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Resumo

Este trabalho investiga o comportamento dinâmico dos dados de sensores na Internet
das Coisas (IoT, do inglês Internet of Things). Devido ao crescente número de ini-
ciativas na IoT, com seu impressionante número de dispositivos coletando um grande
volume de dados de fenômenos do mundo real, há uma iminente necessidade de soluções
adequadas aos seus desafios. Uma parte importante da atual IoT é a Internet das Coisas
Colaborativa (CoIoT, do inglês Collaborative IoT), que é composta, principalmente,
por componentes baratos e mantidos por usuários comuns, afetando os dados gera-
dos. Assim, soluções para a IoT devem considerar o aprimoramento da segurança de
seus dispositivos, bem como a qualidade e confiabilidade dos seus dados, mas sendo a
eficiência e robusto aos desafios deste novo cenário.

Um tópico que vem sendo usado com sucesso para compreender mais profun-
damente fenômenos do mundo real é o estudo da dinâmica, que visa entender como
sistemas evoluem com o tempo. Uma importante ferramenta com sólidos resultados na
análise da dinâmica de séries temporais é a transformação de padrões ordinais. Con-
tudo, embora a dinâmica tenha o potencial de servir de base para novos domínios de
representação para a análise de dados na IoT, há questões em suas transformações que
devem ser tratadas para sua aplicação adequada.

Este trabalho tem como objetivos avançar o estado da arte na análise da dinâmica
de séries temporais, em sua adequação para os desafios da IoT, e propor soluções
baseadas em comportamentos dinâmicos para o uso mais confiável dos dados da IoT.
Para avançar na aplicabilidade das transformações de padrões ordinais para cenários
desafiadores, como é o caso da IoT, são propostas estratégias em duas principais di-
reções. Uma primeira estratégia tem como objetivo prover a mínima dependência na
seleção de parâmetros na transformação, considerando o comportamento multiescala
de uma nova métrica proposta, a probabilidade de auto transições, que se mostraram
úteis na distinção de dinâmicas de séries temporais. A segunda estratégia consiste
em um índice de separabilidade de classes, que é um valioso método para estimar os
parâmetros mais adequados para as transformações de padrões ordinais, no contexto
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da classificação de séries temporais. Em respeito à aplicação da análise da dinâmica
de séries temporais para os cenários de IoT, primeiramente são dados esclarecimentos
quanto ao contexto da CoIoT. Nós provemos um melhor entendimento sobre as prin-
cipais características e propriedades dos dados gerados por seus sensores e seus princi-
pais problemas. Em seguida, são propostas estratégias para a classificação de dados de
fenômenos físicos coletados pelos sensores da CoIoT e um método para incrementar a
segurança dos dispositivos da IoT contra ataques de botnet, ambos considerando seus
comportamentos dinâmicos. As estratégias propostas foram comparadas com trabalhos
relacionados e os resultados demonstraram seus potenciais no avanço da aplicabilidade
das transformações de padrões ordinais para os cenários da IoT. Nós mostramos que a
construção desta nova representação auxilia na escalabilidade, evitando comparações
com uma grande quantidade de dados, sendo robusta para os problemas dos dados da
CoIoT. Assim, por meio dessas abordagens, é possível desenvolver soluções para a IoT
que podem se beneficiar dos aspectos únicos de sistemas dinâmicos.

Palavras-chave: Internet das Coisas, Sensoreamento Colaborativo, Dinâmica de
Séries Temporais, Transformações de Padrões Ordinais..
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Abstract

This thesis investigates the dynamical behavior of time series data from iot sensors.
Because of the growing number of IoT initiatives, with its impressive number of devices
collecting a large amount of data from real-world phenomena, there is an imminent need
for solutions that are adequate to their issues. For instance, an important part of the
current IoT is the coiot, which is mainly composed by cheap components and managed
by common users, affecting the generated data. Thus, solutions for IoT must consider
improving the security of those devices, as well as the quality and reliability their data,
but being efficient and robust to the issues from this novel scenario.

A subject that has been successfully used for a deeper comprehension of several
real-world phenomena is the study of dynamics, which aims to understand systems that
evolve in time. An important tool with solid results concerning the analysis of time
series dynamics is the ordinal patterns transformation. However, while the dynamics
has the potential to be the basis for novel representation domains to the analysis of IoT
data, there are issues on their transformations that must be handled for their proper
applicability.

This work aims to advance the state-of-the-art in the analysis of time series
dynamics, to be adequate for the IoT issues, and to propose solutions based on dy-
namical behavior for a more reliable use of data from IoT. In order to advance the
applicability of ordinal patterns transformations for challenging scenarios, such as IoT,
we propose strategies in two main directions. A first strategy is aimed to provide mini-
mum dependency on the selection of parameters by the transformation, by considering
the multiscale behavior of a novel proposed metric, the probability of self-transitions,
which are shown to be useful for the distinction of time series dynamics. The second
strategy consists of a class separability index, which is a valuable method to estimate
the most adequate parameters for the ordinal patterns transformations, in the context
of time series classification problems. With respect to the application of the analysis
of time series dynamics to IoT scenarios, we first give an enlightenment on the CoIoT.
We provide a better understanding on the main characteristics and properties of data
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that are being generated by their sensors and its inherent problems. Then, we provide
strategies for the classification of physical phenomena data collected by CoIoT sensors
and a method to increase the security of IoT devices against botnet attacks, both con-
sidering their dynamical behavior. The proposed strategies were compared to related
work and the results show their potentials on advancing the applicability of ordinal
patterns transformations for the IoT scenarios. We show that the construction of this
novel representation helps in the scalability, avoiding comparisons with a large number
of data, and being robust to the problems of CoIoT data. Thus, by following these
approaches, it is possible to develop solutions for IoT scenarios that can benefit from
the unique aspects of dynamical systems.

Palavras-chave: Internet of Things, Collaborative Sensing, Time Series Dynamics,
Ordinal Patterns Transformations.
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Chapter 1

Introduction

The urban setting has developed in many ways, making life in urban centers a con-
venient and attractive option for more and more people. Estimates say that by 2019,
approximately 9% of the world’s population will be living in one of the 41 most pop-
ulous cities on the planet, megacities with more than 10 million inhabitants1. This
agglomeration of people will create a set of situations and challenges for the local ad-
ministration of these cities. In order to deal with these challenge, local authorities and
governments are regularly applying new technologies to deal with the massive demands
for shared services; nevertheless, much of the technology clash in the scalability that
makes these approaches impractical [Machado et al., 2015].

Industries and academia have pursued alternatives to the cities’ problems, where
several areas of study have contributed to sustainable ways of dealing with various chal-
lenges in areas such as pollution [Mei et al., 2014], urban mobility [Pan et al., 2013a],
public safety [Catlett et al., 2018], urbanism [De Nadai et al., 2016], and telecommuni-
cations [Horanont et al., 2013], among many others. Most of these alternatives rely on
sensing systems to monitoring certain environment variables through a conventional
sensing system consisting of physical devices with a well-defined purpose. Also, they
usually require high implementation and maintenance costs when applied over large
coverage areas, making the system unfeasible for most of the cities.

On the other hand, alternatives for urban sensing independently of physical sen-
sors have gained momentum and attention from researchers and government. In this
scenario, urban sensing explores virtual sensors, software tools that integrate external
data sources, statistical methods and data analyses to provide streams of information
on a large number of environmental variables. Especially with complex sensors, vir-
tual sensors, which manipulate two or more data sources, have expanded the sensing

1https://www.economist.com/node/21642053
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2 Chapter 1. Introduction

spectrum in general, adding the ability to measure variables whenever there are no
conventional sensors, such as social and behavioral aspects.

These new sensing capabilities leverage urban computing and allow approaches
that operate on variables from different domains and sources. Since urban computing is
strongly coupled with human behavior, the close examination of the collective behavior
and other social aspects in light of the spatiotemporal conditions represent a new
horizon for the understanding of urban areas.

1.1 Thesis Statement

Next, we present the three key elements of this work.

Research Problem: this thesis presents the investigation of the challenges of
providing scalable urban sensing in large geographic areas. Since static physical sensors
are traditionally the primary technology of urban monitoring, deploying and managing
them represent a significant financial and ecological cost. Due to the hardware limita-
tions, there are currently no sensing mechanisms for various social, human behavioral
and spatiotemporal variables and adding new variables to the set of monitored char-
acteristics is not a viable task. Therefore, in this thesis, we investigated solutions to
overcome the limitations of hardware-based sensing to provide large-scale, multimodal
sensing and new sensing capabilities using Online Social Networks.

Key Idea: to explore alternative ways of providing spatial, temporal and social
information through complex sensors, a category of virtual sensors that leverage public
data and apply statistical analyses to take advantage of citizens’ ubiquity and the
popularity of personal devices to provide efficient sensing of great capillarity.

Objectives: the main objective of this thesis is to propose a scalable and repli-
cable sensing alternative to support urban computing applications. Specifically, to
present mechanisms capable of providing insights and relevant data capable of ex-
tending the conventional sensing spectrum of an urban scenario and its citizens. In
particular, propose methodologies and frameworks capable of providing information
about social, spatial, and temporal aspects, as well as favoring open and popular data
sources that allow reproducibility in different cities around the world. Moreover, to use
this information to solve particular problems such as a message forwarding protocol
and a distributed cache management mechanism.
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1.2 Contributions

In the following we summarize the contributions present in this thesis.

• In the context of urban sensing, we have investigated and developed scalable and
reproducible sensing mechanisms. The mechanisms and analyses developed in
this work explored public data — mainly from OSNs — to estimate properties of
mobility, sociability, urban planning, and others. In this way, user engagement
can leverage sensing capabilities, and the massive popularity of these applica-
tions can provide reproducibility in different locations around the world [Machado
et al., 2015, 2017].

• In the context of computer networks, we investigated how social and spatiotem-
poral aspects can support wireless networks. Initially, we explored the dynamics
of encounters and co-location of users of OSNs to provide efficient Device-to-
Device (D2D) communication. We designed a protocol for Mobile Social Net-
works (MSNs) that is aware of and adaptable to fluctuations in urban and social
characteristics [Machado et al., 2016b,c]. In addition, we explored such dynamics
to identify spatiotemporal characteristics of the consumption and publication of
online content [Machado et al., 2016a]. From these observations, we developed a
content caching framework that supports locally content provisioning on wireless
networks through cooperation between users via D2D [Machado et al., 2017]. The
results of these investigations showed gains in the performance of the networks,
as well as the relevance and applicability of the social and spatiotemporal aspects
that can be considered in the development of network protocols.

• In the context of the social and spatiotemporal aspects, we used the mechanisms
of sensing and analysis proposed to extract observations about urban dynamics
and collective behavior. Our proposed mechanisms evidenced significant changes
in the spatial distributions of users, social graph structure, and the popularity of
the points of interest (POI) of the cities. The results indicated a correlation of spa-
tial distribution of users and environmental temperature, such that the climatic
variable may be used as a predictor for fluctuations of social and spatiotemporal
variables [Machado et al., 2015]. Furthermore, the collective behavior presents
significant regularity, where we identified social persistence through re-encounters
of users and spatial persistence through regular visits to the same regions and
POI [Machado et al., 2017]. Spatial and temporal patterns have also been found
in online content consumption preferences. The analyses of the content shared
by OSN users indicated that, in urban areas, two or more geographically close



4 Chapter 1. Introduction

users may request the same content or service over short periods and this re-
dundant demand has dynamic characteristics across the city regions and daily
hours [Machado et al., 2018].

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of
the social and spatiotemporal aspects of urban sensing. Chapter 3 presents a study of
the spatiotemporal characteristics of six cities around the world, investigating the rela-
tionship between the spatial distribution of their inhabitants and the local temperature.
Chapter 4 presents the results of a long-term study of the spatial and temporal char-
acteristics of mobile application users, as well as the content consumed and published
by them. Chapter 5 presents an alternative of opportunistic communication centered
on the dynamic characteristics of the social and proximity graph. Chapter 6 presents
an alternative approach to offload redundant demand in cellular networks by exploit-
ing social and spatiotemporal persistence characteristics of mobile users. Chapter 7
presents a study of the urban scenario considering government and mobile applications
data to leverage the capacity of sensing in urban scenarios. Finally, Chapter 8 presents
the conclusions of this work and some future directions.



Chapter 2

Social and Spatiotemporal Aspects
of Urban Computing

Modern urban settings are environments with an abundance of variables and charac-
teristics that make these places interestingly complex. The crowding of people and
the way they behave are critical to the city’s essential services such as transportation
and communication. In this chapter, we introduce the urban computing and sensing,
as well as the dynamics that surround the main entities of the urban environments,
which concern people, places, and objects, under the light of space and time. We
present recent works that use social, temporal, and spatial aspects or a combination of
them to propose solutions to problems encountered in urban computing, especially in
large-scale scenarios.

Initially, Section 2.1 presents the introduction that discusses the use of social and
spatiotemporal aspects in pervasive applications and their convergence for urban com-
puting applications. Section 2.2 presents the fundamental concepts of urban sensing
and analysis of social aspects. Section 2.3, presents recent studies and applications that
use social and spatiotemporal data to undertake problems in areas such as wireless net-
works, urban mobility, transportation, Internet-of-Things (IoT), public security, urban
planning, and others. Finally, Section 2.4 presents the conclusion.

2.1 Introduction

Urban areas can be seen beyond a form of social organization: they can also be seen as
complex systems consisting of a large number of variables that provide great intrinsic
dynamism. Social and economic factors have been determinant in attracting people,

5
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services and all kinds of investments to large urban areas, consequently introducing
great heterogeneity and additional complexity.

Managing such complex and dynamic systems is a common challenge for tech-
nological development, where on one hand we have the governmental authorities with
a great interest in solutions for the management of resources and services and on the
other hand, we have industries and academia investigating and proposing solutions.
From this motivation, computer-based solutions evolved into urban computing, a con-
cept introduced by Paulos and Goodman [2004] and subsequently defined by Kindberg
et al. [2007] as the integration of computing, sensing, and actuation technologies into
urban settings and its inhabitants’ lifestyles.

Many authors have explored and contributed to the development of the term
and the topic, as Zheng et al. [2014b] that define the term as a process of collecting,
integrating, and analyzing a significant volume of heterogeneous data related to urban
areas, and supporting the solutions to the challenges and problems of this type of envi-
ronment. Recently, Silva et al. [2019] defined urban computing as computer-mediated
means to understand the aspects of urban phenomena and estimate the future of the
cities. The authors also describe it as an interdisciplinary area resulting from the fu-
sion of computer science fields, as human-computer interaction, computer networks,
and data mining with traditional areas such as economics, geography, and sociology in
the context of urban environments. Therefore, the development of solutions for urban
settings should consider the effects of their implementation in the short and long term,
especially considering the social, economic, and environmental aspects. Nevertheless,
the development process of these solutions can be expensive because of the usual large
scale deployment required by urban scenarios.

The subset of technology solutions, especially computer-based ones, has explored
alternatives to address the challenges of scalability by using alternative forms of ma-
nipulation of the required data. The growing popularity of online content-sharing
platforms has had a major impact on how we interact with the web nowadays; in
particular, mobile applications have become one of the most popular forms of online
content consumption. In addition, smartphones have become the primary device for a
significant portion of Internet users.

Thus, solution developers have explored mobile applications as an alternative
way of drawing conclusions about the state of the city in various aspects due to their
massive acceptance among citizens and the potential for data collection [Mei et al.,
2014; Zheng et al., 2013; Gomide et al., 2011]. Such developers have explored social,
temporal, and spatial aspects through these applications to get real-time data about
the population needs [Silva et al., 2019]. For instance, the study of computer network
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worloads has provided significant performance improvements in supporting resource
provisioning.

In recent years, the studies of demand provisioning for computational resources
have developed substantially, especially network-provided services, evolving from
temporal-based to spatiotemporal-based prediction. In the computer networks, Con-
tent Distribution Networks have played an important role in this evolution by promot-
ing the displacement of content, traditionally stored in the core of the network, toward
the edge of the network.

Spatial properties are an important factor in the performance of these networks
by providing indicators of geographic locations suitable for the deployment of cache ser-
vices, content replicators and mobility management in general [Boukerche et al., 2002;
Zhang et al., 2010; Bamis et al., 2008]. In mobile networks, these cache mechanisms can
be part of users’ equipment, which makes the users’ behavior a critical aspect, where
the influence of the behavior can be observed in the temporal, spatial, and social con-
texts. Therefore, despite the challenges related to the node mobility [], behavioral and
social aspects are effective predictors of demand, among other characteristics.

From the point of view of behavioral aspects, the applications have exploited the
individual preferences of the users concerning the content consumed and the charac-
teristics that orbit the moments of consumption. An abstract example is a user who
prefers a specific content type from a particular provider according to a given environ-
mental condition; in a concrete example, this is a user with a preference for watching
videos provided by YouTube when he is at home.

From the perspective of the social aspect, applications have explored social links
between users, such as co-location, friendship, and multiple encounters to identify
clusters of content and users, as well as manage resources in the infrastructure and
user equipment. In addition, social relationships can be imprinted on devices through
manufacturers’ initiatives and the behavior of their owners.

2.2 Measuring The Urban Scenario

In this section, we introduce fundamental concepts for the study of urban variables
through spatial, temporal, and social properties.

2.2.1 Urban Sensing

The task of measuring urban variables represents a multidisciplinary challenge. For
this reason, alternative mechanisms have been designed over the years to sense urban
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areas considering many constraints, in special the economic and spatial challenges.
Urban sensing is one of the prominent alternatives that has been studied to ad-

dress the limitations of coverage and sparsity of sensing in large geographical areas. As
defined by Campbell et al. [2006], urban sensing is the action of collecting data about
people’s immediate surroundings and how people interact and interpret their surround-
ings. The authors argue that this people-centric perspective explores the premise that
people are no longer only data consumers, nonetheless data producers and consumers
form two sets with a significant intersection. According to Shin et al. [2015], urban
sensing is a type of social sensing through mobile devices that provides opportunities to
track multiple data points in real-time, and therefore to sample the dynamic behavior
and inherent complexity of human activity within the city. In this way, urban sensing
goes beyond conventional sensing based on Wireless Sensor Networks and Internet-of-
Things and explores personal devices and crowds of users as key players in the data
collection process.

Similarly, Jaimes et al. [2015] defined Crowd Sensing as mechanism for sensing
based on the collection of observations through a large number of individuals. Ac-
cording to this definition, one individual may not provide sufficient data, however the
aggregated data from many individuals can provide sampling with significant quality
and coverage of the target phenomena. Ma et al. [2014] defined the concept of Mobile
Crowd Sensing as a sensing paradigm in which individuals with sensing and computing
devices collectively share data and extract information to measure and map phenomena
of common interest, where applications are categorized into two groups.

• Participatory Sensing: requires the participants to meet the application requests
consciously. The user is directly involved in the sensing task. Applications in
this category place the user as part of the decision and collection process, where
each user acts as an individual sensor node [Ganti et al., 2011].

• Opportunistic sensing: users act passively on the sensing process. The sensing
engine runs in the background and collects data opportunistically without active
user involvement. It shifts the burden of supporting an application from the
custodian to the sensing system [Khan et al., 2013; Lane et al., 2008].

Thus, the abundance of data collected through users, personal devices, conven-
tional sensors throughout the cities’ elements, makes it possible to combine data sources
that broaden the sensing spectrum through software-based sensing, or virtual sensors.
According to Madria et al. [2013], a virtual sensor is the emulation of a physical sensor
that obtains data from one or more underlying physical sensors, capable of providing a
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customized view or measurement to the user. Kabadayi et al. [2006] defined virtual sen-
sors as sources of indirect measurements and abstract conditions using heterogeneous
groups of physical sensors through the combination of their data. In this approach,
signals from different physical sensors can be used together to provide the measurement
or output signal of a variable for which there is no physical sensor.

In this study, we explore urban sensing techniques as defined by Campbell et al.
[2006], such that the approaches presented mainly explore the data obtained through
users or other distributed methods, as well as mechanisms indirectly dependent on
physical sensors, such as the virtual sensors as defined by Kabadayi et al. [2006].

2.2.2 Spatial and Temporal Aspects

The valuation of data has caused great impacts on the technologies that we use every
day. Industry, academia, and governments have seen data as a valuable asset for
scientific, economic, and social development. Data related or indexed by spatial and
temporal characteristics have been widely used in real applications within the reach of
most citizens of urban areas. This massive data supply has driven the urban sensing
initiatives that see in these data opportunities to develop methods and mechanisms
able to expand the capabilities of observing urban variables [Machado et al., 2015].

Since urban sensing naturally requires the sensing of a wide geographic area, tra-
ditional sensing has been investigating alternatives to provide the monitoring of urban
variables using scalable approaches. Wireless sensing systems and data aggregation
mechanisms have been investigated, however these approaches do not overcome the
challenges directly related to the use of physical sensors [Chen et al., 2011]. Sensing
based on physical sensors has a fundamental role in the monitoring of the urban sce-
nario, especially the sensing of environmental variables. Nevertheless, in this sensing
paradigm, the equipment used is strongly limited by the purpose, i.e., an immutable
set of observed variables, also the costs of implementation and maintenance.

Recently, the urban sensing have faced the challenge of improving and expanding
sensing capabilities [Zheng et al., 2016; Khan et al., 2013]. Figure 2.1 presents the
sensing capabilities through a sensing spectrum divided into two major paradigms.
The virtual sensing paradigm is the result of urban sensing studies that explore the use
of one or more alternative data sources to provide ubiquitous and efficient sensing, as
well as sensing to variables that do not have conventional sensors. The alternative data
sources used in these approaches represent the reuse of data collected for a different
purpose that require statistical methods, machine learning, and artificial intelligence
to extrapolate the usefulness of the data [Silva et al., 2019], in addition to providing
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Figure 2.1. Sensing spectrum.

sensing that uses less or dispenses specific equipment [Bassoli et al., 2007].
Spatiotemporal characteristics have been used to evaluate the urban scenario for

decades; however, the increasing ease of data collection has increased the relevance of
these properties as effective ways of indexing the dynamics of urban variables. Schuster
et al. [2013] argues that the context data can be modeled on a taxonomy organized
into space, time, people, and information dimensions. The authors demonstrate that
the spatial dimension determines where urban and social dynamics occur and the geo-
graphical area of observation determines the scope and types of interactions observed.
According to the authors, on a geographic scale, a small spatial scope would cover the
events observed at the level of a place; ideally, events limited by a few meters observed
in places like a club or a conference. In the medium scope, the spatial characteristics are
indexed at the city level, referring to the citizens, regions of the city and neighborhoods
as examples, while in a large scope, the events are defined on a global scale.

The data from Online Social Networks (OSN), mobile telephony, and traffic have
been used to evaluate the spatiotemporal properties of various cities around the world.
From this point, we use the term OSN for any online platform for social interaction ca-
pable of capturing users’ spatiotemporal properties, such as Twitter1 and Instagram2,
which indirectly capture and make these properties available through metadata, as well
as Foursquare3 and Swarm4 that focus and depend directly on this type of data, also
known as Location-Based Social Networks (LBSN). Pappalardo et al. [2015] explored
the dichotomy of spatial behavior that determines two distinct classes of clients, accord-
ing to the mobility estimated through the records of the calls registered by a cellular

1https://www.twitter.com
2https://www.instagram.com
3https://www.foursquare.com
4https://www.swarmapp.com

https://www.twitter.com
https://www.instagram.com
https://www.foursquare.com
https://www.swarmapp.com
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operator. The analyses showed that users could be classified among returners, which
are users with significant geographical persistence, and explorers, which are users who
frequently visit places never visited before. Using mobile data, Horanont et al. [2013]
investigated users’ daily activity preferences and identified the influence of weather
conditions. From the spatial information captured by phone call records, the authors
estimated the mobility at the city level, as well as user activities and Points-of-Interest
(POI).

2.2.3 Social Aspects

In this section, we present some fundamental characteristics of the evaluation of social
aspects through graph theory. Complex networks and graph analysis have provided
robust methods that are widely used for evaluating social dynamics and investigating
the relationships and interactions among users themselves and with other entities, such
as places and objects [Boukerche and Tropper, 1998].

