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Resumo 

Márcio R. V. Neto 

Síntese e otimização de plantas de evaporação no processo Kraft 

 

Nesta tese é descrita uma nova metodologia para síntese e otimização de sistemas de 

evaporadores de múltiplo efeito baseada em superestruturas de processo. A metodologia 

permite que sistemas de evaporadores de múltiplo efeito sejam otimizados levando em 

conta, simultaneamente, a sua estrutura e as áreas de troca térmica, sem haver a 

necessidade de recorrer a estruturas predeterminadas. A metodologia foi aplicada a 

estudos de caso em que era necessário especificar e posicionar novos corpos evaporadores 

em sistemas pré-existentes cuja capacidade deveria ser aumentada. Um simulador 

orientado a equações para plantas de evaporação foi desenvolvido e utilizado em conjunto 

com o algoritmo de otimização estocástica Evolução Diferencial. Um sequencial modular 

foi também desenvolvido para comparação. Plantas de evaporação de múltiplo efeito 

foram tomadas como estudos de caso para destacar o funcionamento do novo método e 

para avaliar sua viabilidade de aplicação em sistemas realistas. Através desta 

metodologia, foi possível determinar o arranjo ótimo e as áreas de transferência de calor 

correspondentes aos sistemas estudados. 

Palavras-chave: síntese de processos, otimização de processos, processo Kraft, 

evaporação de múltiplo efeito, papel e celulose





Abstract 

Márcio R. V. Neto 

Synthesis and optimization of kraft process evaporator plants 

 

In this dissertation, a novel methodology based on process superstructures for the 

synthesis and optimization of multiple-effect evaporation systems is described. The 

methodology allows for the structure and heat transfer areas of multiple-effect 

evaporation systems to be simultaneously considered in optimization without having to 

resort to any previously selected arrangements. The methodology is applied to industrial 

evaporator case studies where it is necessary to simultaneously size and determine the 

best way to arrange additional evaporator bodies in an existing system to increase 

maximum load. An equation-oriented simulator for chemical pulp mill evaporator plants 

was developed and used in conjunction with differential evolution. A sequential-modular 

simulator was also developed for comparison. Multiple-effect evaporator plants were 

used as case studies to highlight the workings of the new method and to assess its viability 

in realistic systems. Through this methodology, it was possible to determine the optimal 

arrangement and heat transfer areas for the studied systems. 

Keywords: process synthesis, process optimization, Kraft process, multiple-effect 

evaporation, pulp and paper 
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Nomenclature 

Latin alphabet 

A area m2 

𝑏𝑗
𝐿 lower bound for jth variable 

𝑏𝑗
𝑈 lower bound for jth variable 

𝐁 BFGS approximate Hessian matrix 

BPR boiling point rise oC 

𝑐 cost US$ 

CR crossover probability 

𝑐𝑝 heat capacity kJ/kg.K 

𝐷 number of choice variables 

𝑓𝑜𝑏𝑗 objective function 

F scale factor 

h convective heat transfer coefficient kW/m².K 

𝐻 enthalpy kJ/kg 

𝐻𝑤,80 water enthalpy at 80oC  kJ/kg 

𝐇 Hessian matrix 

k thermal conductivity kW/m.K 

L characteristic length m 

L loop matrix 

�̇� mass flow kg/s 

M maximum bipartite matching 

nneg number of negative variables 

Np population size 

Ntrials number of trials 

P absolute pressure Pa 

𝒑 BFGS step direction 

𝒒 BFGS gradient difference vector 

�̇� heat flow kW 

𝑟 uniformly sampled number between 0 and 1 

t temperature oC 

T absolute temperature K 

TP water boiling temperature at pressure P K 

U global heat transfer coefficient kW/m².K 

v velocity m/s 

𝒖 trial vector 

𝒗 target vector 

𝑥𝐷 dissolved solids fraction 

𝑥𝑇 total solids fraction 

Greek alphaber 

𝛼𝑛 Step-control parameter 



𝜇 Dynamic viscosity Pa.s 

𝜌 Specific mass kg/m³ 

Dimensionless numbers 

Nu Nusselt number 

Pr Prandtl number 

Re Reynolds number 

Superscripts 

bp boiling point 

Subscripts 

atm atmospheric 

bp boiling point 

lam laminar 

liq liquid 

neg negative 

par parallel 

sat saturation 

ser series 

surf surface 

turb turbulent 

vap vapor 

w water 

Abbreviations 

API application-programmer interface 

BFGS Broyden-Fletcher-Goldfarb-Shanno 

BPR boiling point rise 

CHP combined heat and power 

DE differential evolution 

DFS depth-first search 

EOA equation-oriented approach 

FF falling film 

GSOE global system of equations 

GUI graphical user interface 

IAPWS International Association for the Properties of Water and Steam 

LTV long-tube vertical 

LP linear programming 

MEE multiple-effect evaporation 

MILP mixed-integer linear programming 

NFE number of function evaluations 

NR Newton-Raphson 



SCC strongly connected component 

SMA sequential-modular approach 
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1 Introduction 

Chemical recovery plants are a fundamentally important subprocess in chemical pulping 

plants and are known to be highly energy intensive. Increasing their energy efficiency 

would not only give their operators a competitive edge, but would also allow more energy 

to be available for power generation, thus lowering carbon dioxide emissions from fossil 

fuels, which is key for sustainable development. 

When wood is chemically pulped to cellulose, a residue composed of organic and 

inorganic chemicals is generated. This residue is called black liquor, and it is burned in 

the recovery boiler, which generates power and recovers part of the chemicals necessary 

to pulp wood. To ensure that the liquor is effectively burned, its water content needs to 

be reduced to a dry solids mass fraction of about 80–85%. This is carried out in a multiple-

effect evaporator train, usually composed of 5–7+ evaporator bodies. Due to the relatively 

high latent heat needed to vaporize water, this process requires a considerable amount of 

energy. In fact, evaporation accounts for 24–30% of the total energy used in a pulp mill. 

The optimization of evaporation systems is, therefore, an important goal, for which reason 

there has been a significant effort in recent studies to address the modeling and 

optimization of evaporator systems. This is not a trivial task due to the complexity of the 

mathematical description of such systems. Commonly, given an evaporator plant of 

interest or a set of predetermined arrangements, a model composed of a system of mostly 

nonlinear equations that describe it is constructed. The model is then utilized, along with 

optimization algorithms, to minimize or maximize some variable of interest, such as the 

total heat transfer area or some measure of cost. 

However, the methodologies described so far assume that the arrangement of evaporators, 

vapor streams, and black liquor streams is known a priori. In practice, this may not be the 

case. In a situation where an existing evaporator system needs to, for instance, be 

expanded, the arrangement may not be immediately clear: 

a) How many evaporator bodies should be added, and what is their required heat 

transfer area? 

b) Should they be added in series with a pre-existent system, in parallel, or a 

combination thereof? 

c) How would the addition of a new evaporator body affect the energetic efficiency 

of the chemical recovery cycle? 

Likewise, during the design stage of a new evaporator plant, its final arrangement may be 

unknown. The designers, therefore, would need to decide on the number of effects and 

what arrangement should be selected. These questions are not trivial due to the potentially 

large set of different possible arrangements that must be considered, which is especially 

true for larger systems. The problem becomes even more complex if, as is often the case, 



20 

different combinations of variables, such as the heat transfer area or black liquor inflow 

rate, need to be considered for each arrangement. 

It is thus desirable to have a methodology that allows evaporator systems to 

simultaneously be optimized both with respect their arrangement and any other variables 

of interest, without having to resort to any predetermined configurations. 

1.1 Aim and scope 

This work, thus, develops a methodology that allows for evaporator systems to 

simultaneously be optimized both with respect to their arrangement and any other 

variables of interest, without having to resort to any predetermined configurations. The 

methodology is based on developing a robust steady-state simulation engine and pairing 

it with the well-known differential evolution stochastic optimization algorithm. 

This research is predicated on the hypothesis that it is possible to construct a steady-state 

process simulator for evaporator systems that is robust enough to converge reliably for a 

potentially large set of possible evaporator arrangements. Moreover, it is also 

hypothesized that the proposed methodology will converge in a reasonable computational 

time. To put it succinctly, the research hypothesis is as follows: 

Research hypothesis: It is possible to simultaneously optimize evaporator systems both 

with respect to their topological arrangement and other internal design variables using 

mathematical optimization techniques. 

The following questions are tackled in the research project: 

a) What mathematical difficulties arise when modeling an evaporator system? 

b) What numerical methods are best suited to solving the model? 

c) Is differential evolution well suited to performing this type of optimization? If 

so, are there any optimal ranges for its parameters? 

d) How well does the proposed methodology scale as the problems grow more 

complex? 

The proposed methodology is novel, as it presents a unified methodology for optimizing 

the structural arrangement and any other variables of evaporator systems, which would 

help engineers optimize their existent systems. It may also aid professionals in designing 

optimal evaporator systems without having to resort to trial and error. The methodology 

has, therefore, the potential to be applied in the pulp and paper industry. 

1.2 Additional information 

 



 21 

This research was made possible due to a collaboration between the Department of 

Chemical Engineering at Universidade Federal de Minas Gerais (UFMG) and the 

Department of Energy Systems at Lappeenranta-Lahti University of Technology (LUT), 

which allowed the author to pursue a double doctoral degree. 

 





23 

2 Literature review 

2.1 Chemical recovery in the pulp and paper industry 

In the pulp and paper industry, cellulosic fibers are disassociated from the lignin found in 

wood, bagasse, straw, and other raw materials to produce what is referred to as pulp 

(Cardoso, de Oliveira and Passos, 2009). Once the pulp has been extracted, it can then be 

processed to produce paper, paperboard, and other cellulosic materials. This process, 

which is called pulping, can be either mechanical or chemical. 

The most common pulping method employed to produce wood pulps is the Kraft process 

(Cardoso, de Oliveira and Passos, 2009). With this method, wood chips are cooked with 

a solution of sodium sulfide (Na2S) and sodium hydroxide (NaOH), called white liquor, 

which causes cellulose to dissociate from the lignin to which it was bound. Once the 

cooking process is finished, the pulp is washed to remove spent cooking chemicals and 

any dissolved organic components (Tikka, 2008). The residue obtained from this washing 

step is a black alkaline liquid known as black liquor, and, until the 1930s, it was common 

practice to discard it (Tikka, 2008). 

As pulping mills grew larger and new equipment was developed, it became economically 

feasible to process the black liquor in order to regenerate the chemicals spent in the 

cooking process. This process is known as the chemical recovery cycle, and it is 

nowadays fundamental for making the Kraft process economically feasible (Tikka, 2008; 

Cardoso et al., 2009). The core piece of equipment used in recovery cycle is the so-called 

recovery boiler, which not only regenerates part of the spent chemicals, but also allows 

for energy to be produced in a pulping plant (Vakkilainen, 2007; Tikka, 2008). 

2.1.1 Chemical recovery cycle 

Figure 2-1 is a simplified diagram describing the steps of the chemical recovery cycle. 

After the cooking process, the Na2S that was present in the white liquor is oxidized to 

sodium sulfate, Na2SO4. To revert it back to Na2S, it needs to be reduced, a process that 

takes place in the recovery boiler. Well-operated recovery boilers can reduce almost all 

sulfate back to sulfide (Adams and Frederick, 1988; Adams et al., 1997). The recovery 

boiler is a very complex heterogeneous system where many reactions take place 

simultaneously under conditions of high temperature and pressure (Vakkilainen, 2007). 

Due to its central role in the recovery cycle and also its complexity, it is not surprising 

that so much space in the technical literature is dedicated to its proper modeling and 

optimization (Almeida et al., 2000; Costa, Biscaia Jr and Lima, 2004; Ferreira, Cardoso 

and Park, 2010; Saturnino, 2012).  

The products of the recovery boiler reactions include Na2S and Na2CO3, which come out 

in molten form and have mass fractions of approximately 23% and 74%, respectively 
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(Adams and Frederick, 1988; Adams et al., 1997). This molten mixture of Na2S and 

Na2CO3 is the so-called smelt. 

The black liquor produced in the washing process has a relatively low dry solids mass 

fraction and is usually termed weak black liquor. For the liquor to be efficiently burned 

in the boiler, its dry solids mass fraction needs to be increased. This is done by leading 

the liquor through an evaporation plant. The more concentrated liquor emerging from the 

MEE plant that is then sent to the boiler is termed strong black liquor. Strong black liquor 

is remarkably more dense and viscous than weak black liquor, and, in order to maintain 

its viscosity under the applicability limits for centrifugal pumps, it must be kept at 

temperatures on the order of 100oC (Ramamurthy, Van Heiningen and Kubes, 1993; 

Zaman, Wight and Fricke, 1994; Andreuccetti, Leite and D’Angelo, 2011; Bajpai, 2016). 

 

 

Figure 2-1: Simplified diagram of the chemical recovery cycle. 

 

In the recovery boiler, the water brought in by the liquor is converted to high-pressure 

steam, which is then fed to turbines, thus generating power. Modern recovery boilers are 

designed to withstand steam pressures on the order of 9.2 MPa and temperatures on the 

order of 490 °C (Vakkilainen, 2016). The smelt, on the other hand, is dissolved in water, 

producing the so-called green liquor, a solution containing Na2S and Na2CO3. 

The green liquor is mixed with lime (CaO) in a causticizing plant. The reaction of CaO 

with Na2CO3 regenerates NaOH and generates CaCO3, which precipitates out of the 

solution. Both Na2S and NaOH have thus been regenerated, and they can be fed back into 

the pulping process. The wet CaCO3 can be converted back to CaO by feeding it to a lime 

kiln, which removes its water and calcinates it, converting it to CaO and CO2. 
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2.1.2 Black liquor evaporation 

Before black liquor can be burned in the recovery boiler, it is necessary to reduce its water 

content. Typically, black liquors exit the cooking process with dry solids mass fractions 

of close to 15% (Olsson, 2009) . If the dry solids mass fraction in the liquor is lower than 

20%, then the liquor net heating value is negative (Vakkilainen, 2007). In other words, if 

the liquor water content is too high, the boiler would require more heat from external 

sources than the amount of heat that it can produce, which would defeat the purpose. 

Water content reduction is achieved by sending the black liquor to an evaporator train 

before it is sent to the recovery boiler. The evaporator train consists of a series of 

evaporator bodies through which black liquor flows and exchanges heat with low-

pressure steam. Figure 2-2 is a simplified diagram illustrating the inlet and outlet vapor 

streams (vapor feed, vapor outlet, and condensate outlet) and the inlet and outlet black 

liquor streams (black liquor feed and black liquor outlet) that are part of an evaporator. 

 

Figure 2-2: Simplified diagram of an evaporator displaying its inlet and outlet black liquor and 

vapor streams. 

 

As black liquor flows through the evaporator, heat is transferred from the hotter steam to 

the liquor, causing steam to condense and water from the liquor to vaporize. The liquor, 

therefore, exits the evaporator with a higher dry solids fraction than it originally had. It is 

important to acknowledge that the boiling point of the liquor is higher than that of pure 

water. As the liquor dry solids fraction increases, so does its boiling point. This increase 

in the liquor boiling point temperature relative to that of pure water is quantified by the 

boiling point rise (BPR), defined as the difference between the liquor boiling temperature 

and the water boiling temperature measured under the same pressure (Järvinen et al., 

2015; da Costa et al., 2016). One practical implication of the BPR is that the required 

steam pressure increases with the desired dry solids fraction. 
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Typically, there is not a single but rather multiple interconnected evaporators bodies in 

recovery cycle evaporator trains. The number of bodies is usually no less than five, 

possibly being higher than seven. Figure 2-3 depicts a typical evaporation train 

arrangement. 

