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Resumo

As representações aprendidas por redes profundas são os descritores estado-da-arte para
métodos de reconhecimento facial. Essas representações codificam características latentes
que são difíceis de serem explicadas, o que compromete a confiança e interpretabilidade
de suas predições. A maior parte das tentativas de se explicar essas características são
técnicas de visualização, cuja principal limitação é relativa à sua subjetividade. Ao invés
das visualizações, este trabalho propõe a utilização de camadas intermediárias da rede
para classificar atributos faciais. A performance obtida por esses classificadores é utilizada
como um indicador do quão bem aquele atributo é aprendido implicitamente naquela
camada. Essa análise pode ainda ser combinada com uma técnica de seleção de variáveis
para estabelecer precisamente a localização dos neurônios relevantes para cada atributo.
De acordo com os experimentos, atributos que codificam gênero, utilização de óculos
e chapéu podem ser preditos com uma acurácia superior a 96% através da saída de um
único neurônio. Essa performance é apenas 3 pontos percentuais inferior a métodos estado
da arte que foram supervisionados para predizer esses atributos, o que indica que estes
atributos são muito bem definidos dentro da rede de reconhecimento facial.

Palavras-chave: atributos faciais, reconhecimento de faces, aprendizado profundo,
entedimento de redes neurais

Palavras-chave: Atributos faciais, Reconhecimento facial, Aprendizado profundo, Ente-
dimento de redes neurais



Abstract

Deeply learned representations are the state-of-the-art descriptors for face recognition
methods. These representations encode latent features that are difficult to explain, com-
promising the confidence and interpretability of their predictions. Most attempts to ex-
plain deep features are visualization techniques that are often open to interpretation.
Instead of relying only on visualizations, we use the outputs of hidden layers to predict
face attributes. The obtained performance is an indicator of how well the attribute is
implicitly learned in that layer of the network. Using a variable selection technique, we
also analyze how these semantic concepts are distributed inside each layer, establishing
the precise location of relevant neurons for each attribute. According to our experiments,
gender, eyeglasses and hat usage can be predicted with over 96% accuracy even when only
a single neural output is used to predict each attribute. This performance is less than 3

percentage points lower than the one achieved by deep supervised face attribute networks,
which indicates that there exists neurons inside face recognition DCNNs encoding face
attributes almost as accurately as DCNNs optimized specifically for these attributes.

Keywords: face attributes, face recognition, deep learning, neural networks under-
standing

Keywords: Face Recognition, Deep-Learning, Explainability
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Chapter 1

Introduction

Recent advances in deep learning provided more powerful and discriminative represen-
tations for modern face recognition systems [58; 5]. These representations, also known
as deeply-learned features, are extracted from the hidden layers of Convolutional Neu-
ral Networks (CNNs), which are optimized to recognize thousands of individuals. Some
training objective functions [41; 5; 6] can be used to precisely define what each neuron in
the final layer of the network encodes. Due to the complexity of this objective function,
intermediate layers are necessary to distill useful latent representations from the input [1].
Neurons from these layers, however, are not directly supervised, and consequently, these
intermediate representations cannot be easily defined [56]. Thus, the usage of deeply-
learned features in face recognition systems presents one important drawback: users have
an insufficient understanding of the reasoning behind the decisions made by these systems,
limiting both their acceptance [4] and improvement [20].

This thesis investigates the representation of several face attributes across the layers
of deep face recognition networks. This investigation helps understanding what type of
information is employed during recognition and how it impacts the deployment of these
systems in scenarios with stricter restrisction such as in surveillance, where there is no
guarantee of user cooperation.

1.1 Motivation and Scope

Most recent attempts to understand CNNs have focused on visualization tech-
niques [44; 24; 25; 59]. The popularity of these techniques might be attributed to their
flexibility, which allows the generation of an image for any neural pattern of the network
such as the outputs of neurons, filters and layers. Each such generated image requires the
interpretation of a trained user to extract useful insights from the synthetic visualizations.
Consequently, these approaches are usually limited to a few qualitative examples, since
interpretation of each individual image cannot scale to the overwhelming number of rep-
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Figure 1.1: Set of synthetic images generated through input optimization. These gen-
erated images start as random noise and are optimized to maximize some specific neural
pattern in the CNN. Though some of them appear to be wildly different, all samples in
this set maximize the same pattern: an isolated channel of an intermediate layer of a face
recognition network.

resentational units in modern deep architectures. Some concepts might also be encoded
in the network as non-trivial combinations of many filters and neurons, which are unlikely
to be perceived when they are visualized individually. Furthermore, such a substantial
reliance on human interpretation could hinder the acceptance of any conclusion derived
from these methods since it is difficult to precisely estimate the impact of a biased human
operator. This is specially concerning because the obtained images are often influenced
by strong priors [54; 30] which are usually tuned according to the subjective preferences
of the operator.

Figure 1.1 shows a set of synthesized images containing repeated structures resem-
bling nostrils and noses. All images in the figure were obtained through optimization of
the same neural pattern in the network but they are undeniably visually distinct from
each other. Such a large variance prevents fair comparisons between visualizations of
different patterns since it is hard to identify whether some subtle difference between the
generated images is caused by an actual distinction in the network representation or just
some fluctuation in the generative method. Thus, exclusive reliance on interpretation of
visualization methods may also produce misleading conclusions.

The aforementioned limitations illustrate the relevance of a more rigorous and
objective method for understanding CNNs. This thesis investigates the extraction of
quantitative measurements, instead of images, as a suitable candidate to overcome the
subjectivity and comparability issues of visualization techniques. The proposed methodol-
ogy still does not scale to all possible combinations of neurons and filters, but an objective
and replicable procedure is proposed to identify small subsets of these representational
units that require further investigation. In a broader context, the relevance of under-
standing deep neural networks is also reflected in concerns regarding bias and fairness
of the optimized models, specially in real-world applications. Face recognition networks
are particularly deserving of attention, as they directly affect the life of individuals, with
potential to cause disproportionate embarrassment or harm, even if unintentionally, to
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particular groups of people [4] if not properly comprehended and regulated.
The face recognition domain also exhibits an important advantage that simplifies

quantitative analysis of network features, specially in the more fine-grained examination
of individual neurons. In a generic domain, associating semantic meaning to neurons is
an arduous task due to their sensitivity to geometric transformations of the input image,
specially in the shallower layers of the network. For instance, a simple translation or
rotation of the input can dictate whether or not the receptive field of a neuron is able to
capture some semantic structure in the image. In this scenario, a neuron may not reliably
respond to a stimulus in the image even if it is discriminative of that characteristic, simply
because the input is not properly aligned. However, this problem can be mitigated in facial
images by lining up keypoints corresponding to the eyes, nose and mouth. Since the facial
structure, i.e., relative location of facial parts, is also maintained across most samples in
the dataset, we can expect that each neuron will typically observe the same facial region
for all aligned input images. This setup cannot be replicated in multi-class datasets due
to the absence of a common keypoint to align samples from all different classes. Thus,
the scope of this thesis is limited to CNNs optimized under a facial recognition task.

1.2 Objectives

This work addresses the problem of understanding what is encoded across the
layers of a face recognition CNN through a quantitative analysis of how several attributes
are represented across the network. Specifically, classifiers are trained and evaluated
to predict 40 facial attributes while using intermediate representations of three different
CNN architectures optimized for face recognition. The extracted representations spam the
entire depth of the evaluated networks as well as the granularity levels of neural, channel
and entire layer outputs. The achieved accuracies are analysed to reveal the importance
of each attribute in the face recognition model and also how the attribute information is
distributed among the layers, channels and neurons of the network.