The undirected graph is one of the most used representations for social charac-
teristics. Formally, an undirected graph is defined as G = (V,E), where V is a finite
set of vertexes representing the network nodes, and E is the finite set of edges that
represent the relationships among the nodes; thus, a e ∈ E is a set {u, v}, where u and
v ∈ V . Directed graphs are an alternative representation of the relationship between a
set of vertexes, where the edges represent an unequal relationship. Thus, in a directed
graph G′ = (V,E), where the set of edges e ∈ E is formed by ordered pairs (u, v), such
that u, and v ∈ V .

The representation of proximity graphs typically uses undirected graphs to model
homogeneous relationships, such as co-localization. Nevertheless, directed graphs are
also used to represent social relationships, as following and matching, which are com-
mon in OSN applications. Figure 2.2 exemplifies two scenarios with distinct graph
instances. Figure 2.2a presents an undirected graph of proximity between vehicles,
where the vertexes are the vehicles, and the edges represent the connectivity between
them. In this scenario, the connectivity relationship is presented as bidirectional, such
that the existence of an edge represents the communication capability between the two
involved vehicles. In Figure 2.2b, the graph represents the transitions between a set of
places, where the edges represent the origin and destination of the commute. Unlike
the non-directed graph, in this example, the edges indicate one-way transitions to the
airport and the office and the round-trip, or bidirectional trip, to other places.

The connectivity of a graph is one of the fundamental characteristics of these
data structures. An undirected graph is said to be connected if there exists a
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(a) Undirected graph of wireless connectivity

(b) Directed graph of transitions among places

Figure 2.2. Applications of undirected and directed graphs.

path between any two vertexes u and v ∈ V , where a path is a sequence of edges
s = {ui, vi}, {uj, vj}, . . . , {un, vn}, such that these edges represent a sequence of path
fragments from u to v. Similarly, a directed graph is strongly connected if there is a
path between any vertices u and v ∈ V . Therefore, in a connected or strongly con-
nected graph, there are no unreachable vertices. Additionally, a graph is biconnected
or non-separable when this graph is connected or strongly connected, and it retains this
property even when any vertex is removed. This property evidences the characteristic
structural resilience of a network or its ability to maintain connectivity, independent
of the edges and vertices removed.

The set of dominant vertexes of a graph G = (V,E) is a subset of vertices Dv ⊂ V ,
where any vertex v /∈ Dv is connected through an edge to at least one vertex u ∈ Dv.
Similarly, the set of dominant edges of a graph G is the set of edges De ⊂ E, where
any edge e /∈ Ev is adjacent to at least one edge i ∈ De. It is important to note that
finding the smallest dominant set of a graph is a classic NP-complete decision problem
with efficient approximation algorithms.
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Assortativity, also known as homophily, is a property widely observed in networks
with social characteristics. It is the natural preference of the network’s vertexes to
connect to other vertexes with similar characteristics. The similarity of the vertexes is
calculated using their attributes, often using the correlation of the number of vertex
connections, or degree of the node, as well as other similarity metrics, such as cosine
similarity. Real networks usually show non-zero assortativity concerning the degree of
the vertexes.

From this point, we will define some of the essential measures of centrality used
in graph studies. The measures of centrality support the identification of prominent
vertexes of the network considering local or global properties. The measure of centrality
based on the degrees of the vertices is one of the fundamental measures that evaluate
the connections of the vertex with the network by using the number of incident edges.

In directed graphs, a single vertex has independent degrees that denote the edges
directed to the vertex and the edges directed to the neighboring vertexes, respectively
named indegree and outdegree. The degree of centrality is a metric that denotes a local
property because it considers only the immediate neighborhood of a vertex made of
the vertexes directly connected. For this reason, the global evaluation of this property
may use the distribution of degree centrality.

The distance between two connected vertices u and v ∈ V is defined by the total
of edges contained in a path between these two vertexes, such that the shortest path
is any path that connects the two vertexes through the smallest series of non-repeated
edges. The proximity metric of a vertex is a way to evaluate the separation of a vertex
in the network; it considers the shortest path from the vertex to every other vertex of
the network. Thus, the closeness centrality value of a vertex v is defined by

C(v) =
|V | − 1∑
u∈V d(v, u)

(2.1)

where V is the set of vertexes of the graph, and d(v, u) is the function of the shortest
path between the vertexes v and u.

Betweenness centrality is a metric that evaluates vertexes that act as bridges
between any other two vertexes of the graph via the smallest path between them. The
betweenness of a vertex has great applicability in the study of the structural properties
of networks in general, especially in studies of propagation of information due to its
evaluation concerning the global relevance of a vertex. The betweenness centrality of
a vertex v is defined by
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B(v) =
∑

v ̸=u̸=w∈V

σu,w(v)

σu,w

(2.2)

where σu,w represents the total of shortest paths from vertex u to w, and σu,w(v)

represents the total of shortest paths that pass through the vertex v.

The clustering coefficient measures the probability of group formation between
the vertices of a graph. Group formation is a natural phenomenon commonly found in
real networks, especially social networks. Social networks present subsets of vertices
with a high density of edges that represent groups of friends, relatives, and co-workers,
among others. The clustering coefficient of a vertex v is given as

Cc(v) =
2|{euw : u,w ∈ Nv, eu,w ∈ E}|

kv(kv − 1)
(2.3)

where Nv represents the set of neighbour vertexes of v, E the set of edges, and kv the
cardinality of Nv; therefore, there are kv(kv − 1) possible edges among the vertexes in
Nv. From this, the clustering coefficient of a graph can be calculated as

Gc =
1

|V |
∑
v∈V

Cc(v) (2.4)

Studies of aspects and social structures have extensively explored graph theories
to understand the relationships and interactions of people with each other and the world
around them. Other properties, methods, and metrics not included in this discussion
can be found in [Vegni and Loscri, 2015; Qiu et al., 2017].

2.3 Urban Sensing Applications

In this section, we gather applications related to the spatiotemporal and social aspects
for urban sensing or smart cities. The selected works are grouped into four major
areas: wireless networks, vehicular networks and transportation, Internet-of-Things,
and urban sensing in general.

2.3.1 Wireless Networks

Due to the continuous increase in the popularity of smartphones and other personal
devices, in the coming years, the expected growth of cellular data traffic is by dozens
of times, causing overload on cellular networks. As promising ways to address this
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problem, the approaches based on cooperation between geographically close users and
offloading techniques are becoming a turning point for wireless network development.

The User Equipment (UE), Radio Access Networks (RAN), and Core Networks
(CN) may benefit from observable social aspects and features able to support the man-
agement of content caching, redundant content requests, and match-making systems,
among others. The Content-Centric paradigm and the direct communication between
devices, as foreseen in the D2D model, may provide significant advantages over the
traditional model of communication, such as efficient spectrum usage, energy saving,
extension of network coverage, and increased throughput.

Chen et al. [2015] promoted the offload of network demand and improved the
throughput through direct communication between devices that are geographically
close using a cooperative approach for relay selection. In the proposed cooperative D2D
model, each user has two options for relay selection: social trust or social reciprocity.
In the social-trust based selection, the knowledge of preliminary social context is used
to evaluate the trustworthiness of the neighbors. Thus, family members and friends are
usually trustworthy enough to serve as relays, as these social links often characterize
altruistic users with reliable behavior.

According to Chen et al. [2015], the personal devices carried by human beings
can provide knowledge of human social ties and trustworthiness that can be used to
achieve effective relay assistance for cooperative D2D communications. The presented
model assumes that two users have social trust toward each other when they present
some social link, which can be kinship, friendship, or colleague relationship.

Furthermore, identifying social links between users is a critical task through their
devices. Thus, the authors adopted a network-assisted approach, where the devices
carry out the identification process exploring common social features in a matching
process that may evaluate OSN profiles and contacts book information, such as address
and phone number. In the opposite of social trust that requires strong social ties among
users, social reciprocity is a mechanism for promoting cooperation among the users in
the absence of social trust and still guaranteeing mutual benefits directly or indirectly
using a coalitional game. In the direct reciprocity, only the two individuals who share
resources and cooperate obtain the benefits, following the principle “I help you, and
you help me.” On the other hand, in the indirect reciprocity, a third party will reward
and cooperate, following a concept of “I will help you, and someone else will help me.”

Bao et al. [2013] leveraged the observation that cellular networks are typically
overloaded in crowded areas, such as peak hours of commutation or during high-density
events. In addition, a small number of online services and content providers are ex-
tremely popular, concentrating the access and requests of a large number of clients, for
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this reason, many people located in small areas may request the same popular content.
Looking at these scenarios, they proposed a solution exploring the possibility of reply
requests from spatially clustered clients sharing content stored locally on their mobile
devices, where such D2D communication can be mediated by servers, avoiding many
of the known problems of pure ad hoc communication.

In the proposed approach, the cellular operator activates the DataSpotting service
during high-demand situations, and the clients are instructed to report their locations
periodically, enabling the operator to build a map to indicate clusters of clients, called
data spots. The server uses the clients’ position to estimate the location and radii of the
data spots, and the spatial content availability. The clients are periodically updated
with information about near data spots.

When a client enters a data spot, it alerts the operator of its content requests,
and the operator manages a digest of the content catalog in different clients within
the same data spot. Then the operator applies a match-making service and notifies
the requesting client, using cellular connectivity as the control channel, to directly
connect to the appropriate neighboring device through WiFi to retrieve the content.
The authors argue that, in this way, the knowledge of cached content in the clients
does not spread among other devices, avoiding privacy concerns.

Furthermore, cell-tower mediated transfers are amenable to accounting and the
clients may have the choice to intentionally approach a data spot with interesting
content. The author investigated the existence of DataSpotting in real scenarios and
conducted a real measurement in the Manhattan area in order to understand client den-
sity dynamics, geographic distribution, and the typical contact duration for pedestrian
users.

Shafiq et al. [2015] presented a characterization of the spatiotemporal dynamics of
the workload in cellular networks, investigating real traffic datasets of a mobile operator
in a wide metropolitan area of the United States. The analysis combines data collected
from RAN, capable of providing customer geolocation records according to the cell
used by the mobile device, as well as records from the CN that contain flow-level IP
traffic information originating from or directed to customers. The analysis presents
characteristics of traffic volume organized in four categories: byte volume, number of
flows, packets, and users, indexed temporally and spatially.

Despite the thousands of observed applications in the datasets, only 100 more
popular applications correspond to more than 95% of the volume of transferred bytes.
The results of the temporal characterization of aggregate traffic, that is, the compound
of traffic from all observed applications, indicated strong diurnal behavior and two
daily peaks in the four traffic categories analyzed. However, the same traffic presents
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different temporal dynamics when classified by applications. For instance, social media
applications presented a growing volume of concurrent users and bytes transferred
throughout the day beginning at 8 a.m.; however, after the single peak at 3 p.m., the
user volume decreases linearly, whereas the volume of bytes transferred continues to
grow for another eight hours.

The geospatial analysis has shown that the geographical distribution of applica-
tion usage is skewed, such that the customers’ interests are heterogeneously distributed
and observable by the types of applications used. According to the results, web brows-
ing is the most ubiquitous category, where 80% of traffic is originated in only 50% of
all monitored cells, and all the demand related to dating applications originates in less
than 5% of cells.

In this way, geographic areas and neighborhoods present different characteristics
according to traffic volumes; however, two or more disjoint regions of the same category,
such as suburbs, university regions, and downtown, still show significant similarity
to the same characteristics. Such evidence shows that user interests in cellular data
networks are highly dependent on human behavior and social aspects, such that the
spatiotemporal characteristics of user groups, in particular locations and periods of the
day, present great potential in favor of network optimization.

Wang et al. [2017a] investigated the file-sharing dynamics through the Xender
application. The application transfers files independently of cellular networks using
WiFi tethering. According to the authors, this is one of the reasons that make the
application popular in countries with underdeveloped economy.

The study shows the analyses of approximately 5 million users and 90 million
file shares on the platform, where most of the shares are multimedia files, especially
videos. The results showed that the traffic presents significant variations according to
the temporal characteristics, where the total traffic increases by up to five times on
Sundays compared to the days of the week; in addition, ten to forty percent of the
traffic load corresponds to redundant content.

2.3.2 Transportation and Vehicular Networks

The modernization of public and private transport systems and vehicles has given pos-
itive results in the daily lives of their users, especially in metropolitan areas. Since
traffic is one of the critical issues in these environments, many efforts have been di-
rected toward optimizing urban mobility and user experience while making use of these
services [Boukerche et al., 2009].

Spatial and temporal aspects have been used for many decades to address these
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problems; however, only recently have social characteristics been added to the new
approaches. Social characteristics can be observed collective transportation systems
when the routine pushes random users to be together for minutes or hours multiple
times throughout the days and weeks. Similarly, users of private or individual trans-
portation can show social characteristics through their pairs of origin and destination,
or by sharing a portion of the path to their respective destinations [Boukerche and
Rogers, 2001]. In this section, we present recent studies that have improved solutions
to issues like demand prediction, content provisioning, and traffic, using the social,
spatial, and temporal contexts.

Vegni and Loscri [2015] described a large number of challenges and applications
of social aspects related to vehicle networks, and argue that the human behavior largely
impacts Vehicular Network (VANET) characteristics, from the drivers’ behavior to the
structure of the network. The authors focused on the development of Vehicular Social
Networks (VSNs), a special category of network created by the ability of socialization
among nearby vehicles.

The concept of sociability in vehicular environments emerges from the assumption
that drivers or vehicles may have common interests with their neighbors denoted by the
applications used and content or data consumed by these entities. According to the au-
thors, a VSN is defined as a group of vehicles that may have common needs, preferences,
or interests considering a single and shared spatiotemporal context. In particular, it is
a VANET that includes Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
paradigms, and additionally considers human factors such as personal preferences, reg-
ular mobility, and selfishness, among others aspects that affect vehicular connectivity
and performance.

Therefore, the connectivity between two or more individuals exceeds the exchange
of packages and allows the formation of social networks on-the-fly, where vehicle and
their neighbors group together opportunistically based on common characteristics,
goals, or binding relationships. The presented discussion emphasizes that the VSN
concept is not limited to private vehicles; it also includes trucks, buses, motorcycles,
and other vehicles private and public.

The authors discuss the VSN as a technology composed of two fundamental parts:
(i) a physical layer represented by the vehicular ad hoc network, and (ii) a social network
framework running on top of a physical vehicular network. The social framework
presented by the authors characterizes the existence of VSNs considering three criteria
that also determine the type of the network:

• Content-based is a VSN created from the relevance of the content available among
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members. The goal is to link users and their content of interest.

• Relationship-based is VSN where members are people who present common in-
dividual characteristics. It groups similar users, such as co-workers.

• Position-based is a VSN created when vehicles cross a particular zone of interest
and form a network for exchange of geographically relevant information.

Ni et al. [2017] examined the prediction of passenger demand in subway systems in
the occurrence of social events using OSN data. The authors argue that predicting de-
mands based on human behavior is a complex challenge when it involves non-recurrent
events due to their irregular and inconsistent nature, in such a way that the particular
characteristics of the investigated regions are relevant to the prediction model because
they reflect the characteristics the visitors.

For this reason, the authors have developed a systematic approach to examine the
activities of OSN users to assess the social characteristics surrounding subway stations
during sporting events in New York City. The study presented by the authors jointly
examines passenger demand, provided by local metropolitan public transport authori-
ties, and messages published on Twitter. The results indicated a moderate correlation
between the passenger flow and the activities recorded in the OSN during different
events recorded during the seven-month evaluation. The proposed approach takes ad-
vantage of the metadata and latent features of topics covered by Twitter messages to
enhance the generalization capability of the model.

From the results, the authors developed a prediction pipeline composed of a
hashtag-based event detection algorithm and an optimization model that combines
linear regression and the results of the Seasonal Autoregressive Integrated Moving
Average (SARIMA). The approach proposed by the authors is capable of achieving
98.27% accuracy and recall of 87.68% for the sporting events investigated. The authors
argue that user-generated content published in OSN has great value for the prediction
of the social, spatial, and temporal context of the inhabitants of the city, being able to
reflect the interests of users, social interactions, and characteristics of certain regions of
the city, such that correlations, as presented by the authors, can be used as alternatives
for predicting urban transport demand.

Uppoor et al. [2014] presented the challenges of simulating network environments
and argued that most of today’s network solutions have been precariously evaluated.
For this reason, the authors presented a synthetic dataset based on real data for a reli-
able simulation of these networks. The authors proposed a dataset generation process
and discussed the relevance of the simulation of micro- and macroscopic features.
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The dataset describes 24 hours of vehicle traffic in a 400 km2 area around the
city of Koln, Germany; specifically, the dataset replicates the driver behavior and the
traffic flow. The results showed that even simplistic assumptions about micro- and
macroscopic dynamics could significantly affect the topological properties of the sim-
ulated network. Thus, the authors conjecture that network evaluations that neglect
spatiotemporal aspects pose a high risk of skewing the evaluation or producing overop-
timistic results.

Nikolaou et al. [2016] investigated the cache management formed by individual
caches distributed among network clients. The work introduces cache placement strate-
gies that take advantage of the demand in the service and the social links among the
clients to manage popular content stored in the clients’ devices. Specifically, the pro-
posed mechanisms manage cached contents considering content consumption statistics
and social aspects of the network clients through their social relationships as repre-
sented in the social graph. Thus, the mechanisms proactively replicate the cached
content that is more likely to be requested based on the characteristics of the rela-
tionships. The main goal is proactively storing and positioning the content through
replication to strategically provide it locally to other customers.

The authors simulated a Content-Centric and vehicular network scenario; sim-
ulation results showed substantial improvement in customer perceived latency at the
cost of low bandwidth overhead of approximately two percent. In addition, the relative
cost of proactive content replication decreases as the size of the system increases.

2.3.3 Internet of Things

IoT devices have become popular and provided valuable sources of behavioral and en-
vironmental data. Such devices are increasingly taking part in the urban scenario, pro-
moting ubiquitous sensing of common spatial and temporal characteristics. However,
in addition to wireless sensor networks and other environmental sensing technologies,
researchers have explored the latent social characteristics of the devices used in IoT. In
this section, we present recent works that discuss the cooperation between IoT devices
using mainly social-inspired approaches.

Atzori et al. [2012] argued that the main challenges related to the current IoT
model are the discovery and composition of service, and attack the problem by intro-
ducing the social context proposing a Social-Internet-of-Things (SIoT) based on the
social relationship between objects. The authors proposed a distributed architecture to
enhance the ability of people and objects to discover, select, and use IoT services and
resources, giving the traditional paradigm the necessary structure to ensure network
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navigability such that discovery of objects and services can be effective and scalable as
in social networks.

The proposed architecture evaluates the trustworthiness between objects to lever-
age the interactions autonomously creating social groups, such as:

• Parental object relationship (POR): defined during the item production among
similar objects, built in the same period and implemented by the manufacturer.

• Co-location and co-work object relationship (CLOR and CWOR): objects es-
tablish the relationship when they cooperate frequently to provide application
services or constantly share the same geographic area, such as homes and offices.

• Ownership object relationship (OOR): this is when two or more objects are as-
sociated through the same user in a relationship of property or domain.

• Social object relationship (SOR): this is a link among objects whose association
occurs due to sporadic or continuous contact between their owners who also have
a social link with a significant trust.

The proposal also establishes categories for social structures that emerge from
the relationship between objects through relational models observed in Sociology and
Anthropology. In this direction, a set of objects can configure a social structure of
Communal Sharing when all objects present equivalence, collectivism, and absence of
any form of distinctiveness, in contrast to the structures of Authority Ranking, where
objects present relational asymmetry in hierarchical models that establish precedence.
In structures of Equality Matching relationships are based on reciprocity and balanced
exchange, in order that the cooperation between objects is egalitarian, while in Market
Pricing structures, relationships are defined via proportionality, where interactions are
defined on a shared scale of rate and values.

Lin and Dong [2018] argued that the social perspective can support the manage-
ment of large sets of connected objects in IoT scenarios. They introduce the evaluation
of trust among objects to improve the nodes interactions and their perceptions of un-
certainty and risk during the execution of tasks cooperatively, such that the trust in
the SIoT should be evaluated as a dynamic process.

The authors proposed a relational model based on fundamental elements: the
agents trustor and trustee, the goal, the evaluation of trustworthiness, the action, the
result, and the context. The trustor relies on its need for the trustee’s action to achieve
a goal. Thus, if the evaluation of trustworthiness is favorable, the trustor delegates the
tasks to the trustee and has the expectation of the result. The expectation is positive if
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the trustee can return a favorable result and is useful in achieving the goal; otherwise,
the expectation is negative, and the result is a threat against the goal. Since both the
trustor and the trustee are cognitive, the evaluation of trustworthiness is mutual. Both
pre-evaluate each other before the delegation of the task based on the context and past
experiences. In this stage, the trustor ranks the potential trustees, while the trustees
recognize malicious intents.

After the delegation and action execution, the results are used to perform the
post-evaluations in the trustor and the trustee. The evaluation is based not only on
the success rate but also on the gain, the damage, the cost, and the environment. The
authors argue that trust is context-dependent; therefore, the trustworthiness evaluation
of an agent’s performed actions must consider the task type and the environment, such
that a single agent may have different trust values for distinct actions and in different
environments.

Nitti et al. [2016] argued that the license-free ISM (Industrial, Scientific, and
Medical) band experiences coexistence issues, and as a result, the upload on the In-
ternet will then become more expensive in the next years, making it necessary to find
alternatives. In scenarios with shared channels and scarcity of radio resources, the
cognitive radio (CR) may represent a feasible alternative. Nevertheless, CR solutions
require the design of sensing techniques for continuous monitoring of the status of
the channels. The authors proposed the use of the SIoT paradigm to leverage the
autonomous cooperation among objects capable of establishing social relationships to
provide accurate sensing of radio resources.

Since, the CR systems should be aware of their operational and geographical
environment to define policies, internal state, and operational parameters. Thus the
cooperation of hundreds of devices, grouped in communities composed of users and
devices, is the principle behind the required temporal and spatial accuracy. Therefore,
the synergy of the SIoT paradigm and the CR technology may address the spectrum
scarcity based on the concept that the “many are smarter than the few.”

The authors demonstrate that the cooperation restricted to the benefited devices
may not represent an accurate enough view of the channel status. Accordingly, devices
not directly benefited by CR still have a significant part in the sensing procedures, in
particular in crowded scenarios. In this way, a distributed approach of cooperation
based on SIoT allows the secondary users to have a reliable vision of the spectrum
usage, and the CR mechanism can minimize the use of overcrowded bands by allowing
devices to transmit in another band, and, in addition, to decouple the functions of
sensing the spectrum and transmission.
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2.3.4 Urban Computing

The interdisciplinary nature of urban computing is a promising field for the exploration
of the socio-spatiotemporal aspects. Many cities around the world have provided data
about economic, social, environmental, welfare, and other aspects, such that numerous
challenges in different fields have used this data in innovative approaches to provide
efficient and intelligent applications and services to citizens and local governments.
In this section, we present studies that provide services and analyses oriented to city
management.

According to Castells and Himanen [2014], the future of cities depends on the
integration of the population and local governments to develop mechanisms that em-
power citizens individually and collectively by leveraging the capacity to improve their
lives. The SenseCityVity [Ruiz-Correa et al., 2017] project is a mobile crowdsourcing
platform that encourages citizens of Guanajuato City, Mexico, to investigate, docu-
ment, and expose the city’s problems. The goal of the platform is to operate as a
civic reporting system capable of collecting the publications of geolocated multimedia
content provided by users. The authors argue that this type of system promotes the
engagement of the local population and public authorities and accelerates the process
of solving urban problems due to the ubiquity of the citizens.

Yan et al. [2018] discussed the need to study the geographical characteristics of
online content consumption, especially multimedia content. According to the authors,
the content providers need an understanding of spatial characteristics of consumption
to manage the content distribution networks and consequently guarantee quality of
experience to the user. However, current studies focus on the spatial and behavioral
aspects of viewers and do not provide large-scale analyses covering wide metropolitan
areas. Based on this motivation, the study investigates the spatial characteristics of
video content consumption through data from a network provider in Shanghai, China,
using a two-month dataset with the history of content requests directed to six major
content providers.

The results showed that the popularity of content and the similarity among req-
uisitions could be observed at different levels throughout the studied area, where the
downtown region represents a spatial reference to the consumption characteristics. For
instance, the concentration of video popularity in a region is proportional to its distance
from the downtown area, in such a way that the regions around downtown present more
similar requests when compared to the regions in the downtown area.

