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Resumo

As sociedades modernas são compostas por estruturas complexas que emergem das re-

lações entre indivíduos, e a compreensão desses arranjos tem o potencial de se tornar uma

ferramenta poderosa para sistemas inteligentes. Os métodos atuais de reconhecimento

de relações sociais baseados em imagens isolam informações especíőcas da entrada com

intuito de capturar aspectos essenciais que deőnem esses relacionamentos. No entanto,

esta é uma abordagem imprecisa para analisar relações sociais, uma vez que a interação

entre todas essas partes forma uma estrutura intrincada, sendo tão valiosa quanto as

informações que cada componente carrega individualmente. Por esse motivo, é crucial

capturar a estrutura social original para alcançar o raciocínio de alto nível necessário

para identiőcar os relacionamentos de forma adequada. Neste trabalho, uma nova abor-

dagem para interpretar métodos de reconhecimento de relacionamento social baseados

em imagens é apresentada, considerando três escopos distintos de análise, denominados

escalas sociais, relacionados a informações individuais, relativas e gerais. Além disso,

também é avaliado como os dados dessas diferentes perspectivas sociais são combinados,

levando em conta a capacidade de capturar dependências e restrições em múltiplas es-

calas. O Social Knowledge Graph (SKG) é proposto com base nas conclusões obtidas

da análise conduzida, produzindo uma representação capaz de replicar a estrutura social

da imagem de entrada. Essa representação única é explorada por meio da Social Graph

Network (SGN), aplicando estratégias especíőcas de agregação de features, conforme as

informações embutidas na estrutura do grafo. O desempenho do método proposto foi

avaliado em benchmarks bem estabelecidos, alcançando um novo estado da arte. Final-

mente, uma análise profunda da metodologia e dos conceitos por trás dela é conduzida,

fornecendo uma visão sobre o processo de decisão do modelo proposto e obtendo resultados

que suportam a nova interpretação dos métodos de reconhecimento de relações sociais.

Palavras-chave: Visão Computacional. Reconhecimento de Padrões. Reconhecimento

de Relações Sociais. Aprendizado Profundo. Redes Neurais de Grafos.



Abstract

Modern societies are composed of complex structures that emerge from the relationships

between individuals, and the comprehension of these arrangements has the potential to

become a powerful tool for intelligent systems. Current image-based social relation recog-

nition methods isolate speciőc information from the input to capture essential aspects

deőning these relationships. However, this is an inaccurate approach for analyzing social

relations, since the interaction between all these parts form an intricate structure, which

is as valuable as the information each piece carries individually. For this reason, it is

crucial to capture the original social structure to achieve the high-level reasoning required

to identify relationships adequately. In this work, a novel approach to interpret image-

based social relation recognition methods is presented, considering three distinct scopes

named social scales, regarding individual, relative, and general information. Additionally,

it also evaluates how the data from these different social perspectives is combined, taking

into account the capacity of capturing multi-scale interdependencies and constraints. The

Social Knowledge Graph (SKG) is proposed based on the conclusions obtained from the

conducted analysis, producing a representation capable of replicating the original social

structure from the input image. This unique representation is exploited with the So-

cial Graph Network (SGN) by employing speciőc feature aggregation strategies according

to the information embedded in the graph structure. The performance of the proposed

method was evaluated in well-known benchmarks for social relation recognition, achiev-

ing a new state-of-the-art. Finally, a deep analysis of the methodology and the main

concepts behind it is conducted, providing insight into the decision-making process of

the proposed model and delivering results that support the new interpretation of social

relationship recognition methods.

Palavras-chave: Computer Vision. Pattern Recognition. Social Relation Recognition.

Deep Learning. Graph Neural Networks.
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Chapter 1

Introduction

The increasing adoption of autonomous systems in several sectors of society raises the

demand for technologies that will allow them to behave properly in such scenarios. For this

reason, research topics associated with human analysis and behavior understanding have

gained considerable attention recently. This type of knowledge can usually be employed

for a variety of tasks, improving the performance of their applications.

In this context, a fundamental requirement to comprehend human comportment is

being capable of identifying the main characteristics that deőne common social relation-

ships. Although this is an essential topic for automated human analysis, it has not been

adequately explored.

This work presents an approach to recognize social relationships between pairs of

individuals using visual information from multiple scales, exploiting the interdependencies

between relationships, and applying prior knowledge in the form of multi-scale attributes

and other constraints to the model. The proposed method is able to achieve this by

constructing a representation that preserves the structure of the social relationships from

the input image and extracting the embedded information.

1.1 Contextualization

Recently, we have witnessed a rapid growth in the adoption of autonomous systems

toward multiple aspects of our daily life, such as shopping, security, and transportation.

For most cases, the devices involved in these tasks need to be capable of comprehending

the environment around them, especially in situations where they are expected to coexist

or even interact with human beings.

In these circumstances, it is essential to understand human behavior, since these

systems might be exposed to conditions where their perception of human action can di-

rectly inŕuence their performance, like on automated surveillance [Noceti and Odone,

2014]. Other situations, such as self-driving vehicles, can be even more critical, where
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erroneous judgments may pose risks to nearby people [Brooks, 2017]. For these reasons,

technologies capable of analyzing human behavior are fundamental, facilitating the coex-

istence between individuals and machines.

Considering visual data, a well-studied branch of the automated human-behavior

analysis is the action recognition, where initial works mainly focused on individual ac-

tions [Herath et al., 2017] and later started to investigate pair [Gemeren et al., 2018] or

group interactions [Wu et al., 2019].

Another frequently explored topic is emotion recognition, where we also have seen

a similar shift from initial works focusing on single individuals [Ko, 2018], to group emo-

tion [Guo et al., 2018]. The crowd analysis topic also emerged as a őeld of interest, with

research on tasks such as person count [Li et al., 2015] and movement prediction [Yan

et al., 2014].

Lastly, recent works proposed to extract even higher-level information that only

makes sense within collectives, such as group identiőcation [Varadarajan et al., 2017],

group cohesion [Ghosh et al., 2018], group affect [Dhall et al., 2015] and social relationship

recognition [Li et al., 2017], which is the topic of this work.

1.2 Motivation

As mentioned in the previous section, theoretically, every application that can be

affected by human behavior is also able to beneőt from social relation recognition. This

section provides an explanation of how relation recognition can interact with other tasks,

along with some examples of possible use cases in the future. The proposed applications

take into account only the advantages provided by the consideration of social relationships,

disregarding challenges related to image acquisition, pre-processing, and other speciőc

technical issues related to these tasks.

Other works suggest that social relation recognition can be used to enhance the

understanding of personal characteristics and also to help with behavior prediction [Smith

and Zárate, 1990]. These aspects could improve the performance of a variety of computer

vision tasks, such as group activity recognition [Ibrahim et al., 2015; Lan et al., 2012; Wu

et al., 2019], image retrieval [Johnson et al., 2015], visual question answering [Teney et al.,

2017], image captioning [Chen et al., 2020], scene graph generation [Raboh et al., 2020],

social event recognition [Ramanathan et al., 2013], and family member identiőcation [Dai

et al., 2015].

The common ground between all the mentioned tasks is that they beneőt from

better image understanding, and when there are persons involved, recognizing social re-
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lationships can be a key feature, since humans tend to interpret a scene based on social

interactions between the individuals depicted [Guo et al., 2019]. For example, relation

recognition can enhance image captioning by generating more precise descriptions with

the inclusion of words describing speciőc person or relation traits. In this sense, the image

from Figure 1.1a could be captioned more precisely as "Family picnic" instead of a generic

description such as "Group of people having a picnic".

Another example is Human-Robot Interaction (HRI), where behavior analysis be-

comes imperative to natural interactions between humans and machines [Kong and Fu,

2018]. For this purpose, social relation recognition can be employed in an attempt to

read the environment around the robot, allowing it to react in a socially adequated man-

ner [Bartlett et al., 2019]. The social robot Pepper depicted in Figure 1.1b implements

a similar concept employing emotion recognition to select a suitable approach to initiate

an interaction.

(a) Family picnic (b) Social robot

Figure 1.1. (a) An image captioning sample that can be more precisely described by consid-
ering social relationships. (b) Pepper is an example of a social robot that can employ emotion
recognition to interact adequately [Alecrim, 2015].

A possible application of these social robots is for customer assistance in a com-

mercial establishment. This is the case for Gal (Figure 1.2a), a robot created by Gol

airline that was used to assist passengers at Guarulhos Airport [Casagrande, 2019]. She

helped by answering questions and guiding persons between several areas of the airport

while also providing entertainment. Another company that adopted a similar strategy

was Bradesco. The bank employed a robot named Link237 (Figure 1.2b) on customer

service for an agency in São Paulo.
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(a) Gal (b) Link237

Figure 1.2. (a) Gal was presented by Gol at Guarulhos airport to assist passengers [Casagrande,
2019]. (b) Link237, the customer service robot introduced by Bradesco for a bank agency in São
Paulo [Daraya, 2013].

1.3 Problem

Social relationships can be deőned as the connections between people who have

recurring interactions, which are perceived by the participants to have personal mean-

ing [August and Rook, 2013]. Early methods were capable of inferring social relationships

from different information sources such as text [Fairclough et al., 2003] and images [Singla

et al., 2008]. This work is focused on social relation recognition from visual data, which

can be deőned as the process of identifying the types of connections between each pair of

individuals on a given image.

The relation classes considered are not directly tied to the problem. Instead, they

are dependent on the social theory employed to understand the relationships on each

database. The task consists only of reproducing the human perception of these relations,

which is reŕected in the labels provided by the benchmarks. Additionally, social relation

recognition is an ill-posed problem, since the information necessary to correctly identify

some relationship classes may not be present in the image, subjecting them to multiple

interpretations.

Since the task manipulates visual data, it is also affected by most of the typical

computer vision issues, such as variations in scale, appearance, illumination, and pose [Li

et al., 2017], which can heavily impact the performance of the system. These effects are

kept out of the scope of this work, and for this reason, the images from the databases

employed are usually collected from social media, avoiding distorted pictures, crowds, and

any other type of noise that could interfere with the results.

Additionally, the benchmarks employed in the experiments also provided the

bounding boxes for the considered individuals, dismissing the need for person detection
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Previous works try to overcome the mentioned challenges by exploiting some pro-

prieties of social relationships. However, they focus on speciőc aspects of the problem,

such as semantic attributes or environment objects, often overlooking the interaction of

multi-scale information and the role of other social relationships in the recognition pro-

cess. More speciőcally, they do not consider the structure of social relationships as a

whole but instead only smaller portions of the problem independently.

In this work, the concept of social structure is investigated, considering the hy-

pothesis that all mentioned factors play a crucial role in the recognition process by offer-

ing complementary information that must be fully acknowledged to achieve an adequate

understanding of social relationships. The conducted analysis aims to provide the foun-

dations to develop a framework capable of fully representing all the relevant information,

hence preserving the original structure of these relations. Finally, this representation

can be exploited for the social relation recognition task, bringing the reasoning process

closer to how humans perceive social relationships, which increases the performance over

previous techniques.

1.4 Contributions

The main contributions presented in this work are threefold, starting with the

proposition of a novel approach to interpreting social relation recognition methods, which

is based on the scope of the employed information, the ability to apply prior knowledge

in the form of model constraints, and the consideration of interdependencies between

different relationships in the same image. The proposed taxonomy provides a framework

that encompasses all previous works, being capable of distinguishing the main strengths

and shortcomings of each method.

A new representation for social relationships is introduced to cover the deőciencies

identiőed in previous works, the Social Knowledge Graph (SKG). This structure is able to

carry all the pertinent information for social relationships while applying prior knowledge

and other meaningful constraints to the model. More speciőcally, it can represent learned

features, pre-trained attributes, and how this information is combined for multiple scales,

achieving a complete portrayal of social relationships. The dependencies between all

these types of information form a structure, which is broken by previous works when they

separate relationships pairwise or when they consider information from a particular scale

alone. However, this structure is replicated in the proposed graph representation, offering

the reasoning model all the information required to achieve the high-level understanding

necessary for the social relation recognition task.
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The őnal contribution is the Social Graph Network (SGN), a deep graph model that

implements three distinct message propagation methods to exploit the unique and intu-

itive graph structure. Each proposed spatial convolution operation is speciőcally designed

to extract information from a particular region of the graph, optimizing the reasoning pro-

cess and selecting the most meaningful features via knowledge propagation. Additionally,

the approach also employs mechanisms on representation and reasoning levels to reduce

the noise generated by the interaction between all this data. The őnal result is a high-

level description for each social relationship containing multi-scale and multi-attribute

information, which also incorporates dependencies from other relationships, according to

the graph structure.

As revealed by the proposed taxonomy, no previous work was able to combine

information from all scales simultaneously, nor to add attributes or apply other constraints

to multi-scale data. They are also unable to capture correlations between relationships,

treating them as independent events, which breaks the social structure presented in the

image. The proposed approach incorporates all these proprieties, improving the model

performance by bringing the process closer to how humans perceive social relationships.

1.5 Work Organization

The remainder of this work is organized as follows: Chapter 2 introduces a new

approach to interpret social relation methods, and Chapter 3 presents a literature review

including all available relationship recognition works employing image and video data.

The main concepts and methods related to deep graph neural networks are explained in

Chapter 4, while the proposed approach is detailed in Chapter 5. Finally, the conducted

experiments along with their results are discussed in Chapter 6, and Chapter 7 concludes

the work, followed by future research directions in Chapter 8.
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Chapter 2

Taxonomy

In order to contextualize the contributions of the proposed approach, a taxonomy for social

relation tasks is presented in this chapter, aggregating practical knowledge from previous

works, and also incorporating social theories introduced by multiple authors. The criteria

applied in the categorization process are based on three main concepts: information scales,

data dependencies, and model constraints.

