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Abstract
The earliest empirical studies on music performance date back to the end of the nine-

teenth century, when the first mechanical devices capable of recording the actions of

pianists on the instrument (key presses) were invented. Since then, many technologies

that open up new possibilities for collecting data from musical performances have

been invented or developed, including techniques for extracting information directly

from audio recordings. These techniques, which have been driven by the fast-paced

technological development in computer-related fields over the last decades, are the

subject matter of this thesis. We introduce a new software library called Iracema, which

contains techniques for extracting patterns of manipulation of timing, energy, and

spectral content from monophonic audio recordings. In this endeavor, the clarinet is the

instrument chosen for the baseline experiments and models, but most of the presented

techniques should also work for other monophonic instruments. One of the most critical

steps in studying musical performances is the detection of the note onsets because our

perception of timing is strongly tied to this variable. We pay special attention to this

topic, proposing an interactive web interface for the precise manual annotation of note

onsets and conducting an experiment to assess the typical measurement error involved

in this kind of task for clarinet recordings. We also propose an annotated dataset of

solo clarinet recordings containing approximately 23 minutes of audio and a total

of 3551 note onsets. Using this dataset, we train a convolutional neural network to

generate a model for automatic note onset detection specifically on clarinet recordings

and compare its results to other onset detection models. Finally, we discuss a study case

using recordings of a clarinet excerpt by a few different clarinetists to demonstrate the

use of the proposed library.

Key-words: empirical musicology, note onset detection, music performance, music

information retrieval, machine learning.



Resumo
Os primeiros estudos empíricos em performance musical datam do final do século XIX,

quando foram criados os primeiros dispositivos mecânicos capazes de gravar as ações

de pianistas no instrumento (o pressionar das teclas). Desde então, várias tecnologias

que abrem novas possibilidades de coleta de dados de performances musicais foram

inventadas ou aprimoradas, incluindo técnicas de extração de informação a partir do

sinal de áudio. Tais técnicas, que se aprimoraram em ritmo acentuado ao longo das

últimas décadas, impulsionadas pelo rápido desenvolvimento das mais diversas áreas

correlatas à computação, são o foco do presente trabalho. Propomos aqui uma nova bi-

blioteca de software chamada Iracema, que contém técnicas para a extração de padrões

temporais, de energia, e conteúdo espectral, a partir de gravações de áudio monofôni-

cas. Escolhemos a clarineta como o instrumento a ser utilizado nos experimentos de

referência e modelos propostos, mas a maior parte das técnicas aqui apresentadas pode

ser aplicada a outros instrumentos monofônicos. Um dos passos mais importantes no

estudo de performances musicais é a detecção dos instantes de onset (início) das notas

musicais, já que a nossa percepção rítmica (temporal) está fortemente associada a tais

instantes. A este assunto dedicamos atenção especial, e propomos uma interface web

para a anotação manual precisa dos instantes de onset, além de realizar um experimento

para avaliar o erro típico de anotação neste tipo de tarefa, para gravações de clarineta.

Também propomos uma base de dados anotada contendo aproximadamente 23 minutos

de áudio tocados na clarineta, contendo um total de 3551 onsets. Utilizando esta base de

dados, treinamos uma rede neuronal convolucional para obter um modelo para detecção

automática de onsets especificamente em gravações de clarineta, e comparamos os seus

resultados com os de outros modelos. Por fim, exemplificamos e demonstramos o uso da

biblioteca proposta por meio de um estudo de caso, envolvendo a análise de gravações

de um excerto de uma peça, tocada por vários clarinetistas.

Palavras-chaves: musicologia empírica, detecção de início de nota, performance musi-

cal, extração da informação musical, aprendizado de máquina.
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1
Introduction

Just about a century and a few decades ago, any person wishing to listen to a

musical piece would need to be present during its performance to fulfill their desire.

After all, sound recording and playback devices would only be invented at the end

of the nineteenth century. The development of recording and playback technologies

radically transformed our culture and relationship with music. As a new industry

emerged, people started to establish new ways to consume, practice, and produce music.

Over the years, this phenomenon completely reshaped our culture and relationship

with music. Nowadays, it has become a ubiquitous element in most people’s lives: it

is easily accessible and available everywhere, from advertisements and soundtracks

to streaming services and interactive systems. Many of the current music streaming

platforms now have tens of millions of tracks available, which users can play anywhere

they have an internet connection at their disposal. Nonetheless, while this process might

seem to have created a disruption between the music and the performance, people still

choose to listen to a piece of music not just because of the composition itself but also

for its different interpretation possibilities. That is a consequence of the fact that every

musical performance is unique1.

There is a significant amount of information in musical performances that

do not depend only on the piece’s underlying structure but instead on several other

factors, like individual playing style, performance traditions, the mood of the performer,

or expressive choices made by them. Other factors are the environment where the

performance took place, the instrument played, random manipulations that might occur

by chance, etc. In the face of such idiosyncrasies, listeners establish their individual
1 Repp (1999, p. 239) mentions that “[n]o two performances of the same work are exactly alike, and

this is often true even for repeated renditions of the same piece.”
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preferences, often favoring a specific rendition of a piece as more compelling, for some

reason, than others. This scenario gives rise to many questions regarding the complex

process by which a performer shapes a musical composition into its final rendition.

The empirical study of music performance is relatively recent, with the seminal

works dating back to the turn of the twentieth century. As stated by Clarke (2004, p. 77),

“only once methods had been developed to record either the sounds of performance,

or the actions of instruments, was any kind of detailed [empirical] study possible —

and so the piano roll, record, magnetic tape, and computer have all played their part at

different stages in the short history of empirical studies of performance”. Undoubtedly,

the twentieth century’s technological developments progressively extended our capacity

to measure relevant information from the performance. Over the last decades, we have

witnessed considerable growth in research in the field of music performance. Palmer

(1997), Gabrielsson (2003), Goebl, Dixon and De Poli (2005), and Lerch et al. (2019)

provide excellent surveys on the topic that indicate this growth. The availability of new

tools and technologies that enable the extraction of information from performances has

played a pivotal role in this surge. The contributions in audio analysis by researchers

from the Music Information Retrieval community were greatly beneficial to the field,

as Lerch et al. (2019, p. 1-2) points out, even though most of them were not moti-

vated by the interest in conducting research in music performance, but by other tasks,

such as retrieving information from large music databases. Since data acquisition is a

fundamental step in the study of music performance, we believe that the continuous

development of purpose-oriented tools to extract information from audio recordings of

performances will be greatly beneficial for the research on the field. Equally important

will be the development of better techniques for obtaining more meaningful represen-

tations of musical content, like higher-level descriptors of musical expressiveness in the

performance, for example.

1.1 Motivation

At the beginning of my academic life, I joined a multidisciplinary research group

focused on empirical research on musical performance called CEGeME (Center for Re-

search on Musical Gesture & Expression), composed by students and researchers from

a diverse range of fields spanning Engineering, Computer Science, Physics, Phonoau-

diology, and Music (LOUREIRO et al., 2019). Although since its foundation the major

interest of the group has been the empirical study of music performance, extracting

information from performances was always a major challenge faced by most members of

the group. Consequently, developing methods of audio content extraction became one of

its most prominent lines of research. The first research project dedicated to this purpose
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consisted of a software tool called Expan (LOUREIRO et al., 2008; CAMPOLINA; MOTA;

LOUREIRO, 2009), a Matlab toolbox for the extraction of data from performances on

the clarinet and other monophonic instruments. I was part of the team that started the

development of that tool, which was subsequently employed in many studies conducted

by the group. That tool was refactored over the years, but essentially, its functionalities

and methods remained the same, except for minor improvements, always performed to

suit the needs of specific research projects. Those functionalities were also completely

based on Digital Signal Processing, lacking the potential of improvement brought by

the field of machine learning. We hipothesised that the performance of the note onset

detection methods, in particular, could be greatly improved by using modern machine

learning algorithms. This scenario motivated us to propose and develop a new tool

from scratch, as a PhD project, this time using the language Python, which is freely

available and can be easily adapted to run on multiple platforms. Python is also widely

used by machine learning researchers, so many frameworks could be easily employed

in the development of newer information extraction methods. We decided to call this

new tool Iracema, named after the novel by the Brazilian writer José de Alencar. It pro-

poses an architecture containing abstractions for easier manipulation of time series and

extraction of information from audio. It also introduces newer methods and techniques,

moving towards machine learning models in order to improve note onset detection,

and towards the extraction of expressive features from audio.

1.2 Objectives

The objective of this work is to develop and evaluate computational techniques

for audio content analysis, specifically designed to support research projects on music

performance that rely on monophonic recordings (recordings with a single voice, or

melodic line) as source of data. Such techniques seek to extract information that is mean-

ingful for the representation/parametrization of musical expression in the performance.

In this endeavor, the clarinet is the instrument used for the baseline experiments and

models, but in theory, the presented techniques should work well for other monophonic

instruments. Since detecting the instants of note onset is greatly important for the

parametric study of music performance, we devote a large part of our efforts to obtain

a good onset detection model for the clarinet. The main product of the work in this

thesis is the library Iracema, which contains the implementation of all the algorithms

and models for extracting information from music recordings addressed in the text.

The sound produced by the musician during a performance cannot be thought

to contain the whole performance. Lately, many studies have been focusing on the mu-

sician’s body movement, his interaction with the audience, as well as other phenomena,
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which cannot be investigated only by analyzing the sound. While these non-acoustic

aspects are undisputedly greatly important, they are out of the scope of this work. The

discussions and the definitions, tools, and techniques here presented will deal exclu-

sively with the acoustic component of music performance, employing digital audio

recordings as source material.

While there are several examples of scientific works that use polyphonic record-

ings as a source of investigation (REPP, 1992; BERNAYS; TRAUBE, 2014; KOREN;

GINGRAS, 2014), we chose to limit our scope to monophonic recordings2. In many

musical instruments, the excitation that produces sound happens only during a short

interval at the beginning of a note (i.e., the plucking of strings in a guitar or a hammer

hitting the strings of a piano). Contrastingly, in woodwind and brass instruments, the

player continuously feeds energy into the system, employing high-pressure air from

his lungs. Therefore, due to the dynamic control that the player has over the acoustic

properties of the sound, a single note will contain over its duration a substantial amount

of expressive information, e.g., timbral manipulations or dynamic intensity variations.

It is harder to extract this kind of information from polyphonic music signals such

as a full orchestral recording than from signals of a single source, especially when

one cannot afford to lose any relevant expressive information pertaining to individ-

ual instruments/performers. For example, to analyze the timbral manipulations that

a single clarinetist performs in some specific notes on a full orchestral recording, it

would be necessary to isolate the information pertinent to that single clarinet. This

approach would probably depend on a highly sophisticated source separation algorithm,

which would have to be absolutely precise in retrieving only the data belonging to that

clarinetist from a highly complex stream containing all the other instruments. This

level of precision is still unfeasible, taking into account that any loss would have an

impact on the subsequent timbral analysis. Hence, to study polyphonic compositions,

the individual voices that constitute them must be recorded and analyzed separately

and processed as monophonic signals. This simplification enables a more thorough

investigation of attributes that would otherwise be very hard to analyze.

Given this context, we decided to choose the clarinet as the baseline instrument

for the discussion in this thesis; so the methods and models will all be designed for

this particular instrument. Based on previous experience extracting data from clarinet

recordings, we know that its note onsets are particularly difficult to extract due to the

typically soft note attacks that the instrument produces. So we will direct much of our

attention to obtaining a robust method for clarinet onset detection, which we believe

will be able to generalize, to some extent, to other monophonic instruments, specially

woodwind and brass instruments.

Thus, the main objectives of this thesis are: (1) devising a robust onset detection
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method for the clarinet; (2) implementing a software library (Iracema) containing

methods for estimating acoustic parameters such as note onset, intensity, pitch, note

envelope, duration, articulation, and spectral content from clarinet recordings; (3)

employing the implemented methods in a brief case study to demonstrate the use of

the library.

1.3 Structure of the Thesis

One of the key ideas behind the structure we chose to adopt in this thesis is to

keep the chapters as independent as possible. Ideally, a chapter should be able to exist,

as much as possible, as a self-contained discussion. The first chapter is the introduction

of the thesis and is followed by three chapters (2-4) containing its theoretical foundation

and literature review. The next three chapters (5-7) contain an internal structure com-

prising, each, their own methodological discussions and results. Chapter 7, in particular

also includes references to previous studies that proposed or described the methods

implemented in the library Iracema. Lastly, chapter 8 comprises the concluding remarks

of the thesis.

Chapter 1 – Introduction The current chapter addresses the contextualization, mo-

tivation, objective, and scope of the current work. It also provides information

about the structure of the thesis.

Chapter 2 – The Clarinet Provides a brief description of the clarinet, its acoustic prop-

erties, etc.

Chapter 3 – Empirical Research on Music Performance Defines concepts that are per-

tinent to the empirical study of music performance, like the acoustic parameters

related to musical expressiveness, and the concept of note onset. Furthermore, pro-

vides a brief literature review on studies that are considered historically important

in the field or relevant for this thesis.

Chapter 4 – Machine Learning Introduces Machine Learning concepts and techniques

that are employed in this thesis.

Chapter 5 – Note Onset Annotation Discusses the process of manually annotating on-

sets and introduces a specialized interface for manual segmentation developed

for this thesis. It also describes the process of annotation of onsets for two clar-

inet datasets, one of which was annotated five times, to obtain a more reliable

estimation of the onset the annotation error.
2 Monophonic recordings, containing a single melodic line, but not necessarily monophonic compo-

sitions. A monophonic clarinet part in a polyphonic orchestral composition could be studied in
isolation, for example.
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Chapter 6 – Note Onset Detection Discusses methods for automatic onset detection

and compare the results from a few benchmarking methods to a specific model

for clarinet onset detection, trained on our own clarinet datasets.

Chapter 7 – Iracema Introduces Iracema, a Python library for audio content analysis

developed during the course of this work, which seeks to support research in

music performance with methods for note segmentation and extraction of features

from audio. Additionaly, presents a case study using Iracema to analyze recordings

of performances on the clarinet.

Chapter 8 – Conclusion Concluding remarks.



2
The Clarinet

The clarinet is a single-reed woodwind instrument with a roughly cylindrical

bore. It is usually made of wood (but there are also instruments made of plastic or metal)

and is equipped with a system of silver-plated keys used to open and close the toneholes

distributed along the pipe. Its origins can be traced back to around 1700, when Johann

Christoph Denner invented it in Nuremberg, Germany. Two predecessors of the clarinet

were: the chalumeau, which had a range of a twelfth in the fundamental register of the

clarinet, and the baroque clarinet, which produced higher notes, corresponding to the

upper register of the clarinet. The clarinet combined them into a single instrument,

capable of producing a wide pitch range (LAWSON, 2000, p. 11). Although the term

clarinet can be used to refer to a family of instruments of different sizes and pitches,

it will be used in this text to refer specifically to the more common B[ or A soprano

clarinets.

