and . statistically significant at 0%, 1%, 5% and 10%, respectively

Artist SOLO POP Lag Co-integration SOLO → POP POP → SOLO

D
iv
er
se

Drake I(0) I(1) 15 0.121 < 2.2e−16 ***
J Balvin I(0) I(1) 15 0.3623 < 2.2e−16 ***
Carlos Vives I(0) I(1) 21 0.9976 < 2.2e−16 ***
Nicki Minaj I(0) I(1) 19 — 7 0.4811 < 2.2e−16 ***
Kanye West I(0) I(1) 15 — 7 0.1103 1.671e−1 ***
Kendrick Lamar I(0) I(1) 22 — 7 0.477 < 2.2e−16 ***
Future I(0) I(1) 7 0.4268 0.9981
Ty Dolla $ign I(0) I(1) 22 — 15 — 7 2.403e−09 *** < 2.2e−16 ***
Travis Scott I(0) I(1) 15 1 < 2.2e−16 ***
Wiz Khalifa I(0) I(1) 18 — 7 0.8481 < 2.2e−16 ***

R
eg
u
la
r

XXXTENTACION I(0) I(1) 15 — 7 0.766 < 2.2e−16 ***
Post Malone I(0) I(1) 15 0.9966 < 2.2e−16 ***
Ozuna I(0) I(1) 15 0.7705 < 2.2e−16 ***
Bad Bunny I(0) I(1) 98 — 71 — 65 — 20 — 13 — 7 < 2.2e−16 *** < 2.2e−16 ***
Khalid I(1) I(1) 17 — 16 ✓ 2.735e−05 *** < 2.2e−16 ***
Ed Sheeran I(0) I(1) 22 — 14 0.872 2.147e−14 ***
Ariana Grande I(0) I(1) 22 — 15 — 7 0.2358 < 2.2e−16 ***
Nicky Jam I(1) I(1) 29 — 22 ✓ 1 < 2.2e−16 ***
Eminem I(0) I(1) 20 — 19 — 7 0.9331 < 2.2e−16 ***
Marshmello I(0) I(1) 14 — 7 0.05908 . 0.2674

A
b
se
n
t

Panic! At The Disco I(0) I(1) 22 — 7 0.9999 < 2.2e−16 ***
5 Seconds of Summer I(0) I(1) 7 0.9876 1
Twenty One Pilots I(0) I(1) 15 0.9999 < 2.2e−16 ***
The Beatles I(0) I(1) 38 — 22 — 8 — 7 0.6306 < 2.2e−16 ***
Queen I(0) I(1) 98 — 22 — 7 0.999 1.697e−07 ***
Red Hot Chili Peppers I(0) I(1) 22 — 21 — 14 — 7 1 < 2.2e−16 ***
Arctic Monkeys I(0) I(1) 52 — 35 — 7 0.4089 4.898e−08 ***
Sebastian Yatra I(0) I(1) 15 3.355e−05 *** < 2.2e−16 ***
Adele I(0) I(1) 52 — 35 — 7 0.4089 4.898e−08 ***
One Direction I(0) I(1) 19 — 7 1.57e−05 *** < 2.2e−16 ***
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results from three perspectives: the collaborative songs, the solo ones, and some relevant

general points crossing all information with the three profiles.

Collaborative Songs. Table 4.2 suggests that musical collaboration helps predicting

artistic success in 40% of Diverse profiles, just as success helps in predicting collaborations.

In 20% of cases (Drake and Kayne West), there is unilateral causality where the success of

the artist strongly influences the incidence of their musical collaborations. Only one artist

(Carlos Vives) presented an opposite result, where his musical associations directly affect

his success. The other 30% did not present statistically significant results. Likewise,

for 40% of the Regular profile, musical collaboration helps predicting artistic success,

just as success helps predicting collaborations. Now, in 30% of the cases (Ariana Grande,

Marshmello and Post Malone), there is a unilateral causality, where, this time, the artist’s

musical associations directly affect success. Only one artist (Eminem) has produced a

divergent result, and his success affects the incidence of his musical collaborations. The

other 20% did not present statistically significant results. For the Absent profile, the tests

indicate no bilateral causality. In fact, in 30% of cases (Panic! At The Disco, Twenty One

Pilots and Sebastian Yatra), there is unilateral causality, where success helps predicting

collaborations. In 50% of cases, there is a unilateral causality between the artist’s musical

associations and their success. The other 20% did not present statistically significant

results.

Solo Songs. The results summarized in Table 4.3 suggest that in 80% of Diverse cases,

solo songs assist in predicting artistic success. This time, only one artist (Ty Dolla $ign)
presented bilateral causality, and the remaining 10% did not present statistically sig-

nificant results. Then, in 70% of Regular cases, solo songs assist in predicting artistic

success. Two artists (Bad Bunny and Khalid) presented a bilateral causality, and one

artist reports no statistically significant results. Finally, for the Absent profile, the tests

also indicate that in 70% of the cases solo songs assist in predicting artistic success. Two

artists (Sebastian Yatra and One Direction) presented a bilateral causality, and one artist

indicated no statistically significant results.

General Points. If two or more time series are cointegrated, then there must be Granger

causality between them—either unidirectional or in both directions; however, the opposite

is false. According to Table 4.2, the time series of Bad Bunny and Queen are cointegrated,

but no evidence of causality is found. In both cases, such a conflict may have occurred

because the size of the sample is too small to satisfy the asymptotics on which the cointe-

gration and causality tests depend. Similarly, the sample size of the Red Hot Chili Peppers

series was also too small to perform the causality test.

Table 4.4 summarizes the final results of the Granger causality test for the analyses

considered: percentage of artists, the test result, and the confirmed hypothesis. Analyzing

the two collaborative profiles (Diverse and Regular), when collaborating, most artists

consider the level of success of their collaborators. Likewise, the growth of an artist’s
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Table 4.4: Summary of main results (Tables 4.2 and 4.3)

COLLAB & POP

Artists (%) Causality Relation Hypothesis

D
iv
er
se 40% COLLAB ↔ POP Hypothesis 3

30% – Hypothesis 4
20% POP → COLLAB Hypothesis 2
10% COLLAB → POP Hypothesis 1

R
eg
u
la
r 40% COLLAB ↔ POP Hypothesis 3

30% COLLAB → POP Hypothesis 1
20% – Hypothesis 4
10% POP → COLLAB Hypothesis 2

A
b
se
n
t 50% COLLAB → POP Hypothesis 1

30% POP → COLLAB Hypothesis 2
20% – Hypothesis 4

SOLO & POP

Artists (%) Causality Result Hypothesis

D
iv
er
se 80% SOLO → POP Hypothesis 1

10% POP ↔ SOLO Hypothesis 3
10% – Hypothesis 4

R
eg
u
la
r 70% SOLO → POP Hypothesis 1

20% POP ↔ SOLO Hypothesis 3
10% – Hypothesis 4

A
b
se
n
t 70% SOLO → POP Hypothesis 1

20% POP ↔ SOLO Hypothesis 3
10% – Hypothesis 4

Hypotheses Summary

1. The way artists professionally connect to each other is useful in forecasting their musical success.
2. The musical success of an artist is useful in forecasting his/her collaborative profile.
3. The musical success of artists assists in forecasting their collaborative profile, as well as their profile
helps in forecasting their success.
4. There is no (Granger) causality relationship between collaboration profiles and musical success.

success is affected by the same musical collaborations. That is, the results indicate the

presence of contemporary feedback between the two variables, forming a cycle between

collaborations and musical success.

Regarding only the Diverse profile, there is a significant unilateral causal rela-

tionship between the solo songs and the artists’ success, as well as a unilateral causal

relationship between artistic success and musical collaborations. The first observation

was predictable: as we selected only the most popular artists from each profile, it was

expected that their solo songs would affect their musical success. However, the second

observation shows that, contrary to expectations, the musical success of an artist affects

the forecast of musical collaborations more than the opposite. Although it goes against

our assumptions, such results still make sense. In Chapter 3, we found that Diverse was

the most collaborative profile and composed of the most successful artists. Now, we can

conclude that a large number of collaborations performed by the artists of this profile

is because they are successful artists. That is, other musicians, seeking to increase their

professional success, will always attempt to collaborate with the artists in such a group.