These conceptions are derived from fundamental aspects of the social relation

recognition problem mentioned in the previous chapter, and they are further elaborated

in the following sections. Together they constitute a framework that not only allows the

comparison between all previous social relation recognition methods, but also provides

means of identifying their shortcomings. The insights obtained from this analysis were

the driving factors behind the design choices made during the elaboration of the method

proposed in this work, which is formally described in Chapter 5.

2.1 Social Scales

Here, a hypothesis describing how information from different perspectives inŕu-

ences the interpretation of social relationships is introduced. This proposition motivates

the adoption of three distinct social scales, namely, personal, local, and global scales.

Most previous works are able to exploit, in some form, data obtained from only one or

two of them. Additionally, they also lack clear explanations on why these scales work for

social relation recognition and the design choices behind their application.

More speciőcally, the main beneőts for using each of these information scales are

presented in this section, along with an analysis of their descriptive power, demonstrating

how they offer not only meaningful but also complementary information. For this reason,

all of them need to be combined to achieve information completeness for social relation

recognition tasks, which is done by the method proposed in this work.

A common technique employed in computer vision problems is the extraction of
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information using different scales, where they can assume distinct meanings depending

on the context [Lindeberg, 1994]. The scale-space theory is a very successful framework

capable of exploring this concept using handcrafted techniques. For deep learning, a

possible approach that abstracts the idea of different scales is implemented by cropping

patches from speciőc regions of the image, reducing the noise by removing unwanted

information and limiting it to a target context, from which the model can learn.

Methodologies with analogous concepts became the state-of-the-art for human-

behavior problems, such as group activity [Ibrahim et al., 2015] and group emotion recog-

nition [Guo et al., 2018]. For social relation recognition, the situation was no different,

as many previous works [Li et al., 2017; Wang et al., 2018b; Yan and Song, 2019; Zhang

et al., 2019] combined local and global information with the purpose of incorporating

context to a speciőc relationship, which can help to distinguish between some ambiguous

situations, as mentioned in Section 1.3. To explain why these approaches work for social

relation recognition, it is necessary to understand how the information from these distinct

scales is correlated from a social point of view.

The most fundamental components of our societies are the individuals, and

from their interactions, groups and communities emerge, giving form to social relation-

ships [Barkan, 2011]. In this sense, it is reasonable to imagine that the characteristics of

a group of people are a product of their individual traits in a bottom-up manner, and it

is also possible that individual actions are inŕuenced by the behavior of the group as a

whole, in a top-down direction [Barkan, 2011].

By exploiting this social structure and the relation between its parts, works that

deal with human behavior are able to approach the same problem from multiple per-

spectives, deőning different objects of analysis (e.g., individuals, pairs, groups, crowds).

Although social relationships are interpersonal, they are also heavily inŕuenced by this

social structure, where individual and group aspects play an essential role, as explained in

Section 1.3. For this reason, all the regions of the image corresponding to those subjects

also need to be considered.

Previous works extract features from multiple arbitrary areas, including

face [Zhang et al., 2015; Guo et al., 2019; Sun et al., 2017; Wang et al., 2020], body [Li

et al., 2017; Goel et al., 2019; Li et al., 2020], pairwise [Wang et al., 2018b; Goel et al.,

2019], and even the full image [Zhang et al., 2019; Liu et al., 2019]. However, different

types and volumes of information are captured from each one of these image regions,

which can heavily impact the outcomes, as illustrated in Figure 2.1.

Motivated by the described scenario, this work introduces a methodology to inter-

pret social relation problems based on the image regions extracted from three different

scopes named social scales. Each one encapsulates a speciőc type of information associ-

ated with a distinct perspective from social relationships, providing unique beneőts and

disadvantages, while offering complementary data. The proposed social scales can be
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2.2 Data Dependencies

This section explains the data dependencies between relationships, which consti-

tutes a signiőcant source of information that can be exploited to increase the performance

of the model. Some examples are presented to illustrate this concept while also offering

insight into how it is implemented in this work.

Previous social relation recognition methods focused their efforts on experimenting

with different combinations of information scales and prior knowledge, mainly in the form

of appearance attributes. All of these works consider only features from the individuals

taking part in the relationship, classifying each pair separately from the others in the

image. This kind of approach handles social relationships as independent events, but in

some cases, it is possible to infer a relation based on information from other pairs. This

means that social relationships are instead correlated, and this propriety can be exploited

to improve the model.

More precisely, previous methods seek data dependencies only between the infor-

mation extracted from the pair of individuals participating in the current relationship.

In this work, these are considered as intradependencies since they are intern to the social

relation. However, relationships are also correlated with each other, and these types of

data dependencies are referred to as interdependencies.

A knowledge graph is a suitable option to represent not only the concept behind

these interdependencies, but also the entire structure of the relationships depicted in

the image, which allows the model to access information from other pairs, helping it

to learn their correlations. An example image is shown in Figure 2.5, along with the

corresponding knowledge graph, representing each person with a node and the social

relationships between them as the labeled connections. It is important to mention that

this is not the őnal version of the graph proposed in this work, and the only objective of

this image is to illustrate the concepts introduced in this section.

Considering the structure depicted in Figure 2.5b, it is possible to use the labels

of known relations with other individuals to predict an unknown relationship. This is

exempliőed in Figure 2.6b, where the couple relationship between the two senior persons

is given, and it is also known that the young girl is the granddaughter of the lady. In this

scenario, it is trivial to infer that the man also has a family relationship with the girl;

more precisely, he is her grandfather. Another example is shown in Figure 2.6a, but in

this case using professional relationships, where it is also possible to predict the relation

between the pair of women as work colleagues since they both have the same relation type

with a third person.

However, to exploit these interdependencies, it is necessary to handle the image as a

whole, and this is not done by previous works. They consider relationships independently,
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2.3 Model Constraints

In this section, the dependencies between appearance attributes and social relation-

ships are investigated. It is shown that these correlations can sometimes be immediately

inferred, but in other cases, they are tied to cultural aspects. Next, it is presented how

these data dependencies work for social relation recognition and how they can be exploited

to enhance the model, along with other types of prior knowledge, resulting in associations

that are more similar to how humans identify social relationships.

As mentioned previously, research suggests that appearance attributes such as

age, gender, clothing, emotion, and body positioning play an essential role in how humans

perceive social relationships [Bugental, 2000]. This means that if we want to build systems

capable of recognizing social relationships, they need to make similar associations since

the concepts they have to learn are rooted in human interpretation.

Sometimes, the dependencies between social relationships and these attributes can

be derived directly using simple deduction. For example, in parents and children family

relationships, the parents have to be older than their children. It does not matter what

kind of family is being considered, the parents will always have a higher value for the

age attribute. In other cases, the relationship can have a strong correlation with some

attributes, or they may even be tied to culture. Some examples would be couple relation-

ships, which tend to happen between people of opposite genders, and the use of formal

clothing for commercial and professional relations, which is a cultural trace. Either way,

even if these dependencies are not hard constraints, as in the former age example, all of

them can be exploited to improve the model, as illustrated in Figure 2.7.

Most of the previous works add prior knowledge to their models by considering

multiple combinations of attributes, since they cannot be learned directly from the train-

ing data. The available benchmarks only provide relationship annotations, which means

that pre-trained models have to be employed to obtain this type of information. For this

reason, attribute feature vectors are őxed, acting somewhat as inputs to the model and

serving as constraints to the domain by deőning the traits that have to be considered for

the task. The model works on strategies to aggregate these attributes while also learn-

ing new features associated with them directly from the image. This effect is similar to

well-known task interactions for multi-task models, where the joint-learning of multiple

related tasks can help to increase the model performance, and for some applications, the

results can improve continuously with the number of tasks [Ruder, 2017].

This information interaction is a powerful tool that can be implemented using the

knowledge provided by previous research on multiple őelds, ranging from studies explain-

ing how humans interpret each type of attribute [Bugental, 2000] to works analyzing the

role certain traits play in social relation recognition [Sun et al., 2017]. By adding prior
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Chapter 3

Related Work

In this chapter, an overview including the main contributions of other works on social

relation recognition is presented, along with an analysis on how the approach proposed

in this work differs from these methods, specifying strengths, weaknesses, and other char-

acteristics. For this purpose, the concepts presented in the previous chapter are applied,

allowing to draw a parallel between these techniques by considering fundamental aspects

of social relationships.

Most works in Computer Vision concerning human social behavior usually deal

with two different problems. The őrst one is called Social Relation Recognition, and it

consists of identifying the type of a relationship. This is a typical multi-class classiőca-

tion task, where the considered relationships vary according to the methodology selected

to build the benchmarks, as stated in Section 1.3. The second is a binary classiőcation

problem denominated Social Relation Trait, and it involves detecting multiple traits from

a relationship, such as dominant, competitive, trusting, warm, friendly, attached, demon-

strative and assured. Although these are different problems, their similarities facilitate

the exchange of meaningful insights, justifying their inclusion in this chapter.

3.1 Social Relation Recognition

The social relation recognition problem has a recent formulation, and for this rea-

son, there are few works exploring this task. Here, the taxonomy deőned in Chapter 2 is

applied to contextualize all of the previous methods on social relation recognition present

in the literature. They are deőned in terms of how the concepts of social scales, relation-

ships interdependencies, prior knowledge, and model constraints are employed.

Previous works also established that social relationships tasks can be performed

in image and video data. Although this work focuses on still images, a review of video

approaches is also presented, considering they can provide important concepts and ideas.
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3.1.1 Images

Li et al. [2017] presented a benchmark for social relation recognition inspired by the

relational theory [Fiske, 1992], deőning hierarchical relationships from coarse (3 classes)

to őne (6 classes) levels, with the name of People in Social Context (PISC) dataset. It

considers not only family relations, but also a set of other relationship classes that are

claimed to cover all aspects of human interactions.

For the recognition task, they proposed a convolutional model employing personal

and local-scale information, obtained by extracting features from body region patches

separately, and fused in pairwise images. The input patches are combined with bounding

box coordinates, resulting in a single feature vector for each pair containing multi-scale

information. Global information is addressed in the form of object attributes, which are

detected using a Faster R-CNN model [Ren et al., 2015]. The features extracted from the

object regions are weighted, applying an attention mechanism, and then fused with the

vector previously obtained, generating the őnal set of features used for the classiőcation,

as shown in Figure 3.1.

Figure 3.1. An overview of the Dual Glance model [Li et al., 2017], which is able to learn
individual and relative information, also adding global context as object attributes, weighted by
an attention module.

This work was essential for social relation recognition, not only because of the

benchmark provided, which is one of the most used recently, but also due to the concept

of adding context with object features, and the approach aggregating individual and

relative information. However, this method is unable to learn global features directly

from the input or to set constraints on other scales, and it also neglects relationships

interdependencies, considering each pair separately.

Sun et al. [2017] was another relevant social relation recognition work, also pre-

senting a new dataset named People in Photo Album (PIPA) relation, backed by the





3. Related Work 44

for the whole dataset. The features are extracted in the same way as Li et al. [2017],

but instead employing a pre-trained VGG 16 model [Simonyan and Zisserman, 2014] to

classify the detected object regions. The main difference in this work is how the multi-

scale feature vectors are combined with the object attributes, which is by employing a

Gated Graph Neural Network (GGNN) model [Li et al., 2016] to propagate them through

the graph structure, also applying an attention mechanism to objects classes, generating

a őnal set of aggregated features used for the classiőcation, as shown in Figure 3.4.

Figure 3.4. The Graph Reasoning Model (GRM) [Wang et al., 2018b] is very similar to the
Dual Glance [Li et al., 2017], even employing the same methods to extract individual and relative
features. The main difference is how the multi-scale feature vector is combined with global object
attributes, which is done using a Gated Graph Neural Network (GGNN) [Li et al., 2016] guided
by a graph structure representing class co-occurrences for the whole dataset.

The proposed Graph Reasoning Model (GRM) is very similar to the Dual-Glance

model [Li et al., 2017], and for this reason, it also presents the same issues. Furthermore,

the only difference lies in the method for combining the extracted features, which adds

complexity to the model for a slight improvement since the only function of the graph

structure is to represent class co-occurrences. The way how this information is obtained

also restricts the approach since these values are pre-calculated and have an arbitrary

threshold, which could be instead learned from the data.

Similar to the previous approach, Zhang et al. [2019] made use of graphs, but

instead to represent person poses and their interactions with surrounding objects. This

information is obtained from personal and local-scale regions for every pair of persons,

employing CNNs for feature extraction and simple baseline models [Xiao et al., 2018] for

pose estimation, while objects are detected using a Mask R-CNN [He et al., 2020]. It also

extracts global-scale features from the whole image using a ResNet 101 [He et al., 2016]

model, while two GCNs [Kipf and Welling, 2017] are employed to aggregate person-object

interactions and pose data, represented by two separated graph structures. The outputs

from the GCN layers are used to generate class scores, which are fused to global features

scores, producing the őnal predictions, as shown in Figure 3.5.

The person-object graphs are an interesting contribution, providing information

about the interaction between persons and objects. However, the late fusion design is

a problematic approach when classifying global-scale images alone, as mentioned in Sec-
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Figure 3.5. The Multi-Granularity Reasoning (MGR) model [Zhang et al., 2019] employs prior
knowledge in the form of two graph structures: person-object graphs and pose graphs, which
are processed using two GCNs [Kipf and Welling, 2017]. It also incorporates global features
extracted from the whole image using a ResNet 101 [He et al., 2016] model. The class scores
obtained from graph and global information are combined using late fusion.

tion 2.1. In this case, the network will receive distinct labels for the same image, generating

inconsistencies, which apparently have been compensated by the scores obtained from the

graph networks.

Goel et al. [2019] uses only personal (e.g., age, gender, clothing) and local (e.g.,

context and activity) scale attributes obtained from body and pairwise image patches.

These features are extracted employing the pre-trained models provided by Sun et al.