The analysis also showed that the type of content exhibits popularity variations
according to the regions of the city. For example, the similarity of video requests is
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proportional to the size of the region; however, the downtown regions present greater
similarity of requests for movie content, while the suburban regions present more similar
requests related to shows.

Catlett et al. [2018] investigated the spatiotemporal characteristics of crimes, a
major social problem in large urban areas. The authors argued that crime data can
provide patterns and trends that can be used to support the development of new
technologies and policies to cope effectively with crime. The authors proposed an
approach based on auto-regression techniques and spatial analysis to predict trends
and identify areas of risk.

Thus, the proposal is a spatiotemporal model to forecast crimes based on the
distribution and spatial density of crimes and a set of crime predictors capable of
estimating the number of crimes in each region of the city. Specifically, the model
identifies crime hotspots, high-density crime areas identified using spatial data analysis
techniques; so, for each high-risk area identified in the city, a crime prediction model
is designed to estimate the amount of crime that will happen.

The experimental results showed considerable accuracy in spatiotemporal crime
forecasting in the evaluation of two million real records of crimes collected from the
Chicago metropolitan area. It is important to emphasize that the authors also identified
different patterns that present peaks, dips, and spatial seasonality of crimes.

Ge et al. [2018] argued that modeling the criminal characteristics of a city is
essential to assisting police efforts and improving the quality of life of citizens. The
authors also investigated Chicago’s crime data and argue that the data obtained are
the result of a collective effort that applies the crowded sensing paradigm or Human-
as-a-Sensor.

According to the authors, the cognitive ability of contributors, users, and ad-
ministrators was essential to provide this fine-grained data collection. In addition,
community crime surveys have traditionally used demographic characteristics such as
socioeconomic conditions, race, and poverty level. However, these methods do not
reflect the difference between crime categories and temporal aspects. Therefore, the
authors modeled crime records throughout the city using a three-dimensional tensor
and a decomposition approach, where the three dimensions represent communities,
crime categories, and time windows. In this way, the model is able to infer the crime
rate for different categories, communities, and months of the year.

Smarzaro et al. [2017] discussed that urban planning requires a wide variety of
data and is usually collected and provided independently with very particular properties
that hinder the analysis process. For this reason, the authors leverage the use of LBSN
data as an auxiliary data source to provide useful information in a timely manner. The



2.4. Conclusion 25

authors presented a case study where they used data from multiple LBSNs to estimate
metrics used in urban planning.

The objective of the study was to simplify the process of data collection and anal-
ysis that supports urban planning through non-governmental alternative data sources
that can be used to investigate problems of deprivation, diversity, and availability of
local services. The study presents an analysis of multiple data sources, including gov-
ernment census, the geography of the area studied, as well as data about the places
and POI collected through Facebook5, Foursquare6, Google Places7, and Yelp8.

The results present evaluations of spatial inequalities in the supply and access to
products and services by the population. The study also presents the limitations of
the use of LBSN and emphasizes that the data are naturally skewed by being crowd-
sourced. According to the authors, the coverage area can be compromised due to
the demographic characteristics of the users of these applications, usually young and
technology-friendly.

D’Silva et al. [2017] used crowdsourced data to explore the popularity of places
in the city and infer users’ activities. Based on this, the authors proposed a prediction
framework that uses the weekly popularity of places as a signature or spatiotemporal
identity and group places and similar areas to estimate the popularity of new places.
The results showed that the transfer of information from the urban subarea level to a
newly opened venue may reduce the error of estimates by 41%.

Daggitt et al. [2016] presented growth patterns of urban areas on a global scale,
where pairs of cities geographically close are more likely to share similar growth than
pairs of remote cities. Intra-city analysis showed the existence of two major classes
of places: cooperative places and competitive places. The former category represents
places that leverage larger flows of mobility for their own region, while the latter
disrupts flows to the region and nearby places. In addition, the authors have identified
that the more-than-expected growth of local place density is highly localized, while the
below-expected growth is diffuse.

2.4 Conclusion

Cities are complex and dynamic systems that face substantial challenges in the modern
world. Therefore, understanding the fundamental aspects of this scenario represents a

5https://developers.facebook.com/docs/places/web/search
6https://developer.foursquare.com/places
7https://cloud.google.com/maps-platform/places
8https://www.yelp.ca/developers

https://developers.facebook.com/docs/places/web/search
https://developer.foursquare.com/places
https://cloud.google.com/maps-platform/places
https://www.yelp.ca/developers
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valuable advantage to overcoming these challenges.
Hence, the temporal aspects have been explored to understand the dynamics

of urban variables. Indeed, understanding the fluctuations of variables over time is
essential for the development of robust and resilient systems, where predicting demand
for resources is one of the main applications. On the other hand, spatial aspects usually
help to understand the particularities of the application clients, resulting in services
with a high level of adaptation and capable of providing better results when adapted
to these particular properties. It is important to mention that the clients of these
applications can be users, places, and vehicles to name a few.

The joint use of these features provides a broad view of the urban landscape,
especially when supported by multiple combinable data sources, as it has happened
in recent years. The advent of the Internet and the popularization of personal mo-
bile devices, such as smartphones and tablets, play important roles in leveraging user
participation.

In this direction, OSN, in special with geographic location capabilities, represent
a disruptive mechanism for collecting and analyzing data, providing democratization
of spatiotemporal data. Furthermore, governments have taken initiatives to provide
official data, once inaccessible, and foster scientific research around the data.

For these reasons, we showed in this chapter introductory concepts and applica-
tions of urban computing focused on temporal, spatial, and social aspects. We believe
that modern cities will provide efficient services for transportation, energy, and secu-
rity, among others, therefore, the social and spatiotemporal aspects are indispensable
for modern applications.



Chapter 3

Urban Sensing Through Data
Layers

Efficient sensing is a current open challenge for many services in smart cities. Accord-
ingly, deploying sensing mechanisms capable of providing data from large geographical
areas is an economically unfeasible task for today’s conventional sensors. On the other
side, the new generation of mobile applications has increasingly more opportunities to
obtain personal and environmental data, pushing the academic community to develop
new sensors and sensing techniques. Alternative forms of sensing have become pop-
ular, especially the mechanisms directed to the abundance of publicly available data,
operated with heterogeneous data and supported by sophisticated analysis techniques.
In this chapter, we proposed a sensing mechanism that exploits public data from online
social networks to obtain information on fluctuations in the city’s spatial properties and
their correlation with climate characteristics. The results showed that the proposed
mechanism is capable of detecting variations of the spatial characteristics through the
places’ popularity and the transitions between them. Also, the results exhibited a di-
chotomy in visitation preferences capable of highlighting critical temperature values
that mark the transition between dichotomy states and quantify the difference in this
phenomenon.

Section 3.1 introduces the problem of urban sensing and layer-based sensing ad-
dressed in this chapter, in addition to the proposed sensing mechanism. Section 3.2
presents the related work using data layers obtained through personal mobile devices in
urban scenario. Section 3.3 presents the challenges and issues of working with multiple
and heterogeneous data sources. Section 3.4 presents the formal model of sensing layers
used to combine heterogeneous data layers and the layer’s characterization. Section 3.5
presents the combination of data layers as a mechanism of sensing. Section 3.6 presents

27
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the implications and results of the approach, as well as the conclusion in Section 3.7.

3.1 Introduction

We have been facing the advances in microelectronics and computer networks every day.
This involves popular devices such as laptops, smartphones and the design of disruptive
technologies [Cortimiglia et al., 2013], such as Vehicular Networks (VANETs) [Al-Sultan
et al., 2014], Wireless Sensors Networks (WSNs) [Rawat et al., 2014] and Internet of
Things [Perera et al., 2014]. These advances have a substantial effect on data collection,
transmission and manipulation of information, expanding the observations of an event,
phenomenon or behavior with new details.

The popularization of devices with communication and sensing capabilities was
a determining factor for the emergence of online services that exploit the environment
around the user, specially the geographic location. This brought a disruptive branch of
mobile applications for social interaction, search-and-discovery and recommendations
in general, able to engage expressive sets of online users daily [Zheng et al., 2013]
such as Foursquare, Waze1, Twitter and Instagram. Similar to conventional sensors
capable of measuring physical quantities, these online services represent a data source
for domains where there are no conventional sensors, specially about human behavior,
such as mobility of individuals [Yuan et al., 2013], daily routine [Zheng et al., 2013],
socio-spatial preferences [Silva et al., 2014a,b], and human sentiment [Bakhshi et al.,
2014a].

The abundance of collected data by those services has been investigated and has
become an important source of raw information about objects, places, people, phenom-
ena, and events. However, the combination of these different data sources has been
neglected [Sun et al., 2012]. The non-trivial challenge of combining heterogeneous data
for useful information extraction is an important step towards a systematic represen-
tation of the environment and a valuable opportunity to use the knowledge to improve
the quality of experience of many services and the quality of life in general.

A detailed view of an environment may include space, time, people, and addi-
tional variables of other domains such as weather, traffic, economy, and news. Many
existing studies reduce the scope of analysis, considering only features within a single
domain; however, exogenous variables have the potential to influence the dynamics of
environmental attributes or even the occurrence of a specific phenomenon. Therefore,
different data sources represented as data layers [Silva et al., 2014c] and the appro-

1http://www.waze.com

http://www.waze.com
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Figure 3.1. Sensing Layers build using check-ins, traffic, and weather data.

priate combination of those layers might be able to provide a wide view required for
optimization and creation of new services for mobile and pervasive applications.

Figure 3.1 illustrates the basic idea of combined data layers by means of three
instances. A layer can store check-ins from Online Social Networks (OSN), traffic inci-
dents, weather conditions, pulse rate, etc., and means spatiotemporal sensing samples
representing people interests, city behavior, and individual or collective health. The
data can come from sensors, as follows: users of social media, traffic sensors, weather
stations, body sensors, and initiatives such as Open Data [Zuiderwijk and Janssen,
2014]. The sensing layers can be used as a source of semantic information for pervasive
applications based on ubiquitous sensing and smart city services.

In short, in this chapter, we evaluated the spatiotemporal characteristics in the
urban scenario and in the light of temperature variability. We jointly investigated the
temperature and the users from OSN, and we found trends and correlations between
weather and the collective behavior of users. In this way, we applied a layered approach
where we combined data of check-ins and weather conditions to provide ubiquitous
sensing for smart cities.

3.2 Related Work

Many studies already consider alternative data sources to measure characteristics, such
as natural phenomena [Sakaki et al., 2010], human behavior [Gomide et al., 2011], and
their interactions [Hsiang et al., 2011]. Therefore, the state-of-art presents a consider-
able number of studies based on only one domain or data source. We argue that there
is a large number of spatiotemporal data available, and the combination of different
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data sources could provide useful additional details and semantic meanings about the
environment.

Silva et al. [2013] presented a characterization of the Waze application from Par-
ticipatory Sensing Networks (PSN) point of view. The authors presented the properties
of coverage area of sensing and distribution of incidents reported according to the tem-
poral aspects and users. Furthermore, they showed the influence of routine users in the
pattern of reported incidents. Ribeiro et al. [2014] proposed a congestion identification
methodology using different data layers. By means of check-ins on Foursquare and
Instagram, combined with traffic information collected from Bing Maps, the authors
showed that check-ins and congestion were correlated. In addition, the results showed
that check-ins may anticipate the traffic conditions up to 36 minutes earlier. Silva
et al. [2014b] presented the cultural boundaries that distinguish cities, using check-
ins on Location Based Social Networks (LBSN). The authors investigated habits, the
commutation among places for different categories, and regional differences regarding
common activities, such as eating and drinking.

Bakhshi et al. [2014c] constructed a conditional inference tree of social signals
from 230K Yelp reviews to study how social signals shape the deviance in review
rating from the mean rating. Similarly, Bakhshi et al. [2014a] analyzed the reviews
according to climatic conditions of restaurants, demographics, and local characteristics.
In these studies, the authors analyzed factors that influence human feelings and their
indirectly impact on the reviews. Schuster et al. [2013] highlights four areas that form
the context in pervasive mobile applications: space, time, people, and information. The
authors emphasize that exploring the four domains in different granularities can reveal
important details to mobile services’ performance, innovation in pervasive applications,
and characterization of scenarios.

Most studies that investigated the social properties considered isolated data layers
but nevertheless showed the opportunity to explore pervasive applications and mobile
systems as a source of valuable semantic information. The work that considered multi-
ple information sources detected the relationships and influences of exogenous variables
for specific applications. However, urban mobility requires special investigation capable
of characterizing their phenomena considering the correlations and potential relation-
ships between variables from different domains.
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3.3 Issues and Challenges on Sensing Layers

Combining different data layers requires a specific treatment for each integration pro-
cess. Even so, some challenges are prevalent to all applications involving multiple
sources of data. For this reason, efficient approaches to integration need to be in-
vestigated to combine multidomain relationships, entities, and attributes. The under-
standing of the multidomain relationships potentially provides novel insights into the
underlying processes or cause-effect relationships. Below, we list some of the major
challenges to the studies of urban sensing based on heterogeneous data.

• Entity-Attribute Issues: characterize a particular situation to infer relationships
requires a complete distinction between entities and attributes. Data models are
usually heterogeneous when we combine layers of different applications; while a
model presents a user as an entity with a set of attributes, another model can
represent it through time series. This heterogeneity requires specific remapping
and mining mechanisms [Yu et al., 2014].

• Implicit Relations: relationships between variables are a constantly studied topic,
especially the implicit ones due to the nature of difficult detection. The relation-
ships that transcend one domain are less intuitive and involve two or more at-
tributes, entities, or a combination of both [Sun et al., 2012]. Some relationships
are essential for the occurrence of some particular phenomena, and these events
can be implicit if the analysis assumes a single-layer information.

• Sensing Issues: consider each data source as a sensing layer that transforms each
data-publisher layer in a sensor with particular characteristics, such as coverage
area and sensing frequency. Mainly in sensing spatiotemporal data, eventual data
gaps caused by different sensor configurations require sophisticated mechanisms
to build the appropriated integration of data sources [Kurasawa et al., 2014].

• Imprecision and Correctness: each data sample has inherent characteristics of
correctness and precision dependent on layer, sensor and measured variable. For
example, layers can represent the temperature data for an entire city or comments
of users on social media about an event occurring across the world. In the first
case, accuracy may be affected if the measured value does not consider variations
in different neighborhoods, and, in the second case, the geographic location may
indicate that users are not eyewitnesses of the event and therefore may report
incorrect information. In addition, the second case may have classification issues
due to the nature of the data expressed in natural language [Yerva et al., 2012].
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• Generalization: characterization, prediction models, and observations can be ex-
pressed according to sets of behavior classes, and summarizing a set of attributes
within a single label therefore depends on abstractions of the label entities. For
example, the measured value 20C to the temperature attribute can be classified
as hot in a city with a variation of 40C over the year or normal in a city with a
variation of only 15C (15C to 30C). Classifying spatiotemporal data from multi-
ple domains is a challenge for the generalization due to the particularities of the
area sensed and temporal fluctuations.

3.4 Sensing Layers

In this section, we present the formal model of layer combination and the characteri-
zation of the layers of information used in this study.

3.4.1 Formal Model

The data represented by sensing layers has to come from a source that can be considered
a sensor; this means that regardless of the originator entity, the data provided should
be able to represent a situation or a fragment in line with the time and space windows.

Let U={u1, u2 ... un} a set of sensors, such as smartphones, wireless sensors,
and a set of sensing systems P={p1, p2 ... pn}, such as a WSN, PSN or VANET. Each
sensor ui ∈ U can measure one or more environmental variables, and publish the data
on a specific sensing system pi ∈ P . The jth data sample stored in pi has the form
dPi
i =(t,m), where t is the timestamp when the sensor ui reported the data, and m is

a n-tuple containing the measure and the metadata, such as the covered area a, device
ui, and the measured value v.

Our research considers a set of data samples DPn as a set of n > 0 data samples
dPn
i according to the sensing settings of pn ∈ P , i.e. check-ins, photos, temperature

measurements, traffic incidents, or comments. It should be able to representing the
measures of a feature F Pn spatially, temporally or both. The work plan w is the set of
one or more resulting layers from the combination of two or more data sources or even
other layers; therefore, it is essential to w to be efficient in the tasks of mapping data
samples from different pn ∈ P and in query resolution. For instance, a query limited
by a moment t and an area a should return n ≤ 0 data samples from Q(t, a) = {dPi

n ∈
(DPx ∪DPy)}.
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Figure 3.2. Data layer combination according to formal model of Sensing Layers.

3.4.2 Layer Characterization

Our first observations are directed to analyzing individually the temporal characteris-
tics of the data layers used in this chapter. Concerning the OSN data, we focused on
the spatial distribution of users and the popularity of Points-of-Interest (POI), due to
the effect on citizens’ quality of life, communications, transportation and mobility in
general. As shown by Zheng et al. [2014a] and Moosavi and Hovestadt [2013], data
about these scenarios available through OSN, are urban data streams of sensing able
to describe the environment in near-real time. In this way, the observations used in
this work were made through public online data collected by the authors or open data
initiatives.

The urban mobility involves traffic by public and private transportation, personal
routines, and events. Thus, knowing the characteristics of a location and its variation
over time and other characteristics is relevant, especially for detection of non-recurring
or unusual situations [Pereira et al., 2014]. Nevertheless, recurrent and non-recurring
situations may be affected by the events of the same domain or phenomenon that
transcend a single domain, for this reason. prediction systems may take advantage of
multiple domains and data sources.

The datasets used in this stage are described as follows:

• Personal Check-ins: collected by authors, includes geographic location data, ac-
tively informed by the users through the Foursquare application. Based on the
sensor information embedded in the user’s mobile device, the application recom-
mends places previously registered, indexed by the application and close to the
user. Each data sample is a check-in that indicates the local time, latitude, longi-
tude, the unique place identification, and the user. The dataset includes samples
from 6 cities in multiple countries and continents over a period of approximately
120 days. From this point, we will refer to this dataset as the check-ins dataset.

• Weather Conditions: collected through a set of weather stations in each city
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studied and available online through Weather Underground. The dataset con-
tains periodic sensing samples at intervals of up to two hours, with temperature,
humidity, and precipitation information. From this point on, we will refer to this
dataset as the weather dataset.

The data was collected in two separate time windows and, therefore, do not repre-
sent a continuous time series; however, the collection mechanism and methodology were
identical. The analysis was done considering the spatiotemporal intersection between
the weather and check-ins datasets. The cities analyzed in this study are New York
(NY), Chicago (CH), Los Angeles (LA), Paris (PR), London (LDN), and Sao Paulo
(SP). The choices were made considering the importance of the city to the country,
continent, tourism, representativeness in OSN, and weather characteristics.

A large number of studies showed the importance of weather conditions for many
activities, from restaurant reviews [Bakhshi et al., 2014a] and traffic conditions [Pan
et al., 2014] to the macro mobility of an entire country [Bannur and Alonso, 2014] and
mobile data traffic [Sagl et al., 2012]; therefore, it is well known that the weather is an
important feature for human behavior and environmental dynamics.

Figure 3.3 presents results of temperature variation over the dataset in the Celsius
scale. The values represent the temperature as a daily mean based on the measurements
over the day. The period presented in the figure is determined by the intersection
between the check-ins and the weather dataset.

Both figures show scattered charts with green and blue points to distinguish two
temporal windows of data collection: 2014 and 2015. Figures 3.3a and 3.3b show a
similar temperature spectrum in the cities of NY and CH due to geographic location.
However, in Figures 3.3d and 3.3c, the cities of LDN and PR showed different charac-
teristics of temperature compared to North American cities; furthermore, SP and LA
presented the smallest variation among the set.

A large number of studies investigated human behavior by considering OSN data
and studying limitations and advantages of the application of those data as a source
of semantic information [Silva et al., 2014a,c]. The aspects of context have been in-
vestigated by considering different scopes [Schuster et al., 2013], analyzing preferences
about food and drink [Silva et al., 2014b], urban lifestyle [Yuan et al., 2013], and the
role of gender in online popularity [Bakhshi et al., 2014c]. Most of these studies analyze
spatiotemporal characteristics contained in the same layer; therefore, part of our anal-
ysis for this specific layer re-evaluates events already reported in these publications,
with additional information.
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(a) New York (b) Chicago

(c) Paris (d) London

(e) Los Angeles (f) Sao Paulo

Figure 3.3. Temperature history along period of the data collection.

3.5 Layer Combination

The combination of sensing layers has a potential impact on the acquisition of seman-
tic and contextual information. The use of valuable semantic information resulting
from multiple data layers can be an alternative solution to problems such as context
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(a) New York (b) Chicago

(c) Los Angeles (d) Paris

(e) London (f) Sao Paulo

Figure 3.4. Mean popularity of data samples according to the days of week.

disambiguation [Kalatzis et al., 2013], among others. In particular, the urban scenario
treated in this work was investigated considering human behavior as a determinant fac-
tor for the mobility dynamics. For this reason, we investigated the variation of visits
in the most popular places in the studied cities, using the check-ins dataset.

Considering the weather data layer and its temperature sensing samples, we clas-
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sified each day of the analyzed period considering the daily average based on n samples
from m weather stations. Thus, we established a generalization of temperature value
for temporal windows of 24 hours. The spatial window of analysis is the geographic
location of a specific city, built from fragments or spatial sub-windows, represented by
places that received at least one check-in during the collection period.

The first combined analysis corresponds to the correlation study of spatial subwin-
dows according to the weather variation. At this point, each mean value of temperature
corresponds to a weather class where we calculate the daily average of check-ins for
each spatial subwindow. Figure 3.5 shows the correlation matrices calculated using the
Pearson correlation method. Each element of the matrix corresponds to a correlation
value obtained comparing the mean daily check-ins to every place in the city according
to specific weather class. The objective of this analysis is to compare the entire city
in front of different weather conditions through the visited places and quantify the
variation of spatial distribution of users within the city.

Figures 3.5a,3.5b and 3.5c show the different results in the correlation study
for the cities of NY, CH and LA, despite the cultural similarity [Silva et al., 2014b].
The NY and LA cities showed high correlation values over all classes of temperature
and minimum correlation of 0.77 and 0.72 respectively. However, the two cities have
different temperature spectrum, where NY presents variation of 36C and LA 18C. CH
presented the wider spectrum of temperature and correlation with variation up to 45C
and minimum correlation 0.48. Furthermore, the results visually suggest two possible
clusters between 3C and 6C. Figures 3.5d, 3.5e, and 3.5f present the cities of PR, LDN,
and SP, and similarly to CH, PR visually suggests the presence of clusters despite the
minor correlation values.

The main observation for these results is the formation of visible clusters in
the correlation matrices. The clusters with high correlation values could indicate a
similar distribution of check-ins among the places registered; in practical terms, it
could represent that most of the people continue frequenting the same places or that
the clustered weather classes have a similar subset of popular places. Weather classes
that limit the borders of the clusters may represent a critical value in the distribution
of check-ins and a hypothetical threshold of transition between two classes of behavior
or user preferences.

SP showed high correlation values along the temperature spectrum, suggesting
a low spatial sensibility to temperature variations. On the other hand, CH and PR
showed a wide correlation spectrum and evident clusters of weather classes. Therefore,
we formulated a phase transition hypothesis based on the clustering of weather classes
and defined the phase transition thresholds, i.e., critical values of temperature, for each
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(a) New York (b) Chicago

(c) Los Angeles (d) Paris

(e) London (f) Sao Paulo

Figure 3.5. Matrix correlation of local temperature and spatial distribution of users.

city, as shown in Table 3.1.The values defined for the threshold are weather classes
on the borders of visually identified clusters representing an accentuated variation
relatively of correlation result.

