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A B S T R A C T

Diabetes is a metabolic condition associated with hyperglycemia manifested by the elevation of blood glucose levels occurring when the pancreas decreases or stops
the production of insulin, in case of insulin resistance or both. The current literature supports that insulin resistance may be responsible for the memory decline
associated with diabetes. Glucose transporters (GLUTs) are a family of proteins involved in glucose transport across biological membranes. GLUT-1 and GLUT-3 are
involved in glucose delivery to the brain. Evidence suggests that both transporters are downregulated in chronic peripheral hyperglycemia. Here we show the
mechanisms of glucose transport and its influence on cognitive function, including a hypothesis of how peripheral hyperglycemia related genes network interactions
may lead to glucose transporters downregulation and its possible consequences.

Introduction

According to WHO Global Report on Diabetes, the number of adults
living with this disease is 422 million, and in 2016, an estimated 1.6
million deaths were directly caused by diabetes [1,2]. In 2019, the
global diabetes prevalence was 463 million people, rising to 578 million
by 2030 and to 700 million by 2045 [3]. Diabetes is a chronic metabolic
condition associated with hyperglycemia manifested by the elevation of
blood glucose levels when pancreas decreases the production or stops
producing insulin (type 1 diabetes) or in cases of the cells’ insulin re-
sistance (type 2 diabetes) or both [4,5]. Insulin resistance or deficiency
is associated with impairments in glucose metabolism disrupt brain
energy balance increasing oxidative stress, reactive oxygen species
production that leads to DNA damage, and mitochondrial dysfunction,
all of which drive pro-apoptosis, pro-inflammatory, and the amyloid
beta protein cascades [6].

Two different family types of glucose transporter are found in the
neurovascular unit at the blood–brain barrier. The sodium-dependent
unidirectional transporters (SLC5), which 12 isoforms (SGLTs 1–12)
have been identified. However, the most prevalent transporters are the
sodium-independent bidirectional GLUT [7–9]. Glucose transporters
(GLUT) are a family of integral membrane proteins that provide bi-
directional transport of D-glucose and its analogues without consuming

energy and are based on the glucose concentration gradient across cell
membrane [10]. In humans, 14 different GLUTs have been identified.
Under basal metabolic conditions, most of these transporters, especially
the GLUT-4 strongly relies on insulin dependent mechanisms and pre-
sents a major role on glucose uptake of adipocytes, cardiac and skeletal
muscle cells and plays an important function in whole-body glucose
homeostasis [11,12].

In the last decade, studies have shown that diabetes is associated
with an increased risk of cognitive decline [13,14], affecting learning,
working and episodic memory, cognitive flexibility and speed proces-
sing [15–18]. Cognitive impairment related to diabetes is traditionally
associated with atherosclerosis, since diabetes has an influence in per-
ipheral vascular disease and dyslipidemia that may lead to small vessel
disease in the brain, which in turn may cause vascular dementia. Al-
though, dyslipidemia has been also related to amyloid beta protein
production [19–20]. However, more recent studies suggest that the
binding mechanisms between diabetes and dementia are related to
hyperinsulinemia and consequent insulin resistance, and this will cause
dementia due to Alzheimer’s disease (AD), not vascular dementia
[21–24]. In fact, in type 2 diabetes, insulin is not capable to reduce the
levels of blood glucose after a meal. In most cases the reason for this is
that the insulin messenger signal no longer triggers the cellular cascade
of events that leads to an increased uptake of glucose by cells [25].
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The human brain is almost entirely dependent upon glucose as an
energy source, taking in around 100–150 g of glucose per day [26]. Due
to the restrictive permeability of the blood–brain barrier (BBB) and the
relative lack of local brain carbohydrate storage, the CNS heavily relies
upon BBB expression of transporters for the delivery of key nutrients
and solutes to the brain [27]. The delivery of blood glucose to the brain
requires crossing of glucose mediated by glucose transporter proteins.
Within the central nervous system, GLUT-1, mostly expressed in red
blood cells and endothelial cells in heavily glycosylated form (55 kDa)
and in astrocytes in low glycosylated form (45 kDa), involves glucose
movement across the BBB’s endothelial cells [28]. Furthermore, the
GLUT-3 aids glucose to pass through the neural cell membrane [29,30].
Studies have shown that chronic hypoglycemia upregulates the GLUT-1
and GLUT-3 gene expression and increases their protein abundance.
However, whether the expression of GLUT-1 and GLUT-3 is reduced in
diabetes is unclear and is controversial. Any deficiency in GLUT
transporter proteins leads to a major impact on brain energy metabo-
lism [31,32].