[2017] and fed to GRU cells [Cho et al., 2014], which aggregates them into a őnal repre-

sentation. The model applies a multi-task loss to exploit a small set of age and gender

annotations published by Oh et al. [2020], as shown in Figure 3.6. The main contribution

offered by this work is the concept of learning social relationships and attributes jointly

to generate a social relation graph based on image-graph generation tasks.

However, in this case, the graphs are not used as tools to represent social re-

lationships for the reasoning process and instead, they are the product of the model’s

predictions. Another issue is the very restricted number of age and gender attribute la-

bels for the PIPA-relation dataset [Sun et al., 2017], which are not enough to generalize

to other datasets. Finally, the model is also unable to learn features directly from the

input images.

Wang et al. [2020] proposed a feature selection method for social relation recog-

nition, which measures the contribution of personal attributes extracted from face and

body image regions. The model considers gender, appearance, emotion, pose, scale, cloth-

ing, activity, and proximity attributes obtained using the pre-trained networks provided

by Sun et al. [2017]. The proposed attention mechanism learns weights for speciőc types

of attributes, providing insight on how each one impacts the performance of the model,

which is illustrated in Figure 3.7.
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Figure 3.6. The Social Relationship Graph Inference Network (SRG-IN) [Goel et al., 2019]
employs age, gender, clothing, activity, and context attributes extracted with pre-trained models
and combined using pairs of GRU cells [Cho et al., 2014].

Figure 3.7. The Deep Supervised Feature Selection (DSFS) method proposed by Wang et al.
[2020] to measure the contribution of multiple attributes extracted from face and body image
regions, employing the models provided by Sun et al. [2017].

The purpose of this work is to extend the analysis done by Sun et al. [2017],

further investigating the contribution of each attribute, and also providing a mechanism

to select the most meaningful ones. For this reason, it suffers from the same problems as

its predecessor, offering only small technical contributions besides the feature analysis.

Finally, Li et al. [2020] is the state-of-the-art for social relation recognition and

the only image-based method capable of capturing relationship interdependencies. This

is done by employing a ResNet model [He et al., 2016] to learn features from body image

patches, which are extracted applying ROI pooling [Girshick, 2015], and used to build

a graph representing each person from the input image, as shown in Figure 3.8. The

structure is fed to a GGNN [Li et al., 2016] model, which aggregates the extracted features

that are őnally used to predict the existence of relationship edges between each pair of

nodes.

This model is the őrst to consider information from other relationships in the
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Figure 3.8. The Graph Relational Reasoning Network (GR2N) [Li et al., 2020] generates a
graph where each person is represented by a node and predicts the existence of a relationship
edge between them. This is done by aggregating data from each pair with a GGNN [Li et al.,
2016] model. These features are obtained by applying ROI pooling [Girshick, 2015] in the feature
maps of the extraction backbone.

same image, but this is done in a very restricted manner. The method is only capable of

dealing with personal-scale information, completely neglecting relative information from

the local scale, and especially the global scale, which makes this work blind to context.

In addition, the design choice to treat social relation recognition as an edge prediction is

somewhat unnecessary and could be simpliőed to a edge classiőcation problem since the

graph is always complete. These shortcomings are reŕected in the model performance,

which overcomes previous works using pairwise approaches by only a small margin.

3.1.2 Videos

The following methods focus on social relation recognition from video, which is

a different problem from the one considered in this work. For this reason, only a brief

description including the main concepts behind each work is provided, with the primary

purpose of showcasing methods and concepts that could also be implemented for image-

based approaches.

Lv et al. [2018] extracts only global-scale information, using the entire frames

from sampled video segments. The proposed model also manipulates multi-spectral data,

including spatial-temporal features from the video frames and optical ŕow, extracted with

the help of a TSN model [Wang et al., 2016b], and audio spectrum features obtained with

a GoogleNet [Szegedy et al., 2015]. All this information is combined employing a late
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Figure 3.9. The Multi-stream Fusion Model [Lv et al., 2018] extracts multi-spectral informa-
tion from global-scale video segments employing a TSN model [Wang et al., 2016b], while a
GoogleNet [Szegedy et al., 2015] is used for spatial-temporal and audio spectrum features. The
class scores obtained from each type of information are combined with a late fusion technique to
obtain the final predictions.

fusion method, obtaining the őnal predictions, as shown by Figure 3.9. This work also

provided a new dataset named Social Relation in Videos (SRiV), containing two splits of

8 relationship classes each, inspired by the Subjective Relations theory [Kiesler, 1983].

Aimar et al. [2019] presented the EgoSocialStyle, a dataset for social relation recog-

nition from egocentric photostreams, including 5 classes inspired by the domain-based

theory [Bugental, 2000]. The proposed model has a simple architecture, employing only

personal-scale information from face and body frames, extracted using CNNs, and fed

to an LSTM model [Hochreiter and Schmidhuber, 1997] for temporal reasoning, which

generates the őnal features used for classiőcation.

Liu et al. [2019] proposed a framework that exploits information from personal

and global scales, with the addition of prior knowledge in the form of graphs representing

the interactions between people and objects, similarly to Zhang et al. [2019]. From a set

of frames sampled for each video, individual and object features are obtained, using the

image regions detected by a Mask R-CNN [He et al., 2020], and extracting information

with a ResNet [He et al., 2016]. Global spatial-temporal features are generated from the

whole set of sampled frames, employing a TSN model [Wang et al., 2016b]. The gathered

information is used to build three separated graph structures, which are fed to GCNs [Kipf

and Welling, 2017] adapted to capture multi-scale information, producing the őnal feature

vectors, which are fused and classiőed, as shown in Figure 3.10. The work also presented

the Video-based Social Relation (ViSR) dataset, containing 8 relationship classes inspired

by the domain-based theory [Bugental, 2000].

Finally, LV et al. [2019] extracts global features from video segments and optical

ŕow, obtained from the sampled frames using CNNs. This information is directed to a
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Figure 3.10. The Multi-scale Spatial-Temporal Reasoning model [Liu et al., 2019] extracts
personal-scale information from body images and global attributes from objects, employing a
ResNet [He et al., 2016], and a Mask R-CNN [He et al., 2020] for detection. This information
is used to generate three separated graph structures representing interactions between persons
and objects, which are fed to their respective GCN models [Kipf and Welling, 2017]. Global
spatial-temporal features are also extracted with a TSN [Wang et al., 2016b], and fused with the
features obtained from the graph structures, producing the final class scores.

module that combines LSTM cells [Hochreiter and Schmidhuber, 1997] with an attention

mechanism to produce the őnal predictions, as shown in Figure 3.11.

Figure 3.11. The model proposed by LV et al. [2019] captures global information from the
sampled frames and their optical flow employing CNNs. This information is forwarded to an
LSTM [Hochreiter and Schmidhuber, 1997] model, which also applies an attention mechanism
to generate the final class scores.

The same authors also proposed a method [Dai et al., 2019] that extends Wang

et al. [2018b] deep graph model to the temporal domain, but instead of employing in-

formation from personal and local-scale image regions, it learns spatial-temporal global

information. This is done by extracting features from the set of sampled frames using

convolutional networks and feeding this information to an LSTM model. The rest of the

framework stands the same, as it can be seen from Figure 3.12.
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Figure 3.12. The Two Streams model [Dai et al., 2019] extracts global spatial-temporal fea-
tures from a set of sampled frames and combines this information with object features using
an attention mechanism, guided by a graph structure representing class co-occurrences for the
whole dataset.

3.2 Social Relation Trait

Regarding social relation traits, the same type of analysis from the video-based

methods is done in this section, focusing only on a brief description of methodological

contributions, since this is not the same problem as the one considered in this work.

Zhang et al. [2015] was an early work that contributed to the area by presenting

a new benchmark composed of 8 binary classes, inspired by the interpersonal circle the-

ory [Kiesler, 1983]. It also proposed a siamese architecture capable of gathering informa-

tion from personal-scale face images by extracting attributes including gender, expression,

head pose, and age.

The method employs pre-trained CNN models combined with a bridging layer that

leverages correspondences among the datasets used to learn attribute features by applying

weak constraints derived from the association of face part appearances. Bounding boxes

coordinates information is also extracted and concatenated with the pairwise feature

vector to obtain the őnal classes scores, as shown in Figure 3.13.

Yan and Song [2019] used CNNs to extract data from personal and global scales.

Individual features are obtained using face regions, while general information is extracted

from the whole image. Both extraction models use ResNets [He et al., 2016] as their back-

bones, although the global network is combined with a semantic augmentation module

that performs size, channel, and receptive őeld adjustments. The resulting feature vectors

are concatenated and used to produce the őnal predictions, as shown in Figure 3.14.

Finally, Guo et al. [2019] employed a CNN model pre-trained for face recogni-

tion [Parkhi et al., 2015] to extract personal-scale features from face image regions, while

incorporating spatial data from bounding box coordinates. The model also employs a

ResNet [He et al., 2016] to obtain global information from the whole image. Both fea-
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Figure 3.13. The siamese architecture proposed by Zhang et al. [2015], which extracts rich
face representations from personal-scale face images using a convolutional model pre-trained on
multiple attribute datasets. The features extracted from each person are concatenated, adding
spatial cues obtained from bounding box coordinates, generating the final vector used for classi-
fication.

Figure 3.14. The Three Stream Network [Yan and Song, 2019] extracts personal-scale infor-
mation from face images, which are combined with global-scale data obtained using the entire
image. The three resulting feature vectors are concatenated and fed to a classifier.

ture sets are used to generate initial predictions, which are combined using a late fusion

method, producing the őnal class scores, as illustrated in Figure 3.15.

3.3 Discussion

The previous sections presented a review of the existing works on social relation

recognition and social relation trait from images and video data. Most of these methods

employ personal and global-scale information, usually differing only on how this informa-

tion is combined. The knowledge that can be obtained from other relationships in the

image is totally ignored, with the exception of Li et al. [2020], which is able to capture
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Figure 3.15. The architecture of the model proposed by Guo et al. [2019], combining personal-
scale features employing face regions with global information from the whole image. The data
obtained from both sources of information are used to generate intermediary predictions that
are combined using late fusion to produce the final class scores.

limited personal-scale interdependencies. Considering attributes and constraints, all the

works that handle them are capable of doing it only for one scale, and they are also unable

to capture the dependencies between attributes from other relationships.

In short, all previous methods neglect somewhat relevant sources of information or

destroy the original social relationship structure. This work introduces a graph represen-

tation capable of preserving this structure while also carrying and combining multi-scale

learned features, prior knowledge, and other constraints. A deep graph model is also

proposed to learn from this representation by exploiting its fundamental proprieties to

aggregate the carried data into the high-level information necessary to identify social

relationships.

3.3.1 Work Contextualization

A scheme including all previously examined works is presented in Table 3.1. They

are organized according to the taxonomy proposed in Chapter 2, which considers their

capacity to extract features directly from the image, capture interdependencies, and apply

constraints in any form on each social scale. Finally, the last line contextualizes the

contributions of this work.
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Table 3.1. The reviewed works on social relationship recognition and relationship traits from image and video data, evaluated according to the
taxonomy proposed in Chapter 2.

Task Extraction Interdependencies Constraints

Social Relation Traits Personal Local Global Personal Local Global Personal Local Global

Zhang et al. [2015] • • •

Yan and Song [2019] • • •

Guo et al. [2019] • • •

Social Relation Recognition

Video

Lv et al. [2018] • •

Aimar et al. [2019] •

Liu et al. [2019] • • • • •

LV et al. [2019] • •

Dai et al. [2019] • •

Image

Li et al. [2017] • • •

Sun et al. [2017] • •

Wang et al. [2018b] • • •

Zhang et al. [2019] • • • • •

Goel et al. [2019] • •

Wang et al. [2020] •

Li et al. [2020] • •

This Work • • • • • • • • •
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Chapter 4

Theoretical Framework

As mentioned in previous sections, this work proposes an approach to solve the social

relation recognition problem by combining deep learning techniques and knowledge graph

representations. This chapter presents a brief history of Graph Neural Networks (GNNs),

along with the main aspects of each approach, their state-of-the-art methods, and applica-

tions. The provided information serves as a basis to describe the proposed methodology,

which is introduced in the following chapters.

4.1 Graph Neural Networks

The advance of deep learning methods in recent years has heavily impacted areas

such as image classiőcation, video processing, and natural language understanding [Wu

et al., 2021]. A key aspect of this success is that the data used for these tasks can

usually be represented in the Euclidean space, which is not the case for graph-based data.

However, recent research managed to improve the state-of-the-art signiőcantly for Graph

Neural Networks (GNNs), allowing an increasing adoption for multiple applications.

To comprehend the challenges in the development of GNNs, őrst, it is necessary

to understand why previous deep models were so successful. Utilizing image data as an

example, they have a well-deőned structure that can be represented as a regular grid in

the Euclidean space. A Convolutional Neural Network (CNN) is able to exploit proprieties

from this structure such as shift-invariance, local connectivity, and compositionality to

extract meaningful latent representations [Wu et al., 2021].

However, graph data is not structured in the same way, as shown in Figure 4.1,

which means they do not have the same properties that can be explored in a similar

form. Graphs may show irregular arrangements, with a variable number of unordered

nodes, where each one can also have different numbers of neighbors. In some cases, they

can present disconnected nodes, self-loops, and even carry information in their edges,

increasing the difficulty of generalizing a convolution operation to the graph domain.
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cations in computer vision, natural language processing, traffic forecasting, recommender

systems, chemistry, biology, and others [Wu et al., 2021]. In the following sections, basic

graph deőnitions are introduced, and some of the previously cited methods are further

explored and exempliőed with some of the most relevant works for each approach.

4.1.1 Definitions and Formalizations

In this section, some basic graph deőnitions and formalizations are introduced to

serve as background for the technical explanations of each type of GNN in the following

sections.