Regarding the Regular profile, the results also suggest the existence of a significant

unilateral causal relationship between the solo songs and the artists’ success. However, in

this case, there is also a unilateral causal relationship between musical collaborations and

artistic success. As in the Diverse profile, the first observation was expected. Nevertheless,

unlike the previous analysis, the second observation is consistent with our thesis. Being

a profile composed of artists with success and an ordinary amount of collaborations, the

eventual musical collaborations would cause (in Granger sense) the increasing of these

artists’ success.
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Finally, regarding the Absent profile, the results suggest the existence of a signif-

icant unilateral causal relationship between the solo songs and the artists’ success, once

again. Moreover, for most artists, a unilateral causal relationship between musical col-

laborations and artistic success has been identified. As the Absent profile is composed of

non-collaborative artists, this observation was less evident. However, through the current

results, we can conclude that the few collaborations performed by these artists exposed

a strong impact on their success. That is, as shown earlier (Chapter 3), the reason these

artists are the least successful (compared to the other profiles) may be related to this

causal relationship. In short, because they collaborate very little, they may be missing

the opportunity to improve and expand their musical success.

4.3 Overall Considerations

In this chapter, we collected data from the 30 most successful artists from three

different collaboration profiles. We then defined a temporal measure of musical success

by grouping the rank score of 18 Billboard charts. From our dataset, we created three

time-series for each of the top 30 artists: collaborative songs, solo songs and musical

success. With data from these time series and the success measure, we applied the Granger

causality test to explore the causal relationship between collaborative profiles and artist’s

success. By conducting two analyses in parallel, the results for the causality test showed

the causal relationship between the two variables is not obvious in general.

Combining the current results with observations from the last chapter, we were

able to better understand the relationship between artists’ collaborative patterns and

their musical success. Specifically, we have evidence to support that artistic success

strongly affects establishing musical collaborations in a Diverse profile. In addition, we

confirmed the presence of a cycle between musical collaborations and musical success

in the most collaborative profiles (Diverse and Regular). Finally, we conclude Absent

may be the profile with less successful artists with exceptions such as Adele, as it is a

non-collaborative profile.

Limitations. Despite the relevant results, the dataset employed provides some con-

straints. By considering a limited number of successful artists, the data analysis risks

becoming generic and biased. Therefore, including a more complete dataset, contain-

ing both popular and non-popular artists is certainly one of the following study steps.

Another notable limitation is the questionable causal notion incorporated in Granger

causality concept. According to [53], econometric concepts such as Granger causality are

classified as statistical rather than causal. Hence, to further understand the causal rela-
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tionships between collaborative profiles and artist’s success, we plan to deeply investigate

techniques of the Pearl Causal Model (PCM).
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Chapter 5

Collaboration-Aware Multimodal

Hit Song Prediction

Features extracted from songs’ audio, albums and artists’ collaborations can provide com-

plementary information to identify potential factors related to songs’ popularity. Conse-

quently, a proper description of a song may help machine learning algorithms to predict

whether it will become a hit or not. Prior studies on hit song prediction focus on describ-

ing them by exploiting features from unique modalities, such as only using audio-based

data. In this chapter, we propose including different modalities simultaneously to prop-

erly describe songs. Thus, we extract acoustic features, characteristics of the album,

artistic collaboration, among others, by considering multiple modalities. We claim that

each modality is potentially relevant to describe a song and, consequently, predict its pop-

ularity. Since prior chapters strongly favor artistic collaboration as an important metric

of song success, we emphasize its use.

The remainder of this chapter is organized as follows. Section 5.1 gives a quick

overview on Multimodal Learning followed by our proposed methodology to assess the

Hit Song Prediction problem, in Section 5.2. We detail the results and experimental

evaluation of two distinct tasks in Sections 5.3 and 5.4. Finally, Section 5.5 addresses

overall considerations.

5.1 Fundamental Concepts

In this section, we briefly review multimodal machine learning, which builds models

that can process and relate information from multiple modalities. Here, we focus on

multimodal data fusion, one of the five challenges surrounding such a multi-disciplinary

field1. Technically, multimodal fusion reflects data integration from two or more modalities

1The other four challenges on multimodal learning are: representation, translation, alignment, and
co-learning (more information in [6]).
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(a) Early Fusion

Learning Model 1

Predicted Output
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Figure 5.1: Multimodal data fusion approaches for Hit Song Prediction. (a) Early Fusion:
concatenates features from different modalities, then, a classifier is trained using this
common feature vector in order to form the final prediction model. (b) Late Fusion: a
classification model is trained separately for each modality, and the individual results are
merged into a final prediction model.

to perform a prediction task [41, 76, 25]. It usually allows more robust predictions by

providing access to multiple modalities that represent the same phenomenon. Such access

may also capture complementary information not visible in the individual modalities and

operate with missing modalities.

[6] classify multimodal fusion into: model-based – multimodal extensions of exist-

ing models; and model-agnostic – not directly dependent on a specific learning model.

Here, we focus on the latter by using different learning methods for the prediction task.

Such approaches are generally early (feature-based) or late (decision-based) fusion [4] as

simplified in Figure 5.1.

5.1.1 Early Fusion

Early fusion, or feature-based, requires training only a single learning model by

aggregating data (often by concatenating their representations) from all the modalities.

Its learning phase is simple, as only one model is involved, and allows to explore the

interactions between features from distinct modalities. Yet, combining features into a

common representation is usually challenging. The overall flowchart for early fusion is

illustrated in Figure 5.1a.
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5.1.2 Late Fusion

Late fusion, or decision-based, learns semantic concepts directly from unimodal

features and focuses on the individual strength of modalities. It allows using distinct

models on each modality, as different predictors can model each individual modality bet-

ter, then providing flexibility. Also, it is easier to handle over missing modalities as the

predictions are trained individually. However, because late fusion operates on inferences

and not on the raw input, it ignores low level interactions between the modalities. The

overall flowchart for late fusion is illustrated in Figure 5.1b.

5.2 Methodology

We now detail the new methodology to tackle Hit Song Prediction problem as

defined in Section 5.2.1. Then, Section 5.2.3 describes how we model the solution by in-

cluding artists collaborations, whereas Section 5.2.2 covers the actual multimodal features

used for the multimodal strategy. Last, we present the dataset in Section 5.2.4.

5.2.1 Problem Definition

We define Hit Song Prediction as two distinct tasks summarized as follows:

• Binary Classification: Given a song, the problem is to predict whether it will be a

hit or not; and

• Placement: Given a set of existing hit songs sorted by a popularity measure, the

problem is to predict in which position a new song will be placed at its release.

Indeed, current work on Hit Song Prediction (e.g., [3, 43]) treats the problem as

a regression (or ranking) or binary classification. For a thorough analysis, we regard

both tasks as independent. Overall, the main novelty is to solve them by adopting multi-

modal strategies that consider not only the acoustic features of a song but also its artists’

collaborative interactions. Next, we define such tasks.
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Binary Classification. Let X denote a set of songs ordered by their release date,

and Y = {1, 0} be the label space (i.e., 1 = hit or 0 = non-hit). The task of binary

classification is to learn a function f : X → Y from the training set {(xi, yi) | 1 ≤ i ≤ m},
where xi ∈ X is an instance characterizing the features of a song2, and yi ∈ Y is the

corresponding target value. In this task, the train-test split must be done at a given time

t, as the chronological order of the songs is important for the prediction.

Placement. Let H = {s1, s2, · · · , sn} be a set of hit songs ranked by a popularity

measure and s′ a new hit song. The placement task aims to find the right position for s′

between two instances (si, sj) ∈ H | rank(si) > rank(s′) > rank(sj). This task was first

addressed in the context of book sales by [78].

5.2.2 Multimodal Features

Different information may be associated with a particular song, such as lyrics [13],

Musical Instrument Digital Interface (MIDI) [55], listener-based information [57], and

so on. Learning from multimodal sources improves machine learning models, as a single

modality with complete knowledge of the raw data is unusual. That is, representing music

only through acoustic features is a restrictive choice. Hence, we explore three modalities

as follows.