Studies have shown that vascular endothelial cells exposed to high
glucose levels downregulate the rate of glucose transport by reducing
GLUT-1 mRNA and protein expression, as well as GLUT-1 plasma
membrane localization [33,34]. In response to these recent findings, a
couple of interesting questions arose: 1] could hyperglycemia be a
cause of downregulation of GLUT transporters in the brain? 2] if the
downregulation of GLUTs occurs in the brain, could it be one of the
mechanisms related to AD? Therefore, the aim of this study is to hy-
pothesize a cause-effect relationship of hyperglycemia and AD based on
GLUT transporters downregulation. Available bioinformatic data were
used as guidance to establish the hypothesis. In order to develop a
working model, this article was organized in the following sections: i)
The basis of glucose transport in the peripheral tissues, ii) The basis of
glucose transport in the brain, iii) Gene network analyses, iv) Genes
network model and hypothetical influence of peripheral hyperglycemia
on downregulation of GLUT transporters in the astrocytes and neurons
and its relationship with dementia, and v) Final considerations.

The basis of glucose transport in the peripheral tissues

Glucose cellular uptake is an essential physiological process. The
maintenance of a relatively constant blood glucose concentration is
necessary in order to sustain cerebral metabolism and the delivery of
glucose to peripheral tissues for energetic storage and utilization.
Indeed, glucose transport across cell membranes plays an important
role in physiological regulation and control of metabolic processes [35].

Cell membranes are impermeable to glucose, so the transport of
glucose across biological membranes must be mediated by specialized
protein transporters. In the 1970s, glucose uptake into liposome was
reconstituted with proteins partially purified from red blood cells
[36–37]. This specific type of glucose transporter was later named as
GLUT-1. Subsequently, glucose transporters were recognized from dif-
ferent tissues, GLUT-2, GLUT-3 and GLUT-4 [38–40]. Research devel-
opment during the following years lead to the discovery of tissue dis-
tribution of subtypes of GLUTs, biochemical characterization of
transport functions, and the formulation of the correlation between
mutation or dysregulation of GLUTs and specific diseases [41–43].

Among the GLUT family, GLUT-4 is an insulin-stimulated trans-
porter and it is primarily localized intracellularly in peripheral tissues
when not stimulated and can be acutely redistributed to the plasma
membrane in response to insulin and other stimuli. GLUT-4 is primarily
expressed in adipose tissues, skeletal and cardiac muscle, and it facil-
itates the diffusion of circulating glucose across its gradient into muscle
and fat cells [44]. Upon binding of insulin, the insulin receptor kinase is
activated, and it promotes the activation of downstream targets and
progression of signaling cascade leading to the translocation of GLUT-4
from intracellular pool to cell surface where it facilitates glucose entry
inside the cell [45,46]. The central role of GLUT-4 in glucose

homeostasis is strongly implicated by a variety of genetically en-
gineered mouse models. Dysfunctional GLUT-4 in skeletal muscle is the
main cause of peripheral insulin resistance [47,48].

The basis of glucose transport in the brain

Glucose availability in the CNS is critical for neuronal function, and
glucose levels in the brain regulate local neuronal activity and whole-
body energy metabolism [49]. Among the membrane transport pro-
teins, GLUT-1 is known to be a key transporter of glucose transport into
the brain across the BBB acting to maintain central nervous system
glucose homeostasis. Expression of different isoforms of the GLUT has
also been identified at BBB endothelial cells although with relative
lower levels of GLUT-3 and GLUT-4 [50]. Considering the distribution
and properties of GLUT transporters, GLUT-1 and GLUT-3 will be
treated together as they are both particularly involved in delivery of
glucose to the brain. As glucose is the obligatory substrate for cerebral
metabolism under normal conditions, glucose transport is fundamental
in this organ [51,35].

Glucose transport into the brain is a complex process involving the
endothelial cells of small blood vessels, glial cells, particularly astro-
cytes and neurons. GLUT-1 is highly expressed in the endothelial cells
of the microvasculature of the brain and is responsible for glucose
transfer across the BBB. The transport of glucose to neurons is mediated
by astrocytes [52], which also express GLUT-1. GLUT-1 is localized to
both luminal and abluminal membranes of the BBB endothelial cells
with the ratio of 1:4 respectively, and approximately 40% of the total
cellular GLUT-1 resides in intracellular membrane [53–56].