A graph can be represented as G = (V ,E ), where V is the set of vertices or

nodes, and E is the set of edges. Let vi ∈ V be a vertex, and ei ,j = (vi , vj ) ∈ E is the

edge pointing from vi to vj . The neighborhood of a vertex v is deőned as N (v) = {u ∈

V | (v , u) ∈ E}, and A ∈ R
V×V is the adjacency matrix for the graph G , where Ai ,j = 1

if ei ,j ∈ E or Ai ,j = 0 if ei ,j ̸∈ E , while V is the total number of vertices.

Finally, vertices can carry attributes in the form of a feature matrix Fv ∈ R
V×H

where fv ∈ R
H represents the feature vector of the node v with dimension H. Edges may

also have attributes represented by the matrix Fe ∈ R
E×H where f ev ,u ∈ R

H is the feature

vector for the edge (v , u) with dimension H, and E is the total number of edges.

Depending on their characteristics, graphs can be classiőed in distinct ways, which

can heavily inŕuence the approaches used to extract their information. These types of

graphs are described as:

Directed All the edges forming this kind of graph are directed from a vertex to another,

as shown in Figure 4.2b. Undirected graphs (Figure 4.2a) are considered special

cases where there is a counterpart, with reversed direction, for each edge in the

graph. This means a graph is undirected if and only if the adjacency matrix is

symmetric.

Heterogeneous Graphs of this type contain different kinds of nodes and edges, repre-

sented by distinct colors in Figure 4.2c.

Spatial-temporal This is a particular case of dynamic graphs that have a static struc-

ture where the nodes or edges attributes change dynamically over time (Figure 4.2d).

In most cases, GNNs take as input the graph structure represented by an adjacency

matrix and the attribute feature vectors for nodes and edges. This information can be

employed to perform three different levels of tasks:
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4.1.2 Recurrent Graph Neural Networks

Recurrent Graph Neural Networks (RecGNNs) apply the same set of parameters re-

currently over the graph features to extract high-level representations. Initial research [Wu

et al., 2021] mainly focused on acyclic graphs due to computational power restrictions.

The őrst work capable of handling different types of graphs (e.g., acyclic, cyclic, directed,

and undirected) was based on a mechanism designed to exchange node neighborhood in-

formation until an equilibrium point is reached [Scarselli et al., 2009]. The hidden state

h t
v for the node v at the time step t is obtained by

h t
v =

∑

u∈N (v)

f(fv , f
e
v ,u, fu , h

t−1
u ), (4.1)

where f(·) is a parametric function, and in this case, it is learned by a neural network.

When the convergence criterion is satisőed, the last hidden state is fed to a readout layer.

The Gated Graph Neural Network (GGNN) [Li et al., 2016] is one of the state-of-

the-art contributions for the RecGNNs, employing a Gated Recurrent Unit (GRU) [Cho

et al., 2014] as the propagation model and limiting the number of iterations, which ensures

convergence without the need of constraining parameters. The hidden state update rule

is deőned as

h t
v = GRU(h t−1

v ,
∑

u∈N (v)

Wh t−1
u ), (4.2)

where W is a set of learnable parameters.

4.1.3 Convolutional Graph Neural Networks

Convolutional Graph Neural Networks (ConvGNNs) generalize the convolution

operation for graph data by aggregating the node’s own features with its neighbors’ in-

formation. The main difference from RecGNNs is that each convolution layer runs a

propagation step on the graph individually. In this sense, they can be stacked on top of

each other, sending the message deeper into the graph for each layer, which also has a

distinct set of learnable parameters instead of using the same parameters recurrently, as

illustrated in Figure 4.4.

The layered format makes this type of GNN much more suitable to be employed

with other neural network models, justifying the rapid growth in its application for various



4. Theoretical Framework 59

(a) RecGNN

(b) ConvGNN

Figure 4.4. A visual representation of the general concepts behind the two main GNN ap-
proaches. (a) The RecGNN uses the same propagation model for each time step t. (b) For
ConvGNN models, each convolutional layer propagates the information deeper into the graph
while learning individual parameters.

tasks [Wu et al., 2021]. ConvGNNs works can be separated into two main approaches,

spectral and spatial, which are deőned by the method used to implement the convolution

operation.

Spectral approaches deőne graph convolutions using őlters from a graph signal

processing perspective [Wu et al., 2021], where the operation can be interpreted as noise

removal from graph signals. Assuming an undirected graph, the normalized graph Lapla-

cian matrix L is deőned as

L = I − D− 1

2AD− 1

2 , (4.3)

where I is the identity matrix, D is the the diagonal matrix of node degrees, and Di ,i =
∑

j (Ai ,j ). The Laplacian can be factored as L = UΛU T , where U = u0, u1, ..., uV−1 ∈

R
V×V is the matrix of eigenvectors ordered by the eigenvalues, Λ is the diagonal matrix

of eigenvalues where Λi ,i = λi , and the normalized Laplacian form an orthonormal space,

which means U TU = I .

In graph signal processing, the Fourier transform to a signal x is deőned as F(x) =

U Tx, projecting the input signal to the orthonormal space and the inverse transform is

obtained by F−1(x̂) = U x̂, where x̂ represents the transformed signal. In this way, the

graph convolution of the input signal x with a őlter g ∈ R
V is deőne as

x ∗G g = F−1(F(x)⊙ F(g)) = U (U Tx⊙ U T g), (4.4)

where ⊙ denotes the element-wise product. If we write a őlter as gθ = diag(U T g), the

spectral convolution operation can be simpliőed as

x ∗G gθ = U gθU
Tx. (4.5)

All spectral-based methods are based on this deőnition, and their main difference

is the choice of the őlter gθ. For example, the Chebyshev Spectral CNN (ChebNet) [Def-

ferrard et al., 2016] uses the Chebyshev polynomials of the diagonal matrix of eigenvalues



4. Theoretical Framework 60

to approximate the őlter gθ, with the resulting convolution operation being calculated as

x ∗G gθ = U

(

K
∑

i=0

θiTi

(

2Λ

λmax − I

)

)

U Tx. (4.6)

Finally, the Graph Convolutional Network (GCN) [Kipf and Welling, 2017] is a

spectral-based approach that received a lot of attention recently. The method proposed

a őrst-order approximation of the ChebNet, assuming K = 1 and λmax = 2, obtaining

x ∗G gθ = θ0x− θ1D
− 1

2AD− 1

2x. (4.7)

In order to restrain the number of parameters, avoiding overőt, the GCN assumes

θ = θ0 = −θ1, obtaining the őnal deőnition of the graph convolution as

x ∗G gθ = θ(I + D− 1

2AD− 1

2 )x. (4.8)

Spatial methods recycle RecGNN ideas to deőne convolutions by information prop-

agation, increasing their efficiency, ŕexibility, and generality when compared to spectral

techniques, which resulted in rapid growth in their adoption [Wu et al., 2021]. The Neural

Network for Graphs (NN4G) [Niepert et al., 2016] is the őrst approach to use a spatial-

based convolution by directly summing neighborhood information and applying residual

connections. This convolution operation can be deőned as

hk
v = f(W (k)T fv +

k−1
∑

i=1

∑

u∈N (v)

Z(k)T hk−1
u ), (4.9)

where W k and Zk are the learnable parameters of the layer k , and f(·) is an activation

function.

Graph Attention Networks (GAT) [Veličković et al., 2018] assume neighbor node

contributions are not the same, adopting an attention mechanism to learn relative weights

between two connected nodes. The GAT convolution is obtained by

hk
v = σ(

∑

u∈N (v)∪v

αk
v ,uW

khk−1
u ), (4.10)

where W k is the set of learnable parameters of the layer k and σ is the sigmoid activation

function. The attention weights αk
v ,u between the nodes v and u are can be calculated by

αk
v ,u = softmax(g(aT [W khk−1

v ||W khk−1
u ])), (4.11)

where g(·) is the LeakyReLU activation, and the softmax function ensures the attention

weights sum up to one over all neighbor nodes.
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Although spectral models have a solid theoretical foundation in graph signal pro-

cessing, spatial approaches are preferred due to efficiency, generality, and ŕexibility ad-

vantages [Wu et al., 2021]. This happens because spectral methods have to execute

eigenvector calculation while also handling the whole graph, which makes them more

computationally expensive and susceptible to scalability problems. Spatial models solve

this problem by performing convolutions directly in the graph domain using information

propagation, also allowing node batching.

Finally, spectral methods assume őxed and undirected graphs, leading to general-

ization problems since any perturbations would result in a change of eigenbasis. On the

other hand, spatial models calculate graph convolutions locally on each node, allowing

parameters to be easily shared across different locations. They also can handle multiple

types of structures, including edge inputs, directed, signed, and heterogeneous graphs,

since all this information can be incorporated into the aggregation function [Wu et al.,

2021].

4.1.4 General Frameworks

With the increasing number of new graph neural network methods, some works pro-

posed general frameworks, aiming to integrate distinct approaches under a single method-

ology. The Message Passing Neural Networks (MPNN) framework [Gilmer et al., 2017]

abstracts commonalities between several methods such as spectral approaches [Kipf and

Welling, 2017; Bruna et al., 2014; Defferrard et al., 2016], spatial-based models [Duvenaud

et al., 2015] and even RecGNNs [Li et al., 2016]. The framework is composed of two main

steps: message passing and readout. The őrst step runs for T times and is deőned by the

message Mt and the update Ut functions at the time step t obtained by

m t+1
v =

∑

u∈N (v)

Mt(h
t
v , h

t
u , ev ,u), (4.12)

h t+1
v = Ut(h

t
v ,m

t+1
v ). (4.13)

After the message propagation process, the readout step computes the őnal repre-

sentation for the whole graph using the function R, deőned as

ŷ = R(hT
v | v ∈ G). (4.14)

The Non-Local Neural Networks (NLNN) [Wang et al., 2018a] is a general frame-
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work with the purpose of capturing long-range dependencies using deep models. The

method generalizes the non-local operation [Buades et al., 2005] from computer vision to

graph data, computing a weighted sum of the features at all positions, which can be in

space, time or space-time. In this sense, the NLNN can be seen as a uniőcation of various

self-attention methods [Zhou et al., 2020]. The generic non-local operation is deőned as

h∗
i =

1

N (h)

∑

∀j

f(hi , hj )g(hj ), (4.15)

where i is the index of an output position, j is the index enumerating all possible positions,

f(·) computes a scalar representing the relation between the parameters, g(·) denotes a

transformation of the input, and 1
N (h)

is a normalization factor. There are several options

for these operations, such as the gaussian function, dot product, and concatenation.

4.1.5 Applications

Graph Neural Networks have an extensive set of applications, since they are able to

extract information from any data that can be represented as graphs. Usually, graph data

can be separated into two categories based on how it is arranged. For structural infor-

mation, there is an explicit relational structure, for example, physical systems, molecular

structures, and knowledge graphs [Zhou et al., 2020]. However, in non-structural scenar-

ios, this relational structure is not explicit, such as for images and text. Some examples

of graph applications in different circumstances are shown in Figure 4.5.

In structured scenarios, the main applications are in biology [Duvenaud et al.,

2015], chemistry [Gilmer et al., 2017], traffic forecasting [Li et al., 2018] and recommender

systems [Ying et al., 2018]. However, it is for non-structured scenarios where the advan-

tage of representing information as graphs has opened a new set of possibilities, including

well-known computer vision and language processing problems [Zhou et al., 2020].

For example, in group action recognition, Wu et al. [2019] generates a graph encod-

ing appearance and positioning data. This strategy can also be helpful for visual question

answering, where Teney et al. [2017] constructed graphs representing scene objects and

their spatial arrangement. Graphs can also be applied to other types of tasks such as

feature learning, as done by Meng et al. [2018] for relative attribute learning, and Guo

et al. [2020] for feature selection in a group emotion and event recognition context.

In this work, a knowledge graph is used to represent the relationships depicted

in an image, preserving their original structure and capturing the dependencies between

learned features and attributes from multiple scales. Next, a GNN model is proposed to
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techniques, the proposed graph representation retains the social structure connecting all

relationships within an image, preserving their intradependencies and interdependencies.

This allows the model to consider other relation pairs and their multi-scale attributes

during the reasoning process, which are essential sources of information, since they can

be strongly correlated, as shown in Sections 2.2 and 2.3.

The implementation combines convolutional and graph neural networks to extract

features directly from the input image, building the social graph representation and per-

forming reasoning over it in an end-to-end framework. The described process is composed

of three modules, namely, Social Scales Network (SSN), Social Knowledge Graph (SKG),

and Social Graph Network (SGN), which are further detailed in the following sections.

5.1 Problem Formulation

This section presents an analysis of the original problem deőnition provided by

other works. The obtained conclusions are used as basis for the development of the

proposed methodology, which reformulates the former approach to reŕect the interdepen-

dencies between relationships in the same image.

Given an input image I depicting P individuals, a set of features F = {fi | i =

1, 2, ...,P}, where fi is the information corresponding to the i -th person, and also consid-

ering the queries

Q = {qi ,j | i = 1, 2, ...,P , j = 1, 2, ...,P , i ̸= j}, (5.1)

where qi ,j is the relationship involving the persons i and j , the social relation recognition

problem was deőned by Goel et al. [2019] as őnding the optimal value

Q∗ = argmax
Q

Pr(Q | I,F ), (5.2)

where

Pr(Q | I,F ) =
P
∏

i=1

P
∏

j=1
j ̸=i

Pr(qi ,j | I, fi , fj ). (5.3)

However, as it can be seen from Equation 5.3, this type of approach assumes the

relationships depicted in the input image are independent, which is not valid, as explained

in Section 2.2. By considering this paradigm, earlier works optimize the objective function

for each pair separately, and therefore the value obtained for Equation 5.2 is not optimal.