 

 

Figure 2-3: Typical arrangement of a five-effect, multiple-effect evaporator train (vapor streams 

are drawn in red, whereas black liquor streams are drawn in black; outlet condensate streams 

have been omitted for clarity’s sake). 

 

Vapor streams are drawn in red and black liquor streams are drawn in black. In this 

system, live steam is fed to the first two evaporator bodies, E1A and E1B. Since these 

two bodies operate with steam under the same pressure, they are said to be part of the 

same effect. Therefore, evaporator bodies E1A and E1B constitute the first effect. Heat is 

transferred from the live steam to the black liquor, causing water to evaporate from the 

black liquor along with a minor fraction of volatile organic components found in the 

liquor. The live steam, composed of pure water, is condensed and collected as clean 

condensate (Tikka, 2008). The vapor generated at the first effect is then fed to the second 

effect, composed solely of the evaporator body, E2. As before, heat exchange takes place, 

causing water to evaporate from the liquor and vapor to condense. This time, however, 

the vapor is composed of a mixture of mostly water and the volatile organic components 

released from the black liquor in the first effect. For this reason, this condensate is 

separately collected as foul condensate (Tikka, 2008). The same process is repeated in all 

subsequent effects. It is quite common to use the term effect in the sense just described, 

for which reason this type of evaporator train arrangement is usually referred to as 

multiple effect evaporation (MEE). 
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The goal of MEE is to increase the energetic efficiency of the system as much as possible 

by using part of the heat contained in the outlet vapor stream, which would otherwise be 

discarded, to further drive water evaporation in the subsequent effects. 

2.1.3 Condensate flashing 

 
As black liquor flows through the evaporation train, its dry solids fraction increases. In 

Figure 2-3, black liquor flows from right to left, which means that the dry solids 

concentration also increases in that same direction. During evaporation, the temperature 

of the vapor generated in each effect is equal to the boiling point of the liquor exiting that 

same effect, since they are in thermal equilibrium. That same temperature, in turn, 

increases with the solids fraction due to the BPR. In other words, the saturation pressure 

of the vapor generated in effect number i is higher than that of effect number i+1. This 

natural pressure drop along the system allows further heat to be reused by vaporizing part 

of the condensate and reintroducing it in the vapor line. The process by which this 

pressure drop is used to drive condensate vaporization is known as condensate flashing. 

Figure 2-4 depicts a modified version of the previously discussed five-effect system. The 

condensate streams leaving effects 1 through 4 are drawn as blue lines. Condensate 

leaving the two bodies of the first effect are merged and sent to a clean condensate flash 

tank, drawn as a blue vessel. This tank is connected to the outlet vapor stream that leaves 

the first effect, which, as explained above, has a lower saturation pressure than that of the 

condensate. This pressure difference causes part of the condensate to vaporize. The 

vaporized fraction of the condensate then exits the flash tank and is fed to the second 

effect. The same logic applies to the condensates leaving effects 2 through 4. In these 

effects, however, foul condensate is formed. In Figure 2-4, foul condensate flash tanks 

are drawn as green vessels. 
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Figure 2-4: Typical arrangement of a five-effect, multiple-effect evaporator train with 

condensate flashing (condensate streams from effects 1–4 are drawn as blue lines, clean 

condensate flash tanks are drawn as blue vessels, and foul condensate tanks as green vessels). 

2.1.4 Evaporator types 

Evaporators vary by their design and function. In the next section, some of the most 

common evaporator designs are presented. 

2.1.4.1 Falling film evaporators 

With falling film (FF) evaporators, a thin film of black liquor flows downwards as a result 

of gravity onto a heat transfer surface, as depicted in Figure 2-5. Vapor flows on the other 

side of the surface, which causes heat to be transferred from the vapor to the liquor 

(Alhusseini, Tuzla and Chen, 1998; Chen and Gao, 2004). As the vapor loses heat, it 

condenses partially, causing a liquid condensate to be formed on the surface. After the 

black liquor reaches the bottom of the evaporator body, part of it is pumped back to the 

top of the evaporator, allowing it to trickle down the heat transfer surface once again. This 

helps maintain a relatively constant solids concentration in the evaporator, which makes 

it relatively insensitive to changes in the black liquor mass flow rate (Tikka, 2008).  The 

heat transfer surface may take various geometries, such as tubular and lamellar. 
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Figure 2-5: Heat transfer in a FF evaporator. Black liquor flows down the tube walls (left), 

while hot vapor (right) transfers heat (orange arrows) to it, causing water to evaporate. The 

release of heat by the vapor is accompanied by its condensation. 

2.1.4.2 Rising film evaporators  

Rising film evaporators, also known as long-tube-vertical (LTV) evaporators, were 

widely used in the pulp and paper industry until the mid-1980s. In modern evaporation 

plants, FF evaporators predominate (Tikka, 2008). 

 

 

 

Figure 2-6: Schematic representation of a rising film (LTV) evaporator. 
 

In this type of evaporator, black liquor is fed from its bottom and passes through an array 

of tubes, moving upwards, as can be seen in Figure 2-6. These tubes are usually 50 mm 

in diameter and have a length of about 8.5 m (Tikka, 2008). Vapor is fed to the evaporator 

shell and flows through the external surface of the tubes, transferring heat to the rising 
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black liquor and causing part of its water content to be vaporized. Having lost heat, part 

of the vapor condenses, and the condensate is collected below the vapor inlet. Both the 

vapor and the concentrated black liquor exit the evaporator from its upper shell. 

If this type of evaporator is operated at low black liquor mass flow rates, the boiling of 

black liquor may be unstable. Moreover, low mass flow rates may lead to the generation 

of hotspots, which could cause scaling to occur in the tubes, leading to plugging. In this 

type of evaporator, plugged tubes cannot be cleaned by washing, and manual cleaning 

must be carried out (Tikka, 2008). 

2.1.4.3 Concentrators 

Concentrators are the evaporators that take the black liquor to its final desired 

concentration in MEE plants. Since concentrators operate at relatively high solid 

fractions, scaling cannot be avoided, and so concentrators need to be periodically shut 

down and washed (Adams, 2001; Andersson, 2015). Depending on how high a solids 

fraction is desired, it may be necessary to feed the concentrators with steam that is hotter 

than that of other evaporators. Scaling in concentrators involves the formation of burkeite 

and dicarbonate, both of which are double salts of sodium sulfate and sodium carbonate 

and can reduce the lifespan of equipment and impair their heat transfer characteristics, for 

which reason scaling has been the subject of several chemical characterization and 

modeling studies (Shi and Rousseau, 2003; Frederick et al., 2004; Soemardji et al., 2004; 

Broberg, 2012; Karlsson, Gourdon and Vamling, 2016; Karlsson, 2017). 

2.1.5 Mass and energy balances in evaporators 

Evaporator calculations are commonly based on performing mass and energy balances 

around the evaporator body (Billet and Fullarton, 1989; Tikka, 2008).  

 

 

Figure 2-7: Black liquor (black), vapor (red) and condensate (blue) streams around an 

evaporator body. 

 

Figure 2-7 displays the inlet (F) and outlet (L) black liquor streams, inlet (S) and outlet 

(V) vapor streams, and condensate stream (C) connected to an evaporator body. The inlet 
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vapor mass flow, 𝑚𝑆̇ , is equal to the condensate mass flow, 𝑚𝐶̇ , as the inlet vapor only 

undergoes condensation without any mass flow being added or removed from it, hence 

equation 2.1. 

 

 𝑚𝑆̇ = 𝑚𝐶̇  (2.1) 

 

The black liquor mass flow, 𝑚𝐹̇ , entering the evaporator is split into vapor stream V 

having flow 𝑚𝑉̇  and concentrated liquor stream L having flow 𝑚𝐿̇ , as described in 

equation 2.2. 

 

 𝑚𝐹̇ = 𝑚𝐿̇ + 𝑚𝑉̇  (2.2) 

 

Moreover, all the solids contained in stream F will be carried over to stream L, as given 

in equation 2.3. 

 

 𝑚𝐹̇ 𝑥𝐹 = 𝑚𝐿̇ 𝑥𝐿 (2.3) 

 

Equations 2.1, 2.2, and 2.3 constitute the evaporator mass balance equations. Heat transfer 

is calculated by estimating the heat transfer coefficient, U, and applying it in equation 

2.4: 

 �̇� = 𝑈𝐴(𝑇𝑆 − 𝑇𝐿) (2.4) 

In this equation, �̇� is the transferred heat power, 𝐴 is the heat transfer area, 𝑇𝑆 is the live 

steam or vapor temperature, and 𝑇𝐿 is the outlet black liquor temperature. The value of U 

depends on the convective heat transfer coefficient, ℎliq, on the liquor side, on the 

convective heat transfer coefficient, ℎvap, on the vapor side, and on the thermal 

conductivity of the heat transfer surface, 𝑘surf (Costa et al., 2007b, 2007a), as shown in 

equation 2.5: 
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U =

1

1
ℎliq

+ 𝑘surf +
1

ℎvap

 
(2.5) 

 

Heat transfer correlations can be calculated based on correlations that are functions of 

dimensionless numbers, such as Nusselt number Nu, Reynolds number Re, and Prandtl 

number Pr (Ding et al., 2009; Johansson, Vamling and Olausson, 2009; Karlsson et al., 

2013; Gourdon and Mura, 2017). One such correlation is shown in equation 2.6, where 

C, e, and f are empirically determined constants, 𝑘 is the fluid thermal conductivity, L is 

a characteristic length, 𝜌 is the fluid density, 𝜇 is the fluid dynamic viscosity, 𝑣 is the 

flow velocity, and 𝑐𝑝 is the fluid heat capacity. 

 

 
Nu =

ℎ𝐿

𝑘
= 𝐶Re𝑒Pr𝑓 = 𝐶 (

𝜌𝑣𝐿

𝜇
)

𝑒

(
𝑐𝑝𝜇

𝑘
)

𝑓

 (2.6) 

 

A comprehensive list of correlations of this type has been provided by (Costa et al., 

2007b). It is common to use a correlation for Nu under turbulent flow and a different 

correlation for Nu under laminar flow. These correlations are then combined to obtain an 

average Nu, as shown in equations 2.7, 2.8, and 2.9 (Karlsson et al., 2013): 

 

Nulam = 0.882 Re−0.22 (2.7) 

Nuturb = 0.0038 Re0.4Pr0.65 (2.8) 

Nu = √Nulam
2 + Nuturb

2  
(2.9) 

 

It is also possible to estimate U through other types of empirical correlations obtained 

from process data (Adib, Heyd and Vasseur, 2009; Khademi, Rahimpour and Jahanmiri, 

2009; Chantasiriwan, 2015). 
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2.2 Simulation and optimization of evaporative systems 

In this section, a description of the methods reported in the literature for simulating and 

optimizing evaporative systems is given. 

2.2.1 Linear and mixed integer linear programming 

Some researchers have modeled evaporative systems using linear models. This modeling 

strategy has the advantage of allowing for linear programming (LP) and mixed-integer 

linear programming (MILP) algorithms to be applied. More specifically, if an 

optimization can be posed as an LP, then, assuming that the problem is well posed, its 

global optimum can reliably and efficiently be found. On the other hand, if the problem 

is posed as an MILP, it is still the case that the global optimum can be reliably found, but 

the efficiency may suffer, since MILP algorithms usually rely on some type of branch-

and-bound strategy (Luenberger, Ye and others, 2010). 

Ji and collaborators (2012) attempted to optimize the energy cost of a pulp and paper mill 

subsystem comprised of a digester and an evaporation plant using LP. The model was 

solved using the commercial package CPLEX, which can solve both LP and MILP 

problems (Ji et al., 2012). In this study, the authors used data collected from an operating 

pulp and paper mill, whose evaporator plant structure is shown in Figure 2-8, to construct 

a linear Excel® model that correlated the outlet steam mass flow with other inlet steam 

and black liquor variables. The model is shown in in equation 2.11: 

 

 𝑓𝑠𝑡𝑒𝑎𝑚 = −0.6897 𝑇𝑆%𝑖𝑛 − 0.552𝑡𝑖𝑛 + 0.8655𝑓2 − 0.4288𝑡3

+ 0.2445 𝑇𝑆%𝑖𝑛 + 0.1182𝑓𝑖𝑛 
(2.10) 

 

In this equation, the terms of form TS% refer to the black liquor dry solids mass fraction, 

those of form f refer to mass flow rates, and those of form t refer to temperatures in ºC. 

The subscripts refer to the streams to which they pertain. These streams can be found in 

Figure 2-8. 

From an optimization standpoint, equation 2.10 acts as an equality constraint. The 

objective function to be minimized, which represents cost, is given in equation 2.11: 

 𝑓𝑜𝑏𝑗 = 𝑐𝑜𝑖𝑙𝑚𝑜𝑖𝑙 + 𝑐𝑏𝑎𝑟𝑘𝑚𝑏𝑎𝑟𝑘

+ 𝑐𝑒𝑙,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑞𝑒𝑙,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 – 𝑐𝑒𝑙,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑞𝑒𝑙,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
(2.11) 
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Figure 2-8: Seven-effect evaporation plant optimized by (Ji et al., 2012) using linear 

optimization techniques (derived from (Ji et al., 2012). 

 

In this equation, 𝑐oil, cbark, cel,purchased and cel,produced represent, respectively, the oil 

cost €/ton, bark cost in €/ton, electricity cost in €/MWh, and electricity revenue when 

electricity is sold (negative cost) in €/MWh. The terms of form m denote mass in tons, 

whereas terms of form q denote energy in MWh. 

The authors found that the model was useful for testing different operational scenarios 

for the pulp mill under study. It should be noted, however, that this type of study is a 

process-specific study, and that the values reported for this process may not be 

interchanged with others. 

A more sophisticated and more general study focusing on MILP was conducted by 

Kermani and collaborators (2016). In this study, the authors developed a MILP-based 

process integration methodology for simultaneously optimizing water and energy 

consumption in a Kraft pulping mill (Kermani et al., 2016). Also worth mentioning is a 

study by Khanam and Mohanty (2010), where they proposed energy reduction schemes 

for MEE systems (Khanam and Mohanty, 2010). Their study involved enumerating a 

collection of possible evaporator arrangements. 

The authors, starting from nonlinear heat exchanger models, generated new linearized 

models following a methodology similar to that described by Floudas (2006) in his 

seminal text Deterministic Global Optimization, where nonlinear terms are replaced by 

linear terms and extra constraints are added to the complete optimization problem 
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(Floudas, 2013). Once the models were linearized, the complete optimization problem 

was formulated as an MILP closely following the methodology described by Biegler and 

collaborators (1997) for pinch analysis (Biegler, Grossmann and Westerberg, 1997). 