Once glucose enters the brain extracellular space, it is rapidly taken
up by the different brain cells. The neuron glucose uptake to support
energy metabolism is mediated by GLUT-3. GLUT-3 has higher “affi-
nity” and higher glucose transporter capacity compared to GLUT-1
[44,57]. Interestingly, during a high cognitive demand, astrocytes’
glycolysis results in lactate production which will be delivered to ac-
tivated neurons and used as energetic substrate [58]. Therefore, a
continuous supply of glucose is required for brain function.

Gene network analyses

To explore proteins-related genes associated to hyperglycemia and
AD, the GeneCards database (https://www.genecards.org) was used.
Based on An et al. [59] who have investigated the relationship between
hyperglycemia and Alzheimer’s disease (AD), the following terms were
inserted at GeneCards to search for genes related cellular receptors,
hormones, proteins, and amino acids associated glucose metabolism
and AD. Such cellular and molecular structures searched were: GLUT-1,
GLUT-3, insulin, alanine, hexokinase, amyloid beta protein, apolipo-
protein E, tau protein, and phosphofructokinase. Several genes were
retrieved from GeneCards, as follow: SLC2A1 (GLUT-1) and SLC2A3
(GLUT-3), INS (insulin), GPT (alanine), HK1/HK2/HK3 (hexokinase 1,
2, and 3), GCK (glucokinase), APP (amyloid precursor protein), APOE
(apolipoprotein E), MAPT (microtubule-associated protein tau), PFKL/
PFKP/PFKM (phosphofructokinases), and GRN (granulins). Genes
aforementioned were inserted in String database (https://string-db.
org), which permits to explore genes and their interactions as a net-
work. Our exploration of interactions was performed considering Homo
sapiens as the studied species.

Many specific and non-specific (unclear) significant interactions
(PPI Enrichment p-value < 0.01) [60] were found among genes in the
network displayed at String (Fig. 1). In String, each protein–protein
interaction is annotated with one or more 'scores'. The scores indicate
how likely String judges an interaction to be true, given the available
evidence. Interactions were explored when a combined score above 0.4,
determined as medium confidence, was found. As the main question of
this study was related to downregulation of GLUTs, only direct inter-
actions with genes associated with these transporters (SLC2A1 and
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SLC2A3) in the network were analyzed. Then, the following genes re-
mained in the model: GRN, HK3, HK2, and SLC2A1 (Fig. 2).

Genes network model and hypothetical influence of peripheral
hyperglycemia on downregulation of GLUT transporters in the
astrocytes and neurons, and its relationship with dementia

Diabetes is associated with hyperglycemia and it is caused by partial
or total insulin insufficiency. Clinically, the rapid decline in blood
glucose in patients with diabetes, even when the blood glucose is above
normal, can lead to “hypoglycemia phenomenon”, including neu-
roglycopenia symptoms. The exact mechanism remains unclear, but it is
possibly related to the downregulation of GLUT-1 and GLUT-3 expres-
sion in diabetes [61].

GLUT-1, which is expressed and localized at the endothelial cells of
the BBB, is the first step in the transport of glucose from the blood into
the tissue layers. Then, the glucose transport from extracellular space
into neuronal cells is taken by GLUT-3, localized at the neuronal cell
membrane. After it is within the cell, glucose is phosphorylated to
glucose-6-phosphate by HK, a key enzyme for glucose utilization in the
cell [62,63]. The downstream cascade of glucose breakdown is mainly
mediated by HK, hence it is reasonable to hypothesize that any change
in this enzyme could affect glucose metabolism.

Granulin (GRN) is a protein related to inflammation and wound
repair originated from progranulin (PGRN). Mutations in PGRN genes
are associated with neurodegenerative diseases, such as frontotemporal
dementia [64]. PGRN was demonstrated to interact with the HK3.
Autopsy studies had shown associations of PGRN and beta-amyloid
plaques [65,66]. PGRN plaques were most dense in medial temporal
and frontal regions and predominated over aggregated amyloid beta
protein. At this moment, physiological significance of this interaction is

not known [67]. However, according to our genes network model,
bindings among granulin, HK3 and HK2 exist. In addition, a post-
translational interaction between HK2 and SLC2A1 is present in the
network. Hence, dysfunctional granulin, which is an important cell
growth factor associate to wound repair and inflammation, could affect
HK3 and HK2 interactions and the synthesis of GLUT-1. Dysfunctional
HK3 and HK2 and attenuated synthesis of GLUT-1 could result in glu-
cose excess in the extracellular space in the brain, causing a down-
regulation of GLUT-1 and GLUT-3 transporters. In summary, these
mechanisms would affect astrocytes and neurons metabolism.

