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Resumo

A frequência cardı́aca (FC) é uma métrica amplamente utilizada por profissionais e amadores
no treinamento de resistência por ser uma medida para esforço fı́sico, uma vez que é através dos
batimentos cardı́acos que oxigênio, nutrientes e hormônios são distribuı́dos às células de todo
o corpo. Essa métrica é importante para a prescrição de exercı́cios fı́sicos, pois um treinamento
efetivo deve provocar uma FC dentro de uma determinada faixa, de forma a treinar nem pouco,
nem muito, um indivı́duo.

Prever a dinâmica da frequência cardı́aca, no entanto, é uma tarefa reconhecidamente
difı́cil, devido a variedade de atributos que a influenciam, que vão desde a nutrição e humor
até a genética de um indivı́duo. Ainda assim, a atividade fı́sica é considerada um dos principais
impulsionadores do frequência cardı́aca. Alguns estudos modelam a frequência cardı́aca usando
diferentes medidas para representar atividades fı́sicas especı́ficas, como velocidade e aceleração
para corrida ou torque para ciclismo. Embora essas métricas descrevam bem o esforço fı́sico do
indivı́duo para essas atividades, elas não são gerais o suficiente para descrever a esforço fı́sico
em outras, como pular corda.

As medições de sensores de unidade de medida inercial (IMU), como acelerômetros e
giroscópios presentes em smartphones e relógios esportivos, têm sido aplicadas com sucesso na
previsão da atividade que está sendo realizada pelo indivı́duo, uma tarefa amplamente conhecida
como “reconhecimento de atividade humana” (HAR). Isso sugere que esses sensores poderiam,
a princı́pio, fornecer representações mais gerais do esforço fı́sico de uma pessoa, mesmo que
seja por meio da previsão da atividade. Muito poucos estudos publicados, no entanto, usam
sinais de IMU para prever a frequência cardı́aca e, os que o fazem, apresentaram algumas
limitações sérias, como prever apenas alguns segundos no futuro antes de requerer recalibração
ou considerar apenas um único indivı́duo em sua avaliação, levando a questionamentos sobre
sua aplicabilidade geral.

Nesta dissertação, propomos um novo modelo para estimativa de FC utilizando dados
IMU, baseado em Redes Neurais Recorrentes (RNN). A lógica por trás de nosso modelo é que
uma mesma atividade provoca diferentes respostas de FC em diferentes indivı́duos, dependendo
do seu condicionamento fı́sico. Portanto, nosso modelo tenta codificar o condicionamento fı́sico
de um indivı́duo em um vetor, denominado PCE, usando um módulo especialmente projetado
para isso. O PCE é então usado para inicializar os vetores ocultos iniciais de uma RNN, que usa
de células do tipo LSTM. Reforçamos essa codificação treinando o modelo em conjunto uma
rede que discrimina se dois PCEs pertencem ao mesmo indivı́duo.

Avaliamos o modelo proposto ao prever a FC de 23 indivı́duos realizando uma variedade



de atividades fı́sicas, a partir de dados IMU disponı́veis em datasets públicos (PAMAP2, PPG-
DaLiA). Para comparação, usamos o único modelo proposto especificamente para esta tarefa e
dois modelos em estado da arte para a tarefa de HAR (pela semelhança entre as tarefas). Nosso
método, denominado PCE-LSTM, resulta em erro absoluto médio mais de 10 % menor que os
demais modelos avaliados. Demonstramos empiricamente que essa redução do erro se deve, em
parte, ao uso do PCE. Por fim, usamos dois datasets (PPG-DaLiA, WESAD) para mostrar que o
PCE-LSTM também pode ser aplicado com sucesso quando os sensores de fotopletismografia
(PPG) estão disponı́veis, superando o modelo baseado em redes neurais que é estado da arte em
aproximadamente 30 %.

Palavras-chave: Séries Temporais, Aplicações Médicas, Freqûencia cardı́aca, Redes Neurais
Recursivas



Abstract

The heart rate (HR) is an important metric widely used by professionals and amateurs in en-
durance training as a proxy to physical strain, as it is through heartbeats that oxygen, nutrients
and hormones are distributed to cells in the whole body. This metric is important for the pre-
scription of physical exercises, as an effective training should elicit a HR within a certain range,
so as to neither under-train, nor over-train an individual. Predicting the heart rate dynamics,
nonetheless, is recognized as a hard task, due to a variety of influencing features, ranging from
nutrition and mood to an individual’s genetics. Yet, the physical activity is regarded as one of
the main drivers of the heart rate. There has been a few studies attempting to model the heart
rate using different proxies for physical activities, such as speed and acceleration for running,
or torque for cycling. Although these metrics might be good descriptors of the physical strain
on the individual, for these specific activities, they are not general enough for describing the
strain incurred by other activities, such as rope jumping.

Measurements from Inertial Measurement Unit (IMU) sensor, such as accelerometers
and gyroscopes present in smartphones and fitness watches, have been successfully applied
in predicting the activity being performed by an individual, a task widely known as Human
Activity Recognition (HAR). This suggests that these sensors could, in principle, provide more
general representations of one’s physical strain, even if it is through the prediction of the activity.
Very few published studies attempted using IMU signals to predict the heart rate, and, the ones
that did, had some serious limitations, such as predicting over only a few seconds into the future
before requiring re-calibration or considering only a single individual, raising some serious
questions over its general applicability.

In this dissertation, we propose a new model for HR estimation using IMU data, based
on Recurrent Neural Networks (RNN). The rationale behind our model is that the same activity
elicits different HR responses in different individuals, depending on the physical conditioning.
Hence, our model attempts to encode the physical conditioning of an individual into a vector,
dubbed PCE, using a specially designed subnetwork. The PCE is then used to initialize the
initial hidden vectors of a RNN, that use long short-term memory (LSTM) units. We reinforce
this encoding by jointly training a network which discriminates whether two PCEs belong to
the same individual.

We evaluate the proposed model when predicting the HR of 23 subjects performing a va-
riety of physical activities, from IMU data available in public datasets (PAMAP2, PPG-DaLiA).
For comparison, we use as baselines the only model specifically proposed for this task and two
adapted state-of-the-art models for the closely related task of HAR. Our method, named PCE-



LSTM, yields over 10% lower mean absolute error. We demonstrate empirically that this error
reduction is in part due to the use of the PCE. Last, we use two datasets (PPG-DaLiA, WESAD)
to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG)
sensors are available, outperforming the state-of-the-art deep learning baselines by more than
30%.

Keywords: Time Series, Medical Application, Heart-Rate, Recursive Neural Networks
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Chapter 1

Introduction

The heartrate (HR), defined as the number of cardiac contraction cycles per unit of time, is an
important metric for the cardiac function: these cycle promote blood circulation, which dis-
tributes nutrients, oxygen and hormones to cells throughout the body. This characteristic makes
the HR a commonly used proxy for strain by both professionals and amateurs in endurance
training, in addition to the fact that it is easier to measure in comparison to alternative metrics,
such as stroke volume, oxygen uptake and hormone levels [17].

An effective fitness training is promoted by inducing an optimal cardiovascular reaction,
making it essential to model and predict individual HR responses. This task is quite challenging
as, besides the physical activity per se, the HR is influenced by a number of factors such as
genetics, nutrition, environmental conditions, fitness and mood [17].

Attributes, such as speed and acceleration, which are very descriptive of running [6, 41],
or the cadence which is a good representative of the cycling effort [18, 21], have been commonly
used as attributes for HR estimation. Nonetheless, these attributes are not general enough to
describe much of the wide gamut of activities practiced by people.

Human Activity Recognition (HAR) is a task which uses sensor data to predict activities
being performed by people, such as climbing the stairs, running, cycling and rope jumping. The
signals from accelerometers and gyroscopes – which are widely known as Inertial Measure-
ment Units (IMU) – are commonly used in this task, with some methods achieving prediction
accuracy in excess of 90% [26].

The high prediction accuracy using only IMU data suggests that, in principle, these same
sensors could be successfully used to describe the physical effort of a large number of activities
and, as a result, be a useful input for the HR prediction task. The IMU sensors have the addi-
tional advantage of being increasingly common in devices such as smartphones, smartwatches
and fitness watches. Figure 1.1 presents an overview of this task, which we refer as IMU-based
HR estimation. Like HAR, the time series are usually processed as sliding windows, called time
snippets (TS).

The task of multi-step heart rate estimation from IMU sensor data remains little ex-
plored, despite recent advances in neural networks and the increasing effectiveness of HAR
methods. In this work, we investigate neural architectures that could be used for this task, as
this could (i) provide an alternative for users lacking specialized fitness watches which feature
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Figure 1.1: IMU-based HR estimation task

HR sensors or (ii) be used for further medical research modeling the impact of physical effort
on the HR.

Several methods have been designed to predict the heart rate under the influence of
physical activity. Most of them are based on differential equations [6, 11], Hammerstein and
Wiener models [20] or Neural Networks [21, 38, 42, 40]. Among the latter, some predict many
steps into the future [42, 38], and others use IMU signals as input [40, 38] but, to the best of
our knowledge, only the model proposed in [38] does both.

1.1 Objectives

The model proposed by [38] achieved good estimation accuracy, but was limited to a
single time-series, from one individual performing his/her usual daily activities. First, using the
publicly available datasets PAMAP2 [24] and PPG-DALIA [25], which contain HR and IMU-
sensor data from multiple individuals performing a wide range of activities, we aim to evaluate
whether their results hold true for other datasets.

Our seconds objective is to devise a new neural network architecture for that task. In
order to benchmark the model we propose against modern neural networks, given the similari-
ties between estimating the HR from IMU sensor and HAR, we adapt recent, well-performing,
deep learning-based models devised for the HAR task to the HR estimation task.

Third, based on the premise that different subjects will display different HR levels when
performing the same exercises depending on their physical conditioning, we aim to investigate
whether it is possible to encode the physical conditioning of a person using data from a previous,
short-lived activity and use it to improve the performance of a HR prediction model.

A model is more useful when, besides performing well on a specific task, it is easily
adaptable and effective in other tasks. Therefore, our last objective is to adapt the model we
devised for IMU-based HR estimation to execute the photoplethysmography (PPG)-based HR
estimation task, where IMU signals are used to remove noise from the HR measured by PPG
sensors.
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In summary, the overarching objective of this dissertation is to investigate whether cur-
rent deep learning methods can accurately predict the HR when provided only with IMU signals
and a small sample of past HR dynamics of as a function of IMU signals.

1.2 Contributions

This dissertation revisits the task of IMU-based multi-step HR estimation. This task,
though not recently explored, demonstrates renewed research potential due to the newly avail-
able public datasets, the late deep learning advancements, and its practical applications, such as
enabling an improvement in the prescription of physical activities.

Based on the premise that different subjects will display different HR levels when per-
forming the same exercises depending on their physical conditioning, we propose a novel neural
architecture that attempts to encode that attribute given IMU and HR data collected from a pre-
vious, short-lived activity performed by an individual. This attribute is extracted by a CNN
network as a vector called the physical conditioning embedding (PCE). The PCE is used, in
turn, to set the initial values of the hidden and cell states of an LSTM responsible for outputting
the HR predictions. Henceforth, the proposed method is referred as PCE-LSTM.

In order to benchmark our model, in addition to using the model from [38], we adapt a
network proposed for the closely related HAR task, where the goal is to identify the activity be-
ing performed by a person (e.g., running, walking, swimming) given some sensor data (mostly,
IMU) as input. For HAR, Convolutional Neural Networks (CNNs) [26, 22] and Recursive Neu-
ral Networks (RNNs) [22] are amongst the best performing approaches.

The use of photoplethysmography (PPG) sensors to track heart rate (HR) is also becom-
ing ubiquitous, especially in devices targeting fitness-conscious consumers, such as the Apple
Watch, FitBit and Samsung SimBand [25]. Nevertheless, they are prone to measurement errors
due to motion-related artifacts. In this case, data from IMU sensors can be used to correct the
heart rate measurements. This task, called PPG-based heart rate estimation, has been explored
by [27, 29] and [25]. To show that the proposed architecture can also be used for this task, we
adapt PCE-LSTM to incorporate the PPG signal as an additional input and show that it can also
outperform the state-of-the-art in this task.