Music Features. We divide music features into two categories: internal, which de-

pends exclusively on resources extracted from the audio, or acoustic fingerprints; and

external, which considers aspects of the musical ecosystem, e.g., textual and numeric

metadata. As internal, we use acoustic fingerprints that are objective (key∗, loudness∗,

mode∗, time signature∗, and tempo∗) or subjective (acousticness∗, danceability∗, energy∗,

instrumentalness∗, liveness∗, speechiness∗, and valence∗).3 We also use song duration in

milliseconds and the explicitness of lyrics. As external, we consider metadata such as

track number, number of artists who have performed the song, number of countries in

which the song can be played, and number of years the song has been in the Hot 100 since

its release.

Artist Features. Chapters 3 and 4 show artists’ professional connections may affect mu-

sical success. Therefore, to capture this social information, we consider four social network

node-dependent metrics (Clustering Coefficient, Eigenvector, Degree and Weighted De-

gree) and three graph-dependent metrics (Closeness, Eccentricity, and Betweenness) [34].

2In early fusion, xi vector refers to concatenation of features, whereas in late fusion, xi vector refers
to one modality at a time.

3Terms marked with ∗ are further explained in A.3.
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We also consider all three collaboration profiles identified through the topological metrics

(Chapter 3): Diverse for highly collaborative and influential artists; Regular for nor-

mally collaborative artists; and Absent for non-collaborative bands and artists. Finally,

we consider the number of genres an artist is associated with and the number of artist’s

albums.

Album Features. We consider two album metadata: album type that classifies albums

in album, single or compilation; and album total tracks, i.e., number of tracks in an album.

Uniqueness. A key property of a multimodal strategy is uniqueness, which is necessary

to achieve interpretability, i.e., to assign physical meaning to a phenomenon [36]. Here,

artist’s and album’s features are unable to represent a unique song. For instance, Elvis

Presley, who was one of the most productive artists of all time recording over 387 albums4,

could not represent a singular song. Likewise, 21, Adele’s second album ranked as the

Greatest Billboard 200 Album of All Time,5 is composed not by one, but 11 different songs.

Therefore, to establish uniqueness, we attach acoustic fingerprints in both modalities

(artist and album), as established in the music modality.

5.2.3 Collaboration-aware Multimodal Solution

Generally, a modality refers to how something exists, is experienced or expressed.

Music is characterized as multimodal when expressed by multiple modalities (e.g., melody,

rhythm, artist’s reputation, collaboration profiles, album information), and each of its

modality may be mapped to a popularity metric. Here, we focus on three musical modal-

ities: musical and acoustic features; album features; and artist features, including social

and collaboration metrics.

As music may be described by using different modalities, defining how to fuse data

obtained from each modality is important. Here, we combine the multimodal features

into one multimodal representation using the aforementioned model-agnostic strategies

(Section 5.1). Then, we define three data fusion strategies: two using early fusion (data

integration before being used by a supervised learning model) and one late fusion (data

merging after evaluating each modality), as follows.

EF-music. It is an early fusion strategy for integrating only music related features.

After the features being aggregated (through simple concatenation), they become input

for a single multimodal supervised learner to predict the output variables. The overall

flowchart for EF-music is illustrated in Figure 5.2a.

4Discogs (10 August, 2020). www.discogs.com/artist/27518-Elvis-Presley
5Caulfield, Keith (12 November, 2015). bit.ly/albums-artists-all-time

www.discogs.com/artist/27518-Elvis-Presley
bit.ly/albums-artists-all-time
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Figure 5.2: System framework for the defined three data fusion strategies. (a) EF-music:
early fusion strategy for integrating only music related features. (b) EF-all: early fusion
strategy for integrating three musical modalities (music, artist and album). (c) LF: late
fusion strategy for trained one classifier separately for each musical modality.

EF-all. It integrates all three musical modalities (Section 5.2.2) by vector concatenation.

The overall flowchart for EF-music is illustrated in Figure 5.2b.

LF. As a late fusion model, each modality has a specific unimodal supervised learner

to predict a correct outcome from labeled data. Thus, the fusion process stems from a

weighted voting process, in which predicted probability vectors of each model are summed

and averaged. The overall flowchart for LF is illustrated in Figure 5.2c.

5.2.4 Experimental Setup

While evaluating our models, we are more interested in investigating if considering

social features (specifically, collaboration features) positively impact the performance of

predicting hit songs rather than comparing the models’ performance with a baseline.

Therefore, our experiments address two research questions relevant to each problem task,

as follows.

RQ1: Are acoustic features enough to efficiently predict a hit song?

RQ2: Do musical collaboration features affect hit song prediction?

We investigate them for both binary classification and placement tasks indepen-

dently. To do so, we propose the following three-step methodology:

1. Choose an appropriate machine learning model for Hit Song Prediction (on the

considered task);
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Figure 5.4: Billboard Hot 100 songs (1958 - 2020). The dashed line represents hits without
collaborations, while the solid reflects musical collaborations. Clearly, collaborations are
increasing in the US music industry with nearly half of all mapped music constituting
collaborations.

2. Build models for different musical modalities by using multimodal fusion strategies;

and

3. Evaluate the built models considering a proper dataset.

As the third step is common to both classification and placement tasks, it is further

explained next. Then, steps (1) and (2), which are specific for each task, are explained in

Sections 5.3 and 5.4, respectively.

Data

We base our experiments on the freely available MusicOSet [68], an open dataset of

musical elements (artists, songs and albums) suitable for music data mining (which is also

a contribution of this research). The dataset contains 56 years of the Billboard Hot 100

charts, from January 01, 1962, to December 31, 2018. To simplify the modeling process,

we filter the data by considering only songs with one or two artists, which represent

97% of the dataset according to Figure 5.3. Hence, there is no loss of generality, as the

modeling can be extended for songs with more featured artists. In practice, we call the

main artist on the song as ego and the featured artist as alter. Also, recall Figure 1.2

that is repeated here as Figure 5.4 for practical reasons. It shows considerable growth of
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Figure 5.5: Data Preprocessing flowcharts. (a) Two-Step Numeric Transformation: Sim-
ple Imputer, replacing missing values using the mean along each column; and MinMax
Scaler, scaling each feature into a [0, 1] range. (b) Two-Step Categorical Transformation:
Simple Imputer, replacing missing values with a constant = ‘missing’; and MinMax Scaler,
creating a binary column for each category.

musical collaborations from the mid-90s on. Then, to avoid noisy data and for predicting

contemporary hits, a second filtering considers the charts from 1995 on. In the end,

we also reduce possible bias resulting from changes in the phonographic sector due to

technological innovations (e.g., easier distribution, commercialization and dissemination).

Data Preprocessing

Correctly processing data through the learning models requires to handle different ranges

and missing data for both numeric and categorical features. Hence, we perform a two-step

numerical and categorical transformations as follows. In the numerical transformation

(Figure 5.5a), as only 0.28% of the songs have missing values in our dataset, for each

numeric attribute, we fill the missing values with its mean value. Although the mean

imputation can distort the distribution for the missing variable, it works well with small

numerical datasets and is the easiest and fastest way to impute missing values. After this

step, all attributes are normalized into a [0, 1] range with the MinMax Scaler [18]. In

categorical transformation (Figure 5.5b), for each categorical attributes, we fill missing

values with a constant value, avoiding null problems. Finally, to adjust the data to the

input format of most machine learning models, we binarize these features through the

One-hot Encoding technique [18].
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5.3 Hit Song Binary Classification

The main goal is to predict whether or not a given song will be a hit by appearing

at the Billboard Hot 100 charts. Such goal is then defined as two tasks, and this section

presents the first one: hit song binary classification. We solve it through three data

fusion strategies (Section 5.2.3) that consider music, artist and album features from songs.

The first prediction task considers classifying an instance into one of two categories: ‘1’

stands for a song that will be a hit, and ‘0’ otherwise. Next, Section 5.3.1 introduces the

learning methods for this task. Then, Section 5.3.2 describes how to use such classifiers

for prediction, whereas Section 5.3.3 goes over experimental evaluation and discussion.

5.3.1 Learning Methods

For hit song binary prediction, it first selects the best classifier for each data fusion

strategy. Hence, we initially use 19 well-established classification models, briefly defined

as follows. We refer to related literature for complete definitions [46]. Next, we describe

the strategies in which these classifiers are used and how we select the best one for Hit

Song Prediction.