Another noteworthy, albeit less mathematically sophisticated, linear approach to process 

integration is the one described by Mesfun and Toffolo (2015). In their study, the authors 

carried out the process integration of an entire Kraft pulp mill using pinch analysis 

(Mesfun and Toffolo, 2015). A simple but general linear optimization method has also 

been described by Kaya and Sarac (2007) for optimizing a four-effect, parallel-flow 

evaporator plant in terms of energy economy (Kaya and Ibrahim Sarac, 2007). 

2.2.2 Nonlinear programming 

From a phenomenological standpoint, the modeling of evaporative systems rests on mass 

and energy balances. The latter naturally introduces nonlinearities into the models, which 

accounts for the large number of nonlinear models among those reported in the literature. 

A comprehensive review of these methods has been given by (Verma, Manik and Sethi, 

2019). 

Bhargava and collaborators (2008) modeled the MEE system displayed in Figure 2-9 

using phenomenological equations corresponding to mass and energy balances. This 

MEE system is particularly important because it served as a basis for the work of 

subsequent researchers, such as Jyoti and Khanam (2014). The model was built using 

both linear equations, global mass balances, and nonlinear equations, solids balances and 

energy balances. 

 

 

Figure 2-9: Seven-effect MEE system studied by Bhargava and collaborators (derived from 

(Bhargava et al., 2008). 
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The authors manually tried different black liquor flow patterns for this system to find the 

one that maximized steam economy, that is, the ratio between the total vapor generated 

in the MEE plant and the amount of live steam supplied to it. Figure 2-10, derived from 

their original publication, shows the different arrangements that were tried. In this figure, 

F denotes the sequence of effects through which black liquor flows. 

 

 

Figure 2-10: Black liquor flow patterns studied by Bhargava and collaborators (E derived from 

(Bhargava et al., 2008). 

 

Jyoti and Khanam (2014) modeled the MEE system displayed in Figure 2-11 in a similar 

way as Bhargava and collaborators. The model was solved using a non-specified iterative 

procedure. The authors then manually experimented with different numbers of flashing 

tanks and vapor bleeding strategies to find the most economical arrangement, as measured 

by cost function. 

Mesfun and Toffolo (2013) carried out process integration of a combined heat and power 

(CHP) system and the evaporator plant at a Kraft mill. Their process integration approach 

was based on pinch analysis and used an evolutionary algorithm called the Genetic 

Diversity Evaluation Method (GeDEM). The authors claimed that this evolutionary 

algorithm was chosen due to its robustness to withstand potentially large variations in the 

calculated values for the pinch-point temperatures. By manually changing the MEE 

system configuration, the authors were able to identify energy-saving opportunities. 

Another interesting study involving MEE process integration is one by Sharan and 

Bandyopadhyay (2016), where they used models quite similar to those used by Bhargava 

and collaborators (2008) to model an evaporator train for a desalination system. It is worth 

noting that despite the fact that the present dissertation focuses on Kraft MEE plants, the 

models used to describe them can be modified to fit the needs of other industries. Diel 

and collaborators (2016) optimized a MEE system by generating response surfaces and 

then subjecting these surfaces to statistical analyses. Their methodology involved solving 

a nonlinear system of equations several times. 
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Figure 2-11: Seven-effect MEE system studied by Jyoti and Khanam (adapted from (Jyoti and 

Khanam, 2014). 

 

Olsson (2009b) developed a simulation tool called OptiVap for simulating MEE systems 

and used it to optimize MEE systems that account for lignin extraction and the use of 

excess heat. 

2.3 General process simulation techniques 

The methods described in the preceding section are best used for modeling evaporative 

systems that have a fixed topological structure. The term topological structure refers to 

the number of evaporator bodies, or any other unit processes, in a system and the way in 

which they are interconnected. Notice that, by following the above-mentioned 

methodologies, if a system were to change its structure, the equations that describe it 

would then have to be changed as well. These methodologies, for this reason, would have 

trouble describing a system whose structure is either unknown or dynamic. 

More general methodologies, which can accommodate a variety of process structures, 

have been thoroughly studied and reported in the chemical engineering literature, and it 

is due to them that a variety of general-purpose process simulators are available today. 

Process simulators are commonly used in the pulp and paper industry to facilitate the 

analysis and flowsheeting of evaporator plants. Cardoso and collaborators (2009) used 

the commercial simulator WinGEMS along with continuous data collected from a 

Brazilian pulp mill to identify opportunities for saving energy. In their work, continuous 

online data from a six-effect evaporation plant was fed to WinGEMS, which then 

calculated the heat transfer coefficient of each evaporator body in the plant (Cardoso et 
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al., 2009). The MEE plant is depicted in Figure 2-12. By analyzing how these calculated 

coefficients varied, it was possible to schedule a washing routine for the evaporators, 

which optimized their energy use. 

 

 

Figure 2-12: Six-effect MEE train from a Brazilian pulp mill studied by Cardoso and 

collaborators (derived from (Cardoso et al., 2009). 

 

 

Figure 2-13: ChemCAD diagram of a six-effect MEE train studied by Saturnino (adapted from 

(Saturnino, 2012). 

 

Saturnino (2012) calculated the chemical balance of an entire Kraft pulp mill as part of 

doctoral research, a procedure that involved calculating its evaporation plant, displayed 
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in Figure 2-13. He performed the MEE evaporator calculation with the aid of two process 

simulators, WinGEMS and ChemCAD, and then compared the results (Saturnino, 2012). 

Satisfactory agreement was found between the results obtained from both simulators. 

General process simulation methodologies are commonly divided into two broad 

categories, namely an equation-oriented approach (EOA) and sequential-modular 

approach (SMA) (Westerberg et al., 1979). It should be noted, however, that some 

methodologies combine aspects of both EOA and SMA. 

The hypothesis posed in this dissertation is that there exists a methodology through which 

it is possible to optimize evaporator systems both with respect to their topological 

arrangement and other internal design variables. If this is the case, the methodology must 

contain in its core a set of subroutines that allow for systems of general topological 

complexity to be simulated. In principle, both EOA and SMA simulation approaches can 

do so, which motivated their use in this dissertation. 

Of course, it remained to be seen whether these methodologies would have good 

convergence properties for the systems that were studied. Another question would be that 

of selecting an optimization procedure that would work well alongside the simulation 

procedure. In the next sections, the EOA and SMA approaches are described in more 

detail, and an overview of mathematical optimization methods is given. 

2.3.1 Sequential-modular approach 

With the sequential-modular approach, each unit process of a system is abstracted as an 

independent module. The mass and energy flows that are transferred between the unit 

processes are abstracted as process streams, which interconnect the modules. Each 

module is responsible for calculating the properties of its outlet streams given its module 

parameters and the properties of its inlet streams. Figure 2-14 shows a system consisting 

of three process modules, here represented by rectangular blocks, and six streams, 

represented by arrows. In this example, each module is connected to two input streams 

and two output streams. 

If the properties of the leftmost process streams are known, module 1 can be executed to 

calculate the properties of its two output streams. These streams serve as input for module 

2. Since their properties are now known, module 2 can be executed to calculate its outlet 

streams. These, in turn, serve as inputs for module 3. Upon executing block 3, the 

rightmost streams can finally be calculated. The properties of all streams can thus be 

determined by executing the modules in a certain order, in this example 1–2–3. Notice 

that the calculation order is tightly related to the topology of the process being analyzed. 
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Figure 2-14: Calculation of a process model using a SMA methodology. The process topology 

suggests that the modules should be calculated in the order of 1–2–3. 

 

In practical systems, however, it is quite common to find topologies such as the one shown 

in Figure 2-15(a). Notice that the blue stream serves as input for module 1 and as output 

for module 3. This topological feature is commonly known as a recycle, for which reason 

the blue stream is referred to as a recycle stream. In this case, the calculation is not as 

straightforward as before since the calculation for module 1 requires information that can 

only be obtained by calculating module 3. Module 3, on the other hand, depends on the 

outputs of module 1. 

In this case, an iterative procedure must be carried out. In Figure 2-15(b), the recycle 

stream has been torn. In the procedure known as stream tearing, recycles are eliminated 

by breaking recycle streams into pairs of independent streams (Westerberg et al., 1979; 

Mah, 2013). The calculation sequence in this example begins with an initial estimate of 

the properties of the torn stream. Module 1 can be executed based on this initial estimate, 

followed by modules 2 and 3. The result from module 3 will yield new property values 

for the torn stream, which will, in general, be different than the initial estimate. Based on 

these new values, the torn stream properties can be updated. This process is repeated until 

the difference is sufficiently small. This procedure is sometimes referred to as converging 

the recycles. 

Several methods have been described in the literature for tearing recycle streams as well 

as for converging recycles. Common algorithms for recycle convergence are fixed-point 

iteration, Wegstein’s method, and the NR method (Smith, 2016). 

 

Figure 2-15: Stream tearing procedure in an SMA simulator. 



 41 

2.3.2 Equation-oriented approach 

Generally speaking, as the number of recycles in a system increases, the harder and slower 

it will be for SMA methods to converge, since more initial estimates need to be provided 

and more iterations will be necessary for convergence to be achieved. An alternative 

methodology that may facilitate convergence is the equation-oriented approach. 

With this approach, each unit process is abstracted as a set of equations. Figure 2-16 

displays a process flowsheet composed of three unit processes. Let 𝒙 be a vector 

containing all process variables necessary to calculate this flowsheet. In this example, 

process 1 is described by the equations 𝑓1(𝒙) and 𝑓2(𝒙), process 2 by 𝑔1(𝒙) and 𝑔2(𝒙), 

and process 3 by ℎ1(𝒙) and ℎ2(𝒙). These equations are collected and assembled into a 

global system of equations (GSOE). The GSOE can then be solved using any of the many 

available numerical methods for solving systems of linear and nonlinear equations. 

Notice, however, that these methods require initial estimates for the variables to be 

provided. The quality of these estimates will determine how well the algorithms will 

converge. 

Notice that the topological structure of the process is disregarded in EOA: the 

interconnectivity between the block no longer dictates the calculation order. If good initial 

estimates can be provided, this may greatly facilitate the convergence of systems with 

many recycles. The GSOE solution can be further facilitated by examining the 

dependences between its equations and variables. Equations that, for instance, only 

depend on a single variable can be solved first. 

 

Figure 2-16: Calculation of a process model of an EOA methodology. Each process module 

contributes a set of equations that make up an overall general system of equations (GSOE). 
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2.4 Mathematical optimization 

2.4.1 General aspects 

A general mathematical optimization problem can be written as follows (Floudas, 2013): 

 min 𝑓(𝒙)

s. t. ℎ𝑖(𝒙) = 0 

𝑔𝑗(𝒙) ≤ 0
 (2.12) 

In this type of problem, a vector of scalars denoted by 𝒙 is sought such that it minimizes 

the value of the objective function, here denoted by f, evaluated at 𝒙, while satisfying the 

equality and inequality constraints represented by equations ℎ𝐼 and inequalities 𝑔𝑗, 

respectively. 

An optimization problem may be either constrained or unconstrained. A constrained 

problem contains at least one equality or inequality constraint, whereas none are present 

in an unconstrained problem. 

A vast number of engineering problems can be modeled as mathematical optimization 

problems (Boyd and Vanderberghe, 2004; Floudas, 2013). Problems involving cost 

minimization are a natural fit. 

Finding a solution to the general problem expressed by equation 2.12 is not trivial. This 

is due to the general formulation-accommodating functions, which may be ill-behaved or 

contain local minima. A local minimum is a point whose objective function value is lower 

than that of those in its neighborhood. If its value is also lower than that of every other 

point in the function domain, then it is also said to be the global minimum. Figure 2-17 

displays a function with a local minimum at point (5,6) and a global minimum at point 

(3,3). 
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Figure 2-17: Graph of a function displaying a global minimum at point (3,3) and a local 

minimum at point (5,6). 

 

 

In many cases, such as in costs optimization, it is highly desirable to find the global 

minimum. The existence of local minima is an obstacle to optimization in these cases, 

since the algorithms usually applied to solve them are prone to being trapped in local 

minima. This situation can be remedied by either re-running the algorithm with new initial 

estimates or by trying new algorithms. A brief overview of the types of algorithms usually 

applied in practice is given in the following section. 

2.4.2 Deterministic algorithms 

Optimization algorithms are iterative and can be divided into two broad categories: 

deterministic and stochastic. Deterministic algorithms are guaranteed to execute the same 

sequence of steps every time. These algorithms usually depend on the user providing an 

initial estimate for the values of the choice variables. This initial estimate is then updated 

at each iteration until it either meets a predetermined convergence criterion or until a 

maximum number of iterations is reached. The quality of this initial estimate determines 

whether the algorithm will converge, how close it will get to the actual solution, and how 

many iterations are needed for it to halt. 

Since deterministic algorithms depend on the quality of the initial estimate, they are 

susceptible to converging to local minima, or to not converging at all. Even still, these 

algorithms tend to converge quickly with a high degree of precision if the problem under 

study is convex (Boyd and Vanderberghe, 2004), or if high-quality initial estimates can 

be provided. Important exceptions to the initial estimate requirement are the standard 

algorithms used for solving linear programming problems, that is to say, optimization 

problems whose objective function and constraints are linear. Such algorithms as the 

simplex method or interior point method have a built-in subroutine for generating initial 
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estimates that converge, for which reason they are, in practice, preferred (Luenberger, Ye 

and others, 2010). 

Deterministic algorithms for nonlinear optimization problems may be classified with 

respect to the order of the derivatives required during their execution. For instance, if no 

derivatives are required by the algorithm, it is said to be a zero-order method. Likewise, 

if at most the first derivative of the objective function and constraints are required, it is 

classified as a first-order method. Algorithms that require second derivatives are, finally, 

classified as second-order methods (Price, Storn and Lampinen, 2005; Luenberger, Ye 

and others, 2010). 

Zero-order methods are useful for optimizing problems whose functions are either 

discontinuous or whose first derivative is ill-behaved. Examples of such algorithms are 

the Hooke-Jeeves method and the Nelder-Mead method (Price, Storn and Lampinen, 

2005). Variants of these two algorithms are currently being implemented in scientific 

computing packages such as MATLAB® (‘MATLAB Optimization Toolbox’, 2018). 

These algorithms usually function by sampling points in the neighborhood of the current 

estimate at each iteration and updating the estimate using the objective function values at 

these points. 

First-order methods use the objective function’s first derivative to iteratively update the 

initial estimate, ideally bringing it closer to the minimum point. A well-known first-order 

algorithm for unconstrained nonlinear problems is the gradient descent method. With this 

method, the objective function gradient is calculated either analytically or numerically at 

each iteration, and the current estimate is moved in the direction opposite to that of the 

gradient, as shown in equation 2.13.  

 

 𝒙𝑛+1 = 𝒙𝑛 − 𝛼𝑛𝛻𝑓(𝒙𝑛) (2.13) 

   

In this equation, 𝒙𝑛 in the estimate for the minimum at the nth iteration and 𝛼𝑛 is a step-

control parameter, which is a positive number that may either depend on the current 

iteration or remain constant. If 𝛼𝑛 is taken as a sufficiently small value, it can be shown 

that 𝒙𝑛+1 is guaranteed to be less than 𝒙𝑛 (Luenberger, Ye and others, 2010). Even though 

smaller values of 𝛼𝑛 favor convergence, they also tend to increase the number of iterations 

necessary for the algorithm to converge. 