1.3 Contributions

The main contribution of this thesis comes from a thorough analysis of how and
which face attributes are encoded in face recognition networks. Our analysis revealed, for
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instance, that soft-biometric attributes are better encoded than facial geometry attributes,
which may impact the performance of face recognition systems in scenarios where the user
may try to conceal his/her identity with apparels such as hats and eyeglasses. We also
observed some potential biased representations in the network, which where evidenced by
the fact that classifiers for one specific hair color demonstrated far inferior performance
than other hair colors. The proposed approach is also able to identify the most relevant
neurons and channels in the network for the evaluated attributes. For some attributes,
a single neural output from one of the intermediate layers is able to produce a classifier
with an accuracy gap bellow 3 percentage points in comparison to a fully supervised ap-
proach. While these results suggest that the attribute information is highly concentrated
in the network, we also demonstrate that the attribute representation in one layer is more
dependant on a large set of neurons of the previous layer rather than a few highly-relevant
neurons of the previous layer.

Some of the results obtained in this thesis were published on the proceedings of the
15th IEEE International Conference on Automatic Face and Gesture Recognition under
the title Face Attributes as Cues for Deep Face Recognition Understanding [8].

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the most
important concepts underlying the proposed analysis. Chapter 3 briefly reviews some of
the most relevant and recent works in face recognition and neural network understanding.
Chapter 4 describes the proposed approach in detail. Chapter 5 presents and discusses
the obtained results. Finally, chapter 6 synthesizes the main contributions and future
directions.
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Chapter 2

Background Concepts

This chapter briefly reviews the most important concepts underlying the proposed anal-
ysis. Section 2.1 summarizes the structure of neural networks, introducing the nomen-
clature that is utilized to describe different components and representations inside these
models. Section 2.2 reviews Partial Least Squares, a discriminative dimensionality reduc-
tion technique that simplifies the analysis of the high-dimensional outputs of intermediate
layers.

2.1 Neural Networks

Neural networks were initially proposed as a biologically inspired model for un-
derstanding information handling systems [35]. The novelty of this approach stemmed
from a design in which the information perceived by the brain is never actually compared
against any patterns retained in memory. Instead, this model proposes that the responses
for the stimuli are automatically generated by the path of existing connections between
the neurons in the network. In this scenario, information retention takes place in the form
of new or stronger connections inside the network and learning is said to occur when the
connections are modified to generate the appropriate response to the stimuli. In the neu-
ral network model, this learning process is composed of presenting multiple pairs of input
and output patterns to the network, representing the stimuli and the desired responses,
respectively. The model will then approximate the desired responses as the connections
are updated in the direction that minimizes the error of the output of the network.
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Figure 2.1: Structure of a neuron. The neural output is obtained through the weighted
sum of its inputs, xi, and a bias term, followed by some differentiable activation function.
Algebraically, the neural output can be computed by σ(wTx + b), where w and x are
column vectors and b is a scalar.

The output of a single neuron in the network is mathematically defined by a sim-
ple algebraic sum of its weighted inputs followed by some activation function. The first
design of such a neuron, called the perceptron [35], was influenced by the behaviour of the
brain, and thus, it was initially restricted to random connections and a threshold activa-
tion function to mimic the all-or-nothing response of biological neurons. However, these
constraints introduce some important limitations on the model [27], and consequently,
they have been adapted in modern implementations. Figure 2.1 shows an up-to-date
representation of a neuron. The network was adapted to fully-connect the neuron to all
available inputs, including a new parameter called bias, allowing practical computation
of the response of multiple neurons through simple algebraic operations. The activation
function was also replaced from the threshold function to any differentiable non-linear
function, represented by σ. This modification was a crucial step to overcome one of the
major limitations of the perceptron: its restriction to linear classification problems.

Theoretically, non-linear problems could be solved with neural networks contain-
ing internal representations, i.e., an intermediate set of neurons that provide additional
features to the output neurons. The issue was that the perceptron convergence procedure
was not powerful enough to update the weights of these more sophisticated networks.
A general rule for optimizing networks with internal representations was only proposed
decades later [38], relying on the gradient of the an error function with respect to the
network parameters. The computation of this gradient is the reason why the activation in
modern neural networks moved from the threshold function to any differentiable function.

The gradient rule consolidated the presence of feed-forward layered neural networks
in machine learning and pattern recognition research. Figure 2.2 shows a representation
of this network, with each neuron being solely represented by its output, omitting both
connections and computational logic for improved readability. In this model, the neurons
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Figure 2.2: Structure of a multilayered neural network. Each neural output is represented
by a box, but the neural connections and computational logic are omitted for improved
readability. The neural outputs are organized in feature vectors that represent the output
of all neurons in the same layer. The arrows indicates that the responses of one layer are
used as input in the other layer. The dashed arrow indicates that a sequence with an
arbitrary number of layers is omitted.

are organized into a sequence of layers, such that all neurons from the same layer are
fully-connected to the responses obtained by the previous layer. Each layer can have
any arbitrary number of neurons, which will determine the layer width, or the size of its
output vector. The number of layers in the sequence is called the depth of the network,
and is usually associated with the network capacity to learn complex representations.
Each layer can be categorized as either an output or hidden layer, with the former having
direct supervision of an error function, while the latter is only indirectly supervised. The
purpose of hidden layers is to uncover discriminative representations of the network input
so that the supervised layer can perform complex tasks. The non-linearity property of
the activation functions also plays an important role in finding these discriminative repre-
sentations. This role can be evidenced through a contrast to an alternative network that
uses linear activation functions. In such a network, it can be shown that any arbitrarily
high number of layers would still provide the same representational power as a single
rotation and translation of the input, i.e., subsequent layers would not be able to further
distill relevant information from the input. Thus, the effectiveness of neural networks
is closely related to their ability to produce complex non-linear representations in their
hidden layers.
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Figure 2.3: Structure of a convolutional layer. The neuron is locally connected to a
small region of the input. Both the neural input and output are illustrated by the shaded
area. Algebraically, the neural output can be computed by σ(Xi ∗W + b), denoting the
convolution between the local region and the kernel matrix plus a bias term.

Even with the discriminative power of hidden layers, the feed-forward layered net-
work design still struggles with high-dimensional inputs such as images, videos and other
multimedia data. The fully-connected nature of these networks causes the number of
parameters to grow very quickly in respect to the input size. Consequently, when han-
dling high-dimensional data, neural networks were usually employed in combination with
handcrafted feature extraction, to first obtain lower-dimensional representations from the
original data. However, this strategy is flawed since the extracted features are not pre-
cisely optimized to contain all of the relevant information for the target task.

Convolutional neural networks are able to overcome these limitations by exploiting
the locality of information in image and video data. Figure 2.3 shows the basic structure
of a 2-dimensional convolutional layer. Each neural output is locally connected to a small
region of the input, greatly reducing the number of parameters. The convolutional kernel
is still able to extract relevant information from the data because most of the correlation
between the features occurs between spatially adjacent points. This layer design also
exploits the reuse of a single weight matrix in a sliding-window fashion to obtain multiple
neural responses over different regions of the input. The neural responses obtained from
the same kernel are grouped into a structure called a feature-map. Each convolutional
layer may contain multiple kernels, and thus, the entire layer output will be composed
over many feature-maps organized across multiple channels.
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Figure 2.4: Representational units of a neural network. Each representational unit
is associated to the correspondent shaded area of the same row. Each row contains two
different representations, corresponding to the outputs of 2-dimensional and 1-dimensional
layers, on the left and right, respectively.

Generally, neural networks may also contain different types of layers with other
operators such as pooling and flattening. However, the output of most of these differ-
ent layers would still follow the structure described for either the fully-connected or the
convolutional layer, depending on whether it outputs a feature-vector or a feature-map.
Figure 2.4 shows a summary of the representational units that will be further explored
in this work. The neural output corresponds to a single response, i.e., a single floating-
point number, in the layer output. The channel output correspond to the response of all
neurons that share the same kernel, though this structure does not exist in layers that
produce feature-vectors. Finally, the union of all neural responses from the same layer
corresponds to the entire layer output.

Modern neural networks may also employ more sophisticated arrangements in their
layers rather than the traditional sequential structure. These arrangements can have sub-
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Figure 2.5: Structure of a residual block. The dashed line indicates a shortcut connection.

stantial impact on the network performance, but in essence, they are simply a combination
of features from multiple depths and branches in the network. Thus, even the complex
modern networks still produce the same feature-maps and feature-vectors that are shown
in Figure 2.4. The combination mechanism of these representations may be performed
through several operations such as addition, concatenation or multiplication, each with a
distinct semantic interpretation.

