UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM SANEAMENTO, MEIO AMBIENTE E RECURSOS HÍDRICOS

ESTRATÉGIAS PARA EXPANSÃO DE REDES DE DISTRIBUIÇÃO DE ÁGUA SOB A ÓPTICA DA TEORIA DE REDES COMPLEXAS

Thomaz Felipe de Freitas Anchieta

Belo Horizonte 2022

Thomaz Felipe de Freitas Anchieta

ESTRATÉGIAS PARA EXPANSÃO DE REDES DE DISTRIBUIÇÃO DE ÁGUA SOB A ÓPTICA DA TEORIA DE REDES COMPLEXAS

Dissertação apresentada ao Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Hidráulica e Recursos Hídricos.

Linha de pesquisa: Sistemas de Recursos Hídricos.

Orientador: Bruno Melo Brentan.

Belo Horizonte Escola de Engenharia da UFMG 2022

A539e

Anchieta, Thomaz Felipe de Freitas.

Estratégias para expansão de redes de distribuição de água sob a óptica da teoria de redes complexas [recurso eletrônico] / Thomaz Felipe de Freitas Anchieta. – 2022.

1 recurso online (120 f. : il., color.) : pdf.

Orientador: Bruno Melo Brentan.

Dissertação (mestrado) - Universidade Federal de Minas Gerais, Escola de Engenharia.

Apêndices: f. 85-120.

Bibliografia: f. 76-84.

Exigências do sistema: Adobe Acrobat Reader.

1. Engenharia sanitária - Teses. 2. Recursos hídricos - Desenvolvimento - Teses. 3. Abastecimento de água - Teses. 4. Redes complexas - Teses. I. Brentan, Bruno Melo. II. Universidade Federal de Minas Gerais, Escola de Engenharia. III. Título.

CDU: 628(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS [ESCOLA DE ENGENHARIA] COLEGIADO DO CURSO DE GRADUAÇÃO / PÓS-GRADUAÇÃO EM [SANEAMENTO, MEIO AMBIENTE E RECURSOS HÍDRICOS]

FOLHA DE APROVAÇÃO

["Estratégias Para Expansão de Redes de Distribuição de Água Sob A Óptica da Teoria de Redes Complexas"]

[THOMAZ FELIPE DE FREITAS ANCHIETA]

Dissertação de Mestrado] defendida e aprovada, no dia [25 de fevereiro de 2022], pela Banca Examinadora designada pelo [Colegiado do Programa de Pós-Graduação **EM SANEAMENTO**, **MEIO AMBIENTE E RECURSOS HÍDRICOS**] da Universidade Federal de Minas Gerais constituída pelos seguintes professores:

[Profa. Dra. Maria Mercedes Gamboa Medina] - Membro Externo]
[USP]

[Prof. Gustavo Meirelles Lima - Membro Interno]
[UFMG]

[Prof. Bruno Melo Brentan - **Orientador**]
[UFMG]

APROVADA PELO COLEGIADO DO PPG SMARH

Sonaly Cristina Rezende Borges de Lima - Coordenadora

Belo Horizonte, 25 de fevereiro de 2022.

Documento assinado eletronicamente por **Gustavo Meirelles Lima**, **Professor do Magistério Superior**, em 01/04/2022, às 09:54, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Maria Mercedes Gamboa Medina**, **Usuário Externo**, em 01/04/2022, às 13:24, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Bruno Melo Brentan**, **Professor do Magistério Superior**, em 08/04/2022, às 10:55, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto</u> nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por **Sonaly Cristina Rezende Borges de Lima, Coordenador(a) de curso de pós-graduação**, em 13/04/2022, às 11:32, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site https://sei.ufmg.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1352972 e o código CRC 884AF631.

Referência: Processo nº 23072.211139/2022-52 SEInº1352972

AGRADECIMENTOS

Primeiramente, agradeço a Deus pelo dom da vida, pela minha família e por me dar, em meio a este difícil período de pandemia, muita saúde, sabedoria e coragem para continuar estudando e perseverando em meus objetivos.

Aos meus pais, Carlos Antônio Goulart de Anchieta e Osmeia Maria de Freitas, pelo amor, confiança e apoio incondicional em meus estudos.

Ao meu irmão, Matheus Felipe de Freitas Anchieta, pela amizade, conselhos e apoio de sempre.

Aos meus avós, Maria José de Freitas e a José Maria de Anchieta, pela torcida e conselhos que levarei para o resto de minha vida.

À minha tia Maria Aparecida de Freitas Sobreiro, pelo carinho e suporte ao longo de minha trajetória acadêmica.

Ao meu professor, orientador e amigo, Bruno Brentan, pelas correções, ideias na elaboração desta dissertação e, principalmente, por sempre me direcionar e instruir ao longo do mestrado e em relação aos meus objetivos futuros.

A todos do grupo de pesquisa de hidráulica que participei, por sempre me ajudarem com ideias e conselhos e, principalmente, aos colegas, Ana Carolina Ribeiro e Saulo Santos, pelo suporte na elaboração deste trabalho.

A todos os meus amigos e colegas de pesquisa que sempre torceram por mim e me ajudaram de alguma forma.

Aos queridos professores do Departamento de Hidráulica e Recursos Hídricos, da Universidade Federal de Minas Gerais, por compartilharem de seus vastos conhecimentos em recursos hídricos ao longo desses dois anos.

Enfim, a todos que participaram desta tão sonhada jornada chamada mestrado.

RESUMO

Considerando-se a falta de serviços básicos de abastecimento de água potável a milhões de pessoas no Brasil e no mundo, e tendo em vista o aumento da demanda de consumo de água potável caracterizado pelo crescimento da população global, entende-se que, atualmente, se faz necessário aumentar a capacidade de abastecimento das Redes de Distribuição de Água (RDA), principalmente, em países mais pobres e emergentes. No entanto, estas expansões de Sistemas de Abastecimento de Água (SAA) podem, muitas vezes, devido à maior demanda da rede, gerar baixas pressões no sistema, dificultando o abastecimento de água em quantidade e qualidade adequadas. Então, visando analisar o desempenho hidráulico e características referentes à conectividade de cenários de expansão de uma RDA, nesta pesquisa, o SAA foi modelado como uma Rede Complexa (RC). A fim de propor estratégias para expansão da capacidade de uma RDA, utilizou-se a rede C-Town como estudo de caso e foram implementados diversos cenários de expansão com base em aumentos percentuais de demanda em nós periféricos da rede. Para se obter informações sobre o desempenho hidráulico do sistema foram considerados os critérios: uniformidade de pressão, idade média ponderada da água acima de limite estabelecido e resiliência hidráulica. Os grafos correspondentes aos cenários de aumentos de demanda foram ponderados por vazão e tempo de viagem da água, com intuito de se obter, a partir da aplicação de métricas de RC, indicadores de robustez da RDA. A abstração do modelo computacional como RC e as análises hidráulicas da RDA foram feitas em linguagem de programação Python e por meio, respectivamente, dos pacotes NetworkX 2.5 e WNTR 0.3.0. Além disso, com o objetivo de reabilitar as pressões e melhorar, ainda mais, o desempenho hidráulico do sistema, medidas de engenharia foram implementadas e orçamentadas para todos os cenários de expansão. Por fim, com intuito de se obter cenários ótimos, a partir do método de análise multicritério TOPSIS, todos os cenários foram ranqueados. Como resultado, obteve-se que, em geral, os cenários de expansão que geraram menores riscos de falhas e danos à rede de distribuição de água, considerando-se também as métricas de redes complexas, se localizam no Setor 1 e os cenários que mais melhoraram com aplicação das medidas de engenharia foram os cenários do Setor 3.

Palavras-chave: Sistemas de Abastecimento de Água; Expansão de Demanda; Teoria de Redes Complexas; Análise Multicritério.

ABSTRACT

Considering the lack of basic drinking water supply services for millions of people in Brazil and worldwide, and in view of the increased demand for drinking water consumption characterized by the global population growth, it is understood that, currently, it is necessary to increase the supply capacity of Water Distribution Networks (WDN), especially in poorer and emerging countries. However, these expansions of Water Supply Systems (WSS) can often, due to the higher demand on the network, generate low system pressures, making it difficult to supply water in adequate quantity and quality. Therefore, aiming to analyze the hydraulic performance and characteristics concerning the connectivity of expansion scenarios of a WDN, in this research, the WSS was modeled as a Complex Network (CN). In order to propose strategies for expanding the capacity of an A, the C-Town network was used as a case study, and several expansion scenarios were implemented based on percentage increases in demand in peripheral nodes of the network. To obtain information about the hydraulic performance of the system the following criteria were considered: pressure uniformity, weighted average age of water above a set limit and hydraulic resilience. The graphs corresponding to the demand increase scenarios were weighted by flow rate and water travel time, in order to obtain, from the application of CN metrics, indicators of the robustness of the WDN. The abstraction of the computational model as CN and the hydraulic analyses of the WDN were done in Python programming language and through, respectively, the packages NetworkX 2.5 and WNTR 0.3.0. In addition, in order to rehabilitate pressures and further improve the hydraulic performance of the system, engineering measures were implemented and budgeted for all expansion scenarios. Finally, in order to obtain optimal scenarios, all scenarios were ranked using the TOPSIS multi-criteria analysis method. As results, it was obtained that, in general, the expansion scenarios that generated the lowest risks of failure and damage to the water distribution network, considering also the metrics of complex networks, are located in Sector 1 and the scenarios that improved the most with the application of engineering measures were the scenarios in Sector 3.

Keywords: Water Supply Systems; Demand Expansion; Complex Network Theory; Multicriteria Analysis.

LISTA DE FIGURAS

Figura 3.1: Percentuais totais de países, por continente, da lista de nações que, em 2015, tinham
100% de suas populações atendidas com serviços básicos de abastecimento de água22
Figura 3.2: Mapa mundial referente ao fornecimento seguro de água potável em 202024
Figura 3.3: Percentuais de perdas e abastecimento de água por estado no Brasil em 202025
Figura 3.4: Sete Pontes de Königsberg e seu respectivo grafo criado por Leonhard Euller27
Figura 3.5: Representação de um grafo simples
Figura 3.6: Classificação de grafos em relação ao direcionamento e ponderação de arestas
Figura 3.7: Exemplo de matriz de adjacência para grafo não direcionado e não ponderado
Figura 3.8: Exemplo de matriz de ponderação para grafo não direcionado e ponderado
Figura 3.9: Exemplo de matriz de adjacência para digrafo não ponderado
Figura 3.10: Exemplo de matriz de ponderação para digrafo ponderado
Figura 3.11: Tipos de redes complexas
Figura 3.12: Exemplificação gráfica do método TOPSIS para análise de duas soluções49
Figura 4.1: Fluxograma da metodologia para o desenvolvimento deste trabalho52
Figura 4.2: Processo de troca tubulações de menor diâmetro para tubos de maior diâmetro55
Figura 4.3: Processo de substituição de bombas na rede de distribuição de água58
Figura 5.1: Rede C-Town setorizada com os nós de expansão identificados
Figura 6.1: Médias horárias de densidade de arestas do grafo da rede, com arestas ponderadas
pela vazão, para todos os cenários66

Figura 6.2: Médias horárias de grau médio dos nós da rede com arestas ponderadas pela vazão
para todos os cenários67
Figura 6.3: Médias horárias de centralidade de proximidade dos nós para cenários de aumento
de demanda com grafos ponderados pela vazão70
Figura 6.4: Médias horárias de centralidade de proximidade dos nós para cenários de aumento
de demanda com grafos ponderados pelo tempo de viagem da água70
Figura 6.5: Comparação de médias horárias de diâmetros entre grafos ponderados por vazão e
tempo de viagem da água71
Figura 6.6: Comparação de médias horárias de comprimentos médios de caminhos mais curtos
entre os grafos ponderados pela vazão e tempo de viagem da água72
Figura 6.7: Médias horárias de densidade de pontes para cenários de aumento de demanda com
grafos ponderado pela vazão73
Figura 6.8: Mapas dos cenários para diferentes aumentos de demanda sem aplicação de
medidas de engenharia77
Figura 6.9: Mapas das diferenças das médias dos resultados de PU, WA e R, para todos os
aumentos de demanda, entre os cenários com e sem substituição de tubos81
Figura 6.10: Nós críticos de cada setor da rede C-Town identificados
Figura 6.11: Mapas das diferenças das médias dos resultados de PU, WA e R, para todos os
aumentos de demanda, entre os cenários com e sem substituição de bombas86

LISTA DE QUADROS

Quadro 3.1: Os 10 países do mundo com os menores acesso à água tratada no ano de 201521
Quadro 3.2: Os 10 países do mundo que mais melhoraram os seus serviços de abastecimento
de água às suas respectivas populações de 2000 a 201523
Quadro 4.1: Setores com suas respectivas bombas e nós críticos
Quadro 5.1: Demandas de consumo da rede de distribuição de água C-Town
Quadro 5.2: Demandas bases dos nós de expansão
Quadro 5.3: Diâmetros e preços das tubulações de substituição
Quadro 6.1: Melhores e piores cenários de expansão conforme a aplicação da métrica de
densidade das arestas da rede para grafos da rede ponderados pela vazão
Quadro 6.2: Melhores e piores cenários de expansão conforme a aplicação da métrica de grau
médio aos grafos da rede ponderados pela vazão68
Quadro 6.3: Melhores e piores cenários de expansão conforme a aplicação da métrica de
densidade de pontes aos grafos da rede ponderados pela vazão

LISTA DE TABELAS

Tabela 6.1: Os cinco melhores e piores cenários para aumento de demanda de 0,5% sem
aplicação de medidas de engenharia76
Tabela 6.2: Os cinco melhores e piores cenários para aumento de demanda de 5% sem aplicação de medidas de engenharia
Tabela 6.3: Os cinco melhores e piores cenários para aumento de demanda de 10% sem aplicação de medidas de engenharia
Tabela 6.4 : Os cinco melhores e piores cenários para aumento de demanda de 0,1%, considerando-se a substituição de tubulações como medida de engenharia79
Tabela 6.5 : Os cinco melhores e piores cenários para aumento de demanda de 2,0%, considerando-se a substituição de tubulações como medida de engenharia80
Tabela 6.6 : Os cinco melhores e piores cenários para aumento de demanda de 10%, considerando-se a substituição de tubulações como medida de engenharia80
Tabela 6.7: Os cinco melhores e piores cenários para aumento de demanda de 1%, considerando-se a substituição de bombas como medida de engenharia
Tabela 6.8 : Os cinco melhores e piores cenários para aumento de demanda de 5%, considerando-se a substituição de bombas como medida de engenharia83
Tabela 6.9 : Os cinco melhores e piores cenários para aumento de demanda de 10%, considerando-se a substituição de bombas como medida de engenharia

SUMÁRIO

1	INTRODUÇÃO	16
	1.1 JUSTIFICATIVA	18
2	OBJETIVOS	20
	2.1 Objetivo geral	20
	2.2 Objetivos específicos	20
3	REVISÃO DA LITERATURA	21
	3.1 CONTEXTO DO ABASTECIMENTO DE ÁGUA À POPULAÇÃO	21
	3.1.1 Âmbito internacional	21
	3.1.2 Âmbito nacional	25
	3.2 Redes complexas	27
	3.2.1 Introdução histórica	27
	3.2.2 Conceitos, métricas e tipos de redes complexas	28
	3.3 CRITÉRIOS HIDRÁULICOS EM REDE DE DISTRIBUIÇÃO DE ÁGUA	39
	3.4 MEDIDAS DE ENGENHARIA PARA REABILITAÇÃO DE SISTEMAS DE ABASTECIMENTO DE ÁGUA	
	3.5 MÉTODO DE ANÁLISE MULTICRITÉRIO TOPSIS	47
4	MATERIAL E MÉTODOS	51
	4.1 Criação dos cenários de expansão	52
	4.2 Rede de distribuição de água como grafo	52
	4.2.1 Grafo ponderado pela vazão	53
	4.2.2 Grafo ponderado pelo tempo de viagem da água	
	4.2.3 Métricas de redes complexas aplicadas ao grafo da rede de distribuição de águ	a54
	4.3 CRITÉRIOS HIDRÁULICOS PARA AVALIAÇÃO DA REDE DE ABASTECIMENTO DE ÁGUA	54
	4.4 Implementação de medidas de engenharia	54
	4.4.1 Substituição de tubulações	
	4.4.2 Substituição de bombas	
	4.5 Mapas de desempenho hidráulico	
	4.6 Análise multicritério para os dados resultantes de custos e desempenho	57
	HIDRÁULICO	60

5	ESTUDO DE CASO	62		
6	RESULTADOS E DISCUSSÃO	66		
	6.1 MÉTRICAS DE REDES COMPLEXAS	66		
	6.2 Critérios hidráulicos	75		
	6.2.1 Análise de cenários de expansão sem aplicação de medidas de engenharia	75		
	6.2.2 Análise de cenários de expansão com substituição de tubulações	<i>79</i>		
	6.2.3 Análise de cenários de expansão com substituição de bombas	82		
7	CONCLUSÕES	88		
8	RECOMENDAÇÕES	93		
R	REFERÊNCIAS			
A	PÊNDICES	103		

1 INTRODUÇÃO

Conforme dados do relatório de Progresso de Água Potável, Saneamento e Higiene 2000-2020, apresentados pela *World Health Organization* (WHO) e pelo *United Nations International Children's Emergency Fund* (UNICEF) (2021), em 2020, 771 milhões de pessoas ainda necessitavam de um nível básico de abastecimento de água tratada e 122 milhões de pessoas ainda coletavam água de rios e outras fontes de superfície.

Então, considerando-se que, segundo Maja e Ayano (2021), a população mundial tem tendência contínua de crescimento até 2100 e compreendendo-se que, nos últimos anos, a ausência de serviços básicos de abastecimento de água afeta milhões de pessoas em todo o mundo, entende-se que atualmente devam ser tomadas medidas urgentes, por gestores públicos e privados dos países, para expansão das redes de distribuição de água, a fim de mitigar, tanto quanto possível, a falta de acesso à água potável por parte da população mundial.

No entanto, quando surgem necessidades como atender ao aumento da demanda de consumo de água de uma região, as instalações originais podem apresentar falhas por se sobrecarregarem ao tentar suprir as demandas requeridas e, dessa forma, como, muitas vezes, o sistema tem limitações físicas para atender este aumento de demanda, se faz necessário expandir a capacidade de abastecimento de água da rede (HSU *et al.*, 2008; LABADIE, 2004).

Além disso, Huszvár *et al.* (2021) corroboram que neste contexto, com aumentos da taxa de urbanização e da demanda de consumo por água potável, as redes de distribuição de água podem sofrer grandes quedas de pressão e, consequentemente, limitar suas capacidades de abastecimento, tornando os sistemas menos eficientes e mais vulneráveis a falhas.

Desse modo, como as redes de distribuição de água devem ser adequadamente concebidas para fornecer água à população e que seus padrões estruturais de conectividade afetam a sua confiabilidade, resiliência e eficiência (PAGANO *et al.*, 2019), uma forma de analisar as redes de distribuição de água é modelá-las conforme a teoria de redes complexas, uma vez que estes modelos matemáticos conseguem bem representar infraestruturas reais, caracterizando-as a partir de métricas que revelam informações úteis sobre suas conectividade, topologia, redundância e robustez (MENG *et al.*, 2018; SIMONE *et al.*, 2018). Nesse sentido, salienta-se

que a redundância e a robustez são, respectivamente, a existência de meios ou conexões alternativas na rede e a resistência da rede a falhas (YAZDANI & JEFFREY, 2011).

Como conceito fundamental a ser entendido, destaca-se que as redes complexas são formadas a partir de abstrações matemáticas chamadas grafos, que são constituídas por um conjunto de vértices (nós) ligados por arestas (*links*) e que, dependendo da rede a ser modelada, podem ser ponderadas, direcionadas e, até mesmo, dinâmicas ao longo do tempo (BOCCALETTI *et al.*, 2006). Fazendo uma analogia aos modelos matemático-computacionais de sistemas de abastecimento de água, na abstração para teoria de grafos, os nós representam reservatórios, tanques e nós de demanda, enquanto as arestas são os tubos, válvulas e bombas (CASTRO-GAMA *et al.*, 2016).

Ainda que a teoria de redes complexas possa ajudar no processo de análise das redes de abastecimento de água, outros fatores fundamentais para verificação de seu desempenho são os critérios hidráulicos, pois possibilitam a caracterização das variações dos parâmetros hidráulicos em determinados períodos de simulação (JEONG & KANG, 2020). Tais critérios também podem ser úteis para o auxílio às tomadas de decisão que buscam diminuir os riscos de falhas operacionais, reduzindo a geração de encargos sociais, econômicos e ambientais, por parte de problemas na rede (JALAL, 2008).

Dado o panorama geral apresentado, esta pesquisa propõe avaliar estratégias de expansão de capacidade de abastecimento de uma rede de distribuição de água a partir de vários cenários de aumento de demanda, baseando-se na análise de impactos dos respectivos aumentos de demanda na rede, identificados e caracterizados pelas modificações das métricas de redes complexas e critérios hidráulicos aplicados ao sistema. Portanto, neste trabalho, algumas métricas de redes complexas relacionadas à conectividade, topologia, redundância e robustez de redes, são conceituadas e aplicadas aos cenários de expansão, e também calculam-se indicadores de desempenho hidráulico da rede de distribuição de água, como: uniformidade de pressão (ALHIMIARY & ALSUHAILY, 2007), idade média ponderada da água acima de limite estabelecido (MARCHI *et al.*, 2014) e resiliência hidráulica (TODINI, 2000).

Além disso, a fim de reabilitar as pressões no sistema de abastecimento de água, este trabalho ainda objetiva mitigar as modificações de desempenho hidráulico produzidas pelos cenários de expansão por meio de soluções de engenharia, como as substituições de tubulações e de

sistemas moto-bombas. Entretanto, como Alhassan *et al.* (2015) afirmam que custos referentes à construção de um projeto de ampliação de sistema de abastecimento de água devem ser fundamentalmente considerados, neste trabalho, por meio de análise multicritério, todos os cenários de expansão, com seus valores de índices hidráulicos e custos das respectivas medidas de engenharia implementadas, são considerados e classificados para, posterior identificação dos cenários de maior desempenho hidráulico e menor custo.

1.1 Justificativa

Dada a crescente necessidade de expansão da capacidade hidráulica das redes de distribuição de água para atendimento de demandas e também a correlata necessidade de se mitigar os impactos de tal crescimento de demanda no desempenho dos sistemas, esta pesquisa propõe uma estratégia de expansão de redes de distribuição de água, visando modelá-las à luz da teoria de redes complexas e considerando não só a topologia da rede e o sentido de caminhamento da vazão nas tubulações, mas também a aplicação de ponderações nas arestas do grafo da rede pela vazão e tempo de viagem da água.

No caso, a consideração da rede de distribuição de água como grafo direcionado pela vazão é importante para a observação do abastecimento de água aos nós da rede, enquanto as ponderações pela vazão e tempo de viagem da água são interessantes para auxiliar, respectivamente, na caracterização dos volumes de água que percorrem as linhas de tubulações que abastecem os nós do sistema e na identificação dos tempos em que a água liberada pelos reservatórios e tanques demora a abastecer os consumidores da rede.

Além disso, compreendendo-se que, muitas vezes, após sofrer aumentos de suas capacidades de abastecimento para suprir maiores demandas, as redes de distribuição de água perdem desempenho hidráulico, com objetivo de reabilitar a rede a custo mínimo, este trabalho também emprega medidas de engenharia, calculando os custos de cada intervenção para fornecer cenários de maior desempenho hidráulico e menor custo a partir de ranking elaborado por método de análise multicritério. Dessa forma, este trabalho, além de propor uma estratégia de expansão que permiti a reabilitação e operação adequada do sistema de distribuição após aumentos de demanda, também avalia os cenários de maior desempenho hidráulico, qualidade de abastecimento e menor custo, em diferentes setores de uma rede de distribuição de água.

Vale destacar ainda que este trabalho contribui para avanços em estudos de expansão de redes de distribuição de água sob a óptica da teoria de redes complexas, uma vez que se distingue do trabalho de Yazdani, Otto e Jeffrey (2011), devido ao respectivo estudo não considerar a operação hidráulica da rede (grafos direcionados) e sequer as medidas de engenharia para a reabilitação do sistema após os aumentos de demanda.

2 OBJETIVOS

2.1 Objetivo geral

Avaliar cenários de expansão de demanda de um sistema de abastecimento de água via análise de métricas da teoria de redes complexas e de critérios hidráulicos da rede, com intuito de minimizar riscos de falhas e maximizar a eficiência da rede.

2.2 Objetivos específicos

- Avaliar a rede de distribuição de água original utilizando métricas da teoria de redes complexas e critérios hidráulicos;
- reavaliar a rede de distribuição de água, após a simulação de cenários de expansão;
- analisar os riscos de falhas e danos ao sistema de abastecimento de água;
- minimizar os riscos de falhas e danos aos cenários de expansão da rede de distribuição de água, a partir da proposição e avaliação de intervenções físicas na rede.

3 REVISÃO DA LITERATURA

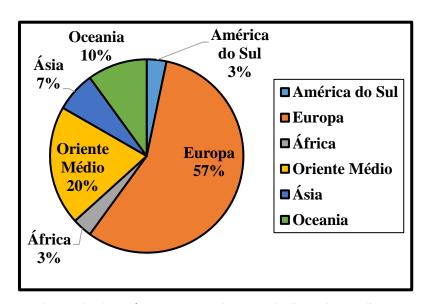
3.1 Contexto do abastecimento de água à população

Os sistemas urbanos de abastecimento de água são expandidos devido a aumentos populacionais e também ao crescimento vertical (edifícios) e horizontal (casas e ruas) das áreas urbanas (TALAT, 2021; RASHID, MANZOOR & MUKHTAR, 2017). No entanto, muitos países ainda sofrem com falta de serviços básicos de abastecimento de água e, deste modo, neste tópico é apresentado o contexto referente ao abastecimento de água à população global e, consequente, necessidade de expansões de redes de distribuição de água nesses territórios.

3.1.1 Âmbito internacional

Conforme dados de WHO e UNICEF (2019), em 2017, 29% da população mundial ou, mais especificamente, 2,2 bilhões de pessoas não tinham abastecimento seguro de água potável em suas residências e, dessa quantidade de pessoas, mais de 1,4 bilhões necessitavam percorrer 30 minutos ou mais de suas localidades até a algum lugar em que se coletava água sem contaminação. Em sequência, no Quadro 3.1 estão mostrados os países que, em 2015, possuíam os piores índices de acessibilidade à água, segundo dados da WHO e UNICEF (2017).

Quadro 3.1: Os 10 países do mundo com os menores acesso à água tratada no ano de 2015.


Ranking País		% populacional com acesso
1	Eritreia	19
2	Papua-Nova Guiné	37
3	Uganda	38
4	Etiópia	39
5 República Democrática do Congo		39
6	Somália	40
7	7 Angola 41	
8	8 Chade 43	
9	Níger 46	
10 Moçambique		49

Fonte: WHO e UNICEF (2017).

Observando-se o Quadro 3.1, nota-se que, em 2015, os países com menores populações abastecidas de água eram todos do continente Africano. Conforme *WaterAID* (2018), esta falta de acesso à água está atribuída aos aumentos populacionais, aos menores recursos financeiros dos países para investimentos em instalações adequadas de tratamento e distribuição de água, e às condições climáticas que contribuem para uma menor incidência de chuvas e, consequentemente, maior escassez hídrica nestes territórios.