Second-order methods use the first and second derivatives of the objective function and 

constraints. The canonical example is the Newton-Raphson (NR) method, shown in 

equation 2.14.  
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 𝒙𝑛+1 = 𝒙𝑛 − 𝛼𝑛𝐇−1(𝒙𝑛)𝛻𝑓(𝒙𝑛) (2.14) 

   

In this equation, 𝐇−1(𝒙𝑛) denotes the inverse Hessian matrix of the objective function 

evaluated at 𝒙𝑛, where the Hessian is defined elementwise as [𝐇]𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
|

𝑥𝑛

 and 𝛼𝑛 is 

a positive step-control parameter. The NR method converges remarkably quickly when a 

good enough initial estimate is provided. This property, more properly stated, is known 

as quadratic convergence (Luenberger, Ye and others, 2010). Despite this attractive 

property, the NR method is still susceptible to being trapped in local optima, and, in 

practice, numerically evaluating the Hessian matrix at each iteration may be prohibitively 

costly since the number of entries in that matrix increases quadratically with the number 

of variables. In other words, the NR method may actually be too computationally heavy 

to be used in larger problems. It should be noted that equation 2.14 is not implemented as 

it is in robust computational packages, since this equation involves inverting the Hessian 

and then multiplying it by the gradient. It is instead more efficient to solve the linear 

system shown in equation 2.15, which is equivalent to the former equation (Boyd and 

Vanderberghe, 2004). 

 

 𝐇(𝒙𝑛)(𝒙𝑛+1 − 𝒙𝑛) = 𝛻𝑓(𝒙𝑛) (2.15) 

   

A family of algorithms known as Quasi-Newton was developed to combine the NR 

method’s rapid convergence rate, while remedying its scalability issues for large 

problems. The Broyden-Fletcher-Goldfarb-Shanno method, abbreviated as BFGS, 

belongs to this family and is commonly implemented in scientific packages. It proceeds 

very much like the NR method, but instead of recalculating the Hessian every iteration, it 

is instead updated using rank one updates (Luenberger, Ye and others, 2010).  

 𝐁𝑛𝒑𝑛 = 𝛻𝑓(𝒙𝑛) 

𝒔𝑛 = 𝛼𝑛𝒑𝑛 

𝒙𝑛+1 = 𝒙𝑛 + 𝒔𝑛 

𝒒𝑛 = 𝛻𝑓(𝒙𝑛+1) − 𝛻𝑓(𝒙𝑛) 

𝐁𝑛+1 = 𝐁𝑛 +
𝒒𝑛𝒒𝑛

𝑇

𝒒𝑛
𝑇𝒔𝑛

−
𝐁𝑛𝒔𝑛𝒔𝑛

𝑇𝐁𝑛

𝒔𝑛
𝑇𝐁𝑛𝒔𝑛

 
(2.16) 
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The formulae displayed in equation 2.16 show the steps involved in the BFGS method. 

The matrix 𝐁 is an approximation of the much slower to calculate Hessian matrix, and it 

is updated at each iteration and then used to calculate a step size, 𝒔𝑛, controlled by the 

step-control parameter 𝛼𝑛. Depending on the implementation, 𝐁 may be initially set to 

the identity matrix or made equal to the Hessian matrix evaluated at the initial estimate, 

𝒙0. The term rank one refers to the outer vector products of the form, 𝒒𝑛𝒒𝑛
𝑇 , which are 

matrices with a rank equal to one since all its columns are multiples of each other. Due to 

this unique characteristic of rank-one matrices, matrix operations involving them can be 

optimized, thus making the algorithm more efficient. 

2.4.3 Stochastic algorithms and differential evolution 

Stochastic algorithms involve randomness in their execution, for which reason the 

sequence of steps taken during their execution is not guaranteed to be the same. In fact, it 

is their very randomness that helps them overcome, to some extent, a major difficulty 

faced by deterministic algorithms, that is, the presence of local minima. 

Differential evolution (DE) is an evolutionary algorithm that has found wide acceptance 

in multiple fields of knowledge and is particularly well suited for global optimization over 

continuous spaces (Price, Storn and Lampinen, 2005). It has been successfully applied in 

the optimization of a wide variety of energy optimization systems, from heat exchangers 

to wind farms (Afanasyeva et al., 2013; Saari et al., 2014, 2019). The implementation 

details are given below. 

Initially, a population of Np D-dimensional vectors is randomly generated, where D is the 

number of choice variables of the problem under study. Each one of the vectors will be 

denoted by 𝒙𝑖, where 𝑖 ranges from 0 to Np - 1. This population will be referred to as the 

first generation of vectors. 

It is necessary that the user supplies upper and lower bounds for each one of the choice 

variables to be initialized for DE. Let 𝒙𝒊 be a population vector and let x𝑖,𝑗   denote its jth 

variable. Let 𝑏𝑗
𝐿 and 𝑏𝑗

𝑈 be the lower and upper bounds corresponding to the jth variable. 

Each variable is then uniformly sampled according to equation 2.17: 

 

 𝑥𝑖,𝑗 = 𝑏𝑗
𝐿 + rand(0,1)(𝑏𝑗

𝑈 − 𝑏𝑗
𝐿) (2.17) 

   

Once all variables of all Np vectors are uniformly sampled, the initialization step is 

complete. The algorithm now proceeds to the mutation step. 
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During mutation, Np mutant vectors 𝒗𝑖, also known as target vectors, are generated by 

adding a random, scaled difference between two randomly chosen vectors, 𝒙1 and 𝒙2, to 

a third one, 𝒙0. It is important that all three vectors are distinct from each other, meaning 

that no vector is sampled more than once. Vector 𝒙0 is known as the base vector, whereas 

𝒙1 and 𝒙2 are the difference vectors. In the basic DE implementation, 𝒙0 is randomly 

selected, while taking care that its index in the population is not equal to the target vector’s 

index. Other implementations of DE, however, might follow a different strategy. In fact, 

other implementations might even add more than one scaled difference to the base vector 

(Price, Storn and Lampinen, 2005). 

 

 𝒗𝑖 = 𝒙0 + 𝐹(𝒙1 − 𝒙2) (2.18) 

Here, F is known as the scale factor, which can, in theory, take any positive value. In 

practice, however, it is seldom the case that F takes values much higher than one (Price, 

Storn and Lampinen, 2005). 

Next, DE enters the crossover step, where the original and target vectors are interleaved 

to the extent determined by the crossover probability, CR. Intuitively, this means that the 

vectors are being shuffled, which helps to reduces the likelihood of the algorithm get 

trapped in a local optimum. A collection of Np trial vectors 𝒖𝑖 is constructed as follows. 

For every 𝑖 ∈ 0, … , 𝑁𝑝 − 1, initialize 𝒖𝑖 as an empty vector and uniformly select a 

variable index, 𝑗𝑟𝑎𝑛𝑑 ∈ 0, … , 𝐷 − 1. Take the corresponding original and target vectors, 

𝒙𝑖 and 𝒗𝑖, and copy their values to 𝒖𝑖 as follows: for each component 𝑗 ∈ 0, … , 𝐷 − 1, 

uniformly sample a random number 𝑟 between 0 and 1. If 𝑟 ≤ 𝐶𝑅, or if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, copy 

𝑣𝑖,𝑗 into 𝑢𝑖,𝑗. If that is not the case, copy 𝑥𝑖,𝑗 into 𝑢𝑖,𝑗. Notice that if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, then the 

trial vector is guaranteed to receive data from the target vector. This is done to ensure that 

trial vector 𝒖𝑖 is not a duplicate of 𝒙𝑖 (Price, Storn and Lampinen, 2005). 

Lastly comes the selection stage. Here, DE checks whether each of the generated trial 

vectors, 𝒖𝑖, resulted in a lower objective function value when compared to the 

corresponding original vector, 𝒙𝑖. If that is the case, 𝒖𝑖 replaces 𝒙𝑖 in the next generation. 

Once this check is made for all trial vectors, DE loops back to the mutation stage and the 

process is repeated until either a convergence criterion is met or the maximum number of 

generations is exceeded. 

The method just described is referred to by the original authors as Classic DE, or 

rand/1/bin. The latter notation, which is useful for describing variations of this method, 

states that during the mutation step, the base vector is randomly selected and then added 

to one scaled vector difference. In the crossover step, the components, j, of the trial vector 

are selected from either 𝒙𝑖 or 𝒗𝑖, a process controlled by the crossover probability, CR. 

This approximates a Bernoulli process with probability CR, the only difference being that 

if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, then 𝑣𝑖,𝑗 is copied to 𝑢𝑖,𝑗 regardless of CR. Since the crossover step is 

approximated by a sequence of D independent Bernoulli steps, the probability distribution 
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of the components of 𝒖𝑖 approximates a binomial distribution (Feller, 1957; Price, Storn 

and Lampinen, 2005). 

Figure 2-18 provides a visual representation of how DE progresses when optimizing a 

function with two local minima. At generation zero, the population vectors, represented 

by black dots, are uniformly scattered throughout the domain. As the number of 

generations increases, the vectors cluster together close to the optima, eventually 

migrating to the global optimum. 

 

 

Figure 2-18: Optimizing a function with local optima using DE (the colored curves are the 

function’s contour lines and the black dots are the vectors corresponding to each generation). 

 

DE is parameter-dependent: the user needs to supply the number of vectors in the 

population, Np, the scaling factor, F, and the crossover probability, CR. These numbers 

can be determined by running DE with different combinations thereof, a procedure known 

as parameter tuning.  

Low values of F and 𝑁𝑝 accelerate convergence, but at the same time they increase the 

likelihood of convergence at a local optimum. As a rule of thumb, it is often recommended 

to set 𝑁𝑝 = 10𝐷 (Storn, 1996; Price, Storn and Lampinen, 2005). If D is very high, 

(Ghosh et al., 2017) recommend setting 𝑁𝑝 = 0.1𝐷.  As for F, an initial estimate of 0.7 ≤
𝐹 ≤ 0.9 is often recommended (Ronkkonen, Kukkonen and Price, 2005; Yang, 2010), 

even though lower (Gämperle, Müller and Koumoutsakos, 2002) and higher (Ghosh et 

al., 2017) values have also been suggested.  
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3 Methodology 

The research hypothesis of this dissertation is that there exists a methodology for 

simultaneously optimizing evaporation systems with respect to their structure and to their 

internal variables. It is also important to assess how well it converges and scales for larger 

problems. 

The optimization algorithm chosen for this type of problem was Differential Evolution, 

due to its reported success in optimizing a wide variety of problems, as well as due to it 

being particularly well suited for global optimization over continuous spaces (Price, Storn 

and Lampinen, 2005). 

Another reason for the choice of DE was the fact that each objective function evaluation 

corresponds to solving an entire MEE flowsheet, which is a computationally heavy 

operation. Other methods, such as those of the quasi-newton family would require many 

more function evaluations per iteration, which would sharply increase the computational 

load required for optimization, thus hindering it from being applied in practice. Another 

advantage of DE is the fact that its stochastic nature makes it less likely to become trapped 

at a global optimum. 

In this dissertation, the research hypothesis is proved by presenting s general 

methodology for performing the topological optimization of MEE systems. At its core, 

the methodology depends on a simulation engine that makes it possible to model and 

simulate the MEE systems of arbitrarily complex structures. 

Manually coding complex systems is a tedious and error-prone process. Assembling MEE 

flowsheets can be greatly facilitated by exposing the user to a graphical user interface 

(GUI), through which it is possible to assemble the block diagram corresponding to the 

MEE system under study and to input process parameters. 

Taken as a whole, the GUI and the simulation engine constitute a complete steady-state 

MEE EOA simulator. The simulator engine was initially written in MATLAB. Once the 

calculation procedures were shown to yield good results, the engine was rewritten in C++, 

and a GUI written in Python 3.8 was added.  

After the EOA simulator was built and tested, a new SMA engine was built and integrated 

with the same GUI. Switching engines was relatively straightforward, as the 

communication between GUI and engine was done using an application-programmer 

interface (API) based on the ubiquitous file format known as JSON, which helped to 

uncouple these two software components. 

In the following sections, the architecture of both the EOA and SMA simulation engines 

are described. Immediately after these sections, a description of the evaporator model 

chosen for this dissertation, as well as a simplified version thereof, are given. This is 
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followed by a description of calculation procedures utilized for physical properties 

estimation of water vapor and black liquor. 

Next, the validation procedure for the evaporator model is described. In this step, data 

taken from the literature was used to gauge how well the model performed. Once the 

model results were considered sufficiently good, the topological optimization of two 

MEE systems was carried out. This is described immediately after the model validation 

section. 

Next, a section describing improvements on the original model regarding its convergence 

characteristics. Lastly, a section describing an alternative way of improving the 

simulation methodology, by implementing an SMA simulator, is described. 

3.1 EOA simulator architecture 

Figure 3-1 summarizes the calculation process carried out by the simulator. Initially, the 

user inputs a block diagram and its respective process parameters into the GUI. Blocks 

and streams, collectively referred in Figure 3-1 as elements, supply equations to the 

simulation engine, which assembles the GSOE. The equations then facilitate convergence 

based on specific instructions. 

This global system of equations is then passed on to a solver (MATLAB Trust-Region or 

NR, for instance), along with a vector of initial estimates, which proceeds to solve the 

system. Once the system is solved, the simulator produces a report containing the values 

of all process variables, as calculated by the simulator.  

Initial estimates may either be directly supplied by the user or by the simulator itself, 

which defaults estimates to zero if not provided. This architecture allows for any variable 

to remain constant. Suppose it is desired that variable x, belonging to element 1, remain 

constant at a prespecified value of ten. All that must be done is to require that element 1 

provide the engine with the equation x − 10 = 0. 

The ordering process begins by constructing a bipartite graph corresponding to the GSOE 

(Fritzson, 2010). In this graph, two sets of vertices exist: equation vertices and variable 

vertices. An edge connects equation vertex i to variable vertex j if variable j takes part in 

equation i. As an example, suppose that the GSOE consists of the three equations shown 

in equation 3.1: 

 

 

{

f(x1) = 0

f(x1, x2, x3) = 0

f(x2, x3) = 0

 (3.1) 
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The bipartite graph corresponding to this system of equations is shown in Figure 3-2(a), 

where the squares represent equations and the circles represent variables. 

 

 

Figure 3-1: Steps taken by the EOA simulator during the calculation of an MEE process 

flowsheet. 

 

Given a bipartite graph, a matching is defined as a set of edges such that no edges share 

a vertex. A matching is said to be maximal if no matching exists with a higher number of 

edges (Fritzson, 2010). In the current example, the three bold edges shown in Figure 

3-2(b) form a matching, since none of these edges share a vertex. Notice that a matching 

cannot exist with a higher number of edges, as that would cause an equation to be shared 

between two edges. Therefore, the bold edges constitute a maximum bipartite matching 

of size three. 

In the simulator, the maximum bipartite matching, M, for this graph is determined using 

the Ford-Fulkerson algorithm (Sedgewick and Wayne, 2011). The bipartite graph is then 

converted into a directed graph through the following process: for every edge e 

connecting equation vertex i to the variable vertex j, if e belongs to M, then replace it with 

a directed edge connecting i to j. If e is not in M, then replace it with a directed edge 

connecting j to i. The topological ordering of this directed graph gives the ordering of the 

equations (Fritzson, 2010). The result of applying this procedure to the current example 

is displayed in Figure 3-2(c). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3-2: Equation ordering and partitioning procedure starting from the bipartite graph 

corresponding to the GSOE. 

