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Resumo

Algoritmos de redes neurais, como aqueles baseados em transformers e modelos de
atengao, tém se destacado em tarefas de Classificagao Automatica de Texto (ATC). No
entanto, essa melhora de desempenho tem altos custos computacionais. Conjuntos de
classificadores mais simples (ou seja, Stacking) que exploram complementaridades dos
algoritmos e representagoes textuais também mostraram produzir desempenho de alto
nivel em ATC, desfrutando de alta eficicia e custos computacionais potencialmente mais
baixos.

Nesse contexto, apresentamos o primeiro e maior estudo comparativo para explorar
a relagao custo-beneficio do stacking de classificadores ATC, composto por transformers
e algoritmos que nao utilizam redes neurais. Em particular, estamos interessados em
responder a perguntas de pesquisa tais como: (1) E possivel obter uma combinacao de
classificadores eficaz com custo computacional significativamente menor do que o melhor
modelo de aprendizado para um determinado conjunto de dados? (2) Desconsiderando
o custo computacional, existe uma combinacao de classificadores que pode melhorar a
eficacia do melhor modelo de aprendizagem? Além de responder a tais questoes, outra
contribuicao principal dessa dissertacao é a proposta de um método baseado em oraculos
de baixo custo que pode prever o melhor ensemble em cada cenario (com e sem limitagoes

de custo computacional) usando apenas uma fragao dos dados de treinamento disponiveis.

Palavras-chave: Processamento de Linguagem Natural, Classificacao Automatica de

Texto, Aprendizado Ensemble, Stacking Blending.



Abstract

Neural network algorithms such as those based on transformers and attention models have
excelled on Automatic Text Classification (ATC) tasks. However, such enhanced perfor-
mance comes at high computational costs. Ensembles of simpler classifiers (i.e., stacking)
that exploit algorithmic and representational complementarities have also been shown to
produce top-notch performance in ATC, enjoying high effectiveness and potentially lower
computational costs.

In this context, we present the first and largest comparative study to exploit the
cost-effectiveness of stacking of ATC classifiers, consisting of transformers and non-neural
algorithms. In particular, we are interested in answering research questions such as: Is
it possible to obtain an effective ensemble with significantly less computational cost than
the best learning model for a given dataset? Disregarding the computational cost, can
an ensemble improve the effectiveness of the best learning model? Besides answering
such questions, another main contribution of this dissertation is the proposal of a low-
cost oracle-based method that can predict the best ensemble in each scenario (with and
without computational cost limitations) using only a fraction of the available training
data.

Keywords: Natural Language Preprocessing, Automatic Text Classification, Ensemble

Learning, Stacking Blending.
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Chapter 1

Introduction

Natural Language Processing (NLP), Machine Learning and Data Mining all work
together to automate the Automatic Text Classification (ATC) task. ATC is one of the
most fundamental tasks involving texts. It aims to automatically associate documents
with one or more pre-defined categories, thus providing the organization of information
to allow a better understanding and interpretation of textual data. Often the ATC
process can be decomposed into four main steps sequentially: Text Pre-Processing (e.g.,
tokenization, removal of stop words), Attribute Extraction (e.g., TF, TFIDF, Word Em-
beddings), Dimensionality Reduction (e.g., PCA, LSI) and Application of Classification
(Machine Learning) Techniques (e.g., Naive Bayes, SVM, Neural Networks) [Kadhim,
2019; Dalal and Zaveri, 2011] to create a model.

Currently, algorithms based on Neural Networks (e.g., BERT [Devlin et al., 2018§],
XLNet [Yang et al., 2019]) have become prominent in the ATC area, where they are
used both to learn textual representations and as classification algorithms. Undoubtedly,
algorithms exploiting Deep Learning have proven to achieve significant gains in several
areas of NLP. However, such algorithms have some disadvantages, such as: (i) the need
for lots of training data to obtain good performance and (ii) the high computational cost
for execution (i.e., the time needed for training the neural network) [Sun et al., 2019;
Cunha et al., 2021].

Ensemble methods are strategies capable of combining multiple models to improve
the prediction generalization in a given task. Such methods have shown promise in the
area of ATC [Dzeroski and Zenko, 2004; Ding and Wu, 2020]. Among the possible en-
semble strategies, Stacking has the characteristic of using a meta-model (i.e., meta-layer)
capable of combining the prediction outputs of different heterogeneous individual models.
The basic premise of Stacking is that different learning models, or different textual
representations, can complement each other. The meta-model can reveal information
intrinsic to the data by combining different models, potentially improving the results (i.e.,
effectiveness) of a given task. [Rokach, 2009; Wolpert, 1992]. Early work on Stacking
in ATC [Larkey and Croft, 1996 aimed to show combinations of different classification
algorithms capable of producing better effectiveness results than any individual classifier.

Despite the advantages of using Stacking in ATC, the benefits of ensemble
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techniques over a single strong classifier (i.e., a classifier with high generalization) are
not always clear [Dong and Han, 2004]. In fact, previous work on Stacking in ATC has
mainly focused on improving the overall effectiveness using the results of traditional
classification algorithms [Campos et al., 2017; Ding and Wu, 2020|, paying little or no
attention to practical issues such as cost or which combination of efficient algorithms can

bring effective results at a lower cost.

1.1 Objectives

Thus, in this dissertation, the main objective is to investigate the cost-effectiveness
tradeoff that has been vastly ignored up to today in the literature on Stacking tech-
niques in ATC. To this goal, an extensive set of experiments involving supervised text
classification algorithms considered state-of-the-art in the field (neural and traditional
network methods) is carried out to evaluate the cost-effectiveness tradeoffs. In addition,
we propose a method based on a greedy strategy capable of identifying in short time
(i.e., without having to train a classifier with all available training data) the Stacking
combinations that potentially will produce the best effectiveness results. The proposed
methods — called Oracle — manages to produce highly effective Stacking combinations

using a fraction of the training data.

1.2 Contributions

The first contribution of this dissertation is a thorough study of the cost-
effectiveness of Stacking techniques for text classification tasks. Instead of just evaluating
the effectiveness of a combination of several current and effective methods, including those
based on transformers models, we carry out a study of Stacking combinations capable of
achieving a better compromise between low cost (i.e., high efficiency) and high effective-
ness when compared to a single individual model (i.e., the single most effective classifier
in a given dataset). We conduct a wide range of comparative experiments with combi-
nations of Stacking and classification algorithms considered state-of-the-art in 8 datasets
widely used in ATC. This dissertation seeks answers based on empirical evidence for the

following Research Questions (RQ), considering the best learning model for each dataset:
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e RQ1: Is it possible to obtain an effective ensemble with less computational time

than the best individual learning model?

e RQ2: Is it possible to improve the effectiveness of the best learning model using an

ensemble without increasing computational time?

e RQ3: Disregarding computational time, is there an ensemble that can improve

effectiveness when compared to the best learning model?

As far as we know, this is the first work to investigate the Stacking cost-
effectiveness [Cunha et al., 2021] of text classifiers based on neural networks and tra-
ditional strategies from the perspectives described above.

The second main contribution of the dissertation is the proposal of a method
based on low-cost oracle that can predict the best stacking ensemble in a given scenario
(with and without computational cost limitations) using only a fraction of the available
training data. The oracle method first estimates the best unique algorithm (which can
be seen as a baseline for effectiveness) to perform an efficient greedy search of ensembles
guided by its effectiveness and efficiency relative to the best individual algorithm. The
Oracle method predicts efficient ensembles successively, including algorithms that improve
its efficiency using a Average Meta-layer strategy. Furthermore, the new method avoids
the inclusion of computationally expensive algorithms (relative to the best individual
algorithm) to guarantee the efficiency of the ensemble. This new proposed algorithm is
the first known strategy to efficiently predict effective ensembles capable of dealing with
practical efficiency issues related to our research questions. In more detail, this proposal
alms to predict three ensembles corresponding to the time constraints of RQ1, RQ2 and
RQ3, respectively, avoiding the potential high computational cost of evaluating expensive
base models and their ensembles, especially on large data sets. Oracle’s specific research

questions are as follows:

e ORQ1: It is possible to predict, using a fraction of the training data, an effective
ensemble that will tie or surpass the best learning model when trained with the

entire training set available, at a lower cost than the of the best model?

e ORQ2: Is it feasible to make a prediction similar to ORQ1, but now with a cost

less than or at most equal to the best model when trained with all training data?

e ORQ3: Without time constraints, is it possible to predict a combination that will
be better than the best learning algorithm in a dataset?

The experimental results carried out in this dissertation show affirmative answers
to the six research questions in most of the experiments. In most datasets, it is possible

to obtain an ensemble of algorithms as good or better than the best individual algorithm
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at a lower cost. In seven out of the eight experimented datasets, it is possible to obtain
an ensemble with statistically significant gains concerning the best algorithm without
increasing cost. Likewise, in seven of the eight datasets, the Oracle method provides
results as good or (statistically significant) better than the best individual algorithm
without increasing computational cost, providing empirical evidence for the practical
benefits of the proposed Oracle.

The results of this dissertation generated a publication |[Gomes et al., 2021| in
The Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021) in the Findings category. ACL is the most important worldwide con-

ference on Natural Language Processing and Computational Linguistics (h5-index: 157).

1.3 Organization

This dissertation is organized as follows. Chapter 2 provides background and
discusses some recent work on Stacking. Chapter 3 presents the methodology used
to carry out the experiments performed to answer the six posed research questions.
Chapter 4 describes the configuration for the execution of the experiments and discusses
the respective results, which positively answer the research questions. Finally, Chapter 5
concludes the dissertation, highlighting the contributions and indicating possible paths

for future studies.
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Chapter 2

Related Work

Several types of textual representations and classification algorithms can be used to
create a prediction model in Automatic Text Classification. In Section 2.1 we show which
representations exist in the literature and which ones we use in this work, highlighting
the textual information that each type of representation seeks to extract from the
documents. In Section 2.2 we present the classification algorithms that we choose to
use in this work, presenting the characteristics of each one to carry out the classification
task. Finally, we describe in Section 2.3 the Stacking studies present in the literature,

with focus on works that use Stacking in ATC.