In summary, our main contributions are:

1. We propose a new model to predict heart rate from IMU-sersor signals;

2. We compare our model to the only neural network devised for the same task [38] and to
minimally adapted models shown to perform well on the related task of HAR [22, 26]
and a slightly modified transformer-based model we designed;
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3. We conduct an ablation study to assess the contribution of the PCE sub-network in the
performance our PCE-LSTM model; and

4. We show our model also outperforms the state-of-the-art for heart rate estimation from
PPG data.

1.3 Dissertation outline

This dissertation is organized in such way that its chapters can be read independently.
In order to contextualize and help the reader decide the best way to read this document, this
section summarizes the contents of next chapters of this dissertation.

Chapter 2 describes existing approaches for HR estimation, similar tasks using IMU-
sensors, and current practices for preprocessing sensor signals in the context of HR predictions
and HAR, as well as the existing methods for initializing an RNN’s initial hidden vectors.

In order to provide a basic background on deep learning for those with limited expertise
in that area, Chapter 3 presents the building blocks of the deep learning used in this work. It
also describes in detail the original models used as baselines when evaluating our method.

Chapter 4 describes the datasets used, the preprocessing techniques applied to the data,
the exploratory analysis we performed, including the two formulations of the HR estimation
task: predicting the variation w.r.t. the initial value (delta formulation) and predicting the HR
directly (direct formulation). In addition, we describe adaptations to baselines methods used,
which were initially designed for the HAR task.

Chapter 5 details the novel aspects of our work, including the key hypothesis we inves-
tigate (“It is possible to encode information about physical conditioning from an individual’s
sensor data as a vector and use it as the initial state of a RNN to improve heart rate predic-
tions?”). We also describe each component of the proposed model.

Chapter 6 describes how the experiments were conducted and their results, in the com-
parative and ablation studies, in both the delta and direct formulations. We also analyze the
results, explaining the general behavior of each model, and their main differences.

In Chapter 7, we show that our method can be easily adapted to a related task: PPG-
based HR estimation. We conduct a comparative study to the state-of-the-art using two impor-
tant datasets.

Chapter 8 concludes this dissertation, wrapping up our contributions and present some
suggestions for future, complementary works.
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Chapter 2

Related Work

In this chapter we review the main studies related to the task of IMU-based multi-step HR
estimation, including numerous approaches taken for estimating the HR, methods used in the
related tasks of HAR and PPG-based HR estimation, techniques applied to extracting features
from sensor signals, and various approaches to initialize RNN hidden vectors. We review these
related tasks not only because they share characteristics with HR estimation, but also because
we adapt the proposed model to these tasks in order to to evaluate whether it can be considered
a fertile approach.

We find out that a wide variety of approaches have been proposed for predicting the
HR. Classical methods used differential equations, while more recent techniques are based on
Hammerstein-Wiener models, neural networks and ensembles. We also verify that the majority
of studies used task-specific attributes and predicted only a few seconds into the future, though
a single study ([38]) tackled both the multi-step prediction task and IMU data as attributes. In
general, this studies lack of standardization: most of them demonstrate the strength of their pro-
posed techniques on different datasets, not publicly available, thus hindering a fair performance
comparison among them.

However, the HAR task using IMU sensors is much more standardized, with a few
widely used datasets, providing a more systematic path for comparing the performance of dif-
ferent methods. Classical approaches have clearly been outperformed by deep learning meth-
ods, with LSTM-based and CNN-based methods showing the best performance. More recently,
attention-transformer networks, have been shown to be on par with the best performing CNNs
in some, but not all datasets [37, 26]. HAR studies also have shown that CNNs are effective fea-
ture extractors. However, we also review traditional alternatives available for features extraction
in sensor data.

Unlike the IMU-based multi-step HR estimation, HAR does not involve predicting over
a sequence of outputs. On the other hand, the task of PPG-based HR estimations, which makes
use PPG signals as extra features, shares the important similarity to IMU based multi-step HR
prediction of being modeled as a sequence to sequence task. PPG-based HR estimation, has
been traditionally tackled by customly devised filtering methods, which have been now outper-
formed by NN on large datasets, indicating a convergence towards the use of the latter approach
in dealing with IMU sensor data.



2.1. Heart rate prediction 19

We also investigate the techniques proposed to initialize Recursive Neural Networks
hidden vectors, finding out that techniques using both features and labels form a previous period
have been used to encode a RNN’s hidden state in the context of dynamics systems to improve
the encoding of the dynamics systems initial state.

The following sections provide a detailed review of these topics.

2.1 Heart rate prediction

To model the HR dynamics under physical strain, many studies have limited their scope
to specific activities and therefore chosen to use attributes closely related to the source of strain
in those activities. The works of [21], [18] and [2] for example, involved the use of cadence –
the rate at which a cyclist pedals – and power – the energy spent for pedaling per unit of time
– as features for their HR prediction models under the load of cycling exercises. The models
proposed in [6], [41], [12] and [42] on the other hand, made use of velocity and acceleration as
predictor variables, since the scope of their work was limited to walking and running activities.
In attempting to model the HR under general, daily activities, [40] and [38] used wrist-worn
accelerometer sensor signals as features for their proposed models.

As various attributes were used for predicting the HR, a variety of modeling techniques
have been applied for this task. The works of [6, 41, 18] used differential equations for modeling
the HR dynamics, while [12] used 1st to 4th order polynomial regression as the prediction model.
[2], on the other hand, predicted the heart rate using a Hammerstein-Wiener model.

Few studies used IMU sensors to predict the heart rate (HR). [40] used a simple Feed-
Forward Neural Network to predict the HR one step ahead, given its current value and the
average signal of each IMU sensor on the previous step. Quite similarly, [38] performed a
multi-step HR prediction by repeatedly using the HR computed for step t to predict the HR for
step t+1. Their experiments demonstrated promising results, but had some notable deficiencies,
such as the use of data from a single individual in his daily activities, therefore without much
variation in the HR values.

Also on multi-step HR estimation, but using speed and acceleration as inputs, [42] pro-
posed a Bayesian combined predictor, where one of the estimators was a linear regression and
the other a neural network architecture similar to that of [38]. In their experiments, data from
multiple individuals performing running sessions was used, thus addressing some of the short-
comings in [38]. However, the proposed method required calibration with actual HR data every
90s, reducing its practical use.

Table 2.1 lists the main studies which proposed models for HR estimation. In the table
methods are classified by their underlying model type as Neural Networks (NN), Differential
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Equations (DE), or a combination of different types of models (Hybrid). It also classifies pre-
diction span as short-term (predicting a few seconds into the future) or long term (when a model
is used to predict at least tens of minutes into the future). Last, it also describes the types of
attributes used by each model. We also include our proposed model in the table (PCE-LSTM).
It differs from [38] in that we use more recent types of NN architectures, investigate RNN
initialization and apply our model to publicly available datasets.

Study method type prediction span attribute type

[6] DE short term speed
[40] NN short term IMU
[38] NN long term IMU
[41] DE short term speed
[18] DE short term cadence and power
[21] NN short term cadence
[42] Hybrid short term speed

PCE-LSTM (ours) NN long term IMU

Table 2.1: Classification of Existing HR Prediction Methods

2.2 Human Activity Recognition

Human Activity Recognition is a task which uses sensor data, commonly IMU, to pre-
dict the activity being performed by an individual. [9] studied the performance of Deep Feed-
Forward (DNN) Networks, CNN and Long-Short Term Memory (LSTM) models, demonstrat-
ing that CNN and LSTM based models outperform DNNs and, among them, the best performing
model was very dependent on the dataset used. In particular, for PAMAP2 [24], CNN was the
best model.

A hybrid model based on both CNNs and LSTM was devised by [22]. This model
transforms the sensor signals using a CNN-based module and the output is then used to feed the
LSTM. Although it achieved good results, the CNN-based architectures introduced by [26] had
better performance in all datasets which were used in both works.

More recently, some works proposed the use of self-attention based architectures for
this task [33, 37]. The model proposed by [26] outperformed the one proposed by [33] in the
datasets that were common to both works. [37] proposed a deep attention model that was able
to surpass [26] in some, but not all datasets. A more extensive survey was conducted by [35],
where the authors review and categorize the variety of neural network architectures proposed
for this task as convolutional neural networks, deep fully-connected networks, recurrent neural
networks, deep belief networks, stacked auto encoders and hybrid approaches.
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2.3 PPG-based HR Estimation

The HR is precisely measured by Electrocardiography (ECG) devices, which use elec-
trodes placed on cleaned areas of the skin, making it inconvenient for users to wear for contin-
uous HR monitoring in their daily lives. An alternative for measuring the HR is Photoplethys-
mography (PPG) sensors. These are light-based, non-intrusive sensors, widely used in fitness
watches, such as Apple Watch, Fitbit Charge and Samsung Simband [25]. User motion, never-
theless, interferes with PPG signals, reducing the sensors accuracy (this interference is referred
to as motion artifacts). In order to make the PPG-based HR measurements more robust and
accurate, a number of methods have been developed, which combine PPG and accelerometer
signals to estimate the HR, attempting to remove the inaccuracies added by motion. This is
known as PPG-based HR estimation.

Earlier work on the task tended to use filtering methods [23, 15] or techniques to separate
the HR component from the noise component in the time domain. The release of two datasets
for the IEEE Signal Processing Cup in 2015 [43] stimulated further research on PPG-based
HR estimation, and many techniques, mostly based on the frequency domain, were developed
[31, 39, 27, 4].

Further datasets have been released: PPG-Motion [13], PPG-Bruce [16], WESAD [28],
PPG-DaLiA [25]. Deep learning methods outperformed the classical methods on the largest
datasets, namely -WESAD and PPG-DaLiA [25]. This is expected as deep networks’ prediction
accuracy often continues to improve with the amount of training data due to their large capacity.
Table 2.2 shows the mean absolute error of two classical methods [27, 29], a CNN method [25],
and our proposed method, in four datasets (these values were transcribed from [25]).

Shaek2017
[29]

SpaMaPlus
[27]

CNN Ensemble
[25]

PCE-LSTM Ensemble
(ours)

IEEE Train
[43]

2.91 4.25 4 6.96

IEEE Test
[43]

24.65 12.31 16.51 26.21

WESAD
[28]

19.97 9.45 7.47 4.97

PPG-DaLiA
[25]

20.45 11.06 7.65 5.22

Table 2.2: Mean Absolute Error (MAE) of various methods on different datasets for PPG-based
HR estimation task
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2.4 Dealing with Sensor Data

Sensor data, such as those of accelerometers and gyroscopes (IMU), commonly present
in smartwatches in the wrist of a person, are hard to be interpreted, especially in 6 degrees
of freedom systems (3 for translation, 3 for rotation). Many approaches for extracting useful
features from those signals have been proposed in the literature. In this section, we present
some of the them, particularly those introduced in studies related to HR estimation and HAR.

[38] and [40] used averages of the accelerometer signals over sliding windows as fea-
tures of their HR prediction models. Although very simple, this approach was enough for their
model to achieve reasonably good results on their experiments.

A more elaborate approach was adopted by [34]. In that study, they extracted 561 statis-
tical features from sliding windows of accelerometer and gyroscope data, and then performed
dimensionality reduction, using Principal Component Analysis (PCA), down to 70 features. It
showed that the reduction on the number of features slightly lowered the performance of their
HAR model, which was compensated by a drastic reduction in training time in comparison to
that required by the complete set of features.

Making use of the fact that motion and HR is periodic in nature, [25] transformed the
raw signals from the time domain to the frequency domain using Fast Fourier Transforms (FFT),
becoming the state of the art in PPG-based HR-estimation.

Building on the success of convolutional neural networks (CNN) on learning the good
features for image classification, [22] and [26] used convolutional networks consisting of many
layers as part of their models to extract deep features from the raw sensor data. Besides becom-
ing the state of the art at their respective times of publication, this end-to-end neural network
approach avoided the need of using human expertise to design adequate features.

Working with raw IMU sensor data is challenging and many approaches have been pro-
posed to solve this task. Starting from simple statistical attributes extraction, approaches have
evolved, tending to converge to the use of NN to perform feature extraction, even if custom
human-designed transformations, such as the transformations to the frequency domain, still
prove to be useful [25].