The phase transition thresholds based on correlation can be used as a foundation
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City Threshold τ

New York 12 < τ < 15
Chicago 3 < τ < 6

Los Angeles 18 < τ < 21
Paris 9 < τ < 12

London 12 < τ < 15
São Paulo 18 < τ < 21

Table 3.1. Thermal thresholds of transitions between phases.

for measuring the temperature susceptibility for a spatiotemporal window. To evaluate
our hypothesis of phase transition according to the established threshold τ , initially
we consider S as the set of all places registered by check-ins in the spatiotemporal
window and W as the set of weather classes. For each weather class w ∈ W , we
selected a subset s ⊂ S composed by n% of the most popular places according to
the days of a temperature w. At the end of the process, there is a sequence of |W |
subsets of most popular places, represented as P = {p1, p2, ...pn}. Thus, consider
α = {pw ∈ P | w > τ} and β = {pw ∈ P | w ≤ τ}, respectively, represent subsets
of the most visited places after and before the threshold. Using this definition, we
can formulate δ = {p | p ∈ α ∩ β} as the set of the most popular places with low
susceptibility to the temperature changes. The low susceptibility discussed in a given
place pi remains among the most popular over the temperature spectrum in accordance
with the selection n%. Therefore, it does not indicate that their check-ins rate is
constant along the thermal variation.

The purpose of α and β analysis is fourfold: (1) highlight the most popular
places for each temperature class, (2) support the places’ classification according to
the temperature, (3) quantify the representativity of susceptible places in the local
scenario, and (4) reveal the dynamic behavior of the most popular places along the
temperature spectrum.

In this way, Figure 3.6 shows the results of α and β representativity over the
temperature spectrum. These results do not consider the subset of places δ; more-
over, the representativity is calculated individually for each weather class, considering
only check-ins recorded during the occurrence of the class. One of the main observa-
tions of these results is the expected behavior for LA and SP, where both showed no
clear transition between phases, supporting the initial hypothesis of less susceptibility
to temperature variation. On the other hand, PR and LDN cities showed behavior
distinction between the subsets. Especially in PR, the β representativity of check-
ins reaches 70% and α 35% approximately. NY and CH showed behavior distinction
between phases at high temperatures, while lower temperatures appear with similar
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Figure 3.6. Phase transitions of temperature n = 50.

behavior, indicating that there was no clear preference of most popular places at lower
temperatures.

It is important to note that LDN showed clusters that were not clearly evident,
although the phase evaluation showed the transition. This occurred because the cor-
relation results evaluated the popularity vectors, the individual popularity of all the
places of a city, while in the phase analysis, the popularity was represented as a single
value calculated as the sum of the individual popularity of the places belonging to the
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same phase. For this reason, LDN was able to present low correlation values at the
same time as significant representativity of check-ins, an indication that a small subset
of very popular places can still be characterized by temperature.

The different behaviors detected in these results may be influenced by the partic-
ular characteristics of each city. The geographical location can assign coastal features
to cities with beaches and balnearies, attracting people during the holidays and va-
cation or at high temperatures. Moreover, strong tourist appeal can attract people
during specific periods, such as winter and summer, to activities conditioned by the
season and, over the year, to non-seasonal activities .

The observations of α and β subsets are evidence of the occurrence of phase
transition phenomena on the dynamics of the most popular places. However, the
representativity of check-ins is calculated considering only check-ins occurring during
the specific weather class; therefore, it is important to quantify this feature to the
susceptible and non-susceptible places in front of the check-ins universe. The purpose
of analyzing the overall representativity is to estimate the potential impact of the phase
transition on city dwellers.

At this point, we define formally γ = {p | p /∈ α ∩ β} as the subset of most
popular places susceptible to temperature variation. The curves presented in the results
quantify the representativity of the subsets as a function of the value of the parameter
n. Figure 3.7 presents the results of global check-in representativity of the δ and γ

subsets. The main observation in these results are the different weather susceptibility
profiles of the cities, where especially PR presents crescent representativity of check-ins
in the set of susceptible places. There was similar behavior with values of approximately
20% in LDN and CH.

The presence of the thermal phase transition phenomenon is an important feature
of the environment, and an opportunity for the optimization of services affected by
mutable behavior. In the case of the dynamics of urban mobility, optimization gains
can be magnified or attenuated according to the arrangement of popular places along
the affected geographic area. Subsets of places grouped as susceptible can be crowded
in a small area or scattered over the city, identifying a possible region of interest
for a given temperature or range. The representation of sensitive places and their
geographical disposition are essential to explore the usefulness of the phase transition
phenomenon.

Figure 3.8 shows the results of the proportion of δ subset according to the universe
of places for each city and α ∪ β. According to these results, in cities where we observed
the phase transition, as in PR and LDN, the intersection between popular places can
reach up to 25% and 50% respectively, indicating a portion smaller or equal to half of
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(a) New York (b) Chicago

(c) Los Angeles (d) Paris

(e) London (f) Sao Paulo

Figure 3.7. Check-in representativity δ and γ subsets.

the places registered as temperature-insensitive places. This particular feature could
be one factor to justify the replacement behavior of the most popular places during
the phase transition. In other cities where there was no substitution of most popular
places, the intersection reaches values between 86% and 97%, such as in LA and SP.

At this point, it is important to emphasize that even in cities that do not clearly
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(a) New York (b) Chicago

(c) Los Angeles (d) Paris

(e) London (f) Sao Paulo

Figure 3.8. Intersection representativity of δ.

indicate the phase transition, as in LA and SP, at specific temperatures, the most
popular places contained in γ reached more than 10% of check-ins, and for this reason,
the arrangements of sensible places may still partially affect the city.

To analyze the urban mobility from the geographical point of view, we divided
each city into a grid of 3x3 regions to group registered places in spatial macro-windows.
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(a) New York (b) Chicago

(c) Los Angeles (d) Paris

(e) London (f) Sao Paulo

Figure 3.9. Graph of difference α - β.

The frequency of transition between two regions is computed for every two consecutive
check-ins on the same day from the same user and represents a daily mean. The
regions identifiers are the same for all cities; however, naturally, every city has different
patterns of popularity and transition between regions according to specific geographic
properties.

Initially we built the Gβ graph grouping all the transitions that occurred in
weather classes w < τ , and similarly, we built the graph Gα grouping the classes
w > τ . Figure 3.9 shows the resulting graph of the difference Gdiff = Gα - Gβ. The
edge width represents the result of the difference and the vertex size represents the
difference of popularity registered. The colors represent the phases, where β blue, α
red and gray in case of no significant difference.

The first observations in those results are the different concentrations of check-
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ins in the zones of cities. Gray vertices represent the most popular area in every city
that remained with the highest daily average check-ins in both phases. The size of
the vertices is defined by the difference in popularity between phases. Thus, even in
cities where the phase transition was not identified, the phenomenon may exist on a
smaller scale. Furthermore, the representation of transitions between zones shows that
the transitions are more common during phase β.

Some cities exhibited a geographical partition, such as LDN and CH, which indi-
cates distinct agglomerations of places and people according to thermal characteristics,
especially CH, where the size of the vertices indicates a significant difference in popu-
larity between the phases. Although other cities, such as LA and NY, do not exhibit
clear geographic partitions, the difference in popularity of the regions is evidence of
spatial preference.

3.6 Discussion

The phenomenon of phase transition has been discussed in physics [Dörfler and Bullo,
2014], biology [Canals and Bozinovic, 2011; Drake and Griffen, 2010], and social sci-
ences [Wolf, 1963; Hsiang et al., 2011], among other fields, due to the importance
of the characteristics of phases for dynamic environments and complex organisms. In
Computer Science and Urban Computing, little attention has been given to the charac-
terization of this type of phenomenon despite its potential for significant environmental
impact.

Scheffer et al. [2009] characterized common generic properties of phase transi-
tions in different dynamic systems. Although it is a difficult task to predict the critical
points that define the shift of behavior, studies in different scientific fields suggest the
existence of generic early-warning signals that may be indicators of a wide class of sys-
tems if a critical threshold is approaching. For example, Altman et al. [2013] explored
the modeling of phase transition in P2P networks. Using two models of file dissemina-
tion, epidemic and random, the authors detected the existence of phase transitions: a
small change in the parameters caused a substantial change in the network behavior,
influencing the online availability of files and time extinction of files.

The methodology of combining layers presented in our study was able to demon-
strate characteristics that suggest a phase transition behavior. The results showed
the fluctuation of collective preferences observable through the places’ popularity for
a subset of the cities studied. These preference changes can materialize as a shift of
a portion of check-ins to a particular subset of places, configuring a spatial distribu-
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tion that may result in spatial zones or clusters of interest according to the thermal
characteristics.

This phenomenon can catalyze significant changes in the short term as modi-
fications in the proximity graph as well as long-term effects in the social graph. In
one of the cities where there was no detection of the phenomenon, commutations were
detected toward areas with evidence of thermal preference, suggesting a revaluation of
the phenomenon in a smaller scale considering a zone or a neighborhood instead of the
city.

These results also elucidate the feasibility of the sensing-layer approach. Using the
framework model, we could implement a technique to combine check-ins and weather
data in a data plan for the classification of places and spatial-thermal preferences and
demonstrate characteristics of a phase transition. The phenomena detection should
also be evaluated considering other weather variables such as precipitation, humidity,
and rainfall. Cities like Los Angeles and Sao Paulo, which have a lower temperature
range compared to other cities, should consider these variables, quantifying the spatial
preferences in the face of these events and identify their transition parameters if they
exist.

3.7 Conclusion

In this chapter, we presented the different spatiotemporal and thermal profiles of a set of
cities. The results showed the detection of preference shifts in a subset of studied cities.
We showed that the transition between phases may be modeled using a temperature
threshold. The explicit specification of this threshold can characterize the thermal
susceptibility of places and regions of the cities and support the investigation of the
dynamics of spatial preferences and related studies in areas such as telecommunications,
economics, and transportation.

We found distinct results concerning the phase transition phenomenon. Paris
and London showed a clear shift of popularity among the set of places visited by users;
Chicago and New York did not present a clear distinction of phase change; moreover,
Los Angeles and Sao Paulo showed no significant distinction of behavior.

The initial correlation study of places’ popularity assisted the definition of the τ

value as a hypothesis of the transition threshold between phases, and the knowledge
of this value is fundamental to the classification of places according to their tempera-
ture susceptibility. The previous knowledge of the transition threshold allowed us to
estimate the macro mobility in the cities, allowing us to investigate the relationship of
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the thermal condition and the clustering of users in the regions of the city.
These results indicate, further to the thermal preferences, the potential of using

alternative data sources for urban sensing. The massive popularity of Online Social
Networks can leverage participatory sensing, placing citizens of smart cities as an active
and significant part of urban sensing.





Chapter 4

A Long-Term Analysis of Social
and Spatiotemporal Aspects

Social and spatiotemporal aspects present intrinsic correlations when investigated from
the urban scenario’s perspective. Knowledge about the collective behavior observed in
these environments has a potential effect on the development of public services and
policies. Most of the studies on these environments are restricted to temporal windows
of a few days and hundreds of users due to the physical and economic limitations, and
for this reason, do not exhibit dynamics observable only in long-term studies. In this
chapter, we tackle this challenge using data from online social networks over fifty weeks
and hundreds of thousands of users. The results showed the seasonality of the social
graph estimated from the geographic proximity between users, as well as the properties
of those meetings, such as interval, probability of repetition, and the spatial recurrence.
Finally, we have identified spatial properties in content consumption and publishing
that may leverage the benefits of caching mechanisms.

Section 4.1 presents the introduction to the topic and the questions addressed
in this chapter. Section 4.2 presents an overview of the related studies about oppor-
tunistic encounters between users and the local cooperation of their personal devices.
Section 4.3 describes the real data and the method used to evaluate the dynamics of the
proximity graph. Section 4.4 presents the analysis of the proximity graph according
to spatiotemporal features and a Device-To-Device perspective. Finally, Section 4.5
presents the conclusion.

49



50
Chapter 4. A Long-Term Analysis of Social and Spatiotemporal

Aspects

4.1 Introduction

The growth of people agglomerating on large metropolises has been investigated to
model and predict the dynamics of urban scenarios. Many researchers from different
areas have paid attention to urban dynamics due to their multidisciplinary problems.
The people movement represents a critical aspect, with a significant impact on essential
services, such as transport and communication. People can move according to their
interests, social relationships [Cho et al., 2011], routine [McInerney et al., 2013], and
environment factors [Machado et al., 2015], among others. In addition, events such as
climactic changes [Machado et al., 2016c], concerts, and sports matches allow the citi-
zens to concentrate in specific geographic areas. These features justify the trajectories
and encounters between hundreds and thousands of people.

In the computer systems domains, these events can bring peaks of network usage,
increasing the competition for cellular network resources and affecting the quality of
service. To cope with these problems, cellular operators are currently relying on ad-
ditional spectrum and hardware, such as mobile cell towers; however, these solutions
increase the costs and may not meet the local demand in time. Meanwhile, the next
generation of wireless networks and applications for smart cities envision direct com-
munication between personal devices. The recent results of Device-to-Device (D2D)
communication studies presented great potential to offload the local demand on cellular
networks [Lee et al., 2013; Asadi et al., 2014].

D2D are overlay networks built opportunistically taking advantage of the spatial
proximity; therefore, they may be formed of smartphones or other personal devices
from mobile users during shared timely co-location situations. It means that these
networks are closely related to spatiotemporal features, e.g., the day of the week, time
of day, and geographic area. From a pervasive, D2D networks are affected by user
preferences and their social aspects, making the investigation of social and physical
proximity graphs a relevant issue to improve the performance of this class of network.

Applications and services based on spatial proximity have a disruptive potential
to which industry and academia have devoted efforts for their development. The 3GPP
collaboration groups are also investigating D2D communications, their feasibility, and
use-cases in LTE as Proximity Services (ProSe) scenarios [Lin et al., 2014]. Impor-
tantly, most of the network traffic on personal devices goes beyond proximity-based
applications, reaching social media and entertainment content, as investigated by Das
et al. [2015]. Popular content from Netflix1, YouTube2, Facebook, and other applica-

1https://www.netflix.com
2https://www.youtube.com

https://www.netflix.com
https://www.youtube.com
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tions are downloaded millions of times daily on these devices. In addition, diffusion of
content with high local relevance, such as multimedia streaming and traffic conditions
may take advantage of D2D cooperation for distributed multimedia decoding, content
retrieval, and delay reduction [Silva et al., 2016].

In this chapter, we investigated the proximity graph formed by users in an urban
scenario. Our study evaluated features of mobility and encounters of users as well as
the venues where they occur and the content shared. The study addresses the following
questions:

• What are the observable dynamics of the proximity graph in an urban environ-
ment?

• How can the patterns of encounters be used to improve D2D communication?

• What are the spatiotemporal features of popular content in these scenarios?

In this direction, we used approximately one year of real data collected from social
media applications to explore the real human behavior and urban dynamics in large
scale.

4.2 Related Work

Considering the research questions defined, we addressed related works that evaluated
urban spatiotemporal dynamics, especially studies that explored long time series and
scenarios with great geographic density. Nevertheless, we also included other rele-
vant studies, which have explored the D2D challenges and social aspects for network
cooperation.

Asadi et al. [2014] showed that D2D communication has advantages and may
improve spectral efficiency and reduce communication delay. The authors argue that
D2D introduces additional complexity in terms of interference control and overhead;
for this reason, the design of efficient protocols remains an open research issue. The
authors discuss the lack of a standard for D2D communications and the role of a
central entity to manage opportunistic cooperation in cellular networks. According
to them, cell towers orchestrating D2D serve as the fundamental difference between
D2D and usual Mobile Ad hoc Networks (MANET). Moreover, the availability of a
supervisor central entity, as in scenarios of orchestrated D2D, resolves many of the
existing challenges of MANET.
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Bao et al. [2013] used real experiments to estimate the potential for offloading in
cellular networks via D2D content transfer. The authors investigated how cellular net-
works are most overloaded during high-density events when many people are located in
a small area, and these scenarios also present a high potential of redundant consump-
tion of content—in other words, large groups of co-located users interacting with the
same online services at the same time. According to the authors’ vision, the cellular
operators can track the location of personal devices and build maps that indicate dense
clusters of users, appointed by the authors as data spots. They conducted experiments
by wardriving (using bike rides) in the Manhattan area with Bluetooth scanning and
GPS logging. The experiments included simulations of content distribution accord-
ing to data measured, and the results indicated an improvement of performance for
Video-On-Demand and Publish-Subscribe applications.

Wang et al. [2014] proposed a framework for traffic offloading supported by social
media applications in opportunistic social networks. The goal is to offload social media
applications traffic by user-to-user sharing. The framework explores the proximity
graphs and social graphs by means of users’ profiles on social media applications. The
experiments used trace-based simulations and demonstrated that the proposal could
reduce up to 86.5% of the cellular traffic and satisfy the access delay requirements of
users.

Chen et al. [2015] exploited D2D communication in a pervasive approach with a
strong social focus. The authors investigated the social ties in human social networks
to enhance the cooperation of personal devices. The authors showed two fundamental
social phenomena, namely, social trust and social reciprocity. Their work presented a
coalitional game-theoretic framework for social-tie-based cooperation strategies and a
network-assisted relay selection mechanism. The results of the trace-based simulations
showed up to 122% performance gain over the cases without D2D cooperation.

Le et al. [2015] proposed a content retrieval scheme for Disruption Tolerant Net-
works (DTNs) to support cooperative caching. The cooperative caching scheme, based
on the social relationship of nodes, explores cached data on nodes with preeminent
social levels, adapts to unstable network topologies in DTNs, and enables sharing and
coordination of cached data among multiple nodes to reduce data access latency.

Many recent studies have explored the potential of social aspects in respect of
D2D communication improvements. However, the state-of-the-art remains open about
the human interactions observed in long-term studies. Our study enlarges the usually
simulated scenarios to cover an entire city for an extended period, investigating real
spatiotemporal data and content sharing. These characteristics are essential to evaluate
the potential of cooperation between nodes. The spatiotemporal characterization of
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content may identify peaks of consumption, opportunities of cooperation, data spots,
and the feasibility of D2D for offloading and estimate the potential for power saving
and spectrum usage in challenging scenarios especially found in large metropolises.

4.3 Graph Characterization

In this section, we describe the methods used to estimate and evaluate the spatiotem-
poral features of contact and proximity graph. The large popularity of social media
applications has supported a wide variety of studies about human behavior. Specifi-
cally, Location-Based Social Networks (LBSN), such as Twitter and Foursquare, be-
came popular in academia due to their real-time streams of public data capable of
mapping people to venues by means of status, check-ins, and photos shared online.

For spatiotemporal evaluation, we used the data from Foursquare and Instagram
applications due to their high popularity and acceptance among people, institutions,
and venues. The data collected provides real geographic coordinates of users’ spatial
distribution in the Manhattan borough in New York City (NYC) from January to
December of 2015. During the 50 weeks of collection, we observed 196 thousand unique
users and obtained 1.5 million data samples.

The data samples represent spatial points on the region of interest that define the
user location for a specific date and time t. Formally, we define a data sample as a 3-
tuple dn = ⟨u, p, t⟩, where u represents a user ui ∈ U , t is the timestamp of the sample,
and p is the ui’s position defined by latitude and longitude coordinates. According
to this, we estimate the encounters between users, hence the proximity graph. An
encounter event is identified by analyzing any two data samples di and dj, when they
satisfy the following criteria:

• ui ̸= uj;

• the geographic distance between pi and pj is less than Dth;

• ti and tj are in the same ith time slot.

The distance threshold (Dth) is defined at 50 meters to simulate the current
technologies for direct connection between personal devices, such as Bluetooth and
WiFi Direct. A time slot is a period, or a time window, of observations on the proximity
graph. The time slots capture in a single and undirected graph G(t) = (V,E) all the
encounters that occur in the t time window [Hossmann et al., 2010], where v ∈ V are
users and eij ∈ E the edges resulting from encounters. Thus, each new data sample
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Figure 4.1. Number of components and edge density of proximity graph.

potentially represents a new state of the network that is able to change its structural
properties. For this reason, the proper definition of the time slot size represents a
critical issue to model the dynamics of the proximity graph. To address this challenge,
we analyze the number of components and the edge density properties using different
time slot sizes, as shown in Figure 4.1.

The result shows that short time slots lead to a low-density graph and a frag-
mented network, presenting many nodes without any connections. On the other hand,
larger slots capture higher density and a small number of components, which may cause
over-simplification and obfuscate the accurate structure of the network. The combined
analyses of metrics showed a convergence using 33 minutes as time slot size. Thus, we
divide the period of observations into discrete time slots of duration Tth = 33 minutes.
It is important to highlight that the proximity graphs considered only nodes with at
least one encounter registered on the dataset.

4.4 Spatiotemporal Analysis

This section presents the results of the spatiotemporal analysis of encounters between
users. The results show the proximity graph features and the spatial distribution of
encounters across the studied area.

4.4.1 Proximity Graph

Figure 4.2 shows the mean of the nodes of proximity graphs during weekdays and
weekends. The observations of results show the expected variation of nodes according
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Figure 4.2. Mean of nodes during for each time slot Tth.

to business hours (08 a.m. to 18 p.m. approximately). However, it is important to
emphasize three observations: (1) the proximity graphs showed a higher number of
nodes before 5 a.m. on weekends; (2) the number of nodes started to increase at 5
a.m.; however, during the weekends, at 9 a.m., it increased faster despite the late start;
and finally, (3) after 6 p.m., both presented similar declinations.

These observations highlight the different features of weekdays and weekends.
The weekends have more appeal for recreational activities, and people have more free
time to use OSN applications and share their data. It can be observed in the rankings of
popular places during the weekends compared to weekdays, as investigated by Bannur
and Alonso [2014]. In addition, the activities played and the venues visited have an
essential influence on content shared on these applications.

Figure 4.3 shows the mean degree of nodes observed on proximity graphs. The
observations for weekends present a slow start at 6 a.m.; meanwhile, weekday observa-
tions show rapid growth. The degree observed reflects the routine effect of weekdays,
especially before 12 a.m. On the weekends, after 3 p.m., the degree of nodes exceeds
that of the weekdays, which reinforces the impact of routine and the preference for
other activities showing behavior less susceptible to business hours.

Figure 4.4 shows the giant component size compared to |U |. The results show
a similar trend for both, with peaks at 12 p.m. and 6 a.m. This occurs because
these hours are associated with activities related to food, leisure, and commutation
in restaurants, bars, and bus terminals to name a few. Venues classified according
to these features are frequently more popular, comprising a small set of places during
these hours; in addition, the activities carried out during these hours represent common
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Figure 4.3. Mean degree of nodes.
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Figure 4.4. Giant component size on weekdays and weekends.

interests for the majority of users. The higher value registered approximately 28% of
node coverage, which shows that despite the Tth value, the graph remains fragmented
most of the daily time. The number of encounters and their related properties reflect
the number of data samples observed. At dawn, a reduced number of encounters occurs
due to the natural sparsity of data, which portrays the low usage of OSN applications,
low mobility of most users, and few Points-of-Interest (POI) at these hours.

According to our observations, the mean time of re-encounters between two ran-
dom users u, i ∈ U is 50 hours. From a periodicity point of view, most of the re-
encounters occurred after 12 p.m. of weekdays and represented only 18% of all edges
observed, and from a spatial point of view, the re-encounters usually happened at the
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Figure 4.5. Re-encounter interval probability.

0 5 10 15 20 25 30 35 40
Places

0

100

200

300

400

500

600

700

800

900

E
nc

ou
nt

er
s

Figure 4.6. Distributions of encounters and venues.

same venues or small sets of places. The points presented in Figure 4.6 represent the
total of encounters and the total number of venues where they occurred. The combined
analyses of these results indicates a strong influence of routine on encounters with more
than one occurrence. In other words, the re-encounters happened in venues previously
visited within a period of a few days. The high degree of nodes during business hours
on weekdays reinforces these observations.

4.4.2 Spatial Distribution and Content Similarity

The encounters observed on the proximity graph are a consequence of the spatial dis-
tribution of users on the area of interest. Venues with high popularity receive more
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visits, and that, consequently, proportionately leads to more encounters. Figure 4.7
shows the spatial distribution of popular venues observed on the dataset. For better
presentation, the figure shows only the 100 most popular POIs for selected time win-
dows: 12 a.m., 6 a.m., 12 p.m., and 6 p.m. The circles represent the popular venues
on the map, specifically, the red circles represent new POIs that have not figured be-
tween the most popular on the previous time window. For example, the red circles
in Figure 4.7d are new popular POIs at 6 p.m. not observed at 12 p.m., shown on
Figure 4.7cc. The popularity of POI may be influenced by their specific features, such
as the class of place and their activities. However, multiple geographically close POIs
may indicate a neighborhood, street, or area with particular seasonal interest, such as
spots of transport commutation or shopping malls.