In this work, the relationships are treated as dependent events, and the social
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relation recognition problem is solved by considering information from the entire image,

optimizing the model with speciőc features and attributes from all individuals and their

relationships jointly. To achieve this, the original metadata and ground-truth labels from

the employed datasets were adapted to őt an image-based approach instead of the pair-

based one used in previous works. More detailed information on this process is provided

in Section 6.3.

Additionally, it is important to note that a pairwise approach also exacerbates the

problems related to the local and global scales, as mentioned in Section 2.1. This hap-

pens because, in some cases, similar local region patches and global images will continually

be fed to the model for every relationship in the image, but with different correspond-

ing labels, generating severe inconsistencies and hindering the features learned by these

models.

This problem is solved in the proposed method because every global image patch

is presented to the model only once per image, and the extracted features are not directly

classiőed. Instead, they are combined with more speciőc information provided by other

scales, correctly identifying the pair of individuals participating in each relationship, which

generates adequate feedback to the model during the training process.

Finally, the concept of social neighbors is introduced, allowing the model to őlter

the information from other relations. This helps to reduce the noise generated by con-

sidering all the relationships within an image together, since some of them may not be

correlated or, in some circumstances, they can be missing from the dataset annotations.

5.2 Social Scales Network

The purpose of this step is to extract visual information directly from the input,

learning features that will be used to initialize the hidden states of the nodes from the

graph representing the social structure in the image. This data serves as a starting point

for the relation reasoning model, which exploits the graph structure to aggregate the

extracted information, generating high-level features, which will be őnally employed in

the őnal classiőcation.

This module is composed of two sub-modules, as illustrated in Figure 5.2, that are

in charge of pre-processing the input images and performing feature extraction. Social-

scales data is obtained directly from image patches using Convolutional Neural Networks

(CNNs) to gather information speciőcally from each scale, which means three distinct

convolutional backbone models are employed. The őrst one extracts individual data

from personal-scale body images, the second obtain local-scale relative features for each
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same dimensions. In other words, body images will carry őne-grained personal features,

and as the scale goes up, the respective networks receive images containing coarser-grained

traits and additional context-based information, up to global level features, as shown in

Figure 5.3b.

More speciőcally, the input sub-module receives an image I depicting a number R of

relations between P individuals, along with a set B = {bi | i = 1, 2, ...,P} containing their

bounding boxes coordinates, and the set R = {ri ,j | i = 1, 2, ...,P , j = 1, 2, ...,P , i ̸= j}

with size R, deőning all the relation pairs in I, where ri ,j indicates there is a relationship

between persons i and j .

Initially, the bounding boxes areas for all persons are cropped, generating a set

of personal-scale input images X p = {xi | (∀bi ∈ B)[xi = crop(bi)]}. Next, the set of

local-scale input images X l = {xi ,j | (∀(ri ,j ∈ R)[xi ,j = crop(ri ,j )]} is formed, where each

element is obtained by cropping the regions deőned by the smallest area from I containing

the bounding boxes bi and bj of the persons participating in the relationship ri ,j . Finally,

the whole image I is also used to represent the global scope, denoted by X g .

The obtained image sets X p , X l and X g are resized to the adequate input dimen-

sions and fed to their respective social-scale backbone in the next sub-module. Each of

these models have a Fully Connected (FC) layer, followed by the ReLU activation at-

tached to their last feature extraction layer, with the purpose of resizing their outputs to

the hidden state dimension H of the proposed graph model. After the described processes,

the module outputs the sets F p ∈ R
P×H, F l ∈ R

R×H and F g ∈ R
H of personal, local and

global scale features.

5.3 Social Knowledge Graph

The objective of this second module is to build a representation that embodies

all the information extracted from the image in the previous step. This representation

will be used for the relation reasoning process in the last stage, and therefore it needs

to preserve the social structure while also being able to apply constraints on how all

these distinct types of information should be associated. This is achieved by the Social

Knowledge Graph (SKG), a directed heterogeneous graph formed by four different node

types: relationship, personal, local, global, and a corresponding edge type for each one,

as depicted in Figure 5.4.

The SKG has an intuitive construction process, which is described in three steps

for simpliőcation purposes. The őrst one elaborates on the underlying concepts, also

deőning relationship nodes, which form the basis for this graph structure. The second
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the features extracted by the previous module. In this sense, a node of the corresponding

type is generated for every distinct feature vector, and together they form a subgraph

representing each scale. This means that a personal-type node pi is created for every

individual i = 1, 2, ...,P in the input image, receiving their respective features fi ∈ F p as

their initial hidden state h
p
i . For each relation pair ri ,j ∈ R, a node li ,j of personal-type

is built and its initial hidden state h l
i ,j is fed with the corresponding features fi ,j ∈ F l

obtained from pairwise image patches. Finally, a single global-type node g is created to

carry the features f ∈ F g in its initial hidden state hg , representing the input image as a

whole.

This next step consists of deőning associations between these generated nodes,

establishing rules on how all the information extracted from the input image should be

combined to classify each relationship. The linking process is based on the source of

the features each one carries, beginning with social-scale nodes, which are connected to

their respective relation nodes by social-scale edges of the corresponding types. More

precisely, personal nodes are linked by directed personal edges (pi , ri ,j )
p to the relation

nodes in which their respective individual i participate, and local nodes have a direct

correspondence with their relation nodes through directed local edges (li ,j , ri ,j )
l . Finally,

since global features can affect all the social relations depicted in the image I, all relation

nodes are linked to the global node by directed global edges (g, ri ,j )
g .

At this point, the graph contains nodes representing all the social relations de-

picted in the image, connected to their respective social-scale nodes, offering multi-scale

information. However, this structure is treating relationships independently, and to őx

this issue, a pair of edges is inserted in between all the relation nodes that have persons in

common. This is the concept of social neighbors, represented in Figure 5.6, and through

these connections, the model will be able to exchange information among distinct rela-

tionships of the same individual, learning the dependencies existing between some classes

of relations, as described in Section 2.2. The set of social neighbors of the node v is rep-

resented by S (v), and the directed relationship edges (ri ,j , S (ri ,j ))
r will form a two way

link between every pair of social neighbors when applied to all relation nodes, allowing

these nodes to send and receive information evenly.

An image can contain a total of C(P , 2) social relationships, according to the

number of depicted persons, as mentioned in Section 1.3. However, many samples in the

benchmark datasets do not have ground-truth annotations for all possible pairs. This

means that inserting relation edges between these nodes could generate noise instead of

helping the classiőcation. For this reason, relationships are connected only to their social

neighbors, avoiding the addition of unnecessary information while also supporting the

reasoning model to identify instances that are not correlated using their features. The

entire process of attaching edges to the graph is shown in Figure 5.7, and after this őnal

step, the construction of the default SKG version is completed.
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nodes, like in previous approaches. This allows the model to learn on bigger structures,

accelerating and adding more consistency to the entire process.

5.3.1 Attribute Nodes

This sub-module is in charge of adding attribute nodes to the SKG, generating an

extended version of the graph. The features these nodes carry are extracted employing

a pre-trained model for each attribute type, using as input the same image patches from

which the social-scale features were extracted. These attributes add extra information into

the graph structure, acting as constraints and allowing the model to learn the dependencies

between them.

As mentioned in Section 1.3, early methods suffer from a recurrent problem where

the developed models learn incorrect associations from the training data, leading to gen-

eralization issues. This work presents the hypothesis that those problems emerge because

the decision-making process does not reŕect how humans interpret social relationships,

which is a fundamental behavior for these models since these relations are based on human

perception.

The way how humans differentiate between social relationships is heavily inŕuenced

by appearance attributes such as age, gender, clothing, emotion, and body positioning,

as described in Section 2.3. Additionally, previous research [Sun et al., 2017; Wang et al.,

2020] quantiőed the impact of these attributes for social relation recognition, allowing the

selection of the most meaningful traits. The proposed methodology applies this knowledge

with the purpose of guiding the reasoning process to become more similar to how humans

perceive social relationships.

In this sense, the goal of attribute nodes is to support the model in considering

these essential aspects. They act as constraints to the decision-making process, since they

are not learned directly from the input image, but instead, they are provided by models

pre-trained on each speciőc trait. These types of nodes are attached to their respective

scale nodes carrying the image patch features they were extracted from, and for this

reason, they are considered social-scale attributes. For example, appearance traits such

as age and gender can be obtained from the person image patches X p , and hence they are

personal attributes. From the local-scale pair images X l , it is possible to extract features

for activity or group emotion, which are considered local traits. Finally, it is possible to

detect objects within the whole image I, and their features are attached to the graph as

global-scale attributes.

The insertion of attribute nodes to the graph begins by choosing which traits and
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sequentially to speciőc types of nodes, producing the information stream depicted in Fig-

ure 5.11. Starting with the outermost nodes, which carry attribute data in the SKG+

version, their information has to be passed to the corresponding social-scale nodes. This

data is then combined with the current social-scale features extracted from the input im-

age, generating a new hidden state for each scale node. This is done by the AttributeConv

layer, deőned as

hs
i = hs

i + log

(

As
∑

a=1

exp(tanh(W s,ah
s,a
i + bs,a))

)

, (5.4)

where W s,a and bs,a are the learned matrix of weights and bias term associated with the

attribute type a, As is the total number of attribute types extracted for the social scale

s , while hs
i and h

s,a
i are the hidden states of the social-scale node and the corresponding

attribute node of type a.

This layer assigns weights for distinct attribute types, allowing the model to learn

different combination strategies for each one. The extracted features probably also have

different value ranges, depending on the employed models, which can interfere with the

learning process. For this reason, the tanh activation function is used, őtting the data

within the same range. The resulting feature vectors for all attribute types are aggre-

gated using the LSE function, providing invariance to node ordering in the graph and

normalizing these values, which prevents them from changing the scale features drasti-

cally. Finally, the results produced by this process are added to the social-scale features,

updating their hidden state with attribute information.

Next, the updated social-scale features have to be combined, generating a multi-

scale representation for their respective relationships. Since every relation node ri ,j is

connected with two personal nodes pi and pj , one local-scale node li ,j , and to the global-

scale node g, their hidden state features, denoted by h
p
i , hp

j , h l
i ,j , and hg , can be directly

combined to obtain a representation. This is achieved by the ScaleConv layer

hr
i ,j = ReLU(W p(hp

i + h
p
j ) ∥W

lh l
i ,j ∥W

ghg), (5.5)

where W p , W l , and W g are the learnable weight matrices associated with personal, local,

and global-scale features respectively, while bias terms are omitted for brevity. Addition-

ally, the ∥ symbol indicates the concatenation operation and hr
i ,j ∈ R

3H is the feature

vector representing the relationship between the persons i and j . The learnable pa-

rameters are shared among features from the same scale, learning to capture the most

important aspects of each scope, while personal node features are added, avoiding issues

related to the order each person appears.

The third layer is in charge of capturing relationship interdependencies, and there-

fore it is applied to relation nodes, combining their features with information from their
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social neighbors. This task is performed by the RelationConv layer

hr
i ,j = hr

i ,j +ReLU(LayerNorm(Uhr
i ,j +

∑

rm,n∈S(ri,j )

Z i ,j
m,nV hr

m,n)), (5.6)

where U and V are learnable matrices of weights, and Z i ,j
m,n is an attention score calculate

by

Z i ,j
m,n =

σ(Z̄ i ,j
m,n)

∑

rm,n∈S(ri,j )
σ(Z̄ i ,j

m,n) + ϵ
, (5.7)

Z̄ i ,j
m,n = Whr

i ,j +Xhr
m,n , (5.8)

where W and X ∈ R
H are vectors of learnable parameters, ϵ is a small constant for

numerical stability and σ is the sigmoid activation function.

For every relationship ri ,j , the layer calculates an attention score Z i ,j
m,n that mea-

sures the importance for each one of its neighbor relationships rm,n . This score is used

to weigh the features from neighbor relation nodes, which are summed and normalized

applying LayerNorm [Lei Ba et al., 2016]. The resulting values are added to the hid-

den state of the current relation node, generating a őnal representation, which now also

includes interdependecies information.

The hidden states of each relation node are fed to a simple classiőer composed of

two FC layers followed by a softmax function, outputting the őnal class probability scores

for the relation ri ,j as

ŷi ,j = softmax(W ReLU(Uhr
i ,j + bu) + bw), (5.9)

where W , bw, U , and bu represent weight matrices and bias terms. The cost function of an

input image I depicting a set of relationships R with size R is given by the cross-entropy

loss obtained by

L = −
1

R

∑

ri,j∈R

C
∑

c=1

yci ,j log(ŷ
c
i ,j ), (5.10)

where yci ,j is the ground-truth for the relation ri ,j with respect to the class c, and C is the

total number of classes.

Finally, an auxiliary classiőer with the same structure deőned in Equation 5.9

is used to generate class scores from relationship features before the application of the

RelationConv layer, with the őnal cost function of the model being the sum of the losses

from both classiőers. The purpose of this addition is to inject gradients closer to the

backbone models, reducing vanishing gradient issues, similarly to the GoogleNet [Szegedy

et al., 2014]. Additionally, the second classiőer also helps to reduce overőtting by providing

additional regularization to the model, since these intermediary features can be considered
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as a pairwise approach. The gradients injected directly into this stage of the model help

to assure these features are being learned in the correct direction, since they also have to

make sense from a pairwise perspective.
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Chapter 6

Experiments and Results

This chapter presents the main benchmark datasets for social relation recognition, along

with their evaluation protocols. Additionally, the data processing steps applied to shift

the task from a relationship-based to an image-based approach are also described. Next,

the baselines and state-of-the-art models selected for comparison are summarized by their

fundamental concepts, drawing parallels with the methodology proposed in this work.

Finally, details on the implementation process and other relevant choices are also eluci-

dated.

For the experiments used to evaluate the proposed model, the reasoning behind

them is explained in their respective sections. The obtained results are presented along

with a deep investigation of their quantitative aspects, including an ablation study and

the effects of model variations. Finally, a qualitative analysis is conducted, discussing the

inŕuence of each design choice and its outcomes by displaying some examples of correct

and incorrect classiőcations.