• Linear models

– Logistic Regression is a supervised learning algorithm which is mostly used for bi-

nary classification problems. Logistic regression is also known as logit regression

and is used to explain the relationship between a discrete set of classes and one or

more independent variables. Logistic Regression uses as cost function, the ‘sigmoid

function’ also known as the ‘logistic function’. The sigmoid function maps any real

value into another value between 0 (non-hit) and 1 (hit), that is, maps predictions

to probabilities.

– Perceptron is a binary classifier based on a linear model. It works by learning a

series of weights that correspond to the input features. Each pair of weight and

input features is multiplied, and then the results are summed. If the summation is

above a certain threshold, the algorithm predicts one class; otherwise, the prediction

belongs to a different class.

– Ridge Classifier is a variant of the Ridge Regressor. It first converts binary targets

to [−1, 1] and then treats the problem as a regression task, minimizing a penalized
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residual sum of squares. Then, the predicted class corresponds to the sign of the

regressor’s prediction.

– Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to dis-

criminative learning of linear classifiers under convex loss functions such as (linear)

Support Vector Machines and Logistic Regression.

• Tree-based

– Decision Tree is a supervised learning algorithm that can be used for solving regres-

sion and classification problems. In classification, a Decision Tree creates a training

model to predict the class of the target variable by learning simple decision rules

inferred from prior data (training data).

• Support Vector Machines (SVM)

– Support Vector Classification (SVC) is the classifier variant of SVM. It is based on

the idea of finding a hyperplane that best separates a multidimensional space into

different classes based on the provided kernel function. Overall, the main objective

is to segregate the given dataset in the best possible way, by selecting a hyperplane

with the maximum possible margin between support vectors in the given dataset.

– NuSVC is similar to SVC, but it accepts slightly different sets of parameters and has

different mathematical formulations. It uses a parameter (nu) to control the number

of support vectors.

– Linear SVC, on the other hand, is another implementation of SVC for the case of a

linear kernel.

• Naive Bayes methods are a set of supervised learning algorithms based on the Bayes

Theorem. Bayes’ theorem describes the probability of an event, with the “naive” as-

sumption of conditional independence between every pair of features given the value of

the class variable. There are different Naive Bayes classifiers:

– Multinomial Naive Bayes (MNB) is the Naive Bayes algorithm for multinomially

distributed discrete features; e.g., word count in text classification.

– Bernoulli Naive Bayes (BNB) implements the Naive Bayes algorithm for data that

is distributed according to multivariate Bernoulli distributions; e.g., binary-valued

(Bernoulli, Boolean) variables.

– Complement Naive Bayes (CNB) is an adaptation of the standard MNB algorithm

that is particularly suited for imbalanced data sets. It uses statistics from the com-

plement of each class to compute the model’s weights.

• Neural Networks
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– Multilayer Perceptron (MLP) learns a non-linear function approximator for either

classification or regression. It differs from logistic regression as there can be one or

more non-linear layers (called hidden layers) between the input and the output layer.

• Nearest Neighbors

– Nearest Neighbors Classification is a non-parametric algorithm that classifies the

test set into some class according to its K nearest neighbors. It stores all available

instances and classifies new instances based on a similarity measure (e.g., distance

functions).

– Nearest Centroid Classification, similarly to K-means clustering algorithm, repre-

sents each class by the centroid of its members.

• Ensemble

– Random Forest is an ensemble approach that can be used to perform both classifica-

tion and regression tasks. The algorithm combines several decision trees in randomly

selected data samples to determine the final classification. Each decision tree is ex-

ecuted in parallel and, in the end, the algorithm selects the best solution through

voting.

– AdaBoost is a popular boosting algorithm that fits a sequence of weak learners (i.e.,

models that are only slightly better than random guessing) on repeatedly modified

versions of the data. The predictions from all of them are then combined through a

weighted majority vote to produce the final prediction.

– Bagging is an ensemble meta-estimator that fits base classifiers (each) on random

subsets of the original dataset and then aggregates their individual predictions (by

either voting or averaging) to form a final prediction.

– Extra Trees, or Extremely Randomized Trees, implements a meta estimator that fits

a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples

of the dataset and uses averaging to improve the predictive accuracy and control

over-fitting.

– Gradient Boosting is a generalization of boosting to arbitrary differentiable loss func-

tions. It is an accurate and effective off-the-shelf procedure that can be used for both

regression and classification problems in a variety of areas including Web search

ranking and ecology.
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Table 5.1: Best classifiers for early fusion strategies (EF-music and EF-all), sorted by
weighted F1-Score.

EF-music EF-all
Classifier F1-Score Accuracy AUC Classifier F1-Score Accuracy AUC

RandomForest 0.786 0.787 0.832 MLP 0.834 0.833 0.894
ExtraTrees 0.780 0.788 0.844 SVC 0.829 0.823 0.892
GradientBoosting 0.770 0.761 0.831 ExtraTrees 0.825 0.835 0.900
Perceptron 0.769 0.766 0.817 NuSVC 0.824 0.818 0.888
AdaBoost 0.766 0.755 0.830 GradientBoosting 0.822 0.819 0.884

5.3.2 Setup and Metrics

As music may be describe using different modalities, defining how to fuse data

obtained from each modality is important. Section 5.2.3 introduced three multimodal data

fusion strategies for different classification models to predict whether a song will be a hit or

not. Each classification model is trained with 75% of the data (chronologically split from

1995 on), leaving 25% for testing. In this task, all the songs in the dataset are considered,

hits and non-hits. Nevertheless, the dataset contains a more significant number of non-

hits (899,068 – 98.7%) than hits (11,959 – 1.3%). To overcome this disproportionate

ratio, we randomly duplicate observations from the minority class (with replacement) in

the training set to reinforce its signal. Note the resampling is done only on the training

set or the performance measures could get skewed. The test set continues with a high

imbalance level, to mimic real world data, where only few songs can be considered hits.

To select the best model, we use the weighted F1-score, a common metric for classification

task. We also consider other two evaluation metrics: accuracy and the area under the

curve (AUC). We select the best hyperparameters using Grid Search (Table A.2). The

experimental results for each step are presented next.

5.3.3 Experimental Evaluation

We now present the experimental evaluation of the aforementioned binary classi-

fication models by comparing their performance (Section 5.3.3) and investigating feature

importance (Section 5.3.3).
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Table 5.2: Best classifiers for late fusion strategy (LF) per modality, sorted by weighted
F1-Score.

Music Artist Album
Classifier F1-Score Accuracy AUC Classifier F1-Score Accuracy AUC Classifier F1-Score Accuracy AUC

RandomForest 0.796 0.800 0.847 RandomForest 0.809 0.818 0.866 RandomForest 0.797 0.800 0.848
ExtraTrees 0.793 0.802 0.864 GradientBoosting 0.809 0.805 0.872 GradientBoosting 0.791 0.785 0.851
AdaBoost 0.789 0.782 0.848 AdaBoost 0.797 0.792 0.855 ExtraTrees 0.779 0.791 0.855
MLP 0.787 0.779 0.854 Bagging 0.790 0.798 0.826 AdaBoost 0.778 0.770 0.844
GradientBoosting 0.786 0.779 0.852 ExtraTrees 0.760 0.792 0.860 NuSVC 0.773 0.762 0.853

Performance Comparison

For fair evaluation, we train and test each model individually. As the train-test split

follows a chronological order, we test the models against unseen data (e.g., whether a

song released in 2020 will be a hit based on data up to 2019). Table 5.1 presents the

five classifiers with the highest F1-scores, their accuracy and AUC score for both strate-

gies: EF-music considers only music modality, and EF considers all modalities. The best

performing classifier for EF-music is Random Forest (RF), with a weighted F1-Score

of 0.786. Its accuracy and AUC score also present high values, making it a very good

choice for this model. For EF-all, the best classifier is MLP (Multilayer Perceptron), with

higher values than those of EF-music. Consequently, we choose MLP as the best for this

model. In addition, Support Vector Machine-based classifiers (SVC and NuSVC), which

are among the most commonly used classifiers for Hit Song Prediction, also performed

well in this model.