2.1 Representations of Textual Data

Given a textual dataset defined by D = {d, ..., d, }, where each element of the set
is a document and considering that the vocabulary of words in this corpus is defined by
V = {wy, ..., wy,}, each document in D is composed by a set of words from V, usually
V4 < V. One of the main preprocessing steps consists of defining how to represent
each word w € V in each document d € D, on which it is necessary to extract useful
information from each word.

Traditionally, texts have been represented with fixed-length vector representations
(Vector Space Models), referred to in the literature as the bag-of-words (BoW). In this rep-
resentation, the length of each vector is equal to the size of the collection’s vocabulary and
each element of the vector has a value corresponding to the weight of the term in the doc-
ument that the vector represents. There are several robust strategies to weight the impor-
tance of terms, e.g., Term Frequency-Inverse Document Frequency (TFIDF) [Salton and
Buckley, 1988|. The TFIDF representation generates a sparse vector (|V|-dimensional)
where each word has the TFIDF value represented in each document (with non-zero
entries corresponding to the set of words V; C V observed in the documents).

Although TFIDF is by far the most used strategy, it does not consider the impor-
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tance of co-occurrence of words in a document. In specific contexts, the co-occurrence
of words can be pretty significant for the effectiveness of a learning model. A simple
strategy to overcome this is to use the n-grams method [Cavnar et al., 1994]. The
n-grams method take into account a sequence of n words that co-occur in a window (with
size n); for a word w, the method considers n words before and after to represent a new
word. Thus, the same TFIDF value is used, but this time applied to the n-grams. The
use of n-grams has already demonstrated significant improvements in several domains
of NLP (e.g., ATC, Natural Language Comprehension, etc), despite that the technique
limits the capture of contextual information observed in non-sequential patterns.

Recently, much has been developed in terms of improving textual representation.
Nowadays, the technique with the most promising results is the word embedding, such
as Word2Vec [Mikolov et al., 2013|, GloVe [Pennington et al., 2014|, PTE [Tang et al.,
2015| and FastText |[Mikolov et al., 2017| which, based on word co-occurrence statistics
in text datasets, represent words as vectors such that their similarities correlate with the
semantic relationship (e.g., adjacent words of a target word). As shown in [Baroni et al.,
2014|, prediction models consistently outperform counting models in various tasks such
as concept categorization, synonym detection, and semantic relationship tasks, providing
strong evidence in favor of the supposed superiority of word embedding models.

In order to obtain a richer representation of the data, Mikolov et al. [2013]
proposed the model Word2Vec. This unsupervised strategy aims to learn high-quality
vectors for each word in the when training the model. This is achieved by a neural net-
work trained with sequences of words that co-occur within a fixed-size window to predict
the nth word, given the words [wy, ..., w,_1] or the opposite. Each word is used as input to
a log-linear classifier with a continuous projection layer, where the model predicts words
within a certain distance (before or after) of the current word. Since more distant words
are generally less related to the current word than those close to it, a lesser weight is
placed on distant words, analyzing these words with less importance in the training step.
The output is an array of word vectors represented in a vector space. The method can
capture, efficiently and effectively, the semantic relationships between words given a large
set of textual data and the model also allows arithmetic operations between those words.
Unlike other distribution models, both Word2Vec and GloVe are predictive models in
the sense that they aim to predict the occurrence of words rather than relying only on
counting co-occurrence patterns. These models often bring richer representations that
ultimately improve the learning capabilities of the supervised classification algorithms.

One of the main problems with Word2Vec and Glove is that they create the
representations of words in an unsupervised way. Despite the generalist results of
previous word embeddings, the approach makes poor representations for a specific task.
Thus, Tang et al. [2015] created the algorithm called PTE, which aims to incorporate

both unsupervised and supervised data to learn the embeddings of words. PTE works by
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transforming a text dataset into three networks (called by the author the heterogeneous
text network): a word-word network, a word-document network, and a third word-label
network. With the heterogeneous text network, the authors perform predictive text
embedding to learn low dimensional representations of each word in the corpus. The main
advantage of PTE is that textual representations become optimized for specific tasks.

FastText [Mikolov et al., 2017] is another algorithm based on word embeddings,
that aims to learn vectors for the sub-words found within each word, as well as the
complete word. In each training step in FastText, the target word average and sub-word
vectors are used for training. The fit calculated from the error is then used uniformly to
update each of the vectors that have been combined to form the target word. This process
adds many computing costs to the training stage. The resulting trade-off is a set of word
arrays that contain embedded sub-word information. The authors claim that the potential
benefits of FastText are: (i) the creation of better word incorporation for rare words;
(ii) the use of character embedding for downstream tasks, resulting in a performance
improvement when compared to word embedding such as Word2Vec and GloVe.

A recent approach that has gained considerable prominence as a textual represen-
tation due to its high efficiency at a low cost is the meta-features approach. Meta-features
are algorithms that work at data engineering level to increase the information captured
by standard representations, such as BoW. Current works in this area are on distance-
based meta-features, that are approaches for extract information from the initial text
representation input and capture distance relationship information between documents.
To make the meta-features creation process, algorithms such as clustering, knn, or
category centroid are used [Canuto et al., 2018, 2019].

The Text Representation sub-area can be considered an field for itself due to the
high number of studies in the literature and the great opportunities for improvement.
Our dissertation focuses not on improving textual representation but on using existing
representations to answer our research questions. Therefore, we selected both the
traditional representation (TFIDF) and state-of-the-art representations (FastText, PTE

and Meta-features) to use as input for the supervised classifiers.

2.2 Supervised Classification Algorithms

Early efforts in ATC focused on improve machine learning algorithms using simple
representation techniques such as bag-of-words (e.g., TFIDF Weighted). We have as
examples the following supervised classification algorithms: Naive Bayes, K-Nearest
Neighbors (kNN), Support Vector Machine (SVM), Random Forest and Logistic Regres-
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sion [Li et al., 2020; Kadhim, 2019]. Even with such simple document representation, the
use of methods such as LinearSVM [Fan et al., 2008] and XGBoost [Chen and Guestrin,
2016| produces good results with efficient convergence for large datasets |Fan et al., 2008].

The Naive Bayes algorithm [Zhang, 2004 is based on the Bayes Theorem, where
the main characteristic of the algorithm is the independence between all features given
the value of the class attribute. The independence assumption is not true in real-world
problems, but this is used because the amount of combinations without this assumptions
makes the algorithm impossible to train. Despite the weakness due to the independence
between the features, Naive Bayes achieves competitive effectiveness results compared to
other simple supervised classification algorithms.

Another traditional and popular algorithm, especially for binary problems is
Logistic Regression [Kleinbaum et al., 2002|. Despite the name, Logistic Regression is a
supervised classification algorithm that tries to solve a problem by fitting it into a Logistic
Wm, where X;

is each dependent variable of the problem and o and j3; are constants. Therefore, given

Function (i.e., S-curve). The logistic function is defined by f(z) =

a sample in the form of z, f(2) returns whether this sample is of class 0 or class 1. It is a
straightforward but powerful algorithm, very useful for binary problems precisely because
of the characteristics of the logistic function that intrinsic tries to better distinguish two
distinct classes by adapting the S curve to a specific problem.

The k Nearest Neighbor technique (i.e., kKNN) [Bhatia et al., 2010] is a algorithm
that identifies the category of unknown samples according to the class of the k near
neighbors to those samples. It is a simple algorithm that performs well in supervised
classification problems, including the ATC task. However, it is interesting to note that,
due to its simplicity, the traditional KNN algorithm has a high demand for memory and
computional power. There is a wide field of study of variations of the kNN to address
such limitations [Rocha et al., 2015].

Cortes and Vapnik [1995] proposed the algorithm that became state-of-the-art
in text classification, being used until today in the NLP area with significant gains in
different tasks: the Support Vector Machine (SVM) algorithm. It is an algorithm for
binary classification, but it can be extended to several classes as a problem of multiple
binary classifications. The main objective of the SVM is to find an optimal hyperplane
that separates the classes of the binary problem using the multidimensional features
available. It is important to emphasize that the choice of the kernel for SVM is essential
for the algorithm to be robust to non-linear problems.

Considerable advances on Deep Learning for ATC were achieved by using
pre-trained language models with fine-tuning [Howard and Ruder, 2018|, mainly when
combined with attention mechanisms [Kokkinos and Potamianos, 2017; Yang et al.,
2016] and the parallel benefits of transformers, better exemplified by Bidirectional
Encoder Representations from Transformers (i.e., BERT) [Devlin et al., 2018]. Following



2. RELATED WORK 22

BERT’s success, the recent XLNet neural network [Yang et al., 2019] proposes a
new autoregressive formulation to improve the exploitation of contextual information.
Though effective, the fine-tuning process of methods such as BERT and XLNet still
takes substantial computational time, requiring powerful hardware (GPUs) [Sun et al.,

2019]. Such requirements might bring practical limitations for these solutions.