The residual framework reformulates the network structure such that each layer
learns a residual representation as a function of the output of a previous layer. Figure 2.5
illustrates an instance of this formulation which is realized by a shortcut connection,
represented by the dashed line, that adds two feature maps of the same dimensionality,
The main benefit of this configuration is that it facilitates the training of very deep
networks, allowing optimization of networks with thousands of layers. In this work, the
shortcut connections will also be examined in detail when analysing the feature maps of
all layers.
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2.2 Partial Least Squares

The high-dimensionality nature of hidden layers is one of the most challenging
aspects of analysing intermediate representations of deep networks. Some layers can create
outputs with a dimensionality that exceed a million features. The issues related to these
high-dimensional spaces can be avoided with a dimensionality reduction pre-processing
step.

Partial Least Squares (PLS) [51; 36; 12] is a dimensionality reduction technique
that exhibits several desirable characteristics for the proposed face attribute analysis. The
most important of these characteristics is that PLS is able to preserve the discriminative
information between predictors and labels, i.e., the layer outputs and face attributes, by
maximizing the covariance between these two data blocks. Essentially, PLS decomposes
the independent and dependent variables, X and Y into

X = TP T + E, (2.1)

Y = UQT + F, (2.2)

where T and U are the scores, P and Q are the loadings, and E and F are the residuals
of each block. If optimized separately, these equations are equivalent to the principal
components analysis of X and Y . However, PLS is able to retain the discriminative
information in the projection through a joint optimization procedure, where a linear
relationship between the two blocks is modelled such that

U = BT, (2.3)

where B is a diagonal matrix of the regression coefficients between the two projection
scores.

Algorithm 1 shows the optimization process of PLS through the Non-Linear Iter-
ative Partial Least Squares (NIPALS) [51; 12] algorithm. For visual clarity, we also omit
normalization of the resulting vectors in the innermost loop, though it is a necessary step
for convergence and numerical stability.
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Algorithm 1 NIPALS
Input: X ∈ Rn×m, Y ∈ Rn×k, c ∈ Z
1: E,F ← X, Y
2: for i← 0 to c do
3: u = random initialization
4: repeat
5: w ← ETu
6: t← Ew
7: q ← F T t
8: u← Fq
9: until convergence of t

10: b← uT t
11: p← ET t
12: E ← E − tpT

13: F ← F − btqT

14: end for

The PLS projection provides several benefits in the context of the analysis the
representations of hidden layers. From a computational aspect, the usage of the NIPALS
algorithm allows for an efficient projection of the high-dimensional intermediate features
since it does not require the computation of the covariance matrix, which would be ex-
tremely expensive given the size of the intermediate features. Furthermore, the obtained
weights can also be used to determine the relevance of each individual feature Xj in the
projection, through the Variable Importance in Projection (VIP) technique [52; 10; 26],
which is described by the following equation

VIP(Xj) =

√√√√m
k∑

i=1

SSi
Wij

∥Wi∥2∑
SSi

, (2.4)

where SSi denotes the sum of squares explained by the i-th component, which can be
alternatively expressed as q2i tTi ti. In this work, each feature Xj represents the output of a
single neuron, with its VIP score determining its relevance to the label representation.

In summary, the high-dimensional layer outputs can be analysed in a more straight-
forward fashion by first projecting them into a lower-dimensional space with PLS. Then,
the analysis may also be extended to include the study of a few individual neurons and
channels of each layer, by first measuring which of these units are more relevant in the
PLS projected space.
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Chapter 3

Related work

This chapter presents some of the relevant works related to this thesis. Section 3.1 briefly
reviews the usage of CNNs for face recognition and attribute classification. Since this
work is only tangent to these tasks, the related methods are not profoundly detailed in
this section. Section 3.2 reviews the modern techniques for CNN understanding, including
both visualization and quantitative techniques.

3.1 Face Recognition and Attribute Classification

Deeply-learned face representations [46; 6; 5] coupled with large scale datasets [19;
3] significantly improved the performance of face recognition methods. These datasets
contain thousands of identities to fuel the optimization process of increasingly deeper [21;
14] convolutional neural networks. Intermediate layers of these networks are said to
contain deeply-learned representations, which are robust and discriminative descriptors,
especially at deeper layers. Most of the recent effort on face recognition research has been
dedicated to improving these descriptors, mainly by adjusting several loss functions [41;
50; 22; 57; 6; 49; 5; 53; 16] to increase inter-class and reduce intra-class distance in the
final embeddings of the network.

Interestingly, the discriminative power of face recognition descriptors can also be
improved through joint optimization of identities and facial attributes [34], suggesting that
the encoding of these attributes are relevant for the face recognition task. Thus, a rea-
sonable hypothesis is that, even with no explicit joint supervision, face recognition CNNs
may learn to represent these attributes implicitly since they encode relevant information
for the recognition objective. Our approach uses this hypothesis to probe face recognition
networks and reveal how several face attributes are encoded throughout their layers to
improve our current understanding of the recognition models. Generally, the techniques
applied to attribute recognition are mostly concerned with the interactions between the
attributes and how to properly sample under-represented attributes [23; 37; 13].
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While our proposed approach is closely related to both face recognition and at-
tribute classification, it is not concerned with improving the state of the art on these
tasks. Instead, the main goal is to understand how the face attributes are encoded in the
face recognition network.

3.2 Understanding Convolutional Neural Networks

Drawing inspiration from neuroscience, several methods have been proposed to
understand CNNS by visualizing the preferred stimuli for specific sets of neural acti-
vation [31]. These stimuli are represented by synthesized images obtained from either
inversion or maximization of some particular pattern in the network through a variety
of techniques such as gradient optimization, deconvolutional [55; 59], up-convolutional [9]
and generator networks [29; 28]. Naive generation of these images leads to unintelligible
results due to excessive high-frequency patterns and unnatural colors [31; 32]. These is-
sues are usually diminished by modifying this process to include priors for local [54; 25]
and global structures [30], resulting in the generation of more interpretable images.

Several limitations of these techniques can be traced back to this objective of gen-
erating interpretable visualizations. For instance, the established priors are hand-designed
functions whose hyper-parameters are tuned according to the subjective notion of what
the user considers to be the most interpretable. The ideal hyper-parameters may also
change for different layers, architectures or datasets [31], preventing fair comparisons of
different results. These comparisons are also hard to scale, since they require human in-
terpretation of each generated image, which is not viable if an image is to be synthesized
for each neuron, filter and layer in the network. Requirement for human interpretation
also poses another disadvantage for these methods, as users are able to find meaning in
visualizations even when they are generated by random directions of the original neural
patterns [48]. In summary, there is a high degree of uncertainty in the results of visual-
ization methods, mainly due to the large influence of the biased interpretation of human
operators, and strong regularization priors, that may produce a misleading, but visually
pleasing, representation of the network stimuli.

Some of these limitations can be addressed through the extraction of quantitative
measurements from the generated images. For instance, reconstruction error and classi-
fication consistency can be extracted from images generated by the inversion of a neural
pattern [25], quantitatively assessing the robustness of different techniques and regular-
ization priors. Another example can be seen in attribution heatmap techniques, a class of
methods that are able to identify the salient region in a real world image with respect to
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some neural output [60; 61; 43]. Qualitatively, the visualizations of the salient regions can
be inspected by users to determine whether the network is employing the correct semantic
structure in the input image to make its predictions. However, these regions can also be
systematically evaluated in localization, detection or segmentation protocols, providing a
rigorous but straightforward framework to understand different network representations.
These quantitative experiments revealed, for instance, that more object detectors emerge
in the original representations of the network than in their random directions [2], which
emphasizes the importance of the quantitative analysis, since, if not for the quantitative
aspect, one could potentially mistakenly conclude that these representations are equiva-
lent once object detectors emerge from both of them.