2.5 Recursive Neural Network Initialization

Recurrent Neural Networks (RNNs) are widely used for multi-step predictions because
they can carry information regarding the “hidden state” of a sequence through time as vectors.
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Although the performance of RNNs can be highly dependent on the initialization of these vec-
tors, most often, they are simply set to zero. Sometimes, the RNNs are set up so that the state
vectors go through some iterations (washout period) before the first prediction can be returned.

A few studies have proposed methods for initializing state vectors of RNNs. The early
research of [44] proposed initializing the RNN with a vector proportional to the backpropagated
errors to regularize and improve the training stability of a RNN.

[36] proposed a general framework for auto-regressive tasks, where contextual informa-
tion to the task, such as the embedding of the fist word in a sentence in the Natural Language
Processing (NLP) domain, is used by another NN to compute the initial hidden state of RNN.
In the constructed tasks of associative retrieval – where, given a sequence of symbols and a
key symbol, the model should return the symbol after the key in the original sequence – and
the auto-regressive task of predicting damped oscillations (x(t) = Ae−btcos(ct)), they demon-
strated their framework is able to significantly speed up the convergence of the model, but
not improve the final performance of the model, when virtually unlimited training iterations is
available.

Knowing that, in dynamical systems, the initial state is a determining factor in the future
states, [19] sought to improve on the the typical use of a washout period to encode the state of
the system. In modeling an aerial vehicle dynamics, they proposed a method where data from
before the prediction, both features and labels, using a specialized NN, is used to compute the
initial hidden state of the RNN. Using some simplifications, they formulated a loss function
for the optimal hidden state, and jointly trained both networks, with the loss function defined
as the sum of the loss in main task and that of the RNN initialization. In their ablation study,
they showed that the improvement brought by their method, in comparison to using a washout
period, was greatest in the first iterations with gains reducing over time, while still remaining
better in the latter iterations.

A few studies have attempted to improve on the usual zero initialization of RNN hidden
states. The more recent methods seem to converge on the use of specialized neural networks to
compute the hidden state.
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Chapter 3

Technical Background

As this dissertation presents a study about deep learning models to predict the heart rate, we
dedicate this chapter to explain the building blocks of deep artificial neural networks. We also
present the specific architectures that we adapt to create baselines for the methods we developed
in this dissertation.

We start from the fundamentals of deep learning and one of its most basic building
blocks: the multi-layer perceptron (MLP). Then we shift our attention to architectures which
take advantage of properties of the task at hand. First we explain convolutional neural net-
works (CNN), which leverage on the spatial relationship between features, and then we look
at Recursive Neural Networks (RNN), which take advantage of the sequential nature of some
tasks. Finally we discuss attention transformers, a newer architecture which generalizes the way
features are aggregated, as opposed to the first two, which work by imposing certain constraints.

In the second part of this chapter, we explore some details of two well performing archi-
tectures for HAR: the “Deep Convolutional LSTM” [22] and the “CNN IMU 2” [26]. We chose
the former for its good performance and for being recursive, which facilitates the adaptation to
multi-step predictions tasks, and the latter for being the current state-of-the art in HAR.

3.1 Multi-layer Perceptron

At a high level, Neural Networks consists of layers of non-linear transformations on the
input features. A feature j of layer ℓ + 1 (with Nℓ features), denotedf ℓ

j , is computed from a
non-linear transformation (F ℓ), named activation function, of a weighted sum of the features in
layer ℓ.

f ℓ+1
j = F ℓ(

Nℓ∑
k=1

wℓ
j,kf

ℓ
k)

The idea behind using multiple layers in succession is that, with each new layer, a higher
level representation is built into the latent space (features of that layer). This progresses to the
last layer, where a prediction in computed from a linear transformation of the last layer’s latent



3.2. Convolutional Neural Networks 25

space. For binary classification, the output is commonly normalized using a sigmoid function,
making the interpretation of the predicted value as the the probability of belonging to a certain
class, and for multi-class classification, the normalization is usually performed by soft-max.

In supervised settings, the weights (W = [wℓ
j,k]) of the model are computed by an

iterative process called training, where the weights are fit to a set of data containing both the
input features and the labels using optimization methods, aiming to reduce difference between
what is predicted and the actual values. Nowadays, the most commonly used optimization
methods for deep learning are based on gradients propagated along the layers in respect to a
loss function, that is, a metric for the (lack of) quality of predictions.

In order to prevent the network from becoming too dependent on a subset of features, a
method called dropout was developed. During the training phase of a network, this method ran-
domly disables a fraction of the neurons in a layer, with a certain probability: a hyperparameter
called dropout rate. This technique helps the optimization algorithm avoid local minima.

In early research of artificial neural networks, the most common activation function used
was the sigmoid (σ(u) = 1

1+e−u ), for being differentiable in the entire real domain, and for being
interpretable in statistics, as this function maps any real number into [0, 1] (a single neuron using
this activation function is named perceptron, leading to the name of this architecuture: “multi-
layer perceptron”). Another commonly used function, with similar attributes to the sigmoid, but
mapping real numbers into [−1, 1], is the hyperbolic tangent (tanh(u) = 1−e−u

1+e−u ). More recently
it has been noticed that using the Rectified Linear Unit (ReLU(u) = max(0, u)), and variations
thereof– like the Leaky ReLU (LeakyReLU(u) = max(au, u), with 0.01 as a common value
for a) –usually allow for better training of the NN.

3.2 Convolutional Neural Networks

Convolutional Neural Networks were designed to take advantage of the spatial relation-
ship between features, as those closer together tend to be more correlated than those further
apart. Another key characteristic of CNNs is their invariant to the position in the input, as it
performs the same computations, regardless of the location.

More specifically, in this architecture, a feature from layer ℓ, f ℓ
j , is not computed from

all features of layers ℓ − 1, but only from those within a defined distance (kernel size) from it,
that is, those features inside a certain a window (called kernel).

Another difference is that the weights are shared among windows, that is, the weights
used to compute f ℓ

j , are the same used to compute f ℓ
j+1. Therefore, the weights are applied as a

sliding window, with a specific step (called stride).
A kernel (which contains the weights) spans over all features spatially within that win-
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dow, that is, in the case where the input is a picture with (3) RGB channels, a filter with kernel
of size (2× 2), has 12 = 2 · 2 · 3 weights.

It is important to note that the definition of what is “spatially close” is chosen by the
designer of the network. For example, a picture is represented as a tensor, where the width,
height and channel dimensions are seen just as the dimensions of the tensor. There is nothing
about the channel which would distinguish it from the other two dimensions. The designer of a
network, with domain specific knowledge, defines what has “spatial correlation”.

Figure 3.1 represents two types of convolutions, where the filter is represented in blue,
bold edges and the feature data is represented in black edges. The first represents the application
a 1D convolution filter, with kernel of size 2 and stride 3, applied over feature data of length 5
and three channels. The second represents the application of a 2D convolution with kernel of
size 2× 2 and stride 3× 3 over feature data of width 5, height 5 and 3 channels, representing a
5x5 picture depicting the number “2” in red. We use strides larger than the kernel sizes only for
illustration purposes, as this would cause some data loss.

In order to avoid the loss of data from edges or enable the retention of dimension size of
the data, a technique called padding, is applied. With padding, the length of the feature input is
increased on the extremes by adding 0 value points.

Stride: 3

Kernel size: 2

(a) 1D Convolution (b) 2D Convolution

Figure 3.1: Examples of Convolutions

Another common operation used in CNNs is “Max-Pooling”. In this operation, instead
of the linear combination of the values in a kernel as done in the convolutions, it is the max-
imum value inside a kernel for each channel that is passed onto the next layer. In this way,
dimensionality reduction is achieved without any additional parameters.
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As a further source of information about the CNN, we refer the reader to [1].

3.3 Recursive Neural Network

Recursive Neural Networks (RNN) embody the idea that information may me acquired
sequentially, so that a new representation of the data (i.e., hidden state) is created, while new
inputs are added to the model, so that information about the order of the data is encoded by the
order of the updates to the hidden state.

An RNN stores an internal representation ht of the information seen up to step t in
a latent space, which is updated as new data is fed to the network. A key characteristic of
this type of network is that the same computations are applied to every new input (xt) and the
previous latent state (ht−1), by a network called RNN Cell. An important characteristic of this
type of network is that is does not constrain the number of inputs fed into the network, even
allowing for sequences of different lengths. Figure 4.2 represents a general recursive neural
network.

RNN
Cell h1

RNN
Cell h2

x1 x2

RNN
Cell ht

xt

...h0

Figure 3.2: Representation of Recursive Neural Networks

A basic RNN represents the latent state as a single vector (h), and combines the values
of the latent space with the features xt of iteration t, using a sum of the linearly transformed
vectors (with weights Wx and Wh), using a non-linear activation function (σ).

ct = σ(Wxxt +Whht−1)

This architecture has notable issues, known as the vanishing and exploding gradients. As the
gradient between the loss function (E), with respect to the weights (W : Wx,Wh), at iteration
t, can be approximated as proportional to the product of the weight matrices up to that iteration
∂E
∂W

∼ W t, as the sequence grows, this gradient tends to 0, if the largest absolute eigenvalue λ

of W , is less than 1 (“vanishing gradients”), and to infinity, if λ is greater than 1 (“exploding
gradients”). This leads to instability during training using the usual gradient-based optimization
methods.

To mitigate this problem, more elaborate architectures have been designed that use
“skip-connections” to carry the hidden states without change when no relevant information
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is added in the input . The most well-known variants of the “vanilla” RNN cell are the Gated
Recurrent Unit (GRU) and the Long Short-Term Memory (LSTM). We will delve into details
of the LSTM, as it is used throughout this dissertation.

The LSTM is based on the idea that, when new information comes in, some of the old
information may lose its relevance, in which case the new data must be used to update the
hidden state. This architecture has components that represents this idea explicitly: a forget gate
and an input gate.

LSTMs use a latent state composed of two vectors that carry information, namely the
Hidden State ht and the Cell State ct. For each time step t, the input xt is concatenated with the
previous hidden state ht−1, forming a new column vector It. From vector It, three other vectors
are computed, namely the forget, update and output vectors. The forget vector define how much
of ct−1 is passed onto ct. The update vector define how much of I is added to ct, and the output
vector define how much of a scaled ct makes up ht. Figure 3.3 represents the components of a
LSTM. For more in-depth information about RNNs, we refer the reader to [30].

𝛔 tanh 𝛔 𝛔

X

tanh

ct-1

htht-1

ct+

X

X

xt
Figure 3.3: Components of a LSTM Cell

3.4 Attention Transformers

Attention transformer networks generalize the traditional neural networks, as the weights
used to compute a neuron are not constant, but a function of neurons connected to it.

The attention mechanism is composed of three main parts, namely a “query” vector
(q) and key-value pairs of vectors (k,v). Pairs (k,v) are computed from the source neuron,
whereas the q vector is related to the destination neuron. Considering the key and value vectors
from the source neurons packed as rows into the matrices K and V, the value of the destination
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neuron is computed by the dot-product attention as:

Attention(K,V,q) = softmax(qKT )V

The case where q is also computed from the neurons of the previous layer is called self-

attention.
A variation of the attention mechanism, called multi-head attention, occurs when, the q,

k and v vectors are linearly transformed into h other vectors each, so that the h heads of the
attention mechanism compute the results from these projected vectors in parallel. The output
vectors are concatenated and linearly transformed to yield the final transformed output.

The attention-transformer is an encoder-decoder architecture, where a set of k,v pairs
are computed from a source sequence of inputs using self-attention layers, which make up the
encoder, and the inputs from a target sequence are used to compute the q vectors in the decoder.
The predictions calculated in the decoder using attention sublayers that attend to the (k,v) pairs
coming from the encoder’s last layer and self attention sublayers that attend to the decoder’s
previous layer. Figure 3.4 illustrates an attention-transformer architecture.
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linear linear linear
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Figure 3.4: Attention Transformer

Differently from RNNs, Attention Transformers attend to all inputs simultaneously,
therefore solving the bottleneck of RNNs, where information from previous inputs should be
kept into the hidden state for long-term dependencies. One shortcoming is that this causes trans-
formers to be position-invariant. Therefore a positional encoding is usually added to the input
vectors.
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Nowadays, most state-of-the-art language models are based on attention transformers.
BERT [7], which is regarded as one of the best language models, for example, uses only the
encoder part of the transformer, and innovates especially on how the models are trained.