 

Once the order of the equations has been determined, the simulator determines the subsets 

of equations that need to be solved simultaneously. This step is referred to as partitioning. 

From a computational standpoint, partitioning is equivalent to finding the strongly 

connected components, or SCCs, of the ordered graph. In the simulator, this step is done 

with the well-known Kosaraju algorithm (Sedgewick and Wayne, 2011). The result of 

partitioning the current example is displayed in Figure 3-2(d). The ordered graph contains 

a total of three partitions, each of which is highlighted with a different background color. 

This partitioning step produces a complete calculation sequence for the GSOE. In the 

example provided, equation 1 is solved first, allowing variable 1 to be found. Then, 

equations 2 and 3 are solved together to find the values for variables 2 and 3. 

The simulator solves each partition using the NR method. Initial estimates for the 

variables may either be supplied by the user or calculated by the simulator. In the latter 

case, the simulator is run using simplified models for each unit process to facilitate 

convergence, and the values upon which it converges are used as estimates. 
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3.2 SMA simulator architecture 

Figure 3-3 summarizes the calculation process carried out by the SMA simulator. 

Initially, the user inputs a block diagram and its respective process parameters into the 

GUI. If the user wishes to supply initial estimates, it is also possible to do so. If no initial 

estimates are supplied, the simulator uses the default values. 

The simulator then creates the calculation modules corresponding to each GUI element, 

bringing to the module all user input information necessary for making a calculation. The 

simulator also generates an information flow graph representing the dependencies of each 

module with respect to every other module, as show in Figure 3-4. For example, an 

evaporator body requires data from its input vapor and black liquor streams and supplies 

data to the outlet vapor, condensate, and black liquor streams. Therefore, as shown in 

Figure 3-4, in the information flow graph the vertex corresponding to the evaporator will 

have incoming edges from its input streams and outgoing edges to its outlet streams. 

The information flow graph is then processed to identify all its circuits. A circuit is a loop 

within the graph made up of a sequence of non-repeating vertices and edges. If an edge 

is removed from this graph, then at least one loop will have been removed from the graph, 

which is equivalent to tearing a stream in the flowsheet. Therefore, repeatedly removing 

edges from the set of circuits of a graph eventually leads to an acyclic graph, which 

corresponds to a flowsheet with no remaining untorn recycle streams. By listing the set 

of all circuits in a graph, it is possible to select the smallest set of edges that, when 

removed, cause the graph not to have any loops. 

 

Figure 3-3: Steps taken by the SMA simulator during the calculation of an MEE process 

flowsheet. 
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Figure 3-4: Information flow graph (below) corresponding to an MEE process flowsheet 

(above). Evaporators and streams are represented by circles. Evaporators are displayed in 

yellow, vapor streams in red, condensate streams in blue, and black liquor streams in black. The 

arrows represent calculation dependencies. 

 

The set of all circuits was constructed by traversing the information flow graph using a 

depth-first search (DFS) (Sedgewick and Wayne, 2011).  

Once the set was constructed, a loop matrix, L, was constructed. In this matrix, each 

column corresponded to an edge and each row to a circuit. Element Li,j is equal to one if 

circuit i contains edge j, otherwise it is equal to zero. Notice that the sum of all elements 

under column j is equal to the number of circuits in which an edge participates. This gives 

rise to the following greedy heuristic for removing edges: 

• Identify the edge that participates in the most circuits; 

• Remove the edge from L and all circuits that contained it; 

• Repeat the steps above while circuits still remain in L. 

The edges that have been removed are each associated with a single stream in the 

flowsheet. These streams form a set of tearing streams. 
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Now that the information flow graph has been rendered acyclic, the calculation order can 

easily be determined by running a topological sort on it. At this point, the calculations 

may begin. 

In every iteration, the simulator loops through each of the modules in the order determined 

by the topological sort and keeps a cache of all torn stream variables. If the maximum 

relative error among all torn steam variables over two consecutive iterations is smaller 

than a predetermined relative tolerance, usually on the order of 1%, then the simulator 

stops and is assumed to have converged. Otherwise, another iteration is executed. 

The simulator modifies the calculated torn stream variable values after each iteration 

using Wegstein’s method, which is quite common in commercial process simulators and 

can greatly improve the likelihood and rates of convergence (Smith, 2016). 

3.3 Supported unit processes, blocks, and streams 

The unit processes currently supported by the simulator are as follows: evaporation, black 

liquor and condensate flashing, black liquor mixing and vapor and condensate mixing. 

The mass flows that take place between the unit processes are represented by streams that 

are divided into black liquor, vapor, and condensate streams. 

Table 3.1 lists the variables that describe each type of stream and Table 3.2 lists the 

currently supported process blocks and the equations corresponding to each of them. In 

these equations, variable subscripts denote the streams to which they correspond, except 

for subscript sat, which denotes saturation. Mass flows are indicated by �̇�, enthalpies by 

H, temperatures and pressures by T  and P,  respectively, the dissolved solids mass 

fraction by 𝑥𝐷, the total solids mass fraction by 𝑥𝑇, and the boiling point rise of black 

liquor by BPR . Black liquor streams are graphically depicted by black lines. Vapor and 

condensate streams are in turn depicted as red and blue lines, respectively. 

Table 3.1: Stream types supported by the EOA and SMA simulators and the variables that 

describe them. The subscripts D and T denote dissolved and total solids fractions, respectively. 

Stream type Variables 

Vapor ṁ, T, P 

Condensate ṁ, T, P 

Black liquor �̇�, 𝑇, 𝑥𝐷 , 𝑥𝑇 
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Table 3.2: Unit processes supported by the EOA and SMA simulators and the equations that 

describe them 

Process block Description Equations 

 

 
Evaporator 

 

The black liquor stream, 

F, and the inlet vapor 

stream, S, enter the 

evaporator block. The 

outlet black liquor stream, 

L, the condensate stream, 

C, and the outlet vapor 

stream, V, exit the block. 

Evaporator blocks take as 

parameters the heat 

transfer coefficient, U, 

and the heat transfer area, 

A. 

ṁS = ṁC 
ṁF = ṁL+ṁV 

ṁFxD,F = ṁLxD,L 
ṁFxT,F = ṁLx𝑇,L 

PS = PC 
TC = Tsat(PS) 

TV = Tsat(PV)+BPR(PV,xD,L) 
TV = TL 

Q = ṁS(HS-HC) 
Q = UA(TS-TL) 

Q̇+ ṁFHF = ṁLHL+ṁVHV  
 

 

 
Flash tank 

 

The inlet black liquor or 

condensate stream, F, 

enters the flash block. The 

outlet vapor stream, V, 

and the outlet black liquor 

or condensate stream, L, 

exit the block. The flash 

tank pressure is 

determined by the outlet 

vapor stream pressure, PV. 

ṁF = ṁL+ṁV 
TV = TL 

PV = Psat(TV) 
PL = Psat(TV) 

ṁFxD,F = ṁLxD,L 
ṁFx𝑇,F = ṁLxT,L 

 

 
Black liquor mixer 

 

An arbitrary number of 

black liquor streams, Li, 

enter the mixer block and 

a single combined black 

liquor stream, Lout, exits 

it. 

∑ ṁi

i

= ṁout 

∑ ṁi

i

Hi = ṁoutHout 

∑ ṁi

i

xD,i = ṁoutxD,out 

∑ ṁi

i

x𝑇,i = ṁoutx𝑇,out 

 

 
Vapor mixer 

 

An arbitrary number of 

vapor or condensate 

streams, Vi, enter the 

mixer block and a single 

combined vapor or 

condensate stream, Vout, 

exits it. In this work, the 

vapor mixer is assumed to 

cause a negligible 

pressure drop and that all 

pressures will be equal. 

∑ ṁi

i

 = ṁout 

∑ ṁi

i

Hi = ṁoutHout 

P1=P2=…=Pn=Pout 
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Black liquor splitter 

An inlet black liquor 

stream is split it into two 

outlet streams, whose 

mass flows are defined by 

a splitter ratio R. The 

outlet streams are 

assumed to have the same 

values of temperature and 

solids fractions as the 

inlet stream. 

�̇�1 = 𝑅�̇�𝑖𝑛 
�̇�2 = (1 − 𝑅)�̇�𝑖𝑛 

𝑇1 = 𝑇2 = 𝑇𝑖𝑛 

𝑥𝐷,1 = 𝑥𝐷,2 = 𝑥𝐷,𝑖𝑛 

𝑥𝑇,1 = 𝑥𝑇,2 = 𝑥𝑇,𝑖𝑛 

 

Vapor splitter 

An inlet vapor stream is 

split it into two outlet 

streams, whose mass 

flows are defined by a 

splitter ratio R. The outlet 

streams are assumed to 

have the same values of 

temperature and pressure 

as the inlet stream. 

�̇�1 = 𝑅�̇�𝑖𝑛 
�̇�2 = (1 − 𝑅)�̇�𝑖𝑛 

𝑇1 = 𝑇2 = 𝑇𝑖𝑛 

𝑃1 = 𝑃2 = 𝑃𝑖𝑛 

 

3.3.1 A simplified evaporator model 

As will be discussed in later sections, solving the nonlinear equations shown in Table 3.2 

with NR requires that reasonably good initial estimates be provided. For this reason, an 

alternative, simplified evaporator model was developed. Solving this model is far easier 

in terms of convergence, and the results obtained from it serve as good initial estimates 

for solving the system of equations corresponding to the original model. The simplified 

evaporator model is shown below: 

 

 ṁS = ṁC 
(3.2) 

 ṁF = ṁL+ṁV (3.3) 

 ṁFxD,F = ṁLxD,L (3.4) 

 ṁFxT,F = ṁLx𝑇,L (3.5) 

 
𝑃𝑆 = 𝑃𝐶 

(3.6) 

 TC = Tsat(PS) (3.7) 

 TV = Tsat(PV)+BPR(PV,xD,L) (3.8) 
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 TV = TL (3.9) 

 
�̇� = 2200 �̇�𝑆 

(3.10) 

 
Q̇ = UA(TS − TL) 

(3.11) 

 ṁ𝑆 = ṁ𝑉  (3.12) 

 

In the simplified model, the evaporator energy balance is replaced with 
�̇�𝑆 = �̇�𝑉, the BPR is neglected, and the heat of steam condensation is approximated as 

�̇� = 2200 �̇�𝑆. This procedure replaces the nonlinear equations representing energy 

balances, enthalpy, and BPR calculations with simple linear terms to generate a good 

enough approximate solution to serve as a starting point for solving for the full model. 

The simplified model was created by setting up the EOA simulator to calculate a single 

evaporator body, and then changing the evaporator model equations until a good 

compromise between accuracy and general ease of convergence was found. To gauge the 

general ease of convergence of a proposed model, directed bipartite graphs corresponding 

to its GSOEs were generated, following the procedure described in Figure 3-2, and then 

plotted using a Python script that implemented a simple force-directed graph plotting 

algorithm (Frishman and Tal, 2009). 

 

3.4 Physical properties  

Energy balances require that the water steam enthalpies of black liquor are known. Water 

and steam enthalpies were calculated based on steam table correlations and implemented 

in C++, as described in the 2007 revised release of the International Association for the 

Properties of Water and Steam IAPWS Industrial Formulation of 1997 standard (Cooper 

et al., 2007). 

Black liquor enthalpies were calculated based on the correlation described by Zaman and 

Fricke (1996), which expresses the enthalpy of black liquor at 80°C, H80, as shown in 

equation 3.13. In this equation, Hw,80 denotes the water enthalpy at 80°C, xD is the black 

liquor dissolved solids fraction, and the constants b and c depend on the type of black 

liquor being considered. In this work, it was assumed that b = 105.0 kJ/kg.K and c = 

0.300. 

 

 𝐻80 = 𝐻𝑤,80 + 𝑏 [−1 + exp (
𝑥𝐷

𝑐
)] (3.13) 
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To account for black liquor enthalpies at other temperatures, H80 is corrected using the 

black liquor heat capacity correlation given by equation 3.14, where t stands for the 

temperature measured in °C (Tikka, 2008): 

 

 𝑐𝑝 = 4.216(1 − 𝑥𝐷) + [1.675+
3.31𝑡

1000.0
] 𝑥𝐷 + [4.87 +

20𝑡

1000.0
] (1 − 𝑥𝐷)𝑥𝐷

3  (3.14) 

 

 

 

The black liquor boiling point rise (BPR) also needs to be considered in evaporator 

calculations. BPR is accounted for using equations 3.15 and 3.16, where TP is the boiling 

temperature of water at pressure P (Tikka, 2008): 

 

 
𝐵𝑃𝑅(𝑃, 𝑥𝐷) = 𝐵𝑃𝑅atm(𝑥𝐷) [1 +

0.6(𝑇𝑝 − 373.16)

100
] (3.15) 

 

 𝐵𝑃𝑅atm(𝑥𝐷) = 6.173𝑥𝐷 − 7.48𝑥𝐷
1.5 + 32.747𝑥𝐷

2  (3.16) 

3.5 Base scenarios 

Two MEE scenarios adapted from the literature were used to a) test and validate the 

results produced by the model and to b) test the evaporator systems’ topological 

optimization methodology. The first scenario, shown in Figure 3-5, is a simple three-

effect system with intermediate flashing, adapted from (Tikka, 2008). This scenario will 

be referred to as S1. 
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Figure 3-5: Simple three-effect MEE system (S1), adapted from (Tikka, 2008). 

 

Due to its simplicity, this scenario was useful for quickly testing whether the 

mathematical modeling yielded reasonable results and whether the proposed 

methodology would function as expected as well as for finding optimal ranges for the DE 

parameters. The second, more realistic scenario, referred to as S2, is shown in Figure 3-6. 

This system is a six-effect MEE plant, composed of seven evaporators, with intermediate 

condensate flashing as well as black liquor flashing. 

 

 

 

3.6 Model validation 

It is necessary to first verify whether the model would yield reasonable values compared 

to the reference data. To do that, both systems S1 and S2 were simulated using the EOA 

simulator and input data taken from the literature, and the values produced by the 

simulator were compared to those found in the references. Table 3.3 displays the input 

data used for validating S1, which was taken from a sample MEE calculation scenario 

(Tikka, 2008). 

Figure 3-6: Realistic six-effect MEE system (S2), adapted from (Saturnino, 2012). 
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Table 3.3: Input validation values for the three-effect system, S1 (reference values taken from 

(Tikka, 2008) 

Variable Value Units 

Live steam temperature 120 °C 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of Effect 1 (U1) 1.2 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 1.6 kW/m²K 

Heat transfer coefficient of Effect 2 (U3) 2.0 kW/m²K 

Outlet black liquor dissolved solids 50 % 

 

Table 4 displays the input data used for validating S2. These values are more realistic and 

were taken from (Saturnino, 2012). 