Em contrapartida, de acordo com dados da WHO e UNICEF (2017), em 2015, os países que possuíam 100% da população atendida com serviços básicos de abastecimento de água eram: Alemanha, Andorra, Austrália, Áustria, Bahrein, Bélgica, Catar, Chile, China, Cyprus, Dinamarca, Djibuti, Escócia, Finlândia, França, Inglaterra, Irlanda do Norte, Islândia, Israel, Itália, Kuwait, Malta, Mônaco, Nauru, País de Gales, Polinésia Francesa, Romênia, San Marino, Singapura, Suécia, Suíça e Territórios Palestinos.

A seguir, na Figura 3.1 são apresentados os percentuais correspondentes ao número de países que, por continente, compuseram esta lista de nações com 100% de suas populações abastecidas por água tratada no ano de 2015.

Figura 3.1: Percentuais totais de países, por continente, da lista de nações que, em 2015, tinham 100% de suas populações atendidas com serviços básicos de abastecimento de água.

Fonte: WHO e UNICEF (2017).

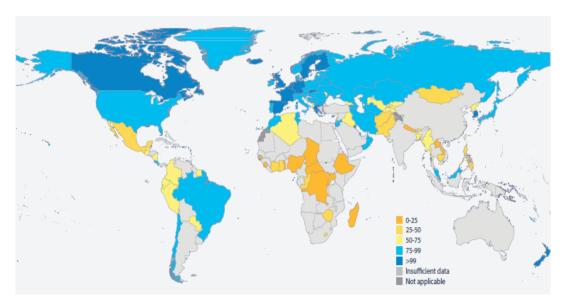
Analisando-se o gráfico da Figura 3.1, percebe-se que, diferentemente, dos países que, em 2015, apresentaram os menores índices de abastecimento de água, as nações que se privilegiaram por

abastecer todas as suas respectivas populações foram aquelas ditas desenvolvidas e localizadas, principalmente, no continente Europeu. Além disso, observando-se a Figura 3.1 pode-se concluir que países mais desenvolvidos, realmente, possuem maior capacidade de investimento em estruturas e tecnologias de redes de distribuição de água para abastecer suas respectivas populações.

Ainda segundo dados da WHO e UNICEF (2017), entre 2000 e 2015, alguns países melhoraram os seus serviços de abastecimento de água, como mostrado no Quadro 3.2 com os 10 primeiros países que mais melhoraram o serviço de abastecimento de água para a sua população.

Quadro 3.2: Os 10 países do mundo que mais melhoraram os seus serviços de abastecimento de água às suas respectivas populações de 2000 a 2015.

Ranking	País	Número de pessoas alcançadas neste período
1	China	334.263.785
2	Índia	300.788.777
3	Indonésia	72.843.098
4	Nigéria	66.085.442
5	Paquistão	44.328.750
6	Brasil	37.923.597
7	México	33.052.687
8	Bangladesh	32.439.869
9	Etiópia	27.766.769
10	Filipinas	24.046.112


Fonte: WHO e UNICEF (2017).

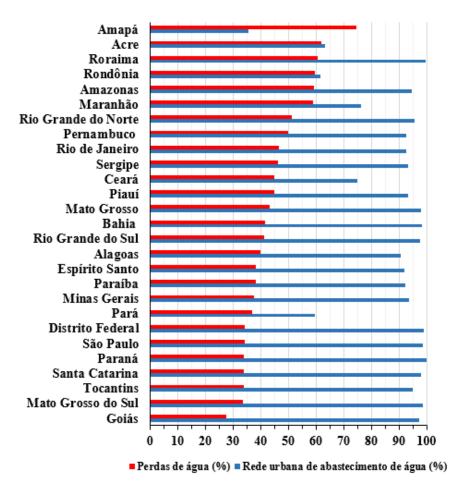
Observando o Quadro 3.2, nota-se que, entre 2000 e 2015, alguns dos países mais populosos do mundo, como China e Índia, obtiveram avanços no número de pessoas atendidas por serviços essenciais de abastecimento de água e isto pode estar relacionado com políticas de investimento na construção e expansões de sistemas de abastecimento de água.

No entanto, de acordo com *WaterAID* (2018), alguns países listados no Quadro 3.2, como Paquistão e Bangladesh, apesar de aumentarem o fornecimento de água às suas populações, até 2015, não haviam conseguido estender este acesso aos seus habitantes mais pobres e

vulneráveis, devido ao aumento populacional, muitas vezes, ocasionado pelos países se tornarem abrigos de refugiados.

Atualmente, segundo estimativas das WHO e UNICEF (2021), em 2020, 26% da população mundial ou, mais precisamente, 2 bilhões de pessoas não possuem abastecimento seguro de água potável em suas casas. Abaixo, na Figura 3.2 é apresentado o mapa mundial com os países coloridos em concordância com suas proporções populacionais que dispõem de serviços seguros de abastecimento de água potável.

Figura 3.2: Mapa mundial referente ao fornecimento seguro de água potável em 2020. Fonte: WHO e UNICEF (2021).


Ao analisar a Figura 3.2 em relação aos dados citados anteriormente e referentes ao ano de 2015, nota-se que, atualmente, os países do continente africano ainda são os que mais sofrem com a ausência de abastecimento de água potável e que os países ditos desenvolvidos são aqueles que apresentam melhor eficiência no atendimento de suas demandas populacionais por água potável.

Portanto, a partir da investigação do contexto de abastecimento de água em âmbito internacional, pode-se concluir que as expansões e o melhor gerenciamento das redes de distribuição de água, visando o suprimento de demandas de consumo, ainda permanece em destaque predominantemente para países desenvolvidos. Em contrapartida, países mais pobres são os que mais sofrem com a falta de acesso aos serviços básicos de saneamento e fornecimento de água.

Além disso, pode-se determinar também que países em desenvolvimento, juntamente, com países desenvolvidos de maiores populações, como Estados Unidos e China, ainda apresentam percentuais consideráveis de ausência de abastecimento de água potável às suas populações, o que tornam investimentos relacionados à expansão das redes de distribuição de água ainda mais importantes nesses territórios. Neste contexto, o Brasil também não supre, seguramente, a demanda por água de toda a sua população e, desse modo, no tópico posterior são apresentados os dados mais recentes sobre a situação do abastecimento de água no Brasil.

3.1.2 Âmbito nacional

No Brasil, de acordo com dados do Sistema Nacional de Informações sobre Saneamento (SNIS) (2021), em 2020, 84,1% da população era atendida por sistemas de abastecimento de água, isto é, aproximadamente 33 milhões de pessoas que moravam no país ainda não tinham acesso à água tratada. Abaixo, na Figura 3.3 é apresentado um gráfico que exemplifica a situação, por estado, das redes urbanas de abastecimento de água no Brasil.

Figura 3.3: Percentuais de perdas e abastecimento de água por estado no Brasil em 2020. Fonte: Adaptado de SNIS (2021).

Observando-se o gráfico da Figura 3.3 pode-se notar que, devido aos maiores percentuais de perdas de água ao longo de suas redes de distribuição de água, os dez estados que, em 2020, mais necessitavam de manutenções ou reabilitações em seus sistemas de abastecimento são: Amapá, Acre, Roraima, Rondônia, Amazonas, Maranhão, Rio Grande do Norte, Pernambuco, Rio de Janeiro e Sergipe.

Além disso, os estados que, devido aos menores percentuais de abastecimento urbano de água potável, necessitam, urgentemente, de expandir suas redes de distribuição de água para atender o consumo de seus respectivos habitantes são: Amapá, Pará, Rondônia, Acre e Ceará e Maranhão.

É interessante citar que a região Norte do Brasil, embora apresente uma hidrografia de destaque em relação às outras regiões do país, é a que mais necessita de medidas urgentes a serem implementadas, para suprir, de forma eficiente, a demanda de abastecimento de sua população.

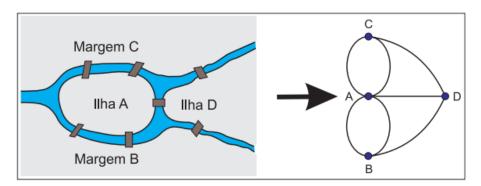
Em contrapartida, os estados das regiões Sul, Sudeste e Centro-Oeste, embora ainda necessitem relevantemente de reparos, reabilitações e expansões em suas redes de distribuição de água, em geral, são os que apresentam menores índices de perdas de água e maiores percentuais de atendimento urbano com redes de abastecimento de água.

A partir do gráfico da Figura 3.3 também pode-se notar que os sistemas de abastecimento de água com menores perdas e maiores índices de atendimento urbano com rede de água no Brasil, em 2020, eram dos estados do Paraná e Distrito Federal.

Já, em contrapartida, o estado do Amapá destaca-se negativamente em relação aos outros estados do Brasil, por apresentar o menor índice de atendimento urbano de água à sua população e o maior percentual de perdas de água em suas redes de distribuição.

Entretanto, considerando-se que, segundo o Instituto Trata Brasil (2021), para melhorar o abastecimento de água à população são necessárias ações que aumentem a robustez e a eficiência das redes de distribuição, ressalta-se que uma possibilidade de melhorar as análises referentes a estas propriedades dessas redes é modelando-as como redes complexas.

Portanto, visto que nesta pesquisa estuda-se cenários de expansão de uma rede de distribuição de água sob a perspectiva de redes complexas, para melhor compreensão de sua aplicabilidade


em estudos de sistemas de abastecimento de água, na subseção em sequência são apresentados conceitos fundamentais sobre o tema.

3.2 Redes complexas

Neste tópico são apresentados uma introdução histórica das redes complexas, alguns conceitos básicos sobre o tema, tipos de grafos e algumas métricas de redes complexas que podem ser empregadas em estudos de sistemas de abastecimento de água.

3.2.1 Introdução histórica

De acordo com Costa *et al.* (2011), as redes complexas podem ser conceituadas por meio da teoria dos grafos e dos fundamentos advindos da mecânica estatística. Martin (2014) descreve que, especificamente, a teoria dos grafos foi abordada pela primeira vez a partir do trabalho elaborado por Leonhard Euler para resolver o famoso problema das Sete Pontes de Konigsberg (localizada na Prússia no século XVIII, atual Kaliningrado, Rússia), onde haviam duas grandes ilhas que constituíam um complexo formado por sete pontes. Então, discutia-se pela população da cidade qual era a possibilidade de alguém atravessar todas as pontes sem repetir nenhuma. Essa tal possibilidade se tornou uma lenda popular quando Leonhard Euler, em 1736, provou, através de um grafo, que não existia tal caminho que permitisse alguém percorrer todas as pontes sem repetir alguma. Ele modelou o problema das sete pontes como um grafo, considerando os caminhos como arestas e suas intersecções como nós. Na Figura 3.4 está apresentada a configuração das Sete Pontes de Konigsberg e o grafo criado por Euler.

Figura 3.4: Sete Pontes de Konigsberg e seu respectivo grafo criado por Leonhard Euller. Fonte: Rodrigues (2007).

Desde a elaboração do primeiro grafo até a década de 50, os grafos empregados em pesquisas eram apenas estáticos e com poucas aplicações práticas, porém, a partir de 1950, pesquisadores

na área de sociologia iniciaram estudos relacionados a conexões entre pessoas conforme suas interações sociais e, desse modo, a teoria de grafos começou a ser utilizada como ferramenta para observação de dados empíricos (NEWMAN, BARABÁSI & WATTS, 2006; WASSERMAN & FAUST, 1994).

No final da década de 50, os matemáticos Erdös e Rényi descreveram uma rede de topologia complexa a partir de um grafo aleatório e, neste mesmo período, alguns pesquisadores começaram a utilizar grafos em análises de processos dinâmicos, como a propagação de doenças (NEWMAN, 2006; WANG & CHEN, 2003).

Embora tenham-se obtidos alguns avanços referentes à utilização da teoria de grafos em sociologia, devido à ausência de recursos computacionais mais avançados, até a década de 90, apenas redes pequenas, isto é, de dezenas ou, no máximo, centenas de nós eram estudadas (RODRIGUES, 2007).

Então, somente a partir do final da década de 90, com o aumento da capacidade de processamento e armazenamento dos computadores surge a publicação do trabalho de redes sem escala por Barabási e Albert (1999). Seguindo tal trabalho nascem, então, movimentos de pesquisas em redes complexas, isto é, redes com estruturas irregulares, dinâmicas no tempo, com milhares ou milhões de nós e que representam sistemas complexos reais (BOCCALETTI et al., 2006).

O avanço da computação estabeleceu a possibilidade dos pesquisadores facilmente armazenarem e estudarem grandes conjuntos de dados e isto aumentou o interesse por estudos na área de redes complexas (VAN DER HOFSTAD, 2017). Nos últimos anos, a partir de pesquisas empregando-se a teoria de redes complexas foram criados modelos, métodos e algoritmos que desenvolveram, ainda mais, os campos de física estatística, ciências naturais, sociais e biológicas (GOSAK *et al.*, 2018).

3.2.2 Conceitos, métricas e tipos de redes complexas

A teoria de redes complexas tem sido amplamente aplicada para caracterizar e estudar o comportamento de muitos sistemas reais, como as relações de indivíduos, interligações via Internet, infraestruturas urbanas (sistemas de abastecimento de água, estradas) etc (SIMONE *et al.*, 2018). Estes sistemas são chamados de complexos, pois, sem aplicação de teorias

matemáticas, são impossíveis de prever seus comportamentos coletivos a partir dos seus componentes individuais que podem ser aleatórios (DA MATA, 2020).

Entretanto, para melhor compreensão e análise dessas redes, primeiramente, é fundamental saber conceitos básicos sobre a abstração matemática na qual esses sistemas estão baseados, isto é, em relação a definição e tipologia de grafos.

Matematicamente, um grafo (G) pode ser definido pela seguinte equação (DEO, 1974):

$$G = (V, E) \tag{3.1}$$

em que $V = \{v_1, v_2, ...\}$ é um conjunto de objetos denominados vértices ou nós que são conectados por outro conjunto de objetos $E = \{e_1, e_2, ...\}$ chamados de arestas ou *links*, em que cada aresta e_n conecta um par (v_i, v_j) de vértices.

De acordo com Deo (1974), a representação mais comum de um grafo é caracterizada por um diagrama, onde os vértices são representados como pontos e as arestas correspondem aos segmentos que os conectam. Abaixo, na Figura 3.5 é apresentado um grafo simples.

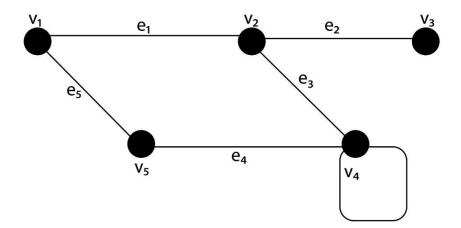


Figura 3.5: Representação de um grafo simples.

Sadavare e Kulkarni (2012) afirmam que os grafos podem ser classificados tanto conforme o direcionamento de suas arestas, como também de acordo com as ponderações (pesos) atribuídas em seus vértices e arestas e, dessa forma, os grafos são caracterizados como:

• <u>Direcionados ou dirigidos</u>: também chamados de digrafos, são grafos em que cada aresta representa uma relação ordenada entre dois vértices.

- <u>Não direcionados ou não-dirigidos</u>: são grafos em que cada aresta representa uma relação desordenada entre dois vértices.
- <u>Com arestas ponderadas</u>: são grafos que determinam relações entre os vértices e, desse modo, são caracterizados por possuírem cada aresta com valor numérico real, podendo ser iguais ou não, como por exemplo, dados de distância ou tempo de atraso de informações.
- <u>Com arestas não ponderadas</u>: são grafos em que todas as relações entre os vértices, caracterizadas pelas respectivas arestas que os conectam, são consideradas equivalentes, isto é, todas as arestas possuem valor unitário.

Conforme Martin (2014), é importante destacar que, em qualquer tipo de grafo, as arestas podem fazer ciclos, ou seja, sair e chegar ao próprio vértice e, além disso, existem os multidigrafos (digrafos) ou multigrafos (grafos não direcionados) que são grafos caracterizados por possuírem nós conectados entre si por duas ou mais arestas.

Em sequência, para ilustrar os principais tipos de grafos, na Figura 3.6 são apresentados um grafo não direcionado e não ponderado (a), uma grafo não direcionado e ponderado (b), um digrafo não ponderado (c) e um digrafo ponderado (d).

Figura 3.6: Classificação de grafos em relação ao direcionamento e ponderação das arestas.

Ainda conforme Deo (1964), vale destacar que todos os grafos são representados por matrizes de adjacência $X = [x_{ij}]$ não necessariamente simétricas, com arestas paralelas e n vértices, que diferenciam-se conforme a topologia do grafo.

Em relação ao grafo ponderado, salienta-se que o mesmo pode ser representado por sua matriz de adjacência ponderada $W = [w_{ij}]$, onde $w_{ij} \in \Re$ indica intensidade de ligação entre os vértices i e j. (FAKCHAROENPHOL & RAO, 2006). Abaixo são mostradas as respectivas matrizes de adjacência e ponderação dos grafos da Figura 3.6.

• Grafo não direcionado e não ponderado: neste grafo se há uma aresta que conecta o vértice i para o vértice j, $x_{ij} = 1$, se não $x_{ij} = 0$.

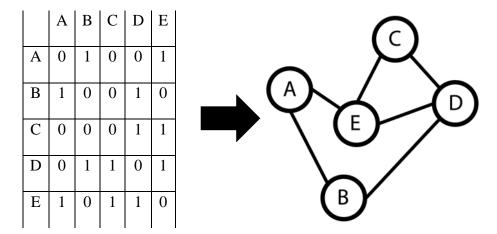


Figura 3.7: Exemplo de matriz de adjacência para grafo não direcionado e não ponderado.

• Grafo não direcionado e ponderado: neste grafo se há uma aresta que conecta o vértice i para o vértice j, $w_{ij} = w$, se não $w_{ij} = 0$. No caso w é a ponderação atribuída a aresta.

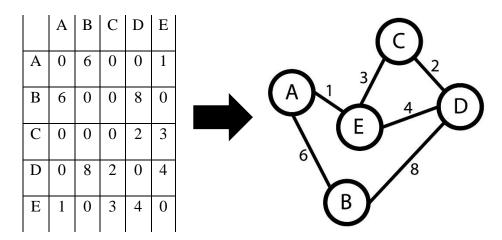


Figura 3.8: Exemplo de matriz de ponderação para grafo não direcionado e ponderado.

• Digrafo não ponderado: neste grafo se há uma aresta que direciona o vértice i para o vértice j, $x_{ij} = 1$, se não $x_{ij} = 0$.

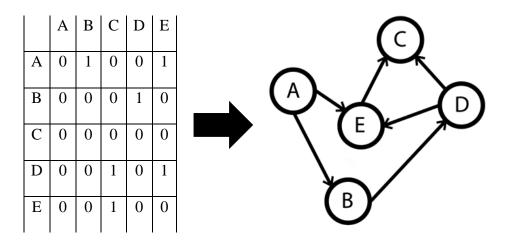
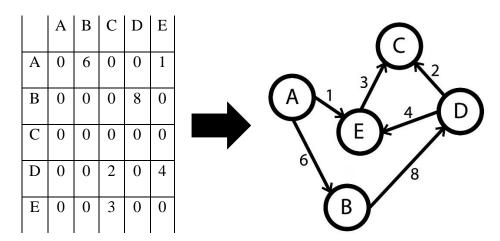



Figura 3.9: Exemplo de matriz de adjacência para digrafo não ponderado.

• Digrafo ponderado: neste grafo se há uma aresta que direciona o vértice i para o vértice j, $w_{ij} = w$, se não $w_{ij} = 0$.

Figura 3.10: Exemplo de matriz de ponderação para digrafo ponderado.

Todos estes tipos de grafos são vistos em estudos de redes de distribuição de água para diversas finalidades, como por exemplo, estudos de setorização, de análises topológicas de redes de distribuição e, de investigação de métricas de redes complexas e índices de resiliência e vulnerabilidade de sistemas de abastecimento de água. Portanto, nesse sentido, somente como alguns exemplos de trabalhos, têm-se: Yazdani e Jeffrey (2012), em que os autores analisam a vulnerabilidade da rede, por meio de grafos direcionados e ponderados pela capacidade hidráulica das tubulações; Di Nardo *et al.* (2013), em que os autores empregaram

procedimentos heurísticos e consideraram grafos não direcionados e não ponderados, para obtenção de uma nova rede de abastecimento setorizada com seus respectivos índices de desempenho hidráulico e energia; e Meng *et al.* (2018), em que os autores investigaram a influência da topologia em métricas fundamentadas nos atributos de rede como conectividade, centralidade, robustez, entre outras, a partir de grafos não direcionados e não ponderados.

Especificamente, em relação à topologia dos grafos, vale destacar que os grafos das redes de abastecimento de água podem ser:

- <u>Não direcionados</u>: que, embora não apresente contribuição ao estudo do comportamento operacional hidráulico do sistema de abastecimento, são grafos utilizados para fins de análises topológicas, isto é, das características das tubulações e da configuração da malha correspondente ao sistema;
- <u>Direcionados</u>: com intuito de se considerar e observar o caminhamento das vazões e parâmetros hidráulicos referentes ao fluxo de água na rede;
- Não ponderados: com objetivo de se observar apenas a configuração das malhas dos sistemas;
- <u>Ponderados</u>: em que, de acordo com Giudicianni *et al.* (2018), o peso das arestas pode ser definido pelas características hidráulicas (como por exemplo, vazão e velocidade) ou topológicas dos tubos (comprimento, diâmetro, rugosidade) e, desse modo, podem ser aplicados para fins de análise de quantidade e qualidade do abastecimento de água em uma rede de distribuição.

Além disso, ressalta-se que as métricas de redes complexas são úteis para a obtenção de informações sobre a conectividade, topologia, quantidade de caminhos alternativos e vulnerabilidade das redes de distribuição de água a falhas. Portanto, as ponderações são importantes para avaliar como as características hidráulicas e topológicas do sistema afetam as métricas de redes complexas e, consequentemente, a conectividade e robustez de uma rede de distribuição de água.

Em sequência, são apresentadas algumas métricas de redes complexas que auxiliam na avaliação de grafos e podem ser úteis para analisar grafos referentes às redes de distribuição de água.

Os tópicos estão ordenados em: métricas relacionadas à topologia e conectividade da rede; métricas para verificação de robustez da rede.

Métricas para avaliação da topologia e conectividade da rede:

• Densidade de arestas da rede (ρ): segundo Rodríguez-Alarcón e Lozano (2019), é a razão entre o número total de arestas (m) presentes na rede e o número máximo de arestas que podem constituir a rede (n(n-1)), em que n é o número total de vértices da rede. Portanto, é definida por:

$$\rho = \frac{m}{n(n-1)} \tag{3.2}$$

É importante identificar a densidade de arestas da rede para saber se a rede é densa ou esparsa, pois, uma rede mais densa apresenta maior agrupamento de arestas, ou seja, mais caminhos mais curtos entre os vértices. Logo, quanto mais denso é o grafo de uma rede de distribuição de água, mais tubulações conectadas entre os nós existem e, dessa forma, mais confiável tende a ser o abastecimento dos nós de demanda, pois caso ocorra o rompimento de um tubo qualquer possivelmente existem outros caminhos para a água percorrer.

• <u>Coeficiente de agrupamento (C)</u>: conforme Hansen *et al.* (2020), mede como os vértices de uma vizinhança estão conectados uns aos outros e, é calculado pela equação:

$$C(i) = \frac{m_{n,i}}{m_t} \tag{3.3}$$

em que $m_{n,i}$ é o número de arestas que ligam os vértices vizinhos a um vértice em análise i e $m_{t,i}$ é o número total de conexões possíveis entre estes vértices vizinhos e o vértice i. Quanto maior o valor de C, mais caminhos alternativos entre os vértices existem, tornando a interação entre os vértices maior. Desse modo, redes malhadas de distribuição de água que apresentam maior coeficiente de agrupamento possuem um abastecimento de água mais eficiente, uma vez que o número de caminhos possíveis para abastecimento dos nós é maior.

• <u>Grau médio (De g_{avg})</u>: conforme Barabási (2016) é a métrica que representa a conectividade média entre os vértices da rede complexa e que para redes direcionadas, é dada pela equação:

$$Deg_{avg} = \langle k^{in} \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i^{in} = \langle k^{out} \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i^{out} = \frac{m}{n}$$
 (3.4)

em que $\langle k^{in} \rangle$ é o grau médio de entrada da rede, isto é, considerando somente as arestas que incidem nos vértices; $\langle k^{out} \rangle$ é o grau médio de saída da rede, que contabiliza apenas as conexões caracterizadas pelas arestas que saem dos vértices; n é o número total de vértices da rede; e m é o número total de arestas da rede.

O grau de um vértice i analisado corresponde ao número total de vértices vizinhos que estão conectados diretamente ao vértice i. Portanto, como exemplo tem-se que, quanto maior é o Deg_{avg} de um grafo de rede de distribuição de água com arestas ponderadas pela vazão, mais nós estão conectados no grafo e, possivelmente, mais nós de demanda tendem a ser abastecidos no sistema.

- Grau máximo da rede (k^{max}): é o maior grau da rede, observado entre todos os vértices (RODRÍGUEZ-ALARCÓN & LOZANO, 2019). Esta métrica é importante para identificação dos vértices que apresentam o maior número de conexões e, no caso das redes de distribuição de água, daqueles nós que abastecem diretamente mais nós vizinhos.
- <u>Distribuição de grau</u> (p_k) : de acordo com Gera (2018), é a distribuição do número de conexões entre os vértices de uma rede complexa e, é definida como a probabilidade de que um vértice selecionado aleatoriamente em uma rede tenha k graus (p_k) , de tal forma que

$$p_k = \frac{n_k}{n} \tag{3.5}$$

em que n_k é o número de vértices que tem k graus na rede e n é o número total de vértices da rede. É uma métrica relevante para determinar o tipo de rede complexa em estudo.

• <u>Centralidade de intermediação normalizada (CB)</u>: é uma métrica que quantifica o número de caminhos mais curtos entre todos os pares de vértices de uma rede que passam por um nó de análise *i* e, é definida pela seguinte equação (WANDERLEY *et al.*, 2014):

$$CB(i) = \frac{\sum_{j,k'} i \neq j \neq k}{\frac{g_{jk}(i)}{g_{jk}}}$$
(3.6)

em que g_{jk} é o número total de caminhos mais curtos (conjuntos de arestas de menores valores que conectam dois vértices) entre os vértices j e k; e $g_{jk}(i)$ é o número de caminhos mais curtos entre j e k que passam pelo vértice i; e n é o número total de vértices.

Tecnicamente, a centralidade de intermediação normalizada mede o percentual de caminhos mais curtos que passam por determinado vértice (GOLBECK, 2015). Em redes de distribuição de água pode ser uma métrica empregada para calcular o alcance de determinado nó no sistema.

O número total e comprimento total de caminhos mais curtos em um grafo são obtidos por meio do emprego de algoritmos desenvolvidos especificamente para identificação e cálculos de caminhos mais curtos e, como exemplos, têm-se os algoritmos: Djisktra, Bellman-Ford e Floyd-Warshall (SARWAR & SHAHEEN, 2021).

Neste trabalho empregou-se o algoritmo de Floyd-Warshall pelo mesmo ser aplicável para solução de problemas envolvendo caminhos mais curtos, especificamente, em grafos direcionados e ponderados (FLOYD, 1962).

• <u>Centralidade de proximidade normalizada (*CC*)</u>: esta métrica determina a importância dos vértices na rede, conforme a sua proximidade ou menores comprimentos de caminhos mais curtos com outros vértices da rede (ZHU, WANG & WU, 2021). De acordo com Freeman (1978), a centralidade de proximidade normalizada é dada pela equação:

$$CC(i) = \frac{n^* - 1}{\sum_{j=1}^{n-1} d(j,i)}$$
(3.7)

em que d(j,i) é a distância (comprimento total) do caminho mais curto entre os vértices j e i, e n^* é o número de vértices que podem alcançar i.