Finally, evaluating the LF strategy is more complex as there is one classifier for

each modality. Hence, we evaluate them individually in Table 5.2. Note the modali-

ties have four common classifiers in the top: RandomForest, ExtraTrees, AdaBoost and

GradientBoosting. This may indicate a consistency in the classifiers for the modalities,

thus being equally good choices. We choose RandomForest for all three modalities, as it

outperforms the others in F1-scores. The late fusion happens only after each modality is

evaluated separately, i.e., each of the three classifiers first predicts a class for a given song

(according with the respective modality). Then, integrating such classes achieves a final

result. Here, the integration comes from a Soft Voting Classifier, which considers different

weights for each modality (class-probabilities) to predict the final class. After tuning its

parameters with a grid search, we obtain F1-score of 0.82 and AUC of 0.865.

Having selected the best classifier for each model and tuned their hyperparameters,

we may now compare them to find the best one for the hit song classification task. Besides

computing their F1-scores, to better visualize the performance of the models, we use ROC

curves and AUC score (the higher the AUC score, the higher the capacity of predicting

a hit). Figure 5.6 presents such results which show the EF-all outperforms the others in

this task, with AUC of 0.90. Also, the LF performs better than EF-music, i.e., enhancing

the artist modality with collaboration features improves the results. We are now able to

answer RQ1, as the models considering social collaborative features do indeed generate



5.3. Hit Song Binary Classification 73

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

EF-all (AUC = 0.90)

LF (AUC = 0.86)
EF-music (AUC = 0.83)

0.2

0.4

0.6

0.8

1.0

0.0
0.2 0.4 0.6 0.8 1.00.0

Figure 5.6: ROC curve performance measurement and area under the curve (AUC) score
for the proposed strategies for the binary classification task. Each model is indicated with
a different color and shape.

more accurate predictions than those without them.

When comparing the two models that consider the collaboration features, EF-

all outperforms LF with AUC score of 0.90 against 0.86. As discussed in Section 5.1,

a possible reason is early fusion allows low-level interactions among features, which are

very important in our context because music is better defined considering all of its as-

pects together. Therefore, we choose EF-all as the most efficient model for the binary

classification task. Next, we analyze the key features that influence its performance.

Feature Importance

Machine learning algorithms can produce good predictions, but their black-box nature

does not help in understanding highly trained models. Yet, understanding how fea-

tures influence prediction is still relevant. Hence, we use the SHAP (SHapley Additive

exPlanations) [40] method to interpret predictions by computing the contribution of each

feature to the results.

The global importance of features included in EF-all is illustrated in Figure 5.7 by

summary plots. In such plots, all features are vertically sorted by their average impact in

the predictions. The feature importance plot (left) is useful, but there is no information

beyond the relative importance. The summary plot (right) can further show the positive

and negative relationships of the predictors with the target variable, combining feature

importance with feature effects. Each point indicates a Shapley value for a feature and

an instance. The position on the y-axis is determined by the feature and on the x-axis

by the Shapley value, i.e., the impact that feature has on the model’s prediction for that

song.

Also, Figure 5.7 (right) reveals the direction of feature effects, such as explicit

songs (red) having a high and positive impact on the quality rating (the high is in red
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Figure 5.8: Presence of average explicit lyrics in Billboard Hot 100 #1 hit songs in 1995–
2018. From 2014 on, at least 20% of top-chart songs have parental advice labels.

color, and the positive impact is shown on the x-axis). Such behavior is consistent with

the expected and illustrated by Figure 5.8. More than 50% of Billboard Hot 100 number

one songs in 2018 feature explicit lyrics. The taste for expletive-filled lyrics has grown

since 2012, except for 2017. From 2014 on, at least 20% of number 1 songs have the

label of parental advice. Additionally to the direction, the summary plot provides the

distribution of effect sizes, such as the long tails of some features. The general trend

of long tails reaching to the left, but not to the right, means that extreme values of

such measurements can significantly raise non-hit prediction. It also means that features

with low global importance (e.g., ego num albums and liveness) can still be important for
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specific instances.

Overall, the summary plot emphasizes the relationship between a feature value

and its impact on the prediction. As expected, most musical features are present in

the top 20 of global importance, with loudness and duration ms (i.e. track duration in

milliseconds) having the maximum impact on the quality rating. Also, both features

presented similar effects, with high values associated with positive impact on hit song

prediction. In acoustics, loudness represents the subjective perception of sound pressure

and is directly proportional to the square of the amplitude of vibration. This is compatible

with previous intuitions and scientific knowledge. According to [50], there is an evident

trend for music to become relatively longer and louder. Hence, the increasing importance

of such metrics has become more useful for telling apart a hit from a non-hit.

For album modality, there are two features among the most significant predictors:

low values of album total tracks and album type album feature equal to 1 (i.e., when the

album has seven tracks or more), the hit song predictions increases. However, the global

importance of both features is quite different, with the number of tracks on a song’s

album being much more significant than that song being released within an album. In

other words, hit songs tend to appear on albums composed of few songs. In the music

industry, albums released with one to three tracks are called singles. A single is frequently

a song considered commercially viable enough by the artist and the recording company

to be released separately from an album. Therefore, the result is consistent with reality.

Finally, the ego cluster feature is the third most important predictor, changing the

predicted absolute hit probability on average by 30% percentage points (0.3 on x-axis).

This artist-based feature indicates which cluster an artist is part of, i.e., which is his/her

collaboration profile: Diverse, Regular and Absent. Note the Absent profile is among the

top 20 most influential features. As suggested by Figure 5.7 (right), an artist who has such

a profile (i.e., ego profile Absent = 1) negatively drives the predictive model to the non-

hit class; likewise, when equal to 0, the corresponding Shapley values are positive. This

means that the collaborative information of the artist significantly affects the accuracy of

the model for predicting successful songs, especially when the artist has a collaborative

profile (Diverse or Regular). Such results answer our second research question, that is,

musical collaboration features indeed affect (improve) the prediction of hit songs.

5.4 Hit Song Placement

In this section, we face Hit Song Prediction as a placement task. That is, we

employ a machine learning approach (described in Section 5.4.1) that learns to place a
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new song into a chart ranked by a popularity measure. Popularity of a song can be

defined through several aspects such as sales profit, reputation on social media and music

platforms, awards received, and so on. Another common approach is to rely on pop charts,

such as the Billboard Hot 100, a weekly ranking that lists the top 100 songs based on

sales, radio airplay, and streaming activity. Therefore, we can use an inverse-point system

of the Billboard ranking score, rank score, as a song popularity measure. The rank score

of song i is obtained as rank score(i) = max rank − rank(i) + 1, where max rank is the

lowest rank of the chart and rank(i) is the rank of the song.

At first glance, it may seem that simply learning a good regression model is enough

for this task, as the target is a continuous output measure. However, in general, tradi-

tional approaches of prediction and regression of heavy-tailed outcomes show limited

performance on predicting high-value instances [24, 78]. Here, heavy-tailed means a vari-

able with distribution made up of mostly less popular items, with few popular ones, i.e.,

well-known hits. Most creative industries are driven by sales of a small handful of the

most popular releases, such as blockbuster movies [12], art auctions [16], book sales [78]

and, mostly relevant to this work, hit songs [9].

To tackle heavy-tailed outcome prediction problem in the book sales domain, [78]

introduced the Learning to Place (L2P) algorithm, which learns to place a new instance

into an ordinal ranking of known instances. Although the rank score (ranges in [1 to

100]) does not follow a heavy-tailed distribution, we adapt the L2P algorithm to pre-

dict the position of a new song into a pop chart (given a sequence of previously ranked

songs), as the music industry has many common factors with the book industry. Next, we

briefly describe the L2P method (Section 5.4.1) and outline how we model it for hit song

placement (Section 5.4.2). Finally, we experimentally evaluate the model’s performance

(Section 5.4.3).

5.4.1 Learning to Place (L2P)

As a classical supervised learning method, in the L2P task one learn from a set

of well-labeled input data and uses learned models to predict a quantitative outcome for

a given test instance. It has two phases: training, which trains a classifier to predict

pairwise preferences between each pair of training songs; testing, which places a new song

q in the given sequence of songs from the training set ranked by rank score. Algorithm 1

summarizes both stages in the context of hit songs.