6.1 Datasets

The proposed approach was evaluated on the two most signiőcant benchmarks for

social relation recognition: the (i) PISC, and (ii) PIPA-relation datasets. This section

presents a brief explanation of the construction process and statistics for each one, along

with a description of their suggested evaluation protocols.
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6.1.1 PISC

The People in Social Context (PISC) dataset [Li et al., 2017] is the largest bench-

mark in the literature focused on social relationships. Based on the relational models

theory [Fiske, 1992], it deőnes hierarchical categories composed of social domains branch-

ing into relationships sub-categories, which embed coarse-to-őne aspects of typical social

interactions, as illustrated by Figure 6.1.

Figure 6.1. Set of hierarchical social relationship categories defined in the People in Social
Context (PISC) dataset [Li et al., 2017].

Images from multiple sources were used to build this benchmark, including well-

known datasets such as the Visual Genome [Krishna et al., 2017], MS-COCO [Lu et al.,

2016] and YFCC100M [Thomee et al., 2016]. Additionally, data from other publicly

available platforms like Flick, Instagram, Twitter, and search engines such as Google and

Bing were also employed. The collected images were őltered to avoid crowds and single

persons, while the remaining samples were manually annotated with body bounding boxes,

occupation and social relationships labels for all potential individual pairs. Each image

was evaluated by at least őve persons, and the őnal label decision was determined by

majority voting. Figure 6.2a shows the agreement rating and the number of occurrences

for relationship classes during the annotation process.

The dataset consists of 22,670 images, with an average number of 3.11 persons

per picture. For social relations, each pair of individuals in an image is considered as a

sample, composing a total of 76,568 valid relationships for the whole dataset. Considering

occupation, a total of 10,034 images were annotated with recognizable professional activ-

ities. Figure 6.2b shows the 26 most frequent occupation categories and their agreement

rate.

Social relation recognition experiments on the PISC dataset are performed using

two suggested evaluation protocols. The őrst one focuses on social domains, splitting

the dataset into three coarse-level categories: No Relation, Intimate Relation, and Non-

Intimate Relation. The train set has 55,400 samples, distributed in 16,828 images, with an

average of 3.09 persons per picture. For the test set, there are 3,961 samples distributed

in 1,250 images, with an average of 3.06 persons per picture. Finally, the validation set

has 1,505 samples, distributed in 500 images, with an average of 2.99 persons per picture,
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(a) Social relationships (b) Occupations

Figure 6.2. Statistics for the PISC dataset [Li et al., 2017]. (a) The number of occurrences
and agreement by class for social relationships annotations. (b) The number of occurrences and
agreement by class for occupation annotations.

totalizing 60,866 samples for the entire evaluation protocol.

The second evaluation protocol considers őne-grained social relationships, repre-

sented by 6 classes: Friends, Family Members, Couple, Professional, Commercial, and No

Relation. The train set has 49,017 samples, distributed in 13,142 images, with an aver-

age of 3.02 persons per picture. For the test set, there are 15,497 samples distributed in

4,000 images, with an average of 3.11 persons per picture. Finally, the validation set has

14,536 samples, distributed in 4000 images, with an average of 3.07 persons per picture,

totalizing 79,050 samples for the entire protocol.

6.1.2 PIPA-relation

The People in Photo Album (PIPA) relation dataset [Sun et al., 2017] is one of

the őrst open benchmarks for social relation recognition. It was inspired by the social

domain theory [Bugental, 2000], which provides a robust conceptualization of human

social life, encapsulating all aspects of interpersonal interactions while also being concrete

and speciőc enough to support a computational model. The theory partitions social life

into domains, providing precise deőnitions for each one and also indicating related social

cues, including appearance and behaviors.

Images from the original PIPA dataset [Zhang et al., 2015] were reused to build
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this benchmark. The data was collected from Flickr for person recognition, consisting

of 37,107 pictures, including 63,188 samples of 2,356 individuals, covering a wide range

of social scenarios. It was annotated with head bounding boxes and identity numbers,

allowing the identiőcation of the same individual in distinct social situations, delivering

an ideal scenario for relation recognition tasks. The original dataset was extended with

relationship annotations, using identity information to select person pairs and establish

evaluation protocols. Considering that social relations may be subjective, ambiguous, and

in some cases even attached to cultural backgrounds, the annotators were selected from

different geographic regions, including four continents.

Each instance from this dataset belongs to one of the őve social domains: Attach-

ment, Reciprocity, Mating, Hierarchical Power, and Coalitional Groups, and from them,

a list of 16 social relationships is derived. The resulting PIPA-relation dataset contains

26,915 samples, with a total of 134,556 annotations and up to three labels per instance,

selected by each annotator. The őnal label for each sample is selected by applying a con-

sistency veriőcation method based on the agreement between annotators, which is shown

in Figure 6.3.

Figure 6.3. Class consistency for social domain and social relationship classes in the PIPA-
relation dataset [Sun et al., 2017].

The experiments on the PIPA-relation dataset are performed using the recom-

mended All-class (AC) protocol, where the training data covers all classes of social re-

lationships and domains. The train set has 13,729 samples, distributed in 5,857 images,

with an average of 2.93 persons per picture. For the test set, there are 5,106 samples

distributed in 2,452 images, with an average of 2.58 persons per picture. Finally, the

validation set has 709 samples, distributed in 261 images, with an average of 2.9 persons

per picture, totalizing 19,544 samples for the entire evaluation protocol.
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6.1.3 Data Issues

As mentioned in Section 1.3, the social relation recognition task has to work with

an ill-posed problem, since not all information required to identify some relations may be

presented by the images. This issue becomes explicit in both datasets, where classes like

Friends and Family are impossible to distinguish in some scenarios, opening a margin

to multiple interpretations. In this sense, the capabilities of a social relation recognition

method are limited to the social theory applied to interpret the relationships, and also to

the quality of ground-truth information provided, similarly to other supervised approaches

employed on multiple computer vision tasks.

Additionally, modern benchmarks suffer from another recurrent problem on tasks

involving machine learning and human beings, which is the diversity of the training data.

Most of the images come from homogeneous populations in terms of race, clothing, sexual

orientation, and various other physical and cultural traits. This is an obstacle for super-

vised learning algorithms, resulting in models that are incapable of generalizing to images

containing variations in any of these aspects, which often leads to incorrect results.

For these reasons, the objective of this work is not to be assertive about the actual

social relationships depicted in the images. Instead, the only purpose is to reproduce the

human perception of social relationships reŕected in the data, which can be a helpful tool

when incorporated into other tasks, as mentioned in Section 1.3.

6.2 State-of-the-art Baselines

This section presents a brief description of some fundamental concepts behind the

baselines and state-of-the-art methods used to measure the performance of the proposed

framework. A deeper analysis of these approaches was made in Chapter 3, and for this

reason, the goal of the following summary is to provide only a quick insight into the

progress of the social relation recognition task, helping to confront these methods with

their performance in the next sections.

• Union-CNN [Lu et al., 2016]: Based on predicate prediction methods, the union

region of the individual pair of interest is classiőed using a CNN model.

• Pair-CNN [Li et al., 2017]: This approach employs two identical CNNs with shared

weights to extract and classify the features from cropped image patches for both
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individuals in the relation.

• Pair-CNN+BBox+Union [Li et al., 2017]: Extends the Pair-CNN by adding

geometry information from both persons bounding boxes concatenated with Union-

CNN features.

• Pair-CNN+BBox+Global [Li et al., 2017]: Similar to the previous method;

however, the Union-CNN receives as input the whole image instead of the union

region containing the pair of interest.

• Dual-Glance [Li et al., 2017]: Makes a coarse prediction from the pair of indi-

viduals using Pair-CNN+BBox+Union (őrst glance), incorporating object features

combined with an attention mechanism (second glance).

• Attributes, SVM [Sun et al., 2017]: Trains multiple convolutional models to

identify appearance attributes, which are employed to extract features from each

pair, feeding different combinations of these attributes to an SVM classiőer.

• Graph Reasoning Model (GRM) [Wang et al., 2018b]: Considers a prior knowl-

edge graph for the whole dataset, representing co-occurrences between relationship

and object classes, weighted by attention mechanism.

• Multi-Granularity Reasoning (MGR) [Zhang et al., 2019]: Combines global

information with regional features, employing graphs to represent interactions be-

tween individuals and objects.

• Social Relationship Graph Inference Network (SRG-IN) [Goel et al., 2019]:

Use pre-trained models to extract attributes including age, gender, clothing, activity,

and scene features, which are aggregated employing recurrent units.

• Deep Supervised Feature Selection (DSFS) [Wang et al., 2020]: Proposes

group and dimensional feature selection methods, abstracting individual attribute

features obtained by using pre-trained models.

• Graph Relational Reasoning Network (GR2N) [Li et al., 2020]: Employs a

graph model for exchanging information between multiple relationships, exploiting

their correlations.



6. Experiments and Results 86

6.3 Implementation Details

In this section, essential details about the implementation are provided, allowing

the reproduction of the obtained results. Starting from the databases, the procedures

required to shift the task from a relation-based to an image-based approach are explained.

Next, speciőcations on the extraction of the social-scale and attribute features used in

the experiments are described. Finally, the hyper-parameters and optimization techniques

employed are also reported.

6.3.1 Datasets Preparation

No modiőcations were needed for the PISC dataset [Li et al., 2017], since it was

provided with bounding boxes, class labels, metadata annotations, and lists of experiment

protocols organized per image. Additionally, the full pictures were also made available,

allowing to efficiently crop image-patch regions for the inputs of each social-scale back-

bone.

On the other hand, the PIPA-relation dataset [Sun et al., 2017] presented evalu-

ation protocols, metadata, and annotations merged into the same őle, where each rela-

tionship sample is disconnected from the rest of the image, addressing only pair-based

labels. Another issue with this dataset is that bounding boxes were also not provided,

and instead, only the image regions containing the individuals considered for each sample

were given, complicating the generation of the other social-scale image patches.

This issue was circumvented using the source image names and a counter for each

person in the same picture provided with the annotations. With this information, it was

possible to backtrack head bounding boxes for every person in the PIPA-relation dataset

by employing the original PIPA dataset [Zhang et al., 2015] annotations. Finally, after

recovering head coordinates, full-body bounding boxes were recalculated in the same way

described by Sun et al. [2017]: 3 × head width and 6 × head height. Additionally, the

information of persons and labels per image was also obtained from this process, providing

all the data necessary for the transition to an image-based approach.
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6.3.2 Features Extraction

For a fair comparison, ResNet-101 models [He et al., 2016] pre-trained on the Ima-

geNet [Russakovsky et al., 2015] are employed as backbones for the Social Scale Networks

in the őrst module, since this architecture was also applied for feature extraction in pre-

vious works [Li et al., 2017; Wang et al., 2018b; Li et al., 2020]. Each of these backbone

models is őne-tuned for their respective social scale by freezing the parameters from the

őrst two residual blocks (conv1 and conv2_x ), preserving the weights of these initial

layers, since they tend to learn more general features. The last three residual blocks

(conv3_x, conv4_x, and conv5_x ) are allowed to retrain, adjusting their parameters to

learn scale-speciőc features. Furthermore, the image patches X p , X l , and X g are resized

to 224× 224 pixels, őtting the input size of the chosen backbone architecture.

Considering that ResNet-101 residual blocks include batchnorm layers [Ioffe and

Szegedy, 2015], the running mean and standard deviation of the original training are also

preserved. This is done because those statistics depend on batch variations, being affected

by the number of samples and their values, which can change drastically because of the

image-based approach, since some pictures only have one relationship while others can

show more than 30. The rapid oscillations in these values invalidate the running mean

and standard deviation between batches during the feature learning process, resulting in

a non-stationary training, which does not reŕect accurate batch statistics through the test

phase, degrading the model generalization capabilities. Additionally, this situation can

be complicated by the similar inputs for relationships in the same image, as described in

Section 2.1. The application of the original statistics helps to mitigate these issues, since

social relationship images are in the same domain of the original training data.

The social-scale features are generated by extracting outputs of the last average

pooling layer of each backbone model, obtaining the feature vectors F p ∈ R
P×2048, F l ∈

R
R×2048, and F g ∈ R

2048, as described in Section 5.2. For the SKG+ version, a value of

Ap = 3 is employed, producing the sets of individual appearance attribute features

F p,1 = {fi ∈ R
4096 | (∀xi ∈ X p)[fi = age(xi)]}, (6.1)

F p,2 = {fi ∈ R
4096 | (∀xi ∈ X p)[fi = gender(xi)]}, and (6.2)

F p,3 = {fi ∈ R
4096 | (∀xi ∈ X p)[fi = clothing(xi)]} (6.3)

from the fc7 layer of the age, gender and clothing double-stream Caffe-Net models

provided by Sun et al. [2017], which are also used by other works [Goel et al., 2019; Wang

et al., 2020], producing fair results.

From local-scale image regions, a number of Al = 2 attributes are extracted. The

őrst one is obtained from the global_pool layer of the Inception-V2 model [Szegedy et al.,
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2016] made available by Guo et al. [2020]. The network was pre-trained on the Ima-

geNet [Russakovsky et al., 2015] and őne-tuned on the GroupEmoW database presented

in their work, which is focused on group emotion. The second attribute is extracted from

the fc7 layer of the CNN-CRF activity model [Yatskar et al., 2016] trained on a dataset

composed of 126,102 images to recognize 504 activity classes, which was again employed

in previous works [Goel et al., 2019; Wang et al., 2020]. The extracted attributes vectors

are combined, generating the feature sets

F l ,1 = {fi ,j ∈ R
1024 | (∀xi ,j ∈ X l)[fi ,j = emotion(xi ,j )]} and (6.4)

F l ,2 = {fi ,j ∈ R
1024 | (∀xi ,j ∈ X l)[fi ,j = activity(xi ,j )]}. (6.5)

Finally, a value of Ag = 1 global-scale attributes are extracted using the set of

object bounding boxes provided by Wang et al. [2018b], which includes a number O of

distinct object classes for every image on both datasets. The detected regions are cropped

from the whole image patch X g and fed to a SENet-154 model [Hu et al., 2020], pre-trained

on the ImageNet database [Russakovsky et al., 2015] for image classiőcation, generating

the set F g,1 ∈ R
O×2048 of object features for each patch.