Evidence suggests that chronic hyperglycemia reduces intracellular
glucose transport in diabetes [35]. As a protective mechanism, the
decreased glucose influx can diminish the cytotoxic effect of the high
sugar content. It has been suggested that the reduction of glucose
transport is related to a downregulation of 55 kDa isoform GLUT-1
(presented in microvessels) and GLUT-3 in patients with AD, which are
the principal factors affecting glucose transport and metabolism in the
brain [41,68]. In a study with diabetic rat model, chronic hypergly-
cemia downregulated GLUT-1 and GLUT-3 gene expression levels in the
brain [61]. The downregulation of GLUT-1 and GLUT-3 expression
might be the adaptive reaction of the body to prevent excessive glucose
entering the cell that may lead to cell damage [61].

It is well known that glucose transport from the peripheral circu-
lation across the BBB and capillary endothelial cells into the interstitial
fluid and brain tissue are largely insulin-independent processes. Many
epidemiological studies indicate that peripheral insulin resistance and
diabetes are risk factors for AD [69–74], however, it is not known
whether brain glucose dysregulation is a key feature of AD and is re-
lated to severity of AD pathology or symptom expression [75].

In patients with AD, several components of the insulin signaling
pathway are abnormal, including genes encoding insulin, IGF-1, and
IGF-2 peptides and their receptors [76,77]. Evidence suggests that ab-
normal insulin signaling contributes to clinical trials targeting ab-
normalities in patients with mild cognitive impairment and AD, but
implications of these abnormalities are yet to be elucidated [78,79].
Some studies have shown reduced brain glucose uptake in regions
vulnerable to AD pathology [80–82]. It is unclear whether an overall
failure in the regulation of brain glucose metabolism is a key aetio-
pathogenic factor in AD and whether abnormalities of brain glucose
homeostasis in AD are related to peripheral glucose concentration.

Since dysfunctional granulin could affect HK3 and HK2 interactions,
it could also result in glucose excess in extracellular space in the brain.
These mechanisms would lead to GLUT-1 downregulation affecting

Fig. 1. Genes network found at String. Direct binding among genes GRN, HK3, HK2, and SLC2A1 is shown. Color lines show molecular interactions, while grey lines
show no molecular interactions but associations co-mentioned in PubMed abstracts. Arrows: activation. Circles: unspecified interaction.

Fig. 2. Specific network among genes related GLUT-1 found at String. Blue lines
mean direct binding among genes. Pink line: posttranslational modification.
Circle: unspecified interaction.
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astrocytes and neurons. Furthermore, changes in HK3 and HK2 also
seem to affect GLUT-1 expression through SLC2A1 posttranslational
modification. Therefore, it makes sense to develop a hypothetical model
which peripheral hyperglycemia triggers a downregulation of GLUT
transporters in the brain. This hypothetical model highlights two con-
sequences: 1) hyperglycemia in the brain could trigger neuroin-
flammation, especially influenced by pro-inflammatory cytokines [83],
downregulating GLUT; and 2) fuel to neurons could be limited due to
few GLUT-1 transporters, leading them to apoptosis.

Final considerations

Glucose is the primary energetic fuel of brain tissue, the availability
of glucose and its transport into the brain across the BBB and into brain
cells plays a key role in normal physiological function and energy
metabolism. This mechanism is mediated by two GLUT transporters:
GLUT-1 and GLUT-3. GLUT-1 transporter presents on both the luminal
and abluminal membranes of the BBB endothelial cells, also in astro-
cytes. GLUT-3 is located in neurons. Studies showed that chronic hy-
poglycemia enhances the GLUT-1 and GLUT-3 gene expression. Also,
the expression levels of both transporters are downregulated in chronic
peripheral hyperglycemia, suggesting that GLUT-1 and GLUT-3 ex-
pression might be the adaptive reaction of the body to prevent cell
damage. However, molecular mechanisms that lead to GLUT-1 and
GLUT-3 reductions in AD remain unknown. The present hypothesis is
based on molecular and clinical findings and presents the consequences
of GLUTs downregulation that could be related events leading to neu-
ronal damage, neurodegeneration, cognitive decline and AD.
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