Deve-se notar que, para grafos direcionados, há a centralidade de proximidade de entrada $(CC(i)_{in})$, que é calculada por meio do inverso do somatório das distâncias dos caminhos mais curtos possíveis de todos os outros vértices da rede para o vértice de análise i; e também há a centralidade de proximidade de saída $(CC(i)_{out})$, que é calculada a partir do inverso do somatório das distâncias dos caminhos mais curtos possíveis do vértice i para todos os outros vértices da rede.

No caso de redes de distribuição de água, como exemplo do emprego desta métrica pode-se citar o grafo da rede quando é ponderado pela velocidade de escoamento, em que quanto maior a centralidade de proximidade, mais lento tende a ser o abastecimento de água.

• Comprimento médio de caminho mais curto (L_{avg}): segundo Zhang, Xu e Zhang. (2021), é a distância média dos caminhos mais curtos entre todos os pares de vértices da rede, sendo expressa pela equação:

$$L_{avg} = \frac{1}{n(n-1)} \times \sum_{i} \sum_{j \neq i} d_{ij}$$
(3.8)

Mao e Zhang (2017) corroboram que o comprimento médio de caminhos mais curtos de uma rede é uma medida da eficiência da informação ou taxa de fluxo que é transportada entre as arestas.

Para melhor compreensão da aplicação desta métrica em grafos de redes de distribuição de água, pode-se considerar, como exemplo, um grafo com arestas ponderadas pelo tempo que a água demora para percorrer os comprimentos das tubulações, isto é, o tempo de viagem da água,

em que quanto menor é o L_{avg} da rede, em média, menores são os tempos de abastecimento dos nós da rede.

 <u>Diâmetro (D)</u>: é a métrica que quantifica o maior caminho mais curto do grafo e pode ser definida pela equação (CHEN et al., 2021):

$$D = m\acute{a}x(d_{ij}) \tag{3.9}$$

em que $m \pm x(d_{ij})$ é a máxima distância de caminho mais curto entre todos os vértices da rede.

Como exemplo do emprego desta métrica em redes de abastecimento, tem-se o caso do grafo da rede com arestas ponderadas pela vazão, em que *D* pode identificar as tubulações que possuem maior vazão de água escoando e que estão interconectadas.

Métricas para avaliação de robustez da rede:

• Densidade de pontes (D_{br}) : conforme Wu, Tian e Liu (2018), é a razão entre número total de pontes (N_{br}) e o número total de arestas (m) da rede complexa.

$$D_{br} = \frac{N_{br}}{m} \tag{3.10}$$

Visto que as pontes são arestas que conectam conjuntos de vértices, esta métrica estima o percentual de pontes na rede complexa, cuja falha pode causar a desconexão entre grandes conjuntos de vértices, particionando a rede. No caso dos grafos de redes de distribuição de água, a ruptura de pontes pode ocasionar grandes prejuízos, como o desabastecimento de uma parcela da população e, portanto, quanto menor for D_{br} do grafo de uma rede de distribuição de água, menos vulnerável a falhas de abastecimento está o sistema.

• <u>Dominância de ponto central</u> (C_B): é a diferença média de centralidade de intermediação entre o vértice mais central da rede e todos os outros, expressa pela seguinte equação (FREEMAN, 1977):

$$C_B = \frac{1}{n-1} \sum_i (CB_{max} - CB_i) \tag{3.11}$$

em que CB_{max} é a maior centralidade de intermediação da rede, CB_i é a centralidade de intermediação de um vértice de análise i e n é o número total de vértices. C_B pode variar entre 0 e 1, sendo 0 quando todos os vértices do grafo apresentarem centralidades de intermediação iguais e 1 quando o grafo apresentar formato circular ou de estrela.

Portanto, a dominância de ponto central determina a vulnerabilidade da topologia do grafo da rede de distribuição de água em torno de um vértice mais central e, sendo assim, quanto menor o seu valor, menos dependentes são os vértices da rede em relação ao vértice central e, no caso de sistemas de abastecimento de água, maior é a capacidade da rede em superar falhas.

Por fim, além de determinar propriedades de redes complexas, as métricas também contribuem para identificar a topologia da rede a ser estudada e, sendo assim, segundo Karyotis e Khouzani (2016), como alguns exemplos de tipos de redes complexas, têm-se:

<u>a) Redes regulares</u>: caracterizadas por todos os vértices apresentarem distribuições de grau iguais constantes ou, mais especificamente, terem o mesmo grau. As redes regulares podem possuir diferentes formatos, como: correntes, anéis e grelhas.

b) Redes com topologias estocásticas: sucintamente, são redes formadas por conexões entre os vértices caracterizadas por análises probabilísticas para determinação de sua topologia.

- Redes aleatórias: são redes modeladas por grafos completamente aleatórios desenvolvidos por Erdös e Rényi (1959), em que os vértices são conectados por arestas de forma uniformemente aleatória e cada inserção de uma aresta está associada a uma probabilidade independente (NEWMAN, 2004).
- Redes *Small-World* (mundo pequeno): identificadas por Watts e Strogatz (1998) como classe de grafos aleatórios, são redes classificadas por terem pequenos comprimentos médios de caminhos mais curtos e altos valores de coeficiente de agrupamento.
- Redes Scale-Free (livre escala): conforme Barabási (2016), são redes que podem representar sistemas reais e seguem o princípio de quanto mais conectado for um vértice, maior é a probabilidade desse vértice receber mais conexões. Portanto, não são redes estáticas e crescem ao longo do tempo, permitindo que novos vértices sejam incorporados à rede, de modo que os vértices com mais conexões (hubs) tendem a se conectar mais rapidamente do que outros vértices. Esta rede representa muito bem as conexões vinculadas às redes sociais na internet.

Em sequência, para melhor compreensão dos tipos de redes complexas, na Figura 3.11 são apresentadas as formatações correspondentes aos tipos de redes citados anteriormente.

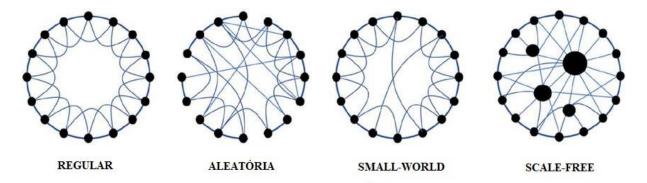


Figura 3.11: Tipos de redes complexas.

Fonte: Adaptado de Selvarajoo (2019).

A identificação do tipo de rede complexa a ser estudada é importante para caracterização da conectividade da rede (conexão entre os vértices) e, se for o intuito, realização adequada de cálculos probabilísticos referentes a inserção de arestas e análises de crescimento da rede em observação.

Entretanto, cabe salientar que as redes de distribuição de água não devem ser analisadas somente a partir da óptica de redes complexas. Deve-se correlacionar critérios ou parâmetros hidráulicos com a teoria de redes complexas para, realmente, ser possível observar e obter conclusões sobre o desempenho hidráulico do sistema de abastecimento e sua respectiva relação aos fundamentos de redes. Portanto, na próxima subseção é apresentada uma breve revisão de literatura sobre alguns interessantes critérios hidráulicos empregados em estudos de sistemas de abastecimento de água.

3.3 Critérios hidráulicos em rede de distribuição de água

Para mensurar o desempenho hidráulico e a eficiência das redes de distribuição são necessários índices hidráulicos que quantifiquem os conjuntos de dados resultantes de simulações para caracterizar o comportamento do sistema de abastecimento. No entanto, como nesta pesquisa são empregados o índice resiliência hidráulica (R) de Todini (2000), a uniformidade de pressão (PU) de Alhimiary & Alsuhaily (2007) e a idade média ponderada da água acima de limite estabelecido (WA) de Marchi $et\ al.\ (2014)$, nesta subseção, somente estes indicadores são conceituados e apresentados em trabalhos da literatura.

Dentre os três critérios, por observação prévia em literatura, nota-se que, o índice de resiliência de Todini (2000) é o mais encontrado em estudos de redes de abastecimento de água. Todini

propôs *R* com intuito de determinar a capacidade de um sistema de abastecimento de água em suportar condições de estresse e manter o seu respectivo funcionamento, a partir da equação:

$$R = \frac{\sum_{i=1}^{N} q_i (h_i - h_i^*)}{\sum_{R=1}^{n_r} Q_R H_R + \sum_{j=1}^{n_p} P_j / \gamma - \sum_{i=1}^{N} q_i h_i^*}$$
(3.12)

em que N é o número total de nós de demanda, n_r é o número de reservatórios; n_p é o número de bombas da rede; q_i e h_i são a demanda e a carga hidráulica dos nós de demanda i; Q_R e H_R são, respectivamente, a vazão e o nível do reservatório/tanque R; P_j é a potência da bomba j no sistema; γ é o peso específico da água; e h^* é a carga hidráulica mínima necessária para abastecer o sistema.

Em seu trabalho, Todini projetou uma rede malhada de distribuição de água por meio de um algoritmo de otimização heurístico, no qual *R* e os custos dos tubos implementados à rede eram funções objetivos a serem, respectivamente, maximizadas e minimizadas.

Além de Todini, posteriormente, muitos trabalhos utilizaram *R* para caracterizar o potencial de suportar falhas das redes de abastecimento a partir da aplicação de métodos e algoritmos de otimização dos sistemas e, como exemplo, têm-se:

- Reca *et al.* (2008), que empregaram *R* como função objetivo a ser maximizada para análise de diferentes algoritmos multiobjetivos testados para otimização de redes de abastecimento malhadas;
- Di Nardo *et al.* (2010), que, juntamente com índices de entropia, consideraram *R* para avaliação, de modo global, do desempenho de uma rede de distribuição de água em um processo de setorização;
- Tsakiris e Spiliotis (2012), que empregaram *R* e um índice de falha também proposto por Todini (2000), para caracterização de alguns cenários criados, a partir de medidas de engenharia, a fim de melhorar o desempenho hidráulico do sistema de abastecimento;
- Creaco, Franchini e Todini (2016), que utilizaram *R* e os índices de uniformidade de diâmetro e custos, como funções objetivo em um processo de otimização de sistemas de abastecimento;
- Wright *et al.* (2015), que consideraram *R* e três métricas de teoria de grafos (coeficiente de malha, dominância de ponto central e entropia de fluxo) para análise da resiliência da rede de

distribuição de água, baseando-se na capacidade de reserva do sistema de abastecimento, isto é, na máxima demanda múltipla aplicada ao sistema sem violar a pressão mínima operacional da rede.

Já, a *PU* foi apresentada em literatura por Alhimiary e Alsuhaily (2007), com o objetivo de caracterizar as pressões em um processo de redução de perdas de água em sistema de abastecimento via operação ótima de válvulas, a partir da equação:

$$PU = \sum_{t=1}^{M} \left[\frac{1}{N} \sum_{i=1}^{N} \left(\frac{P_{i,t} - P_{min}}{P_{min}} \right) + \frac{\sqrt{\frac{\sum_{i=1}^{N} (P_{i,t} - \bar{P}_{t})^{2}}{N}}}{\bar{P}_{t}} \right]$$
(3.13)

em que N é o número total de nós de demanda; $P_{i,t}$ é a pressão na junção i no passo de tempo t; P_{min} é a pressão mínima necessária para o funcionamento da rede; e \bar{P}_t é a pressão média na rede no passo de tempo t.

A *PU* busca padronizar a distribuição da pressão ao longo de todo o sistema de abastecimento de água, a partir de um valor indicador que represente as diferenças entre as pressões nos nós da rede e as pressões médias e mínimas no sistema, para um determinado passo de tempo. Desse modo, quanto maior o valor da uniformidade de pressão, maior é a variação da pressão do sistema em relação às pressões médias e mínimas e, consequentemente, menor é a eficiência do abastecimento de água da rede, uma vez que pressões muito elevadas caracterizam uma sobrecarga de energia no sistema podendo, até mesmo, gerar o rompimento de tubulações, e pressões abaixo da pressão mínima operacional da rede podem dificultar o abastecimento de água aos consumidores.

No caso da WA, o critério foi exposto em literatura por Marchi *et al.* (2014), com o objetivo de caracterizar a qualidade de água de abastecimento e determinar sua relação com custos de energia e concentração de gases emitidos por reservatórios, por meio da equação:

$$WA = \frac{\sum_{i=1}^{N} \sum_{t=1}^{M} k_i^{(t)} q_i^{(t)} \cdot \left(W A_i^{(t)} - W A_{\lim} \right)}{\sum_{i=1}^{N} \sum_{t=1}^{M} q_i^{(t)}}$$
(3.14)

em que WA é dado em horas; $WA_i^{(t)}$ é a idade da água no nó junção i no passo de tempo t (excluindo-se tanques e reservatórios); $q_i^{(t)}$ é a demanda na junção i no passo de tempo t; WA_{lim} é o limite de idade da água (em horas) permitido pelo padrão; e $k_i^{(t)}$ representa uma variável binária, definida como 1 se a idade da água for maior ou igual ao limite, ou 0 se for menor que o limite definido.

A WA é uma métrica que quantifica, em geral, quanto tempo, acima do limite estabelecido, a água distribuída nas tubulações da rede de distribuição de água demora para abastecer os nós de demanda de consumo. Portanto, quanto maior o valor de idade ponderada média de água acima de limite estabelecido, pior a eficiência do sistema, pois, tempos de abastecimento mais longos podem propiciar a proliferação e deposição de matéria orgânica, e o decaimento de cloro da água nas tubulações, reduzindo a qualidade de água para abastecimento do sistema.

Como alguns exemplos de pesquisas que empregaram *PU* e *WA* na literatura, têm-se os trabalhos de:

- Saldarriaga *et al.* (2019), que setorizaram uma rede de distribuição de água a partir de algoritmos de otimização considerando *PU* e *WA* como funções objetivo a serem minimizadas;
- Brentan *et al.* (2021), em que *PU* e *WA* foram empregadas como funções objetivo a serem minimizadas em algoritmo, para otimizar operacionalmente um sistema de abastecimento de água, de modo a melhorar a qualidade da água, por meio de fechamento e abertura de válvulas.
- Anchieta *et al.* (2021), em que todos os critérios hidráulicos envolvidos neste trabalho foram empregados, com intuito de determinar melhores cenários para diferentes aumentos de demanda, com suporte da aplicação de análise multicritério;
- Brentan *et al.* (2021), no qual todos os critérios hidráulicos envolvidos nesta pesquisa foram aplicados como funções objetivo de um algoritmo de otimização em um processo de setorização de redes de abastecimento com base em alocação de válvulas, para identificação dos melhores cenários de setorização com auxílio de aplicação de análise multicritério.

Apesar dos critérios hidráulicos serem necessários para determinar o estado hidráulico do sistema de abastecimento em diferentes períodos de simulação, no caso de cenários de expansão das redes de abastecimento, muitas vezes, os sistemas precisam também da implantação de medidas de engenharia para reabilitar a operação da rede e fornecer água com qualidade aos

consumidores. Portanto, na subseção posterior é apresentada uma breve revisão de literatura sobre algumas medidas de engenharia aplicadas em pesquisas para reabilitar as pressões e regular as cargas hidráulicas em redes de distribuição de água.

3.4 Medidas de engenharia para reabilitação de sistemas de abastecimento de água

Como descrito anteriormente, após as redes de distribuição de água apresentarem aumentos de suas capacidades de abastecimento, devido aos maiores volumes de água disponibilizados pelos reservatórios e tanques, parte das tubulações podem operar a pressões mais baixas do que a pressão mínima requerida para operação e, consequentemente, dificultar o abastecimento de água. Dessa forma, medidas de engenharia são essenciais para regular a carga hidráulica no sistema para que se possa suprir a demanda de abastecimento, em volume e pressão adequados, alcançando todos os setores da rede de distribuição de água (KIM & MAYS, 1994).

Nesta pesquisa, empregaram-se dois tipos de intervenções de engenharia, que são a substituição de tubulações originais da rede por tubos de maior diâmetro e a substituição das bombas originais da rede por bombas de maior capacidade hidráulica para vazões mais elevadas. Salienta-se que cada intervenção foi realizada a fim de melhorar o desempenho hidráulico do sistema e reabilitar a operação de distribuição de água para as demandas da rede.

Em relação aos trabalhos referentes às trocas de tubulações em estudos de expansão, se destaca o trabalho de Bakri *et al.* (2015), em que foram implementadas trocas de tubulações estratégicas na rede tronco ou principal do sistema Somba Opu Distribution (SOD), um dos maiores sistemas de distribuição de Makassar, na Indonésia. No estudo de Bakri *et al.* (2015), a partir de uma estimativa de previsão de demanda, os autores consideraram um plano de melhoramento de tubulações para determinada área alvo durante um período de 80 anos dividido em quatro períodos de 20 anos e, para isso, além dos cálculos referentes aos custos dos ciclos de vida das alternativas de projeto, os autores utilizaram três algoritmos híbridos de otimização que determinaram as demandas futuras, os principais tubos da rede e os diâmetros apropriados das tubulações para suprimento das novas demandas. Conforme os resultados obtidos pelos autores, trata-se de uma metodologia que pode ser empregada por gestores para reabilitação e expansão de redes de distribuição de água, uma vez que a proposta pode definir a combinação ótima de

principais tubos, com seus respectivos diâmetros e materiais adequados que resultarão no custo mínimo do ciclo de vida das alternativas de projeto, ao longo do período de melhoramento.

Neelakantan, Suribabu e Lingidreedy (2019) também apresentaram uma interessante metodologia em estudo de substituição de tubulações, uma vez que, além do custo de substituição dos tubos, consideram também custos de reparação de tubulações, a fim de determinar se após certo período de tempo é mais econômico substituir as tubulações do que repará-las. Como um dos resultados da pesquisa, os autores corroboram que a troca de tubulações menores por tubos de maior diâmetro é mais rentável, pois tubos de maior diâmetro, considerando-se apenas um material, demoram mais tempo para necessitarem de reparação ou troca. No entanto, diferente do estudo citado anteriormente, o modelo proposto é aplicado na rede Two-Loop, isto é, em uma rede pequena.

Já Sirsant e Reedy (2021) propuseram uma nova metodologia para reabilitação de redes de distribuição de água fundamentada em troca de tubulações e seus respectivos custos, a partir do auxílio de programação dinâmica combinada a um algoritmo de otimização evolucionário, e aplicada a aumentos de demanda de 2021 a 2071, de 10 em 10 anos. Nesta pesquisa, os autores implementaram a metodologia em três redes de referência, que foram: New York Tunnel, Two-Loop, e Blacksburg e também para um estudo de caso real do sistema de abastecimento de água de Badlapur, em Maharashtra, na Índia. As soluções da pesquisa são validadas por meio de comparação por meio de outros estudos de reabilitação de expansão de redes vistos em literatura e indicam que a abordagem é computacionalmente eficiente, geram soluções econômicas de trocas de tubulações para níveis operacionais requeridos por sistemas de abastecimento e, portanto, podem ser empregadas para problemas de expansão de redes de distribuição de água em mundo real.

Por último, outro trabalho recente envolvendo trocas de tubulações para reabilitação de redes de abastecimento que vale ser destacado é o estudo de Mu *et al.* (2021), em que é desenvolvido um novo modelo de otimização de redes de distribuição com múltiplos reservatórios, em que o cálculo dos caminhos mais curtos das tubulações entre os reservatórios e os nós de demanda são feitos pelo algoritmo Dijkstra, as pressões mínimas são calculadas em período de simulação estendido e os diâmetros de substituição são calculados iterativamente com auxílio de um algoritmo de otimização, no qual as funções objetivo são, respectivamente, o custo unitário do tubo, a uniformidade de pressão do sistema e a uniformidade de vazamentos. Como resultados,

os autores obtiveram que a rede Net1 melhorou a sua confiabilidade após o processo de reabilitação e as soluções da medida de substituição de tubos foram mais econômicas.

Portanto, à vista dos estudos em literatura, nota-se que, realmente, é importante e válida a implementação e o cálculo dos custos das troca de tubulações como medida de engenharia, para reabilitar sistemas de abastecimento de água e obter alternativas de projeto de menores custos. No entanto, nesta pesquisa, além das trocas de tubulações, também serão implementadas a substituição de sistemas moto-bombas a fim de propor mais uma alternativa de medida de engenharia a ser analisada no processo de reabilitação das redes de abastecimento, pois, conforme Price e Ostfeld (2014), Asvappositkul *et al.* (2020) e Kwasi-Effah *et al.* (2021), a implantação de bombas aumenta a carga hidráulica do sistema e auxilia no controle das pressões da rede de abastecimento.

Desse modo, a partir da literatura, vale citar, inicialmente, o estudo de Tarquin e Downdy (1989), em que foi realizada a análise de custo-benefício de melhor bomba ou combinação de bombas a serem implantadas em uma rede de distribuição de água contendo vários sistemas moto-bombas e as condições operacionais do sistema foram trabalhadas a partir de modelos de regressão não-lineares, nos quais curvas características e de eficiência das bombas, e curvas de cargas do sistema, foram observadas para obtenção dos sistemas de bombeamento mais rentáveis, para várias condições de demanda.

Alguns anos depois, Ormsbee e Lansey (1994) também apresentaram e discutiram diferentes metodologias para controle ótimo de sistemas de bombeamento em redes de abastecimento de água, com base na classificação ótima do tipo de sistema ao qual poderá ser empregada, isto é, se é uma rede com apenas um reservatório e um tanque ou se é um sistema com múltiplos reservatórios e tanques; o tipo de modelo hidráulico utilizado (balanço de massa, regressão ou simulação hidráulica), o tipo de modelo de demanda aplicado, ou seja, se é distribuído ou proporcional; o tipo do método de otimização utilizado (programação linear, programação dinâmica, ou programação não-linear), e a natureza da política de controle resultante (implícita ou explícita). Além disso, neste trabalho os autores apresentaram as vantagens e desvantagens de cada abordagem de operação ótima de estações elevatórias.

Na última década, Calvo e Gutiérrez-Estrada (2011), buscando reduzir os custos de energia e aumentar o desempenho de um sistema de distribuição de água, desenvolveram dois algoritmos

de otimização, sendo um para selecionar combinações de bombas de menor custo e gerar maior desempenho hidráulico à rede, e outro para determinar a capacidade de armazenamento de um reservatório que permite bombear água quando tarifas energéticas são mais baixas anualmente. Este método foi aplicado a um sistema de irrigação e de exploração piscícola no sul de Espanha e, como resultados, os autores obtiveram que a seleção ótima dos conjuntos de bombas e/ou a adição de um reservatório regulador geravam menores custos em termos energéticos.

Já Goryashko e Nemirovski (2014), visando solucionar as limitações referentes aos métodos tradicionais de otimização de sistemas dinâmicos sob incertezas, como a programação dinâmica, que apenas é aplicável a redes de abastecimento com uma ou duas estações de bombeamento e reservatórios, propuseram um novo modelo de otimização de operações diárias de bombeamento considerando a incerteza referente à demanda de abastecimento de água e formulando o problema a partir de programação linear.

Nos últimos anos, outro trabalho relevante envolvendo operação ótima de bombas é o de Luna et al. (2019), em que os autores apresentaram um método híbrido de otimização com intuito de melhorar a eficiência energética de uma rede de distribuição de água, no sentido de se obter uma gestão mais sustentável da água. Os autores desenvolveram uma nova metodologia com auxílio de um algoritmo genético para otimização do bombeamento de água durante o dia, conhecendo-se a priori o consumo de água e considerando como funções objetivo a serem minimizadas: custos de operação, consumo de energia e emissões de dióxido de carbono associadas. No trabalho todas as demandas e requisitos operacionais mínimos do sistema de abastecimento, incluindo os níveis dos tanques, foram atendidos e, como resultados, além de conseguirem melhorias em relação aos custos e emissões de dióxido de carbono, os autores concluíram que a operação ótima de bombas pode melhorar a eficiência energética de um sistema em até 15%, em média, em comparação com a operação real de uma bomba em uma rede de abastecimento.

Por último, em estudo mais recente, tem-se como destaque o trabalho de Móller *et al.* (2021), em que os autores propuseram a análise dos benefícios da seleção otimizada de estações de bombeamento às suas respectivas operações considerando-se as suas velocidades de rotação como variáveis. Na pesquisa, a seleção do melhor ponto de eficiência das bombas e o número de bombas a operar em paralelo foram definidos com o auxílio da aplicação de algoritmo de otimização para minimizar os custos referentes ao consumo de energia do sistema. Como

resultado, os autores determinaram que uma rotina flexível de operação de bombas diminui os gastos de energia, quando os sistemas elevatórios são selecionados de acordo com as condições da rede.

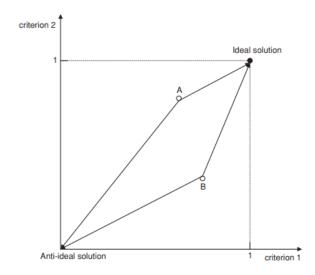
Dessa forma, analisando-se os trabalhos apresentados anteriormente, nota-se que a operação ótima de bombas é realmente significativa para reabilitação e otimização operacional de sistemas de abastecimento de água. Entretanto, cabe salientar que todas as medidas de engenharia implementadas em redes de distribuição de água devem, necessariamente, serem orçamentadas para se observar a relação custo-benefício entre desempenho hidráulico do sistema e custos. Portanto, à vista disso, na próxima seção é descrito um pouco sobre conceitos e trabalhos referentes ao método de análise multicritério empregado para determinar os cenários ótimos nesta pesquisa, isto é, do método criado por Hwang e Yoon (1981), da Técnica de Ordenação Preferencial por Similaridade à Solução Ideal – Technique for Order Preference by Similarity to Ideal Solution (TOPSIS).

3.5 Método de análise multicritério TOPSIS

Em pesquisas acadêmicas, o tratamento e a análise correta de diferentes dados em estudo são sempre fundamentais para a determinação de tomada de decisões. No entanto, muitas vezes, as pesquisas apresentam grandes volumes de dados e critérios de análise que, para se obter soluções ou cenários ótimos, se faz necessária a utilização de métodos que considerem e calculem todos os dados resultantes e tipos de critérios. Nesse sentido, desde os anos 50 e 60 muitos pesquisadores dedicam seu tempo ao desenvolvimento de métodos de análise e tomada de decisão para trabalhos com aplicação de multicritérios em conjuntos de dados (ZAVADSKAS, TURSKIS & KILDIENE, 2014).

A análise com critérios múltiplos – *Multiple-criteria decision analysis* (MCDA) – ou a tomada de decisão com critérios múltiplos – *Multiple-criteria decision making* (MCDM) – é caracterizada como uma área que engloba ferramentas matemáticas e computacionais para prestar suporte a avaliação subjetiva de um número finito de alternativas de decisão sob determinada quantidade também finita de critérios de desempenho, a fim de ajudar na tomada de decisão de uma ou mais pessoas (LOOTSMA, 1999). Segundo Roy (2005), desde os anos 60, MCDA/MCDM tem sido uma área de pesquisa muito ativa, produzindo muitos artigos e, livros teóricos e de aplicação. Zanakis *et al.* (1998) corroboram que, dependendo das

alternativas de resultados, os problemas referentes à MCDA/MCDM, geralmente, podem ser classificados como discretos ou contínuos. Hwang e Yoon (1981), classificam-os como:


- Tomada de Decisão de Atributos Múltiplos: caracterizado por apresentar valores variáveis discretos e número de soluções alternativas pré-definidas, exigindo comparações entre os atributos:
- Tomada de Decisão de Múltiplos Objetivos: qualificado por possuir valores variáveis de decisão estabelecidos em domínio contínuo ou inteiro e, elevado número ou, até mesmo, infinitas (contínuas) soluções alternativas para satisfazer as restrições, preferências ou prioridades referentes à tomada de decisão.