2.3 Stacking

Stacking [Wolpert, 1992] is a widely known ensemble technique that combines the
predictions of heterogeneous algorithms (i.e., base algorithms) to improve effectiveness
concerning these base algorithms. To implement stacking, we first need to train each base
algorithm. We can make predictions in a different validation set with the trained models,
which were not used for training. With the saved models and the predictions in the
validation set, a meta-layer (another learning algorithm) is used to learn how to combine
the predictions in the combination. Recent work reported high effectiveness with stacking
for multiple ATC tasks, such as topic classification [Campos et al., 2017; Abuhaiba and
Dawoud, 2017], sentiment analysis [Carvalho and Plastino, 2021; Onan et al., 2016] and
multi-label classification [Xia et al., 2021; Weng et al., 2019]. Particularly, stacking
produced substantial effectiveness improvements on recently proposed decision-tree-based
algorithms [Campos et al., 2017| and with methods trained on different representations
(including word embeddings) [Carvalho and Plastino, 2021; Pelle et al., 2018; Onan
et al., 2016].

Campos et al. [2017] created a new classification algorithm based on a traditional
Random Forest variation (Extremely Randomized Trees) that exploits the use of boosting
techniques to improve performance in topic categorization and sentiment analysis tasks.
The algorithm was named as Boosting Extremely Randomized Trees (a.k.a., BERT). Be-
sides the creation of a new algorithm, the work also carried out experiments based on the
use of Stacking in these different tasks. Stacking was performed by analysing the diversity
divergence of 9 base classifiers (SVM, Naive Bayes, KNN, etc). The authors obtained
improvements of up to 20% in some cases, showing the great benefits of using Stacking
in the ATC scenario. The authors also present the execution time results when using
Stacking, emphasizing how the performance issue can be problematic in this scenario.

Stacking of a few traditional base algorithms reported highly effective results on
tackling the very complex morphology of Arabic languages [Abuhaiba and Dawoud, 2017].
In that work, the authors explore the use of four types of ensemble for improving the task

of Arabic Text Documents Classification: Fixed Combining Rules, Stacking, AdaBoost
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and Bagging. Only the TFIDF text representation was used for all chosen base classifiers.
All the ensemble techniques improved the accuracy up to 99%, where the Stacking was
the most time consuming solution because of the implicit characteristic of training in two
phases (training of both base classifiers and meta-layer).s Stacking of classifiers trained
on different document representations (including pre-trained word embeddings-based fea-
tures) also reported high effectiveness in multiple works [Carvalho and Plastino, 2021,
Pelle et al., 2018; Onan et al., 2016]. For example, Carvalho and Plastino [2021] exploit the
use of n-grams, meta-features and word embeddings for improving the task of Tweets Sen-
timent Analysis in 22 datasets. The authors tested the use of these different textual rep-
resentations in two distinct ways: concatenation of the multiple feature spaces and the en-
semble Stacking technique. In the experiments, Stacking with Logistic Regression as meta-
layer outperformed the simple feature concatenation in 12 out of the 22 tweet datasets.

A careful choice of base algorithms is necessary due to the potential degradation
of the stacking effectiveness and efficiency. The literature reported low effectiveness on
stacking due to overfitting issues with multiple base algorithms. In [Reid and Grudic,
2009, the authors demonstrated the occurrence of overfitting in Stacking even when
using simple linear algorithms. They also present an experimental study on how Ridge
Regression, Lasso Regression and Elastic Net Regression can be used as regularization
techniques in the meta-layer to deal with the overfitting problem.

Ledezma et al. [2010] propose a Genetic Algorithm to find the best Stacking config-
uration (GA-Stacking). The GA-Stacking selects which base algorithms should be include
in the combination, the parameters of these algorithms and the meta-layer algorithm.
They show how GA-Stacking overfitted due the high search space used in the genetic algo-
rithm as well as a solution to avoid that — they exploited a validation set to calculate the fit-
ness value of the genetic algorithm in each iteration. Gupta and Thakkar [2014| performed
a summary study of the meta-heuristics techniques employed to solve the Stacking config-
uration issue. The authors highlight the advantages and drawbacks of each existing tech-
nique present in the literature, concluding the work with tips for future work in this area.

Most of the works that exploits Stacking to optimize the choice of a subset of base
algorithms focused only on maximizing the ensemble effectiveness with no concern for
efficiency (i.e., execution time). Also, the majority of existent works assume a pre-defined
set of base algorithms to be combined in the Stacking ensemble. In this dissertation, we
provide a thorough evaluation of the effectiveness and efficiency trade-offs of Stacking
and we investigate whether there are combinations of algorithms that overcome (in both
efficiency and effectiveness) the best base ones in a given dataset. Our proposed Oracle,
in turn, is the first method to explicitly tackle a time-constrained Stacking prediction
goal by explicitly and efficiently exploiting the relationships between stacking and the

best base algorithms.
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Chapter 3

Methodology

This chapter describes our methodology and the inner workings of the new Oracle method.
In Section 3.1, we present the Research Questions we aim to answer. The Stacking ex-
periments were designed and run based on those questions. In Section 3.2, we present
the implementation details of the Oracle algorithm whose goal is to reduce computational
costs while maintaining or improving effectiveness. We also have research questions con-

cerning the Oracle, based on the previous Stacking questions.

3.1 Time-Constrained Stacking

Our goal when using Stacking is to explore different ensemble combinations
with the goal of outperforming the best individual algorithms at reduced costs. In this

context, we aim to answer the following Research Questions (RQ’s):

e Research Question 1 (RQ1): Is it possible to obtain an effective ensemble with less

computational time than the best individual learning model?

e Research Question 2 (RQ2): Is it possible to improve the effectiveness of the best

learning model using an ensemble without increasing computational time?

e Research Question 3 (RQ3): Disregarding computational time, is there an ensemble

that can improve the efficiency concerning the best learning model?

With RQ1, we aim to identify whether it is possible to obtain a stacking of base
algorithms as effective or better than the best (i.e., most effective) base algorithm and
takes strictly less computational time than the best base. Favorable evidence towards a
positive answer is essential to indicate cost-effective stacking solutions, especially if the
best base algorithm is a costly strong/high generalization power baseline.

RQ2 keeps the same effectiveness demands of RQ1, but considering the following

relaxation on the time constraint: the parallel execution of the base models can take
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the same execution time as the best base algorithm. This time constraint allows the
best base algorithm to be included in the stacking. With this, we intend to evaluate
if effectiveness improvements are possible with the computational cost of the best base
algorithm as an upper limit.

Finally, in RQ3, we remove all time constraints to obtain the best possible
stacking regardless of cost. With RQ3, we want to evaluate the potential effectiveness
improvements of stacking over the best base algorithm in exchange for the additional
computational cost. This scenario is where most current studies work. It would be the
use of Stacking to find the best ensemble combination regardless of the computational
cost necessary to obtain it.

It is extremely important to point out that we assume that the base
algorithms can be executed in parallel on different machines (both in Stacking
and in the Oracle experiments). as such, each base algorithm has training execution
independent of the others, and Stacking is only responsible for combining them in a
meta-layer. We can make this restriction since if each algorithm of a Stacking ensemble
were required to execute sequentially, this would only worsen Stacking time and the
Oracle would have a large margin of advantage concerning time, since the Oracle uses

only a fraction of the training set.

3.2 COracle-Based Prediction of Stacking

Performance

Choosing the best possible ensemble configuration is a difficult problem since it
is impossible to run the experiments with all possible combinations depending on the
number of base algorithms. Thus, in addition to the Stacking experiments, we propose in
this dissertation to solve the problem of choosing the best ensemble among the possible
combinations with the base algorithms. For this, we propose the strategy which we call
the Oracle. Oracle allows a simple way to select competitive ensemble sets at a time
(computation cost) strictly smaller than the best base algorithm.

We implement the proposed strategy as follows: (i) each base algorithm is trained
with a reduced amount of the training set (e.g., 10%, 15%, 30%, etc.); (ii) we run an
algorithm called Oracle (Algorithm 1), which aims at finding the best combination of
base algorithms with less training by a greedy strategy. First, we select the best base
algorithm obtained with the reduced training to start the combination, where A is the set

of all base algorithms executed with less training. For this, we use the Best(A) function,
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which returns the best algorithm based on the validation set. For each iteration, the
following best algorithm, as estimated in a validation set, is added and we verify whether
the combined result presents a statistically significant improvement (« = 0.05) concerning
the previous iteration. If positive, it is permanently included in the combination. The
process continues until all base algorithms are considered. The strategy is greedy since
it makes the best choice in the current iteration.

To perform the comparison and statistical tests in each iteration, we use a
separated piece within the training set (i.e., validation set) that is not contained in the
minor part used in training. Besides, as a meta-layer, we use a simple average, i.e., we
add the probabilities of the predictions dividing it by the number of base algorithms.
The meta-layer average is represented by the function Avg(E) in the pseudocode, where
E C A is the best set of algorithms based on the current combination. As it is a simple
meta-layer and not a learning algorithm, the cost can be considered insignificant in the
choice process. This choice of the simple meta-layer is essential because the meta-layer

algorithm can become more computationally expensive than training the base algorithms.

Algorithm 1 Oracle Algorithm
procedure ORACLE(A)
C + Best(A)
S«—A-C
while S # ) do
X + Best(S)
E+~CuX
if Avg(E) > Avg(C) then
C<«+E
S+—A-C
else
S+S-X
return C > Best combination

With the definition of how the Oracle algorithm works, we state the three Research

Questions for the Oracle experiments:

e Oracle Research Question 1 (ORQ1): Can we predict, using a fraction of the training
data, an effective stacking that will tie or outperform the best learning model when

trained with all the available training, at a smaller cost than that of the best model?

e Oracle Research Question 1 (ORQ2): Can we make a similar prediction than in
ORQ1, but now with cost smaller or at the maximum equal to that of the best

model when trained with all training data?

e Oracle Research Question 1 (ORQ3): With no time constraints, can we predict a
combination that will be better than the best learning algorithm in a dataset using

a smaller piece of training?