During training (lines 3-6), for each pair of songs {i, j}, it concatenates their feature
vectors {fi, fj} (line 4). Next, the problem “becomes” a binary classification based on
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Algorithm 1: Learning to Place for Hit Song Prediction

Input: Training songs S, target variable vector t, test feature vector fq and
classifier C

1 y = [ ] # label vector

2 I = [ ] # voting counter

# Training Phase

3 foreach pair of train songs (i, j) ∈ S × S, i ̸= j do
4 Xij = ConcatenateFeatVector (fi, fj)
5 yij = CreatePairwisePreferences (ti, tj)

6 C.train (Xij, yij) # train the model

# Testing Phase

7 intv = sort (unique (t)) # unique intervals

8 foreach test song q do
9 foreach train song i ∈ S do

10 Xiq = ConcatenateFeatVector (fq, fi)
11 ŷiq = C.predict (Xiq)

12 I = Voting (t̂iq) # voting process

13 h = GetHighestInterval (I ) # get the most voted interval

14 t̂q = mean (intv [h− 1] , intv [h]) # get predicted place

15 return t̂q

the target variable with results: 1 or −1 (line 5). Then, L2P uses the training data as

input to a classifier C to predict whether the rank score for i is greater (or small) than

j’s. During testing (lines 7-14), each test song q is compared with each training song

i ∈ S using the model learned in the training phase to predict the pairwise relations (lines

8-11). Next, L2P treats each training song as a “voter”, and sorts them by rank score,

dividing the target variable axis into intervals (line 12). After voting, L2P gets the most

voted interval, h, and obtains the predicted place t̂q as the midpoint of h (lines 13-14).

5.4.2 Setup and Metrics

The Billboard Hot 100 chart is weekly released on Tuesdays. It lists the 100

most popular current songs across all genres, ranked by sales (physical and digital), radio

play, and online streaming in the United States. To assess L2P performance over time, we

analyze each final week’s Hot 100 chart of every 2018 month (the last year in the dataset).

Unlike the previous task, we use only early fusion to model the problem of placing hit

songs. Given that L2P concatenates the two feature vectors {fi, fj} for each pair of songs

(in both training and testing), an automatic column selection of each modality becomes

unfit. Hence, the data fusion happens at only one level: feature level (i.e., early fusion,
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Section 5.2.3).

In total, we train 24 models (two per month), using the Leave-One-Out approach

to split the data. Then, the L2P is applied once for each data point, using all other

songs as a training set and using the selected instance as a test set (singleton). In this

task, all the hit songs in the dataset are considered (i.e., all songs featured in the weekly

Billboard Hot 100 at least once). We chose the Random Forest as the binary classifier of

L2P. According to [78], this meta estimator has good performance (i.e., does not overfit)

and provides interpretability of features and results. Finally, to evaluate those models,

we consider the following analyses.

Quantile-Quantile (Q-Q) plots. It compares the deviations between true and pre-

dicted distributions. This graphical method sorts each data set by value, and then plots

them against each other. The closer the values form a straight line, the higher chance to

come from a similar distribution.

Kolmogorov-Smirnov (KS) test. It is a common statistical metric for distance be-

tween two underlying one-dimensional probability distributions. It is between 0 and 1, and

represents how two data sets are similar. A better model presents smaller KS distance.

Earth Mover’s Distance (EMD) – first Wasserstein distance. It is a statistical un-

bounded distance. Small earth mover distance indicates higher similarity between distri-

butions (i.e., better reproducing underlying distribution).

Mean Absolute Error (MAE). As the predicted outcome returned by L2P is a con-

tinuous value, we use the MAE loss to compute the average of the absolute difference

between the actual and predicted values, without considering their direction. We chose

this regression loss metric because it returns errors that are more easily interpretable and

is not sensitive towards outliers.

5.4.3 Experimental Evaluation

We now experimentally evaluate L2P for assessing the research questions from

Section 5.2.4. We first compare the performance of the early fusion strategies described

in Section 5.2.3 (Section 5.4.3), and then conduct a feature importance analysis to find

which modalities most affect the hit song placement (Section 5.4.3).

Performance Comparison

For a fair comparison, we train and test each model separately, and discuss our findings

per metric.
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Figure 5.9: Quantile-Quantile (Q-Q) plots for the most significant months, comparing the
predicted outcomes with the true distribution for EF-all and EF-music. Each model is
indicated with a different color and shape. The dashed line indicates identity. Full Q-Q
plots of the other months are given in the Appendix A.4.

Q-Q plot. We assess distribution of predicted outcomes for each month, and show the

most relevant in Figure 5.9. Best performing models are near the x = y line (at 45◦),

and we study those deviating from it. If distributions are linearly related, the Q-Q points

form one line, but not necessarily on x = y. Overall, the EF-all strategy gives the output

closest to the ground truth on 45◦. Most plots present a deviation from such a line at the

high-end. EF-all produces the smallest deviation at high quantiles, whereas EF-music

produces larger deviations on both low- and high- ends.

KS and EMD.While visual inspection is a useful analysis, having a quantitative measure

of the similarity between two distributions is crucial. Thus, we compute the well-known

KS test and the EMD distance. Table 5.3 summarizes the resulting distances. It confirms

that EF-all provides the smallest KS and EMD distances, for all months. Although

the EF-music strategy presents lower KS distances compared to EF-all, the observed

outcomes are not as discrepant as those resulting from the EMD distance.

MAE. Despite the relevant results, simply comparing the deviations between both dis-

tributions is insufficient to evaluate the models by themselves, as the error between pre-

dicted and actual rank score is not directly gauged by such metrics. Hence, to quantify
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Table 5.3: Performance evaluation for all months. Kolmogorov-Smirnov (KS) test and
Earth Mover’s Distance (EMD) compare the similarity between the prediction and the
actual distributions. Mean Absolute Error (MAE) quantifies performance through the
prediction errors

Month
KS EMD MAE

EF-music EF-all EF-music EF-all EF-music EF-all

January 0.21 0.16 9.61 3.71 0.86 ± 0.18 0.41 ± 0.16
February 0.22 0.16 10.50 4.45 0.89 ± 0.21 0.53 ± 0.18
March 0.21 0.19 8.39 5.67 0.67 ± 0.14 0.47 ± 0.13
April 0.26 0.18 10.89 4.99 0.74 ± 0.17 0.47 ± 0.15
May 0.21 0.17 10.25 5.34 0.74 ± 0.15 0.56 ± 0.13
June 0.28 0.19 8.65 5.83 0.68 ± 0.17 0.52 ± 0.15
July 0.25 0.20 8.29 5.43 0.63 ± 0.17 0.50 ± 0.17
August 0.24 0.17 10.71 7.15 0.72 ± 0.15 0.54 ± 0.14
September 0.22 0.17 9.26 5.96 0.66 ± 0.18 0.51 ± 0.15
October 0.20 0.17 7.56 4.13 0.72 ± 0.16 0.49 ± 0.14
November 0.27 0.18 7.89 4.40 0.68 ± 0.20 0.48 ± 0.16
December 0.26 0.17 6.60 3.41 0.68 ± 0.13 0.38 ± 0.12

the models’ performance using prediction errors, we calculate the MAE regression loss

metric. Table 5.3 also summarizes the computed mean absolute errors. Following our

other results, EF-all achieves the best performance (i.e., lower values). Then, EF-music

offers higher MAE, and inferior performance under Q-Q plots and KS distance. Such a

result points out its inefficiency at an accurate prediction.

General Points. Notably, the EF-all strategy yields the best performance for all stud-

ied scenarios and in all comparative analyses. We can now safely answer the first research

question (RQ1): considering the music modality alone does not achieve an efficient predic-

tion. Next, we assess which modalities significantly contribute to the hit song placement

by feature importance analysis.

Feature Importance

Following [78], given our three musical modalities (music, artist, album), we asses the rel-

ative importance of each specific multimodal feature by training three individual models.

We predict the rank score of each song using all three models separately in L2P. We then

compare them to the actual rank score of songs and normalize the absolute errors Emusic,

Eartist and Ealbum, so that they sum up to one. Finally, we use a ternary plot to inspect

the source of errors for different songs.

Figure 5.10 shows ternary plots for songs in three significant time windows (March,

June and December). We also color each point and set different shapes based on actual

rank scores. Overall, the central left side (Region D) has the highest density of absolute

errors, being more evident in Figures 5.10b, 5.10c, 5.10d and 5.10e. Most songs in this

area have a high-middle actual rank score, which indicates that relying only on music

and album modalities returns the largest prediction error; i.e., having only music and/or
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General explanation. The values of the three modalities music, artist and album sum 100%. The
concentration of each modality is 100% in each corner of the triangle and 0% at its opposite line. Besides
its three corners, the ternary plot can be divided into seven regions: (A) contains at least 80% of Ealbum;
(B) contains at least 80% of Emusic; (C) contains at least 80% of Eartist; (D) contains no more than
20% of Eartist; (E) contains no more than 20% of Ealbum; (F) contains no more than 20% of Emusic; and
(G) contains at least 20% of each modality.