O entendimento do problema a ser resolvido, isto é, dos tipos de dados e quantidade de soluções, referente a determinado estudo de critérios múltiplos, é importante para categorizar o processo de análise multicritério, facilitando assim, a manipulação adequada dos dados e, consequentemente, tornando as soluções obtidas e tomada de decisão mais precisas. Além disso, de acordo com Opricovic e Tzeng (2004), para adequar o processo de tomada de decisão em um estudo de análise multicritério, é necessário considerar as seguintes e principais etapas:

- (a) Estabelecer critérios de avaliação do sistema que relacionem o potencial dos dados obtidos com os objetivos estabelecidos;
- (b) Gerar alternativas para solução do problema;
- (c) Analisar alternativas em relação aos critérios empregados;
- (d) Aplicar um método de análise multicritério;
- (e) Aceitar determinada solução obtida como "ótima";
- (g) E, se a melhor solução final não for compreendida como "ótima", deve-se reunir novos dados relacionados ao estudo e aplicar, mais uma vez, a análise multicritério.

Dentre as etapas, destaca-se o tópico ((d)", onde determina-se a aplicação de um método ou técnica de análise multicritério, isto é, o procedimento necessário para organizar os dados, realizar os cálculos e fundamentar a classificação dos resultados finais, para obtenção das melhores soluções. Na literatura, há uma variedade de métodos de MCDA/MCDM desenvolvidos para buscar soluções em condições de múltiplos critérios que, respectivamente,

apresentam suas vantagens e desvantagens (OLSON, 2004). Entretanto, nesta pesquisa será abordado apenas o método, desenvolvido por Hwang e Yoon (1981), da Técnica de Ordenação Preferencial por Similaridade à Solução Ideal – *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS). O método TOPSIS simplificadamente determina soluções alternativas a partir de cálculos que quantificam as distâncias entre os resultados ponderados obtidos e as soluções ideais positiva e negativa, de tal forma que a alternativa ótima esteja simultaneamente mais próxima da solução ideal positiva e mais distante da solução ideal negativa (OPRICOVIC & TZENG, 2004). Abaixo, na Figura 3.12 é apresentado um exemplo gráfico do método TOPSIS, onde as soluções A e B são analisadas.

Figura 3.12: Exemplificação gráfica do método TOPSIS para análise de duas soluções. Fonte: Ishizaka e Nemery (2013).

Observando a Figura 3.12, pode-se concluir que, se os pesos dos critérios forem equivalentes, a alternativa A está mais próxima da solução ideal positiva (*Ideal solution*) e mais longe da solução ideal negativa (*Anti-ideal solution*), do que a solução B, logo é o melhor resultado entre os dois dados.

Como principais vantagens do método TOPSIS, Velasquez e Hester (2013) apontam a sua simplicidade e capacidade de abordar uma mesma quantidade de processos, independentemente das alternativas e dos números de critérios. Em contrapartida, como desvantagens do TOPSIS, eles citam o fato da distância Euclidiana entre as soluções não considerar a correlação de atributos e ser mais complexa de ponderar.

Já Hung e Chen (2009) determinam como principais vantagens do método TOPSIS a sua: lógica intuitiva e clara à compreensão humana; boa eficiência computacional; representação escalar do dado podendo representar tanto as melhores como as piores soluções; e também a possibilidade de visualização gráfica do resultado, como mostrado na Figura 3.12.

Além disso, vale destacar que o método TOPSIS também é muito empregado em estudos de redes de distribuição de água e, dessa forma, como apenas alguns exemplos, pode-se citar os trabalhos de:

- Lopes, Antunes e Cunha (2012), no qual utilizou-se o método TOPSIS em comparação com outras técnicas para determinar o risco de falhas de uma rede de distribuição de água;
- Islam *et al.* (2013), em que implementou-se o método TOPSIS a um modelo adaptado de lógica de programação para avaliar a qualidade da água de um sistema de abastecimento;
- Onu, Xie e Xu (2017), onde também foi implementado o método TOPSIS a um modelo adaptado de lógica de programação para ranquear alternativas sustentáveis a um sistema de abastecimento de água;
- Anchieta *et al.* (2021), no qual aplicou-se o método TOPSIS para classificar os melhores e piores cenários de aumentos de demanda em uma rede de distribuição de água, conforme indicadores hidráulicos;
- Brentan *et al.* (2021), em que se aplicou o método TOPSIS para ordenar conjuntos de soluções obtidos após a implementação de algoritmos de otimização para setorizar uma rede de distribuição de água.

4 MATERIAL E MÉTODOS

Resumidamente, a metodologia desta pesquisa se inicia na exportação do modelo hidráulico da rede de distribuição de água, do *software* de simulação EPANET 2.2 (ROSSMAN *et al.*, 2020) ao ambiente de linguagem de programação Python, por meio da biblioteca *Water Network Tool for Resilience* (WNTR) 0.3.0 (KLISE *et al.*, 2018).

Em Python, considerando-se um tempo de simulação hidráulica de 168h (1 semana) e utilizando-se a biblioteca *NetworkX* 2.5 (HAGBERG *et al.*, 2008), foram criados os grafos, direcionados e ponderados pela vazão e tempo de viagem da água, correspondentes a rede de distribuição de água original (sem expansão) e com aumentos de 0,1%, 0,5%, 1,0%, 2,0%, 5,0% e 10,0% da demanda total da rede aplicados aos nós de expansão.

Posteriormente, com objetivo de identificar a conectividade e robustez do sistema de abastecimento, foram aplicadas as seguintes métricas aos cenários: densidade de arestas da rede, grau médio, centralidade de proximidade, comprimento médio de caminhos mais curtos, diâmetro, densidade de pontes e dominância de ponto central. Além disso, para avaliação do desempenho hidráulico do sistema, empregou-se também os seguintes critérios aos cenários: uniformidade de pressão, idade média ponderada da água acima de limite estabelecido e resiliência hidráulica.

Após a aplicação das métricas de redes complexas e critérios hidráulicos, os resultados das métricas foram observados graficamente e os resultados dos critérios foram ranqueados e observados por meio do emprego do método de análise multicritério TOPSIS. Depois da identificação do desempenho dos cenários, foram implementadas as medidas estratégicas de engenharia (substituição de tubulações e bombas) na rede com intuito de reabilitar as pressões e aumentar o desempenho hidráulico do sistema de abastecimento. Depois da implementação das medidas de engenharia, foram elaborados mapas de desempenho hidráulico para cada medida de engenharia implementada, com o objetivo de se determinar os cenários que, em média, mais melhoraram e pioraram seus desempenhos hidráulicos.

Por fim, considerando-se as medidas de engenharia aplicadas e com objetivo de se obter cenários ótimos, isto é, de maior desempenho e menor custo, novamente todos os cenários

foram ranqueados. Abaixo, na Figura 4.1 é apresentado um fluxograma com a ordenação de cada etapa que foi necessária para a elaboração deste trabalho.

Figura 4.1: Fluxograma da metodologia para o desenvolvimento deste trabalho.

Em sequência, nas próximas subseções estão descritas, detalhadamente, as etapas que constituem este trabalho.

4.1 Criação dos cenários de expansão

Nesta etapa, foram implementados, em total, 180 cenários de expansão em nós localizados em regiões periféricas da rede C-Town, com objetivo de simular expansões de forma semelhante ao crescimento das malhas urbanas. Para cada nó selecionado foram adicionados percentuais de 0,1%, 0,5%, 1%, 2%, 5% e 10% da demanda total da rede original, de aproximadamente 270 L/s. Posteriormente, criou-se um grafo da rede de distribuição de água para cada cenário.

Na próxima subseção são explicadas detalhadamente as etapas para desenvolvimento destes grafos da rede, que foram gerados considerando-se simulações hidráulicas em regime permanente, com hipóteses de fluido incompressível e escoamento uniforme nas seções.

4.2 Rede de distribuição de água como grafo

A rede de distribuição de água foi modelada como grafo utilizando-se dos pacotes Python: *Network*X 2.5, para a criação, manipulação e estudo da estrutura, dinâmica e funções de redes

complexas (HAGBERG et al., 2008); e Water Network Tool for Resilience (WNTR) (KLISE et al., 2018), versão 0.3.0, para a interface dos dados da rede de distribuição de água no software EPANET 2.2 (ROSSMAN et al., 2020) com Python.

Os grafos dos cenários da rede de distribuição de água implementados foram direcionados pela vazão e representados por matrizes de ponderação ($W = [w_{ij}]$) com N nós distribuídos igualmente em linhas (i) e colunas (j), em que $w_{ij} > 0$ para nós conectados pela vazão de água e, ao contrário, $w_{ij} = 0$ (DI NARDO $et\ al.$, 2018). Vale destacar que, quando as vazões foram negativas, para adequar o sentido do fluxo de água no grafo considerando somente valores positivos de vazões, o código determinou que sua posição na matriz de adjacência de ponderação fosse substituída, de modo que o valor da vazão do nó de entrada do tubo passava a ser a vazão do nó de saída ou vice-versa.

Conforme exposto por Di Nardo *et al.* (2018), a rede de distribuição de água foi considerada como um conjunto vértice-aresta planar, onde os grafos ponderados foram definidos como:

$$G = (N, W) \tag{4.1}$$

em que *N* é o conjunto de nós e, no caso, engloba reservatórios, tanques e nós de demanda; e *W* é uma matriz de ponderação atribuída a cada aresta. Neste trabalho foram aplicados como parâmetros de ponderação: vazão e tempo de viagem da água. Nos tópicos a seguir estão descritas as definições da cada um destes parâmetros.

4.2.1 Grafo ponderado pela vazão

Conforme Heller e Pádua (2019), a vazão (Q), em m³/s, de cada tubulação da rede foi calculada a partir da equação da continuidade:

$$Q = v \times A \tag{4.2}$$

em que v é a velocidade média de escoamento, em m/s; e A é a área da seção transversal do escoamento, em m². A ponderação das arestas do grafo da rede de distribuição de água pela vazão foi feita de modo a obter dados sobre os volumes de água que são transportados nas tubulações da rede.

4.2.2 Grafo ponderado pelo tempo de viagem da água

O tempo de viagem da água (T) para cada aresta do grafo foi calculado pela seguinte equação:

$$T = \frac{L}{\nu \times 3600} \tag{4.3}$$

em que T é o tempo de viagem em horas; L é o comprimento da tubulação analisada em metros; e v é a velocidade de escoamento da água ao longo do conduto em metros por segundo.

A ponderação das arestas do grafo da rede de distribuição de água pelo tempo de viagem da água foi realizada com intuito de analisar a velocidade do fluxo de água nas tubulações, quantificar o tempo para abastecimento dos nós da rede e caracterizar a qualidade da água que chega aos nós.

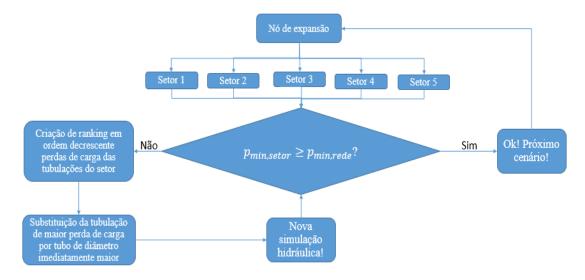
4.2.3 Métricas de redes complexas aplicadas ao grafo da rede de distribuição de água

Após as ponderações dos grafos devidamente realizadas, baseando-se nas definições e formulações matemáticas das métricas descritas no tópico 3.2.2 deste trabalho e com intuito de se obter resultados sobre a conectividade, topologia, redundância e robustez dos grafos da rede de distribuição de água, estrategicamente, as seguintes métricas foram aplicadas aos grafos criados: densidade de rede, grau médio dos nós, grau máximo da rede, centralidade de proximidade, comprimento médio de caminhos mais curtos, diâmetro e densidade de pontes.

4.3 Critérios hidráulicos para avaliação da rede de abastecimento de água

Nesta etapa, para cada cenário de expansão, foram aplicados os critérios hidráulicos de uniformidade de pressão (*PU*) (ALHIMIARY & ALSUHAILY, 2007), idade média ponderada da água acima de limite estabelecido (*WA*) (MARCHI *et al.*, 2014), e o índice de resiliência hidráulica (*R*) (TODINI, 2000), a fim de se obter o desempenho hidráulico da rede de distribuição de água. As respectivas equações destes indicadores hidráulicos estão apresentadas na subseção 3.3 desta dissertação.

4.4 Implementação de medidas de engenharia


Nesta etapa, a fim de implementar ações concretas que possam melhorar o desempenho dos cenários de expansão e abastecer os nós de demanda de consumo de água de forma mais

eficiente e confiável, foram realizadas intervenções estruturais de Engenharia Civil na rede de distribuição de água, tais como: substituição de tubulações de menor diâmetro por tubos de maiores diâmetros e substituição de bombas originais do sistema por bombas de maior capacidade hidráulica.

4.4.1 Substituição de tubulações

Para a substituição das tubulações da rede, primeiramente, observava-se o nó de expansão considerado para simulação e, conforme seu respectivo setor, elaborava-se um ranking em ordem decrescente de perdas de carga hidráulica unitária das tubulações.

Depois, enquanto a pressão mínima do setor analisado fosse inferior à pressão mínima requerida da rede, o tubo com a perda de carga unitária mais elevada no ranking (primeiro colocado) era substituído por outro tubo com um diâmetro imediatamente maior. Este processo iterativo repetiu-se, para cada cenário de expansão, até que as pressões mínimas observadas nos setores dos nós de expansão fossem iguais ou superiores à pressão mínima requerida para operação da rede de distribuição de água. Destaca-se que foram consideradas para substituição somente tubulações de material PVC. A seguir, na Figura 4.2 é mostrado um fluxograma para melhor entendimento das substituições de tubulações como medida de engenharia.

Figura 4.2: Processo de troca tubulações de menor diâmetro para tubos de maior diâmetro.

Após a substituição das tubulações para cada cenário de expansão, analisou-se o desempenho hidráulico da rede e os custos das intervenções de engenharia implementadas, com objetivo de

se identificar os melhores cenários, isto é, de maiores desempenhos hidráulicos e menores custos.

Salienta-se que os diâmetros dos tubos considerados para substituir as tubulações originais da rede, juntamente com seus respectivos custos, estão apresentados na Seção 5 desta dissertação.

4.4.2 Substituição de bombas

Para aplicação desta medida de engenharia, inicialmente, observou-se o máximo coeficiente de demanda de cada setor da rede de distribuição ao longo do tempo de simulação. Após a identificação destes máximos coeficientes de demanda e as respectivas horas em que cada um ocorreu, foi possível determinar as vazões das bombas de cada setor nestes mesmos passos de tempo. Com as vazões das bombas correspondentes aos máximos coeficientes de demanda ao longo do tempo de simulação, calculou-se a eficiência, potência e custo de cada bomba analisada no setor de cada cenário de expansão.

Neste processo, para todos os setores referentes aos respectivos nós de expansão, estrategicamente, selecionou-se nós críticos que, em geral, estavam com maiores cotas e, aplicou-se valores iniciais, arbitrariamente selecionados, como iguais a zero para suas pressões críticas (P_C) e 10 metros para compensação da perda de carga entre o nó crítico e as respectivas bombas de cada setor (Δh). Em sequência, no Quadro 4.1 estão apresentadas as bombas e os nós críticos selecionados para cada setor.

Quadro 4.1: Setores com suas respectivas bombas e nós críticos.

Setor	Bombas	Nó crítico
1	1 e 2	J201
2	6 e 7	J580
3	4 e 5	J215
5	8 e 9	J220

Posteriormente, simulando hidraulicamente um cenário por vez, observou-se as curvas de bombas, criadas a partir de dados de vazão e altura manométrica, do setor de cada nó de expansão. E, desse modo, enquanto a pressão do nó crítico (p_c) analisado não estivesse entre as pressões mínima (p_{min}) e máxima (p_{max}) estabelecidas, recalculava-se os pontos de vazão e

altura manométrica da curva da bomba, de tal modo que com a pressão crítica menor do que a pressão mínima ($p_c < p_{min}$) ou a pressão crítica maior do que a pressão máxima ($p_c > p_{max}$), aplicou-se a seguinte equação para obter o novo ponto de vazão da bomba:

$$Q_B = Q_{B_{max}} + \frac{[q_{max}(q_i + q_{total} \times q_{\%})]}{2}$$

$$\tag{4.4}$$

em que Q_B é o novo ponto de vazão da curva da bomba B; $Q_{B_{max}}$ é a vazão da bomba no passo de tempo de maior coeficiente de demanda ao longo das 168 horas simuladas; q_{max} é demanda máxima no período simulado; q_i é a demanda base no nó de expansão i; q_{total} é a demanda total da rede de distribuição de água; e $q_{\%}$ é o percentual de aumento de expansão aplicado. Para encontrar a nova altura manométrica da bomba, empregou-se:

$$H_B = Z_C - Z_B + \Delta h + p_{min} \tag{4.5}$$

em que H_B é a nova altura manométrica da bomba B; Z_C é a cota geométrica do nó crítico; Z_B é a cota geométrica da bomba; Δh é a compensação de perda de carga entre o nó crítico e a bomba B; e p_{min} é a pressão mínima requerida para operação da rede de distribuição de água.

Os cálculos dos pontos de curva de bombas para cada cenário só pararam quando $p_{min} \le p_c \le p_{max}$. Salienta-se que, com objetivo de ajustar p_c , para $p_c < p_{min}$, antes de, novamente, simular hidraulicamente o sistema, aumentava-se o valor arbitrado de Δh , de modo que:

$$\Delta h = p_c + p_{min} \tag{4.6}$$

Enquanto para $p_c > p_{max}$, diminuía-se o valor arbitrado de Δh :

$$\Delta h = p_c - p_{min} \tag{4.7}$$

Sendo assim, com o ponto ideal da curva da bomba e, a perda de carga entre o nó crítico e a bomba estabelecidos, por último, calculou-se a eficiência da bomba (η) segundo a seguinte equação dada por Móller *et al.* (2020):

$$\eta = 12.81 \ln(Q_B) + 11.62 \tag{4.8}$$

em que Q_B é a vazão da bomba aproximadamente no ponto ideal obtido.

Para obtenção da potência das bombas (P_B) empregou-se a equação dada por Porto (2004) definida como:

$$P_B = \frac{9,8Q_B H_B}{n} \tag{4.9}$$

em que Q_B e H_B são, respectivamente, a vazão e a altura manométrica da bomba aproximadamente no ponto ideal.

Por último, para orçar os custos de implantação das bombas aplicou-se a equação expressa por Meirelles *et al.* (2018) como:

$$C_{bomba} = 2,246P_B^2 + 338,23P_B + 8218,79 (4.10)$$

em que C_{bomba} é o custo da bomba e P_B , como citado anteriormente, é a potência da bomba. Abaixo, para facilitar o entendimento desta medida de engenharia, apresenta-se um fluxograma na Figura 4.3.

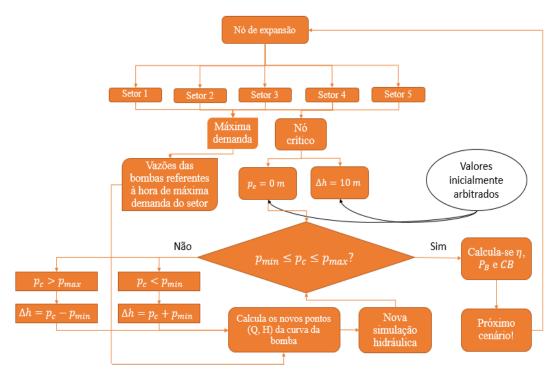


Figura 4.3: Processo de substituição de bombas na rede de distribuição de água.

Após implantação das bombas nos respectivos cenários de expansão, observou-se o desempenho hidráulico da rede e os custos gerados por esta intervenção de engenharia, a fim de encontrar os melhores resultados da rede de distribuição de água a um preço mínimo.

4.5 Mapas de desempenho hidráulico

Nesta etapa, inicialmente, foram desenvolvidos 3 mapas referentes ao Ci^* , isto é, ao coeficiente de proximidade do método TOPSIS que considera os resultados de todos os critérios hidráulicos envolvidos em pesquisa. No caso, estes mapas foram referentes aos cenários sem implementação de medidas de engenharia e com aumentos de demanda de 0.5%, 5.0% e 10.0%.

Posteriormente à aplicação das medidas de engenharia e considerando-se que os critérios hidráulicos aplicados nesta pesquisa foram uniformidade de pressão (PU), idade média ponderada da água acima de limite estabelecido (WA) e resiliência hidráulica (R), para efeito de comparação com os cenários sem implementação de medidas de engenharia, nesta etapa também foram criados 3 mapas referentes aos respectivos índices de desempenho hidráulico para cenários com trocas de tubulações e 3 mapas para os cenários com substituições de sistemas moto-bombas.

Estes 6 mapas apresentaram quais cenários obtiveram evoluções mais significativas em seus respectivos indicadores hidráulicos após a implementação de engenharia, com base nas diferenças entre as médias dos somatórios dos resultados de cada índice de desempenho hidráulico para todos os percentuais de aumento de demanda dos cenários anteriores e posteriores às medidas de engenharia aplicadas.

Neste contexto, salienta-se para análise dos cenários nos mapas e obtenção dos resultados, que, quanto maior é PU e WA, e menor é R, mais vulnerável a falhas e danos está a rede, pois maior é a variação de pressões no sistema, mais longo é o tempo de abastecimento de água e menor é a capacidade da rede em suportar condições de estresse. Entretanto, em contrapartida, quanto menor é PU e WA, e maior é R, menos susceptível a falhas e danos está a rede, pois, nesse caso, as pressões se mantém mais constantes no sistema, o tempo de abastecimento de água aos nós de demanda é, em geral, mais rápido e a robustez da rede às perturbações no sistema é maior.

Para ilustrar os melhores cenários de expansão de acordo com os aumentos de demanda de abastecimento e indicadores de desempenho hidráulico obtidos, os mapas foram gerados em Python e a partir do pacote WNTR 0.3.0.

4.6 Análise multicritério para os dados resultantes de custos e desempenho hidráulico

O método de análise multicritério selecionado para decidir os melhores e os piores cenários de expansão, com base nos resultados obtidos a partir da aplicação das métricas de redes complexas, critérios hidráulicos e custos de medidas de engenharia foi o método da Técnica de Ordenação Preferencial por Similaridade à Solução Ideal – *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS).

Em sequência, segundo Banwet e Majumdar (2014), estão apresentados os processos de cálculos e análises que constituem o método TOPSIS.

Etapa 1: Construção da matriz de decisão (matriz de entrada de dados) g_{ij} , a partir da identificação e caracterização dos dados a serem utilizados, em que i corresponde a cada alternativa e j determina cada critério de avaliação considerado.

Etapa 2: Cálculo da matriz de decisão ponderada e normalizada, sendo o elemento genérico u_{ij} determinado como:

$$u_{ij} = w_j \times z_{ij}, \forall i \forall j \tag{4.11}$$

em que w_j é o peso do critério j e z_{ij} é a pontuação da solução genérica i conforme o critério j, normalizada pela equação:

$$z_{ij} = \frac{g_{ij}}{\sqrt{\sum_{i=1}^{n} g_{ij}^2}} \tag{4.12}$$

As ponderações w_j nesta pesquisa foram iguais para todos os critérios envolvidos em cada ranking elaborado.

Etapa 3: Identificação de duas soluções ideais que ocorrem e, no caso deste trabalho, nomeandose a solução ideal positiva como A^* e a solução ideal negativa como A^- , a partir das seguintes equações:

$$A^* = (u_1^*, \dots, u_k^*) = \{ (\max_i u_{ii}^* | j \in I'), (\min_i u_{ii}^* | j \in I'') \}$$

$$(4.13)$$

$$A^{-} = (u_{1}^{-}, ..., u_{k}^{-}) = \{ (min_{i}u_{ij}^{*} | j \in I'), (max_{i}u_{ij}^{*} | j \in I'') \}$$

$$(4.14)$$

com I' e I'' sendo, respectivamente, os conjuntos a serem maximizados e minimizados.

Neste trabalho, as soluções ideais positivas para uniformidade de pressão (PU) e idade média ponderada da água acima do limite estabelecido por norma (WA) são os valores mínimos de u_{ij} para cada cenário, visto que menores PU e WA indicam, respectivamente, poucas variações de pressão no sistema e tempos reduzidos de residência da água nas tubulações, conferindo maior qualidade e segurança do abastecimento de água aos consumidores finais. Em contrapartida, as soluções ideais negativas para PU e WA são os valores máximos de u_{ij} para cada cenário.

No caso do índice de resiliência hidráulica (R), as soluções ideais positivas são os valores máximos de u_{ij} para cada cenário, visto que maiores R determinam sistemas menos vulneráveis a falhas. Já as soluções ideais negativas para R são os valores mínimos de u_{ij} para cada cenário.

Etapa 4: Cálculo das distâncias entre cada alternativa i às soluções ideais A^* (positiva) e A^- (negativa), pelas respectivas equações:

$$S^* = \sqrt{\sum_{j=1}^k (u_{ij} - u_{ij}^*)}, i = 1, ..., n$$
(4.15)

$$S^{-} = \sqrt{\sum_{j=1}^{k} (u_{ij} - u_{ij}^{-})}, i = 1, \dots, n$$
(4.16)

Etapa 5: Cálculo do coeficiente de proximidade C_i^* para cada solução i, representando de forma alternativa o quão próxima a solução i está da solução ideal positiva (1) e negativa (0), a partir da expressão:

$$C_i^* = \frac{S^-}{S^- + S^*}, 0 < C_i^* < 1, \forall i$$
 (4.17)

Etapa 6: Criação do ranking, em ordem decrescente, das melhores soluções por meio dos valores de C_i^* , onde quanto mais próximo de 1 é C_i^* , melhor colocada é a solução, ocupando as primeiras posições e, em contrapartida, quanto mais próximo de 0 é C_i^* , pior colocada é a solução, ocupando as últimas posições.

5 ESTUDO DE CASO

A rede de distribuição de água utilizada neste trabalho como estudo de caso foi a C-Town, observada em estudos na literatura a partir de 2010 ou, mais precisamente, na 12th Annual Conference on Water Distribution Systems Analysis (WDSA), onde foram publicados trabalhos como o de Alvisi e Franchinni (2011), Kang e Lansey (2011), Prasad (2011), Burd, Zazula-Coetzee e Belrain (2011) e, entre outros.

A rede C-Town originalmente consiste em 429 tubos, 388 nós de junção, 7 tanques, 1 reservatório, 11 bombas e 5 válvulas, e nesta pesquisa está organizada em 5 setores, que foram criados a partir de controle de válvulas, para separar a rede em diferentes conjuntos de nós de demanda alimentados por reservatórios ou tanques específicos, a fim de simplificar os cálculos de balanços hídricos e hidráulicos na rede (DI NARDO *et al.*, 2014).

A rede C-Town foi selecionada para este trabalho por ser uma rede já consolidada em muitos trabalhos na literatura e também por ser formada por diversos tanques, bombas e válvulas, o que a torna ainda mais semelhante às redes de distribuição de água das cidades. A elaboração dos cenários de expansão foi feita em 30 nós, que foram selecionados em locais periféricos da rede, a fim de simular expansões em cidades e aumentos de demanda por abastecimento de água através da ocupação populacional em lotes urbanos. Em sequência, a rede C-Town com os seus respectivos nós de expansão e setores são mostrados na Figura 5.1.