3. METHODOLOGY 27

Answering the Oracle research questions, we will be able to determine whether
our method can achieve the main objective for which the method was created: discover
efficient and competitive ensembles in a shorter computational time than the best base

algorithm.
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Chapter 4

Experiments and Results

In this chapter, we introduce the experimental settings and discuss the results. We
start by presenting in Section 4.1.4 the configurations used to run the Classification,
Stacking and Oracle experiments. We present the datasets chosen for the experiments,
the Textual Representations used, the Supervised Classification Algorithms exploited in
the ATC tasks, as well as other configurations to allow the replication of the experiments
performed in this dissertation.

After defining the settings, we initially present the ATC results of the individual
base algorithms in Section 4.2. Although the main focus of the dissertation is not to
assess the classification effectiveness of individual algorithms but rather that of the
ensemble (Stacking), we highlight in this section the results of each individual base
algorithm and the conclusions we can draw from using them. This analysis of individual
algorithms is important since we always compare each dataset’s best individual algorithm
with the Stacking and Oracle’s experimental results.

Next, we present the results and analysis of the Stacking experiments in Section 4.3
with the comparisons of the Stacking results versus individual base algorithms. We also
discuss the answers for research questions RQ1, RQ2 and RQ3 defined in Chapter 3. In
Section 4.4 we present and discuss the results of the Oracle method and the answers for
the corresponding research questions ORQ1, ORQ2 and ORQ3. Finally, in Section 4.5

we have a summary of the results achieved in our vast experimental environment.
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Class Distribution
Dataset  # Doc. # Feat. # Classes  Minor Median Mean  Major Avg Doc. Skewness

20NG 18,846 97,401 20 628 984 942 999 296 Balanced
ACM 24,807 48,867 11 63 2041 2263 6,562 65 Imbalanced
AGNews 127,600 39,837 4 31,900 31,900 31,900 31,900 37 Balanced
IMdB 348,415 115,831 10 12,836 31,551 34,841 63,233 326 Imbalanced
Reut 13,327 27,302 90 2 29 148 3964 171 Imbalanced
Sogou 510,000 98,974 5 102,000 102,000 102,000 102,000 588 Balanced
WebKB 8,199 23,047 7 137 926 1,171 3705 209 Imbalanced
Yelp 700,000 115,371 5 140,000 140,000 140,000 140,000 136 Balanced

Table 4.1. Statistics of Automatic Textual Classification (ATC) datasets.

4.1 Execution Configurations

4.1.1 Textual Datasets

We consider the effectiveness and efficiency of the models on eight datasets very
known by the ATC community. Of those eight datasets, four are large-scale datasets
(more than 100,000 documents) [Zhang et al., 2015; Diao et al., 2014] — AGNews, IMdB
Reviews, Sogou and Yelp — and four are mid-sized datasets |Canuto et al., 2014, 2018| —
20NG, ACM, Reut and WebKB.

In Table 4.1 we have a summary of each of the datasets. We present the number
of documents (# Docs), how extensive the vocabulary is (# Feat.), how many classes
(# Classes), information on the distribution of documents between classes (Class
Distribution) and the average number of words per document. In Class Distributions, we
can see the smallest amount of documents in a class (Minor), median amount (Median),
average amount (Mean) and the largest amount (Major). It is important to highlight
all this information since the different characteristics of these datasets lead to different
challenges for the ATC algorithms. Below we have the information of the textual data

and classes for each dataset:

e 20 Newsgroups (20NG): The 20 Newsgroup dataset is a set of 18,846 documents
divided into 20 different newsgroups, with each group having a specific topic (e.g.,
politics, religion, sport, etc.). It is a popular dataset in the ATC area, as it has the
characteristic of having documents with approximately equal amounts among the

different 20 classes (i.e., balanced dataset).

e ACM-DL (ACM): It is a dataset composed of 24,897 documents from the ACM
Digital Library. All articles are from the Computer Science field, and the objective



. EXPERIMENTS AND RESULTS 30

is to classify each article in 11 classes of the first level of the taxonomy adopted by
the ACM.

e AG’s News (AGNews): It is a dataset of news articles collected from the web!,
containing 127,600 documents and 4 classes. The documents come from 496,835
categorized news articles and over 2,000 news sources. As for the class, they were
created according to the title and description of each article. This dataset has an

equal balance for all classes, each one having the same amount of documents.

e IMdb Reviews (IMdB): This dataset was created from the movie reviews site
IMdB?2, where the creators of the dataset selected 50,000 random movies and crawled
all of their reviews. This dataset has ten classes, which refer to user ratings (scaled
from 0 to 10) in the selected movies. The resulting dataset has 348,415 documents

and a high unbalance of documents in the ten classes.

e Reuters (Reut): The Reuters dataset is a famous benchmark dataset for ATC
created by Carnegie Group, Inc. and Reuters, Ltd. This dataset is composed of news
articles from the Reuters® website, where there are 13,327 documents distributed
among 90 categories. It is a dataset well known for its high degree of unbalance

between classes, where there are classes with only two documents.

e Sogou News (Sogou): Created from the Chinese search engine Sogou, the dataset
was generated from a total of 2,909,551 news articles from different topics. The
resulting dataset has 510,000 documents and five balanced classes (sports, finance,
entertainment, automobile and technology). As it is a Chinese dataset, it was
necessary to do a specific preprocessing to transform the dataset to produce Pinyin
— the phonetic romanization of Chinese. Preprocessing was done with the pypinyin
with jieba Chinese segmentation system package, as indicated by the authors in
[Zhang et al., 2015].

e The 4 Universities Data Set (WebKB): This dataset was collected from the Com-
puter Science departments of several universities in January 1997 by the World Wide
Knowledge Base (WebKB) project of the Carnegie Mellon University (CMU) group.
There are a total of 8,199 web pages that have been collected and that have been
separated into the following categories: student, faculty, staff, department, course,

project and other.

e Yelp Review Full (Yelp): The Yelp Reviews Full is a very popular ATC dataset that
was created for the Yelp Dataset Challenge in 2015. The Yelp website is a tool for

"http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
2https://www.imdb. com
Shttps://www.reuters.com
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users to rate establishments and can also generate their reviews about places. This
dataset has 700,000 documents and five classes, where each document is a user’s
review and each class is the number of stars of the respective review. This dataset

is balanced, where each class has the same amount of documents.

4.1.2 Textual Representations and Supervised Classification

Algorithms

In terms of representations, beyond the traditional term-weighting alternatives
(TFIDF), we consider distributional and other types of word embeddings, such as Fast-
Text [Joulin et al., 2016; Bojanowski et al., 2017| and PTE [Tang et al., 2015], as well as
recent representations based on MetaFeatures that have obtained state-of-the-art (SOTA)
effectiveness in some of the experimented datasets [Canuto et al., 2019, 2018, 2016; Cunha
et al., 2020a, 2021]. In Table 4.2 we have all the settings we used for each chosen textual
representation. Before creating each representation, we performed simple preprocessing

steps: transformation to lowercase and removal of special characters and accents.

Method Parameters Value

TFIDF Normalization L2
Stopwords NLTK, English
Max Features Small Datasets: oo
Large Datasets: 50k

MinDF 2
Sublinear TF
PTE Window 5
MinDF 2
Dimensions 300
FastText Window 5
Epochs 500
Model Skipgram
Dimensions 300
MetaFeatures k [10, 15, 20, 30, 35, 40, 45, 50]

Table 4.2. Parameter settings for textual representations.

In terms of supervised classification algorithms (i.e., base algorithms), we consider
the LinearSVM [Fan et al., 2008|, kNN [Altman, 1992|, LogisticRegression [Fan et al.,
2008|, XGBoost [Chen and Guestrin, 2016|, XLNet [Yang et al., 2019] and BERT [Devlin

et al., 2018]. The parameters tuned for the non-neural algorithms are shown in Table 4.3
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while the parameters of neural-based algorithms area presented in Table 4.4. The imple-
mentations of LinearSVM, kNN and LogisticRegression are from scikit-learn? |[Pedregosa
et al.,, 2011] and XGBoost [Chen and Guestrin, 2016] is from the respective authors
implementation-based package®. Omitted parameters are the libraries default. The Table
4.3 has the range functions and the uniform and quniform distributions functions,
which are used to define the search space of some algorithms. The range(low, high, step)
function returns a number between [low, high) in a step interval. The uniform(low,
high) function returns a value uniformly between low and high. The quniform(low,
high, q) function returns a value like round(uniform(low, high) / q) * q and differs from

the uniform by a smooth factor.

Algorithm Parameters Tunned Range Values
. C uniform(0, 20

Linear SVM penalty 11, 12] ( )
n_neighbors range(1, 100, 1)

kNN metrics [cosine, 11, 12, minkowski, euclidean]
weights [uniform, distance]
C uniform(0, 20)

Logistic penalty [12, None]

Regression  solver [newton-cg, Ibfgs, sag, saga|
class_ weight [None, balanced|
n_estimators range(100, 1000, 50)
learning_ rate quniform(0.01, 0.5, 0.01)
eta quniform(0.025, 0.5, 0.025)
max_depth range(1, 14, 1

XGBoost min_child _weight qunif(grm(l, 6,) 1)
subsample quniform(0.5, 1.0, 0.05)
gamma quniform(0.0, 1.0, 0.05)
colsample bytree  quniform(0.5, 1.0, 0.05)

Table 4.3. Parameters tuned for each non-neural supervised classification algo-
rithms. Remaining parameters are the official libraries default.

Table 4.5 has a summary of the base algorithms and respective representations
used in each of them. We also create a unique identifier with letters of the alphabet
for each algorithm /representation configuration. We create these identifiers to provide
cleaner graphics and analysis, as there may be stacking ensembles putting all of these

algorithms together, which can make visualizing/reading the results a difficult task.