Extracting quantitative information from the visualizations is an important step
towards a more systematic understanding of deep CNNs. However, the quantitative ap-
proaches do not necessarily need to be performed on the visualizations, and can, instead,
be applied directly on the intermediary representations of the network. Some basic ap-
proaches are able to reveal important properties of the network through the extraction
of simple statistics from the neural activation patterns. For instance, examination of
the last layer of a face recognition CNN revealed that its L2-norm encodes how hard it
is to recognize the input image [33]. Furthermore, it has been demonstrated that some
neurons of the last layer are highly discriminative of some face attributes or even spe-
cific identities [47; 11; 23]. However, the simplistic nature of these experiments limits
their applicability to low-dimensional layers, which is usually only represented by the last
few layers of the architecture. Analysis of the intermediary layers, however, are usually
associated with more sophisticated approaches, frequently focused on understanding the
representation of a pre-defined set of attributes across these layers. One such approach is
to measure the mutual information between a set of attributes and different hidden layers
of the network [7]. Similarly, a set classifiers can be trained to predict these attributes
so that their performance or weights [1; 20] can be used to determine how the concept
is encoded in different parts of the deep model. While our approach also relies on the
performance of classifiers to understand deep networks, it does so with a more extensive
set of attributes, in the less explored domain of face recognition, and across different units
of representation such as neurons and filters.
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Chapter 4

Proposed Approach

This chapter presents the proposed technique to analyse the representation of several
face attributes across the layers of a deep face recognition network. Section 4.1 describes
a method to probe intermediate layers of the network. Section 4.2 describes how an
extension to this method to also analyse fine-grained representations of the layer, such
as individual neurons and channels. Figure 4.1 shows a brief summary of the proposed
method.

h
ig

h
-d

im
fe

a
tu

re
s

PLS
projection

relevant
neurons

accuracyattribute
classifier

VIP
selection

in
p
u
t

o
u
tp

u
t 

la
y
e
r

h
id

d
e
n
 l
a
y
e
r

h
id

d
e
n
 l
a
y
e
r

h
id

d
e
n
 l
a
y
e
r

h
id

d
e
n
 l
a
y
e
r

h
id

d
e
n
 l
a
y
e
r

layer
analysis

layer
analysis

layer
analysis

layer
analysis

fa
ce

id
e
n
ti
fi
ca

ti
o
n

Figure 4.1: For each attribute, we learn a discriminative low-dimensional projection of
the output of the hidden layers of a deep network. This low-dimensional projection is
used to train a classifier whose accuracy indicates the discriminability of the layer with
respect to the evaluated attribute. The optimized weights of the PLS projection is also
employed to analyse how the attribute information is spread inside the layer through the
scores of a variable selection technique.
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4.1 Layerwise Attribute Analysis

The proposed approach examines how each face attribute is encoded across the
layers of a face recognition CNN. To this end, an attribute classification pipeline is at-
tached to the output of each layer in the network. This pipeline is trained with a set of
labelled images in a supervised setup to predict the occurrence of several facial attributes
using the output features of the analysed layer. The accuracy achieved with each classifier
indicates to what extent each attribute is represented at different depths of the model,
characterizing the layers of a face recognition CNN in a quantitative manner according
to its predictive power of the facial attributes, reducing the need for subjective interpre-
tation of the results. Thus, distinctions between layers, architectures or attributes can be
measured in a precise, replicable and comparable procedure.

The main assumption of the proposed approach is that the layers containing suit-
able representations for an attribute will produce a more accurate classifier for that at-
tribute. However, robust classification models and pipelines, such as deep networks, are
able to distill richer representations that were not directly encoded in the examined layer
output, obtaining a potentially misleading accuracy. Thus, it can be argued that the
performance of classical learning methods provide a more faithful portrayal of each layer,
since they operate more directly on the analysed features. Attachment of these classifiers
is straight-forward for one-dimensional outputs, such as fully-connected and global pool-
ing layers, but convolutional layers require a pre-processing stage to obtain a flattened
vector of size h×w×c, denoting the product of the height, width and number of channels
of the convolutional layer.

These flattened convolutional layers can generate extremely high-dimensional out-
puts. For instance, the convolutional first layer of the VGG16 [45] architecture, generates
a 224× 224× 64 feature map, which exceeds three million features. Some learning meth-
ods are not even applicable in this scenario as the number of features greatly exceeds the
number of samples available for training the classifier. While it is theoretically possible
to train some other classical methods, they would still be constrained by the curse of di-
mensionality [18], a phenomenon that causes deterioration of the classification model due
to over-fitting on noisy features. Besides the poor performance, there are also practical
issues associated with high-dimensional spaces, such as unreasonable computational cost
and excessive memory consumption.
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Dimensionality reduction techniques are suitable candidates to overcome these is-
sues. The low-dimensional output of these techniques enables the usage of essentially any
simple classifier with a much smaller set of labelled samples for each attribute. Since
the goal of the analysis is to understand the representation of the facial attribute, the
obtained low-dimensional transformation must be able to retain the information about
the evaluated attribute. This can be achieved with Partial Least Squares, a technique
that is able to maximize the covariance between the network features and attribute labels
in the projected space [51]. Furthermore, since the projection obtained with PLS is essen-
tially a subspace from a rotation of the original features, and thus, it can be argued that
the levels of semantic information is maintained across this transformation and that the
classifier performance would still be a realistic indicator of the attribute representation in
the original feature.

In its essence, the proposed approach projects, into the low-dimensional space,
the layer output X ∈ Rn×m and the labels for one facial attribute Yi ∈ Rn×1, where n

denotes the number of samples, and m, the number of features in the original space. Each
layer output is projected onto multiple spaces such that each facial attribute is associated
with one low dimensional projection, Ti, refraining from projecting all attributes into a
single subspace. From a theoretical perspective, this decision avoids interference between
the attributes in the projected space, and also allows a fine-grained analysis for each
individual attribute, which will be described in detail in Section 4.2. From a practical
perspective, mutual projection of all attributes would also be prohibitively expensive,
since it would require a larger number of samples n to obtain enough variance to describe
all attributes. For instance, a good selection of samples for the Bald attribute is not
likely be have enough variance to describe the Gray Hair attribute. Selecting a large and
diverse enough set of samples for all attributes leads to computational issues due to the
large size of the input matrix X with the features in the original space. However, this
issue is avoided when a smaller and unique set of samples is selected to optimize separate
projections for each attribute.

The final classification pipeline consists of projecting the layer output X onto
a low dimensional projection Ti, which is then used to train a classifier to predict Yi.
Quadratic Discriminant Analysis (QDA) is employed as the classifier, following the setup
of [42], though any other classifier could likely be employed without greatly impacting the
obtained results. Since QDA is a non-linear classifier, it is able to extract some extra
information from the linear projection obtained with PLS, which leads to slightly better
accuracies. The method could also be easily extended to analyse continuous concepts,
such as facial pose, by simply replacing the classifier with a regression method.

In summary, the proposed analysis consists of executing the exact same classifica-
tion pipeline while modifying either its input features X, or its target Yi. Figure 4.2
shows a visual representation of the approach. The approach may be easily interpreted in
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Figure 4.2: Layerwise proposed analysis. The proposed approach extracts accuracy mea-
surements from the neural network layers. Different layers can be analysed by changing
which features are being extracted from the network. Different attributes can be analysed
by changing which samples and labels are available for the optimization of the classifica-
tion pipeline.

an analogy to a multimeter measurement tool. While the multimeter is able to measure
electrical properties such as voltage, resistance and current, the proposed approach will
measure how different facial attributes are encoded in the network by simply changing
which attributes of the samples are being labelled. Similarly to how the multimeter can
be connected to different components of a electrical circuit, our also approach may also
be connected to any of the layers or feature of the deep network, revealing the attribute
is encoded at different network depths. Naturally, different networks architectures can be
analysed by replacing the neural network components with the desired network model.
Thus, this rigid and simple pipeline allows fair comparison of each obtained measurement,
since we can precisely control which representations and attributes are being evaluated
with the pipeline.
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4.2 Fine-grained Attribute Analysis

In addition to understanding the representation of the facial attributes over the
layers of the network, the proposed approach is also able to obtain a more fine-grained
analysis of individual neurons and filters in the network. This extension is as straight-
forward as changing the input features of the classification pipeline to receive the outputs
of these representational units instead of the entire layer. The key issue is that training
and evaluating a classifier for each such unit would be a prohibitively expensive procedure
for any modern deep neural network architecture.