Figure 5.10: Ternary diagram plots for feature importance. (a, b, c) normalized absolute
error for feature group importance per month: a point shows the three L2P normalized
values (Emusic, Eartist, Ealbum); and low, middle, high correspond to popularity metric
within [0, 20], (20, 80], and (80, 100] respectively. (d, e, f) normalized absolute error
accumulated in a year per rank score. Full ternary diagram plots of the other months are
given in the Appendix A.5.
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album information is not enough for a good prediction. Hence, we can affirm the artist

modality strongly contributes to the hit song placement task.

The middle of the triangle presents the second-highest density in most months,

clearer in Figure 5.10a. In these cases, most songs in the central area have a high

rank score, indicating great hit song placement requires excelling in all three dimensions:

music, artist, and album. Finally, there is a small concentration of outlier songs with

average popularity in the right corner (Regions E, F, C and Figure 5.10b). This behavior

means that having only artist information can negatively affect model performance for

such isolated cases.

5.5 Overall Considerations

In this chapter, we addressed the problem of Hit Song Prediction [51]. Here, we

define this problem from two independent tasks: binary classification and placement.

In the former, given a collection of songs, a classifier is trained to predict whether an

unreleased song will be a hit or not. While the latter trains a classifier to place a new song

into a popularity chart. To tackle both tasks, we model them as multimodal problems,

by considering three different modalities: music, artist and album, focusing primarily on

artistic collaboration features.

Our proposed methodology sheds light on two research questions defined in Section

5.2.4: (RQ1) By comparing the performance of models with different fusion strategies

(considering different musical modalities), we found that relying exclusively on internal

musical characteristics is not enough to obtain efficiently hit song predictions; (RQ2) The

feature importance analysis allowed to identify the most significant features that drive

hits prediction. We found the artist modality contains the most significant predictors,

mainly social interaction information. Such results demonstrate not only the relevance of

handling Hit Song Prediction as a multimodal problem but also the importance of relying

on information from the artists’ collaboration profiles. To sum up, our results reveal it is

indeed possible to successfully predicting whether or not a given song will be a hit or a

non-hit.

Limitations. One limitation of our work is its dataset comprising music charts from the

U.S. only. Hence, a natural extension is to consider data beyond U.S., such as European,

Latin American and Asian charts. Still, collecting such data and getting it ready for all

tasks performed here present some serious challenges, starting at the lack of open online

information.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize the main results achieved so far (Section 6.1) and present

open problems and future work derived from this dissertation (Section 6.2).

6.1 Conclusions

In this work, we explore the relationship between collaboration profiles and musical

success towards predicting whether a given song will rise to a high position in top charts.

We categorize such analyses into research goals, discussed next. In addition, we cite the

publications that are directly and/or indirectly related to each research goals (all of them

were published during the Master’s program).

RG1: Identify the (potentially) intrinsic features and indicators that

influence the popularity of both songs and artists. [67] We proposed an initial

study to analyze and identify music collaboration profiles in a musical success-based net-

work. Specifically, we focused on investigating the impact of these profiles on successful

music artists. Through six topological metrics, we defined four key categories of collab-

oration profiles: Interaction, Distance, Influence and Similarity. Among them, we found

that the first three affect musical success more intensely than Similarity. That is, success-

ful artists are more likely to have a high degree of collaboration between influential and

diversified artists. These findings suggest there is a powerful sense that collaborations

enhance artists’ prospects of having a successful song, not only boosting opportunities

for unknown artists but also reinvigorating the careers of more established ones. Never-

theless, those who prefer to pursue a non-collaborative musical career may be missing an

opportunity to enhance and expand their potential. Our results provide strong evidence

that (i) there are, in fact, distinct success factors for musical collaboration profiles that are

socially measurable, and (ii) there are common factors for successful collaboration in the

music market. Overall, our analysis motivates the further study of the causal relationship

between such profiles and musical success.
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RG2 and RG3: Investigate the impact of these features on popularity

over time, and verify the causal relationship between collaboration profiles

and music success. [65] Resuming the initial analysis from RG1, we proposed to

establish relations of causality between collaboration profiles and artists’ popularity. Pre-

vious findings reveal that the way artists connect professionally may affect their musical

success. Therefore, we further such analyses by using time series and the Granger causal-

ity test for assessing whether there is a causal relationship between collaboration profiles

and artistic success. Our experimental evaluation reveals varied relationships linking col-

laboration profiles and musical success, indicating a direct connection. In particular, we

identified the presence of a cycle between collaborations and musical success. Namely,

before collaborating with others, most artists consider the level of success of their col-

laborators. It means collaboration can be seen as a musical career propeller, working as

a fast-track route to becoming a household name, especially when reaching out to more

established artists. Furthermore, based on findings regarding to RG1, we found that

the few collaborations performed by non-collaborative artists exposed a strong impact on

their success. However, such artists are part of the group with the lowest average success

rate. This indicates that, because they collaborate very little, they may be missing the

opportunity to grow their reach and inspire themselves to new creative heights. Whereas

our results showed an unclear causal relationship between collaboration profiles and mu-

sical success, in general, these findings offer a novel perspective on success in the music

industry, unraveling how collaboration profiles can contribute to an artist’s popularity.

RG4: Propose a machine learning approach to derive a song’s pop-

ularity based on these groups of features and determine the best way for

combining them to predict the success of a song. [68, 66] As a result of the

well-established correlation between collaboration profiles and musical success, a natural

next step is to propose a methodology for predicting hit songs. Particularly, we tackle

Hit Song Prediction problem from two distinct tasks: binary classification and placement.

To assess both tasks, we model a song as a multimodal representation using information

from three modalities: music, artist and album. In order to connect and verify our results

found so far, we focused primarily on artistic collaboration features. This research shows

not only the relevance of handling Hit Song Prediction as a multimodal problem but also

the importance of relying on social information, specially from artists’ collaboration pro-

files. Finally, these positive results point out that popularity can indeed be learned from

different heterogeneous information. Furthermore, they suggest that features commonly

used for represent music content are not informative enough to outperform collaboration-

aware strategies.

Relevance Insights. Our work differs from the current state of the art in two crucial

ways. First, although considering social aspects in hit song prediction is beneficial from

the analytical perspective, this is the first time that the collaboration between artists
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and their profiles are modeled as features for a machine learning approach. Second,

the multimodal perspective brings the necessary complexity to analyzing music in all its

facets. Therefore, combining the multimodal representation with a collaboration-aware

model means a big step towards advancing both fields of Hit Song Science and Multimodal

Music Analysis [15], providing potential impact to the music industry.

6.2 Future Work

One limitation of our work is the dataset that includes music charts from the U.S.

only, generating a cultural monopolization. Furthermore, despite the significant results,

we consider relatively few factors in each of the three modalities, i.e., music, artist and

album. Another limitation is the statistical notion incorporated in the Granger Causality

concept rather than actual causal inference. Such limitations point to the following future

direction:

• Since our data source considers only mainstream and popular music from the U.S.

industry, cultural and gender diversity is precarious. Hence, as future work, a natu-

ral extension is to consider data beyond U.S., such as European, Latin American and

Asian charts. Still, collecting such data and getting it ready for all tasks performed

here present some serious challenges, starting at the lack of open online information.

• We also plan to include other interactions in social media in our multimodal ap-

proach, and other characteristics on this context, such as artist reputation. Our

proposed prediction models may be improved with a more complete dataset.

• Finally, to further understanding the causal relationships between collaborative pro-

files and artist’s success, we plan to deeply investigate techniques of the Pearl Causal

Model (PCM).
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Appendix A

Further Information

A.1 Collaboration Profiles

We infer 16 different collaboration profiles from the four categories defined in Sec-

tion 3.2.4. Table A.1 and Figures A.1 and A.2 presents their characteristics, each one

represented by a topological metric. In summary, we use the characteristics to represent

the threshold levels: 1 for a high metric value, that is, greater than or equal to 0.5 ; or 0

for low metric values, that is, less than 0.5.