The parts of the clarinet are shown in figure 1. The mouthpiece is a small tube

with a flattened end onto which the reed is fixed, using the ligature. A narrow opening is

left between the reed’s tip and the mouthpiece. The clarinetist blows into the instrument

the air from his mouth cavity, providing an approximately steady flow of high-pressure

air. The reed, interacting with the bore, which acts as a resonator, will convert this

energy into oscillations and sound waves (WOLFE, 2018). By opening and closing the

toneholes, the clarinetist modifies the length of the wave in the tube, producing different

pitches. The mechanism of the keys allows the clarinetist to produce combinations of

open/closed toneholes that would be beyond the reach of his fingers if he had to use his

finger pads. The bell is the flared end of the clarinet and is necessary to improve tone

quality for the lower notes of the register. The barrel connects the mouthpiece to the
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Mouthpiece
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Upper tube

Lower tube

Reed

Bell

Keys

Ligature

Figure 1 – Parts of the clarinet. Adapted from the original image uploaded to Wikipedia
by user Ruizo, under the Creative Commons Attribution-Share Alike 1.0
Generic license. Downloaded from https://commons.wikimedia.org.

body of the instrument. Its position can be adjusted to modify the instrument’s tuning.

The clarinet was subject to several upgrades over its history, the most noticeable

ones being probably the changes in the keywork. In the late eighteenth century, keys

were added to extend the actions of the index and little fingers of both hands, for

opening and closing toneholes that would be out of the reach of the clarinetist’s fingers.

During the nineteenth century, a few different reasons motivated additional changes, as

mentioned by Shackleton (1995, p.25): “keys were added to enable complex chromatic

passages to be played more fluently and/or with better intonation”; also, keywork

“was designed to render the tone of adjacent notes more even” and “to enable the

instrument to play more loudly”. In the late nineteenth century, more keys were added

to facilitate trilling in specific notes. Improvements in the padding were important for

the development of the instrument since older clarinets had air leak issues that hindered

the addition of new keys. Therefore, good padding was crucial to avoid leakage, as the

number of keys increased. Most modern clarinets use a system of keys called Boehm,

devised in the middle of the nineteenth century by Hyacinthe Klosé and Auguste Buffet,

jeune. Another system called Oehler, which uses different fingerings, was developed by

Oskar Oehler in Berlin, and is also used by modern players, mostly in Germany and

Austria.

https://commons.wikimedia.org/w/index.php?curid=2270313
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4th harmonic
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L

λ= 4L

λ= 4L/3

λ= 4L/5
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1
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acoustic pressure

Figure 2 – Simplified illustration showing the relationship between the length a theo-
retical closed pipe L and wavelengths λn of the fundamental mode and its
harmonics. The closed end of the pipe coincides with pressure anti-nodes
for the odd-numbered harmonic modes. In contrast, it coincides with the
pressure nodes for the even-numbered harmonics. Adapted from (WOLFE,
2002).

2.1 The Clarinet as an Ideal Closed Pipe

The clarinet’s cylindrical bore is open at the bell’s end and almost completely

closed at the mouthpiece. The acoustic pressure varies dynamically inside the bore,

except at the open end, where the acoustic pressure is close to the atmospheric pressure

(pressure node). The maximum variation in pressure occurs in the mouthpiece (pressure

anti-node). These two boundary conditions allow a stationary wave inside the bore

with the wavelength of its fundamental mode λ1 equal to four times the length of the

pipe (L). For an ideal cylinder closed at one end and open at the other, the available

vibration modes correspond to odd integer multiples of the fundamental (see figure 2).

As a consequence, the even harmonics in the lower notes of the clarinet have less energy

than the odd ones. Also, “the same fingering for a particular note in the first register

will produce a note sounding a twelfth above it in the second register (one octave plus a

fifth)” (EGOZY, 1995, p. 23).
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2.2 Range

The clarinet has an extensive range of almost four octaves, being the instrument

with the largest range among the woodwinds. Its lowest note is D3 (≈146.8 Hz)1, and

its nominal highest note B[6 (≈1,864.7 Hz), but depending on the instrument and skill

of the player, it is possible to produce even higher notes. The range of the clarinet can

be split into three registers:

• Lowest register (chalumeau): D3 to A[4

• Higher register (clarion): A4 to B[5

• Altissimo register: B5 to B[6

2.3 Control Parameters on the Clarinet

The clarinetist has a large number of parameters at his disposal that will modify

the sound produced in the instrument. Besides changes in the key fingerings, “pressure

in the mouth can be varied, so can the bite force, the position at which the lip presses

on the reed, and sometimes the configuration of the vocal tract” (WOLFE, 2002). These

control parameters will usually affect multiple sound properties; for example, “blowing

pressure and lip force both affect each of loudness, pitch, and spectrum” (WOLFE, 2018,

p.56). The vocal tract’s resonances are especially important at high frequencies and can

be used to modify pitch and timbre or to control multiphonics.

2.4 Articulation

Articulation is an important expressive parameter in clarinet performances, and

is related to the characteristics of the transitions between successive notes. Pàmies-Vilà,

Hofmann and Chatziioannou (2018) showed that it is achieved by a combination of

actions related to tonguing techniques (mostly achieved by interrupting the reed vibra-

tion with the tongue) and blowing actions. Note transitions performed with relatively

steady air support tend to be perceived as legato. Conversely, transitions that exhibit a

significant decay in the energy of the first note followed by a sharp attack in the second

tend to be perceived as more articulated.

1 All the notes in the text are specified in terms of concert pitch, labeled according to the numbering
defined by the American Standard Pitch Notation (ASPN). Since the clarinet is a transposing instru-
ment, for a B[ clarinet, a concert D3 will be written as E3 on the score (two semitones higher than the
actual concert pitch).



3
Empirical Research on Music
Performance

This chapter introduces a few concepts and provides a brief survey on the study

of music performance, focusing particularly on the measurement of performance. First

we will discuss the acoustic parameters of expressiveness in music performance and the

definition of note onset. Then techniques and methodological approaches employed by

researchers will be reviewed and discussed, starting with references to the work of the

pioneer researchers in the field. Subsequently, we will shift our focus to studies that

employ measurement techniques strictly on the acoustic level, finishing with studies

that deal specifically with the clarinet.

3.1 Expressiveness and Acoustic Parameters

During a musical performance, the musician is able to manipulate a wide range

of acoustic parameters that influence how listeners perceive it. According to Sloboda

(2000, p. 398):

The expressive component of music performance is derived from in-

tentional variations in performance parameters chosen by the performer

to influence cognitive and aesthetic outcomes for the listener. The main

expressive parameters available to performers are those of timing (both in

note-onset and note-offset), loudness, pitch and timbre (sound quality).

Table 1 shows a few examples of performance parameters related to each of the

categories mentioned by Sloboda.
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category related acoustic parameter

timing

note onset time
note duration
articulation1

tempo

loudness RMS envelope

timbre

spectral centroid
logarithm of the attack time
spectral flux
harmonic spectral deviation

pitch
intonation
vibrato2

portamento

Table 1 – Basic categories of expressive parameters and some examples of related acous-
tic parameters. This is not a strict categorization, since some acoustic parame-
ters might pertain to multiple categories.

An interpretation of a piece consists in one specific configuration of those param-

eters. Since they are continuously variable, the multiple possibitilies of interpretation

lead to a combinatorial explosion (REPP, 1999, p. 239). On the other hand, “there are

significant constraints on this variety, deriving both from the musical structure of a

given work and from performance conventions that define what expressive actions are

aestethically pleasing within that structure”. Such conventions are not strict though,

and they can change significantly in different cultural contexts or musical genres. As

mentioned by Sloboda, “what would be considered appropriate for Chopin would be

completely unacceptable for Mozart”. Moreover, the parameters available for manip-

ulation will differ from one instrument to another. On the piano, for example, the

performer cannot produce a continuous pitch shift, since the scale is fixed in discrete

tonal steps. On the violin, on the other hand, a performer can easily do a soft and

continuous glissando to connect two adjacent notes.

Many studies on music performance rely on the capability of extracting from

the audio signal a good estimation of such parameters, or at least, of obtaining a set

of features that correlate to them. To compare individual differences on the vibrato

perfomed by different musicians, for example, a good pitch detection method is funda-

mental, as well as a good method to extract vibrato depth and rate. To investigate how

a musician performs a rubato, it is necessary to employ a robust method to identify
1 Articulation is also related to changes in energy over time, so it is also related to the category loudness.
2 Vibrato is primarily associated to modulations in pitch, but it also produces modulations in timbre

and loudness.
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the note onsets, to subsequently estimate the tempo. Although in some situations it is

possible to annotate this kind of information manually (if provided with the right visu-

alization and annotation tool), it consists in a laborious task, so automatic methods are

highly desirable. Automatic methods also open up new opportunities for dealing with

larger datasets and for developing models for evaluation, categorization and analysis of

musical performances.

3.2 Note Onset, Offset, and IOI

In a rough definition, the note onset represents the instant at which a musical

note starts. However, there are a few different perspectives that lead to slightly different

definitions of the onset. According to Vos and Rasch (1981, p. 323), the physical onset

(also called acoustic onset) can be defined as the instant at which the generation of the

acoustic stimulus start. Differently, the perceptual onset is the instant the stimulus is

first perceived by the listener. The physical onset precedes the perceptual onset, and

their time difference is due to the fact that acoustic events tipically follow a gradual

increase in amplitude, so the listener will only be able to perceive it when it reaches

a certain sound level. These two definitions differ from the mechanical onset, which is

based on the measurement of actions on the instrument by means of sensors, capturing

the instant “the instrument is triggered to make a sound” (LERCH, 2012). This is the

case for the note-on events measured in MIDI instruments.

The relationship between the notes represented in a musical score and the note

onsets in a performance is not biunivocal. The rendition of a piece might contain omis-

sions, substitutions or aditional notes. Repp (1996) reported a considerable amount

of such inaccuracies in a study that analysed a MIDI database of piano performances

by ten graduate student pianists. Most “intrusions and nearly all substitutions seemed

contextually appropriate” in the pieces, and only 38% of the errors identified in the

database were properly reported in an experiment, by listeners who were themselves

pianists. Moreover, in music scores, there are “some ambiguous definition of the notes,

such as is common for trills and other ornaments” (MAZZOLA, 2012). It’s not un-

common that the number of note onsets in the performance will be different from the

number of notes written in the score.

We define segmentation as a task consisting in determining the boundaries of

certain events or structures within an audio signal. In a speech signal, identifying where

a phoneme starts and ends is an example of a segmentation task. In musical audio, the

most important and widely studied type of segmentation task is note segmentation.

The boundaries where a note lie can be defined by two points, the note onset and the

offset, which respectively, correspond to the instants the note starts and ends.
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onset offset onset offset

note duration 

inter-onset interval (IOI)

Figure 3 – Illustration representing the waveform of two consecutive notes, with the
indication of the note onsets and offsets. The segment corresponding to the
note duration extends from the note onset to its corresponding offset. The
IOI spans two adjacent note onsets.

The detection of the onset is regarded as more important than the offset, owing

to the fact that our perception of timing is more strongly tied to this variable. Since

in music one of the most important expressive parameters is timing, the detection of

note onsets is essential for the empirical study of the performance. The segment that

spans two successive note onsets is called inter-onset interval (IOI) (see figure 3). While

varying the length of the IOI in a passage will certainly affect the perception of timing,

changing the position of the offset, within the limits of the IOI, is not likely to affect it.

Instead, the perception of articulation will be influenced by this change.

3.3 Empirical Study of the Performance

Gabrielsson (2003) mentions that while reviewing empirical performance re-

search up to the mid-1990’s for a previous publication (GABRIELSSON, 1999), he had

found around 500 works covering many different aspects of the performance, which he

categorized into the following topics: performance planning, sight reading, improvisa-

tion, feedback in performance, motor processes, models of music performance, physical

factors in performance, psychological and social factors, performance evaluation and

measurements of performance. According to him, around 222 of those publications

concerned the measurement of performance. Since then, this number has grown consid-

erably. On the following sections we will focus on the most prominent or historically

relevant publications, as well as the ones that are considered important in the context
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of this thesis.

3.3.1 The Pioneers

The first empirical experiments on music performance were conducted by Binet

and Courtier (1895) with the development of a mechanical apparatus to capture the

strength employed by the pianist when pressing a key on the instrument (figure 4). It

consisted of a system of rubber tubes placed beneath the keys of the piano, connected

to a cylindric graphical recorder. Whenever a pianist pressed a key on the instrument,

an air pulse would propagate inside the rubber tubes, moving a needle that would

draw, in paper rolls, a curve representing the instant and intensity of the key press

(figure 5). This enabled the researchers to analyse trills, accents and dynamic variations

executed by pianists. Their study showed that when playing an accented note in a

passage, there was a tendency to dettach it from the previous note and bind it to the

next note. Accented notes also tended to have their duration prolonged. It is quite

remarkable to realise that the authors actually expected the execution of a performance

to closely match the nominal values from the score:

Binet and Courtier claimed for their system that it would enable the

identification of faults in piano performance, that is to say deviations from

the nominal values represented in the score – according to which each beat

has the same duration, each crotchet lasts two quavers, and so forth. This

is the most extreme form of musical textualism imaginable, according to

which the point of performance is literally to reproduce the score. (COOK,

2013)

Since the beginning, most empirical studies in music performance have been

conducted using keyboard instruments, for a couple of different reasons, including:

their mechanism can be easily adapted to record keys presses; the physical separation

between the player and the instrument enables the recording of measurements without

affecting the playability of the instrument; and their percussive character makes them a

good choice for the study of rhythmic skills (CLARKE, 2004, p. 78). Just a few years

after the studies by Binet and Courtier, Ebhardt (1898) used electromechanical devices

to investigate timing patterns during scale playing. Sears (1902) used a reed organ

equipped with mercury electrical contacts to record the performances of church hymns

by four different players, and investigated the durations of excerpts, measures, notes,

accents and note overlaps. He reported a wide range of “personal difference” among

the performances by different subjects.
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Figure 4 – Mechanical apparatus for recording the fingering of pianists. Extracted from
(BINET; COURTIER, 1895).

Figure 5 – Example of graphics produced by the apparatus described in figure 4 during
the execution of two excerpts. Extracted from (BINET; COURTIER, 1895).
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During the 1920’s and 1930’s, Carl E. Seashore made big contributions to music

psychology, acoustics, psychoacoustics, and also music performance. He and his col-

leagues collected and summarized a large amount of information from performances

in different instruments. Apart from the Piano Camera3 (SEASHORE, 1938), which

improved significantly the potential for data collection on the piano, he also conducted

studies on timing, intensity, pitch and timbre on the violin and the singing voice.

Seashore proposed a formalization of musical expressiveness in terms of systematic

deviations of acoustic parameters from a reference, proposing the score as the norm.

His results revealed a surprising consistency in the deviations observed over different

performances of a score, by the same player. In the words of Clarke (2004, p. 78),

Seashore’s works represent “the earliest extensive and systematic empirical work on

performance, and identified many of the issues that have remained the preoccupations

of subsequent research”.