6.3.3 Optimization and Parameters

During the training process, all linear layer weights are initialized with Xavier

Normal [Glorot and Bengio, 2010] and bias terms are initialized with zeros. The SSN pa-

rameters are optimized employing Stochastic Gradient Descent (SGD) with 10−4 learning

rate, 10−4 weight decay, and 0.9 momentum. The SGN parameters are optimized em-

ploying AdamW [Loshchilov and Hutter, 2019] with a 2× 10−4 learning rate and 2× 10−5

weight decay, and a learning rate decay of 0.98 is applied after each epoch for both opti-

mizers. Finally, the constant ϵ for numerical stability on the RelationConv layer is set to

10−6.

Since both employed benchmarks are heavily imbalanced, the weights wc are ap-

plied speciőcally for each class during the calculation of the cost function. These values

can be computed by

wc =
nt

ncC
, (6.6)

where wc and nc are the weight and number of samples for the class c, while the total

number of samples and classes are represented by nt and C, respectively.
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6.4 Quantitative Results

This section presents the results obtained using the proposed approach, which

is compared against state-of-the-art models by employing different metrics. Next, the

outcomes are discussed and interpreted, considering design choices and other important

aspects of each method.

Following previous works, per-class recall and mean average precision (mAP) met-

rics are computed for PISC, while accuracy is employed for the PIPA-relation dataset.

As shown in Tables 6.1, 6.2 and 6.3, the proposed model was capable of surpassing all

previous methods, achieving a new state-of-the-art on both benchmarks.

Table 6.1. Comparison of recall-per-class and mean average precision (mAP) metrics for the
proposed methodology against the state-of-the-art on the relationship split of the PISC dataset.

Methods
Relationship

Friends Family Couple Professional Commercial No Rel. mAP

Union-CNN [Lu et al., 2016] 29.9 58.5 70.7 55.4 43.0 19.6 43.5
Pair-CNN [Li et al., 2017] 30.2 59.1 69.4 57.5 41.9 34.2 48.2
Pair-CNN+BBox+Union [Li et al., 2017] 32.5 62.1 73.9 61.4 46.0 52.1 56.9
Pair-CNN+BBox+Global [Li et al., 2017] 32.2 61.7 72.6 60.8 44.3 51.0 54.6
Dual-Glance [Li et al., 2017] 35.4 68.1 76.3 70.3 57.6 60.9 63.2
GRM [Wang et al., 2018b] 59.6 64.4 58.6 76.6 39.5 67.7 68.7
MGR [Zhang et al., 2019] 64.6 67.8 60.5 76.8 34.7 70.4 70.0
SRG-IN [Goel et al., 2019] - - - - - - 71.6
GR2N [Li et al., 2020] 60.8 65.9 84.8 73.0 51.7 70.4 72.7
SGN(SKG) 57.0 75.8 62.1 83.9 48.3 59.8 75.2
SGN(SKG+) 49.4 70.5 74.6 76.5 59.6 74.6 75.2

Table 6.2. Comparison of recall-per-class and mean average precision (mAP) metrics for the
proposed methodology against the state-of-the-art on the domain split of the PISC dataset.

Methods
Domain

Intimate Non-Intimate No Rel. mAP

Union-CNN [Lu et al., 2016] 72.1 81.8 19.2 58.4
Pair-CNN [Li et al., 2017] 70.3 80.5 38.8 65.1
Pair-CNN+BBox+Union [Li et al., 2017] 71.1 81.2 57.9 72.2
Pair-CNN+BBox+Global [Li et al., 2017] 70.5 80.0 53.7 70.5
Dual-Glance [Li et al., 2017] 73.1 84.2 59.6 79.7
GRM [Wang et al., 2018b] 81.7 73.4 65.5 82.8
GR2N [Li et al., 2020] 81.6 74.3 70.8 83.1
SGN(SKG) 88.3 67.6 69.7 85.6
SGN(SKG+) 83.6 69.8 75.6 85.8

For the PISC dataset, the proposed method obtained an mAP of 75.23% for re-

lationship classes and 85.78% for the domain split, with an increase of 2.53 and 2.68



6. Experiments and Results 90

percentage points against the highest previous scores. The model achieves a better per-

formance improvement on the three classes split, probably because of the global-scale

features adding context information to the relationships, which is not considered by the

previous state-of-the-art method [Li et al., 2020], since it employs only personal-scale

image patches. For the six-relationships split, the proposed method shows a similar

improvement, suggesting that it is also more efficient in capturing the őne-grained infor-

mation needed to differentiate between more classes. These results may be associated

with relative information provided by local-scale features, which is also neglected by the

previous state-of-the-art.

Table 6.3. Comparison of accuracy metric for the proposed methodology against the state-of-
the-art on the PIPA-relation dataset.

Methods
Accuracy (%)

Domain Relationship

All Attributes, SVM [Sun et al., 2017] 67.8 57.2
Dual-Glance [Li et al., 2017] - 59.6
DSFS-Dimensional [Wang et al., 2020] - 61.5
GRM [Wang et al., 2018b] - 62.3
MGR [Zhang et al., 2019] - 64.4
GR2N [Li et al., 2020] 72.3 64.3
SGN(SKG) 73.0 66.7
SGN(SKG+) 73.8 68.0

For the PIPA-relation dataset, the proposed methodology also provides an im-

provement over previous models on both evaluation splits, showing an increase of 3.6 and

1.4 percentage points against Li et al. [2020] and Zhang et al. [2019], respectively. The

relationship protocol covers 16 classes, and this is where the model produced the most

signiőcant improvement, suggesting that previous methods lack the high-level information

necessary to recognize more speciőc relationships, which can be achieved by the proposed

method. It is also noticeable how similar are the improvements values over previous works

for both splits of each dataset, showing the consistency of the methodology.

Additionally, the use of the same backbone and attribute extraction models em-

ployed in previous works [Sun et al., 2017; Li et al., 2017; Wang et al., 2018b; Zhang

et al., 2019; Goel et al., 2019; Wang et al., 2020; Li et al., 2020] provided a fair com-

parison, which indicates that the proposed framework was more efficient in capturing

dependencies between the training data, resulting in a higher generalization capacity.

The main reasons behind these numbers are probably the combination of all social scales

and the preservation of the social structure, allowing the extraction of information from

other relationships, which is further investigated in the following sections.
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6.4.1 Model Variations

In this section, the consequences of model variations are estimated on both

datasets. Initially, multiple hidden state dimension values (H) for the SGN module are

evaluated and discussed, followed by an investigation on the outcomes produced by dif-

ferent attribute aggregation methods.

6.4.1.1 Hidden State Dimension

In this experiment, the inŕuence of the hidden state size is evaluated. As stated

in Section 5.4, the features obtained from social-scales and attributes extraction models

are required to have identical dimensions for the graph network to process them. This is

accomplished by downscaling these vectors to an equivalent size, which is deőned as the

hidden state dimension of the node features.

For this reason, the value of H is directly associated with the capacity of the

proposed model. Small hidden sizes may not be enough to represent the learned features

in a distinctive way, while large feature dimensions will result in an excessive number

of learnable parameters, slowing down the training process and increasing the chance of

overőtting. The obtained results for multiple variations on the value of H are shown in

Table 6.4.

The ideal value for H is between 256 and 512 on both datasets, while increasing

or decreasing beyond this interval started to degrade the performance. Since a hidden

state size of 512 performed slightly better in general, it was chosen as the hidden state

dimension of the model for the following experiments.

6.4.1.2 Attributes Aggregation Function

This experiment consists of replacing the attribute aggregation method in the At-

tributeConv layer for the SKG+ with other functions, measuring their outcomes. The

purpose of this layer is to combine the multiple sets of features received from various

sources, producing a single vector that is used to update the representation of the corre-

sponding scale node, as explained in Section 5.4.
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Table 6.4. The effects of different hidden state dimension (H) values on the model’s perfor-
mance, estimated by accuracy and mean average precision (mAP) metrics on both datasets.

PISC

H
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

64 75.34 65.59 84.33 73.80
128 75.67 65.44 84.65 74.30
256 76.01 68.39 85.01 74.79
512 76.02 66.32 85.56 75.21
1024 75.08 67.76 84.33 74.84

PIPA-relation

H
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

64 69.49 61.73 54.33 30.84
128 71.92 62.42 55.10 27.96
256 71.54 64.08 55.64 33.79
512 72.95 66.67 55.03 33.13
1024 70.45 60.36 52.85 30.70

In this sense, a different feature representation may be generated depending on the

employed function, inŕuencing the őnal performance of the model. The obtained results

are shown in Table 6.5, including the original LSE function, along with mean and and

sum aggregation methods.

Table 6.5. The effects of different attribute aggregation methods on the model’s performance,
estimated by accuracy and mean average precision (mAP) metrics on both datasets.

PISC

Aggregation
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

mean 75.91 68.01 85.00 75.08
sum 76.71 68.59 85.59 75.20
LSE 76.81 67.91 85.78 75.23

PIPA-relation

Aggregation
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

mean 71.58 66.41 56.05 35.74
sum 71.41 66.00 58.43 34.82
LSE 73.78 68.00 58.80 34.18

The mean function evens input features, generating more stable results. However,
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sometimes it can reduce the importance of high feature values, resulting in a loss of

distinctive power for strong activations. Similarly, the LSE function also evens out the

set of features, but it is more sensitive to variations, which may help preserve critical

information. On the other hand, the sum function captures an overall description of the

input features, fully incorporating all feature values into the őnal representation, which

can be a good option in some circumstances, preserving important activations.

Overall, the best results were obtained by the LSE function, suggesting that it

provides an adequate balance between the preservation of distinctive features and the

detection of important patterns from the input data. In second place, the sum function

generated close results, probably due to its feature distinction capabilities, which provided

slightly better metrics on PISC. Additionally, this same factor may also explain the poor

performance of the mean function on both datasets.

6.4.2 Ablation Study

This section presents an analysis of the contribution provided by particular modules

and concepts behind the proposed methodology. The conducted experiments estimate

the signiőcance of each social scale, multiple graph versions, and different relationship

connections for the model’s performance. Additionally, a deep discussion is also conducted

to interpret the obtained results.

6.4.2.1 Social Scales

In this experiment, the importance of each social scale is investigated by generating

different versions of the Social Knowledge Graph for every possible combination between

them. The resulting graphs only contain nodes and features associated with the speciőed

scales, allowing the evaluation of their impact on the őnal metrics for both datasets, which

are shown in Table 6.6.

Separately, the personal scale produced the best outcomes in all scenarios, sug-

gesting that individual appearance features offer the most distinguishable traits for social

relation recognition. In second place, the local scale also generated similar numbers,

which were probably negatively affected by destructive interference from nearby persons.

Finally, the global scale reported the worse results, due to the fact that a single image
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Table 6.6. The effects of each social scale on the model’s performance, estimated by accuracy
and mean average precision (mAP) metrics on both datasets.

PISC

Social Scales
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

Personal 73.27 64.60 81.87 70.69
Local 72.92 63.85 81.23 70.34
Global 66.42 56.20 73.09 62.31

Personal + Local 75.07 66.30 83.52 73.74
Personal + Global 75.65 66.20 84.47 73.05

Local + Global 73.58 65.41 82.34 71.53
Personal + Local + Global 76.02 66.32 85.56 75.21

PIPA-relation

Social Scales
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

Personal 70.19 60.34 52.90 30.18
Local 68.43 58.30 51.36 28.08
Global 68.12 54.56 47.48 24.50

Personal + Local 71.52 64.36 55.83 32.21
Personal + Global 71.29 64.24 54.82 30.58

Local + Global 71.41 62.81 53.00 33.47
Personal + Local + Global 72.95 66.67 55.03 33.13

can contain different classes of relationships, causing severe inconsistencies during the

learning process if only these types of features are considered.

All the obtained results are in line with the hypothesis presented in Section 2.1,

and also with the predictions of the domain-based theory [Bugental, 2000], in respect to

the importance of individual appearance features for the identiőcation of social relations.

Additionally, the outcomes are also coherent from a logical point of view, since relation-

ships are primarily deőned by persons and their actions, while the environment can only

offer additional information.

The results for different scale combinations indicate some level of information over-

lapping between all of them, which can be aggravated in images where individuals are

close to each other, or in scenes with no additional context information. Local and global-

scale patches appear to carry the highest overlap, which can be more prevalent in close

distance images of a small number of persons, where the regions employed in these two

scales can become very similar. Naturally, personal and global-scale patches seem to have

the lowest overlap, since they are the most distant scopes.

Nonetheless, the experiment revealed a signiőcant performance increase produced

by the use of the three scales in comparison with other versions of the model employing
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As shown in Table 6.7, the addition of attribute information to the SKG im-

proved the performance of the model on both datasets, especially the accuracy for the

PIPA-relation dataset. On the other hand, the SKG- underperformed in all scenarios,

particularly for the PISC dataset, showing precision values almost 3 percentage points

lower than the default version of the graph.

Table 6.7. The effects of different graph versions on the model’s performance, estimated by
accuracy and mean average precision (mAP) metrics on both datasets.