This issue can be avoided by evaluating the pipeline in a small subset of these units.
This setup relies on the assumption that there exists an association between the facial
attributes and individual neurons and filters in the network. Following this assumption,
only the units that are relevant for the representation of an attribute would need to
be evaluated in the classification pipeline. The relevance of each neural output for a
specific attribute can be determined with the Variable Importance in Projection (VIP)
technique [52; 10; 26]. This technique scores each individual feature Xj, corresponding
to a neural output, according to its influence in the PLS discriminative projection. The
top-scoring neurons can then be evaluated through the pipeline by simply replacing the
entire layer output with the desired selection of neural outputs. Similarly, the top-scoring
filters can also be identified by averaging the importance of all neurons which share the
same weight, i.e., the neural outputs that belong to the same channel. Thus, the proposed
approach is also able to determine how the attribute information is distributed inside each
layer of the network by comparing the discriminative power of small selections of these
representational units.

Figure 4.3 summarizes the entire approach, with the top part representing the
additional steps used in the fine-grained analysis proposed in this section. Essentially,
the PLS projection obtained with the entire layer, which was described in the previous
section, can be used to determine the VIP score of each feature in the original space.
Since each individual feature represents the output of a neuron, we can select a few
individual neurons by selecting the features with higher VIP score. Similarly, the VIP
score can also be aggregated to select entire channels instead of neurons. This selection can
then be processed by a similar classification pipeline, though in the case of the selection
of neurons, there is no need to project them into a smaller subspace, since they are
already low-dimensional, as indicated by the dashed lines in the diagram around the PLS
projection.
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Figure 4.3: Neuronwise and channelwise proposed analysis. The proposed approach is
able to analyse any feature or combination of features of the network, including individual
neurons and channels. Since there are too many of such individual units, we propose to
analyse only a subset of these units which are selected according to their VIP score.

In summary, the proposed approach allows the analysis of any attribute across
the representations of a deep neural network. Each representation is associated with
an accuracy score which allows direct comparison of attributes across multiple layers
of the network. These comparisons can also be made between the neural, channel and
layer representations with the aid of the VIP score to select a small subset of these
representations for comparison.
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Chapter 5

Experimental Results

This chapter presents and discusses the results achieved with the method proposed in
Chapter 4. Section 5.1 summarizes the setup necessary to reproduce the proposed ex-
periments. Section 5.2 analyses the representation of several facial attributes across the
layers, channels and neurons of face recognition deep networks. Section 5.3 shows a more
in-depth analysis of the VIP-score, revealing how the attribute information is distributed
inside the layers.

5.1 Experimental Setup

This section describes the experimental setup regarding the optimization of face
recognition networks and the attribute classifiers. The face recognition networks are the
object of study in which our proposed approach analysis is performed. Thus, we detail
the settings in which they were optimized both so the analysis can be replicated, as well
as to clearly delineate the settings in which our discussion and conclusions are applicable.
Our goal is also not to obtain perfectly optimized networks with hyperparameter searches
or other convoluted training schemes. Instead, our aim is to guarantee that the analysed
face recognition CNNs are optimized under similar settings, so that our results are not
distorted by different data-augmentations, datasets, and other possible sources of variance
that would come from analysing pretrained models available in the literature.
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5.1.1 Face Recognition Networks

The analysed face recognition CNNs are trained from scratch to remove possible
sources of variance such as different training datasets, loss functions and augmentation
procedures. The networks are trained and validated on VGGFace2 [3] and LFW [15]
datasets, respectively, and the performance on the validation set is used to select the best
weights.

The training protocol roughly follows the implementations details described by [3].
The identities are uniformly sampled during the optimization process, and each sample
has a 20% chance of being to transformed to grayscale. Each image is also resized such
that its shortest side has 256 pixels, and then randomly cropped to a square region with
length of 224 pixels. Stochastic gradient descent is used with an initial learning rate of
0.005, which is decreased tenfold whenever the error function plateaus. The networks are
optimized under the softmax criterion with a batch size of 64, distributed among 2 GPUs,
for 50 epochs.

Networks of three different architectures were optimized following this protocol,
namely Resnet50 [14], MobilenetV2 [40] and VGG16 [45]. Each architecture was opti-
mized at least three times from different random initializations, and for the remainder
of this work, reported results of each architecture will represent a mean performance,
unless stated otherwise. Table 5.1 shows the obtained accuracy on identification protocol
of VGGFace2, demonstrating that the evaluated CNNs achieved a performance that is
comparable with the results reported in the literature. While these results may not be
optimal, they are adequate enough to demonstrate that our analysis is being performed
on face recognitions CNNs with a performance that is up to date with the state of the
art.

Table 5.1: Accuracy on the identification protocol of VGGFace2 test split

Architecture Accuracy (std)
Resnet50 92.44 (0.16)
MobilenetV2 90.54 (0.33)
VGG16 90.13 (0.53)
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5.1.2 Face Attributes

A total of 40 binary face attributes from the CelebA [23] dataset were employed
to probe the intermediate layers of the optimized face recognition CNNs. No additional
pre-processing is employed since the original images of the dataset are already aligned
through facial keypoints. The entire training split cannot be loaded into memory for PLS
optimization due to the high-dimensional nature of the intermediate features. Thus, the
original training and validation splits are combined into a single pool, from which 2048 and
6144 samples are drawn for training and validation, respectively. Each classifier received
a unique balanced set of samples, otherwise it would be difficult to establish a single set
of 2048 images with enough variance among the attributes to train all classifiers. The
test split was not modified so that our final results can be compared with other methods.
Unless specified, all reported results were obtained on the customized validation split.

A classification pipeline consisting of PLS projection and Quadratic Discriminant
Analysis (QDA) is trained for each attribute and layer of interest. The VIP score is
computed for each optimized PLS model to identify 8 top-scoring neurons and channels
for each attribute. New instances of the PLS+QDA pipeline are trained with the top-
channels representation, with one of the instances using all top-channels as input while
other instances use each individual channel. An equivalent setup is used for the top-
neurons representation, though PLS projection is not employed in this setup since the
top-neurons already have the same dimensions as the target projection of 8 components.
While there is a strong motivation for using PLS in the pipeline, QDA could be replaced
by any other simple classifier without drastically changing the obtained results.
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5.2 Attribute Analysis

Figures 5.1 to 5.3 show the accuracies achieved by each classifier over the depth of
the CNNs optimized for face recognition. The horizontal axes of the plots are adjusted
according to the maximum depth of the network that is associated with each figure. Each
individual result is composed of three different curves with colors blue, green and orange,
which denote the accuracies obtained by the classifier with the entire layer representation,
the selection of channels and the selection of neurons, respectively. The green curve is
slightly shorter than its counterparts because the outputs of the last layers are one-
dimensional, and thus, cannot be examined with a channelwise approach. Throughout
this section, subsets of these charts will be presented in other figures to highlight specific
patterns that are harder to visualize amidst the excessive amount of information available
in this initial overview. However, these figures still serve the purpose of providing a
reference for all obtained results as well as allowing the observation of general trends
across all attributes.

One observation that can be made from Figures 5.1 to 5.3 is that most of the
evaluated classifiers are able to exceed 90% accuracy, which corroborates the hypothe-
sis that many face attributes are well represented across the layers of face recognition
networks. The representation of each attribute also seems to be condensed in a small
selection of channels, as indicated by a small accuracy gap between the green and blue
curves throughout all of the depth of the network. This phenomenon is also observed for
the selection of neurons from deeper layers of the network, reinforcing the notion that
the facial attributes information are concentrated across few representational units of
each layer. However, the top-neurons representation from shallower layers exhibit a much
wider accuracy gap for most of the evaluated attributes, which may be explained by their
small receptive fields. Even with aligned facial images, small receptive fields may still not
be able to consistently capture the relevant region of input due to peculiarities of each
individual, such as hairstyles and facial expressions, that could cause small changes in the
position of facial parts. This hypothesis is also supported by fact that highly accurate
classifiers can be produced with a selection of channels from these same shallow layers.
The only distinction between the top-channels and top-neurons representations is that
the former convolves a filter over all valid spatial locations of the input, while the latter
is restricted to a single patch. This observation indicates that the convolutional kernels
in the shallow layers are capable of producing discriminative outputs provided that they
are able to process larger regions of the input, which could be achieved either with wider
receptive fields, as in the deeper layers, or with the processing of multiple regions of the
input, as in the channels representation.