3.3.2 Extracting Information at the Acoustic Level

The first attempts to extract information from the performance at the acoustic

level were probably made by Seashore, with the Tonoscope (SEASHORE, 1916), a

piece of equipment which, in his own words “will transform the vibrations of voice

or instrument to visual configurations on a scale that indicates the actual pitch of

any note down to an accuracy of a fraction of a vibration”. In the subsequent years,

in collaboration with other researchers, he studied the vibrato in terms of pitch and

amplitude modulation, in several publications that are summarized in (SEASHORE,

1938). Figure 6 shows an example of the resulting pitch and intensity measurements

obtained for a violin recording in a chart that the author calls “the violin performance

score”.

After Seashore’s retirement, there was a hiatus in music performance research,

until its resurgence, around the 1960’s. In that decade, the Swedish musicologist Ingmar

Bengtsson started to study musical rhythm and was soon joined by Alf Gabrielsson

(GABRIELSSON, 1999). They conducted studies on Viennese waltzes and Swedish folk

tunes, employing a technique called oscillogram filming to extract timing information di-

rectly from the sound (BENGTSSON; GABRIELSSON; THORSRN, 1969; BENGTSSON,

1974; BENGTSSON; GABRIELSSON, 1977). For the waltzes, they identified systematic

timing deviations for the three beats in a measure, following a “short-long-intermediate”

pattern, with the anticipation of the second beat. Systematic timing deviations were also

identified in the Swedish folk tunes studied. Povel (1977) used gramophone recordings
3 It consisted of a piano with a series of optical shutters connected to its hammers and pedals, which

would expose a moving film to light during their movement. The system enabled measuring note
onset, offset, and intensity.
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Figure 6 – Pitch and intensity measurements for an excerpt from Ave Maria (Schubert-
Wilhelmj) played on the violin. The upper curve in each chart corresponds
to the pitch, and also display the nominal durations (according to the score)
using musical notation symbols. The bottom curve displays the dynamics of
the notes. Extracted from (SEASHORE, 1938).
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to study the temporal manipulations performed by three professional musicians on

Prelude No. 1, Book 1, in C Major, BWV 846 by J. S. Bach, employing oscillograms to

annotate the onset of the notes “by eye”. He reported that he was able to determine

the note onsets in the recordings with great precision, whithin 1-2 ms. Bengtsson and

Gabrielsson (1980), Gabrielsson, Bengtsson and Gabrielsson (1983) employed a spe-

cialized equipment for analyzing monophonic audio sequences, to compare systematic

temporal variations in different recordings of monophonic performances of several

melodies on the flute, clarinet, and piano. The note onsets were manualy estimated

using the output of the equipment, comprised of pitch and energy curves. They re-

ported a measurement precision of ±5 ms. These studies did not mention any criteria

for estimation of the measurement error.

During the 1990’s Bruno Repp conducted a series of studies on piano perfor-

mances, investigating different aspects of the performance on the instrument. In some

of these studies (REPP, 1990; REPP, 1992; REPP, 1998; REPP, 1999) he analysed the

timing of commercial recordings from several pianists, and the measurements were

performed manually, by means of a computer interface. In (REPP, 1990, p. 252), he

performed the annotations for one of the studied recordings twice, and used them to

estimate the error. He reported a mean absolute discrepancy of 12 ms between the esti-

mated onsets. In (REPP, 1992), the author identifies differences and commonalities in

the expressive temporal manipulation patterns executed by several pianists on the piece

Träumerei, Kinderszenen op. 15, No. 7 by Robert Schumman. He demonstrates common

patterns that are related to structural characteristics of the composition, and differences

that are attributed to individual variation. The idiosyncratic temporal characteristics of

the performances from two legendary pianists, Alfred Cortot and Vladimir Horowitz,

are objectively demonstrated in the article.

3.3.3 Studies of Clarinet Performance

Most empirical studies on clarinet performances rely on the analysis of timing

manipulations on the instrument, requiring a method for estimation of note onsets.

Barthet et al. (2010) analysed mechanical and expressive performance excerpts from

Bach’s Suite No. II and Mozart’s Quintet for Clarinet and Strings and investigated the

effect of the performer’s expressive intentions on acoustic parameters such as timing,

timbre, dynamics and pitch. They observed a strong effect of the expressive intention on

timbre, timing and dynamics. In a subsequent study, Barthet et al. (2011) investigated

the effects of the same acoustical parameters of listener’s preferences, using an analysis-

by-synthesis to transform the previously recorded performances.

Mota (2012) studied the synchronization of five acoustic parameters and its rela-
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tionship with the musician’s body movement. These parameters included normalized

inter-onset interval (IOI), logarithm of the attack time and legato index, all of which

relied on the estimation of the note onset times. The calculated acoustic parameters

were compared to data extracted using a motion capture system. The results showed

that the participants tend to synchronize the acoustic parameters better when playing

along their own recordings than recordings of other musicians. In (MOTA, 2017), the

author investigates further the human-to-human interaction and synchronization in

ensemble performance using excerpts played in unison by two clarinetists. The note

onset times are used for determining the synchronization accuracy between two clar-

inetists, a leader and the follower. One of the hypotheses investigated by the study was

whether rhythmic consistence (from a leader clarinetist) influence the quality of the

synchronization between two musicians. The study showed evidence that point towards

this hypothesis, although it mentions that the results were not conclusive.

Additionaly to timing manipulations, (TEIXEIRA; LOUREIRO; YEHIA, 2018)

used the audio RMS and Spectral Centroid (see sections 7.2.3.2 and 7.2.3.6) as a rough

estimate of loudness and timbre manipulations, to investigate possible correlations

between such data and the clarinetist’s movement. They found evidence that supports

“the hypothesis of a musical significance in the ancillary gestures of musicians, closely

related to their [the musicians’] sounded expressive intentions”.

All these studies employed semi-automatic techniques for note onset detection,

which normally require manually fixing a large percentual of the annotations generated

automatically by a method. Mota (2017) makes the following remark regarding the

importance of accurate measurements of note onsets:

One of the key points for studying the synchronization in musical en-

sembles is the ability to detect note onsets with accuracy. To the present,

analysis of timing and synchronization in musical performance studies has

been limited by the precision of note detection methods. [...] [I]n recent

years, the majority of works dealing with synchronization are tied to the use

of MIDI interface devices (e.g. electronic keyboards) leaving aside acoustic

instruments and voice.

These remarks emphasize the importance of reliable and temporally accurate on-

set detection methods for the empirical study of musical performances on the clarinet.



4
Machine Learning

Machine learning algorithms have become widely adopted over the past few

decades. They are now present in virtually every field, handling a wide range of different

tasks, such as credit approval, fraud detection, image classification, speech synthesis,

medical diagnosis, protein folding, among many others. It concerns algorithms that

enable computers to learn from input data instead of being explicitly programmed to

perform a given task. The following definition was proposed by Mitchell (1997), “[a]

computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks T , as measured by P ,

improves with experience E”. To solve a given task using a machine learning algorithm,

one must provide some input data from which the program will learn and define a

performance measure to evaluate how good the model’s predictions are.

4.1 Deep Learning

Over the last decade, a class of techniques called deep learning became a game-

changer, solving problems that conventional machine learning techniques could not

handle, or at least, were not so successful. Although the term deep learning is frequently

associated with artificial neural networks with multiple layers, it is not restricted to

learning techniques that are neurally inspired. “It appeals to a more general principle

of learning multiple levels of composition” (GOODFELLOW; BENGIO; COURVILLE,

2016).

Deep learning allows computational models that are composed of multi-
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ple processing layers to learn representations of data with multiple levels

of abstraction. [...] Deep learning discovers intricate structure in large data

sets by using the backpropagation algorithm to indicate how a machine

should change its internal parameters that are used to compute the represen-

tation in each layer from the representation in the previous layer. (LECUN;

BENGIO; HINTON, 2015)

Before the advent of deep learning, most techniques used in music information

retrieval were based in two stages: (1) feature extraction to transform audio into a more

meaningful representation (usually music features that represent timbre, rhythm, har-

monicity, dynamics and other kinds of information); followed by (2) a classifier, trained

to perform the desired task (DIELEMAN; SCHRAUWEN, 2014). Now the approach has

shifted towards strategies that substitute the handcrafted feature extraction by learned

features, since the most relevant aspects of the feature extraction can be optmized by a

neural network, based on the objective of the task being learned.

4.2 Artificial Neural Networks

Artifical neural networks are directed graphs in which each node corresponds to

a neuron (also called unit) and the edges correspond to the connections between neurons.

Each connection between neurons has a weight associated to it, which is a parameter

learned during the training of the network. The most basic type of neural network is

called feedforward neural network, or multilayer perceptron. In this type of network,

each neuron consists in a weighted sum of inputs, with an added constant value called

bias. One layer of such network contains multiple neurons, each one having their own

weights and biases. Also, the value output by each neuron is usually transformed by an

activation function, which is usually a nonlinear function. In this type of network, the

outputs of a layer will connect only to the inputs of the next immediate layer, without

any feedback connections. Also, a neuron does not have the ability to store any internal

state, so its output depend only on its current input. Feedforward neural networks

define a basis from which several different types of neural networks were developed.

At the begining of the training process, the parameters of the network are set

according to the initialization strategy, which can be, for example, assigning them

a random value according to a gaussian distribution. The objective of the learning

algorithm is to learn a set of parameters that enables the network to produce the desired

outputs, based on the given training examples. To achieve this, the outputs of the

network will be estimated for each training example, and its loss (or error) will be

calculated based on the values of the target and the prediction, using a previously
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chosen loss function. This error will be propagated backwards through the network,

and will be used by the optimizer to update the values of the parameters of the network.

4.3 Supervised Learning

Supervised learning algorithms learn to perform a given task based on patterns

extracted from the input x(m), and its associated labels y(m) which describe the expected

output of the model, for each training example m in a training set of size M. A super-

vised learning algorithm analyzes the input training data to learn a mapping hθ(x(m))

that approximates to the expected output y(m). After the training, this function can

be used to map new unseen examples. The labels are frequently difficult to collect

automatically and require a human annotator, but the term supervised learning also

applies when they are collected using an automatic method (GOODFELLOW; BENGIO;

COURVILLE, 2016).

4.4 Cross-Entropy Loss

A loss function measures how far a model’s predictions are from the target

values. Tipically, during training, the learning algorithm will iteratively update the

neural network parameters, seeking to minimize the loss. Choosing the appropriate

loss function for a given problem is crucial for obtaining satisfactory results.

The cross entropy is a convex lost function which is a frequent choice for calcu-

lating the loss in classification problems. In a binary classification problem, for each

training example m in a training set of size M, it is defined as

J(θ) = − 1
m

M−1∑
m=0

y(m) log(hθ(x
(m))) + (1− y(m)) log(1− hθ(x(m))), (4.1)

in which x(m) ∈RD is a D-dimensional input vector, y(m) ∈ {0,1} is the expected output

(target), and hθ(x(m)) ∈ {x | 0 < x < 1} is the actual output produced by the model using

its current internal parameters.

For multi-class classification, where the number of classes K is larger than 2, the

model produces K outputs, each corresponding to the probability of one of the classes.

In this case, we modify the notation slightly, adding a subscript k to the targets and

outputs. So y(m)
k ∈ {0,1}K is a vector with the expected (target) outputs (y(m)

0 , y
(m)
1 , ..., y

(m)
K−1);

and hθ(x(m)) ∈ {x | 0 < x < 1}K represents the actual outputs produced by the model. In
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this scenario, a separate loss is calculated for each class label and then summed up:

J(θ) = − 1
m

K−1∑
k=0

M−1∑
m=0

y
(m)
k log(hθ,k(x

(m))). (4.2)

Since frequently in multi-class classification it is important that outputs of the

model sum up to 1.0, it is common to normalize the outputs using the function softmax:

σ (zk) =
ezk∑K−1
j=0 e

zj
, (4.3)

where zk for correspond to the z-th output of the model.

4.5 Gradient-Based Optimization

During the training process, a machine learning algorithm updates the model’s

internal parameters, typically seeking to minimize the loss produced by the model.

In a neural network, these parameters are the weights and biases of the network. The

optimizer algorithm is the key piece in this process, since it will define the updating

criteria for each parameter of the network, based on the loss produced on the output

of the model, the current parameters of the network and the hyperparameters of the

optimizer itself. The hyperparameters must be previously chosen by the programmer,

before training the model, to control some aspect of the behaviour of the learning

algorithm. For example, the learning rate is a scalar hyperparameter that controls how

large is the update performed to the model parameters, in each update step. In simpler

terms, it controls the speed of the learning process.

In gradient-based optimization, the learning process occurs by estimating the

impact of small variations in the model parameters on the loss. This estimation is made

by calculating the gradient of the loss funcion with respect to the model parameters

(LECUN et al., 1998, p. 3). In each iteration, the parameters θ of the model are updated

according to the formula

θ← θ −α∂J(θ)
∂θ

(4.4)

in which α is the chosen learning rate.

In a neural netowork, the parameters θ that will be updated correspond to the

weights and biases of each neuron in the network. The update in those parameters are

performed by the backpropation algorithm, which first updates the parameters of the

last layer in the network and calculates the error, which is subsequently propagated to
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the preceding layer, to update its parameters. This process is repeated in a layer-wise

fashion, until all the parameters of the network have been updated.

In batch gradient descent, the parameters of the network are updated using

the calculated gradient for all the training examples in the train set, in a single step.

The epoch1 and the step have the same duration. In stochastic gradient descent (SGD),

the examples from the training set a randomly presented, and the update rule uses

the calculated gradient for each train example. The number of steps in a single epoch

correspond to the number of training examples in the train set. Mini-batch gradient

descent, or mini-batch stochastic gradient descent, is a compromise between the two

approaches, and also consists in randomly presenting the training examples, but the

updates are not so granular. Instead of calculating the gradient for each individual

example, it calculates it for a mini-batch of examples of a predetermined size. Mini-

batch SGD mitigates the typical noise in SGD, but is more computationally efficient

than batch gradient descent.

4.6 Long Short-Term Memory Networks

The output of a Recurrent Neural Network (RNN) does not deppend only on

its current input, but also on the state of the network in previous time steps. Long

Short-Term Memory (LSTM) networks are a special type of RNN capable of learning

long-term dependencies (standard RNNs are quite limited in the range of context they

can access). LSTMs are very powerful for dealing with sequential data like text, speech,

video or music.

The data flows through the layers of an LSTM, interacting with its internal

state/memory. The LSTM can add or remove information to the memory using struc-

tures called gates. There are three gates in a LSTM: the forget gate uses a linear trans-

formation between the current input and the output from the last time step, followed

by a sigmoid activation function, to remove or keep information in the memory cell.

The input gate also uses a transformation (linear + sigmoid) to decide which values will

be updated in the memory cell, while a third transfomation (linear + tanh) creates a

vector of values that could be added to the memory cell. These two transformations are

combined (through element-wise multiplication) and added to the memory. Lastly, the

output gate uses a transformation (linear + sigmoid) to choose what information from

the memory the LSTM will output.
1 Each epoch correspond to one complete pass through the entire training dataset.
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Figure 7 – A Convolutional neural network applied to an image classification task
(digits recognition). Extracted from (LECUN et al., 1998).