The results show the dynamics of venues’ popularity during the day, where we can
observe venues becoming more popular in specific hours. It is expected that venues like
Times Square become one the most popular spots during all day; however, other spots
can attract variable demand of users due to the features of venue and environment,
characterizing seasonal spots.

Beyond the social links, the mutual interest in specific content also represents a
relevant feature to encourage D2D communication for cooperation purposes. We used
data from Twitter to also evaluate the spatiotemporal content similarity, in other words,
the similarity of content published during the encounters. Twitter is an application
for sharing textual and multimedia content and is more proper to this evaluation;
therefore, we only use a subset of the collected data. The methodology and period of
data collection are the same for all social media used in this work. The goal of the
evaluation is to estimate the opportunities for cooperation between users, based on
their content interests. The interests c ∈ C, where C is the content pool that includes
all contents registered on the dataset, are URLs for websites, photos or videos, and
hashtags explicitly defined in the body of messages shared. We previously cleaned C,
removing generic hashtags or hashtags coupled with the venue, such as #nyc, #selfie,
#trip, etc.

Figure 4.8 shows the heat map of encounters with similar content interests. The
encounters are identified according to the same values of Dth and Tth defined in Section
4.3. The points represent the data samples and the heat map of the occurrences of en-
counters of two or more users with mutual interests. The results show spatiotemporal
proximity and similarity of content across the entire area of interest. Furthermore, the
results expose encounters outside of the usual POIs and crowded venues. This obser-
vation suggests opportunities for D2D collaboration for purposes beyond the network
performance. It is important to emphasize the encounters registered in the central
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Figure 4.7. Spatial distribution of popular spots of encounters. The red circles represent
spots that were not among the most popular places in the previous hour.

region of the city concentrate a large set of distinct content, which indicates that the
cache mechanism used in this area should be able to manage efficiently massive pools
of content, 72.8% larger compared to other areas on a daily mean. On the other hand,
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Figure 4.8. Spatial distribution of encounters with similar content.

0 100 200 300 400 500 600 700 800
Time Interval (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

P
[X

>
x
]

Encounters

Common Interests

Figure 4.9. Complementary cumulative distribution of encounter interval.

low-density areas, usually outside the center, presented a lower hit ratio and a daily
mean of 43.6% less hit success, despite the usual smaller content pools.
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Figure 4.10. Density function of publications with similar content and spatial proximity.

To generalize the findings, we investigated the interval between the publication
of data samples with similar content, disregarding the Tth. Figure 4.9 shows the in-
terval of samples with spatial proximity less than Dth. The results show the average
interval of approximately 200 minutes, i.e., the usual interval between two publications
with similar content, whose authors are geographically close. The data used for this
evaluation considered only data samples with the mention of at least one c ∈ C. Fig-
ure 4.10 shows the density function of common encounters with similar content. The
main observation is the trend of growing near noon, a well-known time of peak usage
of OSN applications with many online interactions on these applications.

4.4.3 Discussion

The evaluation presented relevant features of social context for D2D communications,
where users with multiple encounters may reveal social links and potential for common
interests and cooperation. The patterns observed in New York City may be an example
of predictable urban dynamics useful for the next generation of wireless technologies.
The re-encounter patterns and their respective frequencies are essential features to the
design of policies for D2D-based applications and the adjustment of parameters.

From the users’ perspective, the insights may indicate when and where users
can cooperate even without social links, only considering mutual interests. In general,
the similarity of content usually is related to everyday applications, such as YouTube
videos, live broadcasts of events, viral content, or common interests like traffic infor-
mation and weather conditions, as observed on the data collected. Meanwhile, users
with social links tend to cooperate even altruistically, donating resources to other users,
motivated by friendship. In this case, users can cooperate to obtain content that repre-
sents common interests and obtain gains from a cellular operator or save energy [Chen
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et al., 2015]. From the network side, the D2D collaboration can support the critical
moments of resource availability and provide the requested content in a low-cost way
just in time.

The adoption of the D2D paradigm can foment the popularity and development
of applications for social caches, crowd sensing, and public safety, among others [Fodor
et al., 2014]. The spatial distribution of encounters, especially with common interests,
revealed that not only popular spots and spatial spots of interests could take ben-
efits from D2D. Regions far from the town also presented spatiotemporal proximity
among users and similarity of content shared. However, popular and not popular spots
presented distinct relevant features that should be considered on the design cache mech-
anisms and cellular offloading, such as the distinct properties of the content pool and
the hit ratio, considering the central and far neighborhoods of the city. In this way, the
spatiotemporal features explored in this chapter elucidated the feasibility, in addition
to the challenges of D2D, of proximity-based services and human-intensive mobile sys-
tems, highlighting the potential of user interaction for distributed processing, storage,
and, eventually, formation of mobile clouds [Dinh et al., 2013]

4.5 Conclusion

In this chapter, we used data from Online Social Network (OSN) applications to inves-
tigate the encounters between users across a year in New York City. Using real data,
we simulated the encounters based on the geographic distance of data samples provided
by users and estimated the proximity graph in a long-term analysis. The evaluation
explored the seasonality aspects, such as daily hours of weekdays and weekends.

The results provided insights about the encounters with relevant spatiotemporal
features, such that the mean interval of re-encounters usually requires a few days and
occurred on small sets of venues. These observations characterized the effects of routine
and its importance to regular encounters.

Together with these insights, we also investigated the similarity of content shared
by users. Results showed peaks of similar content shared by users geographically close
enough to take advantage of D2D communication. The evaluated data showed an aver-
age of approximately 200 minutes of interval, between two similar contents shared in a
close region. These features show the potential of Device-to-Device (D2D) cooperation,
the relevance of social-inspired approaches, and the potential of OSN applications as
an alternative way of assessing human behavior in the spatiotemporal context.



Chapter 5

Pervasive Forwarding Mechanism
for Mobile Social Networks

Modern urban environments must provide communication mechanisms able to over-
come the lack of network infrastructure. Given these challenge scenarios and condi-
tions, researchers have developed the Mobile Social Networks (MSNs), a communica-
tion alternative for delay-tolerant applications that explores human behavior, social
dynamics, and opportunistic encounters among users. This networking paradigm of-
fers unique benefits for information dissemination in urban computing applications.
However, the proposed protocols for this type of network usually require sensitive in-
formation regarding users’ privacy, in such a way the individual behavior is the main
factor of decision-making mechanisms. In this chapter, we present an analysis of ur-
ban collective behavior, focusing on observable changes on social and spatiotemporal
characteristics in a large urban scenario. Based on the observations, we proposed a
message forwarding protocol for delay-tolerant MSN applications, capable of adapting
to the changes in collective behavior, respecting the user’s privacy, and increasing the
efficiency of message delivery.

Section 5.1 presents the fundamental characteristics of wireless networks based
on opportunistic meetings and lack of infrastructure, as well as the influence of hu-
man and social behavior in these scenarios. Section 5.2 presents an overview of the
related work of message forwarding mechanisms for MSNs, including flooding-based
and socially-aware protocols. We also present investigations of fluctuations in human
behavior characterized by environmental features. Section 5.3 presents the simulation
model, the data used, and the combination of weather and social features in our sim-
ulations. Section 5.4 presents the PervasivePeopleRank algorithm, our proposal for
forwarding messages in MSN-based applications. Section 5.5 presents the simulation
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results, analysis, and findings of environmental effects on opportunistic social commu-
nications. Finally, Section 5.6 presents the conclusions.

5.1 Introduction

The future of computer networks comprises a large variety of applications, composed
of different devices and scenarios with many particular features and challenges. Among
the new technologies, opportunistic wireless networks is an emergent paradigm focused
on direct communication between devices for scenarios independent of infrastructure.
Both industry and academia endorse the benefits of opportunistic communication for
Delay-Tolerant Networks (DTN) [Wei et al., 2014], Vehicular Networks (VANET) [Al-
Sultan et al., 2014], Participatory Sensing Networks (PSN) [Silva et al., 2014c], and
Mobile Social Networks (MSN) [Yang et al., 2012], and also, reinforce the challenges
of the area. In these scenarios, regular nodes are mobile and have limited resources;
the communication occurs based on spatial proximity between peers due to friendship,
routine, mobility, or simply by chance. These characteristics provide time-sensitive
scenarios with frequent topology changes and lack of end-to-end paths most of the time.
For this reason, traditional network protocols are neither efficient nor feasible, since
they were not designed to deal with intermittent connections and network partitions.

The current ubiquity of portable wireless devices and increasing enhancement
of hardware capabilities contribute to the growing interest in applications using this
network class. The popularity of personal devices, such as smartphones, has led to
the significant development of online services focused on user content. Location-Based
Social Networks (LBSNs), such as Facebook, Instagram, and Twitter, capture a signifi-
cant amount of spatiotemporal data about environments and human behavior, turning
those applications into valuable repositories of social data, especially when the samples
are indexed temporally and spatially. These online services capture user preferences
and urban dynamics [Silva et al., 2014a] and provide highly contextualized data using
real-time streams of observations regarding large sets of features [Moosavi and Hoves-
tadt, 2013].

The large volume of records describes interactions in social media applications,
people boarding public transportation systems, and cell phone calls, among others.
When chronologically grouped, these observations represent the time-series of urban
reality and its implicit attributes. Mining these data sources to formulate mobility
models and peer encounters has become an important issue in mobile network scenar-
ios. Moreover, insights about human behavior and its fluctuations have been shown
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to be relevant aspects for opportunistic networks [Yang et al., 2012]. Many proposals
have studied opportunistic networks as complex systems sensitive to social and spa-
tiotemporal aspects using real data [Hossmann et al., 2011; Hu et al., 2015; Bellavista
et al., 2013]. They explore pervasive social context [Schuster et al., 2013], such as
social network contacts, personal interests, and previously visited venues, in addition
to complex network metrics, such as node centrality, betweenness, assortativity, and
network density.

In MSN scenarios, users are individuals carrying handheld devices with direct
connection capabilities such as Bluetooth and WiFi Direct in a device-to-device man-
ner. Due to the relevance of human behavior in MSN applications, social features
have been explored to identify communities and nodes with high centrality as a critical
issue for improving network performance, since social aspects usually have long-term
characteristics. In this direction, many forwarding algorithms have been proposed, but
only a few consider the temporal changes of these features [Moreira and Mendes, 2013].
For this reason, they are inefficient in front of variations in user mobility and network
density, which are common in urban scenarios, due to the different characteristics of
days of the week and time of the day.

This variability in scenarios represents a challenge to the communication method
used in opportunistic networks. The Store-Carry-Forward method requires efficient
mechanisms for choosing the best nodes and the best time to forward or replicate
messages, a non-trivial procedure, considering device constraints such as buffer size,
energy consumption, and overhead. Usually, the proposed socially-inspired protocols
select the relay nodes considering endogenous variables related to social aspects, and
disregard environmental variables with potential influence on human behavior, and
failing to incorporate mechanisms to adapt to fluctuations. Thus, in this chapter, we
investigated the following:

• The spatiotemporal variations in urban scenarios, according to several parameters
including social characteristics, the day of the week, month, and seasonal weather

• The effects of these variations on the performance of MSNs

The contributions of this chapter are threefold: first, we show that the levels of
venues’ popularity and their visit patterns present distinct behaviors according to sea-
sonal and weather conditions. These findings suggest that environmental variables can
support the design of pervasive protocols (spatiotemporal and socially-aware), espe-
cially in urban environments. Second, we have designed a simulation of opportunistic
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communications based on real data from social media applications, incorporating dif-
ferent settings of months, seasons, weather, and mobility in New York City.

The results present variations in network metrics capable of being characterized
according to thermal conditions, which evidences the relationship between environ-
mental variables and human mobility, and their effects on the performance of MSN
protocols. Finally, we propose a message-forwarding mechanism based on environ-
mental features and node mobility, which applies the insights gained from observing
fluctuations in human behavior.

5.2 Related Work

One of the most significant challenges of communication in opportunistic networks
is the design protocol for optimized routing mechanisms. The protocols require so-
phisticated decision mechanisms to cache, replace, and forward messages through the
network, using one or more instances of them (replicas). These proposals investigate
the use of the personal device capabilities of computing, sensing, communication, and
data storage in order to monitor, predict, and model entities and events that exist in
the physical world, such as the cyber-physical Systems [Rawung and Putrada, 2014].
Therefore, the message forwarding mechanisms should be able to select the best nodes
to forward messages and improve main performance indexes, such as delivery ratio and
end-to-end delay, taking into account the overhead caused by multiple replicas, hops,
and energy.

The Spray-and-Wait [Spyropoulos et al., 2005] (S&W) is one of the most popular
algorithms for forwarding messages, and it uses a flooding-based architecture divided
into two steps. The split approach enables rapid diffusion of replicas on the network
during the first step, in addition to using a customizable utility function for managing
the replicas during the second step. Initially, each created message has λ replicas to
spread on the network during the spray step. A relay node can be any node in the
network that meets other nodes with n > 1 copies of the original message. As defined
by a utility function, the relay node receives c < n copies forwarded by the source
or another relay node. When a node has only one replica of the message, it initiates
the wait step. During this stage, it will not deliver the last replica until it meets the
destination node.

Different mechanisms have been proposed for the spray and wait steps which
extend the original algorithm, including Spray-and-Focus [Spyropoulos et al., 2007],
which changes the wait. The new focus step determines that messages with one lo-
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cal replica will be forwarded to their destinations or other relay nodes, based on an
evaluation of the time interval since the last two meetings between nodes. The main
advantage of this approach is the controlled number of replicas in the network; this is
defined by λ, which represents an upper bound to the overhead.

Recent studies have investigated MSNs, considering the nodes as users of personal
devices such as smartphones, to take advantage of social aspects [Hu et al., 2015].
These proposals have explored social aspects, such as the node popularity [Mtibaa
et al., 2012], social group labeling [Hui and Crowcroft, 2007], expected delay and the
number of encounters [Chen and Lou, 2016], explicit mutual interests [Costa et al.,
2008], and a combination of communities and node centrality [Hui et al., 2011]. In
this direction, Moreira and Mendes [2015] investigated the impact of human behavior
on opportunistic social networks. They studied the use of social aspects and data
similarity to develop opportunistic forwarding systems for essential services in extreme
networking conditions and dense networking scenarios. Furthermore, their work shows
suitable types of opportunistic forwarding schemes according to the network density.
Their experiments used simulations based on real and synthetic mobility traces, and
their findings point to the investigation of self-awareness mechanisms and adaptable
forwarding schemes based on network features and the dynamism of user behavior.

Chen and Lou [2016] proposed a forwarding scheme that considered informa-
tion from node encounters and Time-To-Live (TTL) message property. The authors
proposed a routing protocol for delay-tolerant applications that distributed multiple
replicas between nodes in proportion to their expected encounter ratio. They proposed
the Expected Encounter-based Routing protocol (EER) that uses the following met-
rics: Expected Encounter Value (EEV), which is the expected number of encounters
for each node, and the Expected Meeting Delay (EMD), which is the minimum waiting
time for the meeting of the current node and the destination node of a message. Similar
to the Spray-and-Focus approach, the messages are created with λ replicas and spread
on the network in proportion to the EEV. Thus, when the number of replicas of a held
message is reduced to 1, the single replica is forwarded only to the destination node or a
relay node with a lower EMD. The experiments used the vehicle-based mobility model,
which is part of the Opportunistic Network Environment (ONE) simulator [Keränen
et al., 2009].

Mtibaa et al. [2012] proposed a forwarding mechanism based on node popularity
derived from the PageRank algorithm [Brin and Page, 2012]. The PeopleRank proposal
explores the popularity of nodes using a distributed approach, forwarding new copies
of the original message to nodes ranking higher than the current node. The messages
are duplicated on demand and without a specific limit of replicas. The performance
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evaluation presented results using six datasets of real data, with 27 up to 414 nodes.
Ciobanu et al. [2014] explored the social graph from social media applications to

provide additional information and support the message forwarding mechanism. The
proposed algorithm, OpportuNistic Socially-aware, and Interest-based DissEmination
(ONSIDE), takes users’ interests and contact history into consideration to decrease the
congestion and required bandwidth, taking into account the overall network’s hit rate
and the delivery latency.

Similarly, Socievole et al. [2015] introduced the multi-layer social network model,
which combines social networks based on proximity and online social networks. The
authors investigated the relationship between different social network layers regard-
ing node centrality, community structure, link strength, and prediction. Both works
discuss the advantages of using social aspects to improve opportunistic dissemination
and the benefits of using online social media applications to obtain the social graph.
Nevertheless, these proposals assume an eventual connection to the Internet or remote
servers of social media applications. These assumptions make it difficult to use these
proposals in scenarios without infrastructure.

Environmental features can change the social and network variables used by these
proposals when a contextual variable (e.g., weather, traffic conditions, the day of the
year) reaches a critical value, causing changes in the variable of interest (e.g., connec-
tion duration, distance traveled, node degree, clustering coefficient). These contextual
tipping points, according to the definition of Lamberson et al. [2012], can represent
symptoms of change in environmental characteristics. Bakhshi et al. [2014b] discussed
how weather conditions could influence people’s mood, retail sales, the stock market,
among others. The authors argued that many of the effects seen in online communi-
ties could be explained using offline theories from experimental psychology. Results
showed, that during visits to restaurants, user experiences varied according to weather
conditions, which also influenced customers’ online reviews.

Similarly, Bannur and Alonso [2014] studied social media check-in data from the
user’s perspective, investigating seasonal polarity of check-ins in different regions of
the United States. Results showed the seasonal behavior of check-ins for specific cate-
gories of venues during the 12 months of 2013 by quantifying the popularity of movies,
restaurants, shopping locations, among other venues, in different days of the week,
and different months. In addition to seasonal variation in visits, the results showed
that ranking of the most popular venues varied during the year. Considering an urban
scenario and social media traces, Cho et al. [2011] showed that humans experience a
combination of strong, short-range spatially and temporally periodic movement, which
is not impacted by the social network structure. Their work showed that, by inves-
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tigating the Brightkite and Gowalla LBSNs, social relationships could explain about
10% to 30% of all human movement, while periodic behavior can explain 50% to 70%.

The state of the art of both topics, social-based protocols, and social media data
mining classified urban scenarios as dynamic systems and pointed to the influence of
social aspects and exogenous variables. Most of the performance evaluations carried
out by recent studies considered real mobility traces, but the data analyzed represented
only a few hundred users, small sets of communities or limited geographic areas, such
as universities and conferences centers [Scott et al., 2009; Pietilainen and Diot, 2012;
Eagle and Pentland, 2005]. Moreover, existing social-based studies have implemented
mechanisms based on the history of encounters regardless of their fluctuations and
characteristics, which have the potential to deteriorate communication network per-
formance. For this reason, the design of social-based forwarding mechanisms with the
ability to adapt to different network configurations is a recent challenge, in which pre-
diction of critical points of change can support the pervasive mechanisms in improving
the performance in MSNs.

5.3 Trace-Based Analysis

In this section, we describe the real data used in simulations, as well as the method-
ology used to combine weather and social media data. Many papers have explored
social media applications to simulate large urban scenarios and investigate their dy-
namics [Hossmann et al., 2011; Silva et al., 2013; Ribeiro et al., 2014]. On the face of it,
we reinforce the use of real data in our experiments, because environmental conditions
are complex to simulate, and their effects on the behavior of users are better observed
in situ [Pietiläinen et al., 2009].

5.3.1 Data Description

Many geolocalized data samples about daily life in urban environments are available
through urban streams [Moosavi and Hovestadt, 2013] and can be combined as layers
of information [Silva et al., 2014c]. Each geolocalized record represents an event lim-
ited by a temporal and spatial window, such as sensing samples of mobility, content
interest, and venue popularity. We used public data sources in a combined approach
to analyze the spatial distribution of users, and encounters between them, in different
environmental configurations.

The data collected comprises geolocated data samples of weather conditions and
human mobility limited to Manhattan in New York City (NYC) from February to Au-
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Figure 5.1. Average of temperature for the selected time series.

gust 2015. The traces of human mobility were built using data from social media ap-
plications, specifically, geolocalized photos on Instagram and check-ins on Foursquare,
resulting in a dataset of 1.3 million samples.

By using social media applications as data sources, we obtained real data about
venues, users, and encounter routines. Thus, in this work, our simulations consider
commutes between real locations, a large number of users with distinct behaviors, and
areas with time-sensitive agglomerations. According to the public data collected from
those sources, we defined a data sample from social media as a 3-tuple sm = ⟨u, p, t⟩,
where u represents a user ui ∈ U , t is the timestamp of the sample, and p is ui’s
position defined by latitude and longitude coordinates. In addition, we defined the
path traveled by ui within a time window as uts

i = {sm1, sm2, . . . , smk}.
Data on weather conditions were collected from the National Weather Service

(NWS) and public stations via the Weather Underground1 service. The service provides
data about weather variables with a sensing frequency of up to 60 minutes of interval,
obtained from 54 weather stations in the area of interest. Weather data samples are
defined as a 3-tuple w = ⟨tp, p, t⟩, where tp is the temperature measured in degrees
Celsius, p is the position of the weather station, and t is the sample timestamp. The
weather conditions of a simulated time series are summarized according to the average
of all temperature measures during the selected time window and classified according
to variance.

Using this model, we defined each trace as T = ⟨Ut, tp,∆t⟩, where Ut is a set of uts
i ,

tp is the average of temperature measures, and ∆t is the time window of analysis. The

1http://www.wunderground.com

http://www.wunderground.com
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set of traces comprises 15 independent time series grouped into seven days, starting
on Monday and ending on Sunday, which are subsets of collected data and selected
according to the absence of holidays and low variance of temperature. By using this
methodology, we defined classes of temperature grouped by intervals of 5◦ Celsius, as
shown in Figure 5.1.

The collected data refers to the period previously mentioned and is limited by
the bounding box of Manhattan, defined by geographic coordinates2. The social media
data samples were collected using the Twitter Stream API3, and represent data samples
obtained at the moment of its online publication, and originally published by mentioned
applications; in other words, the samples are collected in real-time and limited to
the Foursquare and Instagram applications. The weather data samples are limited
according to the geographic position of the weather stations and are obtained using
public API of Weather Underground, which provides queries based on geolocation and
date.

5.3.2 Data Combination

Figure 5.2 shows the time series of visits for two Points-of-Interest (POI) in NYC:
Central Park (CP) and Times Square (TS). The data represents the normalized av-
erage number of visits normalized by the max of individual time series during daily
hours in different seasons and weather conditions. Both places present similar peaks
of popularity during the night, but more than one peak occurs in the summer season,
specifically at CP, where two similar peaks were registered and did not happen with
the same intensity during winter and spring. The difference seen in these time series
illustrates how thermal and temporal variations can characterize the visiting patterns.
Note that even popular venues, which can attract crowds any day of the year (such
as in well-known POIs), present fluctuations characterized by environmental variables
and seasonality.

To verify whether there are significant differences in the activities done in NYC
when the weather changes, we created a m × n matrix M that represents the places
that people visit in NYC at different temperatures. Each row i ∈ {1, 2, . . . ,m} of M
is a 5C temperature range, and each column j ∈ {1, 2, . . . , n} is the mean amount
of data users in place pj when the temperature was in the range defined by row i.
Thus, Figure 5.3 shows the Principal Component Analysis (PCA) for matrix M ; that

2The guidelines for data collection, as well as tools used and their parameters, are available on
http://homepages.dcc.ufmg.br/~kassiolsm/comnet

3Application Programming Interface available online on
https://dev.twitter.com/streaming/overview

http://homepages.dcc.ufmg.br/~kassiolsm/comnet
https://dev.twitter.com/streaming/overview
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Figure 5.2. Curves of popularity, in terms of the number of users, during the seasons
observed.

is, each point in the graph is a 5C temperature range, and the horizontal and vertical
axes represent the first and second principal components of M according to PCA,
respectively.

The first two components can explain 74% of the variance seen in the data. The
results presented distinct values for the set of temperatures observed; that is, venue
popularity in NYC varies according to the local temperature. The first component,
on the horizontal axis, shows the difference between cold and hot temperatures, while
the second component, on the vertical axis, measures extremes temperature. Based
on these observations, we modeled the popularity of venues in three phases: nega-
tive, transition, and positive. The negative phase comprises time series with average
temperatures lower than 0C; the transition phase includes time series with average
temperatures between 0C and 10C; and the positive phase comprises time series with
average temperatures greater than 10C.