For further information regarding to the attention mechanism, we refer the reader to
[33] which introduced attentions transformers. In the next section we turn our focus to well-
performing architectures designed for the HAR task, which we adapt to benchmark our model.

3.5 Deep Convolutional LSTM

The Deep Convolutional LSTM [22] is a neural network architecture proposed for the
IMU-based HAR task. It is composed of two key parts, a Convolutional Neural Network to
extract patterns in the raw sensor data, and a 2-layer LSTM network, to account for temporal
dependency in the data.

This study segmented the raw sensor data into 500ms windows, from which the predic-
tions are computed. The sensor data in the time window is arranged in a 2-D tensor, where
time is represented along the length dimension, and the sensors along the height dimension.
The CNN subnetwork, processes data from each of the sensors independently, while sharing
the filters by using a 1×5 kernel in all convolutional layers. There are 4 layers of convolutional
transformations, each made of 64 filters and followed by ReLU activation functions. It does
not use padding, therefore, the length of the input tensor is reduced by 16 units after passing
through the four convolutions.

To account for temporal relations between the attributes, this architecture uses a 2-layer
LSTM architecture where a vector containing the probabilities of belonging to each class is
computed using a softmax normalization from the last hidden state from the second layer. Fig-
ure 3.5 represents the entire architecture, with the convolutional components represented in
green, the LSTM components in blue, the softmax in red and the tensors in white.

3.6 CNN-IMU2

More recently, an architecture called CNN-IMU2 was proposed for HAR by [26] and it
is composed of CNN and MLP subnetworks. It has some striking similarities to the CNN com-
ponent of the Deep Convolutional LSTM [22], but contains some key differences, especially in
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Figure 3.5: Deep Convolutional LSTM Architecture

the way it splits the sensors into separate sets, and by using max-pooling components.
Like Deep Convolutional LSTM, CNN-IMU2 also predicts over time windows, but it

regards the window size a hyperparameter and uses different window sizes for different datasets.
The convolutional subnetwork is made of the same four layers, as Deep Convolutional LSTM,
but has two max-pooling layers of size 1x2, added as layer 3 and 6 of the architecture.

Given that most datasets have sensors from a number of devices, each attached to a
different part of the human body, this work points that the set of sensor from each device should
have its features extracted by a different set of filters. Therefore, this architecture uses parallel
convolutional networks for the sensors in each of (K) devices.

After going through the CNN subnetworks, each tensor is passed onto a fully connected
layer that outputs a 512-dimensional vector . Then, after being concatenated, it goes through
another MLP composed of two layers, the first with 512 neurons and the second, without acti-
vation function, and a number of neurons equal to the number of classes of dataset. Finally a
softmax is computed, outputting the probabilities of each of the classes. Figure 3.6 represents
the architecture, where the convolutional parts are shown in green, the MLP in orange and the
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softmax in red.
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Chapter 4

Methodology

This dissertation addresses the problem of predicting the heart rate Ht of an individual at time
t, given IMU sensor data gathered up to time t and HR values from an initial, short lived period,
H1, . . . , HI . We refer to this task as IMU-based multi-step heart rate estimation. For this
study, we choose the PAMAP2 [24] and PPG-DaLiA [25] datasets, which are among the very
few publicly available sets containing both IMU and HR signals from individuals performing a
variety of activities. PPG-DaLiA also has data from PPG sensors, which is disregarded in this
first task.

The case where PPG sensors are available (in addition to IMU) is then addressed in
this dissertation as a secondary prediction task, referred as PPG-based multi-step heart rate
estimation. Since PPG data are heart rate measurements that can be perturbed by movement
(motion artifacts), this task consists of correcting such measurements based on IMU data. For
this task, we use the WESAD [28] and the (complete) PPG-DaLiA datasets. We show that it is
possible to adapt the architecture proposed for the first to the second task with minor changes.

We consider two alternative formulations to tackle the problem of IMU-based multi-step
heart rate estimation. The first, which we call “delta formulation”, defines the difference from
the initial heart rate HI as the response variable. This formulation was defined to enable the use
of a larger number of baseline methods, for it is easier to adapt non-recursive methods to this
formulation. The second, named “direct formulation”, has the heart rate itself as the target.
In some sense, the delta formulation was considered for preliminary experiments. The direct
formulation, arguably the most natural among the two, is considered for a much more thorough
set of experiments.

We begin this chapter by detailing the three publicly available datasets we used and how
they may or may not contribute to the task of predicting the heart rate for individuals undergoing
physical activity.

Next, we describe the preprocessing used in this work, including how we deal with the
missing data-points, how we join data from different sampling frequencies and how we deal
with the time series data using sliding windows.

We then present the “delta formulation” and the “direct formulation” used in the exper-
iments for the IMU-based HR estimation task.

Last, the baseline models are presented. They include: NN architectures proposed
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for HAR, the only model proposed for IMU-based multi-step HR estimation and a standard
attention-transformer developed by us. We include this architecture because transformers are
being increasingly regarded as the best model for sequential data.

In summary, this chapter we describe how we approach the task of estimation the HR
multiple-steps into the future, and the methods used as baselines.

4.1 Datasets

Because this dissertation models the impact of physical activity in the HR using IMU
sensors in different individuals, it is important that the datasets used in the evaluation contain
IMU data from a large number of subjects, performing varied physical activities. Yet, these
characteristics have not been found simultaneously in any single publicly available dataset.

The PAMAP2 dataset comprises data from many different physical activities, which are
both intense and significantly distinct from one another, such as soccer playing, rope jumping,
running and cycling. It also contains data from lower-intensity activities, such as laying down,
sitting and watching the TV. Its greatest disadvantage is having a smaller number of subjects
(9) and a shorter of time series (about one hour per subject) in relation to the other datasets.

In contrast, PPG-Dalia has a larger number of subjects (15) and far longer time series
(most last longer than 2 hours). It has, nevertheless, a smaller number of activities, from which
cycling and walking are the most intense. This dataset also contains PPG data, enabling it to be
used in PPG-based HR estimation.

The WESAD dataset, despite containing an equal number of subjects and sensors as
PPG-DaLiA, is not adequate for evaluating the impact of physical activities on the HR, as the
subjects remain seated/standing during the entire recorded duration. This dataset is useful,
though, for PPG-based HR estimation.

Below we describe each dataset in more detail.
The PAMAP2 Dataset [24] consists of data from 40 sensors (accelerometers, gyro-

scopes, magnetometers, thermometers and heart rate sensor) sampled at 100Hz of 9 individuals
performing 18 different activities, ranging from rope jumping, cycling and running to laying
down, sitting and standing. There is a single time series of sensor signals per individual, each
performing a sequence of activities. Later on we explain that the time series for 1 of the 9 the
individuals is too short for training the models.

The PPG-DaLiA Dataset [25] is composed of signals from two devices: a chest-worn
device which provides accelerometer and ECG data, and a wrist-worn device measuring the
photoplethysmography (PPG) and triaxial acceleration, sampled at 32 Hz. The heart rate series
is computed from the ECG signals. This dataset contains a contiguous time series of sensor
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signals from 15 individuals performing 8 activities. We create a variant of this dataset, hereby
referred simply as the DaLiA dataset, which does not include the PPG signals to use in the
IMU-based multi-step HR estimation task.

The WESAD Dataset [28] consists of data from 15 subjects wearing the same sensors
available in PPG-DaLiA, but differently from that dataset, the individuals remain seated/standing
during the whole study while going through different affective states (neutral, stress, amuse-
ment), which are elicited by watching funny video clips to bring about amusement, and by
compelling the subjects to deliver speeches, in order to trigger stress. Unlike PPG-DaLiA, WE-
SAD does not provide precomputed heart rate series, therefore we used the heartpy library [32]
to extract heart rate measurements from the ECG signals. Although subjects are indexed up to
number 17, the dataset does not include subject identifiers 1 and 12.

In total, we use data from 23 (resp. 30) individuals for the IMU-based (resp. PPG-based)
multi-step heart rate estimation task.

4.2 Preprocessing

In this section, we describe the data transformation operations performed in order to
prepare the data to be used by the model. We start by explaining the handling of missing IMU-
signal data points and the normalization performed. Then we describe the aggregation of the
time series into time snippets. Finally, as we aim to predict the impact of physical exercises
for specific individuals through the encoding of physical conditioning using a small, previous
interval containing both HR and IMU data, we detail the distinctions between this interval and
the interval we actually use for prediction.

Basic Preprocessing: We upsample the heart rate signal using linear interpolation in all
datasets to make its sampling rate consistent with the other signals. Only PAMAP2 contains
a few missing sensor signal data points, which we handle by local averaging the data around
the missing point using a 0.4s window [8]. To make the use of the PAMAP2 and PPG-DaLiA
datasets more consistent, we use only the accelerometer signals of the chest and wrist, down-
sampled to 32Hz, under the direct formulation. Conversely, under the delta approach we use
accelerometers, gyroscopes, and temperature sensors, on the hand, chest and ankle as fea-
tures, since we conduct experiments only on PAMAP2. All signals s are z-normalized, i.e.,
ŝ = (s − µ(s))/σ(s), where µ stands for the mean operator and σ for the standard deviation
operator.
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Figure 4.1: Time Snippet Representation

Time Snippet Discretization. Like many techniques based on high frequency sensor signals,
we split the time series signals into time snippets (TS), i.e., partially overlapping windows of
fixed duration τTS and overlap ratio rTS. Figure 4.1 illustrates this procedure for the case when
rTS = 0. Each time snippet TSt is a matrix where each row represents a sensor. The heart
rate signals are also included in the time snippet, but in the Predictions Segment (which will
be discussed shortly), when no heart rate signal should be available to the models, their values
are replaced by zeros. As the models make one prediction per time snippet, this determines the
granularity of the predictions. Accordingly, we define the average heart rate Ht for each time
snippet TSt as the response to be predicted.

Time Series Segmentation. A contiguous segment of sensor signals of a subject is partitioned
into two smaller segments. The first, called Initialization Segment, contains the IMU and HR
signals for the first I time snippets, and can be used by a neural network (NN) to encode a
“state” specific to that time series and individual. The second, called Prediction Segment,
contains the IMU, but does not contain HR, as it is used by a (possibly different) NN to output
predictions for each time snippet. Figure 4.1 illustrates the subdivision of a segment, in the case
where time snippets do not overlap in time (rTS = 0).

During the training phase, in order to create a fixed-length training set, we segment the
time series of each individual in a sequence of N contiguous time snippets. Hence, a longer
series can yield more segments and, in turn, more initialization segments to train the physical
conditioning embedding subnetwork.
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4.3 Problem Formulations

Prediction models may be classified as either recursive or non-recursive. In addition to
input features, recursive models use the values computed in the previous step, such as its latent
state or the last prediction, to compute the prediction in the current step. On the other hand,
non-recursive models only use the input features for their predictions.

Multi-step prediction problems are more naturally represented by recursive models. Yet,
the state-of-the-art model for the HAR task, used to create one of the baselines for evaluate the
proposed model, is non-recursive.

To enable the use of non-recursive models for IMU-based heart rate estimation we refor-
mulated the prediction task so that the models must predict the difference in heart rate between
the current step and the previous step. This prediction is fairer to non-recursive models, as in
this way, the description of the heart rate as a continuous function over time is intrinsic to this
modeling. We call this approach “delta formulation”.

On the other hand, in the “direct formulation’, the models must predict the actual HR
values. Some baselines from the literature are recursive and hence, suitable for this type of
prediction.

In the remainder of the section we formally define both formulations.