4.7 Convolutional Neural Networks

Convolutional neural networks were introduced in the 1990’s but only recently

they became more widespread, due to a work in which deep CNNs outperformed

the state of the art in an image classification challenge (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012). CNNs are very powerful when applied to types of data for which

topological relations should be taken into account, such as images and audio2. The

discrete convolutions employed in CNNs consist in a type of linear transformation that

preserve this notion of ordering. CNNs are sparse (only a few input units contribute

to a given output unit) and reuse parameters (the same weights are shared in multiple

locations of the input) (DUMOULIN; VISIN, 2016).

Convolutions consist in applying kernel filters (sliding windows) to data. In the

case of images, two-dimensional kernels are usually applied (for example, a 3×3 kernel

multiply its values element-wise with the original image, and then sum them up), and

the operation is repeated by sliding the window over the whole matrix. Figure 7 shows

an example of a typical CNN architecture for image classification. For each layer of a

CNN, convolutions are applied to the input, followed by a nonlinear activation function.

Multiple kernel filters can be used in each layer of the network, generating feature maps

as a result of the convolution operations. The CNN will learn the parameters for each

kernel during the training phase based on the objective of the network. Max-pooling

layers (subsampling) are usually applied after convolutional layers, in order to reduce

dimensionality wihout loosing the most salient information.

4.8 Rectified Linear Units

A rectified linear unit (ReLU) is a non-linear activation function, which is defined

as f (z) = max(0, z), and has recently become widely used in neural networks. The
2 Pixel ordering is important in images, while temporal information is important in audio.
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difference between them and a linear unit, is that it outputs zero for half of its domain.

They have been widely adopted because they are a good alternative to sigmoid and tanh

activation functions, one of the reasons being the fact that they avoid a problem called

vanishing gradient, which hinder the learning process in neural networks.

4.9 Dropout

There are many different regularization techniques in machine learning, which

are useful to avoid overfitting. Overfitting happens when a model with high capacity

captures the variation of the data as if that variation represented the essence of the

data. What will frequently happen in this situation is that the model will not be able to

generalize well to unseen examples, thus performing significantly worse on new data

than it did on the data used for training.

Dropout is a powerful stochastic regularization strategy that can be applied to a

broad family of models. It consists in randomly ommiting each unit of the model with

a given probability. “This prevents complex co-adaptations in which a feature detector

is only helpful in the context of several other specific feature detectors. Instead, each

neuron learns to detect a feature that is generally helpful for producing the correct

answer given the combinatorially large variety of internal contexts in which it must

operate” (HINTON et al., 2012).

4.10 K-Fold Cross Validation

To validate the results of a trained model, it is important to have a separate

validation set, containing data that was not used during the training of the model. This

is because the model will learn from patterns in the training data, and its ability to

produce good results with new data (in other words, to generalize) has to be evaluated

using data it has not seen before. However, when the volume of data available for

training is relatively small, the quality of the resulting model tends to degrade, so

reducing the training data even further might become unfeasible. At the same time,

to have a reliable estimation of how the model will behave with unseen data, it is

important to have a validation set with a sufficient number of samples. A technique

called k-fold cross validation handles this problem by splitting the entire dataset into k

subsets (folds) and repeating the training process k times. Each time, a diferent fold

is chosen as the validation set, and the resulting models are evaluated separately. This

avoid sacrificing samples of the training set to obtain a reliable evaluation of the model.

However, it is necessary to train the model k times, increasing the total training time.
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4.11 Evalution Metrics

Choosing the appropriate evaluation metric is a critical step to assess the per-

formance of the model. In a binary classification task, the classification model must

predict if a given example belongs or not to a single given class3. If it does, it is a

positive example, and if not, a negative example. There are four possible outcomes for a

prediction made by the model:

• Correct predictions

– true positive (T P );

– true negative (TN ).

• Incorrect predictions

– false positive (FP );

– false negative (FN ).

The most basic metric for classification tasks is the accuracy, which consists in

dividing the number of correctly predicted examples by the total number of examples.

accuracy =
T P + TN

T P + TN +FP +FN
(4.5)

But when dealing with unbalanced datasets4, the accuracy is unreliable as an

evaluation metric because it may be biased towards the overrepresented class. In such

cases, the metrics recall and precision are frequently used in conjunction, since they

are less sensitive to class imbalance. Recall measures the ratio between the correctly

predicted positive examples and the actual number of positive examples (based on the

ground truth).

recall =
T P

T P +FN
(4.6)

Precision measures the ratio between the correctly predicted positive examples

and the total number of examples predicted as positive.

precision =
T P

T P +FP
(4.7)

3 A simple and classic example: a classification model that has to decide if any given photograph is
a photo of a cat or not. So the class in the case is cat. A positive prediction means the example is
classified as a cat, while a negative example as not a cat.

4 When one or more target variables (classes) are overrepresented in a dataset (in other words, when
the class distributions are not uniform), the dataset is said to be unbalanced. This problem is also
known a class imbalance.
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If it is important for the model to reach a good balance between precision and

recall, the F1-score can be used, since it summarizes the performance of the classifier

with a single number (GOODFELLOW; BENGIO; COURVILLE, 2016). It consists in the

harmonic mean of the two.

f1 =
2×precision×recall
precision+recall

(4.8)



5
Note Onset Annotation

The automatic detection of note onsets in audio recordings is a difficult task,

and frequently the methods available might not be robust enough to rely upon. So in

some circumstances it might be necessary to resort on manual annotation. But given

the current state of machine learning, wouldn’t it be possible to develop automatic

models of audio segmentation that are as robust as manual annotations? In any case, to

obtain robust segmentation models using machine learning, it is necessary to provide a

dataset with labeled target values, because this is a typical task for supervised learning

algorithms. In this chapter we will discuss the process of manual annotation of two

clarinet onset datasets created specifically for this study. We will also take the oportunity

to assess the annotation error for the task. In chapter 6 we will use those datasets for

training/evaluating a neural network for clarinet onset detection.

A few prominent studies have employed manual methods to annotate note on-

sets in recordings (BENGTSSON; GABRIELSSON; THORSRN, 1969; POVEL, 1977;

GABRIELSSON; BENGTSSON; GABRIELSSON, 1983; REPP, 1990; REPP, 1992), how-

ever the measurement error is barely discussed, if at all. Repp (1990) and Repp (1992)

make rapid analyses of the measurement error in piano recordings but does not delve

further on the subject. This scenario led us to question whether manual onset annota-

tions are precise enough for researchers studying musical performances, specially on

the clarinet, since its note attacks can be very soft, making it harder to define the instant

of the onset. We only found a single study that sought to analyze note onset annotation

error (DAUDET; RICHARD; LEVEAU, 2004). It comprised a few different instruments,

which reported an average timing difference of 10.5 ms among annotations performed

by three subjects, in both monophonic and polyphonic audio. One of the excerpts in the

study was a clarinet recording of 30 seconds, for which the average timing difference
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was slightly larger, 13.6 ms.

As mentioned by Cartwright et al. (2017, p.1), “[a]udio annotation is key to

developing machine listening systems”. They conducted a study that investigated the

effects of visualizations in the quality of audio annotations for soundscapes. Their results

showed that “the spectrogram visualization enables annotators to identify sounds more

quickly”. They proposed a nice tool for audio annotation which we considered adopting

for our experiments. However, it was not suitable for our specific needs, because it did

not provide an option to set a fixed resolution (in miliseconds per pixel) for the audio

visualization. The interface would resize the visualization to occupy all the available

space on the screen, which would lead to different resolutions depending on the length

of the audio file, compromising the necessary precision for annotating note onsets.

Therefore, we decided to develop our own tool, called Audio Segment Annota-

tor, which consists in a web application for multi-categoric annotation of points and

segments, with an integrated administration interface for experiment management.

This tool seeks to provide a fine temporal resolution of 2 miliseconds for annotating

audio, in a user interface with a steep learning curve and straightforward controls.

The draggable screen elements and few keyboard shortcuts are easy to learn; in fact,

for a user that is already familiar with audio-related software, it takes no more than

two or three minutes to learn how to use the application. It provides visualizations of

the audio waveform and its spectrogram, synchronized with respect to the time axis.

The fact that it is developed as a web application makes it suitable for crowdsourcing,

enabling researchers to obtain large corpuses of annotations in a relatively short time.

See appendix A for more details.

As mentioned in section 3.2, there are a few different definitions of note onset,

each of them corresponding to a slightly different instant at the begining of a note.

Any attempt to determine one of those particular instants precisely involves a series

of challenges. To obtain the perceptual note onset, the subject cannot be exposed to

any other stimulus than the sound. The visual information provided by a waveform or

spectrogram will certainly affect the judgement of the listener regarding the perceptual

onset, biasing it towards the physical onset. On the other hand, any attempt to annotate

the physical onset would be influenced upon the presentation of the recording itself,

biasing the subject’s judgement towards the perceptual onset. We considered a few

possible solutions to annotate perceptual onsets, like asking the subject to perform

tapping or to push a mechanical button synchronized with the onset events, or even by

playing back the audio together with controllable short click sounds that the subject

would be supposed to synchronize with the note onsets. However, those approaches

would pose their own methodological challenges, and would also make the annotation

process a lot more time-consuming, making the annotation of larger corpuses of data
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excerpt file length (s) onsets

Mozart Clarinet Quintet Kv. 588 in A Major, 1st
Movement – Main Theme (bars 118-124)

mozart_q_m1 14.52 31

Mozart Clarinet Quintet Kv. 588 in A Major, 4th
Movement – First Variation (bars 17-24)

mozart_q_m4 16.88 53

Stravinsky – Petrushka Suite – Dance Of The Peas-
ant And The Bear

stravinsky 15.43 42

Table 2 – Clarinet excerpts from the dataset clari-onsets-3.

unfeasible. Therefore, we decided to take a more pragmatic approach, avoiding to deal

with these specific onset definitions in our annotation experiments.

5.1 Clari-Onsets-3

5.1.1 Methods

In this experiment we performed redundant onset annotations for the three

clarinet excerpts listed in table 2, seeking to obtain: (1) a reliable estimation of the note

onset time, based on multiple measurements; and (2) an estimation of the measurement

error for the task. The three audio files contained a total of 126 note onsets. Their corre-

sponding scores are shown in figure 8. These excerpts had been previously recorded

by two different clarinetists, and were taken from a larger database from our research

group. They were all recorded in our laboratory, in a room with very little reverberation.

The recordings were chosen seeking to achieve a diversity of musical material, with

notes in different registers of the instrument, melodies containing both short and long

intervals, notes with soft and sharp attacks, and different dynamics.

Using the Audio Segment Annotator, we repeated the annotation procedure five

times, in annotation sessions that took place in three different ocasions. We obtained a

total of 630 onset annotations.

5.1.2 Results

For this particular dataset, by making repeated measurements of the note onsets

and calculating the median onset time for each note, we obtained a more reasonable

estimation of the onset time. We were also able to estimate the error involved in this

kind of measurement, by calculating the time difference betweeh each annotated onset

(from different sessions) and the median.
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(a) Mozart Clarinet Quintet Kv. 588 in A Major, 1st Movement – Main Theme (bars 118-124)
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(b) Mozart Clarinet Quintet Kv. 588 in A Major, 4th Movement – First Variation (bars 17-24)
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(c) Stravinsky – Petrushka Suite – Dance Of The Peasant And The Bear

Figure 8 – Scores for the three clarinet excerpts listed in table 2.

Figure 9 shows the error for each note from the three excerpts, while table 3

summarizes them, grouping by absolute error ranges. For 96.5% of the onset annotations

the absolute error is less than or equal to 8 ms. The type of acoustic material in a

recording affects how difficult it is to annotate the note onsets. As the difficulty increases,

the magnitude of the annotation error is also likely to increase. The excerpt that showed

the larger dispersion in the annotation error was mozart_q_m1. This is the excerpt that

contains the softest attacks, which makes the precise definition of a note onset point

more challenging. On the other hand, the excerpt stravinsky contains sharp high

pitched attacks in fortissimo, which are considerably easier to annotate, and hence its

annotation error tend to be lower.
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(b) Mozart Clarinet Quintet Kv. 588 in A Major, 4th Movement
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(c) Stravinsky – Petrushka Suite – Dance Of The Peasant And The Bear

Figure 9 – Binned scatter plot showing the measurement error of the annotations for the
three excerpts listed in table 2. The size of the circle represents the number
of times a specific error value occured, like a histogram, with bin width of 2
ms. The error consists in the difference between each onset annotation and
the median.
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absolute error (ms) count percentage cumulative percentage

0 to 4 ms 541 85.9 85.9
4 to 8 ms 67 10.6 96.5
8 to 12 ms 16 2.5 99.0
12 to 16 ms 4 0.6 99.7
16 to 20 ms 1 0.2 99.8
> 20 ms 1 0.2 100.0

Table 3 – Absolute error for the manual annotations obtained for the dataset clari-onsets-
3.

5.2 Clari-Onsets-50

Most datasets available for note onset detection do not focus on monophonic

recordings or do not contain a significant amount of clarinet onsets. Therefore, we

decided to create a larger dataset composed exclusively of clarinet recordings. This

will enable us to train a specific onset detection model for clarinet (see chapter 6). This

dataset is composed by 50 excerpts of solo clarinet recordings, totaling 23 minutes

and 6 seconds of audio, with a mean duration of 27.7 seconds. Table 4 lists the audio

files included in the dataset. Half of those recordings were made in our laboratories,

while the other half was obtained from comercial recordings from several different

albums and clarinetists. They comprised multiple genres, including classical, jazz, and

contemporary pieces. The recordings are very diverse with respect to level of reverbera-

tion, distance of the microphone, background noise, etc. This was intentional, since a

varied dataset can lead to a model that is able to generalize better. The excerpts were all

annotated by myself, this time without repetition, over several weeks. The annotation

sessions for this dataset started a couple of weeks after finishing the annotations for

clari-onsets-3. As a result, a total of 3551 note onsets were obtained for the 50 excepts.