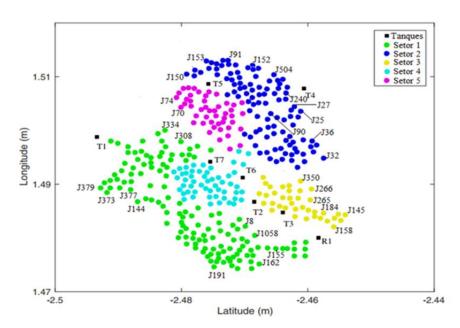


Figura 5.1: Rede C-Town setorizada com os nós de expansão identificados.

Os aumentos de demanda basearam-se no trabalho de Yazdani, Otto e Jeffrey (2011), porém, neste estudo foram considerados aumentos de 0,1%, 0,5%, 1%, 2%, 5% e 10% da demanda total da rede C-Town sem expansão (aproximadamente 270 L/s). Em sequência, o Quadro 5.1 apresenta todos os percentuais e vazões de aumentos de demanda considerados.

Quadro 5.1: Demandas de consumo da rede de distribuição de água C-Town.

Percentual de demanda (%)	Demanda (L/s)				
0,1	0,2724				
0,5	1,3621				
1,0	2,7241				
2,0	5,4483				
5,0	13,6207				
10,0	27,2413				
100,0	272,4131				

Então, para cada nó de expansão foram atribuídos 6 cenários de aumento de demanda às suas respectivas demandas bases, a fim de se analisar o comportamento da rede, a partir de métricas de redes complexas e critérios de desempenho hidráulico. No Quadro 5.2 são apresentadas as demandas bases dos respectivos nós de expansão com seus setores identificados.

Quadro 5.2: Demandas bases dos nós de expansão.

Setor	Nó de expansão	Demanda base (L/s)					
1	Ј8	0,9033823					
1	J1058	0,9586397					
1	J162	0,8040467					
1	J191	0,78000940					
1	J144	0,5528242					
1	J379	1,4120760					
1	J377	0, 8970772					
1	J373	0, 0481431					
1	J334	1,04607					
1	J308	1,18838					

Continuação do Quadro 5.2:

Setor	Nó de expansão	Demanda base (L/s)						
2	J150	1,352619						
2	J153	0,1299675						
2	J155	0,1590483						
2	J91	0,9810478						
2	J152	0,7294397						
2	J504	0,1025369						
2	J240	0,98831860						
2	J90	1,237237						
2	J27	1,167524						
2	J25	0,1074853						
2	J36	1,33445						
2	J32	1,307481						
3	J350	0,3198709						
3	J266	0,39333797						
3	J265	0,7449886						
3	J184	0,2737236						
3	J145	0,4317684						
3	J158	1,3288290						
5	J70	0,1757545						
5	J74	1,095092						

Vale destacar também que, para os processos de reabilitação das pressões nos setores, a partir da implementação de medidas de engenharia, considerou-se a pressão mínima de operação da rede C-Town como 15 metros. No caso das substituições de sistemas moto-bombas, além da pressão mínima da rede C-Town, para melhor eficiência de operação do sistema, foi considerada uma pressão máxima limite de 35 metros.

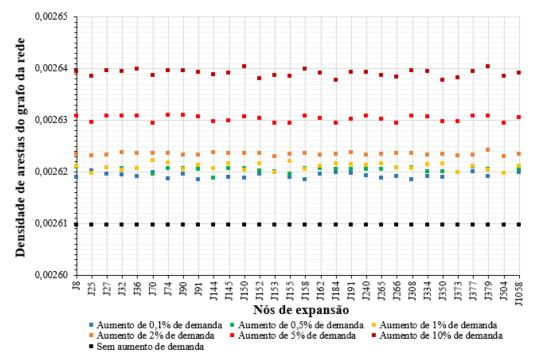
Além disso, para o caso da intervenção de engenharia de trocas de tubulações, salienta-se que, devido ao reservatório de nível fixo estar no setor 1, todas as tubulações do setor 1 foram consideradas junto com os tubos dos outros setores na elaboração dos rankings de perdas de

carga em cada setor. Os custos totais das trocas de tubulações para cada cenário de expansão foram baseados em orçamentos atualizados da Companhia de Saneamento de Minas Gerais (COPASA). Os diâmetros e os preços das tubulações consideradas para substituição estão apresentados no Quadro 5.3.

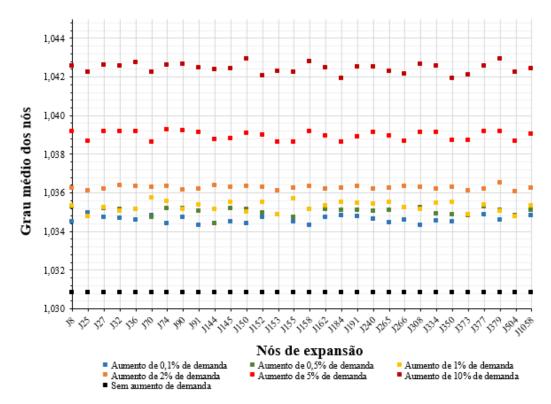
Quadro 5.3: Diâmetros e preços das tubulações de substituição.

Diâmetro	Preço/metro					
(m)	(R \$)					
0,015	2,24					
0,020	3,20					
0,025	5,32					
0,035	7,83					
0,040	11,48					
0,050	20,12					
0,065	35,52					
0,100	45,44					
0,200	92,75					
0,250	203,69					
0,300	223,69					
0,350	285,37					
0,400	359,36					
0,500	671,75					

Fonte: Companhia de Saneamento de Minas Gerais (2021).


Em sequência, na próxima seção estão apresentados e descritos todos os resultados obtidos para os respectivos cenários de expansão implementados em pesquisa.

6 RESULTADOS E DISCUSSÃO


Nesta seção estão apresentados todos os resultados de aumentos percentuais de demanda aplicados aos respectivos nós de expansão da rede antes e após a implementação de medidas de engenharia, considerando-se um tempo de simulação hidráulica de 168 horas. Vale destacar que as medidas de engenharia empregadas neste trabalho a fim de reabilitar as pressões na rede foram: substituição de tubos originais da rede para tubulações de maior diâmetro e substituição das bombas originais da rede por bombas de maior capacidade hidráulica para vazões mais elevadas.

6.1 Métricas de redes complexas

Em relação às métricas de redes complexas, a fim de se obter uma análise referente à quantidade de nós que tendem ser abastecidos no sistema por cenário de expansão, inicialmente, considerando-se a ponderação das arestas do grafo da rede C-Town pela vazão, aplicou-se as métricas de densidade de arestas e grau médio aos cenários de aumento de demanda e obteve-se os resultados apresentados nas Figuras 6.1 e 6.2 referentes às médias dos somatórios dos valores das métricas, obtidos a cada hora, para os cenários de expansão ao longo do tempo de simulação estabelecido.

Figura 6.1: Médias horárias de densidade de arestas do grafo da rede, com arestas ponderadas pela vazão, para todos os cenários.

Figura 6.2: Médias horárias de grau médio dos nós da rede com arestas ponderadas pela vazão para todos os cenários.

Observando-se as Figuras 6.1 e 6.2, nota-se, primeiramente, que quanto maior o aumento de demanda, mais conectados estão os grafos da rede e isso pode ser atribuído ao maior número de tubulações preenchidas por água devido às maiores vazões liberadas pelos reservatórios e tanques para suprir as novas demandas. No entanto, dentre os cenários referentes aos nós de expansão e para um mesmo aumento de demanda, identifica-se também que ambos gráficos são bem semelhantes e que alguns cenários de expansão apresentaram maior número de arestas e, consequentemente, maior conectividade entre os nós.

Os resultados de todos os rankings de média horária de densidade de arestas da rede para os grafos com arestas ponderadas pela vazão e para cada aumento percentual de demanda estão presentes nos Apêndices deste trabalho, nas Tabelas A1, A2, A3, A4, A5 e A6. Já os rankings de média horária de grau médio para os grafos com arestas ponderadas pela vazão e para cada aumento percentual de demanda também estão presentes nos Apêndices deste trabalho, mas nas Tabelas A7, A8, A9, A10, A11 e A12.

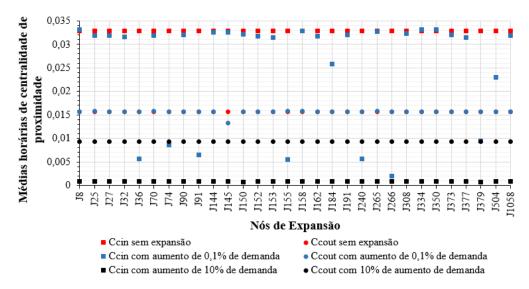
Nos Quadros 6.1 e 6.2 estão apresentados os cinco melhores e piores cenários obtidos, respectivamente, após aplicação das métricas de densidade de arestas da rede e grau médio.

Quadro 6.1: Melhores e piores cenários de expansão conforme a aplicação da métrica de densidade das arestas da rede para grafos da rede ponderados pela vazão.

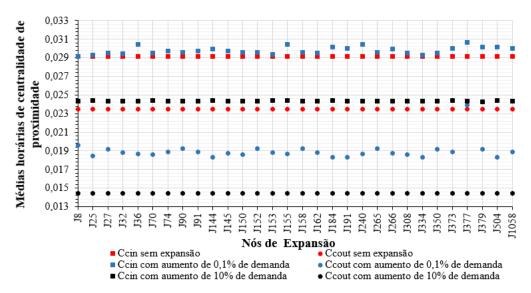
Cenários	0,1	.%	0,	0,5%		1,0%		2,0%		5,0%		10,0%	
	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	
	J25	2	J377	1	J70	5	J379	1	J74	5	J379	1	
Melhores	J377	1	Ј8	1	J155	1	J32	2	J90	2	J150	2	
Wiemores	J153	2	J308	1	J74	5	J144	1	J27	2	J158	3	
	J373	1	J266	3	J152	2	J191	1	J36	2	J36	2	
	J1058	1	J27	2	J265	3	J36	2	J379	1	J90	2	
	J144	1	J504	2	J150	2	J90	2	J504	2	J266	3	
	J74	5	J25	2	J153	2	J373	1	J184	3	J373	1	
Piores	J158	3	J70	5	J373	1	J25	2	J70	5	J152	2	
	J308	1	J155	1	J25	2	J153	2	J153	2	J184	3	
	J91	2	J144	1	J504	2	J504	2	J155	1	J350	3	

Quadro 6.2: Melhores e piores cenários de expansão conforme a aplicação da métrica de grau médio para grafos da rede ponderados pela vazão.

Cenários	0,1	%	0,:	5%	1,0%		2,0%		5,0%		10,0%	
	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor
	J25	2	J377	1	J70	5	J379	1	J74	5	J150	2
Melhores	J377	1	Ј8	1	J155	1	J32	2	J90	2	J379	1
Wiemores	J153	2	J266	3	J74	5	J144	1	J27	2	J158	3
	J373	1	J308	1	J184	3	J191	1	J36	2	J36	2
	J1058	1	J27	2	J265	3	J36	2	J379	1	J90	2
	J150	2	J504	2	J150	2	J90	2	J266	3	J266	3
	J74	5	J25	2	J153	2	J373	1	J184	3	J373	1
Piores	J158	3	J70	5	J373	1	J25	2	J153	2	J152	2
	J308	1	J155	1	J25	2	J153	2	J155	1	J184	3
	J91	2	J144	1	J504	2	J504	2	J70	5	J350	3


Observando-se os Quadros 6.1 e 6.2 observa-se que, para ambas métricas, os nós de expansão que se destacam entre os cinco melhores cenários, para os diferentes aumentos percentuais de demanda, são: o cenário J377, que está entre os melhores para aumentos de demanda de 0,1% e 0,5%; os cenários J70 e J74, ambos e únicos do Setor 5, que estão entre os melhores para

aumento de demanda de 1,0%; os cenários J36 e J379, que se destacam, pois estão entre os melhores para aumentos de demanda de 2,0%, 5,0% e 10,0%; e o cenário J90, que também está presente entre os melhores para aumentos de demanda de 5,0% e 10,0%.


Em contrapartida, analisando o Quadro 6.1, identifica-se que, para o caso da aplicação da métrica de densidade de arestas da rede, os nós de expansão que se destacam entre os cinco piores cenários, para os aumentos percentuais de demanda empregados, são: o cenário J144, que está presente entre os piores para aumento de demanda de 0,1% e 0,5%; o cenário J25, que está entre os piores para aumentos de demanda de 1,0% e 2,0%; os cenários J153 e J504, que são uns dos piores para expansões de demanda de 1,0%, 2,0% e 5,0%; e o cenário J184, que está presente entre os piores para 5,0% e 10,0% de aumento de demanda.

Já observando o Quadro 6.2, nota-se que, no caso do emprego da métrica de grau médio, os nós de expansão que se destacam entre os cinco piores cenários, para os diferentes aumentos percentuais de demanda, são: os cenários J25 e J504, que estão entre os piores para aumentos de demanda de 0,5%, 1,0% e 2,0%; o cenário J153, presente entre os piores para aumentos de demanda de 1,0%, 2,0% e 5,0%; e os cenários J184 e J266, que estão entre os piores para 5,0% e 10,0% de aumento de demanda. Ainda cabe destacar que, para aplicação de ambas métricas, o cenário do nó de expansão J373 está entre os cinco piores para aumentos de demanda 1,0%, 2,0% e 10,0%.

Em sequência, nas Figuras 6.3 e 6.4 estão apresentados dois gráficos de centralidade de proximidade normalizada, referentes às médias dos somatórios dos valores da métrica, obtidos a cada hora, para os cenários sem expansão e com aumentos de demanda de 0,1% e 10,0%, considerando as arestas do grafo da rede ponderadas, respectivamente, por vazão e tempo de viagem da água.

Figura 6.3: Médias horárias de centralidade de proximidade dos nós para cenários de aumento de demanda com grafos ponderados pela vazão.

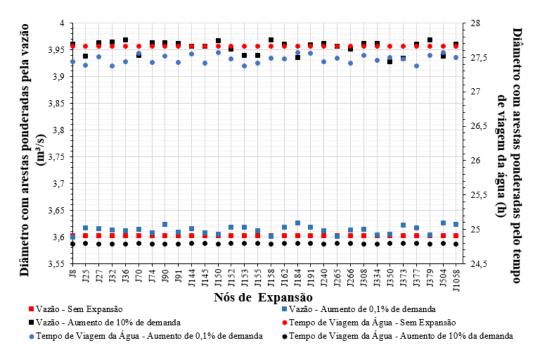


Figura 6.4: Médias horárias de centralidade de proximidade dos nós para cenários de aumento de demanda com grafos ponderados pelo tempo de viagem da água.

No caso, observando-se a Figura 6.3, nota-se que quanto maior é o aumento de demanda aplicado à rede, em geral, menor é a centralidade de proximidade normalizada do grafo para arestas ponderadas pela vazão, pois, conforme a Equação (3.7), o comprimento dos caminhos mais curtos é inversamente proporcional à centralidade de proximidade e, dessa forma, quanto mais vazões são liberadas pelos reservatórios e tanques para suprirem os aumentos de demanda, maiores são os comprimento das arestas correspondentes aos caminhos mais curtos e, consequentemente, menores são as centralidades de proximidade dos grafos dos cenários.

Além disso, comparando-se as Figuras 6.3 e 6.4, pode-se determinar também que quando $CC(i)_{in}$ é menor para o caso dos grafos com arestas ponderadas pela vazão devido aos maiores volumes de água percorrendo as tubulações, $CC(i)_{in}$ é maior para os grafos das arestas ponderadas pelo tempo de viagem da água, pois quanto maiores as vazões, maiores também serão as velocidades de escoamento e, consequentemente, menores serão os tempos de viagem da água. É importante destacar que esta mesma proporcionalidade entre as vazões e tempo de viagem da água vale para o caso de $CC(i)_{out}$.

Além da centralidade de proximidade, outra métrica empregada neste trabalho visando relacionar as vazões e os tempos de viagem da água foi o diâmetro dos grafos da rede. Dessa forma, na Figura 6.5 é apresentado um gráfico com a análise comparativa entre os diâmetros de ambos casos de ponderação para todos os nós de expansão considerando-se cenários sem expansão e com aumentos de demanda de 0,1% e 10,0%.

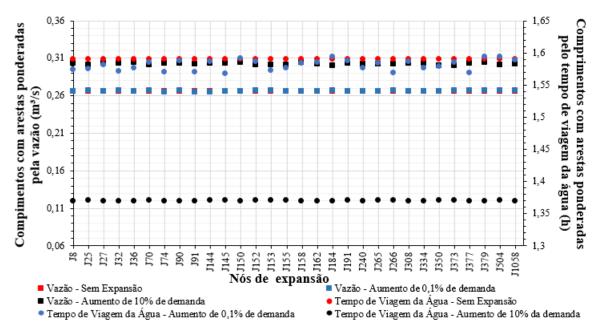
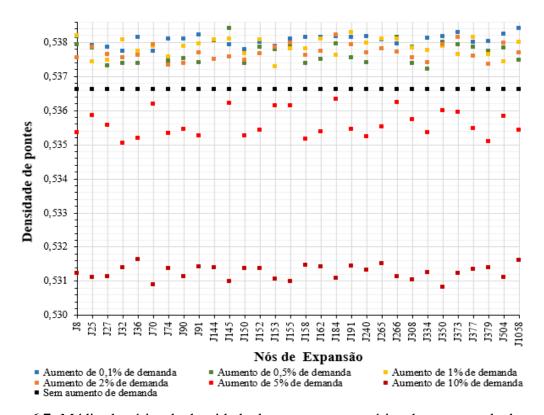


Figura 6.5: Comparação de médias horárias de diâmetros entre grafos ponderados por vazão e tempo de viagem da água.

Analisando-se o gráfico da Figura 6.5, primeiramente, pode-se comprovar a relação inversamente proporcional entre vazão e tempo de viagem da água anteriormente discutida nos gráficos de centralidade de proximidade, pois nota-se que quanto maior o diâmetro da rede para o caso do grafo da rede com arestas ponderadas pela vazão, menor é o diâmetro do grafo da rede com arestas ponderadas pelo tempo de viagem da água.

Além disso, ao observar a Figura 6.5, percebe-se também que alguns cenários, mesmo com percentuais de aumentos de demanda iguais ao demais, obtiveram maiores volumes de água transportados pelas tubulações interconectadas em suas redes e, consequentemente, menores tempos de abastecimento do que outros. Dessa forma, destacam-se os seguintes cenários de expansão para aumento de 0,1% de demanda total: J25, J152, J153, J240, J266 e J377. Já para o caso de aumento de 10% da demanda total, os seguintes nós de expansão se destacam: J36, J150, J158, J377 e J379.

Por fim, para uma última análise dos comprimentos dos caminhos mais curtos entre os nós dos grafos ponderados da rede, empregou-se a métrica de comprimento médio de caminhos mais curtos para se obter a média, em geral, dos valores das vazões disponibilizadas pelo reservatório e tanques do sistema para suprir as demandas e de seus respectivos tempos de abastecimento. Portanto, em sequência, na Figura 6.6 é apresentado um gráfico comparativo entre os comprimentos médios de caminhos mais curtos entre os grafos da rede com arestas ponderadas pela vazão e tempo de viagem da água para cada nó de expansão e considerando-se também, assim como os outros exemplos anteriores, cenários sem expansão e com aumentos de demanda de 0,1% e 10,0%.


Figura 6.6: Comparação de médias horárias de comprimentos médios de caminhos mais curtos entre os grafos ponderados pela vazão e tempo de viagem da água.

Observando-se o gráfico da Figura 6.6, identifica-se, assim como no caso das métricas anteriores, que quanto maior o aumento de demanda, maiores são os comprimentos médios de

caminhos mais curtos das arestas ponderadas pelas vazões e menores são os comprimentos médios dos grafos com arestas ponderadas pelo tempo de viagem da água.

Ainda em relação ao emprego das métricas de redes complexas, com intuito de se obter dados referentes à robustez dos grafos da rede dos respectivos cenários de expansão analisados em pesquisa, neste trabalho também se aplicou, estrategicamente, a métrica de densidade de pontes nos grafos da rede ponderados pela vazão, para se determinar cenários com maior número de pontes e que, dessa forma, tendem a ser mais vulneráveis a falhas no sistema.

Em sequência, na Figura 6.7 é apresentado o gráfico referente às médias dos somatórios dos valores de densidade de pontes, obtidos a cada hora, para os cenários de expansão ao longo do tempo de simulação estabelecido.

Figura 6.7: Médias horárias de densidade de pontes para cenários de aumento de demanda com grafos ponderado pela vazão.

Analisando-se a Figura 6.7 nota-se que quanto maior foi o aumento de demanda nos nós de expansão, em geral, menores foram os valores de densidade de pontes dos respectivos cenários implementados e, desse modo, mais robustos também ficaram os cenários, pois, devido às maiores vazões na rede, mais arestas ponderadas pela vazão foram adicionadas aos grafos e mais caminhos alternativos de escoamento da água foram gerados.

Neste contexto, ressalta-se que as pontes são arestas que conectam grandes conjuntos de nós do grafo e se, por uma ocasião, forem removidas, fazendo uma analogia aos modelos hidráulicos de redes de distribuição de água, podem ocasionar o desabastecimento de certa quantidade de consumidores e gerar consideráveis prejuízos financeiros e sociais. Dentre os cenários analisados e considerando a aplicação da métrica de densidade de pontes, também se observa na Figura 6.7 que para um mesmo aumento de demanda, alguns nós de expansão obtiveram densidade de pontes menores, ou seja, geraram redes mais robustas.

Dessa forma, no Quadro 6.3 apresentam-se os cinco melhores e piores cenários de expansão considerando a aplicação da métrica de densidade de pontes a todos os cenários de aumento de demanda.

Quadro 6.3: Melhores e piores cenários de expansão conforme a aplicação da métrica de densidade de pontes aos grafos da rede ponderados pela vazão.

Cenários	0,1%		0,5%		1,0%		2,0	0%	5,0	0%	10,0%	
	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor	Nó	Setor
	J32	2	J334	1	J153	2	J74	5	J32	2	J350	3
Melhores	J70	5	J27	2	J25	2	J379	1	J379	1	J70	5
Wiemores	J150	2	J36	2	J504	2	J90	2	J158	3	J155	1
	J27	2	J158	3	J27	2	J334	1	J36	2	J145	3
	J308	1	J32	2	J74	5	J150	2	J240	2	J308	1
	J350	3	J184	3	J265	3	J70	5	J70	5	J191	1
	J91	2	J350	3	J145	3	J155	1	J145	3	J158	3
Piores	J504	2	J144	1	J377	1	J504	2	J266	3	J265	3
	J373	1	J266	3	Ј8	1	J373	1	J184	3	J1058	1
	J1058	1	J145	3	J191	1	J184	3	J144	1	J36	2

Analisando o Quadro 6.3, nota-se que, com exceção do aumento de demanda de 10,0%, os cenários dos nós de expansão do Setor 2, em geral, estão entre os cinco mais robustos para todos aumentos percentuais de demanda.

Além disso, observando-se o Quadro 6.3, também pode-se perceber que, para o caso da aplicação da métrica de densidade de pontes, os nós de expansão que se destacam entre os cinco melhores cenários, para os aumentos percentuais de demanda considerados, são: o cenário J27,

que está entre os melhores para aumentos de demanda de 0,1% e 0,5%, 1,0% e 2,0%; e o cenário J32, que está entre os melhores para aumento de demanda de 0,1%, 0,5% e 5,0%.

Conforme o Quadro 6.3, nota-se também que, para o caso da aplicação da métrica de densidade de pontes, o nó de expansão que se destaca entre os cinco piores cenários, para os aumentos percentuais de demanda é o cenário J184, que está entre os piores para 0,5%, 2,0% e 5,0% de aumento de demanda. Salienta-se que os resultados de todos os rankings de média horária de densidade de pontes da rede para os grafos com arestas ponderadas pela vazão e para cada aumento percentual de demanda estão presentes nos Apêndices deste trabalho, nas Tabelas A13, A14, A15, A16, A17 e A18.

Além das métricas de redes complexas, nesta pesquisa também foram aplicados alguns critérios hidráulicos para análise do comportamento do modelo da rede antes e após a formação dos cenários de aumentos de demanda. Sendo assim, na subseção a seguir estão apresentados e discutidos todos os resultados referentes aos indicadores de desempenho hidráulico antes e depois da implementação de medidas de engenharia.

6.2 Critérios hidráulicos

Nesta seção serão mostrados todos os resultados relacionados aos cenários de aumento de demanda para os seguintes critérios hidráulicos: uniformidade de pressão (*PU*), idade média ponderada da água acima de limite estabelecido (*WA*) e resiliência hidráulica (*R*). Entretanto, para melhor organização e entendimento dos resultados obtidos, esta subseção foi dividida em 3 tópicos e são eles: análise de cenários de expansão sem aplicação de medidas de engenharia, análise de cenários de expansão com substituição de tubulações e análise de cenários de expansão com substituição de bombas.

Além disso, salienta-se que todos os rankings de resultados apresentados nesta seção foram realizados empregando o método de análise multicritério TOPSIS e as classificações, com todos os dados obtidos em cálculos a partir deste método, estão nos Apêndices deste trabalho.

6.2.1 Análise de cenários de expansão sem aplicação de medidas de engenharia

Com o emprego do método TOPSIS para classificação dos resultados dos cenários de expansão sem aplicação de medidas de engenharia, foi possível elaborar 6 rankings conforme todos os

aumentos percentuais de demanda e com base em ponderações igualitárias de cada critério hidráulico (*PU*: 33,33%; *WA*: 33,33%; *R*: 33,33%). No caso, todos os rankings estão apresentados nas Tabelas A19, A20, A21, A22, A23 e A24 nos Apêndices desta pesquisa.

No entanto, em sequência, nas Tabelas 6.1, 6.2 e 6.3 estão apresentados os cinco melhores e piores cenários para aumentos de demanda de 0,5%, 5% e 10%, sem a aplicação de medidas de engenharia, conforme os resultados de PU, WA, R considerados para cálculo do coeficiente de proximidade (C_i^*) do método TOPSIS.

Tabela 6.1: Os cinco melhores e piores cenários para aumento de demanda de 0,5% sem aplicação de medidas de engenharia.

	Nó de expansão	Setor	PU	WA	R	Ci*	Ranking
	J27	2	496,9705	4,5640	0,4349	0,9957	1°
Melhores soluções	J240	2	497,0459	4,5636	0,4349	0,9941	2°
	J153	2	496,9480	4,5657	0,4349	0,9931	3°
	J25	2	496,9705	4,5648	0,4348	0,9929	4°
	J90	2	496,9735	4,5658	0,4349	0,9918	5°
	J158	3	496,9052	4,8912	0,4329	0,0132	26°
Piores soluções	J184	3	496,9052	4,8904	0,4327	0,0126	27°
	J266	3	496,9091	4,8918	0,4328	0,0125	28°
	J145	3	496,9051	4,8915	0,4328	0,0120	29°
	J265	3	496,9083	4,8918	0,4328	0,0119	30°

Tabela 6.2: Os cinco melhores e piores cenários para aumento de demanda de 5% sem aplicação de medidas de engenharia.