Delta Formulation: In principle, non-recursive models could be used for multi-step heart
rate prediction, such as the state-of-the-art model for HAR [26], by replacing the response
variable yi with the heart rate Hi. However, this is unlikely to yield good results as there
is no constraint that prevents subsequent predictions Ĥi, and Ĥi+1 to be very different. To
address this issue, this formulations considers the problem of predicting the change ∆Hi =

Hi−Hi−1, between two measurements. Since we have the last heart rate measurement Hi from
the initialization segment, we can reconstruct a HR prediction Ĥi, at time i, from the predictions
∆Ĥi, as

Ĥi = HI +
i∑

j=I+1

∆Ĥj, for i ≥ I + 1.

We take this approach mostly to perform comparative studies, though we also conduct
ablation studies in this formulation.

Direct formulation: The direct formulation is more natural and, hence, the main approach
in this dissertation. We consider it when experimenting with the use of ensembles and with a
method for better encoding the physical conditioning of the subjects.

In order to adapt non-recursive methods to multi-step predictions in this formulation,
more changes to the original architectures would be required, compromising a fair comparison.
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Figure 4.2: FFNN architecture

Therefore we chose to benchmark our model only against recursive baselines, in this formula-
tion.

4.4 Baseline Models

To the best of our knowledge, the task of predicting multiple steps of heart rate given
IMU signals has only been attempted by [38], which reported their experiments only in datasets
not publicly available. In addition to using our implementation of their model as a baseline,
we also adapt two models designed for a similar task (HAR), as well as a standard attention-
transformer-based model to benchmark our method. In this section, we describe each of these
models, the task they were originally designed to address and minor changes required to adapt
them for the task at hand.

FFNN [38] is a feedforward neural network by [38], and the only model in the literature pro-
posed for multi-step HR prediction from IMU sensor data. Although some promissing results
were reported, this model was applied only to a dataset that is not publicly available, which
comprised a single time series of one individual performing normal daily activities. FFNN is a
recursive architecture with skip connections using data from a wrist-worn triaxial accelerome-
ter. The model used the average measurement of each sensor in a non-overlapping window of
30s. As the architecture details were not reported, we used ReLU as the activation function, set
the layer size to 16 (we also experimented with sizes 8, 32, 64, obtaining worse results). We
adapted their architecture, using a time window of τTS = 4s to make it more comparable to our
method (testing with τTS = 30s as in the original work yielded worse results). We also used
Adam for network weight optimization, instead of the genetic algorithms used in that study.
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Figure 4.3: DeepConvLSTM architecture

Figure 4.2 illustrates the FFNN architecture.

DeepConvLSTM [22] is an architecture designed for the HAR task. It performs a sequence
of convolutions on the input series, with padding adjusted so as to keep the dimensions of
the tensor the same. The deep features from each time entry feed a LSTM. From each of the
LSTM’s hidden vectors, a prediction is computed using a single linear layer. In our adapted
version, we select only the outputs corresponding to the last time input of each time snippet, as
we have only one label per time snippet. As in the original article, we set the length of time
snippets to τTS = 3s. Figure 4.3 depicts DeepConvLSTM adapted architecture.

CNN-IMU-2 [26] was proposed for the related task of HAR. This architecture was designed
for single step prediction. It consists of a sequence of convolutions on the input series, followed
by a sequence of fully connected layers leading to the prediction. In our adaptation, we used
padding in the convolutions, in order to keep the tensor dimensions the same and we split the
series into time snippets after the convolutions, so that the deep features are extracted from a
larger period than otherwise. Figure 4.4 shows CNN-IMU-2 adapted architecture.

ConvAttention (ours) is an Attention Transformer created by us as an additional baseline to
PCE-LSTM, for a thorough comparison. It uses an Encoder-Decoder architecture, where the
encoder is responsible for transforming a sequence of input vectors into pairs of key and value
vectors using multiple layers of transformer cells. Each cell is made of attention heads and feed
forward layers. The decoder also receives a sequence of vectors as input, each transformed into
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query vectors of the same size as the input using multiple layers of transformer cells. For each
decoder vector, the output is computed by the weighted sum of the encoded values where the
weights are computed from the normalized softmax of dot product between the encoded keys
and the decoder queries.

ConvAttention is made of three components: the Time Embedder, which concatenates
to the deep features a value proportional to their position in the prediction vector; a standard
Attention Transformer with 16 heads, 6 layers and feed forward expansion of 512, used for
encoding the time snippets into a vector; and the FC Prediction Decoder, used for computing
the heart rate prediction for each vector outputted by the attention transformer. This module is
a 2-layer fully connected network, using ReLU activation in the first layer. The architecture is
shown in Figure 4.5.
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Chapter 5

Proposed Model: PCE-LSTM

In this chapter we describe PCE-LSTM, our proposed neural network architecture for heart rate
prediction. We start by describing the differences of our approach with respect to the existing
ones, including the hypothesis and assumptions relevant to the modeling. We then delve into
the details of the proposed architecture, including the structure of the multiple components of
the model.

PCE-LSTM is composed of convolutional and LSTM layers, similarly to the state-of-
the-art techniques for the closely related task of HAR. However, PCE-LSTM presents a novel
approach for encoding a subject’s physical conditioning using a previous short-lived activity.
We also approach the processing IMU-sensor data differently than related works.

Our model is an end-to-end deep learning, hybrid architecture, taking advantage advan-
tage of the qualities of different types of NN, including FCNN, CNN and LSTM in the multiple
components which comprises PCE-LSTM. We also take advantage of multi-task training, using
partially Siamese networks to enable better training of the network.

5.1 Differences to previous approaches

PCE-LSTM is composed of convolutional and LSTM layers, similarly to the state-of-
the-art techniques for the closely related task of HAR. The novel aspects of this model are
discussed below.

Recurrent Neural Networks (RNNs) are a natural choice to model HR as they have been
especially designed to work with sequential data. They are composed of cells with shared pa-
rameters, which process units of the input sequentially, using one or more vectors to carry state
information through time. In particular, the unidirectional LSTM (long short-term memory)
cell uses two vectors – the hidden state and the cell state – which are received from the previous
iteration, updated based on the input for that time and passed onto the next iteration. The first
iteration, however, receives these vectors as they were initialized, typically as zero vectors. The
implicit assumption is that the network will gradually be able to encode the correct state from
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the inputs as the vectors are passed through the cells.
For HR prediction, we argue that if some data on the relationship between the input and

output signals is available prior to the prediction, it can be beneficial to use a specialized network
to encode this relationship as the RNN initial state. This initial state should contain information
about physical conditioning: a more fit individual is able to sustain similar movement levels
with smaller increase in HR. Thus, the main hypothesis investigated here can be stated as

Hypothesis: It is possible to encode information about physical conditioning from

an individual’s sensor data as a vector and use it as the initial state of a RNN to

improve heart rate predictions?

This is the rationale behind the main difference between PCE-LSTM and what distinguishes
our approach from existing ones, namely the initialization of the RNN hidden vectors using a
specialized network, which we call the Physical Conditioning Encoder.

We also employed convolutional sub-network differently than in other studies that pro-
cess IMU-sensor data. The most well-known architectures in the literature [26, 22, 25] keep the
transformations on each signal separate during the convolutional section of their architectures
by the use convolutional kernels spanning a single signal, only combining them later on. How-
ever, we argue that the role of each sensor in the description of the intensity of an activity is
equivalent to role of each RGB channel in the description of a picture. Hence, it is reasonable to
combine them early on in the NN. To do so, we use 1D convolutions along the time dimension,
with the sensors stacked along the channel dimension, as in Figure 3.1, presented in Chapter 3.

5.2 Model Architecture

Many studies which use IMU-sensor data as input for a prediction task aggregate the sig-
nals into sliding windows, called time snippets. In this dissertation we take this same approach,
which is explained in detail in Section 4.2.

PCE-LSTM uses different subnetworks to (i) extract a latent representation of sensor-
data inside a window – time snippet (TS) –, (ii) embed the physical conditioning, (iii) maintain
a temporal consistency between predictions and to (iv) compute the prediction itself. Figure 5.1
shows the high level structure of our architecture, which is made of five components:

• the Time Snippet Encoder (TS Encoder), a convolutional network which encodes the
2-dimensional TS into a vector;
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Figure 5.1: PCE-LSTM (proposed architecture).

• the Physical Conditioning Encoder (PC Encoder), a convolutional network which ex-
tracts, from signals of the Initialization Segment (including heart rate), a Physical Condi-
tioning Embedding (PCE) used for initializing the LSTM’s hidden vectors;

• the Discriminator, used for forcing the PCE of a given subject to be similar across time
segments and different from other subject’s PCE.

• the State Updater, a LSTM which maintains and updates the subject’s state, encoded in
its hidden vectors; and

• the Prediction Decoder, a Fully-Connected network which decodes the heart rate pre-
diction from the state tracked by the State Updater.

Each component is described in detail below.

TS Encoder: It is the CNN used to extract a latent representation from one time snippet,
which we call TSE. The TS Encoder comprises multiple layers, each made of a 1D convolution
followed by a Leaky Rectified Linear Unit activation and a dropout layer of rate TSEdropout.
After each layer, the tensor length ℓ is reduced to ⌊ℓ/2⌋ by filters of size 3 and stride 2. When
ℓ is even, we use padding = 1, except when the the tensor length is 2, in which case we use a
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filter of size 2 without padding. All layers have TSEF filters, except the last layer, which has
TSEout filters. The number of layers is TSEN = ⌊log2(TSL)⌋, where TSL is the length of the
time dimension of the TS, so as to transform the size of the time dimension to one. Figure 5.2
illustrates the TS Encoder architecture for a time snippet of 6 sensors, length 9 (TS period
of 90ms for a 100Hz sampling rate, for example) with the following TS Encoder parameters:
TSEF = 10, TSEout = 8, TSEdropout = 0.2 (These hyperparameters are used for illustration
only).

PC Encoder: The TSE vectors extracted from each time snippet of the Initialization Segment
are stacked along the time dimension (1), and the mean HR of each TS is concatenated along
the channel dimension (0). More formally, let TSEi be the ith columon vector outputted by the
TS Encoder (of length TSEout), and Hs = [H1,H2, ..HI] be a row vector containing the heart
rates measured during the Initialization Segment. The input tensor PCI to the “PC Encoder” is
defined by:

TSEs = concatenate([TSE1..TSEI], axis = 1)

PCI = concatenate(Hs,TSEs, axis = 0)

The PC Encoder takes the PCI as input and computes a latent representation, dubbed
physical conditioning embedding (PCE). The PC Encoder is a multi-layer convolutional net-
work that transforms the 2D-input ( (TSEout + 1)× I) into a single vector of length PCEout. PC
Encoder is a convolutional architecture designed with the same principles as the TS Encoder.
Since it has access to both the HR and the TSE embedding of the activity for a few time snippets,
it should be capable of construct some representation of the physical conditioning. Figure 5.1
illustrates how the the PC Encoder fits in the architecture.

From the PCE, the LSTM’s hidden state vector and cell state vector are computed using
a single linear layer each, represented in Figure 5.1 by FCh and FCc.
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State Updater: It is a standard LSTM with both state vectors (cell and hidden state) of size
LSTMH , and input of size TSEout. These state vectors are initialized by the PC Encoder using
only signals from the Initialization Segment. The LSTM is then fed with the deep attributes
extracted by the TS Encoder from each time snippet of the Prediction Segment.

Prediction Decoder: It takes the hidden state representation for each time snippet from the
State Updater and computes the prediction from them. It is made of three fully connected layers,
where the first two layers have 32 neurons, each followed by a ReLU activation function, and
the last layer have LSTMH neurons, without activation function, outputting the predicted HR.
We use the mean absolute error (ℓ1 loss) as the cost function LHR associated with this output
because using the ℓ2 loss hampers training, as larger differences between the predicted and
actual heart rate have an outsized impact on the loss, according to our preliminary experiments.

Discriminator: Regarding a subject’s physical conditioning as constant in the short term, we
reason that employing a Siamese network [5] to discriminate whether two Initialization Seg-
ments in the embedding space (PCE) belong to same person will foster a better embedding,
when trained jointly with PCE-LSTM.For the discrimination, two Initialization Segments are
independently transformed into PCEs using the TS Encoder and the PC Encoder (the Siamese
components), concatenated, and fed into the Discriminator module, which outputs the probabil-
ity that they are from same subject. To train the discriminator, for each segment in the training
set, we sample another segment from the same individual and a different individual with equal
probability (50%). For each pair, we measure the cross-entropy as the loss function (LD).The
total loss Ltotal is given by a convex combination between the HR estimation loss LHR and the
Discriminator loss LD, where the weight γ is a hyperparameter.