5.3 Discussion

It is very natural to think of an onset as the precise instant when there is an

increase in acoustic energy corresponding to a note start. However, based in our experi-

ence annotating onsets (aided by the visual feedback of a spectrogram and a waveform)

it is worth mentioning that frequently the start of a note is highly ambiguous, and the

task of defining the onset as a single point becomes quite challenging. In the clarinet,

in particular, some common ambiguous situations are: (1) in a few situations of two

successive notes of different pitches, the onset of the frequency components of the

second note do not correspond to the point where the overall energy start to increase,



Chapter 5. Note Onset Annotation 36

file length (s) onsets file length (s) onsets

tumbledown_1 28.05 58 tumbledown_2 32.14 62
beethoven_1 27.35 119 beethoven_2 33.68 74
brahms_1 37.44 60 debussy_1 39.65 40
debussy_2 43.09 35 debussy_3 25.29 18
debussy_4 18.19 56 excerpt_1 18.60 93
excerpt_2 15.49 34 excerpt_3 20.47 20
fast_excerpt_1 08.84 61 fast_excerpt_2 23.38 160
inschrift_2 22.48 45 inschrift_3 38.98 56
jazz_1 15.24 69 jazz_2 29.45 133
korsav_1 16.53 51 long_notes_1 40.48 24
messiaen_1 25.05 1 mimic_1 26.01 37
mimic_2 27.95 88 mimic_3 25.14 30
mimic_4 30.95 24 mozart_1 16.79 38
mozart_2 16.35 38 mozart_3 15.90 33
mozart_4 23.59 121 preludi_1 38.45 54
preludi_2 39.69 50 prokof_1 21.46 47
scheherazade_1 29.18 72 scheherazade_2 15.07 51
scheherazade_3 14.47 97 sonata_in_f_major 41.64 72
stille_nacht_1 27.55 23 stille_nacht_2 27.80 23
staccato_exercise_1 36.76 237 staccato_exercise_2 25.88 155
study_in_g_major 29.93 136 tchaikovsky_1 36.35 29
tchaikovsky_2 44.92 34 solo_clarinet_1 33.49 42
solo_clarinet_2 29.99 63 solo_clarinet_3 23.16 22
solo_clarinet_4 25.58 126 solo_clarinet_5 36.17 160
solo_clarinet_6 26.25 157 solo_clarinet_7 39.94 223

Table 4 – Clarinet excerpts from the dataset clari-onsets-50.

based on the waveform visualization. Instead, the spectrogram shows that the harmonic

content of the second note starts to exist before the tipical increase in the waveform

envelope. (2) Blowing noise precede the start of a note, and since there is no clear pitch

or harmonic energy present at the time, it becomes unclear if it should be treated as

the onset, or if the subsequent pitched content should be prioritized. (3) The transition

between successive notes can be sometimes so smooth and subtle that it sounds like a

progressive transformation, consisting in an interval, instead of a single point. This kind

of situation will manifest more often in recordings with a lot of reverberation, which

will increase the annotation difficulty significantly. (4) Even in single notes without any

superposition of energy caused by reverberation, when the note attack is too soft, it

is difficult to determine one precise point that corresponds to the instant of the note

onset.

The situations mentioned above led us to consider one possible future improve-
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ment for this kind of annotation experiment: instead of treating the onsets as points,

they could actually be treated as time intervals, at least in situations in which the

annotator is uncertain about the location of the onset. In fact, at this point we believe

that treating the onset as a point is a convenient (and useful) simplification, when in

fact, frequently it cannot be so precisely defined.



6
Note Onset Detection

To obtain a specific note onset detector for clarinet recordings, we implemented

the neural network architecture proposed by Schlüter and Böck (2014), which consists

of a CNN applied to time-frequency representations of an audio signal, and trained

this network on a clarinet dataset. In the original paper, the author had trained it on

a dataset containing both monophonic and polyphonic recordings played on various

instruments and covering multiple musical genres. We anticipated that since it is trained

on mixed data, the original model would not perform as well as it could on clarinet

recordings, due to the specific characteristics of the sound produced by the instrument,

which are underrepresented in the training data. To verify this, in section 6.2.1 we

test and evaluate this model for clarinet recordings using the datasets we introduced

in chapter 5. We also evaluate two other onset detection methods from the library

(RNN and SuperFlux) in the same section. In section 6.1.4 we show the results of

our implementation of the CNN model, this time training the model using clarinet

recordings exclusively.

6.1 Methods

Many studies on automatic onset detection have been published since the begin-

ning of the 2000s. The first methods used mostly DSP techniques to estimate the onsets

(DUXBURY; SANDLER; DAVIES, 2002; BELLO et al., 2005; COLLINS, 2005; ZHOU;

REISS, 2007; THORNBURG; LEISTIKOW; BERGER, 2007). Recently, the majority of

the studies have employed machine learning techniques, which tend to achieve better

results on the task. Typically, an onset detection method will attempt to generate a
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time series that provides an estimation of the probability of onset over an audio signal.

This time series is usually called onset detection function (ODF). Then, a peak-picking

algorithm will be used to estimate the actual onset times from the ODF.

In sections 6.1.1 to 6.1.3 we describe three methods for note onset detection,

of which the first two are based on neural networks. These methods are evaluated to

detect clarinet onsets in section 6.2.1, using models trained on a mixed dataset. Our

own implementation of the CNN model (section 6.1.1), trained on a clarinet dataset, is

evaluated in section 6.1.4.

In this chapter we test and evaluate three onset detection models from the library

madmom (BÖCK et al., 2016) on clarinet recordings, specifically. Two of those models

are based on neural networks, a CNN (section 6.1.1) and an RNN (section 6.1.2), and

were previously trained by the author of the library on a generic dataset. The other

method (section 6.1.3) uses strictly DSP techniques and is based on spectral flux. We also

test and evaluate a few models trained by ourselves using a clarinet dataset, specifically.

These models use basically the same CNN architecture from madmom’s model, along

with a few minor modifications, to investigate if they lead to a better result. With these

clarinet-specific models we can check whether the specific training data leads to a better

note onset detection model for the instrument.

6.1.1 CNN

This method was proposed by Schlüter and Böck (2014) and is based on a

convolutional neural network applied to mel-scaled spectrograms. The advantage of

this representation is that it uses a logarithmic scale for the frequency channels instead

of a linear one. This logarithmic scale models better the human perception of pitch,

allowing the spectrogram to have a better perceptual pitch resolution using a relatively

small number of bins, thus reducing the model’s memory demand.

The input of the model consists of three stacked 80-band mel spectrograms with

logarithmically scaled magnitudes, each calculated using a different window length:

1024 (23 ms), 2048 (46 ms), and 4096 (93 ms) samples. They are calculated using a hop

length of 441 samples, which corresponds to a frame resolution of 10 ms. The input of

the network consists of a group of 15 contiguous spectral frames centered on the frame

to be classified. So each example processed by the network corresponds to a context of

150 ms. The onset annotations (which consist of time points) are converted to target

values, which are defined for each input example, using the criteria described below.

• If there is an onset annotation within the 10 ms time window corresponding to

the central frame for a given input, the target value is assigned to 1 (onset).
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Figure 10 – Convolutional Neural Network for onset detection. Adapted from
(SCHLÜTER; BÖCK, 2014).

• Since the annotation error might be a bit larger than this window, each frame

immediately before or after a frame that was set to 1 in the step above is also set to

1, giving a margin for the network to learn from annotations that are not precise.

These samples are also weighted with a factor of 0.25 during training.

• The targets for any other frames are defined to 0 (no onset).

Basically, the architecture of the network consists of two convolutional layers

(2D convolutions) followed by an intermediary fully-connected layer, and the output

layer, which is also fully-connected. Figure 10 shows an illustration of the network

architecture, which is composed by the following layers:

• input: 15 frames x 80 bands;

• 2D convolutional layer: filters of 7 frames x 3 bands, computing 10 feature maps;

• max-pooling over 3 bands with no overlap;

• 2D convolutional layer: filters of 3 x 3, computing 20 feature maps;

• max-pooling over 3 bands with no overlap;

• fully connected layer with 256 units;

• fully connected layer with a single unit (output).

All the layers use rectified linear unit activation functions. Dropout is applied to

the inputs of the fully connected layers for regularization. The network is optimized

using gradient descent, minimizing binary cross-entropy loss. It is trained for 100

epochs, using a starting learning rate of 1.0, which is multiplyed by 0.995 at the end of
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each epoch. The initial momentum is 0.45, and it is linearly increased to 0.9, between

epochs 10 and 20. The mini-batches used for each training step consist in 256 examples.

The network produces output values between 0 and 1, representing the frame-

wise probability of onset along the audio signal. To obtain the onset points, first, this

time series is convoluted with a Hamming window of 5 frames, which smooths it a

bit. Then a peak-picking method is used to extract the local peaks higher than a given

threshold value. This threshold is chosen by varying its value and picking the one

that produces the highest F-score. The instants of the peaks correspond to the onsets

detected by the model.

6.1.2 RNN

The model proposed by Eyben et al. (2010) uses as input a stacked array of

features consisting of: (1) a mel spectrogram calculated using a window length of

1024 samples (23 ms); a mel spectrogram computed using a window length of 2048

samples (46 ms); (2) the positive first-order difference between two successive mel

spectrogram frames at the 1024 samples window length; (3) the positive first-order

difference at the 2048 samples window length. The positive first-order difference is

calculated by applying a half-wave rectifier function H(x) = x+|x|
2 to the difference

between two consecutive mel spectrogram bands. A total of 40 mel bands are used in

this model, achieving 160 stacked input features for each time step. The input features

are calculated using a sliding window with a hop length of 441 samples (10 ms). Each

hop performed by the sliding window corresponds to one time step in the model.

The model consists of a bidirectional long short-term memory network (LSTM)

applied to the described input features. Bidirectional recurrent networks incorporate

future context into a network by adding an extra layer for each hidden layer, which

will process the input sequence backward, while the other layer processes it forwards.

It produces a non-causal model that outputs values that depend on both the past and

future time steps. The network contains 6 hidden layers, 3 of them for processing the

input forwardly and 3 backwardly.

In this network architecture, each layer contains 20 LSTM units. The network’s

output layer has two units, which are normalized to sum up to 1.0, using the softmax

function. The outputs represent the probabilities of onset and no onset. The authors

reported that they used this two-output approach because the results using a single

output were not as successful.

To obtain the final onset times, a peak picking method is used to detect the local

maxima just for the output corresponding to the onset class. The algorithm only detects

peaks that are above a threshold θ, which is proportional to the median activations
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produced in the output, constrained by 0.1 <= θ <= 0.3:

θ∗ = λ×median(a0(0), ..., a0(N − 1)) (6.1)

θ =min(max(0.1,θ∗),0.3), (6.2)

where a0(n) is the output of the network for the onset class and n-th frame; and λ is

a scaling factor chosen to maximize the F-score based on the results obtained for the

validation set.

6.1.3 SuperFlux

One of the most popular DSP-based methods for note onset detection is based

on calculating the spectral flux (defined in section 7.2.3.10), based on the idea that note

onsets are accompanied by rapid spectral changes in the audio signal. The SuperFlux

method, proposed by Böck and Widmer (2013), consists of adding some improvements

to the spectral flux method. Instead of calculating the bin-wise difference between

consecutive spectral frames, it adds a trajectory-tracking stage to the method to avoid

high values in the ODF. It also combines phase information, using a technique called

local group delay, to reduce the impact of amplitude variations that occur in steady

tones in the output of the method. These changes seek to reduce false positives caused

by vibrato and tremolo.

6.1.4 Training a CNN for Onset Detection on the Clarinet

Machine learning algorithms learn to perform tasks based on patterns that are

extracted from input data. Therefore, the quality of the training dataset impacts on

the quality of the final model. Having a good dataset that captures the characteristics

of “real world” data is key to obtaining a model that can generalize. Although it

is important to avoid biases in the dataset that may negatively impact the model’s

generalization capacity, in some circumstances, a model might benefit from specific

data that is biased towards the expected final purpose of the model.

We chose to implement and train the same CNN architecture mentioned in

section 6.1.1 using the largest of our datasets, clari-onsets-50, to obtain a clarinet-specific

model. We also experimented with three other slightly different versions of the same

network to test which one would achieve the best performance. The experiments were

all conducted using 10-fold cross-validation, using 8 folds for training, 1 for validation,
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and 1 for testing. We used the validation set to optimize the models and reported the

results on the test set. Those models are detailed below.

• CNN-Clari: uses the same network proposed by (SCHLÜTER; BÖCK, 2014), with

just a few hyperparameter adjustments. The learning rate is set to 0.1, and the

weights of the frames that precede and succeed the annotated onset are set to 0.4.

These hyperparameters were adjusted by testing different values and evaluating

the result on the validation set.

• CNN-Clari-Gau: uses the same network as CNN-Clari, but the targets are set

modeling a sharp Gaussian curve in the region around the frame that corresponds

to an onset, with a standard deviation of 0.5, and 5 frames of length.

• CNN-Clari-BN: adds batch normalization layers after the convolutional and fully

connected layers of the network used in CNN-Clari. Batch normalization “is a

method of adaptive reparametrization” which seeks to “standardize only the mean

and variance of each unit in order to stabilize learning”.

• CNN-Clari-Hi: this model uses 120-band mel spectrograms as input, instead of

the 80 bands used in the other models, and employs a network with a larger

capacity than the former ones, containing three convolutional layers instead of

two, and two fully connected layers before the output layer, instead of just one. It

also increases the number of feature maps in the convolutional layers, and all the

convolutional layers are followed by a batch normalization layer.

Our motivation for the experiment CNN-Clari-Gau was to test whether modeling

the onset targets as sharp Gaussians would result in an improvement in the model

recall, based on the fact that manual onset annotations are prone to temporal errors that

might be larger than the chosen frame resolution of 10 ms. This Gaussian would extend

the margin for annotation errors a bit further than just up to the neighbour frames, so

we wanted to check if this approach would help the model to learn, and improve the

final results. The experiment CNN-Clari-BN just added batch normalization layers to

the network. We wanted to investigate if this technique could help the learning process

a bit further. The last experiment, CNN-Clari-Hi tested if a model with a higher capacity

and higher input dimensionality could improve the final result of the model.

6.1.5 Evaluation Criteria

To evaluate a note onset model, we need to define criteria to decide whether each

onset prediction is correct or not. Thus, the predictions must be compared and matched

to the onset annotations (ground truth). For this purpose, we specified an argument ω,
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which is a tolerance window (defined in milliseconds) centered on each annotated value.

To be considered valid, a prediction must fall within the defined tolerance window

around the onset annotation. The annotated onset times are matched to the predictions

using the following criteria:

1. first we construct a distance matrix ∆a,p containing all possible distances between

each annotation a and prediction p;

2. we search this matrix and find the smallest distance δ = min(∆a,p) between an

annotation and a prediction, and set the corresponding indexes to a′ and p′;

3. if δ is smaller than ω/2, the annotation a′ and prediction p′ will be marked as a

valid match (true positive), and the row a′ and column p′ will be discarded from

the distance matrix;

4. if there are still distances smaller than ω/2 left in the table, steps 2 and 3 are

repeated; else, the search for matches is finished.

At the end of the process described above, we mark all the annotations and

predictions that were not matched as false negatives and false positives, respectively.

Using this criterion, when two onset predictions fall within the tolerance window

defined for a single annotation, only the closest one is accounted as a true positive,

while the other is considered a false negative.

With those values, we can calculate the metrics precision, recall, and F-score

(section 4.11), to evaluate the results of an onset detection method. All the results

presented in this chapter show evaluation metrics calculated using two different values

for the tolerance window ω: 20 ms and 50 ms. Since these tolerance windows are

centered on the target onset point, an onset detection that is within their limits will

correspond to a maximum distance of 10 ms and 25 ms, respectively.

The methods discussed in this chapter are evaluated using the two clarinet

datasets we created: clari-onsets-3 (section 5.1) and clari-onsets-50 (section 5.2). Although

clari-onsets-3 is a small dataset, its temporal precision is considerably better, because

the final targets are estimated using the median values from repeated annotation

experiments.
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ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Böck 0.861 0.851 0.872 0.605 0.597 0.614
RNN-Böck 0.781 0.779 0.784 0.459 0.456 0.461
SuperFlux 0.718 0.669 0.775 0.379 0.353 0.410

Table 5 – Benchmark results for the dataset clari-onsets-50.

ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Böck 0.948 0.944 0.952 0.709 0.706 0.712
RNN-Böck 0.887 0.905 0.870 0.685 0.698 0.672
SuperFlux 0.862 0.889 0.836 0.469 0.484 0.455

Table 6 – Benchmark results for the dataset clari-onsets-3.

6.2 Results

6.2.1 Benchmarking

The methods mentioned in sections 6.1.1 to 6.1.3 were employed to extract the

onsets from the datasets clari-onsets-3 and clari-onsets-50. The implementations used in

these benchmark experiments were obtained from the library madmom (BÖCK et al.,

2016). The author of the library previously trained the CNN and RNN methods on a

mixed dataset, known as the Böck dataset, containing 102 minutes of audio and 25,927

onsets composed by multiple instruments and musical genres, with both polyphonic

and monophonic recordings. We will refer to the CNN and RNN methods trained on

the Böck dataset as CNN-Böck and RNN-Böck.

The results for the three methods on the dataset clari-onsets-50 are shown in

table 5. CNN-Böck performed better than the other methods with respect to all the

metrics. It achieved an F-score of 0.861 for a tolerance window of 50 ms. Considering

that the F-score reported in the original paper using a mixed dataset was 0.9031

(SCHLÜTER; BÖCK, 2014), the model showed a reasonable generalization capacity,

even though the result was a bit lower. For the tolerance window of 20 ms, the results

obtained were considerably lower for all the methods. The SuperFlux, in particular,

showed the most drastic degradation in the F-score: from 0.718 in the mixed dataset to

0.379 in the clarinet dataset.

For the dataset clari-onsets-3, the results obtained for every model were consid-
1 It is worth mentioning that the results in the original paper the results were obtained using 8-fold

cross-validation.
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erably better, which indicates that the examples in this dataset were easier to classify.

Again, CNN-Böck performed better than the other methods with respect to all the

metrics, achieving an F-score of 0.948 for a tolerance window of 50 ms. This time the

F-score was higher than the value reported in the original paper for the mixed dataset

(0.903).

The results obtained by the CNN model in both datasets were far superior to

the other methods. In the original paper that proposed the model, Schlüter and Böck

(2014) also reported better results using the CNN on their dataset, but the difference

between the models is more subtle than the differences we observed.

6.2.2 Results for the Clarinet-Specific Model

The results obtained with each of the clarinet-specific models (section 6.1.4) for

the dataset clari-onsets-50 are shown in table 7. This table reports the mean metrics

obtained from 10-fold cross-validation. The best result was obtained using CNN-Clari,

resulting in an F-score of 0.954 for a 50 ms tolerance window and 0.720 for 20 ms. The

F-score for the model CNN-Clari-BN was just marginally worse. In terms of precision,

this was the best model, for both tolerance windows. The results obtained for the models

CNN-Clari-Gau and CNN-Clari-Hi were slightly worse, achieving F-scores of 0.947 and

0.949, respectively.

As shown in table 8, the results obtained for the dataset clari-onsets-3 were

considerably better than for clari-onsets-50, similarly to the results obtained with the

benchmark models. These results were obtained from the final models, which we

trained using the entire dataset clari-onsets-50. For this particular dataset, the model

CNN-Clari-BN reached the highest F-scores for the 50 ms tolerance window (0.996).

However, the model CNN-Clari performed better for the 20 ms window (0.908). The

model CNN-Clari-BN reached a recall of 1.000 for the 50 ms window but dropped to

0.873 for the 20 ms one.

It may be mentioned that we did experiments with several hyperparameter

combinations for the four models reported in this section. We chose the hyperparameters

employed in these models based on the best F-score obtained for the validation set.

We also experimented with a few different deeper network architectures, but they all

tended to overfit and did not produce better results than CNN-Clari.

The results obtained using CNN-Clari on the dataset clari-onsets-3 were up-

loaded to <https://taironemagalhaes.github.io/phd-thesis-audio/onset-detection/

>. We made them available as audio files, in which the clarinet recordings are played

along with short clicks corresponding to the note onset predictions generated by the

model.

https://taironemagalhaes.github.io/phd-thesis-audio/onset-detection/
https://taironemagalhaes.github.io/phd-thesis-audio/onset-detection/
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ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Clari 0.954 0.946 0.962 0.720 0.712 0.728
CNN-Clari-Gau 0.947 0.938 0.958 0.717 0.708 0.727
CNN-Clari-BN 0.953 0.942 0.965 0.719 0.709 0.730
CNN-Clari-Hi 0.949 0.939 0.959 0.712 0.702 0.722

Table 7 – Results obtained for the clarinet-specific models on the dataset clari-onsets-50,
using 10-fold cross-validation.

ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Clari 0.988 0.984 0.992 0.908 0.905 0.912
CNN-Clari-Gau 0.984 0.984 0.984 0.881 0.881 0.881
CNN-Clari-BN 0.996 1.000 0.992 0.870 0.873 0.866
CNN-Clari-Hi 0.984 0.992 0.977 0.882 0.889 0.875

Table 8 – Results obtained for the clarinet-specific models on the dataset clari-onsets-3

6.3 Discussion

Training a CNN model on a clarinet-specific dataset, we were able to achieve

a result that is significantly better than with a model trained on a mixed dataset. The

modifications we tested to the CNN model seeking to improve the model performance

did not improve the results obtained with the original model, although the model with

batch normalization layers surpassed it on a few metrics.

We noticed that the clarinet-specific onset detection models tended to miss the

onset for notes with extremely long attack times (soft notes), producing false negatives.

In the annotation experiments (chapter 5) we reported that it was more difficult to

determine the exact position of the onset for such notes. We suspect that those false

negatives might be related to the annotated data’s imprecision for soft notes. Also, in a

few situations where there were two consecutive notes with the same pitch, the model

tended to miss the second note’s onset.

In the clarinet datasets used, there is a significant amount of breathing sounds,

background noises, crackling sounds from the chair, and sometimes even whisper

sounds. It is interesting to notice that the network was able to learn to ignore those

sounds completely, which is an excellent result, since they would not correspond to

note onsets in the vast majority of the clarinet repertoire (although they might, in

contemporary compositions).

Regarding the dataset clari-onsets-3, for which we obtained results that are
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considerably better when compared to clari-onsets-50, it is worth emphasizing that it is

a small dataset, having a total duration that corresponds to only 3.4% percent of the

latter, and there is certainly a bias related to the fact that its recordings were all made

in a laboratory, under controlled conditions, in a room with very low reverberation, by

only two clarinetists. The low reverberation is certainly a factor that makes it a lot easier

for any method to detect the onsets since it minimizes the superposition of energy of

consecutive notes.

6.4 Future Prospects

Although we did some preliminary experiments training the onset detection

model using additional semi-synthetic data, so far, the results have not been satisfactory.

That data was created using a MIDI keyboard controller to record monophonic melodies

on a commercial clarinet sampler software. The note on events of the MIDI protocol

were used to generate the onset annotations, and those were used in our training

experiments. We attempted to use this semi-synthetic data in the CNN model using

two different strategies: (1) employing them on a pre-training phase and (2) mixing

them in the training data. So far, none of these approaches improved the results of the

model. As a matter of fact, they produced slightly worse results than the models trained

without them. Yet, this is something that still needs further investigation. We also did

some experiments applying data augmentation techniques to the train data (such as

pitch-shifting, time-stretching, gain adjustment, and addition of noise). However, in our

preliminary experiments using these techniques, the results of the model got slightly

worse. This is, again, something that needs to be explored further.



7
Iracema

The main product of this thesis is a Python package for audio content analysis

aimed at the empirical research on music performance called Iracema (version 0.2.1).

It provides functionalities for extracting patterns of manipulation of duration, energy,

and spectral content from monophonic audio (MAGALHAES; BARROS; LOUREIRO,

2020). Its development was motivated by research projects conducted at CEGeME1

(LOUREIRO et al., 2019), and was strongly inspired by a previous Matlab tool developed

by the group, called Expan (CAMPOLINA; MOTA; LOUREIRO, 2009), which has

not been released for public use. Iracema is licensed under the GNU General Public

License v3.0, and its source code can be freely obtained at <https://github.com/cegeme/

iracema>. The documentation of the API is available at <https://cegeme.github.io/

iracema>. This chapter will provide an overview of the proposed architecture of the

system, some technical characteristics and basic functionalities. To check some code

examples for the library, refer to appendix B.

Iracema uses NumPy arrays for storing and manipulating data, providing a new

level of abstraction on top of such objects (WALT; COLBERT; VAROQUAUX, 2011).

It also wraps some functionalities from other libraries, such as SciPy (JONES et al.,

2001), librosa (MCFEE et al., 2015), CREPE (KIM et al., 2018), resampy (MCFEE, 2016;

SMITH, 2020), and audioread (SAMPSON, 2020), to provide methods with a more

natural interface for audio content extraction.
1 http://musica.ufmg.br/cegeme/

https://github.com/cegeme/iracema
https://github.com/cegeme/iracema
https://cegeme.github.io/iracema
https://cegeme.github.io/iracema
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7.1 Architecture

Software architecture refers to the set of structures needed to reason about a

system. These structures are comprised of software elements, relations among them,

and properties of both elements and relations (BASS; CLEMENTS; KAZMAN, 2013).

This section will discuss some important aspects of Iracema’s architecture and offer an

overview of the elements that compose the core functionalities of the library.

Audio content analysis systems rely on manipulation of dynamic data, i.e., data

that represents an attribute’s changes over time. Thus, time series is a fundamental

element in Iracema’s architecture. The starting point for any task performed by the

system is the audio time series, from which other kinds of time-related data are extracted.

The transformation of time series into other time series, to obtain more meaningful

representations of the underlying audio, is a common behavior of audio content analysis

systems, to perform feature extraction. The implementation of such extractors usually

depends on some recurrent types of operations, like applying sliding windows to a

series of data, which is an example of an aggregation operation.

Frequently, it is necessary to deal with a specific excerpt of a time series, such

as a musical phrase or a single musical note. There is another important element in

the architecture, called segment which is defined as the interval between two separate

points, and can be used to easily delimit such excerpts in a time series, independently of

its sampling rate. A user may sometimes specify the limits of the segments they want to

study, if they already know where these points are located. However, most of the time,

users expect the system to identify those limits automatically, a common kind of task in

audio content extraction, known as segmentation.

Some aforementioned elements, like audio, time series, points, and segments

were implemented as classes, since they have intrinsic attributes (e.g., the samples

of the time series, and the start/end of the segments) and behavior (e.g., generating

time vectors in time series or calculating indexes in segments). Figure 11 shows those

classes in a diagram. The class Audio inherits the functionalities from TimeSeries, and

add some specific behaviors (such as loading wave files). The classes Point, Segment,

PointList and SegmentList provide a handy way to extract corresponding excerpts

from time series of different sampling rates, since it performs all the necessary index

conversion operations to extract data that coincide with the same time interval.

Feature extraction methods or classes take time series objects as input and output

another time series object. For example, the initializer method of the class STFT takes

as input an audio object, a window_size, and a hop_size, and generates a time series in

which each sample contains the bins of the FFT within one analysis window. Another
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Figure 11 – Diagram showing the core classes of Iracema.
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example, the method spectral_flux (section 7.2.3.10) takes an STFT time series as

input and generate another time series containing the calculated spectral flux.

Segmentation methods take time_series objects as input and output a list of

segments or points. Then, these segments can be used to easily extract excerpts from

time series objects, using square brackets notation (the same operator used in Python to

perform indexing/slicing operations).

7.2 Modules and Functionalities

These are the modules that compose Iracema, and their respective functionalities:

• core.timeseries: contains the definition of the class TimeSeries.

• core.audio: contains the definition of the class Audio.

• core.segment: contains the definition of the classes Segment and SegmentList.

• core.point: contains the definition of the classes Point and PointList.

• spectral: contains the definition of the classes that implement frequency-domain

analysis methods, like the STFT, spectrogram, mel spectrogram and constant-Q

transform.

• pitch: a few different models for pitch detection (detailed in section 7.2.1).

• harmonics: a model for extracting harmonic components from audio.

• segmentation: methods for automatic audio segmentation.

• features: contains the implementation of several feature extractors (detailed in

sections 7.2.3 and 7.2.6).

• plot: contains several different methods for plotting time series data.

• aggregation: contains some common aggregation methods that can be useful for

implementing feature extractors.

• io: subpackage containing IO methods, for loading/writing files, playing audio,

etc.

• util: subpackage containing some useful modules for unit conversion, DSP, win-

dowing operations, etc.
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The core modules implement the core classes of the library. To make these classes

easily available for users, they are all already imported into the namespace iracema. For

instance, the class Audio is available in the module iracema.core.audio, but it can be

accessed using the shorter name iracema.Audio.

7.2.1 Pitch Detection

According to the ANSI standard 1994, “Pitch is that attribute of auditory sen-

sation in terms of which sounds may be ordered on a scale extending from low to

high. Pitch depends mainly on the frequency content of the sound stimulus, but it also

depends on the sound pressure and the waveform of the stimulus”. Two pitch detection

methods have been implemented in Iracema, and there is an extra method that wraps a

model from the external library CREPE.

7.2.1.1 Harmonic Product Spectrum

Measures the maximum coincidence for partials, based on successive down

sampling operations on the frequency spectrum of the signal (CUADRA, 2001). If the

signal contains harmonic components, then it should contain energy in the frequency

positions corresponding to the integer multiples of the fundamental frequency. So by

down-sampling the spectrum by increasing integer factors (1,2,3, ...,R) it is possible to

align the energy of its harmonic components with the fundamental frequency of the

signal.

Then the original magnitudes of the spectrum are multiplied by its downsam-

pled versions. This operation will make a strong peak appear in a position that corre-

sponds to the fundamental frequency. The HPS calculates the maximum coincidence

for harmonics, according to the equation

Y (ω) =
R∏
r=1

|X(ωr)| (7.1)

where X(ωr) represents one spectral frame and R is the number of harmonics to be

considered in the calculation. After this calculation a simple peak detection algorithm

is used to obtain the fundamental frequency of the frame.

Our implementation modifies this approach by adding an offset of 1 to the

magnitude spectrum of the signal before applying the product shown in the equation

above. This makes the algorithm more reliable in situations where some harmonics

have very little or no energy at all.
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7.2.1.2 Expan Pitch Detection Algorithm

Based on the algorithm implemented in the tool Expan (CAMPOLINA; MOTA;

LOUREIRO, 2009), this method consists, for each spectral frame, in choosing the n

highest local peaks of the magnitude spectrum (above a certain minimum relative

threshold) as potential candidates, and estimating the corresponding harmonics for

each candidate, using the criteria specified in section 7.2.2. Then, the harmonic energy

is calculated for each candidate (section 7.2.3.14). The candidate with the highest

harmonic energy is chosen as the pitch frequency for each spectral frame.