‘https://scikit-learn.org/stable/index.html
Shttps://xgboost.readthedocs.io/en/latest
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Algorithm Parameters Value
XLNet Pretrained Model XLNet-Base
batch _size 32
epochs 5
max_len 64
learning _rate 5e-H
max_grad norm 1.0
weight decay rate 0.01
BERT Pretrained Model BERT-Base
batch _size 32
patience 5
max_len 150

initial learning rate 5e-5

Table 4.4. Neural networks parameters and pretrained models.

Algorithm  Representation 1D | Algorithm  Representation 1D
FastText A FastText I

. PTE B | Logistic PTE J
LinearSVM - oy C | Regression TFIDF K
Metafeatures D Metafeatures L

FastText E FastText M

PTE F PTE N

kNN TFIDF q | XGBoost e 0
Metafeatures H Metafeatures P

XLNet Raw Documents Q

BERT Raw Documents R

Table 4.5. All base algorithms with their repespective representations. Each con-
figuration of individual classifiers has a unique ID.

4.1.3 Stacking

We run the stacking process with the following variants: all combinations of
the same base algorithm with different representations, all combinations of different
base algorithms with their best representations, and a combination that includes all
the base algorithms. For example, we perform all possible combinations of LinearSVM
with FastText, PTE, TFIDF and MetaFeatures, resulting in total of 11 combinations:
(;1) + (g) + (i). This limitation of combinations has a main reason: all combinations of all
algorithms and representations, 18 in our case, would result in an impracticable number
of possible combinations for execution: 262,125 experiments = (128) + (138) + ..+ (}S)

An important observation is that we assume that the base algorithms can be run
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in parallel (e.g., different machines). Thus, a stacking or oracle combination has the
execution time limited by the most costly base algorithm in the respective combination.
Even if this assumption is not valid and it is necessary to execute the base algorithms
and combinations on one single machine, this would only aggravate the cost problem and
allow an unfair comparison in our favor. Therefore, to avoid this unfair comparison, we
maintain the assumption of parallel execution.

To train the Meta-Layer, responsible for learning to combine the outputs of
the different individual classifiers, we use the following algorithms: Majority Vote
(hard/soft), Mean, Median and LinearSVM. Majority Vote Hard chooses the class that
most classifiers have output and does not take probabilities into account. Majority
Vote Soft works the same as Hard but using probabilities instead of predicted class
labels. Mean and Median apply their respective operations on the output probabilities
to combine the base classifiers. Finally, LinearSVM simply uses probabilities to train
the Meta-Layer, allowing the Meta-Layer to intelligently and automatically learn how to
combine the different classifiers using a supervised classification algorithm.

For didactic purposes, we will demonstrate how training and stacking prediction
works when using one meta layer. We will see how the training set is used to train the
Meta-Layer, where the Meta-Layer learns how to put together the probabilities of different

classifiers without overfitting, and how the meta-layer is used to predict the test set.

< > [ Train I Train I Val ]—<

[ Train I Val I Train ]—<
[ Val I Train I Train ]—

Final
Prediction

Validation
Probabilities

Meta-Layer

516

Figure 4.1. Stacking Meta-Layer training process.

In Figure 4.1 we have the representation of the Stacking Meta-Layer training
process. We exemplify the training process using 3-fold cross validation and n classifiers
(represented by C1, C2, ..., Cn). The process starts by separating the training set into 3
folds, where each classifier will be trained with 2 folds and the remaining fold is used to
extract the probabilities. By repeating this process 3 times, we get a set of probabilities
validation, which is used to train the Meta-Layer. It is worth to mention that the number

of records in the probabilities validation set is the same as in the original training set. We
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could also simply train with every workout and use training odds to train the Meta-Layer.
However, this strategy tends to overfit to the training set distribution [Tang et al., 2014].

With the Meta-Layer trained, it is now enough to perform the test prediction.
The prediction process is much simpler than training, as shown in Figure 4.2. First it
is necessary to train the individual classifiers with the complete train sel, exactly as
is normally done in the supervised classification task. With the individual algorithms
trained, we predict the test set in each classifier, thus building the input to predict the
test set in the Meta-Layer. Meta-Layer then informs which class is predicted for each

record according to the input probabilities.

Final
Prediction

Test
Probabilities

b
S

Figure 4.2. Stacking Meta-Layer predict process.

Meta-Layer

4.1.4 Statistical Techniques, Supervised Classification Metrics

and Machines

The experiments in the smaller datasets were executed using a 10-fold cross-
validation procedure, while in the larger we used 5-fold due to the computational cost.
The algorithms parameters were tuned using the Bayesian Optimization [Bergstra et al.,
2015] approach with ten iterations, with the 5-fold stratified strategy and the training set
(nested cross-validation). In the Table 4.3, we have the values of each parameter that we
optimize in the non-neural base algorithms. For the neural networks, we adopted the same
parameters defined by the authors of their respective methods |[Devlin et al., 2018; Yang
et al., 2019|. The parameters of the neural-based algorithms are present in Table 4.4.

To generate the predicted classes and probabilities used as input to the Meta-Layer,
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we used another internal 5-fold stratified cross-validation to separate only the training set
into training/validation. It is important to run the cross-validation again as if we use the
probabilities of the entire train set since there may be overfitting issues [Wolpert, 1992;
Tang et al., 2014]. The optimization of hyperparameters for this new cross-validation
uses the same scheme as the individual algorithms with every training.

We evaluate all methods, combined with different representations, concerning
classification effectiveness and training time. We assess classification effectiveness in the
test partitions using MicroF1 and MacroF1 [Sokolova and Lapalme, 2009]. While MicroF1
measures the classification effectiveness overall decisions, MacroF1 measures cach class’s
classification effectiveness, averaging them, crucial for skewed datasets. In addition to
effectiveness, we also assess the cost of each method in terms of training execution time,
aiming at analyzing the cost-effectiveness trade-offs for all methods. The metric is the
overall time in seconds (average of folds). To compare the average test results on our
cross-validation experiments, we assess the statistical significance employing the paired
t-test with 95% confidence, which is strongly recommended over signed-rank tests for
hypothesis testing on mean effectiveness and arguably robust to potential violations of
the normality assumption in this context [Urbano et al., 2019; Hull, 1993|.

In our experiments, we adopt the cloud environment Amazon Web Services Elastic
Computing (i.e., AWS EC2)® instances to run and measure the execution time for both
neural and non-neural algorithms. For the non-neural algorithms, we use the instance
model cHa.12xlarge, which has 48 CPUs, 96GB of RAM (without GPU). For the neural
algorithms, we use the instance model p2.zlarge, which has one NVIDIA K80 GPU (12
GB of memory), 4 CPUs and 61 GB of RAM.

4.2 Supervised Classification Results

We can see in Figures 4.3 and Figure 4.4 the results of the individual classifiers
for the mid-sized and larges datasets, respectively. In each figure, we have the 18
combinations of classifiers/representations chosen and their respective results for the
MicroF1 and MacroF1 metrics. In each figure, we can also see the statistical draws for
both metrics marked with * in the classifiers IDs.

Exploring the results in Figure 4.3, we can see the performance for the 20NG,
ACM, Reut and WebKB datasets. In the 20NG dataset, the IDs of the individual
classifiers that have the best results are DHL — these classifiers use the Metafeatures as a

textual representation as input. Among these top classifiers, the highest mean algorithm

Shttps://aws.amazon.com/pt/ec2
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Figure 4.3. Classification results of each algorithm /representation for mid-size
datasets: 20NG, ACM, Reut and WebKB. In blue we have the MicroF1 metric,
while in green we have the MacroF1 metric.

for MicroF1/MacroF1 is L (Logistic Regression + Metafeatures), where the mean of
MicroF1 is 0.907 £ 0.008 and MacroF1 is 0.905 = 0.008.
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In the ACM dataset, the algorithms with statistical ties for MicroF1 are DLPQR
and for MacroF1, CDKLPQ. Again, as in 20NG, we highlight the algorithms that use
Metafeatures along with algorithms that exploit TFIDF and those based on neural net-
works (XLNet and BERT). The algorithm with the highest MicroF1 average absolute
value among the ties is L (Logistic Regression + Metafeatures) with a value of 0.791 +
0.007, while for MacroF1 is P (XGBoost + Metafeatures) with a result of 0.693 + 0.017.

In Reuters, one of the most challenging datasets due to class imbalance, the
best classifier in terms of MicroF'1 is P, while for MacroF1 both, L. and P, tie. Again
these are classifiers that use Metafeatures as input, where the classifier with the highest
absolute average value for both metrics is P (XGBoost + Metafeatures), with a value of
0.821 4+ 0.012 for MicroF1 and 0.473 + 0.0569 for MacroF1.

The last mid-sized dataset is WebKB, where we see QR classifiers for MicroF1
and OQ for MacroF1 among the best results. We can see the presence again of neural
networks in the ties for both metrics. The classifier with the highest average value among
the ties for MicroF1 is R (XLNet) with a value of 0.860 + 0.010, while for the MacroF1,
it is Q (XGBoost + TFIDF) with a value of 0.777 £ 0.033.

For these mid-sized dataset results, it is interesting to highlight the high presence
of classifiers that exploit Meta-features among the best. We can see also that neural
networks are among the best results, but there are less complex and less computationally
costly algorithms that tie or beat the neural-based classifiers in the scenario.