Ltotal = γLHR + (1− γ)LD. (5.1)

The Discriminator’s chosen architecture is comprised of 5 fully connected linear layers, each
with 64 neurons and followed by ReLU activation function and a dropout rate of 0.15, except
for the last layer, which uses a sigmoid activation function. Figure 5.1 shows the representation
of the discriminator in the upper left corner.
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Chapter 6

Experimental settings and Results

In this chapter we describe the experiments conducted to evaluate PCE-LSTM, present and
discuss their results. We begin by explaining the experimental setup, including how the data
was split into training, validation and test sets and how the hyperparameters were chosen. Then
we report the prediction experiments regarding the delta and direct formulations. We compare
the results achieved by the baseline models and by the variations of our proposed model.

As explained in Chapter 4, we consider the delta formulation to enable the comparison
of our model to some non-recursive models from the literature that are known to perform well.
Yet, we argue that the direct formulation is a more natural modeling of the task we investigate.
We conduct a more through set of experiments with the latter formulation, including the use
of ensembles and the use of the discriminator Siamese network, to assist in the training of the
model.

6.1 Experimental setup

To evaluate the IMU-based multi-step HR estimation results, we use both the Mean
Absolute Error (ℓ1) and the Maximum Absolute Error (ℓ∞) as evaluation metrics. The ℓ1 metric
provides the average error across the prediction segment, indicating the overall performance of
the model. On the other hand, a large ℓ∞ error could be dangerous if we are trying to determine
the safety of a physical activity for a subject.

6.1.1 Train-test split

There are many different ways to generate a train-test split for time series data from
different subjects. [14] investigated the main advantages and drawbacks of different strategies,
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from which we used two:

• Full-Non-Overlapping Window (FNOW): a non-overlapping sliding window is used
to generate the samples, where each sample is randomly assigned to the training or test
sets;

• Leave-One-Subject-Out (LOSO): the entire data from one subject is used for test, while
data from the remaining subjects is used for training;

These strategies are not mutually exclusive. We chose to use the LOSO strategy to
separate test data from the rest (training and validation). We argue that this strategy best mimics
a realistic setting where the model would be applied to individuals not present in the training set,
as in the case for most models trained offline [14]. For train/validation splits, we used different
strategies for each of the problem formulations.

Delta Formulation: In the delta formulation, we consider only the PAMAP2 dataset. We
use subject 5 for validation, with each of the other subjects iteratively used as test and the
remaining ones used for generating training samples, that is, we use the LOSO approach also for
training/validation splits. All methods were trained on time series segments of length N = 162.

Direct Formulation: Using this formulation, we make more complex experiments using both
the PAMAP2 and DaLiA datasets. In a dataset with S subjects, each of the subjects is used once
as the test subject and the remaining S−1 subjects’ time series are split into training segments of
N = 50 time snippets each and then randomly assigned to Train/Validation sets using an 80/20
split, that is, we use the FNOW approach for training/validation splits. For evaluation, the entire
series of the test set is used, as none of the models evaluated under this formulation requires a
fixed size input. For each of the S subjects as the test subject, we perform 7 executions, with
different Train/Validation splits and different neural network weight initialization, as done by
[25].

6.1.2 Hyperparameter Tuning

In order to set PCM-LSTM’s and the optimizer’s (Adam) hyperparameters, we applied a
random search, as it has been shown to be more efficient than grid-based optimization methods
[3]. We used PAMAP2’s subject 5 as reference, following [26] and [22], which used the same
subject for validation.
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Hyperparameter value

PCE-LSTM hyperparameters

TSEF 16, 32, 64, 128
TSEout 16, 32, 64, 128

TSEdropout 0, 0.15, 0.25, 0.5
PCEF 16, 32, 64, 128
PCEout 16, 32, 64, 128

LSTMH 16, 32, 64, 128

Adam’s hyperparameters

learning rate 10−3, 10−4,10−5

weight decay 10−3, 10−4,10−5

Table 6.1: Search space for random search in Delta formulation. The selected values are shown
in bold

Delta Formulation: Under this formulation, we fixed the time snippet generation to a non-
overlapping time windows of period 3 (τTS = 3, rTS = 0) and used an initialization segment
of length equal to two time snippets (I = 2). We also fixed the size of the training segment
to N = 162. The remaining hyperperameters were selected using random search on a discrete
search space, using 60 iterations. Table 6.1 shows the search space of each hyperparameter and,
in bold, the selected value.

Direct Formulation: Under this formulation, we also used random search on the time snip-
pet generating parameters, initialization segment size (I), and training segment size (N ). We
also downsampled the signals in PAMAP2, from 100 to 32Hz (the sampling rate of DaLiA).
The search was performed over 80 iterations and Table 6.2 shows the search space of each
hyperparameter and, in bold, the selected value.

6.1.3 Training setup

The models are optimized with Adam using the ℓ1 loss as the cost function associated
with the HR predictions. In each epoch, we compute the validation loss. After training is
complete, we load the model weights that yielded the lowest validation loss. Subject 9 of the
PAMAP2 dataset was not included in the analysis because the corresponding time series is
shorter than the length of the training segment.
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Hyperparameter value

Sample Generation Parameters

I 2, 4, 8, 12, 16
N 30, 40, 50
τTS 2,3,4
rTS 0, 0.5

PCE-LSTM hyperparameters

TSEF 16, 32, 64, 128
TSEout 16, 32, 64, 128

TSEdropout 0, 0.15, 0.25, 0.5
PCEF 16, 32, 64, 128
PCEout 16, 32, 64, 128

LSTMH 16, 32, 64 128

Adam’s hyperparameters

learning rate 5 · 10−3,10−3, 10−4,10−5

weight decay 10−3, 10−4, 5 · 10−5, 10−5

Table 6.2: Search space for random search in Direct formulation, the selected values are shown
bold

Delta Formulation: Training was done using a batch size of 4, as the computational resources
we had available could not handle the CNN-IMU2 with a larger batch size. All models were
trained over 100 epochs.

Direct Formulation: Training was done using a batch size of 64 over 100 epochs for PCE-
LSTM and DeepConvLSTM. FFNN showed slower convergence and hence was trained for 200
epochs.

Computational resources. All experiments were run on free Google Colab instances whose
specs were Intel(R) Xeon(R) CPU@2.20GHz, 2 cores, 2 threads per core, Nvidia(R) Tesla T4
GPU, 12G RAM.

6.2 Results

In this section we describe the results of the our experiments, under the delta and direct
formulation.

The delta formulation was devised to enable a comparison of PCE-LSTM with non-
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Model no. parameters train. time (s)

CNN-IMU-2 34,067,713 4,795
DeepConvLSTM 1,571,521 5,413
ConvAttention 2,810,368 228
PCE-LSTM 64,097 265
FFNN 369 275

Table 6.3: Number of parameters and average training time (all models were trained over 100
epochs)

recursive methods. Therefore, we focus on assessing the performance of our method in its
simplest form against a few strong baselines, through some simple experiments on a single
dataset, specifically, the PAMAP2 dataset.

The direct formulation is the most natural among the two, hence, we perform a more
through set of experiments, including some that attempt to improve the quality of the PCE
encoding by using the discriminator network. We also evaluate the performance of our model
in an ensemble and a standalone fashion.

In both variation and direct formulations, we attempt measure the PCE’s impact on the
performance through ablation studies, where several variations of the PCE-LSTM model are
compared.

6.2.1 Delta Formulation

The delta formulation, where the predictions of the models are not absolute HR values,
but rather the difference from an initial HR, is used to enable comparisons to well-performing,
non-recursive methods devised for the related HAR task.

In this formulation, we perform some experiments on the PAMAP2 dataset. As de-
scribed in the previous section, we train the models, only once per test subject and in every case
Subject 5 is used for validation. As the focus of this section is to assess the performance of our
method in relation to that of baselines, the experiments we the PCE-LSTM on its simplest form:
trained without the help of the discriminator.

Comparison to the reference methods

While we are mainly interested in predictions over the long-term, here we consider both short
and long-term prediction scenarios. We include the number of parameters and training time
required by each model in Table 6.3 so that prediction accuracy can be analyzed in the light of
model complexity and training cost.
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Test Subject (ℓ1 [beats/min]) Average

Model 1 2 3 4 6 7 8 ℓ1 ℓ∞

Short-term prediction (480s)

FFNN [38] 16.51 11.34 7.98 13.36 13.17 20.45 33.74 16.65 69.50
DeepConvLSTM [22] 16.61 11.81 11.43 13.65 15.15 18.46 15.88 14.71 66.10
CNN-IMU-2 [26] 15.50 10.67 11.33 13.88 13.94 19.34 13.69 14.05 66.50
ConvAttention (our) 14.95 10.44 12.82 15.38 16.14 17.99 14.88 14.66 64.69
PCE-LSTM (our) 14.87 9.41 12.75 12.40 14.23 17.14 13.67 13.50 58.76

Long-term prediction (entire series)

FFNN [38] 23.38 14.09 10.08 21.04 12.88 19.33 47.82 21.23 68.03
DeepConvLSTM [22] 18.27 18.50 20.05 14.38 21.17 21.67 35.99 21.43 78.08
CNN-IMU-2 [26] 21.20 18.19 17.75 14.25 18.80 21.67 36.29 21.17 80.94
PCE-LSTM (our) 14.33 12.99 14.37 17.95 18.35 17.42 37.21 18.95 63.69

Table 6.4: Mean Absolute Error (beats/min) of the baselines and our designed models

Table 6.4 shows the ℓ1 error yielded by the methods for each of the train-test splits
(i.e., when each of the subjects’ series is used for testing) and the average across subjects.
Since the observations below also apply to the ℓ∞ errors, we report only the average value
for this metric. Results for short- (resp. long-) term predictions are shown at the top (resp.
bottom). We observe that CNN-IMU-2 model performs slightly better than DeepConvLSTM,
in agreement with the results obtained for HAR reported by [26]. In the short-term prediction
(top), ConvAttention’s average performance is slightly better than DeepConvLSTM’s while
having nearly 13 times less parameters, as shown in Table 6.8. Yet, PCE-LSTM outperforms all
the reference methods, achieving an average ℓ1 4% smaller and an average ℓ∞ over 10% smaller
than the closest reference method (CNN-IMU-2). Moreover, it has far less parameters than any
other method, except for FFNN.

In the long-term prediction (bottom), PCE-LSTM outperformed its closest competitor
(CNN-IMU-2) by more than 20% w.r.t. the average ℓ1. ConvAttention could not be evaluated
due to its restrictions on the input size, because it can only be applied to series of the same size
it was trained on.