7.2.1.3 CREPE

This pitch detection method is based on a deep convolutional neural network

operating directly on the time-domain waveform (KIM et al., 2018). It was developed by

the Music and Audio Research Laboratory, at the New York University, and is available

in Iracema as a wrapper over their published Python package. It uses six convolutional

layers connected to a densely connected output layer. The output produced by this layer

is a 360-dimensional vector, from which the pitch estimate is calculated determinis-

tically. The frequencies that correspond to the output follow a logarithmic scale, and

cover six octaves in intervals of 20-cents. The model was trained on two large datasets

containing synthesized audio, for which it is possible to have very precise target an-

notations. The method produces excelent pitch estimations (according to the authors,

state-of-the-art as of 2018), but it is highly demanding in terms of computational power

when set to its maximum capacity. Lowering the capacity of the model (it is one of

its input arguments) it is possible to find a good compromise between accuracy and

processing time.

7.2.2 Harmonics

The harmonic model uses as input the pitch curve extracted for a given audio

signal and its STFT. It calculates the expected position of the theoretical harmonics of

the signal using integer multiples of the fundamental frequency. Then, a local search

for peaks is performed around this theoretical position, within a tolerance interval. This

step is important to account for some inharmonicity, which is quite frequent in higher

harmonic components.
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7.2.3 Classic Features

This section contains the definition several classic feature extractors that are

typically used in the Music Information Retrieval (MIR) field, and are included in the

library Iracema. We use the following conventions in the definitions:

• an audio signal is denoted by x(n), where n ∈N is the sample index;

• X(k) is the result of the DFT applied to the signal x(n), where k ∈N is the index

of the spectral bin;

• the last definition is useful to simplify definitions that apply to each spectral frame

separately; alternatively, we may denote the DFT by X(k, t), where t represents the

index spectral frame over the temporal dimension;

• the amplitudes of the harmonic components of a signal are denoted by A(h)

where h ∈N is the number of the harmonic component (A(1) is the fundamental

frequency);

• µs and σs are the mean and standard deviation of s.

7.2.3.1 Peak Envelope

The peak envelope consists in the peak absolute values of the signal amplitude,

within each step of a sliding window.

PE =max(|x(n)|), 1 ≤ n ≤ L (7.2)

Where x(n) is the n-th sample of a window of length L.

7.2.3.2 RMS

The RMS envelope consists in the root mean square of the signal amplitude,

calculated within the aggregation window. For a sliding window of length L:

RMS =

√√√
1
L

L∑
n=1

x(n)2 (7.3)
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7.2.3.3 Zero-Crossing Rate

The zero-crossing rate of a time series consists in the number of times the signal

crosses the zero axis per second. It gives some insight on the noisiness character of a

sound. In noisy or unvoiced signals, the zero-crossing rate tends to reach higher values

than in periodic or voiced signals.

ZC =
1
2L

L∑
n=1

|sgn[x(n)]− sgn[x(n− 1)]| (7.4)

Where

sgn[x(n)] =

 1,x(n) ≥ 0

−1,x(n) < 0
(7.5)

And x(n) is the n-th sample of a window of length L.

7.2.3.4 Spectral Flatness

The spectral flatness gives an estimation of the noisiness / sinusoidality of an

audio signal (for the whole spectrum or for a frequency range). It can be used to

determine voiced / unvoiced parts of a signal (PARK, 2004). It is defined as the ratio

between the geometric mean and the arithmetic mean of the energy spectrum:

SFM = 10log10


(∏N

k=1 |X(k)|
) 1
N

1
N

∑N
k=1 |X(k)|

 (7.6)

7.2.3.5 High Frequency Content

The high frequency content (HFC) function produces sharp peaks during attacks

or transients (BELLO et al., 2005) and might be a good choice for detecting onsets in

percussive sounds.

HFC =
N∑
k=1

|X(k)|2 · k (7.7)
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Alternatively, it can be calculated using the spectral amplitude instead of the

energy:

HFC =
N∑
k=1

|X(k)| · k (7.8)

7.2.3.6 Spectral Centroid

The spectral centroid is a well known timbral feature that is used to describe the

brightness of a sound. It represents the center of gravity of the frequency components

of a signal (PARK, 2010).

SC =
∑N
k=1 |X(k)| · fk∑N
k=1 |X(k)|

(7.9)

7.2.3.7 Spectral Spread

The spectral spread represents the spread of the spectrum around the spectral

centroid (PEETERS et al., 2011), (LERCH, 2012).

SSp =

√∑N
k=1 |X(k)| · (fk − SC)2∑N

k=1 |X(k)|
(7.10)

Where SC is the spectral centroid for the frame.

7.2.3.8 Spectral Skewness

The spectral skewness is a measure of the asymmetry of the distribution of the

spectrum around its mean value, and is calculated from its third order moment. It will

output negative values when the spectrum has more energy bellow the mean value, and

positive values when it has more energy above the mean. Symmetric distributions will

output the value zero (LERCH, 2012).

SSk =
2 ·

∑N
k=1

(
|X(k)| −µ|X(k)|

)3
N · σ3

|X(k)|
(7.11)
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7.2.3.9 Spectral Kurtosis

The spectral kurtosis is a measure of the flatness of the distribution of the

spectrum around its mean value, compared to a Gaussian distribution. For Gaussian

distributions, its value is equal to zero. For flatter distributions it outputs negative

values, while for sharply-peaked distributions it outputs positive values.

SKu =
2 ·

∑N
k=1

(
|X(k)| −µ|X(k)|

)4
N · σ4

|X(k)|
(7.12)

7.2.3.10 Spectral Flux

The spectral flux measures the amount of change between successive spectral

frames. There are different methods to calculate the spectral flux across the literature.

For now we have implemented the one proposed by (DIXON, 2006).

SF =
N∑
k=1

H(|X(t,k)| − |X(t − 1, k)|) (7.13)

Where H(x) = x+|x|
2 is the half-wave rectifier function, and t is the temporal index of the

frame.

7.2.3.11 Harmonic Centroid

The harmonic centroid represents the center of gravity of the amplitudes of the

harmonic series. It is basically the same concept as the Spectral Centroid, but applied

to the harmonic partials of a signal.

HC =
∑H
k=1A(k) · fk∑H
k=1A(k)

(7.14)

Where A(h) represents the amplitude of the h-th harmonic partial.

7.2.3.12 Spectral Entropy

The spectral entropy is based on the concept of information entropy from Shan-

non’s information theory (MATHWORKS, 2021). It measures the unpredictability of
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the given state of a spectral distribution.

SEpy = −
N∑
k

P (k) · log2 P (k) (7.15)

Where

P (i) =
|X(i)|2∑N
j |X(j)|2

(7.16)

7.2.3.13 Spectral Energy

Spectral energy is the sum of the energies of all spectral components from the

FFT of the signal.

SE =
N∑
k=1

|X(k)|2 (7.17)

7.2.3.14 Harmonic Energy

The harmonic energy is the sum of the energies of the harmonic partials of a

signal.

HE =
H∑
k=1

A(k)2 (7.18)

7.2.3.15 Noisiness

The noisiness represent how noisy a signal is (values closer to 1), as oposed to

harmonic (values close to 0). It is the ratio of the noise energy to the total energy of a

signal (PEETERS et al., 2011).

Ns =
SE−HE

SE
(7.19)

7.2.3.16 Odd-to-Even Ratio

The OER is the odd-to-even ratio among the harmonics of an audio signal

(PEETERS et al., 2011). This value will be higher for sounds with predominantly odd
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harmonics, such as the clarinet.

OER =

∑H/2
h=1A(2h− 1)

2∑H/2
h=1A(2h)

2
(7.20)

7.2.4 Note Onset Detection

7.2.4.1 CNN Model

This is the main note onset detection method provided by the library, which

consists in a clarinet-specific model trained using the dataset Clari-onsets-50, discussed

in detail in chapter 6.

7.2.4.2 Adaptative RMS

This method was proposed by (De Poli; MION, 2006), and consists on the calcu-

lation of two RMS curves: one with a short window length, and another with a large

window length. These curves will intersect each other along the audio signal, and the

onsets will tend to occur in the valleys of the interval between two intersections, when

the values for the RMS calculated with the shorter window are smaller than the values

calculated for the other curve. So the difference between these curves can be calculated

and used as an onset detection function (ODF). The peaks of this curve are extracted to

obtain the points corresponding to the note onsets.

7.2.4.3 Pitch Change

This method is based on the detection of changes in the pitch values for adjacent

frames. It calculates the ratio between adjacent frames to generate an ODF. The peaks

in this curve will correspond to instants with fast changes in pitch. It is necessary to

establish a threshold to consider a peak in the ODF as an onset. The cons of this method

are: (1) it is highly dependent on a good pitch detection method, possibly with a good

post processing method for smoothing the pitch curve; and (2) it usually fails to detect

consecutive notes of the same pitch.

7.2.4.4 Derivative of the RMS

Since note onsets usually result in energy increases in the audio signal, the

derivative of the RMS can be used to estimate the note onsets. It can be used as the ODF,

since the peaks in this will correspond to instants of rapid variation in the energy of
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the signal. This method tends to produce false negatives in legato phrases, since there

might be little or no energy variation in the audio signal.

7.2.5 Note Envelope Segmentation

The typical note envelope model used in sound synthesis usually divides the

note into four segments: attack, decay, sustain, and release (ADSR). Although this model

is useful for synthesis purposes, when analyzing real recordings of acoustic instruments

some of these segments might be highly ambiguous and difficult to define or detect, or

might not even exist. We adopt a simplified definition for analyzing the note envelope,

discarding the decay segment, to obtain a ASR envelope. Figure 12 shows an illustration

representing the ASR envelope.

To segment the notes in an audio signal in terms of these three segments (ASR),

we must first obtain the note onsets using one of the available methods (section 7.2.4).

Then, for each IOI, the following criteria is used to obtain the other three points of the

note envelope:

• the spectral flux (using the positive first-order difference implementation, defined

in section 7.2.3.10) is calculated for the entire IOI segment, and its peak value is

chosen as the beginning of the release;

• the peak value of the RMS between the onset and the beginning of the release is

chosen as the end of the attack;

• the first derivative pitch curve is estimated and used to determine the offset point,

within the segment starting at the beginning of the release and ending at the

onset of the next note: if the derivative of the pitch curve exceeds 50 cents (half

semitone), this point is chosen as the offset, else the onset of the next note is

chosen as the offset point.

7.2.6 Expressiveness Features

7.2.6.1 Local Tempo

The local tempo consists in a granular estimation of the musical tempo, cal-

culated for each IOI segment in an excerpt. To calculate it, we must first obtain the

duration of the IOIs.

IOI(n) = onset(n+1)− onset(n) (7.21)
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attack sustain release

onset offset

Figure 12 – Illustration of a simplified version of the note envelope, composed by three
segments: attack, sustain and release.

note duration

¯ 4
˘ “ 2
ˇ “ 1
ˇ “( 0.5

Table 9 – Examples of numeric values corresponding to nominal durations in the score.

In the equation above, onset(n) is the onset time of the n-th note. To normalize

the durations of the IOIs, we divide them by their nominal durations, ND(n).

IOInormalized(n) =
IOI(n)
ND(n)

(7.22)

The nominal duration of the n-th IOI is obtained directly from the the musical

score. It consists in the notated duration corresponding to the start of the IOI plus

the duration of the rests (if there are any) between that note and the subsequent note.

In table 9 we show some examples of values corresponding to the nominal durations

specified by the score.

Finally, for any time signature with a quarter note as the beat unit, we can use

the following formula to calculate the local tempo LT(n) (in BPM):

LT(n) =
60

IOInormalized(n)
(7.23)

7.2.6.2 Legato Index

An articulated note transition is characterized by a plunge in energy in the

beginning of the release of the first note, followed by an ascent until the end of the

attack of the second note. This definition of the legato index assumes that a perfect legato
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beginning
of release

end
of attack

S2

S1r(t)

Figure 13 – Illustration showing the areas S1 and S2 used to calculate the legato index.

consists in a linear change in energy during the note transition, from the beginning of

release to the end of attack. By estimating how much the energy declines bellow this

legato baseline, it is possible to estimate the quality in terms of legato/articulation. For

a given note transition, the legato index is given by

LI = min
(
S1
S2
,1

)
(7.24)

S1 =
ai+1∑
t=ri

RMS(t) (7.25)

S2 =
ai+1∑
t=ri

r(t) (7.26)

Where ri is the index corresponding to the start of the release of the note i

and ai+1 the start of the attack of the subsequent note. r(t) is defined as a straigtht

line between ri and ai+1. This index was adapted from the definition proposed by

(MAESTRE; GÓMEZ, 2005). The areas S1 and S2 are shown in figure 13. S1 correspond

to the area under the energy curve, and S2 the area under the legato base line connecting

the energy values at the begining and the end of the transition.

7.3 Case Study

To demonstrate the practical use of some content extraction methods studied in

this thesis, we conducted a brief case study of clarinet performances using the library

Iracema.
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label clarinetist level of expertise

A 1 professional
B

C 2 student

D 3 professional

E 4 student

F 5 professional

G 6 student

H 7 professional

I 8 student

J 9 professional

K 10 student

Table 10 – List of performances analyzed, indicating the label associated to the perfor-
mance, a numeric id corresponding to the performer and the indication of
the level of expertise of the clarinetist.
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Figure 14 – Score for the excerpt of Peter and the Wolf opus 67 by Sergei Prokofiev.

7.3.1 Methods

We chose to analyze an excerpt of Peter and the Wolf opus 67 (the cat theme),

by Sergei Prokofiev (shown in figure 14). These excerpts were obtained from our

research group’s database, and consist in a total of 11 recordings by 10 different

clarinetists, 5 professional players and 5 students. The recordings are available at

<https://taironemagalhaes.github.io/phd-thesis-audio/case-study/>. Two of these

recordings were made by a single professional clarinetist. Table 10 shows the label used

to refer to each performance (A to K), the label representing the clarinetist (1 to 10),

and their level of expertise.

First of all, we extracted the note onsets using the specialized clarinet note

onset detection model obtained in chapter 6. All the note onsets in the recordings

https://taironemagalhaes.github.io/phd-thesis-audio/case-study/
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were correctly identified by the model, so there were no false negatives. However, the

model produced 23 false positives, which were removed manually for this experiment

(obtaining a total of 517 note onsets). No performance had any extra or missing notes,

so the relationship between the performed note onsets in the recordings and the notes

in the score were all biunivocal. This allowed us to directly compare these performances

using features that are estimated on a per-note basis (or per-transition basis). We

analised those excerpts using the features local tempo (section 7.2.6.1) and legato index

(section 7.2.6.2).

7.3.2 Results

This section show the results obtained using the features local tempo and legato

index for all the recorded excerpts of Peter and the Wolf opus 67.

7.3.2.1 Local Tempo

The local tempi were calculated for all the recordings using the estimated onset

times. We plotted those values in figures 15 and 16. The excerpt was split in two parts

in these graphs to make the results easier to analyze. The first part is shown in figure 15

(IOIs 1 to 23) and the second in figure 16 (IOIs 24 to 46). Also, the performances were

split into three different axes to reduce cluttering.