 

Table 3.4: Input validation values for the six-effect system, S2 (reference values derived from 

(Saturnino, 2012) 

Variable Value Units 

Live steam temperature to Effect 1 140 °C 

Live steam temperature to Effect 2 147 °C 

Vapor temperature from Effect 7 52 °C 

Black liquor inlet mass flow 15.6 kg/s 

Black liquor inlet temperature 64.7 °C 

Black liquor inlet dissolved solids 11.8 % 

Black liquor outlet dissolved solids 31 % 

Heat transfer coefficient of Effect 1 (U1) 0.296 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 0.4303 kW/m²K 

Heat transfer coefficient of Effect 3 (U3) 0.2584 kW/m²K 

Heat transfer coefficient of Effect 4 (U4) 0.6955 kW/m²K 

Heat transfer coefficient of Effect 5 (U5) 0.839 kW/m²K 

Heat transfer coefficient of Effect 6 (U6) 0.9698 kW/m²K 

Heat transfer coefficient of Effect 7 (U7) 1.224 kW/m²K 

 

Once the simulator was capable of outputting values in agreement with the reference 

values, it was deemed suitable for optimization. 

3.7 Expanding the base scenarios using the EOA simulator 

S1 and S2 were considered to undergo a 15% increase in the black liquor feed rate over the 

values shown in tables Table 3.3 and Table 3.4. To maintain the same final dissolved 

solids concentration, new evaporator bodies are added to these systems. The objective of 
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this optimization scenario is to find the best arrangement for the new evaporator(s) and 

its(their) heat transfer area(s). Although this methodology allows for an infinite number 

of evaporator body arrangements to be considered, the problem was here constrained to 

only encode the possibilities of adding an evaporator in series and/or in parallel to the 

existing systems.  

To encode these possibilities, the new flowsheets shown in figures Figure 3-7 and Figure 

3-8 are drawn. In this diagram, two possible new evaporators, Epar and Eser, having heat 

transfer areas equal to Apar and Aser and are added to the original systems along with new 

mixers and splitters. By changing the splitter fractions of the splitters feeding black liquor 

and vapor streams to the new evaporators, an infinite number of arrangements can be 

encoded. 

This diagram has the property of encoding multiple tentative topological arrangements 

by means of varying the splitter fractions, making it useful for optimization. Diagrams 

with such a property have been described in the literature as superstructures, a 

nomenclature that is also adopted in this study (Biegler, Grossmann and Westerberg, 

1997). 

 

Figure 3-7: Superstructure encoding two typical possibilities (parallel/series) for expanding the 

three-effect train (S1). 
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Figure 3-8: Superstructure encoding two typical possibilities (parallel/series) for expanding the 

six-effect train (S2). 
 

To evaluate the cost of a proposed arrangement, a cost model must be adopted. In this 

study, the cost of a proposed evaporator arrangement with total heat transfer area A is 

given via equation 3.17, where the constant coefficients come from the professional 

experience of the author and his collaborators. This equation gives cost c in USD. The 

optimization goal is to select the arrangement that yielded the lowest value for c. It should 

be noted that the aim of this dissertation is not to give accurate estimates of the costs 

involved, as those may vary significantly in different parts of the world, but to present a 

methodology for optimizing evaporator systems that consider all feasible topological 

arrangements. 

 

 c = 30 000 + 1 000A0.9 (3.17) 

 

The evaporator plants in this study are each modeled via a system of nonlinear equations 

representing their mass and energy balances, which, when solved, yield a steady-state 

solution for the system. Determining the optimal arrangement for the new evaporator 

corresponds to solving an optimization problem, whose choice variables encode the 

different arrangement possibilities and whose objective function quantifies the cost of 

adding the new heat transfer surface. In this study, the optimization itself is carried out 

by means of DE. 

This metaheuristic was chosen to be the optimizer because it is widely used and because 

of its success in solving a variety of difficult multi-modal engineering optimization 
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problems combining continuous and discrete variables (Afanasyeva et al., 2013; Saari et 

al., 2014, 2019)  

In the following section, we describe how the EOA simulator was used along with DE to 

perform the desired topological optimization. 

3.7.1 Calculations 

To ensure reliable convergence of the actual model, a simplified system is first used to 

generate a starting point for solving the full model. The equations remain essentially 

unchanged for all blocks, except the evaporator, which had its energy balance equation 

simplified. In this stage of simulator development, all the code was written in MATLAB 

and the equation partitioning and ordering subroutines had not yet been implemented. In 

other words, all the equations composing the GSOE were solved simultaneously. For this 

reason, solving the simplified system was particularly useful, as good initial estimates 

greatly facilitate the convergence of such large systems of equations. 

In the simplified model, the evaporator energy balance is replaced with 
�̇�𝑆 = �̇�𝑉, the BPR is neglected, and the heat of steam condensation is approximated as 

�̇� = 2200 �̇�𝑆. More details can be found in section 3.3.1. This procedure replaces the 

nonlinear equations representing energy balances, enthalpy, and BPR calculations with 

simple linear terms to generate a good enough approximate solution to serve as a starting 

point for solving for the full model. 

As stated previously, the goal of the optimization problems was to find the least costly 

arrangement for the new evaporator body, or evaporator bodies, as well as the heat 

transfer areas capable of meeting the same outlet liquor dry solids concentration as before. 

For each combination of splitter fractions and heat transfer areas, the system of equations 

corresponding to the superstructure under study was solved to find the final black liquor 

concentration rate. The systems were solved via MATLAB’s implementation of the trust-

region method, whose convergence depends on the quality of the initial estimate. Due to 

the difficulty of finding an initial estimate that guarantees convergence, it proved 

necessary to include all the model variables in the optimization problem. 

The calculation proceeded as follows (see Figure 3-9): 

1. For each generation, DE generates a vector containing all variables describing 

the system, including both the optimization variables (splitter fractions and heat 

transfer areas) and non-optimization variables related to solving the system 

(mass flows, pressures, temperatures, and solid fractions); 

 

2. The optimization variables are given to the simulator as fixed parameters; the 

vector with all variables is used as an initial estimate. The simulator is then run 
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with the simplified model. This extra step was important, for it substantially 

increased the likelihood of convergence. If no solution was found, the objective 

function would return a constant of 1015; 

 

3. The values found for the variables based on solving the simplified model are 

used as initial estimates for the complete model. If a solution is found, equation 

3.17 is evaluated to obtain the cost, and this value is returned to DE; otherwise, 

the constant 1015 was returned. If the trust-region algorithm converges but with 

negative (thus, physically impossible) values for some of the variables, the 

objective function value is set at 1012 × nneg, where nneg is the number of negative 

values. If the outlet black liquor concentration is smaller than required, the cost 

function is penalized by 10
12

(xD

spec
 – xD

out), where xD

spec
 is the specified outlet-

dissolved solids concentration and xD
out is the actual solids concentration. 

 

The goal of the penalty scheme was to ensure that a candidate that fails to converge in the 

solver should lose out to any candidate that does converge; among candidates where the 

solver converges, one that violates constraints should always lose out to any legal 

candidate, no matter how poor otherwise, whereas between candidates that violate 

constraints, the one that violates fewer constraints should win.  

The constants 1012 and 1015 were chosen so that they would penalize the objective 

function with a relatively high value if the solver did not converge and with a still 

relatively high value, although lower, if it converged but with the constraints having been 

violated. Notice that a 1012 term is added to the total penalty for each violated constraint. 

The equations were solved using MATLAB’s implementation of the trust-region 

algorithm with numerically evaluated derivatives. 

The algorithm was assumed to have converged when either the Euclidean distance 

between the points of two successive iterations was less than 10−12 or when the absolute 

difference between two successive objective function evaluations was less than 10−12. To 

increase the probability of the points generated via DE converging at a feasible solution, 

upper and lower bounds were calculated for each problem based on their input 

parameters.  

3.7.2 Optimization parameters 

S1 was used to assess the validity and practicality of the proposed methodology, as it is a 

relatively small system. The lower and upper bounds assigned to each optimization 

variable are listed in Table 3.5. For this problem, the number of choice variables, D, is 

equal to 87. 
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Figure 3-9: Steps involved in evaluating the objective function. 

 

The problem was solved with DE for multiple combinations of Np and F, with CR fixed 

at 0.9. The goal was to identify the set of values for these parameters that allowed the 

problem to be solved both correctly and as efficiently as possible. For each combination 

of points, five trials were conducted. 

Table 3.6 displays the DE parameters used and shows their corresponding ranges and the 

number of sampled points within that range. For example, Np varied from 20 to 100 over 

a sample of five points, meaning that Np could assume values of 20, 40, 60, 80, or 100. 

The algorithm would terminate when the number of function evaluations (NFE) exceeded 

5000. In total, 5 × 4 × 5 = 100 runs were conducted. 
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Table 3.5: Lower and upper bounds for S1 

Variable Lower bound Upper bound Units 

Liquid stream temperatures 40 120 °C 

Vapor stream temperatures 40 120 °C 

Vapor stream pressures 7.38 198.73 kPa 

Liquid stream flows 0 50 kg/s 

Vapor stream flows 0 50 kg/s 

Exchanged heat 0 73000 kW 

Heat transfer areas 400 4000 m2 

Dissolved dry solids 0.2 0.5 – 

Total dry solids 0.2 0.5 – 

Splitter fractions 0 1 – 

 

Table 3.6: DE parameters corresponding to S1 

Parameter Range Sampled points in range Stopping criterion 

NP [20, 100] 5  

F [0.4, 1.0] 4 NFE = 5000 

CR 0.9 1  

 

S2 is a larger scenario, one used to assess whether the proposed methodology could 

optimize realistically sized systems. For this system, D = 218. Table 3.7 shows the upper 

and lower bounds that were used. As before, S2 was solved with DE for multiple 

combinations of Np and F, with CR fixed at 0.9. For each combination, five trials were 

conducted. The runs were interrupted when NFE exceeded 75000. The exact parameter 

ranges and sample sizes can be found in Table 3.8. 

A total of 3 × 2 × 5 = 30 runs were executed. The number of sample points chosen was 

smaller than in S1 due to its greater level of complexity and increased required 

computational time. 
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Table 3.7: Lower and upper bounds for S2 

Variable Lower bound Upper bound Units 

Liquid stream temperatures 40 120 °C 

Vapor stream temperatures 40 120 °C 

Vapor stream pressures 7.38 198.73 kPa 

Liquid stream flows 0 48.14 kg/s 

Vapor stream flows 0 5.18 kg/s 

Exchanged heat 6000 47000 kW 

Heat transfer areas 300 3000 m2 

Dissolved dry solids 0.1393 0.7 – 

Total dry solids 0.1393 0.7 – 

Splitter fractions 0 1 – 

 

Table 3.8: DE parameters corresponding to S2 

Parameter Range Sampled points in range Stopping criterion 

Np [64, 256] 3  

F [0.5, 0.8] 2 NFE = 75000 

CR 0.9 1  

 

3.8 Improving the convergence characteristics of the EOA simulator 

The evaporator optimization methodology described in the last section may experience 

numerical difficulties during its execution when evaporators are operating close to the 

point where boiling begins. This is the case because the set of equations that model the 

evaporators, shown in tTable 3.2, assume that a liquid-vapor equilibrium has been 

established. As the optimization calculations are executed, it may be the case that in a 

given iteration, some of the evaporator bodies do not transfer enough heat to the black 

liquor to raise its temperature to the boiling point. In this iteration, therefore, the 

evaporation assumption will not hold, which may lead the simulator to either diverge or 

converge at an incorrect solution. 

To alleviate this problem and attempt to broaden the convergence region of the model, a 

modification was proposed for the original evaporator model. The new equations are 

shown below: 
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 ṁS = ṁC 
(3.18) 

 ṁF = ṁL+ṁV (3.19) 

 ṁFxD,F = ṁLxD,L (3.20) 

 ṁFxT,F = ṁLx𝑇,L (3.21) 

 TC = Tsat(PS) (3.22) 

 𝑇𝑏𝑝 = 𝑇𝑠𝑎𝑡(𝑃𝑉) + 𝐵𝑃𝑅 (3.23) 

 𝐵𝑃𝑅 = 𝐵𝑃𝑅(𝑃𝑉 , 𝑥𝐷,𝐿) (3.24) 

 TV = TL (3.25) 

 
Q̇ = ṁS(HS − HC) 

(3.26) 

 
Q̇ = UA(TS − TL) 

(3.27) 

 
Q̇+ ṁFHF = ṁLHL+ṁVHV  

(3.28) 

 
Q̇1= ṁF(HF

bp − HF) 
(3.29) 

 

If  Q̇ < Q̇1 

 ṁ𝑉 = 0 

𝐄𝐥𝐬𝐞 

 TV = T𝑏𝑝 
 

(3.30) 

 

Notice that three new variables were introduced: Q̇
1
, BPR, and Tbp. Q̇

1
 denote the 

necessary power to raise the black liquor temperature from its feed temperature to its 

boiling point, where the liquor enthalpy is equal to HF
bp. BPR denotes the boiling point 

rise. Even though it had already been considered in the original model, it has been given 

its own separate variable for the sake of convenience. 

 

The form taken by equation 3.30 depends on the value of Q̇
1
. In the original model, the 

equality between the outlet liquid temperature and the liquor boiling point (the 

equilibrium condition) was always enforced. This, however, is not necessarily the case 

here. If the supplied heat, Q̇, is such that Q̇ < Q̇
1
, then not enough heat is available to 

cause the liquor temperature to rise to its boiling point. In this case, no vapor is produced 

and all Q̇ is spent increasing the liquor temperature. Under this condition, the equilibrium 

condition equation is replaced with  ṁV = 0. 
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3.8.1 Test cases 

To assess the quality of the new model, three test cases were considered: a single 

evaporator body, a simple three-effect MEE train, and a more realistic seven-effect MEE 

train. The latter two systems were loosely adapted from the base scenarios S1 and S2 

described in section 3.5. The intermediate flashing, however, was omitted to isolate the 

evaporator model’s behavior as much as possible. 

The single evaporator scenario was assumed to have a heat transfer coefficient of U = 1.2 

kW/m²K and a heat transfer area of 1 000 m². Its black liquor inlet and outlet properties 

were equal to those of the three-effect system, shown in Table 3.9. 

Figure 3-10 displays the flowsheet of the simple three-effect MEE train being considered 

and Table 3.9 displays the input variable values fed to it during the tests. The values for 

the live steam temperature, black liquor inlet mass flow, inlet total, and dissolved solids, 

as well as the heat transfer area, were also used for the single evaporator body tests. 

 

 

Figure 3-10: Simple three-effect MEE train adapted from S1. 
 

Table 3.9: Input values for the simple three-effect MEE train adapted from S1 

Variable Value Units 

Live steam temperature 120 °C 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Black liquor inlet total solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of Effect 1 (U1) 1.2 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 1.6 kW/m²K 

Heat transfer coefficient of Effect 2 (U3) 2.0 kW/m²K 

Outlet black liquor dissolved solids 50 % 

Heat transfer area (all effects) 1 000 m² 
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Figure 3-10 displays the flowsheet of the realistic seven-effect MEE train being 

considered and Table 3.9 displays the input variable values fed to it during the tests. 

 

 
Figure 3-11: Realistic seven-effect MEE train loosely adapted from S2. 