Another interesting observation is that, for the entire layer representation, most of
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Figure 5.1: Attribute prediction accuracy over the depth of the Resnet50 network. The
blue curve measures the accuracy obtained by an attribute classifier that uses the entire
layer response as its input. The green and orange curves replace the layer representation
by a subset containing the eight top-scoring filters and neurons, respectively.
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Figure 5.2: Attribute prediction accuracy over the depth of the MobilenetV2 network.
The blue curve measures the accuracy obtained by an attribute classifier that uses the
entire layer response as its input. The green and orange curves replace the layer repre-
sentation by a subset containing the eight top-scoring filters and neurons, respectively.
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Figure 5.3: Attribute prediction accuracy over the depth of the VGG16 network. The
blue curve measures the accuracy obtained by an attribute classifier that uses the entire
layer response as its input. The green and orange curves replace the layer representation
by a subset containing the eight top-scoring filters and neurons, respectively.
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Figure 5.4: Mean attribute accuracy with different optimization setups using the entire
layer representation. Each curve denotes the mean accuracy of all attributes of a Resnet50
network optimized with different datasets, or not optimized at all (random).

the curves exhibit either a plateau or very subtle improvements after the first few layers of
the network. Since these initial representations are not closely related with the objective
function, this phenomenon may challenge the assumption that the obtained attribute
representations are produced by the face recognition optimization procedure.

Figure 5.4 compares the mean attribute accuracy of a Resnet50 network under
three different optimization setups: random initialization, face recognition, and image
classification [39]. All three setups have a roughly equivalent accuracy at the initial
layers of the network, which indicates that a high accuracy at the shallower layers is
more related to the simplistic nature of the evaluated attributes rather than the network
optimization procedure. However, at each subsequent layer, the average codification of
the attributes slightly improves in the face recognition network, but worsens in the other
two networks, and thus, it seems that the accuracy obtained with deeper representations
is indeed determined by the optimization procedure.

Most of the evaluated attributes exhibit an initial accuracy of roughly 80%, with
the exceptions generally belonging to categories of higher complexity, encoding age, hair
texture and facial geometry. In the obtained results, these categories are represented by
binary attributes such as Young, Wavy Hair, Straight Hair, Big Nose, Pointy Nose, Big
Lips and Oval Face. Surprisingly, the gender attribute, Male, has one of the highest initial
accuracies, even though it is associated with a higher-level concept that is expected to
be well encoded only at the deeper layers. However, it may be the case that the gender
attribute classifier is exploiting some low-level attribute that is highly correlated with
gender, such as the thickness of the eyebrows or presence of facial hair.

The Brown Hair attribute also exhibits a low accuracy in the shallower layers,
though this is an anomalous behaviour among the attributes that encode hair color. Fig-
ure 5.5 shows the accuracies obtained by the classifiers with the entire layer representation
for five semantically similar attributes, with four of them encoding a hair color. The ac-
curacy gap that is present in the initial layers is essentially maintained throughout all
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Figure 5.5: Accuracy of facial attributes encoding baldness and hair colors using the
entire layer representation. Even though the brown hair color is semantically equivalent
to the other colors, it exhibits a widely inferior accuracy. Best viewed in color.

of the depth of the network, often ranging between 10 to 20 percentage points below its
counterparts. Besides this large gap, the anomalous behaviour of brown color is also man-
ifested in its unsteady accuracy curve over the network depth. While the other attributes
demonstrate a considerably steady accuracy improvement, the brown hair curve exhibits
an unstable behaviour, with large oscillations in accuracy, as well as with the most sig-
nificant accuracy improvement concentrated in the last few layers. The obtained results
do not provide enough information to establish what causes this distinguished behaviour
with the brown hair color. This explanation could be a combination of multiple factors,
such as a bias in the face recognition dataset used to train the networks, or perhaps, a
larger variance of hairstyles in brown hair individuals in the face attribute dataset.

Nonetheless, this phenomenon suggests that specific variations of a trait, such as
the hair color, are encoded differently in the network. In turn, this could cause the face
recognition system to favor particular characteristics and thus, potentially neglect par-
ticular ethnic groups. Even though the proposed approach is not able to provide an
explanation to this possibly biased behaviours, it can at least identify these scenarios
more reliably than visualization techniques. Then, researchers and developers may ac-
tively investigate each specific deficiency in the representation that was identified by the
proposed method.
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Figure 5.6: Accuracy of facial attributes encoding primary (blue tones) and soft (orange
tones) biometrics using the entire layer representation. Best viewed in color.

Another interesting perspective on the obtained results comes from the contrast
between primary and soft biometric attributes. Soft biometrics are characteristics of
the individual that lacks either distinctiveness or permanence [17], which makes them
less reliable for identification since they are not likely to remain constant between all
image acquisitions or even be unique to a single individual. Primary biometrics are
intrinsic attributes which are particular to each person such as the fingerprint, iris, face
geometry or shape of a body part. These attributes are less likely to change between
different photo acquisitions since they can only be altered through invasive procedures
such as plastic surgeries. Considering that the face recognition optimization must classify
hundreds of samples of the same individual, it is expected that the network would rely
on characteristics that are more likely to be shared among all samples, i.e., the primary
biometric attributes.

Figure 5.6 shows the accuracies obtained for the all attributes encoding primary
biometrics, in orange tones, and a selection of soft biometric attributes, in blue tones.
While soft biometrics are able to consistently reach 90% accuracy, even the best repre-
sent primary attribute barely reaches 75%. Essentially, the attributes enconding primary
biometrics showcase the worst performances among all evaluated attributes. This coun-
terintuitive result suggests that the performance of the evaluated face recognition network
is more dependent on visual characteristics that could be easily modified, such as wearing
different acessories or changing the hair style. This phenomenon could negatively impact
the performance of face recognition systems in scenarios in which there is no guaratee
of user cooperation, or in which the probe and gallery image sets require different dress
codes, e.g., photos from official documents in contrast to in-the-wild image acquisitions.

Some of the evaluated attributes encode information about the photo acquisition
process or facial pose. In this discussion, these attributes will be referred as non-
biometrical characteristics since their manifestation is not correlated with specific indi-
viduals. Figure 5.7 show the accuracy curve of these attributes. It should be noted that
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Figure 5.7: Accuracy of facial attributes encoding non-biometric attributes using the
entire layer representation. Best viewed in color.

the attribute Pale Skin is more associated with make-up style or increased brightness
conditions rather than light-complexion skin tone, and that the attribute Narrow Eyes is
encoding the facial expression of squeezing the eyelids together, rather than the general
shape of the eyes.

The accuracy of non-biometrical attributes generally decreases over the depth of
the network. This suggests that the face recognition embeddings discards the informa-
tion of these attributes, since they are not relevant for identification of the images. One
unusual aspect of these accuracy drops is that they follow a distinctive sawtooth pattern
both in the MobilenetV2 and Resnet50 architectures. While this shape may initially seem
to be random noise, it does, in fact follow a meticulous arrangement closely associated
with the structure of the residual blocks [14] of these architectures. Fig. 5.8 illustrates the
relationship between the accuracy curve of the Narrow Eyes attribute and the residual
block of the Resnet50 architecture. Essentially, for each residual block, we can system-
atically identify a local maximum after the skip connection, and a local minimum at the
intermediate residual representation. In fact, these local maxima and minima are present
in all of the evaluated attributes, though more subtly in the attributes that are relevant
for the recognition task, and more evidently in the non-biometrical traits, which exhibit
sharp accuracy decreases at their residual representations. When the residuals are com-
bined through the skip-connection, they negatively impact the performance, indicating
that the residual information is subtracting the non relevant information from the deeper
representations.