To understand whether the models are capturing oscillations in the heart rate series or
just an average behavior, we inspect their predictions for some representative subjects. Fig-
ure 6.1 shows the predictions for the first 10min of three subjects’ series illustrating cases where
PCE-LSTM performance is on par, superior and inferior to some of the baselines, respectively.
In the top plot (Subject 3), we observe that all methods capture the valley in the 3-6 min interval
but either underestimate or overestimate the HR by up to 10bpm. FCNN incorrectly predicts a
peak in 8-10 min. In the middle plot (Subject 2), FCNN and PCE-LSTM achieve the closest
predictions to the actual HR, but the proposed method clearly captures the oscillations better
and achieves smaller error. In the bottom plot (Subject 0), FCNN underestimates the HR, es-
pecially during the 5-10 min interval. Both CNN-IMU-2 and the Attention model incorrectly
predict a rise followed by a plateau in the 2 - 3 min interval. PCE-LSTM outperforms them in
the 1-5 min interval. After 5 minutes, there is a peak taking the HR to 110 bpm followed by
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Figure 6.1: Model’s predictions for the series’ first 10min.

oscillations at around 90 bpm. CNN-IMU, the Attention Model and PCE-LSTM capture the
rise in HR, but incorrectly keep the predictions roughly constant above 105 bpm. Among the
three models, PCE-LSTM overestimates the HR the most, predicting it to be around 115bpm
during that interval.
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ℓ1 by Test Subject [beats/min] ℓ∞

Model 1 2 3 4 6 7 8 Avg Avg

Short-term prediction (480s)

Suppressed PCE 15.24 10.20 11.17 14.43 14.91 18.82 16.94 14.53 59.94
LSTM self-encode 15.25 10.43 9.76 12.93 14.31 16.87 18.36 13.99 58.31
PCE on Previous Segment 14.87 9.41 12.75 12.40 14.23 17.14 13.67 13.50 58.76

Long-term prediction (entire series)

Suppressed PCE 22.26 14.92 18.11 13.02 20.34 20.01 47.12 22.26 73.57
LSTM self-encode 18.47 16.51 19.86 13.20 18.94 19.48 48.56 22.15 68.97
PCE on Previous Segment 14.33 12.99 14.37 17.95 18.35 17.42 37.21 18.95 63.69

Table 6.5: Mean Absolute Error (ℓ1) and Maximum Absolute Error (ℓ∞) for variations of the
PCE-LSTM model (Ablation Study)

Performance Impact of PCE-LSTM’s Hidden State Initialization

Here we demonstrate that PCE-LSTM’s strategy to initialize the hidden state vectors is key to
boost the model’s performance. In our model, the LSTM’s hidden state vectors are initialized by
passing the sensor and heart rate data corresponding to the first two time snippets of the series
through the Physical Conditioning Encoder (PC Encoder). Alternatively, one could consider
using the LSTM itself to encode the relationship between sensor data and heart rate for a specific
individual.

To quantify the performance impact of the proposed initialization, we conduct addi-
tional experiments with two alternative strategies of initialization: in “Suppressed PCE”, PCE
is ignored and hidden state vectors are initialized with 0s; in “LSTM self-encode”, hidden state
vectors are initialized by feeding the heart rate to the network as an additional input channel
during the initialization segment (replaced by zeros during the prediction segment).

Table 6.5 shows the Mean Absolute Error (ℓ1) metric for the experiments using the short-
term segments and the entire series of each subject in the test set. We observe that using the
“LSTM self-encode” is almost as good as using PC Encoder for the short-term segments, but
this changes significantly when we analyze the performance on the entire series. In this scenario,
“LSTM self-encode” performs poorly, only better than the configuration with no access to HR
data, i.e., “Supressed PCE”. This demonstrates empirically that the state encoded by PCE-
LSTM contains useful information.

6.2.2 Direct Formulation

Under the direct formulation, we can only compare our method with recursive models.
We experiment with predictions based on ensembles, where several instances of each model are
fit to different sets and their individual predictions are combined.
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Model MAE by Test Subject [beats/minute] ℓ∞
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg. Avg.

Mean

FFNN 13.2 10.5 12.9 9.0 45.0 32.1 13.7 16.0 12.3 11.9 22.2 17.8 17.2 12.7 14.0 17.4 63.7
DeepConvLSTM 9.8 7.7 16.1 12.9 44.1 34.9 15.8 9.2 14.8 13.2 25.5 11.3 15.3 13.6 11.2 17.0 69.4

PCE-LSTM 9.3 6.5 12.2 8.7 42.0 34.7 11.3 12.2 13.6 12.2 22.4 15.1 10.9 11.5 9.2 15.5 51.3

Ensemble

FFNN 12.2 8.0 11.4 7.7 45.0 31.4 12.4 14.5 11.5 8.6 22.1 17.3 15.0 11.2 10.6 15.9 60.1
DeepConvLSTM 9.2 7.1 15.3 12.7 43.9 34.7 15.4 6.9 13.9 12.9 25.4 10.7 15.1 13.2 10.5 16.5 68.1

PCE-LSTM 8.4 5.1 7.8 6.6 41.9 34.4 7.4 8.9 11.4 8.4 19.6 14.9 9.3 9.8 8.5 13.5 48.6

Table 6.6: Error Metrics on the DaLiA dataset (best shown in bold)

Model Test Subject [beats/minute] ℓ∞
1 2 3 4 5 6 7 8 Avg. Avg.

FFNN (mean) 24.9 18.3 10.5 17.2 18.6 14.7 21.6 33.7 19.9 71.88
DeepConvLSTM (mean) 14.7 11.4 8.8 18.7 11.9 13.9 20.0 14.9 14.3 51.81
PCE-LSTM (mean) 16.6 10.7 9.0 19.5 9.6 9.9 12.6 14.8 12.9 48.61

FFNN (ensemble) 23.2 14.2 9.5 15.8 17.8 13.4 20.3 23.9 17.3 63.9
DeepConvLSTM (ensemble) 11.8 10.6 8.3 18.4 9.3 13.1 19.5 13.3 13.0 45.8
PCE-LSTM (ensemble) 16.5 9.5 8.4 16.7 8.4 8.8 10.8 13.3 11.5 45.0

Table 6.7: Mean Absolute Error (beats/min) on PAMAP2 (best shown in bold)

Here we use the discriminator network to improve the encoding of the PCE and investi-
gate its impact on performance by conducting an ablation study.

Mean vs. Ensemble performance Since every method is trained 7 times for each test subject
(using different train-validation splits), we compute a “mean” performance by averaging the er-
rors of individual models and an “ensemble” performance by averaging the models’ predictions
and then computing the resulting error, as done by [25].

IMU-based multi-step heart rate estimation experiments

We begin by analyzing the error yielded by each method on the entire series for each subject,
since we are mostly interested in predictions over the long term. Table 6.6 and 6.7 show the
Mean and the Ensemble performances w.r.t. ℓ1 by test subject and the ℓ1 and ℓ∞ averages, for
PCE-LSTM and the baselines, on DaLiA and PAMAP2, respectively. We note that the series of
subjects 5 and 6 of DaLiA can be regarded as outliers as none of the methods performed well
on them. As expected, ensembles tend to outperform their standalone counterparts. Consider-
ing the ensemble performances, out of 23 subjects, FFNN, DeepConvLSTM and PCE-LSTM
achieve the lowest errors for 2, 4 and 17 subjects, respectively. The lowest average error is
obtained by the PCE-LSTM ensemble, with over 11.5% lower ℓ1 and 19.1% lower ℓ∞ than the
next best method.

For a qualitative evaluation, we plot the predictions of each model. Figures 6.2 and
6.3 show the ensemble predictions for the complete series of five representative test subjects
in the DaLiA and PAMAP2 datasets, respectively. We observe that DeepConvLSTM fails to
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Figure 6.2: Long-term IMU-based HR estimation (DaLiA)

capture the variance of the HR series: although the predictions are correlated with changes in
HR, they tend to remain close to an “average” HR. FFNN, in turn, exhibits more variance, but
cannot accurately capture the amplitude of the peaks and sometimes overestimates the HR. In
contrast, PCE-LSTM (our method) can capture both peaks and valleys more accurately than the
baselines.

For a thorough comparison, we include some statistics related to the cost of each model
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Figure 6.3: Long-term IMU-based HR estimation (PAMAP2)

in terms of memory and time resources. Table 6.8 shows the the number of parameters and
training time required by each model, as well as the average time to compute a one-step pre-
diction. Models sizes are larger for PAMAP2 because it has more accelerometers on the chest
and wrist than DaLiA (and they are different from those under the delta formulation, because
we downsampled the PAMAP2’s signals from 100 to 32Hz and used less sensors under this
formulation – only those on chest and wrist, in order to match those of DaLiA, which has no
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Model number of train. time execution time
parameters [min] [ms]

DaLiA

DeepConvLSTM 490,177 77.1 5.23
PCE-LSTM 120,273 20.4 0.20
FFNN 726 4.1 0.50

PAMAP2

DeepConvLSTM 686,785 16.6 5.41
PCE-LSTM 120,561 5.1 0.14
FFNN 824 1.4 0.50

Table 6.8: Computational cost in number of parameters, training time and single-step prediction
time

sensors on the ankle). Thus, we include separate statistics for each dataset. We highlight that
the execution time for all models, on Google Colab’s free servers, falls below the 2s interval
required for online prediction, as this is the step period of the TS generating sliding window.

Performance impact of PCE-LSTM’s hidden state initialization

Here we conduct an ablation study to demonstrate that (i) PCE-LSTM’s strategy for initializing
hidden state vectors is key to boosting the model’s performance and that (ii) the use of a discrim-
inator to distinguish whether two PCE come from the same individual or not contributes to the
performance of the PCE-LSTM. A typical strategy to extract a hidden state is to use the LSTM
itself to encode the relationship between sensor data and heart rate. In contrast, our model ini-
tializes the LSTM’s hidden state vectors by passing the sensor and heart rate data corresponding
to the first I = 12 time snippets of the series through the Physical Conditioning Encoder (PC
Encoder) to extract the embedding called PCE. As we assume that the PCE encodes, at least in
part, an individual’s physical conditioning, we expect that the joint training of the PCE-LSTM
regression and the discriminator will improve the regression predictions by promoting a better
training of the PC Encoder subnetwork.

To quantify the performance impact of the proposed initialization and of using the dis-
criminator, we conduct additional experiments with alternative initialization strategies. In what
follows, “with discr.” indicates the joint training with the discriminator, “without discr.” indi-
cates that the discriminator is not used; and “self-encode” indicates that hidden state vectors
are initialized by feeding the heart rate to the network as an additional input channel in the TS
of the Initialization Segment (replaced by zeros during the prediction segment), so that the PC
Encoder subnetwork is not utilized and the LSTM initial hidden vectors are initialized with zero
vectors, that is, the initialization segment is used as a washout period.

Tables 6.9 and 6.10 show the ℓ1 and ℓ∞ metrics for these experiments on the DaLiA and
PAMAP2 datasets, respectively. On DaLiA, PCE-LSTM’s outperforms an LSTM self-encode
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Test Subject [beats/minute]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Mean Absolute Error

self-encode 11.0 7.6 7.1 7.4 48.6 33.6 10.7 15.6 11.5 9.3 21.2 15.2 10.7 10.7 10.4 15.4
without discr. 10.5 5.9 13.7 7.6 43.7 29.5 7.8 14.3 9.4 9.5 18.8 13.6 9.1 11.4 7.7 14.2
with discr. 8.4 5.1 7.8 6.6 41.9 34.4 7.4 8.9 11.4 8.4 19.6 14.9 9.3 9.8 8.5 13.5

Maximum Absolute Error

self-encode 52.6 30.1 39.4 29.6 102.6 79.1 49.2 51.4 60.1 52.7 69.0 44.4 51.5 56.2 31.0 53.2
without discr. 50.3 31.5 35.5 32.8 89.2 71.5 45.6 38.3 49.2 49.6 61.5 28.3 43.7 61.1 37.4 48.4
with discr. 52.7 37.2 36.6 24.1 88.9 77.9 44.7 29.0 50.4 48.9 66.4 29.0 55.0 54.2 34.2 48.6

Table 6.9: Ablation study: error results for variations of the PCE-LSTM model, in ensemble
configuration, on DaLiA

Test Subject [beats/minute]
1 2 3 4 5 6 7 8 Avg.

Mean Absolute Error

self-encode 14.60 11.27 7.92 13.43 7.90 9.95 13.83 14.17 11.63
without discr. 14.98 11.31 8.67 17.88 9.36 9.42 11.71 13.10 12.05
with discr. 16.46 9.46 8.34 16.70 8.40 8.80 10.79 13.25 11.52

Maximum Absolute Error

self-encode 44.65 51.71 37.83 48.12 31.87 45.66 36.26 55.73 43.98
without discr. 40.98 46.76 41.15 57.40 33.39 48.56 45.56 57.57 46.42
with discr. 42.69 52.28 42.68 50.83 27.83 43.77 47.46 52.71 45.03

Table 6.10: Ablation study: error results for variations of the PCE-LSTM model, in ensemble
configuration, on PAMAP2

initialization strategy even without a discriminator. Nevertheless, the use of the discriminator
reduces the error even further. On the other hand, on PAMAP2, PCE-LSTM without the dis-
criminator yields larger error than the LSTM self-encode strategy. Even though the complete
architecture – including the discriminator – achieves the lowest average error, the relative gains
w.r.t. LSTM self-encode are marginal.