Figure 5.4 shows the analysis of geolocalized data samples according to the three
phases defined in the PCA. The circles represent popular venues in the area of interest,
and the size of the circle represents popularity according to the average daily number
of visits (for better visualization, we maintained a limit of only 150 of the most popular
venues). The results show a variation in popularity, with new venues observed only in
specific phases. For example, during the phase negative, three POIs with similar levels
of popularity close to Central Park are observable in the North, but their popularity
changes during the transition and positive phases. A similar situation was registered
with the Brooklyn Bridge on the South, where at least three POIs were observable in
the positive phase.
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Figure 5.3. Principal component analysis of venues’ popularity according to temperature.

(a) Phase negative (b) Phase of transition (c) Phase positive

Figure 5.4. Popular venues in New York City in different phases.

Figure 5.5 presents the entropy matrices, grouped according to the phases de-
fined in PCA. Each element of the matrix represents the entropy calculated using
i ∈ {1, 2, . . . , n} that represents the number of data samples at a place pi observed
in intervals of two hours, and according to the days of the week. Entropy values
are related to the total number of check-ins observed, where low values indicate few
opportunities for encounters between users due to sparse check-ins and their spatial
distribution. Hours with lower entropy values occur in periods outside regular business
hours in the transition and positive phases.
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Entropy begins increasing at 8 a.m. and decreasing at 0 a.m. during the week-
days, a consequence of the usual behavior of the citizens of NYC. The entropy values
show critical hours; they are time windows with low mobility, capable of negatively im-
pacting opportunistic communication performance. The phases emphasize the distinct
patterns of critical hours, showing the fluctuation of spatial distribution and muta-
ble characteristics of the critical hours set. Few users keep moving according to their
particular features; therefore, forwarding mechanisms should pay attention to nodes
with high mobility, or nodes with high potential to connect disjoint communities, to
improving network performance in critical hours. It is important to note that several
particular situations and variables can influence the spatial distribution of people, such
as holidays, musical events, traffic jams, and weather conditions. In particular, weather
conditions such as snow, rain, or severe temperatures can influence personal preferences
and urban mobility in the form of traffic conditions, an inclination to indoor places,
and increased demands on public transportation.

5.4 PervasivePeopleRank

In this section, we present the PervasivePeopleRank (PPR), an algorithm designed for
forwarding messages in MSN applications, which selects relay nodes based on informa-
tion about users and the environment.

The PPR extends the previous protocol PeopleRank (PeR) proposed by Mtibaa
et al. [2012], which ranks the nodes according to their social links. When an encounter
between two nodes Ni and Nj occurs, the algorithm calculates the individual PeR value
using the following equation:

PeR(Ni) = (1− d) + d
∑

Nx∈Fi

PeR(Nx)

|Fx|
(5.1)

Equation 5.1 describes the PeR computation performed on both nodes, where Fi

is the set of neighbors connecting to Ni (social links) and d is a damping factor defined
as the probability, at any encounter, that the social link between nodes improves the
rank of the nodes involved. The damping factor (0 < d ≤ 1) controls the weight given
to the social links on the forwarding decision. The PeR value is the metric used for
replicating and sending messages towards the central nodes of the network, which have
a higher probability of knowing the destination node.

Originally, the social links used in the metric are collected from social media
applications. Therefore, the metric eventually requires a connection to the Internet or a
server capable of providing the users’ social graph. Meanwhile, we adapted the protocol
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(a) Phase negative

(b) Phase of transition

(c) Phase positive

Figure 5.5. Entropy average of encounters grouped by phases.

to compute the social links using nearby devices close enough to connect directly.
The PeR protocol represents a feasible alternative to large scenarios, with a lack of
infrastructure and susceptibility to variable features. PeR provides customization of
the impact of social links using the damping factor, which provides the adaptability to
work in scenarios without additional resources (remote servers and Internet) and the
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low complexity to compute the main metric PeR in a distributed form.

The PPR considers seasonal and thermal aspects due to their effects on mobility
preferences and node connectivity, taking into account the date, hour, and temperature.
Algorithm 1 shows the PPR forward decision, in which nodes Ni and Nj share their
PeR values and the size of their respective sets of social links. The two nodes then
update their PeR values and replicate messages, if Nj has a greater PeRj value than
PeRi or the node destination is known by Nj.

The case of PeRj < PeRi, PPR applies a time-dependent mechanism that eval-
uates two features:

• environmental: PPR evaluates whether the current hour is a critical hour of
encounters employing the entropy matrices. In our experiments, we defined a
critical hour as one that demonstrates lower entropy than the daily average.

• node mobility: the algorithm also evaluates the ∆Mi, which is the daily average
of time intervals between mobility events of the node Ni.

We assume the nodes are capable of storing the entropy matrices and the social
links locally. The data can be stored in key-value data structures indexed by phases,
the day of the weeks, and the time of the day in the case of the matrices and by the
ID of the user in case of social links. To mitigate the storage cost of social links and
the impact of encounters with a single occurrence, we assume that each social link has
a lifetime of τ hours. The τ defines the maximum interval between two consecutive
meetings of two random users; if the encounter does not happen again before the
deadline, the social link is removed. Otherwise, the deadline is renewed.

The environmental and node mobility features are evaluated to cope with hours
of the low ratio of encounters. Thereby, we assume that, in addition to the capability
of knowing the day and hour, all nodes are equipped with sensors or other resources for
measuring temperature and mobility events. Obtaining information about time and
calendar are trivial tasks for modern personal devices. Additionally, these devices have
sensors for temperature, luminosity, pedometer, accelerometer, and compass, capable of
acquiring data about the environment and users’ activities, such as weather conditions,
walking, and cycling. Therefore, we point out that mobility events can be obtained
using alternatives to Global Positioning System (GPS). Thus, the PPR does not enable
forwarding based on geographic location; it mitigates privacy issues using the size of
the social links set, not the identity of social links, and the time registered for mobility
events, instead of the users’ geographic coordinates.
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Urban scenarios can provide a large number of users with different patterns of
mobility. The PPR exploits this feature during critical hours, creating ephemeral copies
of messages, a kind of replica forwarded to nodes with lower PeR and higher mobility
(∆Mj > ∆Mi). Messages flagged as ephemeral are forwarded normally, with TTL=min
(Tm, Hn), where Tm is the original TTL of the message and Hn is the end of the critical
hour.

ALGORITHM 1: PervasivePeopleRank Algorithm
1 PeRi ← PeR(Ni);
2 PeRj ← send(PeRi);
3 Fj ← send(Fi);
4 PeRi ← update(PeRj , Fj);
5 for m ∈ buffer(i) do
6 if PeRj ≥ PeRi OR destination(m) ∈ Fj then
7 forward(Nj, m);
8 else
9 ∆Mj ← send(∆Mi);

10 if critical(hour) AND ∆Mj ≤ ∆Mi then
11 forward-ephemeral(Nj, m);

5.5 Performance Evaluation

In this section, we present the network model used for simulating the opportunistic
communications, the connectivity graph, and the network performance of the Perva-
sivePeopleRank algorithm.

5.5.1 Network Model

The node mobility is determined according to the definition given in Section 5.3.1.
Therefore, given two data samples smi and smj ∈ T , the settings of opportunistic com-
munication experiments consider an encounter and network connection event between
users ui and uj when:

• the distance dt ≤ DTrange between positions pi and pj;

• the contact interval cij ≤ Ctime between time stamps ti and tj;

where the DTrange is the distance threshold, defined as 50 meters, usually reached by
Bluetooth or WiFi Direct technologies, and the interval Ctime was experienced as a
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Table 5.1. Parameters of simulation of the proximity graph.

Parameter Value

Network Contact Interval (Ctime) 5, 30 and 60 minutes

Communication Range 50 meters

Area 25.15 x 24.01 km

# of Nodes 12854 ≤ n ≤ 18315

Message creation random n ≤ Ctime minutes

Spray and Wait (S&W) Replicas (λ) 1000

Expected Encounter Routing (EER) Replicas (λ) 1000

Re-encounter Time Frame 48 hours

PeopleRank (PeR) Damping Factor (d) 0.8

PervasivePeoplerank (PPR) Damping Factor (d) 0.8

Social Link Lifetime (τ) 48 hours

dLife Re-encounter Time Frame 48 hours

parameter that varied between five minutes and one hour. The encounters are for-
mally described as a network contact graph G(V,E), in which the stochastic process
of encounter between two nodes i, j ∈ V is modeled as an edge e(i, j) ∈ E. We assume
that the network contact graph is undirected, therefore node i contacts j whenever j

contacts i.
The parameters of simulations are described in Table 5.1. The fixed number of

replicas used in EER and S&W simulations is enough to compare with related work,
as shown in Section refsec:network. The damping factor used by PeR and PPR are
defined as shown in [Mtibaa et al., 2012; Socievole et al., 2015] to provide significant
relevance to social links. The lifetime of social links defined by τ and the re-encounter
time frame was defined considering time series used in simulations composed of seven
days.

5.5.2 Contact Graph Analysis

The network analysis takes into account the contact graphs Gct formed during the
trace-based simulations, and the observed environmental temperatures. The graphs
are grouped into four configurations of Ctime. Figure 5.6a shows the size of the giant
component of the contact graph for simulations of different durations and tempera-
tures. Observe that the size of the giant component, when temperatures are inside
the transition phase, is reduced by up to 19.1% when compared to other phases. The
differences in size are noticeable in simulations with Ctime of five and fifteen minutes,
which represent 10.1% and 28.3% of all observed encounters in the dataset, respectively.
Additionally, results show that Ctime equal to fifteen minutes is enough to connect more
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Figure 5.6. Analysis of the graph of contact.

than half of the nodes in the giant component for most scenarios.
Figure 5.6b shows the average degree of nodes, according to contact graphs and

Ctime configurations. The results showed that the temperature shifts from -5◦C to 0◦C
signals the most significant changes in the network structure, where the degree of nodes
decreases by an average of 32.2%. Figure 5.7 shows the Complementary Cumulative
Distribution (CCDF) of the shortest path between any i and j ∈ Gct using Ctime as
60 minutes. The changes in graph structure are characterized by the specific range
of temperatures defined in the transition phase. The metrics showed the positive and
negative phases as well connected, which provide efficient communication; however, the
temperatures of the transition phase indicated sparse connectivity and longer paths.
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Figure 5.7. Distribution of the shortest paths.

Thus, adaptive approaches to forwarding mechanisms are required to deal with the
variations of the network structure. Also, the environment can characterize the changes
and provide early-warning signals [Scheffer et al., 2009].

5.5.3 Network Performance

To evaluate the effects of environment and human behavior on MSN applications and on
the proposed forwarding mechanism, we compared PervasivePeopleRank (PPR) with
five other mechanisms: EER [Chen and Lou, 2016], PeopleRank [Mtibaa et al., 2012]
(PeR), Spray-and-Wait (S&W) [Spyropoulos et al., 2005], dLife [Moreira and Mendes,
2015], and Epidemic. The performance evaluation of the opportunistic communication
is presented in terms of delivery probability, obtained as the ratio between the number
of delivered messages and the number of messages that should be delivered; delay,
calculated as the time elapsed between the message creation and the delivery; cost,
which is the amount of replicas available in the network at the moment of delivery;
and hops, as the number of nodes in the message’s delivery path. The network traffic
is generated based on time and mobility, where the messages are created for random
destinations in two moments: when a node publishes a new data sample reporting its
geographic position, and after random n minutes since the last published data sample,
such that n ≤ Ctime.

In terms of node buffers, the default TTL of messages is 72 hours to attend the
usual sparse nature of opportunistic networks. Also, we defined messages as generic
packets independent of content to focus on message diffusion. Each message represents
a unit on the buffer, with a capacity for 1000 unique messages. Figures 5.8 and 5.9
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Figure 5.8. Delivery ratio and average cost according to temperature variation.

present the simulation results using Ctime as 60 minutes and λ as 1000 replicas. The
delivery results in Figure 5.8a show decreasing performance in temperatures within the
transition phase.

Nevertheless, the PPR algorithm delivered at least 57.8% more messages than the
remaining related protocols for the same phase. In the simulations with temperatures
corresponding to the positive phase, the improvement is 69%. Messages delivered
during critical hours of encounters increased by 48.2% using PPR. The average number
of replicas presented in Figure 5.8b shows the constant value for protocols EER and
S&W, which are based on the replica limit λ. The increased number of replicas at higher
temperatures using PPR occurs as a result of the higher number of contacts provided
through mobility. The average interval between mobility events ∆Mn decreases by
11.7% in these temperatures.

Figure 5.9 shows the average number of hops and the CCDF of latency. Concern-
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Figure 5.9. Average of hops and CCDF of latency.

ing these results, it is worth emphasizing that simulations of urban areas, such as NYC,
can provide a large number of single encounters (in other words, encounters with just
one occurrence). Moreover, these application scenarios provide subsets of nodes with
few connections or low mobility, that is, nodes walking in small sub-areas or visiting
unpopular places. Nodes with these features are accessible mainly through long paths
or specific nodes, such as bridge nodes, which are responsible for connecting different
communities and areas [Moreira and Mendes, 2015]. For this reason, Epidemic with the
simple flood technique provides the best performance of delivery ratio and high average
of hops. Indeed, the related protocols select relay nodes primarily considering centrality
and social aspects, in an attempt to use short paths and lower delay. However, in large
geographic areas, these approaches limit the number of feasible encounters to message
transfer to a set of low-frequency events, and negatively affect delivery. That is, the
related protocols quickly reach the well-connected nodes (Figure 5.9a); nonetheless, the
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messages are replicated or forwarded to another node with higher centrality, another
node that had previously met the destination, or directly to the destination. In case
of few connected destinations or low relay node mobility, more time may be required
before a more suitable candidate for relaying the node is encountered, or a node from
the destination social group is found.

dLife and PeR use 85.8% fewer replicas because the messages are usually for-
warded to the high centrality nodes, but the infrequent encounters with feasible relay
nodes, according to their respective decision mechanisms, stops the diffusion. Hence,
the delivery rate is 76.4% less than PPR. The greedy approach of PPR reaches distant
nodes and improves the delivery ratio, but naturally increases the overall number of
hops. Nevertheless, PPR delivers 20.1% more messages using 15% fewer replicas than
EER and S&W.

Figure 5.10 presents the delivery results, using Ctime as thirty and five minutes,
and the performance is proportionately similar. Observe that the delivery rate in these
scenarios decreases as temperatures fall in the transition phase. Nevertheless, the
delivery rate using the proposed protocol is 54.4% and 47.9% better than the related
proposals in these scenarios, respectively. Considering all the scenarios, the delivery
rate is improved by at least 54.1% and 61.4%.

5.6 Conclusion

In this chapter, we investigated the seasonal patterns of urban mobility and their fea-
tures facing thermal variation. Our observations indicated some effects of spatiotempo-
ral features in human mobility and encounters in an MSN scenario. The social media
data used in our investigation presented a fluctuation in venue popularity and of prob-
able encounters between peers. Results showed that temperature could explain 74%
of the variance in the popularity of venues. Moreover, we showed that three ranges of
temperatures could characterize distinct patterns of encounters. The changes in envi-
ronmental variables provided the identification of distinguished behaviors observable
by the spatial distribution of users, an essential feature for the design of message-
forwarding mechanisms for people-centric approaches and large geographic areas.

In addition, we used the spatiotemporal insights to propose the PervasivePeo-
pleRank, a cyber-physical message-forwarding mechanism for Mobile Social Networks.
The mechanism improves delivery by an average of 57.8% by distributing multiple
replicas of messages according to node centrality, mobility, and seasonal aspects.

Finally, our results indicate that environmental factors can characterize the state
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Figure 5.10. Delivery ratio considering different Ctime.

of the network, providing insights about the dynamism of urban scenarios. In partic-
ular, the temperature was shown to be a relevant feature in assisting the forwarding
decision process for networks based on physical proximity and susceptible to human
behavior.



Chapter 6

Social-Based Distributed Caching
For Urban Scenarios

Cache mechanisms have been employed in computing systems for many decades, but
recently they have retaken the attention of the academic community of next-generation
wireless networks. One reason for such studies is the need to overcome performance
bottlenecks in cellular networks, where massive temporary demands for content in re-
gions with limited resources can use storage capabilities in the network itself. For
this reason, in-network caching is a scientific challenge due to its distributed nature;
therefore, in scenarios with cooperation among users, we can address the social and
spatiotemporal characteristics to deliver content locally and effectively. In this chap-
ter, we analyze the dynamics of the social graph of four metropolises around the world,
where we address the spatiotemporal characteristics of encounters between their in-
habitants and the content consumed and published by them. The results indicated
social and geographic persistence capable of leveraging the use of caching mechanisms
to provide content through local resources. Thus, we proposed a caching mechanism
that assesses social and mobility characteristics to define the cached content of user
devices.

Section 6.1 presents an introductory discussion on the relevance of social aspects
and caching mechanisms for next-generation wireless networks. Section 6.2 presents a
review of the recent studies about Device-to-Device cooperation in wireless networks.
Section 6.3, presents the network model and the data used in the quantitative analysis.
Section 6.4 presents the PopSoC, a mechanism for in-network caching. Section 6.5,
presents the numerical results of mobility and sociability features that support Pop-
SoC, whereas Section 6.6 discusses and analyzes its performance evaluation. Finally,
Section 6.7 presents the conclusions.

85
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6.1 Introduction

Urban centers are moving towards modernization to improve the quality of life and
the experiences of their citizens. A large number of sophisticated mechanisms have
been proposed to optimize essential services such as traffic, energy distribution, and
communications. In this way, the smart city has been widely discussed by industries,
academia, and governments as a set of efficient services with positive effects on inhab-
itants’ lifestyles, the economy, the environment, and plenty of other fields. Since the
popularity of smartphones, tablets, and other personal devices has grown rapidly in
recent years, many services that compose the urban scenario have converged for online
and mobile platforms. This phenomenon allows us to capture data from myriad vari-
ables continually and emphasizes the fundamental role of wireless networks for smart
cities.

Citizens and their personal devices are part of the landscape of large urban centers
nowadays. According to the study [Google, 2016], more than half of all web traffic
comes from smartphones and tablets, and thirty percent of all mobile queries on search
engines are related to the user’s location. The large data traffic generated by those
devices has motivated researchers to propose new mechanisms to support the network
infrastructure to handle the demand. In this context, Information-Centric Networking
(ICN) [Fang et al., 2018] has been presented as a promising technology in which the data
transfers are no longer host-oriented but content-oriented. This approach has gained
attention due to its benefits, such as improvement of spectrum efficiency, multicast
transmissions, and in-network caching. Specifically, mechanisms for in-network caching
have been extensively investigated due to their advantages for content dissemination,
offload, and energy efficiency.

The next generation of wireless networks envisions the active participation of
users to compose communication services in smart cities and support the offload of
the network demand through user-to-user cooperation. The current personal devices
are equipped with sensors and multiple network interfaces, which allow modern mobile
applications to consider the social and environmental data captured through devices.
For this reason, the Device-to-Device (D2D) paradigm and social characteristics will
play a significant role in the efficiency of network resources; therefore, many researchers
have made dedicated efforts to understanding the properties of Mobile Social Networks
(MSN) [Su and Xu, 2015]. Since the paradigm depends directly on users’ cooperation,
understanding the dynamics of the proximity graph, the graph from casual encounters
of users based on physical proximity, is an essential element in the viability of D2D-
based services.
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Recently, the advent of Online Social Network (OSN) applications brought the
opportunity to investigate the human dynamics by using data provided by users during
many daily activities, such as exercises, content sharing, chats, etc. Studies of content
recommendation, personal preferences, and analysis of social networks and communities
have widely used OSN data and Location-Based Social Networks (LBSN), a subclass of
OSN where users can interact by using geotagged content or enjoying unique features
based on geolocation. These applications have been used to investigate spatiotemporal
properties of content engagement, features of venues, variations of cultural aspects,
among others. However, they have little explored the dynamics of MSN in terms of
encounters among users. In the context of the next generation of wireless networks, data
from OSN and LBSN may be used by protocol designers to explore social aspects and
support mechanisms for resource sharing, cooperative computing, and opportunistic
communication.

Social properties, such as the formation of communities and the emergence of hubs
and influencers may provide intersections of interests among friends, co-workers and set
of users. Also, social properties contribute to content popularity, typically characterized
by heavy-tailed distributions. Scenarios with these characteristics make in-network
caching a suitable solution for providing content in overload situations. However, the
mobility of users can negatively affect the spatial distribution of content supply and
demand. Deployment of cache servers in the Core Network (CN) does not prevent
the performance deterioration caused by backhaul bottleneck, and dedicated hardware
for content caching on the Radio Acces Network (RAN) represents spatially static
resources and additional cost [Bao et al., 2013]. On the other hand, users can provide
distributed in-network caching through their personal devices, taking advantage of the
ubiquity of these devices, associated human behavior, and distributed storage capacity.

In this chapter, we investigate the temporal, spatial, and social properties of
human mobility to propose an in-network caching framework. The contributions of
this chapter are as follows:

• We present a network model to simulate encounters between citizens in an urban
scenario and estimate the proximity graph and its properties. The simulations
use real data collected from a social media application for several continuous
months.

• We analyzed the spatiotemporal properties of the simulated encounters and the
dissemination of content, where the results indicated persistent behavior for ge-
ographic and social characteristics.
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• Lastly, we proposed a framework for in-network caching based on content pop-
ularity and social context. The framework explores the behavior of users to
manage the content stored. The performance evaluation indicated an increase in
hit probability with fewer replicas per content.

6.2 Related Work

The design of mechanisms for optimized content caching and distribution is one of
the most critical challenges of distributed caching in wireless networks. The prob-
lem requires sophisticated decision mechanisms to select the relevant content to be
cached and forward it via opportunistic encounters among users, considering the con-
tent replication if necessary. Thus, the proposed solutions to the problem explore the
computing, sensing, communication and data storage of personal devices to model en-
tities and events around users and contents. Therefore, the mechanisms for content
caching should take advantage of this information to be able to select the best nodes
to store and serve contents, improving the main performance indexes, such as cache
hit and delay, taking into account the overhead caused by multiple replicas and hops.

In this direction, Wang et al. [2014] proposed a framework for traffic offloading
assisted by OSN services via opportunistic networks. Firstly, the proposed framework
selects a subset of users to receive the same content as initial seeds, depending on their
content, spreading impacts in OSNs, and their mobility patterns collected previously.
After that, the seed users store the content until they share with neighbor users using
opportunistic encounters. The results indicated reduction up to 86.5% of cellular traffic,
considering the delay requirements. The proposal presented by the authors considers,
that the integration between OSN services and the mobile operator in the decision
process, of what content to store and which user should do it. In addition, the proposal
assumes that the mobile operator can push content to the users in the initial seed
selection step using a global view of the network, and independent of the user’s interest
in the content pushed.

Wang et al. [2017b] proposed a framework for information-centric virtualized cel-
lular networks using D2D communications. The framework considers the local storage
of contents in the users’ devices and incorporates the content caching strategies in a re-
source allocation optimization problem to maximize the total utility of Mobile Virtual
Network Operators (MVNOs). The work discusses the need for Network Function Vir-
tualization (NFV) to deal with the typical scenario of multiple mobile operators, where
users from different operators are unable to directly communicate and collaborate due
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to the policies and economic factors. Hence, the virtualization-based approaches may
use general-purpose hardware infrastructure and ensure the modularity of the compo-
nents [Wang et al., 2015; Gomes et al., 2016]

Sheng et al. [2016] designed a multilayer architecture for content delivery, which
explores caching in the personal devices and the edges of the network. The authors
discussed the need for caching along the path from content servers to personal devices
and advocates the importance of infrastructure coordination in the cooperation of
users-to-users and users-to-infrastructure. The results presented the benefits of hybrid
caching mechanisms, where the improvement concerning latency can be approximately
40% better compared to traditional approaches and 60% for the Region Hit Ratio
(RHT), which indicates the ratio of locally retrieved contents without visiting remote
servers and the total of requests.