We now look at the results for the large datasets (AGNews, IMdB, Sogou and Yelp)

in Figure 4.4. In these larger datasets, we can see that neural-based classifiers stand out
among the ties/wins and that the most basics non-neural classifiers become less present
among the best results.
Analyzing the results of the AGNews dataset, we see that the two neural networks Q
(BERT), R (XLNet) are among the best results. The best average result for the metrics
is the R classifier, with MicroF'1 equal to 0.9374-0.002 and MacroF1 equal to 0.937+0.002.
In IMdB and Yelp datasets, neural networks are also highlighted. In IMdB, classifier R
(XLNet) obtains an effectiveness of 0.389 £ 0.002 for MicroF1 and 0.3408 + 0.002 for
MacroF1. We also note a tie in the MicroF1 metric with the non-neural classifier J
(Logistic Regression + PTE). In the Yelp dataset, the best classifier is also XLNet, with
a value of 0.65040.001 for MicroF1 and MacroF1. In the Sogou dataset, we have different
behavior from the previously mentioned large datasets, where the non-neural classifier O
(XGBoost + TFIDF) produces the best results for both metrics. This classifier has a
value of 0.957 4+ 0.0009 for both metrics. It is interesting to note that even in a large
dataset, Metafeatures are also effective.

To summarize the number of ties/wins of each classifier, we created Table 4.6,
where we can see the classifiers that obtained at least one tie/win for each metric. The

idea is simple — if a classifier gets a tie or a win in any dataset or metric, one point
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Figure 4.4. Classification results of each algorithm/representation for large
datasets: AGNews, IMdB, Sogou and Yelp. In blue, we have the MicroF1 met-
ric, while in green, we have the MacroF1 metric. Classifiers D and @ appear with
some null values in the figure as some folds have been overfitted. Since these classi-
fiers underperformed due to overfitting, we omit them to improve the visual quality
of the figure.
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Metric Algorithm Representation ~ ID  Wins/Ties
BERT Raw Documents R )
XLNet Raw Documents Q) 3
LinearSVM Metafeatures D 2
. Logistic Regression Metafeatures L 2
Microkl XGBoost Metafeatures P 2
XGBoost TFIDF O 1
kNN Metafeatures H 1
LogisticRegression PTE J 1
BERT Raw Documents R 3
XLNet Raw Documents Q) 3
Logistic Regression Metafeatures L 3
XGBoost TFIDF @) 2
MacroF1 XGBoost Metafeatures P 2
LinearSVM Metafeatures D 2
LinearSVM TFIDF C 1
kNN Metafeatures H 1
LogisticRegression ~TFIDF K 1

Table 4.6. Wins/Ties in classification for each effectiveness metrics.
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is added to the Wins/Ties count. This table shows how neural networks stand out for

both metrics due to their performance in large datasets. We can also see non-neural

algorithms are not behind in terms of effectiveness, presenting satisfactory Wins/Ties

and competitive results with neural networks in smaller datasets.

As highlighted in

the analyses, it is interesting to note the high presence of Metafeatures representations

among the Wins/Ties of non-neural classifiers.
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Figure 4.5. Average execution time, in logarithmic scale, for each base classifier in
each chosen dataset.

Finally, we can see in Figure 4.5 the average execution times (in logarithmic scale)
of each base classifier in the mid-sized and large datasets. We can see that neural-based
classifiers are more computational costly than some more basic classifiers in mid-sized
datasets — in some cases, this time is twice as long. In Reuters, there is an interesting
case, where even some basic algorithms (e.g., E and P) take longer to execute than
neural networks due to the complexity posed by class imbalance in this dataset. In large
datasets, times increase a lot for non-neural classifiers, precisely because of the extra
amount of documents and, consequently, the number of features (i.e., words) that these
datasets possess. Looking closely at times, we can see that non-neural classifiers have a
significantly lower computational time than neural-based classifiers.

The effectiveness and time results from the base classifiers presented in this
section are used as baselines for the subsequent analyses. In next section, we will answer
the posed Stacking and Oracle research questions, taking into account the best base

classifiers in each dataset.
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Figure 4.6. Average time (in log scale) of the Best Base Individual Classifier and
Stacking Research Questions for each dataset.

4.3 Stacking Results

Results for RQ1, RQ2 and RQ3, in terms of MacroF1 for each dataset are shown in
Tables 4.7, 4.8, and 4.9, respectively, while Figure 4.6, shows the analysis of the computa-
tional cost. For each dataset, the tables show the effectiveness (MacroF1) of the best base
algorithm along with the stacking combination that best answered the respective research
question (if any), the respective combination of methods (the letters refer to the index of
algorithms described in Table 4.5), and finally, in the last column, (Most Costly) the most
costly algorithm that entered in the combination, according to the constraints imposed
by the question. We present only MacroF1 results since it is harder to improve them in
the highly skewed scenario in most experimented datasets, as we saw in the classification
section. However, we also consider MicroF1, whose results are summarized in Table 4.10.

In Table 4.7, which focuses on RQ1 that has a strong constraint in terms of
execution time, we can see that in 5 out of 8 datasets, it is possible to obtain a
combination of classifiers (stacking) that is as good as (statistical tie) or better (see the
ACM case, with statistically significant gains of 3.1%) than the best base algorithm, at a

lower cost. The gains in terms of cost (time) are very significant (see Figure 4.6), ranging
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from 1.87x speedup improvement (in Reuters) to 7.16x (in WebKB). Speedups in 20NG,
ACM and Sogou were 6x, 6.6x and 1.4x, respectively. Even if we consider the three cases
in which there were some minimum effectiveness losses (0.39% in AGNews, 0.91% in
IMdB and 4.67% in Yelp), there are some significant speedups: 1.6x in AGNews, 2.15x
in IMdB and 1.47x in Yelp. Some chosen stacked combinations are interesting, such as
EFGH in 20NG that contains all versions of kNN, and IKL in ACM, containing three

versions of Logistic Regression. Both combinations contain classifiers with Metafeatures.

Dataset  Experiment MacroF1 Combination Most Costly
20NG Best Base 90.58 L (Log. Reg. + MetaFeat)
RQ1 91.02 EFGH H
ACM Best Base 69.32 P (XGBoost + MetaFeat)
RQ1 A 7150 TKL L
Reut Best Base 47.37 P (XGBoost + MetaFeat)
b RQ1 46.98 JK J
Best Base 77.76  Q (XLNet)
WebKB — poi 79.61 HLPR R
Best Base 93.74 R (BERT)
AGNews by v 93.37 MNOP N
Best Base 34.09 R (BERT)
IMdB RQ1 v 33.18 JL L
S Best Base 95.73 O (XGBoost + TFIDF)
o8t RQ1 95.70 JKL L
Yel Best Base 65.07 R (BERT)
b RQ1 v 60.43 IJK I

Table 4.7. Stacking results for RQ1.

Results for RQ2 (Table 4.8) are also very interesting. In 6 out of eight datasets,
it is possible to obtain effectiveness gains with no increase in cost (remind that in this
scenario, the cost is limited by that of the best base algorithm). Effectiveness gains vary
from 0.4% in AGNews, 1.15% in 20NG7, 3.1% in ACM, 5.4% in IMdB, 9% in WebKB
and 1.52% in Yelp. Reuters is only considered a tie because of the high variability of
the results across folds in this dataset (due to a large number of classes and very high
skewness), which generates large standard deviations/confidence intervals. In absolute
terms, there was a positive variation (non-statistically significant gain) of more than 9.7%.
Indeed, the MicroF1 stacking results confirm statistically significant gains in Reuters
(See Table 4.10). Finally, in the Sogou dataset, there was a tie when using Stacking.

As expected, to obtain gains in this scenario, it is necessary to include the best base
algorithm in the combination in most datasets, inserting diversity /complementarity into

the combination. In ACM and Sogou, the base algorithm is not part of the combination.

“Notice that improvements in 20NG and AGNews are very hard to obtain given the already high
effectiveness values.
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Dataset  Experiment MacroF1 Combination Most Costly
SONC Best Base 90.58 L (Log. Reg. + MetaFeat)
RQ2 49163 TJKL L
ACM Best Base 69.32 P (XGBoost + MetaFeat)
RQ2 A 7150 TKL L
Reut Best Base 47.37 P (XGBoost + MetaFeat)
RQ2 51.99 NOP P
Best Base 77.76  Q (XLNet)
WebKB oo A 84.07 All Q
Best Base 93.74 R (BERT)
AGNews g 49412 CHQR R
Best Base 34.09 R (BERT)
IMdB - p o 43595 LR R
Soco Best Base 95.73 O (XGBoost + TFIDF)
81 RQ2 95.70  JKL L
Vel Best Base 65.02 R (BERT)
P RQ2 4 66.01 CHLPQR R

Table 4.8. Stacking results for RQ2.

Notice also that the gains are somewhat limited due to the restricted number of classifiers
that can be combined due to the time constraints, impacting the results. For instance, in
IMdB only two algorithms belong to the best combination, while the combination in ACM
has only three classifiers. Only in WebKB, the combination includes all 18 classifiers as the
base algorithm is also the most expensive one. Another interesting aspect of the combina-
tions is that in all datasets, a classifier using Metafeatures was included (e.g., M and Q).