What can explain the difference between the results on the two datasets? To answer
this question, we analyze the discrimination performance as a measure of the PCE’s quality.
Figure 6.4 shows the discriminator accuracy for DaLiA and PAMAP2, respectively, when the
threshold is set to 0.5 (i.e., the discriminator returns “same person” when the predicted proba-
bility is above 50%). Although the overall accuracy is not very high, it is clear that it is higher
on the DaLiA dataset, indicating that the resulting PCEs are more representative of the subjects’
physical conditioning. We conjecture the higher difficulty of encoding the physical conditioning
on the PAMAP2 dataset might be due to its smaller size and to its more varied set of physical
activities.



6.2. Results 59

DaLiA PAMAP2

0.5

0.6

0.7

ac
cu

ra
cy

Figure 6.4: discriminator accuracy among test subjects in DaLiA and PAMAP2 datasets



60

Chapter 7

Secondary application: PPG-based HR
estimation

We adapt PCE-LSTM for a secondary prediction task, namely, the PPG-based heart rate esti-
mation. While being close to the IMU-based HR estimation, the former task has been better
explored in the literature and has, consequently, well established baselines. We perform this
analysis to show that the proposed model is fertile, in the sense that is has other potential appli-
cations.

Here we describe some adaptations to our model in order to make it better suited for
PPG-based HR estimation and compare the performance of our model to the deep learning-
based SOTA model [25].

7.1 Adaptations for PPG-based HR Estimation

The task of PPG-based HR estimation has three main distinctions from the IMU-only
HR estimation and hence requires a few adaptations to our method. The differences are the
following:

1. It is useful to represent the PPG signal in the frequency domain;

2. The PPG signal is more important than the other signals, since it is a rough estimation of
the HR;

3. For PPG-based HR estimation, the heart rate predictions are done without a ground-truth
HR at any point in time;

In order to deal with these differences, instead of using a single TS encoder module, we
used two: one for the raw PPG and IMU signals (TSEraw) and the other for the Fast Fourier
Transformed-PPG signal (TSEPPG-FFT). Their outputs are concatenated before being passed
onto the next subnetwork (either the PC encoder or the LSTM). The TSEPPG-FFT has a smaller
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Figure 7.1: PPG-adapted PCE

output size: [TSEPPG-FFT]out = 12. This accounts for the first two differences, as we leverage
the information contained in PPG signals by representing them in the frequency domain and by
having a TS encoder exclusively for this input.

We have also slightly modified the PC Encoder, so that it only receives as input the con-
catenated outputs of the TSE (without the HR), hence addressesing the last difference. Figure
7.1 illustrates the changes to the PCE-LSTM architecture for the secondary task.

7.2 Results

The deep learning-based state of the art model for PPG-based HR estimation in the
literature was proposed in [25]. This method is based on CNNs and will be referred simply as
CNN. For this application we consider only MAE (ℓ1), since we transcribe the results from the
paper where the baseline method was proposed, which did not include other evaluation metrics.

In order to match the length and step size of each time snippet in [25], we set τTS = 8

and rTS = 0.75 for this task. Table 7.1 shows the ensemble performance for each method on
PPG-DaLiA and WESAD, when the individual designated in the column is the test subject.
The last column contains the row average. On both datasets, PCE-LSTM provides reductions
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in MAE of approximately 32% when compared to the SOTA method and has lower MAE for
every subject, except for subject 8 in the WESAD dataset (even then, difference is under 10%).
Another advantage of PCE-LSTM is that it has roughly two order of magnitude less parameters
then the CNN, with approximately 120k parameters for PCE-LSTM vs. approximately 8500k
parameters for the CNN model (according to [25]).

Test Subject (MAE [beats/min])

Model PPG-DaLiA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

[25] 7.7 6.7 4.0 5.9 18.5 12.9 3.9 10.9 8.8 4.0 9.2 9.3 4.3 4.4 4.2 7.6
PCE-LSTM 5.5 3.8 2.5 5.4 11.0 5.5 2.6 9.1 6.6 2.6 5.5 8.5 2.7 3.7 3.4 5.2

Model WESAD

2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 Avg.

[25] 5.1 14.5 7.8 7.7 3.9 6.8 4.3 4.0 8.9 11.1 6.5 5.3 4.2 12.8 9.4 7.5
PCE-LSTM 3.6 9.8 3.5 4.7 2.6 4.6 4.6 3.0 4.9 7.1 4.8 4.7 3.5 4.9 8.4 5.0

Table 7.1: PPG-based heart rate estimation experiments
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Chapter 8

Conclusions and Future Work

In this chapter we describe how our research contributed to the body of knowledge on modeling
heart rate using Neural Networks. We also present how the topics of this dissertation might be
further investigated in future research.

8.1 Conclusion

In this dissertation we investigated the – much neglected – task of predicting heart rate
from IMU sensor data. We achieved our goal of proposing a new model for this task, which
outperforms the existing neural network devised for the same task [38] as well as models known
to perform well on the related task of HAR [22, 26], which were minimally adapted for the task
at hand,

We started from the premise that, depending on their physical conditioning, different
people will display different heart rates when performing the same exercises. We proposed
a neural architecture dubbed the Physical Conditioning Embedding LSTM (PCE-LSTM) that
employs a convolutional network to extract vectors which carry information about the relation-
ship between sensor measurements and the heart rate for a specific individual, thus representing
his/her physical conditioning. These vectors are used as the initial state vectors for an LSTM
network that outputs heart rate predictions from sensor data.

We then considered two formulations for the problem:a delta formulation, which en-
abled us to compare our neural architecture against non-recursive models; and a direct formu-
lation, under which we performed studies on ensemble strategies and the use of a discriminator
to improve the physical conditioning embedding.

We evaluated the prediction accuracy of PCE-LSTM w.r.t. the mean absolute error (ℓ1)
and maximum absolute error (ℓ∞) using sensor data from public datasets (PAMAP2, PPG-
DaLiA, WESAD). Under the delta formulation, PCE-LSTM yielded about 9% lower mean
absolute error than the next best baseline; and, under the direct formulation, it yields over 10%
lower mean absolute error in the IMU-based heart rate estimation task and 30% lower mean
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absolute error in PPG-based heart rate regression. Last, we conduct additional experiments to
show that the performance gains achieved by our method are, in part, due to the strategy used
to initialize the hidden vectors. Specifically, using the outputs of the PCE network applied to
the data from the previous few seconds of the subject’s time series is helpful and works better
than using the LSTM itself to output hidden vectors from the same data, especially when using
physical conditioning embedding discriminator during training.

8.2 Future Work

Our research could be complemented by the investigation of other architectures for
learning a physical conditioning embedding. From a more general perspective, new archi-
tectures can be proposed to improve HR estimation, such as those based on Attention Trans-
formers, which are increasingly regarded as the best architecture for sequential data, not only
for language modeling, but also for other tasks, such as the protein folding problem. For these
respective tasks, BERT [7] and AlphaFold [10] are notable examples of groundbreaking models.

In this section, however, we propose two research directions derived from the study in
this dissertation, which are not just improvements on our research. The first relates to leveraging
our approach for initializing an RNN’s hidden state in other domains. The second is related to
bringing the results of this research into practical use.

8.2.1 RNN Initialization For Dynamical Systems

A dynamical system represents the evolution of a state x as a function of time t, t > t0

and input u(t), given the systems internal parameters ϕ and an initial state x0 = x(t0). Recursive
Neural Networks, like dynamical systems, carry information through time and allow for an
infinite unfolding over time. For this reason, it is a commonly used type of NN for modeling
such systems.

In an RNN model, a system parameter – such as the drag coefficient of an aerial vehicle
or a person’s genetics for the human heart rate – is usually represented in the RNN’s weights,
and the system’s initial state – such as the speed of a aerial vehicle, or the accumulated physical
strain for human heart rate – is normally represented in the RNN hidden state vector, which is
built up with new iterations, where a washout period is commonly defined, before which the
predictions are to be discarded.
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[19] proposed a way to improve the system’s initial state representation in the RNN
initial state vector, in the context of aerial vehicle dynamics. Although initially unaware of that
work, we proposed a method, in the domain of heart rate dynamics, that promotes the encoding
of the system’s initial state, combined with the system parameters (which we named “physical
conditioning” in the case of estimating the HR in as a function of physical activities) into the
RNN state vectors.

Our method is based on the rationale that the system parameters (physical conditioning)
are approximately constant in the short term, and, if they are contained in the RNN hidden
state, a NN (discriminator) could distinguish whether the system parameters of two systems
(subjects) are the same using the RNN’s hidden vectors. We conjecture that the joint training
of the discriminator network with the main model should improve the encoding of the system
parameters into the hidden state, promoting a better training of the model. Our experiments,
limited to the HR estimation domain, corroborate this line of thinking.

An important future work would be to check if our proposed method generalizes to
other types of dynamic systems and to propose new components to the ablation study that could
provide better insight on how the system parameters are being encoded in the RNN hidden
state. A challenge in this study would be obtaining suitable datasets which would contain
data from multiple dynamical systems. [19] exemplifies this challenge as each of the datasets
used contained a single aerial vehicle, therefore being inadequate for one such comparative
study. An alternative would be to simulate the systems, as [36] did in their study, where they
used constructed problems, such as the auto-regressive task of predicting damped oscillations
(x(t) = Ae−btcos(ct)), to test their hypothesis.

8.2.2 Designing Custom Exercise Prescriptions

A motivational application for the study in this dissertation is enabling the design of a
prescription of a custom exercise sequence which would elicit a desirable HR response. Yet, the
work of this dissertation alone cannot reach this desirable outcome. In this section, we attempt
to direct further studies based on our work to turn this research into a practical tool.

The problem could be more formally stated as “given an intended HR response H(t)

during a period p = t0, ..., T , and an initial Physical Conditioning Embedding PCE, which
exercises, represented by an activity class AC(t) and an intensity AI(t), should a person perform
to elicit H(t)?”

Our model (PCE-LSTM) converts PCE into the LSTM state vectors (h0, c0) and maps
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the IMU signals from a Time Snippet i (IMUi) into a HR value H:

hi−1, ci−1, IMUi =⇒ Hi, hi, ci.

Our model also converts the IMU signals from a time snippet, into an embedding (TSEi).
Therefore, we have:

hi−1, ci−1,TSEi =⇒ Hi, hi, ci.

While public datasets have annotations of the class of the activity, they do not quantify
the intensity of the activities. We could estimate the activity intensity as a measure proportional
to the increase in HR over the period of a time snippet (TS), creating one activity intensity label
per TS. As the variation in HR also depends on the individual’s physical conditioning and the
activity being performed just before that, this estimation could be very inaccurate. However, we
could simulate this variations of HR under different previous conditions and subjects using our
model, potentially improving the activity intensity estimation.

In order to map (AC(ti), AI(ti)) to a HR, given the previous state hi−1, ci−1, we could
sample a time snippet from the training set, that has the same class AC and has the closest
intensity value to the intended AI , and use our model to predict the HR. Therefore, we can now
map:

h(ti−1), c(ti−1), AC(ti), AI(ti) =⇒ Hi, hi, ci.

That implies that we can now simulate the entire HR dynamics during the period as a function
of the exercises (AC(t), AI(t)) and PCE. Finally, optimization algorithms can be used to find
out a series of exercises to elicit a HR that closely matches the intended HR.

What if the intended data for activity class and intensity is not present in the training set
and the closest value is significantly different from the intended one? We propose the use of a
conditional Generative Adversarial Networks (Conditional GAN) to interpolate the exercises in
the training set. In this type of NN, the generator would create a series of times snippets (TS),
given AC , AI and a random vector and produce a plausible series of TS. The discriminator
receives a series of TS, either real or generated, AC and AI and classifies as being real data or
simulated and whether it corresponds to the said exercise.We understand that other approaches,
such as the use of variational auto-encoders might also be successfully used for this task

This still leaves as an open question how to convert the estimation of activity intensity
into a value that people can understand and realize it. It seems that a dataset with annotations of
activity intensity would be required and, with that in hand, this would boil down to a standard
regression problem.
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