Table A.1: Standard Collaboration Profiles

Interaction Distance Genre Influence

Profiles Degree Weighted Degree Eccentricity Closeness Clustering Betweenness Eigencentrality

1A 2A 3A 4A 0 0 0 0 0 0 0
1A 2A 3A 4B 0 0 0 0 0 1 1
1A 2A 3B 4A 0 0 0 0 1 0 0
1A 2A 3B 4B 0 0 0 0 1 1 1
1A 2B 3A 4A 0 0 1 1 0 0 0
1A 2B 3A 4B 0 0 1 1 0 1 1
1A 2B 3B 4A 0 0 1 1 1 0 0
1A 2B 3B 4B 0 0 1 1 1 1 1
1B 2A 3A 4A 1 1 0 0 0 0 0
1B 2A 3A 4B 1 1 0 0 0 1 1
1B 2A 3B 4A 1 1 0 0 1 0 0
1B 2A 3B 4B 1 1 0 0 1 1 1
1B 2B 3A 4A 1 1 1 1 0 0 0
1B 2B 3A 4B 1 1 1 1 0 1 1
1B 2B 3B 4A 1 1 1 1 1 0 0
1B 2B 3B 4B 1 1 1 1 1 1 1

We use radar charts to represent the collaborative characterization of each 16

profiles presented in Table A.1. Radar Charts are usually used for comparing multiple

quantitative variables. This makes them useful for seeing patterns in the data. In short,

each metric is provided with an axis that starts at the center; each metric value is plotted

along its individual axis and all variables in a dataset and connected together to form

a polygon. Here, the polygon represents exactly the characterization of a collaboration

profile.
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Figure A.1: Radar Plots of each collaboration profile (Part 1).

A.2 Correlation Tests

Scatterplots of each pair of numeric variable collected from Spotify are drawn on the

top-right part of Figure A.3. Pearson’s (r), Spearman’s (ρ) and Kendall’s (τ) correlations
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Figure A.2: Radar Plots of each collaboration profile (Part 2).

is displayed on the bottom-left. Variable distribution is available on the diagonal.
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Figure A.3: Scatterplot matrix of topological metrics and success measures (r: Pearson,
ρ: Spearman, and τ : Kendall).

A.3 Music Features Description

We now explain some features used to build the modalities considered in our

methodology. The dataset used in this work contains acoustic fingerprints collected di-

rectly from Spotify1. Some of them are objective, while others are more subjective.

Objective Features

1Spotify API Doc: https://developer.spotify.com/documentation/web-api/reference/

https://developer.spotify.com/documentation/web-api/reference/
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Key : the estimated overall key of a song, mapped as an integer number using standard

Pitch Class notation.

Loudness : the general loudness measured in decibels (dB).

Mode: the general modality of a song (i.e., major or minor).

Time Signature: the amount of beats in each bar (measure).

Tempo: the speed of the song, measured in beats per minute (BPM).

Subjective Features

Acousticness : informs the probability of a song to be acoustic or not.

Danceability : combines tempo, rhythm stability, beat strength, and other elements to

describes how suitable a song is for dancing.

Energy : represents the intensity and activity of a song by combining information such as

dynamic range, perceived loudness, timbre, onset rate, and general entropy.

Instrumentalness : measures the probability of a song to be instrumental, that is, not

contain vocals. For example, “ooh” and “aah” sounds are treated as instrumental in this

context. Rap or spoken word tracks are clearly “vocal”.

Liveness : detects the presence of an audience in a song. The higher the liviness value,

the higher the probability of a song being performed live.

Speechiness : measures the probability of a given song to have spoken words in it.

Valence: describes the positiveness within a song. High valence values represent happier

songs, whereas low values characterize the opposite.
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A.4 Quantile-Quantile (Q-Q) Plots

Q-Q plots are a handy tool for comparing two distributions. For each month, we

compare the deviations between true and predicted distributions by plot them against

each other. The closer the values form a straight line, the higher chance to come from

a similar distribution. Best performing models are near the x = y line (at 45◦), and we

study those deviating from it. If distributions are linearly related, the Q-Q points form

one line, but not necessarily on x = y.
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Figure A.4: Full Quantile-Quantile (Q-Q) plots for all months in 2018, comparing the
predicted outcomes with the true distribution for EF-all and EF-music. Each model is
indicated with a different color and shape. The dashed line indicates identity.
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A.5 Ternary Plots

Given the three musical modalities (music, artist, album), we asses the relative

importance of each specific multimodal feature by training three individual models. We

predict the rank score of each song using all three models separately in L2P. We compare

the actual rank score with the predicted value and normalize the absolute errors Emusic,

Eartist and Ealbum, so that they sum up to one (100%). We use a ternary plot to inspect

the source of errors for different songs, coloring each point and set different shapes based

on actual rank scores.
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Figure A.5: Ternary diagram plots for feature importance. (a, b, c) normalized absolute
error for feature group importance per month: a point shows the three L2P normalized
values (Emusic, Eartist, Ealbum).
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A.6 Experimental Setup Details

Here, we give further information on our experimental evaluation by focusing on the

parameters of the classifiers used in our models. We developed all experiments using the

Python package Scikit-Learn2. This section is divided according to the two tasks assessed

in this work: classification (Section A.6.1) and ranking placement (Section A.6.2).

A.6.1 Binary Classification

In this task, one key step is selecting the best classifier for our three proposed mod-

els. In the EF-music and EF-all strategies, this comparison was conducted by evaluating

19 classifiers implemented on Scikit-Learn and set with their default parameters. Further-

more, in the LF model we also compare these classifiers for each modality (music, artist

and album) and select the best one for each model. Then, we combine their results using

a VotingClassifier, also implemented in Scikit-Learn. In all three models, after selecting

the best classifier for the model, we run a grid search for finding the best hyperparameters

for each model. We do not perform cross-validation on this search, as our data need to be

split in chronological order. In the LF model, the parameters of the VotingClassifier were

also tuned. Table A.2 presents the parameters tuned for each classifier in each model as

well as the considered search space.

A.6.2 Ranking Placement

In this task, we employ the Learning to Place (L2P) algorithm using its default

parameters and classifier (Random Forest, also set with default parameters). Figure A.6

graphically describes the main steps for predicting the place of a song in a hit song

ranking. The original Python implementation of L2P (by its authors) is available on

https://github.com/xindi-dumbledore/L2P.

2Scikit-Learn: https://scikit-learn.org/.

https://github.com/xindi-dumbledore/L2P
https://scikit-learn.org/
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Table A.2: Parameter grid for tuning models’ hyperparameters, with the best values
underlined

Classifier Hyperparameter Search space
E
F
-m

u
si
c

RandomForest
n estimators [100, 200, 500]
max features [’sqrt’, ’log2’]

max depth [10, 50, 100, None]

E
F
-a

ll

MLP
max iter [100, 200, 500, 1000, 2000]

alpha
[10−1, 10−2, 10−3, 10−4, 10−5,
10−6, 10−7, 10−8, 10−9]

L
F

RandomForest
(music modality)

n estimators [100, 200, 500]
max features [’sqrt’, ’log2’]

max depth [10, 50, 100, None]

RandomForest
(artist modality)

n estimators [100, 200, 500]
max features [’sqrt’, ’log2’]

max depth [10, 50, 100, None]

RandomForest
(album modality)

n estimators [100, 200, 500]
max features [’sqrt’, ’log2’]

max depth [10, 50, 100, None]

Voting weights
[[0,0,1], [0,1,0], [0,1,1], [1,0,0],
[1,0,1], [1,1,0], [1,1,1]]

Classifier
Song 3 + Song 1

Song 3 + Song 2

Song 3
Features

Song 1
Features

Song 3
Features

Song 2
Features

Voting

LabelClassifier
Song 1
Features

Song 2
Features

Song 1 + Song 2

Label

(a)

(b)

Figure A.6: Learning to Place (L2P) flowchart. (a) Training: train a classifier on the
pairwise relationship between each pair of train songs. (b) Testing: predict pairwise
preferences between a new song, Song 3, and all train songs using the trained classifier;
place Song 3 in the given sequence of trained songs ranked by rank score through voting.
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