 

Table 3.10: Input values for the realistic seven-effect MEE train loosely adapted from S2 

Variable Value Units 

Live steam temperature to Effect 1 120 °C 

Live steam mass flow 2.0 Kg/s 

Black liquor inlet mass flow 15.6 kg/s 

Black liquor inlet temperature 64.7 °C 

Black liquor inlet dissolved solids 11.8 % 

Black liquor inlet total solids 11.8 % 

Heat transfer coefficient of Effect 1 (U1) 0.296 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 0.4303 kW/m²K 

Heat transfer coefficient of Effect 3 (U3) 0.2584 kW/m²K 

Heat transfer coefficient of Effect 4 (U4) 0.6955 kW/m²K 

Heat transfer coefficient of Effect 5 (U5) 0.839 kW/m²K 

Heat transfer coefficient of Effect 6 (U6) 0.9698 kW/m²K 

Heat transfer coefficient of Effect 7 (U7) 1.224 kW/m²K 

Heat transfer area (all effects) 1000 m² 

3.8.2 Convergence rate assessment 

To assess how well the new model behaved, several simulations were executed for the 

single evaporator and for the three-effect MEE train using the new model for different 

combinations of the live steam mass flow and heat transfer area. These will be referred to 

as test variables. The test variable ranges and number of tested values for both systems 

are shown in tables Table 3.11 and Table 3.12. 

 

 



74 

Table 3.11: Test variables range for the single evaporator system 

Variable Range Number of points 

Live steam mass flow (kg/s) [0 – 20] 100 

Outlet vapor pressure (kPa) [50 – 85] 5 

 

Table 3.12: Test variables range for the three-effect MEE system 

Variable Range Number of points 

Live steam mass flow (kg/s) [0 – 20] 20 

Heat transfer area (m²) [1000 – 2000] 5 

 

Unlike what was done with the original model, a simplified model was not used to 

generate initial estimates for the variables. Instead, random initial estimates were 

generated for each combination of test variables and the corresponding GSOE was solved 

for a maximum of Ntrials = 20 000 times, or until convergence. The initial estimates were 

uniformly sampled from the ranges shown in Table 3.13. This was done to minimize the 

possibility of divergence due to poor initial estimates. The seven-effect model was also 

simulated for a single typical scenario, namely the one shown in Table 3.10, to check the 

validity of its output variables. 

The live steam mass flow and heat transfer area were chosen as test variables because 

they determine, to a great extent, the amount of heat needed for evaporation to occur. 

Since the new model was constructed to allow for more evaporative conditions to be 

simulated, experimenting with different values for these variables should give a good idea 

of how well the new model performs. 

 

Table 3.13: Lower and upper bounds for the uniformly sampled initial estimates 

Variable Lower bound Upper bound 

Mass flow (kg/s) 0 20 

Temperature (ºC) 70 120 

Pressure (kPa) 50 200 

Heat load (kW) 0 10000 

Boiling point rise (ºC) 0 10 

Dissolved solids fraction (-) 0.2 0.8 

Total solids fraction (-) 0.2 0.8 

Heat transfer area (m²) 0 2000 

 

3.9 Convergence characteristics of the SMA simulator 

Another way to alleviate the difficulties caused by the boiling/non-boiling transition in 

evaporators is to implement the same original model described in Table 3.2 in an SMA 
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simulator. One of the advantages of this approach is that, since each module is calculated 

in isolation in this type of simulator, the problematic calculation cases can be taken care 

of within the evaporator module, hindering it from interfering with other calculations. 

From a practical standpoint, this also makes errors easier to diagnose and correct, since 

they can be traced back to each individual module as opposed to a GSOE. 

The evaporator model was the same described by (Vianna Neto, Saari, et al., 2020). The 

proposed iterative calculation scheme was obtained by assuming that the inlet vapor and 

liquor variables were known and that the outlet liquor, vapor, and condensate variables 

were unknown. Table 3.14 shows all the known and unknown parameters corresponding 

to all evaporator streams and to the evaporator body itself. The labels F, S, L, V, and C, 

as before, correspond to liquor feed, inlet vapor, outlet liquor, outlet vapor, and 

condensate, respectively. 

 

Table 3.14: Known and unknown variables when calculating an evaporator in the SMA 

simulator 

Variable Evaporator F S L V C 

U Known - - - - - 

A Known - - - - - 

�̇� Unknown - - - - - 

�̇� - Known Known Unknown Unknown Unknown 

𝑥𝐷 - Known - Unknown - - 

𝑥𝑇 - Known - Unknown - - 

P - - Known - Unknown Unknown 

T - Known Known Unknown Unknown Unknown 

 

As mentioned before, it is quite important to order and partition the system of equations 

to ensure convergence. For this reason, the same procedure for ordering and partitioning 

equations used for the EOA simulator was also used to determine the calculation sequence 

for the evaporator module. 

3.9.1 Test scenarios 

MEE systems ranging from 3 to 7 evaporator bodies were constructed, while maintaining 

the same counter-current structure shown in Figure 3-12. 
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Figure 3-12: Base three-effect MEE system used for building similar larger systems.  

 

The systems were initially simulated for three live steam mass flow values: 0, 2.5, and 

5.0 kg/s. This first step was meant to assess how well the simulator could calculate 

scenarios where evaporation would not necessarily occur due to a low supply of steam. 

The number of iterations needed for convergence during each test was recorded. Table 

3.15 lists the input values used for all tested scenarios. 

 

Table 3.15: Input values for the generated MEE systems being used to test the SMA simulator 

Variable Value(s) Units 

Live steam temperature 120 °C 

Live steam mass flow 0.0, 2.5 and 5.0 kg/s 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of all effects (U) 1.2 kW/m²K 

Heat transfer area of all effects (A) 1040 m² 

 

Each system was then simulated 100 times, with a fixed live steam mass flow of 5.0 kg/s, 

to measure the computational time required for the simulation to finish. This result is of 

great practical importance because the convergence time directly affects how practical it 

will be in optimization studies. The computer in which all the simulations were executed 

was equipped with a 2.7 GHz Intel® Core™ i7 and 4GB RAM and was run on Ubuntu 

16.04. Convergence was assumed to be reached when the relative change in all variables 

in every torn stream was lower than 1%. The initial estimates used for the stream variables 

were values deemed as typical, and are shown in Table 3.16. 
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Table 3.16: Initial values for each variable used for the SMA simulator convergence tests. 

Variable Value(s) Units 

Vapor stream mass flows 1 kg/s 

Vapor stream temperatures 100 °C 

Vapor stream pressures 200 kPa 

Black liquor stream mass flows 1 kg/s 

Black liquor stream temperatures 100 °C 

Black liquor stream dissolved solids 20 % 

Black liquor stream total solids 20 % 
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4 Results and discussion 

In the next two sections, the results corresponding to the calculation procedure and 

modeling and validation are presented. The results indicate that the model results display 

good agreement with the values found in the literature. 

Next, the topological optimization results using the EOA simulator are given. The results 

prove that the research hypothesis is true, as the proposed methodology successfully 

optimized both proposed multiple-effect evaporator systems. 

Following this section, the results corresponding to the proposed modification of the 

original model are given. They indicate that the modified model is capable of capturing 

scenarios where no evaporation takes place. They also suggest that the modified model 

suffers from convergence problems for large systems. 

The last section presents the results obtained for the SMA simulator. The new simulator 

was shown to converge very well for evaporator systems ranging from 3-7 effects even 

when no evaporation takes place. 

4.1 Simplified model 

Figure 4-1 and Figure 4-2 display the plotted, GSOE-oriented bipartite graphs produced 

by calculating a single evaporator with the complete model and with the simplified model, 

respectively. 

 

Figure 4-1: GSOE-oriented bipartite graph corresponding to a single evaporator using the 

complete evaporator model. 
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Figure 4-2: GSOE-oriented bipartite graph corresponding to a single evaporator using the 

simplified evaporator model. 

 

In these figures, the square boxes correspond to equations and the circles correspond to 

variables following the same convention adopted in Figure 3-1. Figure 4-1 shows that the 

GSOE produces a graph containing two separate subsystems. The rightmost, somewhat 

linear chain of equations and variables corresponds to the relatively straightforward 

sequential pre-processing of input variables, such as calculating the live steam pressure 

based on its temperature and then equating it with the condensate pressure. The leftmost 

subsystem corresponds to the bulk of the calculations, where most mass and energy 

balances are found. Note that the graph’s structure is quite intertwined due to the multiple 

interrelations that exist between variables and equations. From a practical standpoint, this 

means that in the partitioning stage, the EOA simulator will have to solve a relatively 

large part of these variables and equations together, thus making it that much more reliant 

on good initial estimates. 

When contrasting Figure 4-1 with Figure 4-2, it is immediately apparent that the graph’s 

structure is much more linear and less intertwined. In fact, this oriented graph has no 

loops, which allows each of its variables to be found sequentially. This structure sharply 

increases the likelihood of convergence for the simplified model, which makes it suitable 

for reliably generating initial estimates. 
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4.2 Evaporator model validation 

Table 4.1 displays some of the key output variables calculated for the three-effect system 

as well as their reference values, taken from the original reference. Note that there is a 

strong agreement between the calculated and reference values. Nonetheless, the simulator 

underestimated the heat transfer area and the black liquor outlet temperature as compared 

to the reference values. This discrepancy is justified by the fact that the black liquor 

enthalpies in this work were calculated from different correlations than those of the 

original reference. All other calculated variables, however, agree with their corresponding 

reference values within a tolerance of under 7%. 

 

Table 4.1: Comparison of calculated values and reference values for the three-effect system 

(derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020) 

Variable Calculated value Reference value Units Relative error 

Heat transfer areas (all 
effects) 

810 1 040 m² 22.12% 

Vapor temperature from 
Effect 1 

93.7 91.6 °C 2.29% 

Vapor temperature from 
Effect 2 

74.2 73.3 °C 1.23% 

Vapor temperature from 
Effect 3 

60 60 °C 0.00% 

Black liquor dissolved 
solids from Effect 1 

50 50 % 0.00% 

Black liquor dissolved 
solids from Effect 2 

33.3 33 % 0.91% 

Black liquor dissolved 
solids from Effect 3 

25.2 25 % 0.80% 

Outlet black liquor 
temperature 

93.7 99.8 °C 6.11% 

Live steam mass flow 11.6 11.3 kg/s 2.65% 

 

Table 4.2 displays some of the key output variables calculated for the six-effect system 

as well as their reference values, taken from the original reference. As before, there is a 

strong agreement between the calculated and reference values, and any discrepancies are 

likely due to the different correlations used. Note that the heat transfer areas are not shown 

in Table 4.2, as they were not reported in the original publication. 
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Table 4.2: Comparison of calculated values and reference values for the six-effect system 

(derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020) 

Variable 
Calculated 

value 
Reference 

value 
Units Relative error 

Vapor temperature from Effect 1 129 106.3 °C 21.35% 

Vapor temperature from Effect 2 128.5 126.8 °C 1.34% 

Vapor temperature from Effect 3 93.6 89.5 °C 4.58% 

Vapor temperature from Effect 4 78.3 77.2 °C 1.42% 

Vapor temperature from Effect 5 67.1 67.2 °C 0.15% 

Vapor temperature from Effect 6 58.3 58.7 °C 0.68% 

Vapor temperature from Effect 7 52 52 °C 0.00% 

Black liquor dissolved solids from Effect 1 29.17 31.65 % 7.84% 

Black liquor dissolved solids from Effect 2 26.59 26.29 % 1.14% 

Black liquor dissolved solids from Effect 3 23.08 24.42 % 5.49% 

Black liquor dissolved solids from Effect 4 19.59 20.32 % 3.59% 

Black liquor dissolved solids from Effect 5 16.66 17.29 % 3.64% 

Black liquor dissolved solids from Effect 6 14.67 15.12 % 2.98% 

Black liquor dissolved solids from Effect 7 13.24 13.45 % 1.56% 

Total live steam mass flow 2.2 1.9 kg/s 15.79% 

 

It should be noted that the steps for ordering the GSOE, partitioning it, and obtaining the 

initial estimates by solving the simplified model were critical to ensuring that the 

simulator would converge. In both scenarios, the combining of these steps allowed the 

simulator to converge with relative ease. This, however, was not the case when 

partitioning and solving the simplified model were skipped. Solving all the equations 

simultaneously via the NR method proved to be a particularly poor approach, as poor 

initial estimates often led to singular jacobians during the NR iterations. 

It must also be emphasized that the simulator determines the ordering of the GSOE based 

on the form taken by each equation, that is, the set of variables present in each equation. 

In other words, the way the equations are written has a direct impact on how the simulator 
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performs. The equations described in Table 3.2 are written in a way that yielded the most 

satisfactory results. 

4.3 Expanding the base scenarios using the EOA simulator 

Figure 4-3 shows the average number of function evaluations required for S1, when the 

stopping criteria included either reaching the maximum allowed NFE or a solution within 

1% of the best solution found by running the DE multiple times with conservative 

parameter settings that emphasized robustness over speed, that is, large F and very large 

population size: 2.497 × 105 USD. Due to the simplicity of this scenario, all runs 

converged at the same point, adding a new evaporator body in series with a heat transfer 

area of 400 m2. This is an interesting observation, because if the system to be optimized 

is relatively small, DE can find the optimal solution with smaller population sizes, which 

in turn reduces computation times. 

 

Figure 4-3: Average NFE required to solve S1 (derived from (Vianna Neto, Saari, et al., 2020). 

 

The average NFE increased with Np, as expected, since population numbers imply higher 

NFE counts per generation. The results do not indicate that there is a clear relation 

between F and NFE. Higher values for F tend to favor convergence reliability over 

convergence rate (Price, Storn and Lampinen, 2005). Since all S1 scenarios converged, 

the effect of F could not be clearly seen. 

Figures Figure 4-4 and Figure 4-5 show the best-case and worst-case convergence curves, 

as measured by the value of fobj until convergence, for solving S2. The worst-case curves 

are the ones which, for a given combination of Np and F, yielded the highest cost. 
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Conversely, the best-case curves are the ones that yielded the lowest cost for each 

combination of Np and F. Figures Figure 4-6(a) and Figure 4-6(c) show how the heat 

transfer areas, Apar and Aser, corresponding to evaporators Epar and Eser, respectively, 

evolved for the best-case scenario of S2. The evolution of Apar and Aser for the worst-case 

scenarios of S2 are shown in figures Figure 4-6(b) and Figure 4-6(d). When the 

methodology was applied to S1, Apar and Aser converged monotonically at their optimal 

values in all runs. 

Even though convergence was relatively straightforward for S1, the same ease does not 

transfer to more complex scenarios, such as the S2 scenario. Figures Figure 4-4 and Figure 

4-5 show that most, but not all, of the parameter combinations always converged at the 

identified value, 1.996×105 USD. When F = 0.5, some runs failed to find this value, as 

can be seen in the worst-case scenario curves, indicating that this is too greedy a setting 

and that higher values should be used for F. The optimal solution was adding a new 

evaporator body in parallel with a heat transfer area of 300 m2, in contrast to the optimal 

solution found for S1, where an evaporator body was added in series. 

The results above indicate that the proposed methodology can find the optimal 

arrangement for the new evaporator, whether it be in series or in parallel, thus validating 

the proposed methodology for the tested systems.  