Finally, in the scenario with no time constraint (RQ3), further gains can be ob-
tained by including more costly classifiers. There are further gains in AGNews (0.94%),
20NG (2.06%), IMdB (5.8%), ACM (6.32%), Sogou (1.49%) and Yelp (2.59%). Notice
that there is a tendency in this scenario to include most algorithms in the combinations,
like in ACM, WebKB, AGNews, Sogou and Yelp, to obtain further improvements,
meaning that most algorithms have complementary information that tends to contribute
to the final results. Another interesting aspect to notice is that in some cases, such as in
20NG, a completely different combination was chosen in scenario RQ2. This combination
exploits the most effective and complementary algorithms and may not even include the
base classifier. In other cases, such as IMdB, a combination of a few of the most effective
(and costly) algorithms suffice to obtain larger gains, meaning that the meta-layer is
doing a good job in learning about the individual performance of the algorithms and their
complementarity. Finally, these additional effectiveness gains come with potential high
increases in cost, clearly seen in Figure 4.6 for the cases of 20NG, ACM and AGNews.
In those datasets, the costs have tripled (AGNews), quadrupled (ACM and IMdB) or

become 8x more expensive. It is up to the application designer to decide whether this
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cost-effectiveness trade-off is worth it.
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Dataset  Experiment MacroF1 Combination

Most Costly

SONC Best Base 90.58 L (Log. Reg. + MetaFeat)
RQ3 A 9245 CHQR Q
ACM Best Base 69.32 P (XGBoost + MetaFeat)
RQ3 A 7370 Al R
Reut Best Base 47.37 P (XGBoost + MetaFeat)
o RQ3 51.99 NOP P
Best Base 77.76  Q (XLNet)
WebKB — poys A 84.07 All R
Best Base 93.74 R (BERT)
AGNews  pos 49463 Al Q
Best Base 34.09 R (BERT)
IMdB - pys A 36.06 PR P
Soeou Best Base 95.73 O (XGBoost + TFIDF)
& RQ3 A 97.16 All R
Vel Best Base 65.02 R (BERT)
&P RQ3 A 66.71 All F

Table 4.9. Stacking results for RQ3.

Table 4.10 summarizes the effectiveness results. For RQ1, there are ten win/ties

out of 16 possibilities (8 datasets, two metrics). Remind that in this scenario, ties are

considered a good result due to the reduction in costs. We also have 13 wins for RQ2

and 15 wins for RQ3, only ties in Reut and Sogou with no loss at all. In terms of cost

(Figure 4.6), significant reductions in scenario 1 (RQ1) can be obtained in all eight

datasets, with almost no loss (or minimal losses) in terms of effectiveness. For scenario

2 (RQ2), effectiveness gains can be obtained in almost all cases with no additional cost

compared to the cost of the base classifier. Furthermore, for scenario 3 (RQ3), additional

effectiveness gains can be obtained, but sometimes with a very high increase in cost.

MicroF1 MacroF'1

RQ

Win Tie Loss | Win Tie Loss

RQL 2 3 3 1
RQ2 7 1 0 | 6
RQ3 8 0 0 | 7

Table 4.10. Win/Tie/Loss summary for Stacking research questions.
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4.4 Oracle Results

This section presents the results related to research questions for the Oracle
method proposed in this dissertation. The MacroF1 results of the Greedy Oracle
predictor are shown in Tables 4.11, 4.12 and 4.13. These results correspond to an Oracle
that uses the base algorithms trained with 30% of the training data and predicts in a
different training data portion in a folded cross-validation procedure, using an simple
Average meta-layer. The mean runtime for each dataset, comparing the oracle results

against the best base classifiers, are shown in Figure 4.7.
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Figure 4.7. Average time (in log scale) of the Best Base Individual Classifier and
Oracle Research Questions for each dataset.

We will start by analyzing the ORQ1 research question, which limits the inclusion
of classifiers in the oracle stacking ensemble by the time of the best base algorithm
with 30% of training, that is, only classifiers with time strictly shorter than the best
base algorithm can be part of the stacking ensemble in this research question. In Table
4.11 we have the results for ORQ1, where we can see that Oracle can achieve good
predictions in 3 of the 8 datasets in this scenario. In the table we show the best base
classifiers with 100%, as they are the baseline we want to compare and prove that we can

maintain/improve effectiveness while reducing computational cost (i.e., efficiency). We
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can see in the table that we achieved competitive ensemble using only 30% in 3 datasets,
against the best classifiers trained with all training data.

In the 20NG and ACM datasets we get better results than the best base algorithm
with 100%, which is a great improvement since we are not including the best base
algorithm and we are significantly reducing the execution time. In the WebKB we can
tie even while reducing the computational cost, another very relevant result since we
are reducing the time without losses in the F1Macro metric. However, even in the case
where there were losses, some were minimal, like in AGNews with a loss of only 0.62%
with potential gains in training time. In the Sogou dataset, there was a slight reduction
of effectiveness of approximately 1%, while there was a time reduction. Only in Reuters,
IMdB and Sogou were significant MacroF1 losses, mainly due to the failure to predict
which would be the best base algorithm and the impossibility of including the predicted
best base algorithm in the combination. For Reuters and Sogou, the best base algorithms
are respectively XGBoost + MetaFeat (P) and XGBoost + TFIDF (O), while BERT (R)
is the best base algorithm for IMdB. We can see in these datasets that there really was
a reduction in computational cost, but none of these algorithms with 30% of training
achieved results close to those of the best base algorithms.

The table shows that in large datasets the strategy did not achieve a satisfactory
result for ORQ1 since most of these datasets have a neural network as the best based
algorithm and the amount of data limits the inclusion of networks in the combination.
As the time of neural networks is longer due to computational complexity, this allows
the inclusion of more classifiers in the scenario shown in RQ1 in the Stacking section
(Table 4.7). It is essential to highlight that we do not know what will be the best
algorithm when using all the training data or its effectiveness in an actual real execution
scenario. Indeed, with more data, there is a tendency for some algorithms, such as the
transformers, to improve their effectiveness, but their sound performance may not be
predicted with few training data. Remind also that this is a stringent scenario: even if
we can predict which will be the best base algorithm, we cannot use it in the combination
given the time constraints of ORQ1.

When we are allowed to include the best-predicted algorithm in the stacking
scenario for ORQ2, the results show a drastic improvement — we can make a reasonable
prediction in 7 out 8 cases (3 wins and 4 ties). Notice that in this scenario, we consider
a tie as a good result. We interpret that being able to predict a combination that will tie
with the best algorithm with 100% of training in a dataset, without knowing which one
will this best, at a very low cost (Figure 4.7), as an excellent result. In this scenario 20NG,
ACM and Yelp datasets have the bests results, where we can improve the MacroF1 metric
at the same time we can predict the best base algorithm with 100% of training. However,
even when we cannot predict the best algorithm, it is possible to find a combination of

less expensive algorithms that can tie with the best base algorithm. This is the case, for
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Dataset  Experiment MacroF1 Combination Most Cost
20N Best Base 90.58 L (Log. Reg. + MetaFeat)
ORQ1 4 91.62 ABCDHK H
ACM Best Base 69.32 P (XGBoost + MetaFeat)
ORQ1 A 71.85 ABCDHIJKL C
Reut Best Base 47.37 P (XGBoost + MetaFeat)
ORQ1 v 39.60 ABDPQ P
Best Base 7776 Q (XLNet)
WebKB - orqi 75.79 BCE E
Best Base 93.74 R (BERT)
AGNews — ypoy v 93.16 BDFJNP B
Best Base 34.09 R (BERT)
IMdB - e v27179 K K
Soeou Best Base 95.73 O (XGBoost + TFIDF)
& ORQ1 V9473 P p
Vel Best Base 65.07 R (BERT)
P ORQ1 v 50.74 ) J

Table 4.11. Oracle results for ORQ1. Output ensemble by the Oracle using 30% of
training data wversus the best base classifier using all training data. In this scenario
the ensemble generated by the Oracle has to be strictly less expensive than the best
base algorithm with 30% training.

example, of the WebKB and AGNews datasets, where in both the best base algorithm
with 100% training were, respectively, the neural transformers XLNet and BERT.

In the Reut dataset we were able to discover an ensemble, in less time, that tie with
the best base classifier. No classifier was added to the stacking combination in the Sogou
and IMdB datasets, although it was possible to find the best base algorithm with less
training in the case of Sogou (XGBoost + TFIDF (O)). IMdB was the only case in which
we could not make a good prediction precisely by the failure in predicting, with 30% of
training, that BERT would be the best algorithm when all the training data is used.

The best results with regard to MacroF1 are up to 3.23% in the case of the ACM
and by approximately 1% in the 20NG and Yelp. In these datasets, we have 20.20x,
7.11x, and 1.28x runtime speedups for 20NG, ACM, and Yelp, respectively. In the Reut,
WebKB, AGNews and Sogou datasets, the ensemble found by the oracle tied with the
best base algorithm while reducing the execution time. There was an incredible speedup
of 245.55x for WebKB, 2.09x for Sogou and 1.84x for Reut/AGNews. It is important to
highlight that the computational cost reduction was high at WebKB since it is a small
dataset, the smallest dataset among the ones we choose for the experiments.

Finally, when no time constraints are imposed, the oracle’s prediction results are
excellent: 6 wins, 1 tie and only one loss. The most relevant gains were obtained in the
ACM and WebKB datasets, with a respective increase of 6.89% and 6% for MacroF1.
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Dataset  Experiment MacroF1 Combination Most Cost
20N Best Base 90.58 L (Log. Reg. + MetaFeat)
ORQ2 A 91.52 ABCDHKL D
ACM Best Base 69.32 P (XGBoost + MetaFeat)
ORQ2 A 7156 ABDLP p
Reut Best Base 47.37 P (XGBoost + MetaFeat)
e ORQ2 47.37 DLP L
Best Base 7776 Q (XLNet)
WebKB  hra2 78.22 BCEFHI I
Best Base 93.74 R (BERT)
AGNews  yp09 9410 BCDFHJKLNOPQ Q
Best Base 34.09 R (BERT)
IMdB - 5p09 v 3373 ]
Soeou Best Base 95.73 O (XGBoost + TFIDF)
& ORQ2 95.73 O 0
Vel Best Base 65.02 R (BERT)
P ORQ2 A 6577 CJR R

Table 4.12. Oracle results for ORQ2. Output ensemble by the Oracle using 30% of
training data wversus the best base classifier using all training data. In this scenario
the ensemble generated by the Oracle it has to have a less than or equal runtime
than the best base algorithm with 30% training.