PISC

Graph
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

SKG- 74.70 66.78 83.74 72.81
SKG 76.02 66.32 85.56 75.21

SKG+ 76.81 67.91 85.78 75.23

PIPA-relation

Graph
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

SKG- 72.11 66.08 58.25 33.59
SKG 72.95 66.67 55.03 33.13

SKG+ 73.78 68.00 58.80 34.18

The beneőts of adding attribute information are probably connected with the

methodology applied in the construction of the dataset. For example, the PISC dataset

does not have labels directly related to attributes (e.g., friends, family, commercial),

and in this case, the model has to learn secondary dependencies between classes and

attributes. On the other hand, the PIPA-relation dataset has classes like father-child,

mother-child, grandfather-grandchild, and grandmother-grandchild, which can be directly

associated with age and gender attribute values. These factors may explain the reason

why the performance increase was higher for the PIPA-relation dataset.

Additionally, the results were probably also inŕuenced by the sources of the at-

tribute features, since some of them were obtained using the models provided by Sun

et al. [2017], which were trained with age and gender labels annotated on the PIPA

dataset by Oh et al. [2020]. Although these models may display satisfactory metrics

on the original dataset, their generalization capability is deőcient due to the restricted

number of labels provided. This explains the more signiőcant improvements and also the

reason why the SKG- had precision numbers even higher than the default version for the

PIPA-relation dataset while performing so poorly on PISC.

Either way, this experiment indicates that adequate attribute features can help to

improve the performance, suggesting that they support the model into learning associa-

tions between speciőc aspects and relationships classes, or even acting as constraints in
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particular situations, as mentioned in Section 2.3. However, inadequate features can de-

crease the performance, adding noise to the model and hindering the learning process. The

best option would be employing attribute extraction models trained in the same data as

the social-scale feature models, but this is not possible since there are no such annotations

for PISC, and the small set of attribute labels for the PIPA dataset is insufficient.

6.4.2.3 Relationships Connections

This őnal ablative experiment evaluates the mechanism proposed to capture in-

terdependencies between relationships in the same image, the social neighbor edges. The

test is conducted by applying minor modiőcations to the default SKG, while observing

their effects on the model’s performance.

Some social relationships can be directly correlated, and this information is ex-

ploited in the SKG by inserting edges between relation nodes. The signiőcance of this

approach is evaluated by modifying these edges in the following ways:

Social neighbors This is the default version of the graph implementing social neighbors

connections, as described in Section 5.3. The results provided by this version are

used as baselines for the other edge variations in this experiment.

Full neighbors In this version, relation edges are added between all the relationship

nodes within the same image. As explained in Section 5.3, some pictures do not

have labels for all possible relationships, and this variation will show the effects of

considering all the available unlabeled information.

No neighbors All relation edges are removed from the default graph for this modiő-

cation, isolating relationship nodes from each other, since this is the only path of

communication between them. This experiment allows the determination of how

signiőcant are the interdependencies between social relations.

The results in Table 6.8 indicate that social neighbors connections worked as in-

tended, providing the best outcomes from all other options. In a close second place, the

full neighbors variation suggests that the number of missing annotations in the PISC

dataset is not detrimental to the performance, even adding some accuracy. However, the

performance increments were signiőcant for the PIPA-relation dataset, which contains

most of the unlabeled samples.

In general, the experiment demonstrates that relationship interdependencies can be

exploited to improve relation recognition models, as mentioned in Section 2.2. However,
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Table 6.8. The effects of different relationship connections on the model’s performance, esti-
mated by accuracy and mean average precision (mAP) metrics on both datasets.

PISC

Edges
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

No neighbors 74.11 65.34 82.79 71.88
Full neighbors 76.89 66.78 85.45 74.89

Social neighbors 76.02 66.32 85.56 75.21

PIPA-relation

Edges
Accuracy (%) mAP (%)

Domain Relationship Domain Relationship

No neighbors 71.52 61.99 52.95 31.70
Full neighbors 72.64 64.92 54.22 33.19

Social neighbors 72.95 66.67 55.03 33.13

the information has to be directed to the correct relation nodes; otherwise, it can add

noise to the classiőcation, as explained in Section 5.3.

The no neighbors version is equivalent to previous methods [Sun et al., 2017; Li

et al., 2017; Wang et al., 2018b; Zhang et al., 2019; Goel et al., 2019; Wang et al., 2020],

which employed pair-based approaches, completely isolating relationships from each other.

The results obtained by this variation are close to the numbers presented by those works,

indicating the consistency of the proposed framework. Since all of these methods use only

information from two social scales, the percentage gains over them can be explained by

the addition of the third scale, also highlighting the efficiency of the methodology even

for a pair-based paradigm.

6.5 Qualitative Results

In this őnal section, fundamental concepts behind the proposed model are inves-

tigated using classiőcation samples from the PISC and PIPA-relation test sets. These

examples are produced by some of the models generated for the experiments from the

previous section. The purpose of the conducted analysis is to associate design choices

with the achieved results, providing insight into the model’s decision-making process.

For comparison, pairs of correct and incorrect classiőcations are presented, along

with discussions about the mechanisms behind these outcomes. Initially, images generated
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with model interpretability techniques are shown, offering visualizations of the information

extracted by each social-scale backbone model. Finally, samples of the inŕuence caused

by relationship interdependencies and attribute features are examined by confronting the

outputs generated with different modules and graph versions.

6.5.1 Social Scale Features

In this section, the social-scale backbones are investigated in an attempt to under-

stand the features they learn. This is done by employing the Gradient-weighted Class Ac-

tivation Mapping (GradCAM) [Selvaraju et al., 2017], a well-known model interpretability

technique that can help to decide if these networks behave as intended, selecting infor-

mation from image regions that are associated with their respective social scales.

The GradCAM method consists of tracing gradient values back to the őnal activa-

tion maps generated by convolutional models and using them to weigh these activations,

which generates a heatmap that can be projected into the input image. The resulting

visualization highlights the regions that produced the strongest activations, providing in-

sight into the features learned by the model and allowing the identiőcation of particular

cues that may be relevant to the model’s decision-making process.

For the correctly classiőed samples, the model worked precisely as described in

Section 2.1, extracting individual traits from personal-scale patches, relative pairwise

features from local-scale regions, and general features from the global-scale image. The

őrst example contains three relationships between three persons, the input image with the

given bounding boxes, and the GradCAM images extracted from each social-scale model,

which are shown in Figure 6.5.

Starting with the global scale, it is noticeable that the strongest activations come

from the table, suggesting that the model associated with this scale focuses on general

context features, such as objects and background, while the regions containing persons

were ignored in this sample. For local-scale patches, the corresponding model covered

image regions connecting the bodies of the involved persons, which is especially clear in

Figure 6.5d, where the activations reached the individuals on both ends of the table. Fi-

nally, as seen from the last three images, the personal-scale backbone extracted individual

features from face and torso regions.

All relationships from this sample were correctly classiőed by the őnal model as

friends. The fact that each social-scale backbone focuses on distinct regions and learns

different features suggests that they work as expected, with each one offering complemen-

tary information. For this sample, the global and local-scale features seemed to be the
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For the őrst example (Figure 6.9a), only the relationships between the woman and

the other two individuals are considered. In this case, the auxiliary classiőer outputs

the same lovers/spouses class for both, which is a reasonable classiőcation considering

age, gender, proximity, emotion, and other traits taken into account pairwise. However,

after considering the information from both relations together, the őnal classiőer changed

the output for one of them, suggesting the model was capable of learning that the same

person can be involved in only one lovers/spouses relationship. Additionally, it selected

the correct pair for each class, probably because of their relative distance.

The second sample depicted in Figure 6.9b shows another scenario where the őnal

classiőer corrects a previously miss-identiőed relation. In this case, a family class was

appropriately assigned to the relationships between the young girl and the other two

persons, but the őnal relation was mistaken by a commercial interaction. This probably

happened due to the combination of clothing and activity traits from the father, which

is a setup similar to the ones seen in commercial relations between client and waiter in a

restaurant. However, this error was corrected with the addition of information from the

sister, allowing the inference of the appropriated classiőcation, as mentioned in Section 2.2.

Finally, Figure 6.10 presents a sample where two relations between separated pairs

of persons are considered in the same image. In this situation, the correct father-child

output is obtained by the auxiliary classiőer for both relationships. However, after the

addition of interdependencies information by applying the full neighbors method, the

classiőcation for one of the relations is incorrectly changed to mother-child. Similar to the

example from Figure 6.9a, this suggests that the model was capable of learning family

structures, inferring that if one of the adults is the father, the other must be the mother,

which is also a typical setup in various images from both datasets.

This sample is from the PIPA-relation dataset, which does not have a no relation

label. Additionally, the image is not fully annotated, only providing the ground-truths

for two relationships, like many other images from both datasets. In this situation, in-

serting connections between these pairs has only introduced noise to the decision-making

process, as described in Section 5.3. However, the proposed method implementing social

neighbor connections was able to prevent this issue, producing the correct output for both

relationships.

Finally, for some other samples investigated during this experiment, the addition

of interdependencies information tended to modify correct outputs for underrepresented

classes when they appear simultaneously with multiple other relations sharing a label. For

example, if a lovers/spouses relationship appears with many other friends relations in the

same image, the classiőcation can sometimes be changed to friends after the addition of

interdependencies information. However, this problem is also mitigated by social neighbor

connections.
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Chapter 7

Conclusion

Current social relation recognition methods are focused on speciőc aspects of the prob-

lem, which are treated separately. However, the dependencies between information from

multiple sources and different scales form an structure, which is fundamental to classify

social relationships adequately. These approaches are based on inaccurate interpretations

of relationships, resulting in models that are unable to capture the full context necessary

to identify social relations.

In this context, a new approach to interpreting image-based social relation recog-

nition methods was introduced in this work, examining three central aspects: the scope

of the employed information, the capacity to apply prior knowledge on each of these

sources, and the consideration of their interdependencies within an image. These criteria

were used to evaluate previous works, identifying their strengths and shortcomings, and

this knowledge was applied to develop a new methodology.

The proposed approach introduced the Social Knowledge Graph (SKG), a represen-

tation for social relationships capable of achieving information completeness by preserving

the structure of the relationships from the input image. This means that it can represent

learned features, pre-trained attributes, along with other types of prior knowledge and

constraints associated with three distinct information scopes, which are denominated in

this work as social scales. More precisely, the graph carries individual traits from the

personal scale, pairwise relative information from the local scale, and general context fea-

tures from the global scale. Each of these scopes offers a unique point of view over social

interactions, contributing with meaningful complementary data.

All this information is gathered through the proposed Social Scales Network (SSN),

which assigns a convolutional backbone to learn features from individual scales separately.

This approach allows each model to specialize in aspects that are relevant to their speciőc

scopes, capturing data with different granularities. No previous work was capable of

extracting information from all these sources simultaneously, producing incomplete social

relationship models. Another major beneőt of this approach is retaining the relationship

structure within an image, which allows the consideration of multi-scale dependencies

between learned features, pre-trained attributes, and different types of prior knowledge

from other relationships within an image.
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A deep graph model was proposed to exploit the rich and intuitive SKG represen-

tation, employing a message passing mechanism explicitly designed to take advantage of

the intuitive structure. The Social Graph Network (SGN) is composed of three layers,

where each one is responsible for leveraging information embedded in speciőc regions of

the graph. The őrst layer aggregates multi-attribute information for all scales, which are

combined with features learned directly from the input image using their respective scopes.

The second one generates multi-scale representations for the relationships in the image

by combing the features from all social scopes, and the last layer is in charge of capturing

the interdependencies between all the information extracted by other relationships. A

speciőc spatial convolution operation was proposed for each of these layers, based on the

region of the graph they are applied, optimizing the feature aggregation process according

to the information type. Finally, the noise carried by all this information is reduced with

the help of graph-level structures and a reasoning-level attention mechanism.

Multiple experiments were conducted to evaluate the proposed framework, gen-

erating results that surpassed all previous methods, achieving a new state-of-the-art. A

rigorous quantitative analysis was conducted by evaluating the effects of model variations

and estimating the signiőcance of individual modules through an ablation study, high-

lighting the signiőcance of each part. The results indicate the validity of the proposed

interpretation of social relationships, especially when considering the role of multi-scale

features, prior knowledge, and relationships interdependencies to the őnal model perfor-

mance.

Lastly, a qualitative analysis was presented and discussed, showing examples of the

interactions between information from different scales, the role of pre-deőned attributes,

and the effects of relationship interdependencies on the model’s decision-making process.

The experiments indicated that the proposed concepts worked as intended, providing

reasonable outcomes and generating predictions in line with social theories, bringing au-

tomated relation recognition closer to human perception of social relationships.
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Chapter 8

Future Work

Future work can investigate the effects of adding new information to the SKG, such as

different attributes and additional prior knowledge to each scale. Another possibility is

learning these features jointly with the social relation recognition task, which can help with

the generalization capabilities of the model. The main challenge of this approach would

be the lack of databases that simultaneously offer these types of information. However,

this problem could be circumvented with the use of oracle networks, or maybe with the

construction of such a dataset, which would be a signiőcant contribution.

The proposed Social Knowledge Graph does not carry any information in its edges,

which serves only as a differentiation between data types. In this sense, extra features

could be added to the edges, representing relative information regarding the nodes they

connect. For example, relation edges could carry the distance between their correspond-

ing pairs, also establishing relative information between relationships, and not only in-

dividuals, as is currently done. These adaptations have to be reŕected in the proposed

aggregation methods since they also do not consider edge features.

New convolution operations, message passing mechanisms, and other technical im-

provements to the SGN are also relevant research directions. These kinds of contributions

have the advantage of being extensible to multiple other tasks. However, they require a

more profound knowledge of graph neural networks, which can be highly time-consuming

and can also be considered as out of the scope of the social relation recognition problem.

A őnal potential research direction would be to extend the SKG and the SGN to the

temporal domain, allowing the method to be employed in social relation recognition from

video. This could be done by generating graph representations for a sequence of frames

connected with temporal edges. The convolution operations also have to be adapted to

consider this new structure.
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