It was interesting to examine the evolution of the optimization variables as the 

optimization was being carried out. When comparing Figure 4-6(d) with figures Figure 

4-4 and Figure 4-5, it is clear that the Np and F pairs whose worst-case scenario curves 

converged at the optimum also corresponded to Aser converging at 0. The two pairs that 

converged at a local minimum with a worse fobj also corresponded to a value of Aser on the 

order of 300 m2. Similarly, when comparing Figure 4-6(b) with Figure 4-5 it is clear that 

all pairs of NP and F converged at a value of Apar equal to 300 m2. Based on this finding, 

it is possible to draw two conclusions: a) the optimal arrangement for S2 consists of adding 

a new evaporator body in parallel and b) scenarios in which both an evaporator body in 

series and one in parallel would be added were contemplated at some point during 

optimization. The latter conclusion is critical, as it proves that the optimizer was indeed 

capable of testing different configurations as opposed to being trapped in a reduced search 

space. 

The best-case scenario curves displayed in figures Figure 4-6(a) and Figure 4-6(c) show 

that Apar and Aser converged monotonically at the optimal values. In fact, for these runs the 

optimization could be stopped for NFE values as low as 104. It is interesting to point out 

that in the best-case scenarios, Aser started off at zero and remained at zero until the end 

of the optimization. 
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Figure 4-4: Evolution of fobj with NFE for the best-case scenario for S2 (derived from (Vianna 

Neto, Cardoso, Vakkilainen, et al., 2020)). 

 

Figure 4-5: Evolution of fobj with NFE for the worst-case scenario for S2 (derived from (Vianna 

Neto, Cardoso, Vakkilainen, et al., 2020)). 
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(a) 

 

(b)

 

(c)

 

(d) 

 

Figure 4-6: Evolution of heat exchange areas Apar and Aser for system S2 versus NFE for the best-

case and worst-case scenarios (derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020)). 

 

It should be noted that the heat exchange areas of both scenarios converged at their lower 

bounds. This suggests that adding evaporator bodies whose areas are equal to the lower 

bounds is more than sufficient to ensure that the systems maintain the same dissolved 

solids fraction, despite operating at higher black liquor mass flow rates. It is also 

important to realize that increasing the black liquor flow or changing the lower bounds 

for the areas may result in different final configurations. 

4.4 Improving the convergence characteristics of the EOA simulator 

The long plateaus that can be seen in figures Figure 4-6(a)-(d) indicated that the optimizer 

might have been evaluating scenarios that were hard for the simulator to converge. This 

observation motivated the search for improvements in the convergence characteristics of 

the EOA simulator. 
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Figure 4-7 shows the outlet solids mass fraction of a single evaporator versus its inlet live 

steam flow and its outlet vapor pressure. It is important to notice that the intended effect 

of using the modified model was achieved: when there is no live steam inflow, the outlet 

solids fraction is equal to the inlet solids fraction. This is to be expected, as no evaporation 

can take place when no live steam is supplied. 

This scenario was simple enough that convergence was achieved with the first initial 

estimate for all calculated values. The graph shows that the new evaporator model can be 

used to simulate isolated evaporator bodies where no live steam is supplied. This is an 

important result because it suggests that the new model may be used for simulating larger, 

more realistic systems, since those would be described by the same mass and energy 

balances. This was, indeed, shown to be the case, as confirmed by the results obtained by 

solving the larger systems. 

The three-effect system was also successfully solved. However, since this system is more 

complex when compared with the single evaporator scenario, its corresponding GSOE 

was larger, thus making the problem more challenging to solve, as would be expected. 

Unlike the single evaporator scenario, some initial estimates did not lead to convergence. 

The summary statistics for the number of random initial estimates that were necessary for 

convergence are listed in Table 4.3. The sample space was taken as the set of all simulated 

scenarios. It should be noted that, even though it may be necessary to repeatedly try initial 

estimates, convergence could be achieved for all scenarios. 

Table 4.3: Summary statistics for the number of trials required for the three-effect MEE system 

to converge (derived from (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 2020). 

Variable Value 

Average 436.4 

Standard deviance 1 238.4 

Maximum 11 413 

Minimum 1 

 

A striking feature shown in Table 4.3 is the high variability in the necessary initial 

estimates for convergence, which was on the order of three standard deviances. The 

simulation could converge on the first try or take as long as 11,000 estimates. On average, 

however, 400 estimates were sufficient. This difficulty can be traced back to two factors: 

a) the fact that the initial estimates for all variables were chosen at random and b) that 

equation 3.30 introduces a discontinuity in the GSOE, which may cause the Jacobian 

matrix to become singular during the solution process. This discontinuity is due to the if 

statement, which radically changes the variables that are involved in that equation. For 

this reason, at points close to the boiling/non-boiling transition, there is a chance that the 

Jacobian would be non-invertible, causing it to fail to correctly guide the NR method or 

resulting in the fact that the numerically calculated derivatives would not be accurate at 

all. 
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Figure 4-7: Outlet solids mass fraction versus live steam mass flow and outlet vapor pressure for 

a single evaporator (derived from (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 

2020). 

 

It may be possible to minimize these problems by systematically generating better initial 

estimates using, for instance, a simplified model or by attempting to make the numerical 

solution method more robust. For that purpose, using analytically calculated derivatives 

may be helpful. 

Figure 4-8 shows the calculated inlet and outlet black liquor solids fractions 

corresponding to each effect as a function of the live steam mass flow for a fixed heat 

transfer area of A = 1,000 m². All values displayed in the graph correspond to runs that 

converged. Notice that the black liquor dry dissolved solids fraction curves are smooth. 

Had there been numerical instabilities, or had the GSOE been ill-posed, the curves might 

have displayed a jagged appearance. 

As would be expected, solids fractions increase with the effect number and with live 

steam flow. This behavior replicates what is shown in Figure 4-7. More importantly, the 

model was capable of simulating scenarios where the live steam flow was low, yielding 

sensible results. 
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Figure 4-8: Inlet and outlet solids mass fraction versus live steam mass flow for the three-effect 

system (A = 1 000 m²) (derived from (Vianna Neto, Cardoso, Sermyagina, et al., 2020). 

 

The seven-effect scenario was, as expected, more difficult to converge, taking no less 

than 400 initial estimates to converge. The reasons for this behavior are the same: initial 

estimates were randomly sampled for the occurrence of singular Jacobians close to the 

boiling/non-boiling transition, which becomes more likely as the number of variables 

increases. Some key calculated results for this scenario are shown in Table 4.4. 

 

Table 4.4: Summarized results for the seven-effect MEE system (derived from (Vianna Neto, 

Cardoso, Sermyagina, et al., 2020). 

Variable Value Units 

Outlet vapor temperature from Effect 7 68.0 °C 

Black liquor outlet mass flow from Effect 1 6.6 kg/s 

Black liquor outlet temperature from Effect 1 104.8 °C 

Outlet dissolved solids from Effect 1 49.4 % 

Outlet dissolved solids from Effect 2 38.7 % 

Outlet dissolved solids from Effect 3 32.7 % 

Outlet dissolved solids from Effect 4 28.6 % 

Outlet dissolved solids from Effect 5 25.6 % 

Outlet dissolved solids from Effect 6 23.4 % 

Outlet dissolved solids from Effect 7 21.6 % 
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4.5 Convergence characteristics of the SMA simulator 

The results obtained with the SMA simulator were the most reliable of all. The simulator 

converged for every tested scenario using initial estimates derived from typical values 

and the convergence occurred in under 100 iterations. 

Figure 4-9 shows the number of iterations required for each system to converge for 

different live steam mass flows. The number of iterations ranged from ten for the three-

effect system to almost 100 for the seven-effect system. As mentioned before, the SMA 

simulator behaved quite reliably, converging for all scenarios. It is worth mentioning that 

this reliability took place despite not resorting to simplified models, as was done 

originally in the EOA simulator. 

    

Figure 4-9: Number of iterations required for each system to converge (adapted from (Vianna 

Neto, Cardoso, Sermyagina, et al., 2020). 

 

The number of iterations increases as the systems grow larger. This is to be expected 

because larger systems require more recycles to be torn and, therefore, more convergence 

variables to converge. An interesting feature that can be seen in Figure 4-9 is that the 

number of iterations grows as the live steam mass flow approaches zero. When the steam 

mass flow values are low, the evaporator modules alternate between letting off steam and 

not evaporating at all as the iterations proceed. This is the same difficulty encountered 

when dealing with the EOA simulator. This switching behavior slows convergence and 

causes the number of iterations to increase. However, in the SMA runs convergence was 
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slowed down, but not prevented. This indicates that the SMA simulator is far more robust 

when dealing with the threshold where boiling begins to take place. 

Wegstein’s method gave very good and reliable results, in contrast with the simpler fixed-

point iteration scheme, which rarely converged. Wegstein’s method is less expensive 

from a computational standpoint when compared to NR, and, at the same time, more 

robust than fixed-point iterations, since it does not require a full jacobian matrix to be 

recalculated at each step, but still attempts to estimate derivatives using information from 

earlier iterations. Since it is faster to evaluate than NR, but still converges satisfactorily, 

it should be the preferred method. 

The number of iterations required to solve the tested systems can easily be handled by 

common desktop computers, since the running times are relatively low. This can be seen 

in Figure 4-10, which shows the mean computational time in milliseconds required for 

each system to converge over 100 runs. The vertical bars shown in the figure are standard 

deviations.  

Note that running times range from 5ms to 50ms, thus allowing it to be used within 

optimization algorithms. Standard deviations are relatively small, on the order of 5ms, 

being most noticeable in the five-effect scenarios. As would be expected, running times 

increase as the systems grow larger. This is a direct consequence of the larger iteration 

numbers needed for convergence. 

 

Computational time to converge with the SMA simulator 

 

Figure 4-10: Mean computational time in milliseconds required for each system to converge 

over 100 runs. The vertical bars denote standard deviations (adapted from (Vianna Neto, 

Cardoso, Sermyagina, et al., 2020). 
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4.6 Discussion 

 

4.6.1 Theoretical implications 

The answers to the key questions posed at the beginning of the thesis can be stated as 

follows: 

Question a) What mathematical difficulties arise when modeling an evaporator 

system? 

Paper I argued that to facilitate convergence, it is desirable to make sure that the equations 

take a suitable form and that they be ordered and partitioned. If no good initial estimates 

can be given, it is also desirable to solve a simplified model to generate reasonable 

estimates. The importance of these measures cannot be overstated since the high 

nonlinearity of the evaporator model can easily cause divergence. 

Optimization using differential evolution requires that the evaporator model often be 

solved more than several thousand times. To speed up calculations, one should not solve 

all parameters during all calculation rounds. (Vianna Neto, Saari, et al., 2020) have 

suggested that the heat transfer coefficient should be given by the user as opposed to being 

calculated by the simulator. In the future, this constraint may be relaxed by introducing 

heat transfer correlations that are periodically updated. 

Question b) What numerical methods are best suited to solving the model? 

The NR method proved effective when calculating evaporator systems with the equation-

oriented approach, as can be seen in publications by (Vianna Neto, Cardoso, Vakkilainen, 

et al., 2020) and (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 2020). If 

evaporator optimization is to be done in the manner discussed by (Vianna Neto, Saari, et 

al., 2020), however, trust-region methods tend to be more robust. In a sequential-modular 

architecture, Wegstein’s method gave very good and reliable results, in contrast with the 

simpler fixed-point iteration scheme, which rarely converged. Since it is faster to evaluate 

than NR, but still converges satisfactorily, it should be the preferred method. 

Question c) Is differential evolution well suited to performing this type of 

optimization? If so, are there any optimal ranges for its parameters? 

Differential evolution was shown to be suitable for this type of problem, even though it 

might require parameter tuning. No clear optimal parameter ranges were verified. 

However, it should be noted that the proposed methodology may lead to local optima, 

and higher F values should be preferred. 
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Question d) How well does the proposed methodology scale as the problems grow 

more complex? 

The proposed optimization methodology was tested with a simple scenario and a more 

comprehensive and realistic scenario, and it successfully optimized both. As was 

expected, difficulty increased with scenario complexity, but this did not hinder its 

applicability. (Vianna Neto, Saari, et al., 2020) have proposed that in future studies, more 

unit processes can be modeled, such as condensate preheaters and recovery boilers, which 

would allow for more realistic scenarios to be simulated. More complex systems should 

also be tested to verify whether the current solution strategy remains robust. 

4.6.2 Practical implications 

In this dissertation, a practical sequential-modular method for rapidly solving evaporator 

trains was developed. This method, when used with Wegstein’s method, was shown to be 

very effective for calculating evaporator systems. The simulator architecture is also 

versatile enough to be expanded and accommodate other unit processes.  

The development of a simulation engine is a complex procedure, but if done correctly, it 

should be general enough to allow the user to be able to add new models with relative 

ease. If the proposed methodology is to be applied in practice, users should be able to 

implement their models without having to reimplement the engine from scratch. Keeping 

this in mind, the sequential-modular engine will be made publicly available in open-

source format, with the hope that it will make the proposed methodology more easily 

usable.   

It should be noted that the simulation engine is general enough that it can be used for 

simulating processes other than evaporation systems. An obvious candidate are steam 

power cycles, as steam table calculation have already been implemented. Future studies 

should be done with the simulation engine to assess how robust it is for solving other 

processes. 

Differential evolution proved suitable for this type of problem, even though it might 

require parameter tuning. No clear optimal parameter ranges were verified. However, it 

should be noted that the proposed methodology may lead to local optima, and higher F 

values should be preferred. 

Both the EOA and SMA simulators can be improved in many ways. In their current 

implementation, it is assumed that the heat transfer coefficient is given by the user, as 

opposed to being calculated by the simulator. In the future, this issue may be addressed 

by introducing heat transfer correlations. In future work, more unit processes can be 

modeled, such as condensate preheaters and recovery boilers, which would allow for 

more realistic scenarios to be simulated.  
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More specifically, with respect to the sequential-modular simulator, more complex 

systems should also be tested to verify whether the current solution strategy remains 

robust and scales well. Finally, the same optimization methodology as applied to the 

equation-oriented simulator should be tested using the sequential-modular simulator. 
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5 Conclusions 

The research hypothesis was confirmed in this study. Indeed, a methodology for 

simultaneously optimizing evaporator systems based on their topological arrangement 

and other internal design variables was presented, and a realistic evaporator system 

expansion scenario was successfully optimized. 

The methodology made use of an equation-oriented simulator capable of simulating a 

wide array of evaporator arrangements. To facilitate convergence, it is important to make 

sure that the equations take a suitable form, as different formulations lead to different 

convergence behaviors, and that they are ordered and partitioned. If no good initial 

estimates can be given, it is also desirable to solve a simplified model to generate 

reasonable estimates. 

The methodology, however adequate, caused plateaus in the objective function evolution 

graphs. This was attributed to mathematical convergence issues in corner cases where the 

evaporators transitioned from being at a non-boiling state to a boiling state. This issue 

was partially addressed, but not completely solved, by changing the original evaporator 

model formulation. The changes were effective for small systems, but ineffective for 

realistically sized systems.  

Changing the simulator design to a sequential-modular design, however, drastically 

increased convergence rates, and the results indicate that this should be the preferred 

simulation architecture for the optimization of topological evaporator systems. The 

results also indicate that this architecture solves the scaling issues that were verified with 

the equation-oriented architecture, as all simulations were successfully completed in 

fractions of a second. 

Differential evolution was shown to be suitable for this type of problem, even though it 

might require parameter tuning.  

Both simulators can be improved in many ways, such as by introducing heat transfer 

correlations. In the future, more unit processes can be modeled, such as condensate 

preheaters and recovery boilers, which would allow for more realistic scenarios to be 

simulated.  
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