It is interesting to note that, although there is no time constraints, as we are using only
30% of the data for training, it was possible to find these results at a lower computational
cost than the best base algorithms in both datasets. There is a speedup of 7.11x for
ACM and 4.63x for WebKB, as can be seen Figure 4.7. Oracle also achieved a MacroF1
statistical increase of 1.76% on 20NG, 1.37% for Sogou and 0.95% in AGNews. Although
it seems like a relatively small gain, we must emphasize that these datasets already
have high results for the metric, which makes a small statistical improvement a difficult
task. In the datasets AGNews and Sogou there was a reduction, respectively, of 1.39x
and 2.09x in the execution time. Only in the 20NG dataset that there was an increase
in execution time, due to the inclusion of a neural network in the ensemble chosen by
oracle. The last dataset in which oracle discovered an ensemble with significant gain was
Yelp, with 1.15% metric increase and 1.28x of speedup.

In the IMdB dataset the oracle discovers an ensemble that presents a loss for
the MacroF1, that it is explained by the same reasons as in the previous scenario: the
failure to predict BERT as the future best algorithm. However, even in this case, the
prediction for using algorithm J (LogisticRegression + PTE) as the sole combination (an
unusual prediction) produced minimal losses: only 1.05% at a cost much smaller than
using BERT. Furthermore, in Reuters, we obtain an absolute increase in MacroF1 values

(6% increase), though not statistically significant due to the high variability.
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Dataset  Experiment MacroF1 Combination Most Cost
20N Best Base 90.58 L (Log. Reg. + MetaFeat)
ORQ3 A 92.17 ABCDHKLR R
ACM Best Base 69.32 P (XGBoost + MetaFeat)
ORQ3 A 7348 ABDLP p
Reut Best Base 47.37 P (XGBoost + MetaFeat)
ORQ3 50.18 DLP 1
Best Base 7776 Q (XLNet)
WebKB  hro3 A 83.12 ABCEIKLMNOPQ Q
Best Base 93.74 R (BERT)
AGNews  yp03 49463 Al E
Best Base 34.09 R (BERT)
IMdB - 5p03 v 3373 ]
Soeou Best Base 95.73 O (XGBoost + TFIDF)
& ORQ3 4 97.04 CLMOPR R
Vel Best Base 65.02 R (BERT)
P ORQ3 A 6577 CJR R

Table 4.13. Oracle results for ORQ3. Output ensemble by the Oracle using 30% of
training data wversus the best base classifier using all training data. In this scenario
the ensemble generated by the Oracle has no time restrictions.

Looking at Figure 4.7, where the oracle times are shown for each scenario (ORQ1,
ORQ2, ORQ3) and each dataset, we can see that in most cases the oracle predictions
have strictly lower runtimes when compared to the best base algorithms with 100%
of the training data. It was only in the 20NG dataset for the ORQ3 scenario that
there was an increase in computational cost, which as explained above, involves the
addition of a neural network in the ensemble. Given the time constraints imposed by
ORQ1 and ORQ2 and the fact even in the scenario for ORQ3, only a portion of the 18
available algorithms needed to be stacked to produce effectiveness gains, the advantage’s
of running the oracle’s predictions in terms of cost stand for themselves.

In Table 4.14 we have the summary of results in terms of MicroF1 and MacroF1:
considering all 48 results (3 research questions, 8 datasets, 2 metrics), the oracle method
achieves 24 wins, 10 ties (most of them in scenarios ORQ1 and ORQ2, which can be
considered good results) and only 13 losses, six of them in the IMdB dataset for the
simple reason that we failed in predicting a neural network winner with fewer data. This
fail is undoubtedly a point to be improved in our methodology. One idea is to look at
the absolute effectiveness values with a single training point (30%) and the tendency to

grow considering several points (5%, 10%, ...).
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RQ MicroF1 MacroF'1
Win Tie Loss | Win Tie Loss
ORQ1 2 0 6 2 1 5
ORQ2 3 5 0 3 4 1
ORQ3 8 0 0 6 1 1

Table 4.14. Win/Tie/Loss summary for Oracle research questions.

4.5 Summary

This chapter answered the

concerning Stacking (RQ1, RQ2, RQ3) and the Oracle (ORQ1, ORQ2, ORQ3).

six research questions posed in this dissertation
We

started by presenting the base classifiers’ classification results, highlighting the best

classifiers in each dataset and respective execution times. We observed how some basic

algorithms beat neural networks, especially in the mid-sized datasets. We also saw that

neural networks are among the classifiers with the most wins/draws, but this comes at

a high computational cost.
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Figure 4.8. Maximum potential gain considering the 18 algorithms wversus the
results of the best base classifier (Best Classification) and the best stacking ensemble

(Best Stacking) for each dataset.
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We saw in the Stacking results that there are less computational costly ensembles
that beat /tie the best base classifiers (RQ1) in 5 datasets when there are time constraints,
how it is possible to improve effectiveness without increasing cost in almost all datasets
(RQ2) and how improvements can be obtained when we completely eliminate cost
constraints in the majority of the cases (7 out of the 8 datasets) (RQ3). In all the
answers, we have satisfactory results that argue in favour of exploiting stacking in order
to improve state-of-art results in ATC.

We finish our experimental study by analysing the performance of the Oracle,
aimed at reducing computational time while keeping good effectiveness for the stacking
results. We saw that it is possible to obtain less costly ensembles and have the same
effectiveness of traditional stacking. Our Oracle method could produce satisfying stacking
ensembles using only 30% of the data in the training phase. Our algorithm managed to
deliver these results in half of the cases, ultimately demonstrating that is is possible to
propose a cheap and effective way to find ensembles that beat the best base classifiers.

Finally, in our last set of experiments, our goal is to assess how far the stacking
strategies presented in this work are from the effectiveness upper bound (maximal
potential) considering the 18 algorithms adopted in all the above evaluations. To
measure the maximal potential, for each test instance of each dataset, if one of the
18 algorithms correctly predicts its class, we assume that the ensemble strategy also
correctly predicts its correct class. In that case, we are considering that the meta-layer
always makes the best choices. We observe these results in Figure 4.8, for both MicroF'1
and MacroF1l. We also present the results achieved by the best stacking and the best
individual algorithm. For all evaluated collections, we can observe that there is still large
potential to be explored - in some collections (i.e., IMdB and Reut) more than others
(i.e., Sogou). Despite being unrealistic to assume that meta-layer will always make the
best choice, comparing all these results show us how much we can still engage efforts in

this line of research, trying to improve the results obtained in this dissertation.
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Chapter 5

Conclusion and Future Work

In this dissertation we present two important contributions to the application of Stacking
in Automatic Text Classification (ATC): a thorough study of cost-effectiveness trade-offs
of stacking and the proposal of a new oracle method to predict the best ensemble com-
bination for a dataset at a low cost. Our extensive experiments, composed of 4 textual
representation methods, 8 datasets, 4 non-neural based algorithms and 2 neural-based
algorithms, provided us with answers to questions that had not yet been explored in
the literature before. By performing stacking with different time constraints, we showed
that it was possible to obtain combinations that positively answered the posed ques-
tions regarding the time-constrained stacking and the oracle predictions in terms of both,
effectiveness and efficiency.

We highlight general and practical guidelines based on our extensive experiments.
First, we notice the consistent appearance of recent meta-features on the best combi-
nations of base learners obtained for each evaluated research question (Tables 4.7-4.9).
In fact, due to the focus of meta-features on summarizing relevant distance-based in-
formation from the original features, we strongly suggest their exploitation in ensemble
combinations. Moreover, the largest datasets benefit from additional data to fine tune
the Attention-based methods BERT and XLNet for the classification task. Therefore,
combinations including both of these recent and distinct paradigms (Meta-Features and
Attention) for stacking were able to produce very effective results on most datasets (as
shown in Table 4.13). We suggest that stacking methods should start by exploiting these
two paradigms in conjunction. Our experiments show the need of specific stacking solu-
tions for different scenarios/datasets. The application of our proposed Oracle efficiently
predicts effective best base models on time-constrained scenarios, allowing adaptable so-
lutions that automatically optimize the choice of base learners for each specific dataset.
We suggest to exploit the Oracle in all these situations.

As future work, we will propose and evaluate different extensions for our Stacking
strategy. First, we plan to add new and more recent classification algorithms proposed
in the literature, such as different variations of the BERT algorithm (e.g., RoBERTa
and DistilBERT Liu et al. [2019] to the Stacking. For each base algorithm considered

in our stacking, we will apply recent models of classification interpretability [Lundberg



5. CONCLUSION AND FUTURE WORK 54

and Lee, 2017| to extract explanations related to its predictions, evaluating how much
each classifier contributes to the final prediction in the meta-layer. We did not find
studies in literature that explore interpretability models for stacking strategies, despite
the potential of this combination to improve meta-layer decisions and, consequently,
the global effectiveness of a stacking strategy. We also aim to explore multi-objective
feature selection [Viegas et al., 2018] in the stacking meta-layer in order to optimize
both effectiveness and computational cost. We will also exploit recent advances in the
pre-processing pipeline for text classification in the meta-layer as well as other types of
constraints (e.g., labeling effort) [Cunha et al., 2020b].

There is also room for improvement regarding the Oracle. For example, we can ap-
ply selective sampling [Silva et al., 2016] strategies to reduce the total training data used
for the base algorithms, decreasing Oracle’s computational training cost and improving
the total time cost. These strategies make it possible to explore different granularities of
training data reduction, according to dataset characteristics. It is important to mention
that our Oracle proposal and its possible improvements have applicability in other tasks,
such as Recommender Systems based on ensemble approaches [Fortes et al., 2018, a

scenario we also intend to explore.
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