Chen et al. [2013] proposed a relay selection mechanism for D2D applications
based on social-trust and social- reciprocity. The identified trusted relationships may
relay data among their users, and social without trust, form a coalition with social
reciprocity to relay for those in the same coalition. Bao et al. [2013] evaluated the
potential for data offloading via D2D using real experiments. According to the exper-
iments, the cellular networks are mostly overloaded during high-density events, when
many people located in small geographic areas, where they usually consume similar
content or use a single application massively. The authors proposed that the mobile
operators track the geolocation of clients and build maps to indicate dense clusters
of users and content, defined by authors as data-spots. They conducted experiments
using bike rides in New York with Bluetooth scanning nearby devices. Furthermore,
the experiments included simulations of content, and the results indicated performance
improvement for multimedia and publisher-subscriber applications.

Recently, social networks have been widely studied to improve wireless networks
in different paradigms, especially Delay-Tolerant Networks (DTN) [Zhu et al., 2013;
Wei et al., 2014] and vehicular networks [Nikolaou et al., 2016; Vegni and Loscri, 2015].
Since most of those networks employ store-carrying-forward mechanisms and the data is
transferred mainly through short-range wireless interfaces, those similar paradigms can
exploit their users’ social properties similarly. In DTN scenarios, the proposals have
explored social aspects, such as nodes’ popularity [Mtibaa et al., 2012], community
labeling [Hui and Crowcroft, 2007], expected number of encounters and delay [Chen
and Lou, 2016], explicit mutual interests [Costa et al., 2008], and a combination of
centrality and communities [Hui et al., 2011].

In this direction, Moreira and Mendes [2015] investigated the effects of human
behavior in DTN applications with social aspects. They evaluated the social properties
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and similarity of interests among users to develop opportunistic message forwarding
systems, focusing on services for extreme networking conditions, and dense networking
scenarios. The experiments used simulations based on real and synthetic mobility
traces, and the findings indicated the need for adaptable forwarding and self-awareness
mechanisms based on the dynamism in behavior.

Chen and Lou [2016] proposed a forwarding scheme based on node encounters and
the time-to-live (TTL) property of messages. The authors proposed a routing protocol
for delay-tolerant applications that distributed multiple replicas between nodes, in
proportion to their expected encounter ratio. Their work presented the Expected
Encounter-based Routing protocol (EER), using the metrics Expected Encounter Value
(EEV) of each node and the minimum Expected Meeting Delay (EMD) between the
current node and the destination. The messages are created with a predefined number
of replicas and spread on the network proportionally to EEV. Thus, when the number
of replicas of a held message is reduced to one, the single replica is forwarded only
to the destination node or a relay node with lower EMD. The experiments used the
vehicle-based mobility model, which is part of the Opportunistic Network Environment
(ONE) simulator [Keränen et al., 2009].

Mtibaa et al. [2012] proposed a forwarding mechanism based on node popularity,
derived from the PageRank algorithm [Brin and Page, 2012]. The PeopleRank proposal
explores the popularity of nodes with a distributed approach, forwarding new copies of
the original message to nodes that rank higher than the current node. The messages
are duplicated on demand and without a specific limit of replicas. The performance
evaluation presented results by using six datasets of real data with 27 up to 414 nodes.

Ciobanu et al. [2014] explored the social graph from social media applications to
provide additional information and support the message-forwarding mechanism. The
proposed algorithm takes users’ interests and contact history into consideration to de-
crease the congestion and required bandwidth, taking into account the overall network’s
hit rate and the delivery latency. Similarly, Socievole et al. [2015] introduced the multi-
layer social network model, which combines social networks based on proximity and
online social networks.

The authors investigated the relationship between different social network layers
regarding node centrality, community structure, link strength, and prediction. Both
works discuss the advantages of using social aspects to improve opportunistic dissem-
ination and the benefits of using online social media applications to obtain the social
graph. Nevertheless, these proposals assume an eventual connection to the Internet or
to remote servers of social media applications. These assumptions make it difficult to
use these proposals in scenarios without infrastructure.
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Figure 6.1. Time series of samples grouped by cities and days.

The state of the art indicated the social properties as dynamic and complex
systems and pointed to their influence in D2D based systems. Most of the performance
evaluations carried out by recent studies considered real traces of human mobility,
although the data analyzed represent a few tens or hundreds of users and communities,
such as universities or conference centers [Scott et al., 2009; Pietilainen and Diot,
2012; Eagle and Pentland, 2005]. Moreover, the majority of socially-aware studies have
proposed mechanisms considering scenarios in experimentation scale, which may not
capture the temporal variations of personal preferences, typically observed in long-term
data. For this reason, the design of socially-aware content caching mechanisms with
D2D should consider clients’ inclination to not disclose their private data. Furthermore,
personal preferences and social properties must be investigated as dynamic features of
urban scenarios, taking into account the effects of their fluctuations.

6.3 Network Model

In this section, we describe the multigraph approach, the dataset built from social me-
dia application, as well as the network model and traffic used to simulate the encounters
among users and content dissemination.

6.3.1 Multigraph Approach

The graph presented in Figure 6.2 shows some distinct classes of links among users.
The multiple edges among the same pair of nodes represent different layers of data
combined, where a pair of nodes may be connected by more than one edge or connected
in different layers. In other words, the graph describes the interactions of the same
pair of nodes in a multitude of domains cumulatively combining two or more graphs.
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Figure 6.2. The cumulative aggregation of content interests, proximity, and social graph.

In this hypothetical network, the social relationship layer indicates the existence
of association among users, friendship or some other human relationship; the layer of
D2D links indicates sufficient geographic proximity for a direct connection of the users’
devices; and the edges in the content-based layer indicate the request of identical
content for both nodes. The edge (u1, u4) represents the most common edge class for
large sets of users distributed in broad geographic areas. Those edges are a result
of casualness, a spatiotemporal coincidence of two random users with low chances of
happening repeatedly.

The edge (u1, u2) similarly represents an opportunistic encounter; nonetheless,
the social factor can group users with interest in similar content due to homophily,
a phenomenon observed in social networks that defines the natural grouping of nodes
with similar attributes [Wang et al., 2013]. The intersection of interests may also result
from spatiotemporal factors capable of forming crowds momentarily and independently
of social relationships (edge (u3, u4)), such as the encounter of random users in musical
concerts, sports events, and other public occasions.

The physical proximity layer and content requests are visible to the base station
and potentially useful for the caching mechanism. Since the social information layer
is rarely available due to privacy constraints, cache mechanisms must infer the social
attributes from alternative layers, investigating frequently visited places and mobility
patterns, for example.
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6.3.2 Network Model

Urban data streams are services for data dissemination that provides structured data of
variables from urban scenario, such as transportation, traffic, environmental conditions,
and health [Moosavi and Hovestadt, 2013; Kambatla et al., 2014; Boyle et al., 2013].
Some local governments are officially providing those streams, while other general-
purpose applications, such as OSN, may also be alternatively used. In OSN streams,
a sample of data may register an event indexed in time and space, enabling multidi-
mensional analyses capable of representing mobility and personal preferences, among
others.

To investigate real urban areas, we used OSNs as data sources to analyze the
spatial distribution of people and estimate the encounters between them. We collected
data samples from Twitter, the popular application where users can share text and
multimedia messages indexed geographically. Third-party applications can collect the
data publicly available, in addition to the metadata with the user identification, date
of publication, latitude and longitude coordinates, terms, hashtags, and URLs, among
others.

Therefore, we collected data from October 2015 to November 2016 and prepared
a dataset, which represents the cities London, Paris, New York, and Los Angeles. The
choice of the set of cities follows their representativeness in the dataset that sums 11.4
million of samples from 998,000 users, as described in Table 6.1.

In this way, we formally define a data sample as a 3-tuple d =< u, p, t >, where
u represents a user ui ∈ U , t is the time index of the sample defined by local time,
usually the local time, and p is the ui’s spatial index defined by latitude and longitude
coordinates. Therefore, a set of data samples classified by city and chronologically
sorted represents a time series, as presented in Figure 6.1.

Given that the samples do not provide the pause-time, defined as tp, which rep-
resent the period that a user remains in p, we assume the temporal threshold Tth = 60

minutes as the maximum natural interval between two chronologically ordered samples
of a ui ∈ U . The simulations presented in the next sections comprise time series of
months uninterruptedly; therefore, the pause-time tp should consider different situa-
tions of mobility, such as from high or moderate mobility during business hours or
routine to low mobility at home during the night. To cope with it, any natural interval
between two consecutive samples that exceed the temporal threshold is replaced by a
random 0 < tp ≤ 60 minutes following the Poisson process, as shown in Figure 6.3.

The distance threshold Dth defines the maximum geographic distance for an en-
counter based on physical proximity between two data samples. To simulate the D2D



94 Chapter 6. Social-Based Distributed Caching For Urban Scenarios

Table 6.1. Online social network dataset description.

Samples Users Period
Paris 1324051 156823 October 25th 2015

to
November 7th 2016

London 2733343 269283
Los Angeles 2313217 209907
New York 5057454 362752

capabilities, we defined Dth = 100 meters. Accordingly, an opportunistic encounter
event able to establish a D2D link is identified when any two data samples di and dj

satisfy the following criteria:

• ui ̸= uj;

• dg ≤ Dth where dg is the geographic distance between pi and pj;

• ts < min(tu + tpu, tj + tpj) where ts is the current simulation time.

Naturally, user mobility provides a temporal graph G = (V,E), where E is the
set of edges that represent the geographical proximity among users and V is the set of
users available at time ts. In this analysis, we evaluated the properties of the graph
using the Gt = {g1, g2, . . . , gn} time series, where gi is a snapshot of the graph at time
ti. We also evaluated the aggregated graph Gc = {g1 ∪ g2 ∪ · · · ∪ gn}.
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Figure 6.3. Pause time considered in the network model.
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6.4 Popularity-Based Social Caching

In this section, we present the framework Popularity-based Social Caching (PopSoC) for
in-network distributed caching. The framework consists of a set of services implemented
on the client and server sides. The client side provides two essential services to capture
the user data and answer the queries of the base station:

• Mobility Manager: captures and stores the mobility of the client from multiple
sources and replies to the queries from the base station.

• Cache Manager: stores and provides the content indicated by the base station
and defines the cache replacement policies.

In the Cache Manager service, the client side provides a portion of the local
storage for caching the content indicated by the base station. Since the framework
exploits content popularity and homophily for content reuse, a client should be able
to store content consumed by itself as well as potentially relevant content indicated by
the base station. Therefore, the local storage of the personal device reserved for the
cache is divided into social and popularity-based, where the cache allocated for social
caching is proportional to the social persistence Ps value of the client.

The Mobility Management module captures the user mobility when using multi-
ple sources available, such as sensors and the network infrastructure. Spatial indexing
or positioning can be obtained through the base station while the client remains associ-
ated, and geographic position can occasionally be obtained during the use of user-level
applications for navigation, web browsing, and others.

The server side defines the base station tasks according to the following services:

• Peer-Discovery Service: continuously updates the sets of associated clients and
the content objects available through them;

• Content Manager: decision mechanism that indicates whether the content should
be cached and whether the content is required by the client;

• Content Match Making: service for content pull and push, handles content re-
quests and the correspondent popularity. It examines the requests and indicates
the clients to serve with the cached content.

The base station needs to be aware of the content available on the associated
clients; thus, during the client association process, an extra step is included to update
the content table at the base station with the cached content at the client’s device, as
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widely considered in related proposals [Nikolaou et al., 2016]. We assume that the base
stations are capable of providing the cooperation among clients from different mobile
operators through Network Function Virtualization (NFV) [Wang et al., 2017b].

The Content Management module monitors the content objects available at the
cell range through the Content Availability Table (CAT), formed by the union of the
cache of all clients associated to the base station, where each entry maps the content
identifiers to their sets of client providers. Furthermore, the module also monitors
the popularity of the contents individually using the Content Popularity Table (CPT),
where each request increases the popularity of a particular content indexed in the table.

When a client sends a content request to the base station, it indicates the re-
quired content and its social persistence sper obtained through the Mobility Manager.
The base station evaluates the CAT and identifies the set of clients associated with the
same base station that is capable of providing the content through D2D communica-
tion, characterizing a hit event. If the content is not available, i.e., a miss event, the
base station obtains the content from the remote server and forwards it to the request-
ing client. In both cases, the base station indicates the corresponding popularity of
the content using the CPT, and the requesting client stores the content in cache, over-
writing a less popular content object previously stored. In hit events, the client stores
the content requested in the social cache; however, in miss events the base station also
pushes content with high popularity to the requesting client through a neighbor client
using D2D.

6.5 Spatiotemporal Analysis

The understanding of the properties of the proximity graph has a vital role in the de-
sign of D2D and social-based applications. Suitable predictions of node characteristics
and structural properties of the network are critical tasks for decision mechanisms in
distributed systems. Therefore, in this section, we investigate the spatiotemporal prop-
erties of simulated opportunistic encounters according to the network model presented
in the last section.

Figure 6.5 shows the complementary cumulative distribution function (CCDF)
of the edge occurrences recorded in the simulations. The occurrences indicate the rep-
etition of the encounters for an approximately small portion of the edges observed.
Naturally, most of the encounters are ephemeral and happen just once, which is an
expected result considering the vast urban areas studied. Figure 6.6 shows the geo-
graphic distance between two consecutive encounters of the same pair of nodes. The



6.5. Spatiotemporal Analysis 97

Server-Side

Peer Discovery Service

Content Management

Content Match Making

Content
Availability Table

Decision
Mechanism

Content
Popularity Table

Client-Side

Cache ManagementMobility Management

Network

GPS

Applications

Local Storage

Replacement Policy

Content Handling
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Figure 6.5. Edge occurrence.

result shows the distribution of distances between ith and ith−1 occurrences of edges.
The combination of results indicates that edges with at least two occurrences are likely
to occur in small geographic areas, configuring edges with some regularity as regionally
limited.

Additionally, the inter-contact time or interval between two occurrences of the
same edge, shown in Figure 6.7, shows a mean time of approximately 11 minutes. The
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Figure 6.6. Distance between consecutive encounters.
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contact time, or the duration of these edges, shows a mean of approximately 2 minutes,
as shown in Figure 6.8. We emphasize that inter-contact time results contain samples
with natural and synthetically defined pause-time. Therefore, encounters registered
more than once characterize that edges with some regularity experience quick encoun-
ters of a few minutes in limited geographic areas, usually by a few hundred meters,
in addition to intervals that indicate re-encounters in the same day. The cities inves-
tigated presented similar trends that indicate analogous social behavior, as observed
in [Noulas et al., 2012], where different cities present a universal behavior of human
mobility, independent of organizational and cultural differences.

The geographic persistence Pg of a user u is calculated as the probability of u
visiting a place previously visited. Formally, let Vu the set of places visited by u, then
the geographic persistence, is the ratio of the total visits represented by Vu and the
subset Ru = {p | p ∈ Vu , λ(p) > 1}, where λ(p) is a function that quantifies the total
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Figure 6.9. Topology overlap.

of visits to the place p. Similarly, we define the user’s social persistence Ps based on
the percentage of repeated encounters or the probability of occurrence of edges already
registered.

Figure 6.9 shows the results of topology overlap analysis, a metric that calculates
the ratio of total shared neighbors between two nodes. In this analysis, we calculated
the topology overlap values for all pairs of neighbors in the proximity graph, considering
the cumulative social graph of all the encounters over the dataset. The result shows,
for all analyzed cities, that more than half of the observed users have some topology
overlap with one or more neighboring users. The curves, although similar, show greater
disparity between New York and Paris. However, in general, the result indicates that
these cities present consistent social characteristics that result in proximity graphs with
relevant properties of navigability.

Figure 6.10 presents mean values of the results of social persistence correspondent
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Figure 6.10. Geographic and social persistence of users.

to the geographic persistence. The result shows peaks on Ps for extreme values of Pg.
Users with great Pg and Ps represent individuals with a high probability of visiting the
same places and meeting the same people, characterizing the behavior of consistency
in both aspects. Meanwhile, users who presented high values of Ps despite the low
Pg are users who configure strong and stable edges regardless of location. Users with
significant social persistence values indicate opportunities to cache relevant content for
their neighboring nodes and their communities; thus, these users can store contents of
their interest for reuse of their future contacts rather than content recommended and
pushed by the base station. Thus, geographic persistence can be used as a predictor
for social persistence and a tool for decision mechanisms.

6.6 Evaluation

In this subsection, we present the performance evaluation of the framework proposed,
as well as the parameters of the opportunistic caching simulation.

The dataset studied captures the dynamic preferences of users in broad real-world
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Figure 6.11. New York encounters during two distinct sports events.

scenarios; therefore, it is necessary to use traffic with corresponding spatiotemporal
characteristics to evaluate cache policies properly. The diffusion and consumption of
content in large and crowded areas present spatiotemporal characteristics that are
difficult to replicate synthetically. As shown in [Bao et al., 2013], data spots arise
naturally from the agglomeration of users in the same region with excessive demand;
for this reason, synthetic models may not provide the particularities of these scenarios
and instead provide oversimplified or generic network traffic.

Figure 6.11 presents the encounters estimated on the days of two popular sports
events in New York. The heat map cumulatively indicates the encounters among users
who published messages in the OSN that contain the same term or keyword related
to the event. Despite the difference in engagement of the two events, as determined
by the number of users involved, both events show similarities of interest and spatial
proximity; however, the spatial distribution is significantly unequal. The spatial fea-
tures evidenced in this result show the heterogeneity of content interest, and evidence
that the massive demand for content has spatiotemporal properties that make it chal-
lenging to deploy resources spatially static, for example, the use of additional hardware
for content caching on the edge of the network.
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Figure 6.12. Distribution of content popularity.
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Figure 6.13. The impact of α parameter.

According to this, the network model used to evaluate the caching policies is
derived from the published messages captured in the dataset. In addition to the meta-
data, we use semantic parsing of published messages to isolate elements, such as URLs
and hashtags. The elements of the messages represent the contents objects of the con-
tent catalog, where a sample represents a request to one or more objects in the catalog,
and the total number of requests of the same object represents the corresponding pop-
ularity. The empirical content catalog of is presented on Figure 6.12 modeled using a
Zipf distribution, where α = 0.8.

Figure 6.13 shows CCDF of the number of hits per edge, considering different
values of parameter α. Since the parameter is dependent on the social persistence
threshold, high values provide significant portions of the device’s local storage for social
caching. Naturally, high values provide smaller subsets of users selected for social-based
caching and lessen the impact of the social factor of the proposal. However, the same
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Figure 6.15. Hit per edge with persistence.

values are responsible for the decrease in base station content push operations.

Figure 6.14 shows the hit CCDF considering the edges in the proximity graph
resulting from the simulated traces. The results show that PopSoC was able to provide
more cached content than the baselines used in the comparison. The BP and CNP
mechanisms showed inferior performance due to competition for cache space resulting
from a proactive approach. The caching approach divided into popular content and
consumer consumption limits the aggressive replication of content, using up to 37.5%
fewer content replicas and increasing the overall hit up to 20.2%.

Since the intersection of content interest among clients is a determining factor
for caching policies in D2D environments, the challenge of providing the required con-
tent through caching goes beyond storing highly popular content. Effective in-network
caching in D2D scenarios may also require proper selection of nodes and relevant con-
tent considering the spatiotemporal and social context.
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Figure 6.16. Delay of hits.

In this way, cache management according to the social persistence used in PopSoC
provides advantage when clients proportionally prioritize the consumed content for
social caching. This approach allows the client to store popular content according to
their own consumption and content that is potentially relevant in the social context.
Therefore, it reduces the total push operations of content not required by the client.
Consequently, the positive effect is noticeable on the probability of hits on edges, which
present two or more occurrences, as shown in Figure 6.15.

The delay measured in the simulation model used considers late hit cache events
in a delay-tolerant scenario. In other words, it is the waiting time of a request for a
content object not available in the cache but later provided by a newly arrived neighbor
node. PopSoC presented an average delay of approximately 11 minutes, a result similar
to the basic proactive protocol that represents an approximate improvement of two
times compared to the lower performance of the baseline (Figure 6.16).

6.7 Conclusion

In this chapter, we explored the users’ spatiotemporal preferences to provide in-network
caching for wireless networks in urban scenarios. We used data collected from Online
Social Networks (OSNs) to investigate social and spatiotemporal characteristics of users
through the dynamics of mobility and the opportunistic encounters. We used an op-
portunistic network model with Device-to-Device (D2D) capabilities to estimate the
temporal properties of the users’ proximity graph and the dissemination of content in
those scenarios.

The simulations included real data from four different cities collected during sev-
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eral months and indicated that human mobility has strong social characteristics capable
of influencing the encounters among citizens, evidencing the temporal properties that
make the distinct urban proximity graph. In this way, we observed the predictability
of human behavior through the persistence of edges regarding time, space, and social
aspects.

Using those observations, we proposed the PopSoC framework for distributed
cache management in a content-based network architecture. Our proposal explores
the social and geographical persistence of users without requiring sensitive personal
data from users or external data sources. Numerical results showed an increment in
performance, increasing hit events in the cache using a reduced number of replicas per
content. This shows the feasibility of using the social context to improve the quality
of service of wireless networks in smart cities.





Chapter 7

A Data-Centric Approach for Social
and Urban Sensing

The management of services that serve urban areas is fundamentally dependent on
data from the areas affected by them. For this reason, efficiently collecting data is a
critical task for the development of effective urban policies and services. However, some
applications still depend on manual data collection that demands a significant amount
of time, such as the collection of urban characteristics and census, while others do not
have large-scale sensing mechanisms, such as the social graph of the inhabitants, the
graph mobility among places among others. In this chapter, we use data made publicly
available through online social networks and the city hall of a major metropolis to
provide a sensing mechanism. The results demonstrated effectiveness in urban sensing
and insights into city regions and user relationships, places and the combination of
these elements.

Section 7.1 presents the big data-based sensing paradigm and the importance of
public and open data for the development of new sensing mechanisms. Section 7.2
presents the data sources used in this chapter and its main characteristics. Section 7.3
presents the results of the investigation of social aspects, as well as Section 7.4 presents
the results of spatiotemporal aspects. Finally, Section 7.5 presents the conclusion.

7.1 Introduction

The modernization of the urban landscape has transformed the metropolises, acceler-
ating the process of urbanization, and making the urban lifestyle attractive to a large
number of people. This agglomeration introduces numerous new challenges for city
management, requiring sophisticated mechanisms for observing the urban variables.

107



108 Chapter 7. A Data-Centric Approach for Social and Urban Sensing

Understanding the urban characteristics from observations is a fundamental step to-
wards the development of smart cities through services for people, mobility, environ-
ment, living, governance, and economy [Pan et al., 2013b]. Industry and academia
have investigated different sensing solutions to improve the monitoring in extensive
geographic areas, making the Internet of Things (IoT) a fundamental part of modern
urban scenarios and a widely disseminated approach [Ang et al., 2017]. Nonethe-
less, many of the urban sensing initiatives, based on conventional sensing or Wireless
Sensor Networks (WSNs), depend on specific resources that may require significant
investment, additional hardware, and sensor management, making the financial factor
a challenge for implementing urban sensing in cities that are geographically extensive
or have limited budgets.

Meanwhile, the vast popularity and reach of mobile computing and wireless net-
works in recent years have had a significant impact on social interactions, media con-
sumption, business, education, and many other fields [Hu et al., 2015; Vastardis and
Yang, 2013]. These advances have consolidated a vibrant ecosystem of online appli-
cations and services that compose the urban lifestyle, where a wide variety of data is
generated at high speed by users, devices, companies, and transactions among these
entities, making the urban scene more measurable.

The observations registered by these applications are capable of portraying a
broad set of urban variables through urban data streams [Boyle et al., 2013; Espinosa
et al., 2014]. The data may reveal cities as complex systems in which the human factor
has a significant impact on their characteristics. In special, Online Social Networks
(OSNs) applications have gained the attention of researchers who have investigated
the urban dynamics through users’ characteristics [Zanella et al., 2014] using a new
sensing paradigm capable of creating complex virtual sensors [Schuster et al., 2013].

The virtual sensors are software tools that provide analytics-based sensing while
exploring alternative data sources; process large sets of variables; characterize and
recognize multiple phenomena as well as different entities (physical or not); perform
the tasks of capturing, representing and analyzing urban data as a scalable alternative
to overcome the costs of physical and dedicated sensors. Nevertheless, virtual sensors
that operate with multiple sources demand great efforts of integration due to the lack of
standardization and the sources’ particularities that affect the frequency of the sample
collection, anonymity, spatial coverage, among other aspects. These challenges hinder
the development of more abstract, replicable, and scalable urban sensing services.