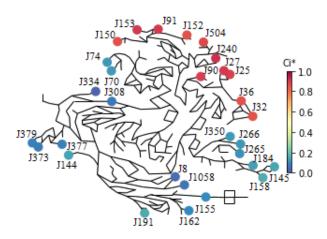
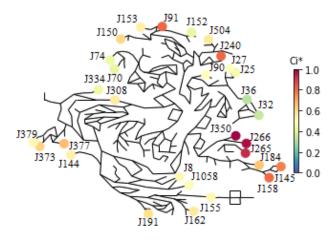
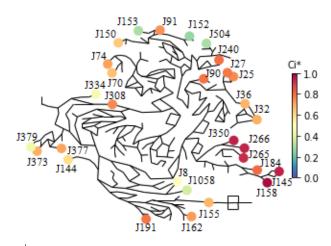

	Nó de expansão	Setor	PU	WA	R	Ci*	Ranking
	J350	3	493,2814	4,0202	0,4499	0,9926	1°
Melhores soluções	J266	3	493,2540	4,0159	0,4483	0,9777	2°
	J265	3	493,1894	4,0148	0,4450	0,9117	3°
	J32	2	497,0604	4,4782	0,4198	0,9107	4°
	J240	2	500,2542	4,0228	0,4374	0,8227	5°
	J25	1	497,0836	4,4797	0,4327	0,4389	26°
Piores soluções	J74	5	498,3546	4,4883	0,4301	0,4126	27°
	J70	5	498,0677	4,4907	0,4283	0,3966	28°
	J8	1	496,8577	4,8373	0,4322	0,3211	29°
	J36	2	497,0853	4,4841	0,4183	0,3034	30°

Tabela 6.3: Os cinco melhores e piores cenários para aumento de demanda de 10% sem aplicação de medidas de engenharia.


	Nó de expansão	Setor	PU	WA	R	Ci*	Ranking
	J158	3	491,8816	3,1362	0,4771	0,9837	1°
	J145	3	491,8694	3,1108	0,4660	0,9488	2°
Melhores soluções	J350	3	492,1709	3,2545	0,4797	0,9378	3°
	J266	3	492,0957	3,2618	0,4767	0,9333	4°
	J265	3	491,7857	3,2603	0,4693	0,9237	5°
	J379	1	494,7395	3,5598	0,3404	0,4458	26°
Piores soluções	J1058	1	490,2083	3,6282	0,3243	0,3802	27°
	J504	2	506,1459	3,1514	0,2561	0,3326	28°
	J153	2	494,9171	3,1993	0,2618	0,3302	29°
	J152	2	496,5184	3,2054	0,2372	0,2996	30°

Observando-se as Tabelas 6.1, 6.2 e 6.3, de modo geral, nota-se que *WA* se reduziu com o aumento de demanda de abastecimento e isso se deve, respectivamente, as maiores cargas hidráulicas no sistema e velocidades de escoamento nas tubulações, das maiores vazões liberadas pelos reservatórios e tanques para suprirem os aumentos de consumo na rede.


Em sequência, para melhor compreensão dos dados mostrados nas Tabelas 6.1, 6.2 e 6.3, são apresentados os mapas referentes aos respectivos aumentos de demanda na Figura 6.8.

(a) C_i^* para aumento de demanda de 0,5%.

(b) C_i^* para aumento de demanda de 5,0%.

(c) C_i^* para aumento de demanda de 10,0%.

Figura 6.8: Mapas dos cenários para diferentes aumentos de demanda sem aplicação de medidas de engenharia.

Dessa forma, analisando-se os mapas da Figura 6.8, nota-se que, inicialmente, para aumento de demanda de 0,5%, os melhores cenários estavam todos localizados no Setor 2 e isso pode ser atribuído aos menores tempos de viagem da água para abastecer os nós e aos maiores índices de resiliência hidráulica desta região da rede. Uma vez que, conforme a Tabela 6.1, para aumento de demanda de 0,5%, os cinco melhores cenários de expansão, referentes ao Setor 2, também apresentaram maiores valores de *PU*.

Entretanto, para maiores aumentos de demanda, de acordo com as Tabelas 6.2 e 6.3, os melhores cenários estão identificados predominantemente no Setor 3 da rede, devido às suas menores variações de *PU*, menores índices de *WA* e maiores valores de *R*. No caso, menores índices de *PU* e *WA* representam, respectivamente, menores variações de pressão no sistema e abastecimento mais rápido aos consumidores da rede. Enquanto o maior índice de *R* determina

menores perdas de carga nas tubulações do sistema e, consequentemente, menor vulnerabilidade do sistema de abastecimento a falhas e perturbações.

Observando-se as Tabelas 6.1, 6.2 e 6.3, e também os mapas da Figura 6.8, pode-se notar que o nó J240 do Setor 2 se destaca para aumentos de demanda de 0,5% e 5,0%, por apresentar, mesmo com maiores vazões no sistema, menores tempos de abastecimento de água aos nós de demanda e menores perdas de carga nas tubulações.

Como outros cenários que obtiveram bons resultados para maiores percentuais de aumentos de demanda (5,0% e 10,0%) se destacam os nós do Setor 3: J350, J266 e J265.

6.2.2 Análise de cenários de expansão com substituição de tubulações

No caso das análises de cenários de expansão com substituição de tubulações para reabilitação das pressões no sistema, por meio da aplicação do método TOPSIS, elaborou-se 6 rankings (presentes na Tabelas A25, A26, A27, A28, A29 e A30, nos Apêndices), de acordo com todos os aumentos percentuais de demanda e com base em ponderações igualitárias de cada critério hidráulico e custo de troca de tubos (PU: 25,0%; WA: 25,0%; R: 25,0%; Custo: 25,0%). Em sequência, nas Tabelas 6.4, 6.5 e 6.6 estão apresentados os cinco melhores e piores cenários para aumentos de demanda de 0,1%, 2,0% e 10% conforme os resultados de PU, WA, R e custo das trocas de tubulações, empregados para a elaboração do ranking, a partir do coeficiente de proximidade (C_i^*) do método TOPSIS.

Tabela 6.4: Os cinco melhores e piores cenários para aumento de demanda de 0,1%, considerando-se a substituição de tubulações como medida de engenharia.

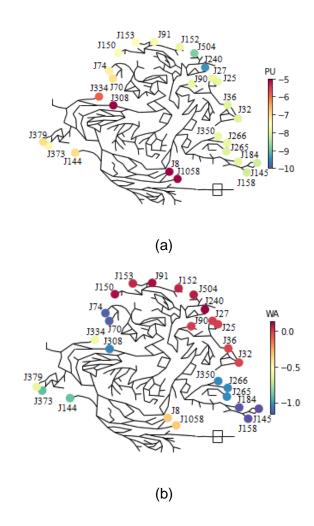
	Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Ci*	Ranking
	J191	1	497,1370	4,8752	0,40478	0	0,956833	1°
	J144	1	497,1420	4,8729	0,40475	0	0,956811	2°
Melhores soluções	J377	1	497,1379	4,8786	0,40467	0	0,956644	3°
,	J379	1	497,1280	4,8784	0,40466	0	0,956642	4 °
	J155	1	497,1406	4,8823	0,40466	0	0,956585	5°
	J240	2	489,4212	4,8393	0,43477	285,37	0,045876	26°
	J32	2	489,4292	4,8414	0,43452	285,37	0,045520	27°
Piores soluções	J36	2	489,4294	4,8414	0,43448	285,37	0,045477	28°
	J150	2	489,3809	4,8411	0,43441	285,37	0,045404	29°
	J152	2	489,3612	4,8411	0,43439	285,37	0,045376	30°

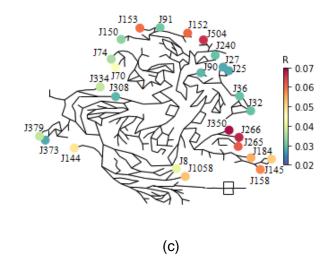
Tabela 6.5: Os cinco melhores e piores cenários para aumento de demanda de 2,0%, considerando-se a substituição de tubulações como medida de engenharia.

	Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Ci*	Ranking
	J1058	1	495,6876	3,9811	0,3950	0	0,944537	1°
	J158	3	495,7086	4,2822	0,4045	0	0,944069	2°
Melhores soluções	J8	1	495,8471	3,9804	0,3939	0	0,943154	3°
	J145	3	495,7075	4,2695	0,4018	0	0,942376	4°
	J350	3	495,8920	4,2987	0,4034	0	0,941957	5°
	J150	2	489,8363	4,5070	0,4314	285,37	0,122245	26°
	J32	2	490,0510	4,4905	0,4294	285,37	0,121696	27°
Piores soluções	J36	2	490,0566	4,4919	0,4287	285,37	0,121376	28°
	J152	2	489,2010	4,5066	0,4284	285,37	0,120981	29°
	J504	2	490,4783	4,5108	0,4395	320,89	0,061398	30°

Tabela 6.6: Os cinco melhores e piores cenários para aumento de demanda de 10%, considerando-se a substituição de tubulações como medida de engenharia.

	Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Ci*	Ranking
	J191	1	496,0768	3,6307	0,4253	0	0,941682	1°
	J162	1	496,4118	3,7110	0,4073	0	0,929515	2°
Melhores soluções	J377	1	496,1520	3,5604	0,3876	0	0,927309	3°
	J144	1	489,8179	3,5903	0,4442	92,75	0,921733	4°
	J373	1	489,7401	3,5596	0,4258	92,75	0,918161	5°
	J1058	1	490,2113	3,6538	0,4351	507,32	0,660533	26°
	J152	2	485,3204	3,2040	0,3879	516,31	0,654607	27°
Piores soluções	J153	2	485,8233	3,2046	0,4141	642,71	0,574170	28°
	J74	5	489,7078	3,3805	0,4339	1135,72	0,253166	29°
	J70	5	489,7696	3,3818	0,4398	1506,72	0,066842	30°


Observando-se as Tabelas 6.4, 6.5 e 6.6, inicialmente, nota-se que quanto maior o aumento de demanda aplicado aos nós de expansão, menores são as pressões no sistema e mais cenários precisam ser reabilitados, gerando maiores custos para troca de tubulações.


Dessa forma, analisando-se as Tabelas 6.4, 6.5 e 6.6, conclui-se que, para os percentuais de aumento de demanda de 0,1%, 2,0% e 10,0%, os cenários correspondentes aos nós de expansão dos Setores 1 e 3 são aqueles que, considerando-se a implementação de substituição de tubulações, predominantemente, apresentam maiores desempenhos hidráulicos sem necessitar

de substituição de tubulações ou com menores custos para implantação da medida de engenharia.

No entanto, observando-se também as Tabelas 6.4, 6.5 e 6.6, pode-se perceber que, após a reabilitação de pressões dos cenários de expansão por troca de tubulações, os nós de expansão do Setor 2 são, em geral, os cenários com os piores desempenhos hidráulicos e custos de medida de engenharia. Este contexto pode ser atribuído ao fato destes cenários gerarem menores pressões mínimas na rede devido às maiores perdas de carga nas tubulações do sistema e necessitarem de maiores diâmetros para aumentar a carga hidráulica no sistema.

Em sequência, para melhor compreensão entre os resultados dos desempenhos hidráulicos de cada cenário de expansão antes e depois das substituições dos tubos, na Figura 6.9 são apresentados os mapas de (a) PU, (b) WA e (c) R, com a coloração dos nós de expansão de acordo com as diferenças das médias dos resultados dos critérios hidráulicos entre os cenários com e sem troca de tubos, considerando todas as porcentagens de aumento de demanda.

Figura 6.9: Mapas das diferenças das médias dos resultados de *PU*, *WA* e *R*, para todos os aumentos de demanda, entre os cenários com e sem substituição de tubos.

Analisando-se os mapas da Figura 6.9, nota-se que, após a implementação da medida de engenharia, os nós de expansão que mais melhoraram seus respectivos desempenhos hidráulicos foram os cenários localizados no Setor 3, pois reduziram, significativamente, os seus índices de PU e WA, e aumentaram seus valores de R. Estes cenários do Setor 3 que, em média, mais melhoraram seus respectivos desempenhos hidráulicos após as trocas de tubulações são referentes aos nós de expansão: J350, J266, J265, J184, J145 e J158.

Em contrapartida, analisando a Figura 6.9, após a substituição de tubulações para reabilitar as pressões, em geral, os nós de expansão que, em média, menos melhoraram seus respectivos desempenhos hidráulicos foram os nós de expansão localizados no Setor 2, pois, apesar de reduzirem seus respectivos índices de PU, obtiveram valores um pouco maiores de WA e menores índices de R. Portanto, com base na Figura 6.9, em média, os nós com piores índices de desempenho hidráulico para o caso de implementação de troca de tubulações como medida de engenharia são os nós: J240, J27, J25, J90, J36, J32, J150, J152 e J504.

6.2.3 Análise de cenários de expansão com substituição de bombas

Em relação às análises para cenários de expansão com substituição de bombas para reabilitação das pressões no sistema, por meio da aplicação do método TOPSIS, elaborou-se 6 rankings conforme todos os aumentos percentuais de demanda e com base em ponderações igualitárias de cada critério hidráulico, e eficiência, potência e custos das bombas implantadas (*PU*: 16,667%; *WA*: 16,667%; *R*: 16,667%; Eficiência: 16,667%; Potência: 16,667%; Custo: 16,667%).

No caso, os rankings para todos os cenários de aumento de demanda e com todos os parâmetros calculados no método TOPSIS apresentados, estão presentes nas Tabelas A31, A32, A33, A34, A35 e A36, dos Apêndices desta pesquisa.

Em sequência, nas Tabelas 6.7, 6.8 e 6.9, também estão apresentados os rankings com os cinco melhores e piores cenários para aumentos de demanda de 1%, 5% e 10% conforme os resultados de uniformidade de pressão (PU), idade média ponderada da água acima de limite estabelecido (WA), resiliência hidráulica (R), e eficiência (η), potência (P) e custos das respectivas bombas implantadas, conforme o coeficiente de proximidade (C_i^*), do método TOPSIS.

Tabela 6.7: Os cinco melhores e piores cenários para aumento de demanda de 1%, considerando-se a substituição de bombas como medida de engenharia.

	Nó de Setores		Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Ponto ideal das bombas		Ci*	Ranking
	expansão	Sciores	Domoas	10	WA	K	4 (70)	1 (1111)	Custo (\$)	Q (m³/s)	H_m (m)	CI	
	J191	1	1 e 2	489,99	4,63	0,44	88,66	42,59	53395	0,1137	30,86	0,55390	1°
	J379	1	1 e 2	490,05	4,62	0,44	88,68	42,62	53431	0,1138	33,86	0,55384	2°
Melhores soluções	J308	1	1 e 2	490,16	4,63	0,44	88,69	42,68	53487	0,1140	33,86	0,55371	3°
	J144	1	1 e 2	490,69	4,61	0,44	88,64	42,52	53324	0,1135	33,86	0,55360	4°
	J377	1	1 e 2	490,17	4,62	0,44	88,65	42,55	53353	0,1136	33,86	0,55359	5°
	J184	3	4 e 5	487,21	4,61	0,46	67,59	25,71	36799	0,0219	80,76	0,43927	26°
	J74	5	8 e 9	488,69	4,50	0,45	67,60	25,81	36888	0,0220	81,00	0,43881	27°
Piores soluções	J350	3	4 e 5	487,36	4,59	0,45	67,66	25,84	36915	0,0221	80,76	0,43860	28°
	J265	3	4 e 5	487,81	4,58	0,45	67,78	26,03	37089	0,0223	80,76	0,43849	29°
	J266	3	4 e 5	487,60	4,59	0,45	67,68	25,87	36945	0,0221	80,76	0,43821	30°

Tabela 6.8: Os cinco melhores e piores cenários para aumento de demanda de 5%, considerando-se a substituição de bombas como medida de engenharia.

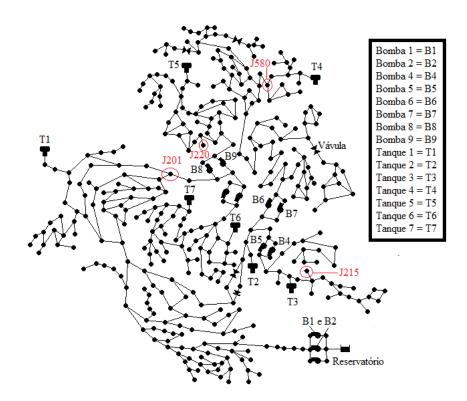
	Nó de	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Ponto id bom		- Ci*	Ranking
	expansão	50000	Domous		,,,,,		-1 (/4)	1 (1111)	Cu5το (φ)	Q (m ³ /s)	H_m (m)	0.	
	J191	1	1 e 2	490,27	4,42	0,45	89,76	45,84	56884	0,1239	30,86	0,56227	1°
	J162	1	1 e 2	490,25	4,48	0,44	89,78	45,89	56945	0,1240	33,86	0,55715	2°
Melhores soluções	J155	1	1 e 2	490,93	4,57	0,45	89,86	46,14	57209	0,1248	33,86	0,55668	3°
	J144	1	1 e 2	490,51	4,41	0,44	89,74	45,76	56795	0,1236	33,86	0,55579	4º
	J377	1	1 e 2	492,06	4,59	0,44	89,77	45,85	56895	0,1363	33,86	0,55007	5°
	J350	3	4 e 5	489,51	3,89	0,43	73,03	36,40	47011	0,0336	80,76	0,49942	23°
	J74	5	8 e 9	493,53	4,05	0,42	72,45	35,17	45781	0,0321	81,00	0,48705	24°
Piores soluções	J70	5	8 e 9	492,75	4,18	0,42	72,28	34,79	45410	0,0316	81,00	0,48324	25°
	J266	3	4 e 5	488,59	4,62	0,45	69,25	28,57	39431	0,0336	80,76	0,47464	26°
	J265	3	4 e 5	488,62	4,61	0,45	69,33	28,73	39575	0,0338	80,76	0,47438	27°

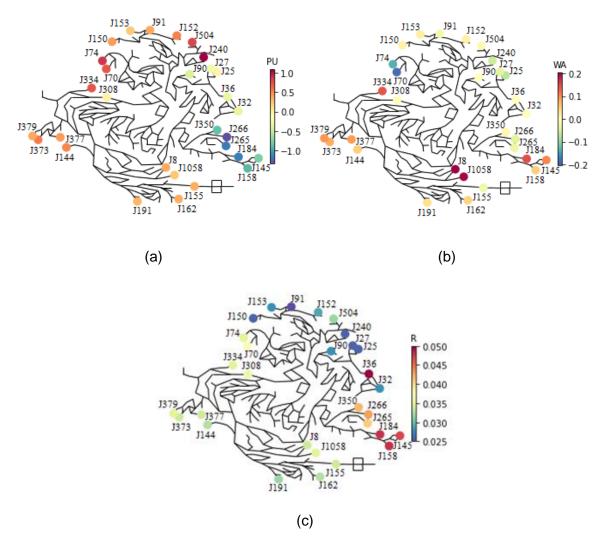
Tabela 6.9: Os cinco melhores e piores cenários para aumento de demanda de 10%, considerando-se a substituição de bombas como medida de engenharia.

	Nó de	Setores		PU	WA	R	η (%)	P (KW)	Custo (\$)	Ponto id		Ci*	Ranking
	expansão	50000	Bombas		,,,,,		1 (10)	- (,,)	Cu5το (φ)	Q (m ³ /s)	H_m (m)	0.	8
	J240	2	6 e 7	502,01	3,21	0,43	82,59	78,24	96863	0,0708	93,08	0,61579	1°
	J90	2	8 e 9	491,48	3,21	0,42	82,97	80,21	99597	0,0729	93,08	0,60050	2°
Melhores soluções	J27	2	6 e 7	490,43	3,19	0,41	82,96	80,18	99554	0,0728	93,08	0,59728	3°
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	J25	2	6 e 7	491,02	3,22	0,41	82,88	79,72	98914	0,0724	93,08	0,59448	4°
	J155	1	1 e 2	490,11	4,29	0,46	91,37	51,06	62689	0,1405	33,86	0,59284	5°
	J379	1	1 e 2	490,48	4,26	0,34	91,01	49,84	61306	0,1365	33,86	0,47508	19°
	J1058	1	1 e 2	484,82	4,26	0,32	91,01	49,84	61315	0,1366	33,86	0,45630	20°
soluções	J153	2	6 e 7	489,45	3,21	0,25	82,72	78,93	97810	0,0715	93,08	0,43458	21°
	J504	2	6 e 7	501,79	3,18	0,25	82,52	77,86	96344	0,0704	93,08	0,43412	22°
	J152	2	6 e 7	490,37	3,20	0,23	82,77	79,19	98172	0,0718	93,08	0,41780	23°

Para análise das Tabelas 6.7, 6.8 e 6.9, primeiramente, é necessário ressaltar que a substituição de bombas foi implementada nesta pesquisa com intuito de regular a pressão nos nós críticos de cada setor. Os nós críticos foram selecionados por serem pontos de demanda de maior cota e, no caso, a pressão crítica só se estabeleceria de modo válido para operação da rede se, após a substituição das bombas originais por bombas com maiores capacidades hidráulicas para maiores vazões, a pressão obtida fosse maior do que a pressão mínima da rede de 15 metros e menor do que a pressão máxima de 35 metros, estabelecida para não gerar sobrecargas no sistema.

Os nós críticos selecionados foram: J201 para as bombas 1 e 2, no Setor 1; J580 para as bombas 6 e 7, no Setor 2; J215 para as bombas 4 e 5 no Setor 3; e J220 para as bombas 8 e 9, no Setor 5. A seguir, na Figura 6.10 são apresentados os nós críticos dos respectivos setores na rede C-Town.




Figura 6.10: Nós críticos de cada setor da rede C-Town identificados.

Dessa forma, compreendendo-se as informações sobre os nós críticos e analisando-se as Tabelas 6.7, 6.8 e 6.9, inicialmente, pode-se observar que quanto maior o aumento de demanda aplicado aos nós de expansão, mais complexo se tornou o objetivo de regular as pressões críticas, uma vez que para aumentos percentuais de demanda de 5% e 10%, as pressões geradas no nó crítico J215 não se estabeleceram entre os limites mínimo e máximo para os cenários de expansão do Setor 3: J145, J158 e J184. Outros cenários de expansão em que a pressão no nó crítico não se estabeleceu entre os limites, foram: J308, pertencente ao Setor 1; e J265, J266 e J350, todos localizados no Setor 3.

Contudo, após a implantação de bombas, a maioria dos cenários dos nós de expansão tiveram a pressão em seus respectivos nós críticos reabilitadas e, desse modo, observando as Tabelas 6.7, 6.8 e 6.9, nota-se que os cenários de expansão de maior desempenho hidráulico para aumentos de demanda de 1% e 5% estão localizados no Setor 1, visto que as vazões ideais das bombas de substituição deste setor foram maiores, o que, embora tenha elevado os custos das implantações das bombas, também aumentou a potência e eficiência dos dispositivos. No caso dos cenários de maior aumento de demanda (10%), os melhores cenários de expansão estão localizados no Setor 2, com destaque para os nós: J240, J90, J27 e J25.

Além disso, observando-se as Tabelas 6.7, 6.8 e 6.9, nota-se que quanto maior a potência e eficiência das bombas, maiores são os valores de *R* dos cenários de expansão, o que obviamente está diretamente relacionado com as maiores vazões ideais dos sistemas de bombeamento, que geram maiores cargas ao sistema de abastecimento.

Entretanto, em sequência, para melhor compreensão entre os resultados dos desempenhos hidráulicos de cada cenário de expansão antes e depois da substituição de bombas, na Figura 6.11 são apresentados os mapas de variação dos valores de (a) PU, (b) WA e (c) R, com a coloração dos nós de expansão de acordo com as diferenças das médias dos resultados dos critérios hidráulicos entre os cenários com e sem substituição de bombas, considerando todas as porcentagens de aumento de demanda.

Figura 6.11: Mapas das diferenças das médias dos resultados de *PU*, *WA* e *R*, para todos os aumentos de demanda, entre os cenários com e sem substituição de bombas.

Observando-se a Figura 6.11, nota-se que, após a implementação de substituição de bombas, os nós de expansão que, em média, mais melhoraram seus respectivos desempenhos hidráulicos foram os cenários localizados no Setor 3. Estes cenários que são referentes aos nós de expansão J350, J266, J265, J145 e J158, após as devidas substituições de bombas da rede, reduziram os seus respectivos valores de *PU*, geraram poucas variações de *WA*, e aumentaram seu índice *R*.

Enquanto, analisando-se a Figura 6.11, após a substituição de bombas para reabilitar as pressões, em geral, os nós de expansão que, em média, menos melhoraram seus respectivos desempenhos hidráulicos foram os nós de expansão localizados no Setor 2, pois, apesar de apresentarem pouca variação em WA, aumentaram seus respectivos índices de PU, e obtiveram os menores índices de R em relação aos cenários de todos os outros setores.

Portanto, com base na Figura 6.11, em média, os nós com piores índices de desempenho hidráulico para o caso de implementação de substituição de bombas como medida de engenharia são os nós: J240, J150, J153, J91, J152, J504 e J240.

7 CONCLUSÕES

A partir desta dissertação pôde-se validar a modelagem de uma rede de abastecimento sob a óptica de redes complexas, uma vez que as arestas dos grafos do sistema de abastecimento de água foram ponderadas por parâmetros hidráulicos em que, após a aplicação das métricas de redes complexas ao grafo e de acordo com os fundamentos de hidráulica, foi possível caracterizar a correta correlação entre tempo de viagem da água e vazão a partir das métricas de caminhos mais curtos.

Por meio do emprego das métricas de densidade de arestas da rede, grau médio dos nós e densidade de pontes também foi possível determinar cenários de expansão de maiores e menores conectividade e robustez, para diferentes percentuais de aumentos de demanda sem aplicação de medidas de engenharia. Nesse sentido, os cenários para expansão com menores riscos de falhas e danos, sem a implementação de medidas de engenharia, considerando-se as métricas de redes complexas e desempenho hidráulico, e analisando as pressões mínimas, são:

- para 0,1% de aumento de demanda: os nós de expansão J377 (Setor 1) e J70 (Setor 5);
- para 0,5% de aumento de demanda: os nós de expansão J27 e J36, ambos do Setor 2;
- para 1,0% de aumento de demanda: os nós de expansão J74 (Setor 5) e J155 (Setor 1);
- para 2,0% de aumento de demanda: os nós de expansão J144 e J379, ambos do Setor 1;
- para 5,0% de aumento de demanda: os nós de expansão J32 (Setor 2) e J158 (Setor 3);
- para 10,0% de aumento de demanda: os nós de expansão J377 e J162, ambos do Setor 1.

Enquanto os cenários para expansão com maiores riscos de falhas e danos, sem implementação de medidas de engenharia, considerando-se as métricas de redes complexas e desempenho hidráulico, e analisando as pressões mínimas, são:

- para 0,1% de aumento de demanda: os nós de expansão J91 e J36, ambos do Setor 2;
- para 0,5% de aumento de demanda: os nós de expansão J504 e J152, ambos do Setor 2;
- para 1,0% de aumento de demanda: os nós de expansão J32 e J90, ambos do Setor 2;
- para 2,0% de aumento de demanda: os nós de expansão J25 e J504, ambos do Setor 2;
- para 5,0% de aumento de demanda: os nós de expansão J153 e J504, ambos do Setor 2;
- para 10,0% de aumento de demanda: os nós de expansão J152 (Setor 2) e J1058 (Setor 1).

Entretanto, considerando-se as pressões mínimas estabelecidas no sistema de abastecimento após a implementação dos cenários de expansão, destacam-se os nós J155, J162, J191 e J377, pois não precisaram aplicar substituição de tubulações para reabilitar as pressões do sistema, ou seja, para todos os cenários, as pressões mínimas desses cenários foram maiores do que a pressão mínima da rede.