There are accent marks in the score on notes 39, 41, and 43, indicating that the

performer must emphasize them. There are also legato marks connecting those notes to

their following notes. As can be seen in figure 16, there is a clear zig-zag pattern in the

local tempi for those notes, intercalating longer IOIs (odd numberings) with shorter

IOIs (even numberings). This is probably due to the fact that accented notes tend not

just to be played stronger, but also to have their durations prolonged. This is a typical

pattern that has been reported in other studies, including the seminal one by Binet and

Courtier (1895). Yet, in many of these performances the zig-zag pattern starts not at

note 39 but note 35 (this is easilly noticeable in performances A, B, C and D), although

these notes have no explicit accent marks. This might be explained by the melodic

pattern built by an upward third leap followed by a downward second, notes 35–36 and

37-38, which are repeated at notes 39-40, 41-42 and 43-44, going down stepwise of a

second, with an accent at the first note of each leap. It seems that the players anticipate

these accents at notes 35-38 even though no accent is marked.

The performances executed by the same clarinetist (A and B) were very consis-

tent, judging by the similarity between the two curves. Figure 17 shows those perfor-

mances in a single graph, to make this similarity easier to observe.
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Figure 15 – Local tempo part 1.

We computed a correlation matrix for those performances using the local tempo

values. The results are shown in figure 18. This result confirms the high consistency

between the two performances by the same clarinetist (A and B), which exhibited the

highest correlation coefficient among all the pairs of performances (0.83). By comparing

performances A and B to performances by other clarinetists, we observed higher cor-

relation coefficients for F (0.67 and 0.56), H (0.65 and 0.68) and K (0.7 and 0.61). The

performances F and H were executed by professional clarinetists, and K by a student.

The correlation coefficients between the performance D and most other performances

were small, suggesting that this performance might be the most distinctive one in terms

of timing manipulations.
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Figure 16 – Local tempo part 2.
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Figure 17 – Local tempo for two performances by the same clarinetist.
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Figure 18 – Correlation matrix for the local tempi for all the performances.

7.3.2.2 Legato Index

We calculated the legato index for all the note transitions in the recordings.

The results obtained are shown in figure 19 and figure 20. The score indicates that

the following transitions must be played in staccato: 1-10, 17-18, 21-22, and 24-33. In

contrast, the transitions 15, 19, 35-37, 39, 41, 43, and 46 must be played in legato. The

results indicate that the legato index is able to characterize these transitions reasonably

well, since the its values tend to be higher for the notes with legato marks and lower for

notes with staccato marks.

The correlation matrix computed using the legato indexes for all the perfor-

mances is shown in figure 21. The highest correlation ocurred between the performances

A and H (0.84), both professional clarinetists. The second largest value occured between

the performances A and B (0.79), both from the same clarinetist. The correlation val-

ues tended to be higher between performances by professional clarinetists, with the

exception of the performances J (professional) and K (student).

7.4 Future Prospects

At the time of writing Iracema contains an effective note onset detector for

clarinet recordings. Although preliminary tests seem to indicate that this model pro-
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Figure 19 – Legato indexes for performances A to F.
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Figure 20 – Legato indexes for performances G to K.
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Figure 21 – Correlation matrix for the legato indexes for all the performances.

duces reasonable results for other monophonic instruments, this should be furterly

investigated on larger datasets containing multiple instruments. To reach the best result

possible for other instruments, it would be probably ideal to have available in the

library other specific models trained for different instruments. Also, although Iracema

includes the implementation of methods to calculate the local tempo and legato index,

the library should be further extended to include additional expressive features (e.g.

vibrato and higher-level timbral features). The current functionalities can also be im-

proved, specially regarding the usability of the objects defined by the core classes of the

system (TimeSeries, Point, Segment, etc.). Collecting opinions and suggestions from the

final users of the library could certainly be highly helpful to define the most important

points of improvement for the library, a step that was left out of the scope of the work

performed in this thesis.



8
Conclusion

This thesis discussed techniques for extracting information from monophonic

musical audio, aiming to support the empirical research on music performance. Our

models and experiments adopted the clarinet as the baseline instrument. Among several

topics explored in our research, we assessed the measurement error for a manual note

onset annotation experiment using a small dataset containing clarinet performances

recorded in our laboratory, in a room with low reverberation. The results showed

that the annotation error was within ± 8 ms for 96.5% of the onsets, and ± 12 ms

for 99.0% of the onsets. We also trained a specific note onset detection model for

clarinet recordings based on a convolutional neural network, using a dataset that we

created and annotated manually. This model performed significantly better to detect

onsets in clarinet recordings than other models trained on mixed recordings did. The

results obtained with this model on the dataset clari-onsets-3 might be evidence that

it tends to perform better in recordings with little reverberation. Our motivation for

developing this method was to obtain an assertive model for the empirical study of

clarinet performances, which in many cases consist of recodings made in smaller rooms

(typically a laboratory or music studio). We obtained an F-score of approximately

99% for three recordings made under such low reverberation conditions (for a 50 ms

tolerance window). Even in a more diverse clarinet dataset containing a large number of

recordings made in concert rooms or halls with more reverberation, the model reached

an F-score of approximately 95%. We believe that this model will enable faster data

collection for the analysis of music performances. The most noticeable shortcomings of

the model are: false negatives tend to occur in notes with a soft attack and in consecutive

notes with the same pitch; false positives apparently tend to occur as duplicate onset

detections, in situations where there is, in fact, just one onset.
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The clarinet-specific note onset detection model, along with many other useful

methods for analyzing recordings of monophonic performances, were implemented

in the library Iracema. Many of these consisted of classic features, widely employed

in the MIR field, such as RMS, spectral flux, spectral entropy, noisiness, and others.

Nonetheless, there are also two higher-level features available in the library, which

we decided to categorize as "expressiveness features": local tempo and legato index.

In future versions of the library, we plan to include additional higher-level features,

e.g., portamento, dynamics, and vibrato. We also wish to extend it futurely to other

monophonic instruments, such as flute, trumpet, trombone, oboe, etc. In fact, we did

some preliminary tests using the onset detection model on a few trumpet and trombone

recordings, and so far, the results generated by the model for those instruments seem to

be pretty good. However, we still need to evaluate this on a larger dataset.

Our case study showed the local tempi and legato indexes for 11 different

performances of the same excerpt. Two performances were made by the same clarinetist,

while among the other nine, each was played by a different clarinetist. The results

showed a high correlation in both local tempo and legato index for two performances by

the same professional clarinetist. We had already anticipated that this would probably

occur because, over time, musicians develop a consistent individual style. Furthermore,

professional musicians, in particular, will typically have not only a clear notion of the

results they want to achieve in the performance, but also the necessary technical skill to

produce highly consistent interpretations, which reflect their individual notion of the

performance. Sloboda (2000) mentioned that “because effective expressive performance

often requires very fine and subtle variations in performance parameters [...], expressive

intentions frequently cannot be effectively communicated without a high level of

technical mastery on the part of the performer.”

Another interesting observation from the case study results was that perfor-

mances executed by professional clarinetists tended to be more correlated to each

other than to performances executed by students. Also, the correlation values observed

between students’ performances tended to be lower (although there were some obvious

exceptions). A probable explanation for this result is that professional musicians have a

more precise notion of the “archetypical” interpretation based on the piece’s structural

characteristics. According to (REPP, 1992), “there are two basic aspects of music perfor-

mance: a normative aspect (i.e., commonality) that represents what is expected from a

competent performer and is largely shared by different artists, and an individual aspect

(i.e., diversity) that differentiates performers.”. Thus, the high correlation values among

professional clarinetists might be related to this normative aspect of the performance.
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A
Audio Segment Annotator

Figure 22 shows a screenshot of the page where the administrador creates or

updates experiments. An experiment consists in a set of uploaded audio files, and a

set of annotation categories. A category represents a distinct kind of structure that

the annotator user will be expected to identify during the experiment, and will be

specified as points or segments within the waveform. In the annotation interface, a point

will render a vertical line over the waveform, and the segment will render a rectangle

spanning an adjustable region. The example experiment shown in figure 22 consists in

annotating note onset points and vibrato segments, and will result in the interactive

interface shown in figure 23. The administrator may choose to let the experiment avail-

able publicly by checking the box labeled ‘Allow annonymous annotations’ (figure 22).

Otherwise, only authenticated users added by him will be able to undertake the experi-

ment. It is also possible to specify how many audio files are supposed to be annotated

per annotation session, and whether the files should be presented in random order (to

avoid order effects).
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Figure 22 – Editing an example experiment in the administration interface of Audio
Segment Annotator.
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Figure 23 – The resulting interactive annotation interface for one audio file in an ex-
ample experiment. It shows the overall waveform on top, followed by the
zoomed-in spectrogram and audio waveform. In the zoomed-in waveform,
there are two annotated note onset points (red vertical lines), and one
vibrato segment (blue box). The black vertical line is the playhead.



B
Code Examples

The code examples shown in this section are compatible with the latest version

of Iracema (0.2.1) available at the time of writing. This version requires Python 3.8

installed on the computer. We strongly recommend that you install iracema into a

separate virtual environment when setting up your development environment, since it

is a good practice to keep project-specific dependencies isolated from your base (system)

Python installation. After activating your virtual environment, you can install iracema

by running the following command on your command line:

$ pip3 install iracema

Listing B.1 – Installing Iracema.

If you are a Linux user, you might need to manually install an audio I/O library

called PortAudio. If you are a MacOS X user, this library is probably already installed.

In Debian / Ubuntu you can install it using the command apt:

$ sudo apt install libportaudio2

Listing B.2 – Installing PortAudio.

All the code examples in this section assume that Iracema has been imported

using the convention shown in listing B.3.

1 import iracema as ir

Listing B.3 – Importing the library Iracema.
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B.1 Loading and Processing Audio

To load an audio file, the user must provide a string containing the path to the

location where it is stored. Iracema accepts file system paths to load files stored locally

or HTTP URLs to download them from remote locations.

1 # loading audio file

2 audio = ir.Audio.load(’mozart_q_m1.wav’)

3

4 # playing audio

5 audio.play()

Listing B.4 – Loading and playing an audio object.

The class method ir.Audio.load() is used to load the content of an audio file

into a newly instantiated audio object. The loaded audio object contains the attribute

audio.data, which stores the loaded audio samples internally using a NumPy array.

Other useful attributes are audio.fs (sampling frequency), audio.start_time, and

audio.duration. This object also contains methods that enables the user to interact with

this time series. For instance, the method play() plays the corresponding audio using

the computer’s sound device.

6 # resampling audio to 22050Hz

7 audio_resampled = audio.resample(22050)

8

9 # chaining methods to create a pipeline

10 audio_processed = (

11 audio.resample(16000).normalize().filter(1000, filter_type=’highpass’)

12 )

Listing B.5 – Methods of the audio object and method chaining.

Audio objects are equipped with several methods to process their data, like the

method resample(), which resamples the audio to the specified sampling rate. It is

possible to chain multiple processing methods to create a data processing pipeline.

These methods do not modify the original audio object. Instead, they instantiate new

objects. This chaining concept also applies to other time series objects in the library

(although the available methods may differ from one class to another).

B.2 Extracting Features from Audio
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1 # loading audio file

2 clarinet = ir.Audio.load(’stravinsky.wav’)

3

4 # setting window and hop lengths

5 window, hop = 2048, 411

6

7 # calculating the RMS and STFT

8 clarinet_rms = ir.features.rms(clarinet, window, hop)

9 clarinet_stft = ir.spectral.STFT(clarinet, window, hop, fft_len=4096)

10

11 # plotting data

12 clarinet.plot();

13 clarinet_rms.plot();

14 ir.plot.spectrogram(clarinet_stft, fmax=10000);

Listing B.6 – Extracting the RMS and applying the STFT to the audio data.

Many feature extraction methods receive as input the arguments window and hop,

which define the length of the analysis window and the length of the hop between two

successive windows. Two variables with these values are are set in line 5 (listing B.6). The

method ir.features.rms() in line 8 calculates the RMS of the loaded audio. In line 9, an

object of the class ir.spectral.STFT is instantiated, generating an object that contains

the complex form of the spectrum of the signal. In lines 12 and 13, we use the instance

method plot() of the objects clarinet and clarinet_rms to display the waveform of

the audio signal and its RMS. In line 14, we use another plot method, this time from

the module plot, to display the signal’s spectrogram (ir.plot.spectrogram()). The

resulting plots are shown in figure 24.

15 # estimate the pitch and the frequencies of the harmonics

16 clarinet_pitch = ir.pitch.hps(clarinet_stft, 120, 2000)

17 clarinet_harmonics = ir.harmonics.extract(clarinet_stft, clarinet_pitch)

18

19 # plot the estimated pitch and harmonics

20 ir.plot.waveform_spectrogram_pitch(

21 clarinet, clarinet_stft, clarinet_pitch, fmax=5000

22 );

23 ir.plot.waveform_spectrogram_harmonics(

24 clarinet, clarinet_stft, clarinet_harmonics[’frequency’]

25 );

Listing B.7 – Estimating the pitch and the frequencies of the harmonics.
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Figure 24 – Resulting plots showing the waveform, RMS and spectrogram, obtained
running the code in listing B.6 for the excerpt stravinsky.wav.
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Figure 25 – Resulting plots showing the estimated pitch and harmonics, obtained run-
ning the code shown in listing B.7 for the excerpt stravinsky.wav.

In lines 16 and 17 (listing B.7) the pitch and frequencies of the harmonics are

estimated, and their values plotted in lines 20-25. figure 25 shows the resulting plots.

26 # extracting features

27 sf = ir.features.spectral_flux(clarinet_stft)

28 sc = ir.features.spectral_centroid(clarinet_stft)

29 hfc = ir.features.hfc(clarinet_stft)

30 no = ir.features.noisiness(clarinet_stft, clarinet_harmonics[’magnitude’])

31

32 # plotting features

33 ir.plot.waveform_trio_and_features(clarinet, features=(sf, sc, no, hfc));

Listing B.8 – Extracting and plotting four different features.
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Figure 26 – Resulting plot for the features calculated in listing B.8.

In lines 27-30 (listing B.8), four different features are extracted for the audio

excerpt: spectral flux, spectral centroid, HFC and noisiness. In line 33, these features

are all plotted using charts with sychronized axes. The results are show in figure 26.

B.3 Note Segmentation

In the example shown in listing B.9, the audio file is loaded, and its onsets are

detected using the CNN onset detection model, with the method ir.segmentation.onse-

ts.cnn_model() (line 5). This method returns a PointList object, which is atributed to

the variable onsets. Then, in line 8, the instance method audio.play_with_clicks() is

called, passing the list of onset points as an argument. As a result, this method with use

the computer’s sound device to play the loaded audio with short clicks synchronized

to the note onsets detected by the CNN model. This method is useful to validate the

results of the model.

1 # load audio file

2 audio = ir.Audio.load(’mozart_q_m4.wav’)

3

4 # detect note onsets

5 onsets = ir.segmentation.onsets.cnn_model(audio)
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6

7 # play audio with clicks synchronized to the onsets

8 audio.play_with_clicks(onsets)

Listing B.9 – Detecting note onsets.
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