To address these challenges, we propose a data-centric urban sensing framework
exploring OSNs, placing users and their mobile devices as fundamental tools for mea-
suring the urban reality. The services shed light on the social and spatiotemporal
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characteristics of the urban panorama and provide insights through a data analytics
pipeline, offering new observations at a city scale using a scalable and reproducible
methodology. In this chapter, we present sensing approaches to characterize social,
spatiotemporal, and living aspects, exploring encounters among users, venue distribu-
tion, and visitation preferences, among others.

7.2 Data Sources

The public data available through OSNs represent a new opportunity for urban sensing
for two main reasons. First, OSN applications are a modern phenomenon of enormous
popularity and rely on sets of users in the order of millions, including large and diverse
sociodemographic groups. Second, these applications have platforms for developing
and integrating them with third-party applications that leverage the democratization
of users’ data. Therefore, popular OSN applications with high user engagement can
provide real data about people, places, events, preferences, and collective behavior
through contextual information and metadata.

We promote this potential by exploring the collected data from different applica-
tions as follows:

• Twitter1 is an OSN primarily for textual content sharing, although it provides
support for multimedia content formats, where users can post content publicly or
to their followers exclusively. We collected samples of public content from users
whose metadata indicates the users’ precise location at the time of the publication
through geographic coordinates using the Twitter Stream2.

• Instagram3 is an OSN focused on sharing photos and videos of short duration
that motivate interaction between its users through private conversations, public
comments, and the concept of “like.” The published content can index the user’s
location through the name of the venue or event. The collected data adds con-
textual information to the user’s location registered in the samples, indicating
the venue corresponding to the stated geolocation.

• Facebook4 is a popular OSN with a significant number of daily active users. It
connects people, interests, and venues through user profiles, pages, and posts
with textual and multimedia content. The collected data correspond to queries

1https://developer.twitter.com
2https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html
3https://www.instagram.com/developer
4https://developers.facebook.com

https://developer.twitter.com
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html
https://www.instagram.com/developer
https://developers.facebook.com
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for nearby places based on latitude and longitude coordinates within the studied
area.

All collected samples used in this study are restricted by the official boundaries of
the Manhattan region, the most densely populated borough in New York City (NYC),
as well as their official districts as determined in the dataset compiled and publicly
distributed by the local city hall at http://on.nyc.gov/2CmX3pN.

Accordingly, we compiled two data sources. First, the mobility dataset that
comprises samples collected from Twitter and Instagram and define the geographic
coordinates of users along the observation window. Second is the venues dataset,
which semantically defines the set of places indicated by users in the first dataset,
is designed on the basis of the synthesis of metadata from Instagram samples and
Facebook’s geographic database.

Using these data, we investigated 3.5 million mobility samples shared by 256,000
users collected from May 2016 to July 2017 to shed light on the mobility dynamics of
users and their preferences as well as the spatial characteristics of the city.

7.3 Sensing Social Aspects

Monitoring social aspects of user groups with thousands of individuals can be a chal-
lenging task directly related to the monitored variables. Monitoring variables related
to the social context in the physical environment typically requires specific approaches
to measure the proximity between users and estimate their encounters and interac-
tions. In this way, researchers have used custom hardware or mobile applications to
this task, however, the capillarity and reach of the experiment are affected by these
approaches. In mobile applications, the additional power consumption to scan users
around via Bluetooth or WiFi is discouraging for most users and significantly decreases
the number of participants, while in hardware-based approaches, the cost is a critical
factor that limits large-scale implementations.

Considering those challenges, we used OSN data and a spatiotemporal window
model to estimate users’ encounters in a trace-based analysis [Hossmann et al., 2011].
Each sample geographically indexed from the mobility dataset represents an event lim-
ited by a temporal window and spatial area. According to the public data collected, we
defined a data sample from social media as a 3-tuple Sm = (u, p, t), where u represents
a user ui ∈ U , t is the timestamp of the sample, and p is the ui’s position defined by
latitude and longitude coordinates.

http://on.nyc.gov/2CmX3pN
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The pause-time tp, is a piece of information not present in the dataset that rep-
resents the period a specific user remains at p location. Considering that the compiled
dataset comprises an uninterrupted time series of weeks, the tp should contemplate
different mobility scenarios, from moderate to high mobility during business hours to
low mobility outside business hours, at home or at other places of recreation. Our
preliminary study showed a mean interval of fifteen minutes between two mobility
samples from the same user, and distances of a few meters. In addition, consecutive
samples with semantically distinct places, or with a distance greater than 100 meters,
are predominantly reported with intervals of less than one hour (93rd percentile).

Since the samples do not provide the pause-time, we assume a temporal threshold
Tth =60 minutes as the maximum natural interval between two chronologically ordered
samples. Therefore, any natural interval between two consecutive samples that exceed
the temporal threshold is replaced by 0< tp ≤60 minutes following the Poisson process
modeled from the empirical pause time distribution observed in the dataset. The
multiple services based on geographical position and physical proximity are common
elements of IoT and smart city applications. For this reason, we defined the distance
threshold Dth to 100 meters in order to simulate the Bluetooth capabilities and assisted
Device-to-Device (D2D) communication [Gandotra and Jha, 2016]. The Dth defines the
maximum geographic distance for an encounter based on physical proximity between
two data samples. Accordingly, an opportunistic encounter event is identified when
any two data samples si and sj satisfy the following criteria:

• ui ̸= uj;

• dg ≤ Dth where dg is the geographic distance between pi and pj;

• ts min(ti + tpi, tj + tpj) where ts is the current simulation time.

The individual mobility of users and their neighbors estimated by means of en-
counters can provide the proximity graph [Cunha et al., 2015] G(V,E), a temporal
graph where E is the set of edges that represent the encounter by geographical prox-
imity among users and V is the set of users online at time ts. In this analysis, we
evaluated the properties of the graph using the Tg time series, where gi is a snapshot
of the graph G at time i.

Figure 7.1a presents the complementary cumulative distribution function of the
daily number of encounters per user considering the pause-time defined previously
and the variations of Dth. The results of the communication range variation did not
show changes in behavior concerning the temporal aspects; the curves did not present
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(a) Encounters per user

(b) Edge occurrences

Figure 7.1. Characterization of the proximity graph.

changes in shape, such that the seasonality and trends are not affected, only the natural
variation in the number of encounters per user.

Figure 7.1b presents the results of the investigation of the occurrence of edges
in the proximity graph. Edges with more than one recorded occurrence represent re-
encounters and may characterize the social relationship between nodes or similarity
of interests and preferences [de Melo et al., 2015]. Unique encounters among random
users represent most edges, which depict the ephemeral characteristics of connections
in urban scenarios. However, re-encounters can still be observed.

Figure 7.2 exhibits the distribution of the interval between two consecutive en-
counters of the same pair of nodes. The joint analyses of these results indicates that,
as expected, edges with more than one occurrence represent a small subset of the set
of observed edges. Nonetheless, they are characterized by intervals of a few hours be-
tween their representations. Short intervals are related to the spatial distribution of
these re-encounters, such that these edges, mostly cover one or two directly connected
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Figure 7.2. Interval of re-encounters.

neighborhoods. Also, re-encounters usually occur in small geographic regions or sets
of places previously visited by one of the edge’s nodes. Such characteristics indicate
that users’ spatiotemporal preferences show observable regularity for individuals and
groups of people.

Notably, when analyzing the number of nodes grouped per hour, the results show
curves that follow the trend of use of OSNs, such that most interactions occur in the
second half of the day, especially at night, an expected behavior, since the use of OSN
is intensified during hours of leisure and recreation.

Furthermore, a complementary analysis of the number of nodes and connected
components in the proximity graph indicates, that the set of nodes are distributed in
components, usually an order of magnitude smaller. In this way, the observed users are
commonly clustered in a small set of spatiotemporal communities. The proper identifi-
cation of places with a significant regularity of meetings, as well as the spatiotemporal
indexing of communities, are critical tasks for the development of user-centered services
in smart cities. In this way, this alternative model of urban sensing may add latent or
implicit information to the context of geographic areas and other entities of urban sce-
narios. In order to spatially contextualize the estimated encounters, we evaluated the
location associated to the edges of the proximity graph; thus, we group the meetings
in semantic places as indicated by the users and present in the metadata of samples.

Thereby, Figure 7.3a shows the coverage of edges as a function of the size of the
subset of observed locations. According to this result, approximately half of the venues
can cover the entire set of daily edges observed in the proximity graph. Similarly,
we evaluate the edge coverage based on locations using the edges of their visitors,
such that Figure 7.3b shows the coverage of all edges using a quarter of the observed
places. These results adduce the navigability of the proximity graph guided by the
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(a) Edges covered considering the venues. (b) Edges covered considering the edges of
venues’ visitors.

Figure 7.3. Edge coverage as a function of the set of venues.

spatiotemporal characteristics, as well as the potential for exploration of the natural
spatial agglomeration of users.

7.4 Sensing Spatiotemporal Aspects

Studies indicate that a city’s vitality is related to the activities of its inhabitants
throughout the day, and can be compromised by events and characteristics that es-
pecially affect pedestrians [De Nadai et al., 2016]. One of the fundamental character-
istics of the quality of urban life is the diversity offered to the inhabitants regarding
activities, services, housing, and others. Accordingly, the spatial distribution of venues
and Points-of-Interest (POI) represent another essential characteristic of the dynam-
ics of the urban scenario, as well as social well-being. Jane [1961] discussed a set of
evaluation techniques to quantify the spatial diversity of urban subareas and argued
that the lack of diversity has a potentially adverse influence on the inhabitants’ quality
of life. For this reason, we investigated the spatial distribution of the observed places
and their categories, as well as the effects of the unbalanced distribution. Firstly, we
calculated the Residential/Non-Residential balance (RNR), a metric used to estimate
the area occupied by constructions classified into two categories: residential and non-
residential. The RNR is calculated using the samples recorded in the venues dataset
as follows:

RNR = 1−
∣∣∣∣Ri −NRi

Ri +NRi

∣∣∣∣ (7.1)

where i represents the neighborhood and Ri and NRi are the corresponding
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(a) Residential Non-Residential Ratio (RNR).

(b) Land Use Mix (LUM).

Figure 7.4. Attributes of neighborhoods.

portions of places used for residential and non-residential purposes within the neigh-
borhood i, respectively. Thus, low RNR values close to zero represent unbalanced
neighborhoods. Figure 7.4a shows the RNR results for the analyzed neighborhoods.
Although OSNs are appealing to points of collective interest and places associated with
social status, mapping the venues through the content published by users can reflect
the zoning characteristics of the city.

A zoning district is a residential, commercial, or manufacturing area of the city
based on the government and local authorities’ definition of the regulations for land use.
The NYC zoning regulations are available online at http://on.nyc.gov/2rBGnmx.
For instance, according to the official zoning, the Stuyvesant Town (RNR=0.65) is a
mostly residential area, composed mainly of districts for medium-density apartment
houses and small commercial areas for local retail needs. However, approximately 19%

http://on.nyc.gov/2rBGnmx
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(a) SoHo (b) Lower East Side

Figure 7.5. Treemaps of venues for SoHo and Lower East Side.

of its area is intended to districts related to industrial and manufacturing activities
with heavy industries that generate noise, traffic, or pollutants. Meanwhile, Chinatown
(RNR=0.97) is a neighborhood composed mostly of districts for mixed buildings with
residential and commercial purposes, in addition to districts for green areas, parks,
and landmarks. Thus, the RNR results calculated from the OSN data are consistent
with the city’s official zoning; as a result, the data may complement the analysis of the
districts, adding social and temporal characteristics and potential evaluation of zoning
plans.

The Land Use Mix (LUM) is a metric to estimate the diversity of a geographic
area through the purposes of use. LUM values close to one represent areas with a
significant diversity of use equally distributed, such as areas ablethat provide schools,
public squares, offices, shopping malls, among others. Values close to zero represent
areas of a specific use, such as industrial districts. The LUM value of a neighborhood
is calculated as:

LUM = −
n∑

j=1

Pij log(Pij)

log(n)
(7.2)

where Pij is the percentage of use for the purpose j in district i, and n is the
number of possible purposes. Figure 7.4b presents the LUM values for the analyzed
neighborhoods considering n =5, such that n represents the categories corresponding
to professional activities, commerce, services, and leisure. According to the official land
use data (publicly available in http://on.nyc.gov/2M3Y0CY), the Lower East Side
(LUM=0.92) neighborhood is made up of high and medium-density residential districts
designated for the construction of apartment buildings, as well as portions destined for
regional centers with stores, theaters, offices, and light manufacturing. In contrast,

http://on.nyc.gov/2M3Y0CY
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(a) Midtown OSN activities (b) East Village OSN activities

Figure 7.6. Temporal activity registered in the OSN samples.

the Midtown (LUM=0.76) neighborhood has many districts for commercial purposes
to serve the entire metropolitan region, and SoHo (LUM=0.69) is formed mostly by
districts for light and heavy industry. Figures 7.5a and 7.5b represent the proportion
of venues, grouped by category, within the neighborhoods with higher and lower LUM
values, respectively. The LUM evaluation can overcome the abstraction of venues in
only two categories as evaluated in RNR.

Researchers and city planners have questioned the elements and the size of the set
of categories used in the LUM calculation for different evaluations, making this metric
adjustable for different scenarios. Thus, with appropriate generalization, OSN data
can contribute to the evaluation of the use of urban land, with updated information
and low-cost evaluation. Since the spatial distribution of venues can characterize the
offer of services and activities within a geographic area, we used the users’ location to
evaluate the interests and activities of inhabitants as represented by the visited venues.
Hence, we define the popularity of a venue as the number of samples corresponding to
the venue during a time window t, and similarly, the predominance of a category of
venues is given by the aggregated popularity of their corresponding places during the
same period.

Regarding the daily activities, we evaluated the interests of inhabitants for each
neighborhood considering the hours of the day and categories of venues as their in-
terests or activities. The results showed distinct registers of daily activities, although
consistent with official zoning information. For instance, the Midtown neighborhood
shown in Figure 7.6a has among the lowest LUM results, indicating a limited set of
uses of the region such that the daily activities of visitors are mostly related to the
Shop & Service and Arts & Entertainment categories. In contrast, the East Village
neighborhood (LUM=0.9; Figure 7.6b) exhibits a greater variety of popular activities,
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Figure 7.7. Classification of temporal activity.

and recreational venues related to Outdoors & Recreation and Nightlife Spot are more
popular.

The results show the balance of activities throughout the day, an indication of
the beneficial and proportional distribution of venues. Figure 7.7 shows the hierarchi-
cal grouping of categories computed using the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA), such that each feature represents the daily mean of the
category’s popularity, considering t =60 minutes. The dendrogram presents two sig-
nificant clusters that define a dichotomy of venues with residential and non-residential
characteristics. This dichotomy also emphasizes venues and areas more likely to register
repeated edges, in such a way that venues and districts with residential characteristics
presented daily rates of re-encounters greater than non-residential (p =0.001).

Additionally, we explored the taxis’ trip records, publicly provided by the local
government available on http://on.nyc.gov/1EjFCfd. A taxi trip sample describes
an individual commutation of an anonymous passenger that includes the pair origin
and destination with corresponding timestamps, latitude, and longitude coordinates.
Thus, it is possible to compute the temporal profile of a neighborhood and compare
it to the mobility dataset. In this way, we analyzed the daily temporal profile of each
neighborhood through the hourly popularity of taxi trips and considered the OSN point
of view. The obtained correlations are strong for most of the neighborhoods. In par-
ticular, during business hours, correlations are stronger, with a mean of p =0.78. It is
important to note that a portion of the neighborhoods presented a negative correla-
tion. This observation comprises regions with the predominance of districts intended
for industry.

The brokerage [Burt, 2009] is an essential feature in complex networks since it can

http://on.nyc.gov/1EjFCfd
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Figure 7.8. Spatial brokerage.

measure the ability of a node to connect other disconnected nodes. In the proximity
graph, the brokerage determines the potential of a user to connect its neighbors not
connected. In this way, the brokerage measures the reach of the non-redundant portion
of the neighbor’s graph. Hristova et al. [2016] extended the use of metrics in the
context of geospatial networks in which the brokerage can estimate the potential social
brokering of venues. According to the authors, the potential brokerage of a venue is
calculated by its ego network formed by the union of the social networks of its visitors.
Thus, the social brokerage of a place p can be expressed in this way:

Brk(p) = |Sn(p)| −
∑

u,v∈sn(p) eu,v

Sn(p)
(7.3)

where Sn(p) is the social network of the visitors of p. In this work, we assume that the
social network of a node is a subgraph of the proximity graph formed by all the neigh-
boring nodes up to the distance of two hops, i.e., we included the friend-of-a-friend
relationship. Figure 7.8 shows the brokerage results grouped by the categories of the
analyzed venues such that values close to zero represent venues with low brokerage
potential. The mobility dataset draws an abundant scenario formed by a great variety
of users and meetings between them. For this reason, a large portion of the venues pre-
sented high brokerage potential. However, the venues corresponding to the categories
College & University and Professional & Other Places presented greater variation and
lower values.

The visitors of these corresponding classes showed consistent behavior with mul-
tiple visits throughout the dataset, which contributed to the formation of communities
of users with well-defined spatial regularity. The evaluation of the social graph of the
corresponding visitors showed the gradual densification of the set of edges resulting
from the regularity of visits, such that the size of the social network of visitors of the
venues in these categories is on an average less than, or equal to half of the other
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Figure 7.9. Spatial homogeneity.

categories. At this point, we measure the social diversity of venues, estimating the ho-
mogeneity of their visitors concerning spatial preferences. For each user, we calculate
a frequency vector that quantifies the visits of the user, grouped by their respective
categories. Then, we calculate the cosine of similarity of a place p using the following
equation:

Hmg(p) =

∑
u,v∈Sn(p)

sim(u, v)

|Sn(p)(|Sn(p)| − 1)|
(7.4)

where sim(u, v) is the cosine of similarity for all pairs of visitors u and v. Figure 7.9
shows the homogeneity results grouped by category, such that values close to zero
represent no homogeneity. The Residence, Shop & Service and Professional & Other
Places categories, showed that more than half of their pairs have some similarity in
visitation preferences. Indeed, these categories usually bring people together daily,
such as co-workers and family members. Naturally, the visitors of these places rep-
resent more regular edges in the social graph with a high number of re-encounters.
Thus, the significant absence of homogeneity in the other categories is indicative of the
ephemerality of the meetings in these places, despite their popularity.

7.5 Conclusion

In this chapter, we used data analytics to leverage applications and sensing services for
Smart Cities exploring mainly Online Social Networks (OSNs). Such methods rely on
a pipeline of data analysis that takes advantage of the availability of data from OSNs
and governmental data and promote an alternative approach of urban sensing. We
evaluated New York City in a case study and investigated spatial, temporal, and social
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characteristics through the spatiotemporal preferences of OSN users and the geographic
properties of the city. From a social perspective, we evaluated a social graph based on
the physical proximity of users capable of characterizing meetings and investigated its
structural properties. Additionally, we evaluated spatial and temporal characteristics
of the city through the places visited by OSN users.

Our study included the spatial distribution of places considering their categories,
the official zoning of the city, and calculated city planning metrics such as the propor-
tion of land use for residential, non-residential, mixed, and other purposes. Finally,
urban sensing based on OSNs showed significant limitations, which were mainly caused
by the sparsity and noise usually observed in users’ content available online. Hence,
the quality of the results depends on the engagement observed in the OSN, and the
data required appropriate treatment for standardization.

Since this paradigm essentially reuses public data from sources that are globally
popular, such alternative is scalable, extensible and replicable in different locations,
with low implementation costs. The recent advances in machine learning techniques
and the increasing popularity of governmental and private open data initiatives, coupled
with the ubiquity of OSNs make analytics-based approaches a feasible or complemen-
tary alternative to conventional sensing, capable of covering large geographic areas and
broadening the sensing spectrum.





Chapter 8

Conclusion and Future Work

8.1 Summary of the Thesis

In this thesis, we present data analyses and mechanisms for urban sensing based on
virtual sensing. Using this paradigm, we explored alternative data sources and general-
purpose data to provide monitoring of social and spatiotemporal characteristics of
urban environments. We present agnostic methodologies, as well as public and open
data sources, capable of keeping results and procedures accessible to the scientific
community and others.

We primarily explored Online Social Networks (OSNs), which, in turn, showed
positive aspects, such as massive data availability, broad capillarity, and variance of
sociodemographic groups. However, the use of data provided directly by the user in-
troduces noise, in addition to the limitations related to the nature of the data, such as
natural language and unstructured data. Since data are collected for a purpose other
than urban sensing, these data need to be adequately addressed previously. On the
other hand, local governments are recognizing the importance of data transparency and
gradually increasing the supply of official data with information about city manage-
ment. These actions are fundamental for the development of urban sensing based on
complex sensors, and these data are part of the baselines and support the calibration
and validation of the proposed systems.

The analyses presented in this study evaluated the dynamics of the characteristics
of several cities. From a spatiotemporal point of view, we evaluated the distribution
of users across locations in each city, and the results showed seasonality as well as
critical temporal variations to the performance of network protocols in applications
based on direct communication between devices. These characteristics comprise the
sociability dynamics of the inhabitants of the studied cities; thus, we have proposed a
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message-forwarding protocol for delay-tolerant scenarios. We simulated opportunistic
network scenarios and the collective behavior of thousands of users over weeks using
real data collected to evaluate the performance of the proposal. The results showed
that collective behavior fluctuations could significantly deteriorate the performance of
these networks, such that spatiotemporal characteristics can provide relevant contex-
tual information for decision making in these scenarios.

From the point of view of individual behavior, we observed that OSN users are
significantly prone to show regularity concerning social, spatial or both aspects. Based
on this information, we have proposed an in-network mechanism for caching popular
content. The results showed that observing users’ regular behaviors is an effective
approach for the development of collaborative policies in opportunistic networks. From
the collective behavior perspective, we could observe mainly the dynamism of the
preferences of groups of users.

The analysis of collective preferences assisted the estimation of urban planning
characteristics in different granularities. We analyzed the users’ historical location data
to identify the activities and services offered in the neighborhoods of the city, and thus
estimate properties such as the land use, heterogeneity concerning the places’ visitors,
and the ratio of residential and non-residential buildings. Additionally, we identified
preference shifts in significant portions of inhabitants concerning mobility and spatial
distribution. These changes can be characterized and anticipated according to the
critical values of temperature.

It is important to emphasize that user engagement and sharing of personal in-
formation represent a critical aspect for the development of this sensing paradigm.
However, the approaches presented in this thesis do not assume the persistence of
these data associated with the identities of individuals, in order that the analyses favor
collective behavior rather than the individual one.

8.2 Future Research Directions

Possible future studies and analyses should address the relationships between local
governments and citizens, in particular, mechanisms that reinforce their participation
considering aspects of privacy and engagement. Thus, we list the following topics as
future work.

• Incentive mechanisms. Popular OSNs have significant ubiquity and great user
retention potential. These features provide a trusted environment for users to
share information and interact with other users and objects. However, users may
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exhibit altruistic or greedy behavior regarding information and resources shared
with third parties. It is necessary to investigate and develop effective methods
to empower users regarding their data and the responsibility to share it while
keeping them involved. In the context of urban computing, local government
plays an active role. Also, sensing systems must be developed to keep citizens
motivated to cooperate and contribute to be effective without requiring sensitive
information or compromising users’ privacy. Therefore, mechanisms for rewards
and data transparency, in addition to understanding the boundaries of collabo-
ration between citizens and sensing systems, still need to be investigated.

• Generalization and abstraction mechanisms. Urban sensing should be essentially
scalable and replicable. However, there are currently no efficient or widely ac-
cepted generalization mechanisms capable of defining abstract representations
that facilitate the integration of data sources or the processing of data for the
purpose of urban sensing. Effective abstraction methods can significantly af-
fect how data-driven systems can consume and publish data while ensuring the
generalization necessary for continuous integration. Standard and abstract data
representations can support the process of data democratization and the research;
thus, the alternative data sources from different areas—such as finance, transport,
and the environment—can integrate sensing with a low implementation cost.
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