One limitation still remaining in the analysis is the comparison of attributes that
are not semantically similar. Two attributes that achieve the same accuracy do not
necessarily have a representation of equivalent importance in the network. For instance,
it could be the case that the evaluation set of one of the attributes contains more noisy
labels which would negatively impact the accuracy of the classifiers. Thus, using the
absolute classifier performance may be an unfair metric to determine which attributes
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Figure 5.8: Top: the entire layer performance of the Resnet50 network for the Narrow
Eyes attribute. Bottom: residual block of the Resnet50 architecture. The sawtooth
pattern is caused by the skip connections and bottlenecks of the residual block, with local
maxima coinciding with the representation obtained after the skip connection.

are well represented in the network. However, this issue can be avoided by comparing
the accuracies obtained the proposed analysis against fully-supervised approaches for face
attribute prediction. In this manner, it is possible to determine if an attribute is well
represented in the face recognition network if the obtained accuracy is close to that of a
representation that was supervised for this task.

Table 5.2 compares the accuracy obtained in the analysis with a multitask Resnet50
baseline that was optimized to jointly predict all 40 attributes. The table is ordered
according to the relative accuracy between the evaluated classifiers and the baseline,
with the best-performing attributes appearing on the top. The reported accuracies were
obtained with the original test set of CelebA [23], and correspond to the performance of
the best classifiers for each given representation in the validation set. Contrary to the
previous analysis, the reported results for channel and neuron representations refer to
a single channel or a single neuron instead of the top-8 units that was previously used.
In general, many attributes were able to produce results that are almost as accurate as
the multi-task approaches, demonstrating that the face recognition network encodes them
very accurately.In Table 5.2, attributes such as High Cheekbones and Wavy Hair, are not able to
achieve highly accurate results, but they are still comparable to the accuracy obtained by
the supervised multitask network. Thus, while the absolute accuracy values may suggest
that some attributes are not well encoded, the relative accuracies reveal that the face
recognition representations are almost as discriminative as if they were optimized for
to predict these attributes. Generally, the top performing attributes correspond to soft
biometrics while the worst performances correspond to the primary biometrics, reaffirming
the hypothesis that face recognition CNNs favours the representation of the former. The
non-biometrical attributes Smiling and Mouth Slightly Open are also able to achieve highly
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Table 5.2: Accuracy for the best (L)ayer, (C)hannel and (N)euron

Resnet50 Mobilenet V2 VGG16 Multitask
(L) (C) (N) (L) (C) (N) (L) (C) (N)

Male 97.7 96.4 96.2 98.2 97.4 97.3 97.9 90.8 89.9 98.2
Smiling 90.4 87.9 83.4 89.6 88.8 83.0 90.3 86.4 82.2 91.3
Eyeglasses 98.3 96.7 96.1 98.7 97.8 96.7 98.4 97.3 97.1 99.5
Wearing Hat 97.5 95.1 96.3 98.1 96.0 95.4 98.0 91.6 95.1 98.9
Wearing Lipstick 92.1 89.9 89.6 92.5 91.0 90.6 92.6 86.9 83.1 93.7
Wavy Hair 80.2 77.3 70.5 80.9 78.4 73.2 81.0 78.8 74.3 82.3
High Cheekbones 83.6 81.0 78.8 83.1 81.4 77.8 83.9 78.6 77.4 86.2
Mouth Slightly Open 88.0 85.4 83.7 88.4 87.0 83.3 87.7 83.8 83.6 90.7
Bald 95.9 93.1 93.4 96.0 93.7 94.9 96.0 90.2 92.2 98.9
Bangs 92.3 90.9 86.6 92.8 90.2 87.2 93.7 83.5 83.5 95.4
Heavy Makeup 86.3 83.2 81.1 87.2 84.0 82.1 87.0 82.8 79.8 89.9
Wearing Necktie 90.7 89.4 90.6 90.8 85.1 80.5 90.9 89.8 93.1 94.4
Blond Hair 91.3 87.1 86.9 92.0 89.5 87.4 91.6 87.2 86.4 95.1
Attractive 77.7 74.9 71.9 78.3 76.2 73.8 78.8 74.1 70.6 81.7
Young 83.4 75.6 72.4 84.4 81.3 80.4 83.0 69.0 66.8 88.3
Sideburns 92.5 89.0 89.1 93.1 91.6 89.3 93.2 89.7 88.2 97.5
Gray Hair 92.5 88.8 79.5 93.6 90.9 83.8 93.2 87.6 93.7 98.0
Black Hair 82.2 76.3 74.0 82.8 74.7 73.9 83.1 76.4 75.6 87.7
No Beard 90.2 87.7 88.5 90.9 89.4 89.0 92.1 84.0 85.7 95.7
Goatee 90.9 88.5 89.4 91.9 89.7 89.9 91.8 84.3 89.3 96.8
Arched Eyebrows 76.1 72.0 71.4 76.9 73.4 71.8 77.1 72.7 72.7 82.1
Mustache 89.7 86.6 85.9 90.2 88.2 87.1 90.5 85.2 79.2 96.6
5 o Clock Shadow 85.9 79.6 74.7 86.3 80.8 80.5 86.6 80.9 76.5 93.9
Big Lips 62.4 62.1 61.4 62.8 62.3 62.0 62.0 59.0 65.6 70.6
Bags Under Eyes 74.4 72.4 71.9 76.1 69.7 65.1 75.7 71.0 73.3 83.1
Receding Hairline 84.7 79.9 82.7 85.2 79.8 74.3 84.2 73.3 83.0 93.5
Pale Skin 86.4 82.9 76.1 85.4 84.1 74.5 86.1 86.7 85.4 95.8
Bushy Eyebrows 82.0 78.9 79.8 83.3 78.3 79.2 82.4 79.3 79.8 92.0
Rosy Cheeks 83.9 80.6 72.1 84.7 79.7 72.7 84.1 81.2 75.3 94.0
Double Chin 85.4 81.9 77.3 86.5 83.6 82.2 86.9 79.8 71.8 96.1
Wearing Earrings 74.9 67.5 61.3 75.8 65.4 59.0 77.6 72.1 64.9 85.6
Chubby 84.4 80.6 73.9 86.2 82.4 78.1 85.6 76.5 69.1 95.4
Straight Hair 70.6 59.6 53.3 73.4 61.5 58.0 72.9 57.7 48.4 81.9
Pointy Nose 65.3 62.6 65.3 66.6 63.6 62.0 66.2 65.7 66.5 76.6
Big Nose 72.6 69.6 68.7 74.0 70.5 69.5 72.0 68.5 62.8 83.9
Blurry 83.4 76.8 69.8 86.0 84.5 76.5 86.2 79.7 68.5 95.2
Brown Hair 74.0 67.3 64.2 74.6 64.3 55.9 73.7 74.2 70.1 86.2
Oval Face 60.4 59.4 60.3 61.6 60.5 60.2 63.8 59.0 62.2 73.7
Narrow Eyes 71.3 72.4 75.2 74.0 73.1 73.2 71.9 67.0 76.5 85.6
Wearing Necklace 62.7 54.8 54.7 64.3 58.8 53.1 66.7 61.9 49.6 86.2
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Table 5.3: Average Attribute Accuracy

Method Accuracy
LNets + ANets [23] 87.0
MOON [37] 90.9
AttCNN [13] 91.0
Multitask Baseline 90.2
Resnet50 (Layer) 83.1
Mobilenetv2 (Layer) 83.9
VGG16 (Layer) 83.9
Resnet50 (Channel) 79.5
Mobilenetv2 (Channel) 80.4
VGG16 (Channel) 78.6
Resnet50 (Neuron) 77.4
Mobilenetv2 (Neuron) 77.6
VGG16 (Neuron) 77.2

accurate values in comparison to the multitask baseline. Thus, even though the accuracy
of these attributes decreases over the depth of network, the intermediate layers are still
able to provide discriminative representations.