Após a aplicação da medida de engenharia para substituição de tubulações, pôde-se observar que, com exceção dos cenários para aumento de demanda de 0,5% nos quais os melhores cenários se situaram no Setor 1, para todos os outros aumentos de demanda aplicados, em geral, os cenários de expansão dos Setores 1 e 3 obtiveram maiores desempenhos hidráulicos e menores custos de intervenção de engenharia, se estabelecendo nas primeiras posições dos rankings. Portanto, considerando-se a substituição de tubulações para reabilitação das pressões no sistema, os melhores cenários para expandir a capacidade da rede C-Town são:

- para 0,1% de aumento de demanda: os nós de expansão J191, J144, J377, J379 e J155, todos do Setor 1;
- para 0,5% de aumento de demanda: os nós de expansão J27, J90, J25, J32 e J36, todos do Setor 2;
- para 1,0% de aumento de demanda: os nós de expansão J158, J350, J145, J266 e J184, todos do Setor 3;
- para 2,0% de aumento de demanda: os nós de expansão J1058 e J8, ambos do Setor 1; J158 do Setor 2; J145 e J350, ambos do Setor 3;
- para 5,0% de aumento de demanda: os nós de expansão J91, do Setor 2; J350, J266, J265 e
 J158, todos do Setor 3;
- para 10,0% de aumento de demanda: os nós de expansão J191, J162, J377, J144 e J373, todos dos Setor 1.

Em contrapartida, considerando-se também a substituição de tubulações para reabilitação das pressões, os piores cenários para expansão são:

- para 0,1% de aumento de demanda: os nós de expansão J240, J32, J36, J150 e J152, todos do Setor 2;
- para 0,5% de aumento de demanda: o nós de expansão J153, J91, J240, J150 e J152, todos do Setor 2;

- para 1,0% de aumento de demanda: os nós de expansão, do Setor 2, J90, J240, J25, J32 e
 J36, todos do Setor 2;
- para 2,0% de aumento de demanda: os nós de expansão J150, J32, J36, J152 e J504, todos do Setor 2:
- para 5,0% de aumento de demanda: os nós de expansão J379, J334, J8 e J1058, todos do Setor 1; e J152 do Setor 2;
- para 10,0% de aumento de demanda: os nós de expansão J1058 do Setor 1; J152 e J153, ambos do Setor 2; e J74 e J75, ambos do Setor 5.

No caso da aplicação da medida de engenharia de substituição de bombas, observou-se que, com exceção dos cenários para aumento de demanda de 10%, em que alguns nós de expansão do Setor 2 se estabeleceram nas primeiras posições, em geral, os melhores cenários se localizaram também no Setor 1. Portanto, nesse caso, os melhores cenários para expansão da rede C-Town são:

- para 0,1% de aumento de demanda: os nós de expansão J373, J155, J144, J191 e J162, todos do Setor 1;
- para 0,5% de aumento de demanda: o nós de expansão J144, J379, J191, J377 e J308, todos do Setor 1;
- para 1,0% de aumento de demanda: os nós de expansão J191, J379, J308, J144 e J377, todos do Setor 1;
- para 2,0% de aumento de demanda: os nós de expansão J379, J377, J144, J191 e J377, todos do Setor 1;
- para 5,0% de aumento de demanda: os nós de expansão J191, J162, J155, J144 e J377, todos do Setor 1;
- para 10,0% de aumento de demanda: os nós de expansão J155 do Setor 1; J240, J90, J27,
 J25, todos do Setor 2.

Enquanto, considerando-se também a substituição de bombas como medida de engenharia, os piores cenários de para expansão da rede C-Town são:

para 0,1% de aumento de demanda: os nós de expansão J158, J184 e J265, todos do Setor
 1; J70 e J74, ambos do Setor 5;

- para 0,5% de aumento de demanda: o nós de expansão J350, J266, J145, J265 e J184, todos do Setor 3;
- para 1,0% de aumento de demanda: os nós de expansão J91, J25 e J150, todos do Setor 2;
 J145 do Setor 3; e J70 do Setor 5;
- para 2,0% de aumento de demanda: os nós de expansão J184, J265 e J266, todos do Setor
 3; J74 e J70, ambos do Setor 2;
- para 5,0% de aumento de demanda: os nós de expansão J350, J265 e J266, todos do Setor
 3; J74 e J70, ambos do Setor 5;
- para 10,0% de aumento de demanda: os nós de expansão J379 e J1058, ambos do Setor 1;
 J153, J150 e J152, todos do Setor 2.

Portanto, resumidamente, pode-se concluir que, em geral, os cenários que apresentam menores riscos de falhas e danos à rede de distribuição de água estão localizados predominantemente no Setor 1, pois, para todos os aumentos percentuais de demanda, em cenários desenvolvidos por alguns nós deste setor não foram necessárias trocas de tubulações do sistema para reabilitação das pressões. Em relação à substituição de bombas, com exceção do ranking de cenários para aumento de 10% da demanda total, em todos os outros rankings nota-se a predominância dos nós de expansão do Setor 1 nas primeiras colocações, o que indica cenários de melhor desempenho e custo-benefício em termos de sistemas elevatórios.

Além disso, para cenários sem a implementação de medidas de engenharia e sem a verificação de pressões mínimas desenvolvidas na rede, apesar dos nós de expansão do Setor 1 apresentarem, para a maioria dos percentuais de aumento de demanda, índices de desempenho hidráulico piores do que os cenários dos nós de expansão localizados nos demais setores, alguns nós do Setor 1 ainda se mantiveram entre os 10 ou 15 melhores cenários nos rankings com base nos índices de desempenho hidráulico. Nesse sentido, salienta-se que os nós de expansão do Setor 1 também obtiveram maiores valores de densidade de arestas e grau médio, com menores valores de densidade de pontes, caracterizando cenários não só de melhores desempenho hidráulico, mas também de maior conectividade e robustez.

Já os nós de expansão do Setor 3 foram os cenários que, em média, mais melhoraram seus desempenhos hidráulicos, pois, conforme os mapas das Figuras 6.9 (troca de tubulações) e 6.10 (substituição de bombas), apresentaram maiores valores de resiliência hidráulica (*R*),

determinando uma maior capacidade da rede de distribuição de água em suportar falhas e condições de estresse; e reduções mais significativas de uniformidade de pressão (PU) e idade média ponderada da água acima de limite estabelecido (WA), indicando o desenvolvimento de uma rede de distribuição de água, respectivamente, com menores variações de pressão e tempo de abastecimento de água ao consumidor final.

Em contrapartida, em geral, os cenários que apresentam maiores riscos de falhas e danos à rede de distribuição de água estão localizados predominantemente no Setor 2, pois, para maioria dos aumentos de demanda, os cenários desenvolvidos pelos nós de expansão do Setor 2 apresentaram pressões mínimas menores do que a pressão mínima operacional da rede C-Town. Além disso, após a implementação das medidas de engenharia (conforme os mapas da Figura 6.9 e 6.10) os cenários gerados no Setor 2, em média, obtiveram maiores valores PU e WA, e menores valores de R, se comparados com os outros cenários de expansão desenvolvidos por nós de outros setores.

Por último, comparando-se as medidas de engenharia implementadas, pode-se concluir que a substituição de tubulações foi mais efetiva do que as mudanças de bombas na reabilitação das pressões mínimas dos setores, uma vez que a partir de sua implantação foi possível ajustar as pressões mínimas geradas pelos aumentos de demandas em todos os nós de expansão considerados. Enquanto que, para os maiores aumentos de demanda implementados, as substituições de bombas não geraram pressões críticas dentro dos valores limites determinados para operação segura do sistema de abastecimento de água.

8 RECOMENDAÇÕES

Com intuito de consolidar, ainda mais, a modelagem de sistemas de abastecimento de água por meio da teoria de redes complexas, recomenda-se, para trabalhos futuros, o desenvolvimento de estudos de comparação entre resultados de critérios hidráulicos e métricas de redes complexas que apresentem o mesmo objetivo, como por exemplo, uma análise comparativa entre resultados, para um mesmo modelo hidráulico, da resiliência hidráulica e da métrica de densidade de pontes.

Em relação à aplicação das métricas de redes complexas, sugere-se o emprego de métricas diferentes em grafos direcionados pela vazão e ponderados, possivelmente por outros parâmetros hidráulicos, para análises das características de abastecimento e propriedades da robustez de um sistema de abastecimento de água. Além disso, os resultados empregados em estudos com outras métricas que possuem a mesma finalidade das métricas utilizadas neste trabalho, também poderão ser comparados com os dados obtidos nesta dissertação.

No caso de estudos de intervenção de Engenharia Civil para reabilitação de pressões e otimização do desempenho hidráulico de redes de abastecimento, sugere-se o desenvolvimento de trabalhos que considerem outras medidas de engenharia (como por exemplo, a implementação de tanques) para comparação com os resultados já existentes em literatura.

Por último, para estudos futuros, também se considera relevante o acoplamento das estratégias de expansão de rede de distribuição de água proposta nesta dissertação com modelos de previsão de demanda por consumo de água em cidades, para análise mais prática e precisa de melhores cenários de expansão em uma rede de abastecimento real.

REFERÊNCIAS

ALHASSAN, H.; NASER, G.; MILANI, A. S.; NUNOO, S. Decision making for capacity expansion of water supply systems. *Journal of water resource and protection*, v. 07, n. 16, p. 1280-1290, 2015.

ALHIMIARY, H. A. A.; ALSUHAILY, R. H. S. Minimizing leakage rates in water distribution networks through optimal valves settings. *In*: WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2007, 2007, Reston. *Proceedings...* Reston: American Society of Civil Engineers, 2007.

ALVISI, S.; FRANCHINI, M. Calibration and sensitivity analysis of the C-town pipe network model. *In*: 12TH ANNUAL CONFERENCE WATER DISTRIBUTION SYSTEMS ANALYSIS, 12., 2010, Reston. *Proceedings*... Reston: American Society of Civil Engineers, 2011.

ANCHIETA, T. F. de F.; SANTOS, S. A. R.; BRENTAN, B. M.; CARPITELLA, S.; IZQUIERDO, J. Managing expert knowledge in water network expansion project implementation. *IFAC-PapersOnLine*, v. 54, n. 17, p. 36-40, 2021.

ATKINSON, S.; FARMANI, R.; MEMON, F. A.; BUTLER, D. Reliability indicators for water distribution system design: Comparison. *Journal of water resources planning and management*, v. 140, n. 2, p. 160-168, 2014.

BAKRI, B.; ARAI, Y.; INAKAZU, T.; KOIZUMI, A.; YODA, H.; PALLU, S. Selection and concentration of pipeline mains for rehabilitation and expansion of water distribution network. *Procedia environmental sciences*, v. 28, p. 732-742, 2015.

BANWET, D. K.; MAJUMDAR, A. Comparative analysis of AHP-TOPSIS and GA-TOPSIS methods for selection of raw materials in textile industries. *In*: 4TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND OPERATIONS MANAGEMENT, 4., 2014, Bali. *Proceedings...* Bali: IEOM Society, 2014.

BARABASI, A. L. Network Science. Cambridge: Cambridge University Press, 2016.

BARABASI, A. L.; ALBERT, R. Emergence of scaling in random networks. *Science (New York, N.Y.)*, v. 286, n. 5439, p. 509-512, 1999.

BRENTAN, B.; CARPITELLA, S.; BARROS, D.; MEIRELLES, G.; CERTA, A.; IZQUIERDO, J. Water quality sensor placement: A multi-objective and multi-criteria approach. *Water resources management*, v. 35, n. 1, p. 225-241, 2021.

BRENTAN, B.; MONTEIRO, L.; CARNEIRO, J.; COVAS, D. Improving water age in distribution systems by optimal valve operation. *Journal of water resources planning and management*, v. 147, n. 8, p. 04021046, 2021.

BOCCALETTI, S.; LATORA, V.; MORENO, Y.; CHAVEZ, M.; HWANG, D. Complex networks: Structure and dynamics. *Physics reports*, v. 424, n. 4-5, p. 175-308, 2006.

- BURD, R.; ZAZULA-COETZEE, B.; BELRAIN, T. Battle of the water calibration networks (BWCN). *In*: 12TH ANNUAL CONFERENCE WATER DISTRIBUTION SYSTEMS ANALYSIS, 12., 2010, Reston. *Proceedings...* Reston: American Society of Civil Engineers, 2011.
- CASTRO-GAMA, M. E.; PAN, Q.; JONOSKI, A.; SOLOMATINE, D. A graph theoretical sectorization approach for energy reduction in water distribution networks. *Procedia engineering*, v. 154, p. 19-26, 2016.
- CHEN, H.; ZHANG, L.; RAN, L. Vulnerability modeling and assessment in urban transit systems considering disaster chains: A weighted complex network approach. *International journal of disaster risk reduction: IJDRR*, v. 54, n. 102033, p. 102033, 2021.
- COPASA, S. A. COPASA. [s.d.]. Disponível em: https://www.copasa.com.br/wps/portal/internet. Acesso em: 12 nov. 2021.
- COSTA, L. da F.; Junior, O. N. O.; TRAVIESO, G.; RODRIGUES, F. A.; BOAS, P. R. V.; ANTIQUEIRA, L; VIANA, M. P.; ROCHA L. E. C. Analyzing and modeling real-world phenomena with complex networks: a survey of applications. *Advances in Physics*, v. 60, n. 3, p. 329-412, 2011.
- CREACO, E.; FRANCHINI, M.; TODINI, E. The combined use of resilience and loop diameter uniformity as a good indirect measure of network reliability. *Urban water journal*, v. 13, n. 2, p. 167-181, 2016.
- DA MATA, A. S. Complex Networks: a Mini-review. *Brazilian Journal of Physics*, p. 1-15, 2020.
- DEO, N. Graph theory with applications to engineering and computer science. Old Tappan, NJ, USA: Prentice Hall, 1974.
- DI NARDO, A.; DI NATALE, M.; SANTONASTASO, G. F.; TZATCHKOV, V. G.; ALCOCER-YAMANAKA, V. H. Water network sectorization based on graph theory and energy performance indices. *Journal of water resources planning and management*, v. 140, n. 5, p. 620-629, 2014.
- DI NARDO, A.; GIUDICIANNI, C.; GRECO, R.; HERRERA, M.; SANTONASTASO, G. Applications of graph spectral techniques to water distribution network management. *Water*, v. 10, n. 1, p. 45, 2018.
- DI NARDO, A.; GRECO, R.; SANTONASTASO, G. F.; DI NATALE, M. Resilience and entropy indices for water supply network sectorization in district meter areas. *In*: 9TH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS, 9., 2010, Tianjing. *Proceedings.*.. Tianjing: Curran Associates, 2010.
- FAKCHAROENPHOL, J.; RAO, S. Planar graphs, negative weight edges, shortest paths, and near linear time. *Journal of computer and system sciences*, v. 72, n. 5, p. 868-889, 2006.

FLOYD, R. W. Algorithm 97: Shortest path. *Communications of the ACM*, v. 5, n. 6, p. 345, 1962.

FARMANI, R.; WALTERS, G.; SAVIC, D. Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality. *Journal of Hydroinformatics*, v. 8, n. 3, p. 165-179, 2006.

FREEMAN, L. C. A set of measures of centrality based on betweenness. *Sociometry*, v. 40, n. 1, p. 35, 1977.

FREEMAN, L. C. Centrality in social networks conceptual clarification. *Social networks*, v. 1, n. 3, p. 215-239, 1978.

GERA, R. *Degree Distribution, and Scale-free networks*. Monterey: Naval Postgraduate Scholl Press, 2018. 36 p.

GIUDICIANNI, C.; DI NARDO, A.; DI NATALE, M.; GRECO, R.; SANTONASTASO, G.; SCALA, A. Topological taxonomy of water distribution networks. *Water*, v. 10, n. 4, p. 444, 2018.

GOLBECK, J. Introduction to social media investigation: A hands-on approach. Syngress, 2015.

GORYASHKO, A. P.; NEMIROVSKI, A. S. Robust energy cost optimization of water distribution system with uncertain demand. *Automation and remote control*, v. 75, n. 10, p. 1754-1769, 2014.

GOSAK, M.; MARKOVIČ, R.; DOLENŠEK, J.; RUPNIK, M. S.; MARHL, M.; STOŽER, A.; PERC, M. Loosening the shackles of scientific disciplines with network science: Reply to comments on "Network science of biological systems at different scales: A review". *Physics of life reviews*, v. 24, p. 162-167, 2018.

HAGBERG, A.; SWART, P.; S CHULT, D. Exploring network structure, dynamics, and function using NetworkX. Los Alamos, Los Alamos National Lab.(LANL), 2008.

HANSEN, D. L.; SHNEIDERMAN, B.; SMITH, M. A.; HIMELBOIM, I. Analyzing Social Media Networks with NodeXL. Elsevier, 2020.

HELLER, L. (org.); PÁDUA, V. L de (org.). *Abastecimento de água para consumo humano*. Belo Horizonte: Editora UFMG, 2010.

HSU, N.; CHENG, W.; CHENG, W.; WEI, C.; YEH, W. W. G. Optimization and capacity expansion of a water distribution system. *Advances in water resources*, v. 31, n. 5, p. 776-786, 2008.

HUNG, C.; CHEN, L. A fuzzy TOPSIS decision making model with entropy weight under intuitionistic fuzzy environment. *In*: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS 2009, 2009, Hong Kong. *Proceedings...* Hong Kong: International Association of Engineers, 2009.

- HUZSVÁR, T.; WÉBER, R.; DÉLLEI, A.; HŐS, C. Increasing the capacity of water distribution networks using fitness function transformation. *Water research*, v. 201, n. 117362, p. 117362, 2021.
- HWANG, C.; YOON, K. In: HWANG, C.; YOON, K (Ed.) *Multiple Attribute Decision Making*. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. p. 58-191.
- ISHIZAKA, A.; NEMERY, P. *Multi-criteria decision analysis*: methods and software. Nashville: John Wiley & Sons, 2013.
- ISLAM, M. S.; SADIQ, R.; RODRIGUEZ, M. J.; NAJJARAN, H.; FRANCISQUE, A.; HOORFAR, M. Evaluating water quality failure potential in water distribution systems: A fuzzy-TOPSIS-OWA-based methodology. *Water resources management*, v. 27, n. 7, p. 2195-2216, 2013.
- Jalal, Mahdi Moradi. Performance measurement of water distribution systems (WDS): A critical and constructive appraisal of the state-of-the-art. 2008. 157 f. Doctoral dissertation, University of Toronto, Toronto.
- JEONG, G.; KANG, D. Comparative analysis of reliability indices and hydraulic measures for water distribution network performance evaluation. *Water*, v. 12, n. 9, p. 2399, 2020.
- LUNA, T.; RIBAU, J.; FIGUEIREDO, D.; ALVES, R. Improving energy efficiency in water supply systems with pump scheduling optimization. *Journal of cleaner production*, v. 213, p. 342-356, 2019.
- KANG, D.; LANSEY, K. The battle of the water calibration networks (BWC): Roughness and demand estimation based on weighted least squares (WLS) method. *In*: 12TH ANNUAL CONFERENCE WATER DISTRIBUTION SYSTEMS ANALYSIS, 12., 2010, Reston. *Proceedings...* Reston: American Society of Civil Engineers, 2011.
- KARYOTIS, V.; KHOUZANI, M. H. R. Malware Diffusion Models for Wireless Complex Networks: theory and applications. Burlington: Elsevier, 2016. 324 p.
- KIM, J. H.; MAYS, L. W. Optimal rehabilitation model for water-distribution systems. *Journal of water resources planning and management*, v. 120, n. 5, p. 674-692, 1994.
- KLISE, K. A.; MURRAY, R.; HAXTON, T. An Overview of the Water Network Tool for Resilience (WNTR). *In*: WDSA/CCWI JOINT CONFERENCE PROCEEDINGS, 1., 2018, Kingston, *Proceedings*... Kingston: U.S. Department of Energy or the United States Government, 2018.
- KWASI-EFFAH, C. C.; MAD, J. C.; OSAYUWA, E. G.; IGIEBOR, A. E. Effects of discharge head on the performance of a mini-hydraulic ram pump for possible application in mini-hydro turbine systems. *NIPES Journal of Energy Technology and Environment*, v. 3, n. 2, p. 108, 2021.
- LABADIE, J. W. Optimal operation of multireservoir systems: State-of-the-art review. *Journal of water resources planning and management*, v. 130, n. 2, p. 93-111, 2004.

- LOOTSMA, F. A. Distributed multi-criteria decision making and the role of the participants in the process. *Journal of Multi-Criteria Decision Analysis*, v. 9, n. 1-3, p. 45-55, 2000.
- LOPES, R. F.; ANTUNES, D.; CUNHA, M. C. Multiple-criteria decision analysis for proactive management of risk of water distribution systems. *In*: WDSA 2012: 14TH WATER DISTRIBUTION SYSTEMS ANALYSIS CONFERENCE, 14., 2012, Adelaide, *Proceedings*... Adelaide: Engineers Australia, 24-27.
- MAJA, M. M.; AYANO, S. F. The impact of population growth on natural resources and farmers' capacity to adapt to climate change in low-income countries. *Earth systems and environment*, v. 5, n. 2, p. 271–283, 2021.
- MAO, G.; ZHANG, N. Fast approximation of average shortest path length of directed BA networks. *Physica A*, v. 466, p. 243–248, 2017.
- MARCHI, A.; SALOMONS, E.; OSTFELD, A.; KAPELAN, Z.; SIMPSON, A. R.; ZECCHIN, A. C..; MAIER, H. R.; WU, Z. Y.; ELSAYED, S. M.; SONG, Y.; [...]. Battle of the Water Networks II. *Journal Of Water Resources Planning And Management*, v. 140, n. 7, p. 1-31, jul. 2014.
- MARTIN, K. Graph Theory and Social Networks. Norman: University of Oklahoma Press, 2014.
- MEIRELLES, G.; BRENTAN, B.; IZQUIERDO, J.; RAMOS, H.; LUVIZOTTO, E. J. Trunk network rehabilitation for resilience improvement and energy recovery in water distribution networks. *Water*, v. 10, n. 6, p. 693, 2018.
- MENG, F.; FU, G.; FARMANI, R.; SWEETAPPLE, C.; BUTLER, D. Topological attributes of network resilience: A study in water distribution systems. *Water research*, v. 143, p. 376-386, 2018.
- MÓLLER, D. S.; LIMA, G. M.; BRENTAN, B. M.; BARROS, D. B. Optimal pump selection for variable speed operation in water distribution network. *RBRH*, v. 25, 2020.
- MU, T.; LI, Y.; LI, Z.; WANG, L.; TAN, H.; ZHENG, C. Improved network reliability optimization model with head loss for water distribution system. *Water resources management*, v. 35, n. 7, p. 2101-2114, 2021.
- NEELAKANTAN, T. R.; SURIBABU, C. R.; LINGIREDDY, S. Optimisation procedure for pipe-sizing with break-repair and replacement economics. *Water S. A.*, v. 34, n. 2, p. 217, 2019.
- NEWMAN, M. E. J. Who is the best connected scientist? A study of scientific coauthorship networks. In: BEN-NAIM, L.; FRAUENFELDER, H.; TOROCZKAI, Z. (Ed.) *Complex Networks*. Berlim: Springer Berlin Heidelberg, 2004. p. 337-370.
- NEWMAN, M.; BARABASI, A.; WATTS, D. *The structure and dynamics of networks*. Princeton: Princeton University Press, 2006.

- ONU, U. P.; XIE, Q.; XU, L. A fuzzy TOPSIS model framework for ranking sustainable water supply alternatives. *Water resources management*, v. 31, n. 9, p. 2579–2593, 2017.
- OPRICOVIC, S.; TZENG, G. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European journal of operational research*, v. 156, n. 2, p. 445-455, 2004.
- ORMSBEE, L. E.; LANSEY, K. E. Optimal control of water supply pumping systems. *Journal of water resources planning and management*, v. 120, n. 2, p. 237-252, 1994.
- PAGANO, A.; SWEETAPPLE, C.; FARMANI, R.; GIORDANO, R.; BUTLER, D. Water distribution networks resilience analysis: A comparison between graph theory-based approaches and global resilience analysis. *Water resources management*, v. 33, n. 8, p. 2925-2940, 2019.
- PORTO, R. de M. Hidráulica básica. São Carlos: EESC-USP, v. 4, 2006.
- PRASAD, T. D. A clonal selection algorithm for the C-town network calibration. *In*: 12TH ANNUAL CONFERENCE WATER DISTRIBUTION SYSTEMS ANALYSIS, 12., 2010, Reston. *Proceedings.*.. Reston: American Society of Civil Engineers, 2011.
- PRICE, E.; OSTFELD, A. Discrete pump scheduling and leakage control using linear programming for optimal operation of water distribution systems. *Journal of hydraulic engineering*, v. 140, n. 6, p. 04014017, 2014.
- PULIDO-CALVO, I.; GUTIÉRREZ-ESTRADA, J. C. Selection and operation of pumping stations of water distribution systems. *Environmental Research Journal*, v. 5, n. 3, p. 1-20, 2011.
- RAHMANI, F.; BEHZADIAN, K.; ARDESHIR, A. Rehabilitation of a water distribution system using sequential multiobjective optimization models. *Journal of water resources planning and management*, v. 142, n. 5, p. C4015003, 2016.
- RASHID, M. A. U. H.; MANZOOR, M. M.; MUKHTAR, S. Urbanization and its effects on water resources: An exploratory analysis. *Asian journal of water, environment and pollution*, v. 15, n. 1, p. 67-74, 2018.
- RECA, J.; MARTÍNEZ, J.; BAÑOS, R.; GIL, C. Optimal design of gravity-fed looped water distribution networks considering the resilience index. *Journal of water resources planning and management*, v. 134, n. 3, p. 234-238, 2008.
- RODRIGUES, Francisco Aparecido. Caracterização, classificação e análise de rede complexas. 2007. 174 f. Tese (Doutorado em Física e Informática) Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2007.
- RODRÍGUEZ-ALARCÓN, R.; LOZANO, S. A. Complex network analysis of Spanish river basins. *Journal of hydrology*, v. 578, n. 124065, p. 124065, 2019.

- ROSSMAN, L. A., WOO, H., TRYBY, M., SHANG, F., JANKE, R., and HAXTON, T. *EPANET 2.2: User Manual.* United States Environmental Protection Agency, Cincinnati: U.S. Environmental Protection Agency, 2020.
- ROY, B. Paradigms and challenges. In: FIGUEIRA, J.; GRECO, S.; EHROGOTT, M. (Ed.) *Multiple criteria decision analysis: state of the art surveys.* Nova Iorque: Springer, 2005. p. 3-24.
- SADAVARE, A. B.; KULKARNI, R. V. A Review of Application of Graph Theory for Network. *International Journal Of Computer Science And Information Technologies*, v. 3, n. 6, p. 5296-5300, 2012.
- SALDARRIAGA, J.; BOHORQUEZ, J.; CELEITA, D.; VEGA, L.; PAEZ, D.; SAVIC, D.; DANDY, G.; FILION, Y.; GRAYMAN, W.; KAPELAN, Z. Battle of the water networks district metered areas. *Journal of water resources planning and management*, v. 145, n. 4, p. 04019002, 2019.
- SARWAR, S.; SHAHEEN, L. A Survey of Trilogy Shortest Path Algorithms. *Journal of Computational Learning Strategies & Practices*, v. 1, n. 1, p. 7-12. 2021.
- SELVARAJOO, K. Large-scale-free network organisation is likely key for biofilm phase transition. *Engineering Biology*, v. 3, n. 4, p. 67-71, 2019.
- SIMONE, A.; RIDOLFI, L.; BERARDI, L.; LAUCELLI, D. B. Complex network theory for water distribution networks analysis. *EPiC Series in Engineering*, v. 3, p. 1971-1978, 2018.
- SNIS SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO (org.). Diagnóstico Temático Serviços de Água e Esgotos. Brasília: SNS, 2021. 90 p.
- SIRSANT, S.; REDDY, M. J. Optimal design of pipe networks accounting for future demands and phased expansion using integrated dynamic programming and differential evolution approach. *Water resources management*, v. 35, n. 4, p. 1231-1250, 2021.
- TALAT, N. Urban water-supply management: indirect issues of climate change leading to water scarcity scenarios in developing and underdeveloped nations. In: THOKCHOM, B.; QIU, P.; SINGH, P.; IYER, P. K. (Ed.) *Water Conservation in the Era of Global Climate Change*. Estados Unidos: Elsevier, 2021. p. 47-71.
- TARQUIN, A. J.; DOWDY, J. Optimal pump operation in water distribution. *Journal of hydraulic engineering*, v. 115, n. 2, p. 158-168, 1989.
- TODINI, E. Looped water distribution networks design using a resilience index based heuristic approach. *Urban water*, v. 2, n. 2, p. 115-122, 2000.
- TRATA BRASIL. Em plena pandemia e escassez de chuvas, Brasil perde água potável que abasteceria 63 milhões de pessoas. 9. 1-11, 2021.
- TSAKIRIS, G.; SPILIOTIS, M. Applying resilience indices for assessing the reliability of water distribution systems. *Water Utility Journal*, v. 3, p. 19-27, 2012.