Table 5.3 shows results from additional baselines. Unfortunately, except for LNets + ANets [23],
these methods do not provide the detailed accuracy of each attribute, and thus, it is not
possible to obtain a fine-grained comparison with our results. Nonetheless, it shows that
proposed multitask baseline achieves a comparable performance to the state of the art.
Thus, it demonstrates that the multitask baseline is a reasonable representation of the
accuracy of modern attribute classification. The average accuracy also allows for easier
comparison between the layer, channel and neuron representation. On average, the best
channel that was identified by the proposed analysis has an accuracy that is less than
4 percentage points bellow the best layer representation, with this gap increasing to 6

percentage points for the best neuron representation.

5.3 PLS and VIP Ablation Study

The previous analysis showed that there exists a few representational units are
able discriminative some attributes almost as accurately as fully-supervised approaches.
This analysis is extended in this section to also include low-scoring units, revealing how
the attribute information is distributed inside the network. Since the VIP score is a
measurement of relative importance of the neurons in the projection, scores obtained
from two different projections are not comparable, and since a different projection is
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Figure 5.9: Top: VIP score distribution. Bottom: correlation between the score and
accuracy for individual neurons. These plots illustrate the behaviour of three randomly
selected models.

learned for each layer and attribute, it is not possible to aggregate results from multiple
layers and attributes. Thus, instead of the mean result for all projections, Fig. 5.9 shows
an analysis of the VIP score for three randomly selected PLS projections of the previous
analysis.

The top row of Fig. 5.9 shows log-scaled histograms representing the distribution
of VIP scores for all neurons in each of the selected layers. These results indicate that
high-scoring neurons are very scarce, with the number of neurons decreasing exponentially
for scores greater than one. To understand the relationship between the VIP score of a
neuron and its discriminative power, we also analyse the accuracy of a classifier whose
input is only a single neuron. More specifically, for each projection, 50 neurons are
randomly selected, uniformly sampled according to their VIP score, and then a classifier
is trained and validated for each individual neuron. The bottom row of Fig. 5.9 shows the
performance of these classifiers according to the VIP score of the input neuron, revealing
a strong linear relationship between these variables. In fact, by repeating this experiment
for all layers and attributes, on average, a 0.93 correlation coefficient is obtained. For
contrast, we also measure the correlation coefficient when the VIP score is replaced by
the mean activation of the neuron for the positive samples, which is a popular metric to
identify relevant units in visualization techniques. In this scenario, the average coefficient
drops to 0.38, which is considered to be a weak correlation.

In summary, these results show that the VIP score is indeed an appropriate metric
to determine which neural outputs are more relevant to specific attributes. Furthermore,
the distribution of these neurons show there exists very few neurons that are highly
discriminative of each attribute when evaluated individually, with the number of neurons
decreasing exponentially for linear improvements of accuracy.
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However, even though the obtained results demonstrated that most of the neurons
in a layer have small VIP-score, and consequently, low predictive power for some face
attribute, this result does not necessarily imply that they are not a crucial part of the
representation. For instance, it could be the case that, in some layer, the representation
of an attribute is more reliant on the combination of a large set of low scoring neurons
from the previous layer rather than the equally discriminative small set of high scoring
neurons. This hypothesis is evaluated through an experiment that consists of zeroing-
out the outputs of the most relevant neurons of a specific layer, and then measuring
how the accuracy of the classifiers of subsequent layers is affected. Table 5.4 shows
the drops in performance of different representations that were caused by masking an
increasing percentage of neurons from some layer. Each cell of the table shows three
results, representing the decreased accuracy relative to masking a layer at the depths of
10, 25 and 40, respectively.

Table 5.4: Accuracy decrease for subsequent representations of a layer at depth 10/25/40
with respect to the percentage of its top-scoring neurons zeroed-out.

Representation
Mask Size Layer Top-8 Channels Top-8 Neurons

0.01 0.01/0.01/0.01 0.02/0.02/0.02 0.03/0.03/0.03
0.05 0.03/0.03/0.02 0.04/0.05/0.04 0.06/0.07/0.06
0.10 0.04/0.04/0.03 0.06/0.07/0.06 0.08/0.10/0.08

It should be noted that even the smallest evaluated mask size represents a far
superior number of neurons than the top-8 that was previously used. Thus, the zeroed set
of neurons are undoubtedly capable of accurately representing the attributes. However,
removing these neurons from the representation of a layer does not seem to greatly affect
the performance of the classifiers in subsequent layers. Thus, while our approach is able
to find representative units across the dimensions of a layer, it seems that the combination
of less representative units is more impactful for subsequent representations.
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Chapter 6

Conclusions

The end-to-end optimization process of deep-learning networks produces representations
that are both cryptic and discriminative. Consequently, the acceptance and improvement
of these models are still limited by our inability to completely decode the meaning of the
obtained representations. Previous attempts to understand deeply-learned features were
mainly based on visualization techniques, which presented several limitations concerning
the scalability and comparability of their results. This thesis proposed a quantitative
approach to identify and compare the representation of several attributes encoded in the
hidden layers of a deep face recognition network.

In essence, this approach consists of evaluating a set of classifiers to predict various
attributes using features extracted from the intermediate layers of a deep network. This
process allows direct and fair comparisons between several layers, channels and neurons by
simply changing which representation is being extracted from the network. Even though
the proposed analysis revealed some interesting patterns among all of the evaluated archi-
tectures, these findings may still not generalize for every face recognition CNN. In fact,
the obtained network representations are likely to be influenced by several optimization
parameters such as the training dataset, loss function, and data-augmentation procedure.
Thus, one possible extension to this work is to measure the impact of these different
design choices by gradually changing the training protocol and observing how each such
modification affects the representation of the evaluated attributes.

The analysis in this work studied only binary facial attributes simply due to the
convenience of isolating geometric transformations through facial keypoint alignment.
Nonetheless, attributes from different domains could still be analysed with the proposed
approach even if it is not possible to align their input images, though this would likely
impair some representations. The impact of input alignment could also be studied in the
face recognition domain by comparing the performance between classifiers with aligned
inputs and classifiers whose inputs are subject to random geometric transformations. Even
though the evaluated attributes were all binary encoded, the proposed approach can be
easily adapted to both multi-class and regression problems through the replacement of
the QDA classifier by another appropriate model.

The proposed analysis could also be expanded to include additional attributes.
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Most of the attributes analysed in this thesis exhibited a very similar behaviour, with
the majority of their accuracy improvements concentrated in first few initial layers of the
networks. Discovering more attributes that are only well encoded in the deeper layers
of the network may reveal what more interesting properties of deep networks. Unfortu-
nately, determining these attributes may require an exhaustive search over many possible
attributes, with each attribute requiring manual labeling. Furthermore, another impor-
tant drawback of this expansion is that some attributes may encode sensitive information.
Consequently, creating such a dataset raises ethical concerns as the data could be misused
for mass identification of particular groups of people. Thus, the analysis of additional face
attributes requires a careful consideration about the real-world impact of these attributes.

Finally, we also identify two potential applications of our obtained results in two
different scenarios, namely, multitask learning and detection of adversarial attacks. While
these scenarios were not explored in this work, we believe that they are potential direc-
tions for future works with the proposed method. In the case of multitask learning, the
optimization of all different tasks is usually performed at the very last layer of the net-
work, which may be sub-optimal if these tasks are not all closely related. In this scenario,
the proposed analysis could be employed to identify the optimal depth to learn each
sub-task. In the case of adversarial attacks, the application of our analysis comes from
the observation that the representation of the attributes across the layers seems to be
robust to manipulations of previous layers, at least in the case of zeroing-out some of the
features. Thus, if it is possible to obtain a set of precise attribute classifiers for the real
output classes of the network, then adversarial attacks may be detected if the attributes
are not consistent with the final network output. For instance, in the case of face recogni-
tion, adversarial attacks could be detected if the identity label is not consistent with the
attributes predicted across intermediate layers of the network.
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