- VAN DER HOFSTAD, R. *Random graphs and complex networks*. Cambridge: Cambridge University Press, 2017.
- VELASQUEZ, M.; HESTER, P. T. An analysis of multi-criteria decision making methods. *International journal of operations research*, v. 10, n. 2, p. 56-66, 2013.
- WANDERLEY, A. J.; DUARTE, A. N.; BRITO, A. V. de; PRESTES, M. A. S.; FRAGOSO, F. C. Identificando correlações entre métricas de Análise de Redes Sociais e o h- index de pesquisadores de Ciência da Computação. *In*: XXXIV CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO CSBC, 34., 2014, Brasília. *Proceedins.*.. Brasília: Sbc, 2014. p. 45-56.
- WANG, X. F.; CHEN, G. Complex networks: Small-world, scale-free and beyond. *IEEE circuits and systems magazine*, v. 3, n. 1, p. 6-20, 2003.
- WASSERMAN, S.; FAUST, K. Structural analysis in the social sciences: Social network analysis: Methods and applications series number 8. Cambridge: Cambridge University Press, 1994.
- WATERAID. The Water Gap: The State of the World's Water 2018. Reino Unido: WATERAID, 2017. 24 p.
- WATTS, D. J.; STROGATZ, S. H. Collective dynamics of "small-world" networks. *Nature*, v. 393, n. 6684, p. 440-442, 1998.
- WHO WORLD HEALTH ORGANIZATION; UNICEF UNITED NATIONS INTERNATIONAL CHILDREN'S EMERGENCY FUND. *Progress on drinking-water, sanitation and hygiene: 2017 update and SDG baselines*. Suíça: WHO/UNICEF, 2017. 116 p.
- WHO WORLD HEALTH ORGANIZATION; UNICEF UNITED NATIONS INTERNATIONAL CHILDREN'S EMERGENCY FUND. *Progress on household drinking water, sanitation and hygiene 2000-2017: special focus on inequalities.* Suíça: WHO/UNICEF, 2019. 138 p.
- WHO WORLD HEALTH ORGANIZATION; UNICEF UNITED NATIONS INTERNATIONAL CHILDREN'S EMERGENCY FUND. *Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs.* Suíça: WHO/UNICEF, 2021. 162 p.
- WRIGHT, R.; HERRERA, M.; PARPAS, P.; STOIANOV, I. Hydraulic resilience index for the critical link analysis of multi-feed water distribution networks. *Procedia engineering*, v. 119, p. 1249-1258, 2015.
- WU, A.; TIAN, L.; LIU, Y. Bridges in complex networks. *Physical review*. E, v. 97, n. 1, p. 012307, 2018.
- YAZDANI, A.; JEFFREY, P. Complex network analysis of water distribution systems. *Chaos*, v. 21, n. 1, p. 016111, 2011.

- YAZDANI, A.; JEFFREY, P. Water distribution system vulnerability analysis using weighted and directed network models: vulnerability analysis using network models. *Water resources research*, v. 48, n. 6, 2012.
- YAZDANI, A.; OTOO, R. A.; JEFFREY, P. Resilience enhancing expansion strategies for water distribution systems: A network theory approach. *Environmental modelling & software:* with environment data news, v. 26, n. 12, p. 1574-1582, 2011.
- ZANAKIS, S. H.; SOLOMON, A.; WISHART, N.; DUBLISH, S. Multi-attribute decision making: A simulation comparison of select methods. *European journal of operational research*, v. 107, n. 3, p. 507-529, 1998.
- ZAVADSKAS, E. K.; TURSKIS, Z.; KILDIENĖ, S. State of art surveys of overviews on mcdm/madm methods. *Technological and economic development of economy*, v. 20, n. 1, p. 165-179, 2014.
- ZHANG, Z.; XU, E.; ZHANG, H. Complex network and redundancy analysis of spatial–temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China. *Catena*, v. 201, n. 105216, p. 105216, 2021.
- ZHU, J.; WANG, L.; WU, T. A sorting method of node based on Eigenvector and Closeness centrality. *Journal of physics*: *Conference series*, v. 2031, n. 1, p. 012043, 2021.

APÊNDICES

Tabela A1: Ranking de cenários para aumento de demanda de 0,1% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J25	2	0,00262016	1°
J377	1	0,00261994	2°
J153	2	0,00261990	3°
J373	1	0,00261986	4°
J1058	1	0,00261982	5°
J70	5	0,00261979	6°
J184	3	0,00261979	6°
J191	1	0,00261971	7°
J504	2	0,00261971	7°
J162	1	0,00261952	8°
J27	2	0,00261952	8°
J90	2	0,00261952	8°
J152	2	0,00261952	8°
J32	2	0,00261945	9°
J240	2	0,00261929	10°
J36	2	0,00261914	11°
J266	3	0,00261914	11°
J379	1	0,00261914	11°
J334	1	0,00261911	12°
J8	1	0,00261899	13°
J350	3	0,00261899	13°
J145	3	0,00261899	13°
J155	1	0,00261892	14°
J265	3	0,00261880	15°
J150	2	0,00261873	16°
J144	1	0,00261873	16°
J74	5	0,00261869	17°
J158	3	0,00261854	18°
J308	1	0,00261850	19°
J91	2	0,00261846	20°

Tabela A2: Ranking de cenários para aumento de demanda de 0,5% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J377	1	0,00262092	1°
J8	1	0,00262088	2°
J308	1	0,00262081	3°
J266	3	0,00262081	3°
J27	2	0,00262073	4°
J90	2	0,00262069	5°
J74	5	0,00262066	6°
J145	3	0,00262066	6°
J150	2	0,00262062	7°
J162	1	0,00262058	8°
J32	2	0,00262058	8°
J36	2	0,00262058	8°
J158	3	0,00262058	8°
J191	1	0,00262051	9°
J184	3	0,00262051	9°
J1058	1	0,00262051	9°
J265	3	0,00262051	9°
J379	1	0,00262043	10°
J91	2	0,00262039	11°
J240	2	0,00262039	11°
J152	2	0,00262009	12°
J334	1	0,00262005	13°
J153	2	0,00261994	14°
J350	3	0,00261994	14°
J373	1	0,00261979	15°
J504	2	0,00261975	16°
J25	2	0,00261971	17°
J70	5	0,00261956	18°
J155	1	0,00261952	19°
J144	1	0,00261873	20°

Tabela A3: Ranking de cenários para aumento de demanda de 1,0% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J70	5	0,00262209	1°
J155	1	0,00262198	2°
J74	5	0,00262168	3°
J152	2	0,00262153	4°
J265	3	0,00262153	4°
J184	3	0,00262153	4°
J145	3	0,00262149	5°
J350	3	0,00262149	5°
J191	1	0,00262145	6°
J334	1	0,00262141	7°
J240	2	0,00262130	8°
J91	2	0,00262119	9°
J377	1	0,00262111	10°
J162	1	0,00262107	11°
Ј8	1	0,00262107	11°
J1058	1	0,00262103	12°
J266	3	0,00262085	13°
J27	2	0,00262081	14°
J144	1	0,00262062	15°
J36	2	0,00262058	16°
J308	1	0,00262058	16°
J90	2	0,00262054	17°
J158	3	0,00262054	17°
J32	2	0,00262035	18°
J379	1	0,00262035	18°
J150	2	0,00262028	19°
J153	2	0,00261986	20°
J373	1	0,00261986	20°
J25	2	0,00261971	21°
J504	2	0,00261971	21°

Tabela A4: Ranking de cenários para aumento de demanda de 2,0% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J379	1	0,00262410	1°
J32	2	0,00262368	2°
J144	1	0,00262368	2°
J191	1	0,00262364	3°
J36	2	0,00262361	4°
J150	2	0,00262361	4°
J158	3	0,00262361	4°
J266	3	0,00262357	5°
J74	5	0,00262357	5°
J145	3	0,00262353	6°
J152	2	0,00262353	6°
J70	5	0,00262353	6°
J308	1	0,00262349	7°
J350	3	0,00262346	8°
J155	1	0,00262342	9°
J8	1	0,00262338	10°
J184	3	0,00262334	11°
J265	3	0,00262334	11°
J1058	1	0,00262334	11°
J377	1	0,00262330	12°
J334	1	0,00262330	12°
J91	2	0,00262327	13°
J240	2	0,00262327	13°
J27	2	0,00262327	13°
J162	1	0,00262323	14°
J90	2	0,00262319	15°
J373	1	0,00262308	16°
J25	2	0,00262304	17°
J153	2	0,00262300	18°
J504	2	0,00262293	19°

Tabela A5: Ranking de cenários para aumento de demanda de 5,0% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J74	5	0,00263098	1°
J90	2	0,00263087	2°
J27	2	0,00263083	3°
J36	2	0,00263083	3°
J379	1	0,00263083	3°
J158	3	0,00263079	4°
J8	1	0,00263076	5°
J377	1	0,00263076	5°
J32	2	0,00263076	5°
J240	2	0,00263072	6°
J308	1	0,00263072	6°
J91	2	0,00263068	7°
J334	1	0,00263068	7°
J150	2	0,00263061	8°
J1058	1	0,00263042	9°
J152	2	0,00263038	10°
J162	1	0,00263026	11°
J265	3	0,00263023	12°
J191	1	0,00263015	13°
J145	3	0,00262989	14°
J144	1	0,00262977	15°
J350	3	0,00262966	16°
J373	1	0,00262966	16°
J25	2	0,00262955	17°
J266	3	0,00262947	18°
J504	2	0,00262947	18°
J184	3	0,00262943	19°
J70	5	0,00262939	20°
J153	2	0,00262939	20°
J155	1	0,00262939	20°

Tabela A6: Ranking de cenários para aumento de demanda de 10,0% considerando a média horária de densidade de arestas da rede para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de arestas	Ranking
J379	1	0,00264029	1°
J150	2	0,00264029	1°
J158	3	0,00263991	2°
J36	2	0,00263984	3°
J90	2	0,00263961	4°
J308	1	0,00263957	5°
J27	2	0,00263953	6°
J74	5	0,00263950	7°
J334	1	0,00263942	8°
J32	2	0,00263938	9°
Ј8	1	0,00263938	9°
J377	1	0,00263938	9°
J191	1	0,00263931	10°
J240	2	0,00263927	11°
J91	2	0,00263919	12°
J162	1	0,00263915	13°
J145	3	0,00263908	14°
J1058	1	0,00263904	15°
J144	1	0,00263885	16°
J265	3	0,00263866	17°
J153	2	0,00263863	18°
J70	5	0,00263859	19°
J25	2	0,00263855	20°
J155	1	0,00263855	20°
J504	2	0,00263855	20°
J266	3	0,00263832	21°
J373	1	0,00263825	22°
J152	2	0,00263810	23°
J184	3	0,00263779	24°
J350	3	0,00263775	25°

Tabela A7: Ranking de cenários para aumento de demanda de 0,1% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J25	2	1,03496503	1°
J377	1	1,03487538	2°
J153	2	1,03486044	3°
J373	1	1,03484550	4°
J1058	1	1,03483055	5°
J70	5	1,03481561	6°
J184	3	1,03481561	6°
J191	1	1,03478573	7°
J504	2	1,03478573	7°
J27	2	1,03471102	8°
J90	2	1,03471102	8°
J152	2	1,03471102	8°
J162	1	1,03471102	8°
J32	2	1,03468113	9°
J240	2	1,03462136	10°
J36	2	1,03456159	11°
J379	1	1,03456159	11°
J266	3	1,03456159	11°
J334	1	1,03454665	12°
Ј8	1	1,03450182	13°
J350	3	1,03450182	13°
J145	3	1,03450182	13°
J155	1	1,03447194	14°
J265	3	1,03442711	15°
J144	1	1,03439723	16°
J150	2	1,03439723	16°
J74	5	1,03438228	17°
J158	3	1,03432252	18°
J308	1	1,03430757	19°
J91	2	1,03429263	20°

Tabela A8: Ranking de cenários para aumento de demanda de 0,5% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J377	1	1,03526388	1°
J8	1	1,03524894	2°
J266	3	1,03521905	3°
J308	1	1,03521905	3°
J27	2	1,03518917	4°
J90	2	1,03517423	5°
J145	3	1,03515929	6°
J74	5	1,03515929	6°
J150	2	1,03514434	7°
J32	2	1,03512940	8°
J36	2	1,03512940	8°
J158	3	1,03512940	8°
J162	1	1,03512940	8°
J265	3	1,03509952	9°
J184	3	1,03509952	9°
J1058	1	1,03509952	9°
J191	1	1,03509952	9°
J379	1	1,03506963	10°
J240	2	1,03505469	11°
J91	2	1,03505469	11°
J152	2	1,03493515	12°
J334	1	1,03492021	13°
J153	2	1,03487538	14°
J350	3	1,03487538	14°
J373	1	1,03481561	15°
J504	2	1,03480067	16°
J25	2	1,03478573	17°
J70	5	1,03472596	18°
J155	1	1,03471102	19°
J144	1	1,03439723	20°

Tabela A9: Ranking de cenários para aumento de demanda de 1,0% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J70	5	1,03572709	1°
J155	1	1,03568227	2°
J74	5	1,03556273	3°
J184	3	1,03550296	4°
J265	3	1,03550296	4°
J152	2	1,03550296	4°
J145	3	1,03548802	5°
J350	3	1,03548802	5°
J191	1	1,03547307	6°
J334	1	1,03545813	7°
J240	2	1,03541330	8°
J91	2	1,03536848	9°
J377	1	1,03533859	10°
J162	1	1,03532365	11°
Ј8	1	1,03532365	11°
J1058	1	1,03530871	12°
J266	3	1,03523400	13°
J27	2	1,03521905	14°
J144	1	1,03514434	15°
J36	2	1,03512940	16°
J308	1	1,03512940	17°
J158	3	1,03511446	18°
J90	2	1,03511446	18°
J379	1	1,03503975	19°
J32	2	1,03503975	19°
J150	2	1,03500986	20°
J153	2	1,03484550	21°
J373	1	1,03484550	21°
J25	2	1,03478573	22°
J504	2	1,03478573	22°

Tabela A10: Ranking de cenários para aumento de demanda de 2,0% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J379	1	1,03651904	1°
J32	2	1,03635467	2°
J144	1	1,03635467	2°
J191	1	1,03633973	3°
J36	2	1,03632479	4°
J150	2	1,03632479	4°
J158	3	1,03632479	4°
J266	3	1,03630984	5°
J74	5	1,03630984	5°
J145	3	1,03629490	6°
J152	2	1,03629490	6°
J70	5	1,03629490	6°
J308	1	1,03627996	7°
J350	3	1,03626502	8°
J155	1	1,03625007	9°
J8	1	1,03623513	10°
J184	3	1,03622019	11°
J265	3	1,03622019	11°
J1058	1	1,03622019	11°
J377	1	1,03620525	12°
J334	1	1,03620525	12°
J91	2	1,03619031	13°
J240	2	1,03619031	13°
J27	2	1,03619031	13°
J162	1	1,03617536	14°
J90	2	1,03616042	15°
J373	1	1,03611559	16°
J25	2	1,03610065	17°
J153	2	1,03608571	18°
J504	2	1,03605582	19°

Tabela A11: Ranking de cenários para aumento de demanda de 5,0% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J74	5	1,03923854	1°
J90	2	1,03919371	2°
J27	2	1,03917877	3°
J36	2	1,03917877	3°
J379	1	1,03917877	3°
J158	3	1,03916383	4°
Ј8	1	1,03914889	5°
J377	1	1,03914889	5°
J32	2	1,03914889	5°
J240	2	1,03913394	6°
J308	1	1,03913394	6°
J91	2	1,03911900	7°
J334	1	1,03911900	7°
J150	2	1,03908912	8°
J1058	1	1,03901440	9°
J152	2	1,03899946	10°
J162	1	1,03895464	11°
J265	3	1,03893969	12°
J191	1	1,03890981	13°
J145	3	1,03880521	14°
J144	1	1,03876038	15°
J350	3	1,03871556	16°
J373	1	1,03871556	16°
J25	2	1,03867073	17°
J504	2	1,03864085	18°
J266	3	1,03864085	18°
J184	3	1,03862590	19°
J153	2	1,03861096	20°
J155	1	1,03861096	20°
J70	5	1,03861096	20°

Tabela A12: Ranking de cenários para aumento de demanda de 10,0% considerando a média horária de grau médio para os grafos ponderados pela vazão.

Nó de expansão	Setor	Grau médio	Ranking
J150	2	1,04291435	1°
J379	1	1,04291435	1°
J158	3	1,04276493	2°
J36	2	1,04273504	3°
J90	2	1,04264539	4°
J308	1	1,04263045	5°
J27	2	1,04261550	6°
J74	5	1,04260056	7°
J334	1	1,04257068	8°
J8	1	1,04255573	9°
J32	2	1,04255573	9°
J377	1	1,04255573	9°
J191	1	1,04252585	10°
J240	2	1,04251091	11°
J91	2	1,04248102	12°
J162	1	1,04246608	13°
J145	3	1,04243620	14°
J1058	1	1,04242125	15°
J144	1	1,04234654	16°
J265	3	1,04227183	17°
J153	2	1,04225689	18°
J70	5	1,04224195	19°
J25	2	1,04222700	20°
J504	2	1,04222700	20°
J155	1	1,04222700	20°
J266	3	1,04213735	21°
J373	1	1,04210747	22°
J152	2	1,04204770	23°
J184	3	1,04192816	24°
J350	3	1,04191321	25°

Tabela A13: Ranking de cenários para aumento de demanda de 0,1% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J32	2	0,53774316	1°
J70	5	0,53774364	2°
J150	2	0,53778983	3°
J27	2	0,53785581	4°
J308	1	0,53786449	5°
J153	2	0,53788226	6°
J25	2	0,53790523	7°
J145	3	0,53792203	8°
J266	3	0,53794618	9°
J377	1	0,53798942	10°
J152	2	0,53800343	11°
J379	1	0,53802614	12°
J144	1	0,53803278	13°
J265	3	0,53807570	14°
J74	5	0,53808202	15°
J90	2	0,53809068	16°
J155	1	0,53809852	17°
J334	1	0,53812242	18°
J158	3	0,53812921	19°
J162	1	0,53813102	20°
J36	2	0,53813712	21°
J191	1	0,53813777	22°
J240	2	0,53816384	23°
J184	3	0,53816964	24°
J8	1	0,53817313	25°
J350	3	0,53817313	25°
J91	2	0,53821516	26°
J504	2	0,53822703	27°
J373	1	0,53828999	28°
J1058	1	0,53840307	29°

Tabela A14: Ranking de cenários para aumento de demanda de 0,5% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J334	1	0,53720774	1°
J27	2	0,53731383	2°
J36	2	0,53736950	3°
J158	3	0,53736950	3°
J32	2	0,53736954	4°
J308	1	0,53737128	5°
J150	2	0,53737585	6°
J91	2	0,53739868	7°
J240	2	0,53739959	8°
J74	5	0,53744865	9°
J1058	1	0,53747848	10°
J162	1	0,53750571	11°
J90	2	0,53752349	12°
J191	1	0,53755109	13°
J379	1	0,53773819	14°
J153	2	0,53777070	15°
J265	3	0,53780013	16°
J504	2	0,53782317	17°
J25	2	0,53783090	18°
J152	2	0,53784161	19°
J377	1	0,53784411	20°
J155	1	0,53791340	21°
J70	5	0,53792004	22°
J373	1	0,53792308	23°
Ј8	1	0,53792490	24°
J184	3	0,53795045	25°
J350	3	0,53798942	26°
J144	1	0,53803278	27°
J266	3	0,53814571	28°
J145	3	0,53840709	29°

Tabela A15: Ranking de cenários para aumento de demanda de 1,0% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J153	2	0,53727710	1°
J25	2	0,53742441	2°
J504	2	0,53742441	2°
J27	2	0,53748190	3°
J74	5	0,53756919	4°
J184	3	0,53761780	5°
J373	1	0,53763816	6°
J379	1	0,53764206	7°
J150	2	0,53766640	8°
J36	2	0,53773524	9°
J334	1	0,53776614	10°
J155	1	0,53781495	11°
J158	3	0,53781539	12°
J308	1	0,53783423	13°
J350	3	0,53787103	14°
J70	5	0,53787953	15°
J90	2	0,53788318	16°
J91	2	0,53794246	17°
J240	2	0,53796204	18°
J1058	1	0,53800171	19°
J152	2	0,53805770	20°
J144	1	0,53805981	21°
J32	2	0,53806527	22°
J162	1	0,53808526	23°
J266	3	0,53809273	24°
J265	3	0,53810030	25°
J145	3	0,53810283	26°
J377	1	0,53813098	27°
Ј8	1	0,53818132	28°
J191	1	0,53827500	29°

Tabela A16: Ranking de cenários para aumento de demanda de 2,0% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J74	5	0,53732777	1°
J379	1	0,53734953	2°
J90	2	0,53738789	3°
J334	1	0,53739521	4°
J150	2	0,53746424	5°
J144	1	0,53748860	6°
J8	1	0,53753954	7°
J308	1	0,53754238	8°
J32	2	0,53754814	9°
J145	3	0,53755828	10°
J377	1	0,53758404	11°
J36	2	0,53760688	12°
J158	3	0,53760688	12°
J27	2	0,53763189	13°
J152	2	0,53765530	14°
J91	2	0,53769303	15°
J240	2	0,53769303	15°
J1058	1	0,53769434	16°
J266	3	0,53771212	17°
J162	1	0,53772649	18°
J265	3	0,53780006	19°
J153	2	0,53784763	20°
J25	2	0,53785348	21°
J350	3	0,53792199	22°
J191	1	0,53792219	23°
J70	5	0,53792520	24°
J155	1	0,53797644	25°
J504	2	0,53797707	26°
J373	1	0,53813287	27°
J184	3	0,53821991	28°

Tabela A17: Ranking de cenários para aumento de demanda de 5,0% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J32	2	0,53503846	1°
J379	1	0,53508506	2°
J158	3	0,53516242	3°
J36	2	0,53517248	4°
J240	2	0,53523549	5°
J91	2	0,53524307	6°
J150	2	0,53526479	7°
J74	5	0,53532626	8°
J8	1	0,53534545	9°
J334	1	0,53535943	10°
J162	1	0,53537301	11°
J152	2	0,53541190	12°
J1058	1	0,53542557	13°
J191	1	0,53543898	14°
J90	2	0,53545254	15°
J377	1	0,53546515	16°
J265	3	0,53551005	17°
J27	2	0,53555581	18°
J308	1	0,53572583	19°
J504	2	0,53583124	20°
J25	2	0,53584460	21°
J373	1	0,53594901	22°
J350	3	0,53600264	23°
J155	1	0,53612774	24°
J153	2	0,53613971	25°
J70	5	0,53618634	26°
J145	3	0,53621312	27°
J266	3	0,53622136	28°
J184	3	0,53632421	29°
J144	1	0,53662005	30°

Tabela A18: Ranking de cenários para aumento de demanda de 10,0% considerando a média horária de densidade de pontes para os grafos ponderados pela vazão.

Nó de expansão	Setor	Densidade de pontes	Ranking
J350	3	0,53080856	1°
J70	5	0,53089257	2°
J155	1	0,53098951	3°
J145	3	0,53099634	4°
J308	1	0,53102846	5°
J153	2	0,53106122	6°
J184	3	0,53107457	7°
J25	2	0,53110690	8°
J504	2	0,53110690	8°
J266	3	0,53113306	9°
J90	2	0,53113442	10°
J27	2	0,53113731	11°
J373	1	0,53121281	12°
Ј8	1	0,53123171	13°
J334	1	0,53124482	14°
J240	2	0,53130999	15°
J377	1	0,53135041	16°
J150	2	0,53136947	17°
J74	5	0,53137619	18°
J152	2	0,53137768	19°
J144	1	0,53138048	20°
J379	1	0,53138801	21°
J32	2	0,53139239	22°
J91	2	0,53141111	23°
J162	1	0,53142328	24°
J191	1	0,53142997	25°
J158	3	0,53146478	26°
J265	3	0,53151115	27°
J1058	1	0,53160832	28°
J36	2	0,53162367	29°

Tabela A19: Ranking de cenários para aumento de demanda de 0,1% conforme método TOPSIS e sem aplicação de medidas de engenharia.

Ná do avnanção Sotor	Conómio som modi	dos do sus	howio					
Nó de expansão	Setor	Cenário sem medi	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
127	2				0.00002	0.00410	0,99573	1º
J27	2	496,9705	4,5640	0,4349	0,00002	0,00419		
J240	2	497,0459	4,5636	0,4349	0,00002	0,00420	0,99459	2°
J153	2	496,9480	4,5657	0,4349	0,00003	0,00417	0,99311	3°
J25	2	496,9705	4,5648	0,4348	0,00003	0,00418	0,99286	4º
J90	2	496,9735	4,5658	0,4349	0,00003	0,00417	0,99211	5°
J91	2	496,9580	4,5660	0,4349	0,00003	0,00417	0,99201	6°
J504	2	497,0390	4,5665	0,4350	0,00004	0,00416	0,99052	7°
J32	2	496,9701	4,5657	0,4345	0,00007	0,00417	0,98307	8°
J152	2	496,9388	4,5654	0,4345	0,00007	0,00417	0,98239	9º
J150	2	496,9586	4,5660	0,4345	0,00007	0,00417	0,98236	10°
J36	2	496,9703	4,5656	0,4345	0,00008	0,00417	0,98211	11°
J144	1	497,1420	4,8729	0,4347	0,00395	0,00036	0,08435	12°
J191	1	497,1370	4,8752	0,4347	0,00398	0,00035	0,08065	13°
J162	1	497,1298	4,8773	0,4345	0,00400	0,00031	0,07265	14°
J379	1	497,1280	4,8784	0,4346	0,00402	0,00031	0,07218	15°
J377	1	497,1379	4,8786	0,4346	0,00402	0,00031	0,07186	16°
J1058	1	497,0894	4,8780	0,4345	0,00401	0,00030	0,07051	17°
J373	1	497,1369	4,8783	0,4345	0,00402	0,00030	0,07048	18°
J8	1	497,0947	4,8780	0,4344	0,00401	0,00029	0,06836	19°
J74	5	497,3159	4,8712	0,4335	0,00393	0,00029	0,06830	20°
J70	5	497,3133	4,8714	0,4336	0,00393	0,00029	0,06790	21°
J155	1	497,1406	4,8823	0,4346	0,00407	0,00029	0,06636	22°
J334	1	497,1717	4,8829	0,4343	0,00408	0,00025	0,05804	23°
J308	1	497,1100	4,8819	0,4341	0,00406	0,00023	0,05463	24°
J350	3	496,9094	4,8901	0,4329	0,00418	0,00006	0,01394	25°
J158	3	496,9052	4,8912	0,4329	0,00419	0,00006	0,01324	26°
J184	3	496,9052	4,8904	0,4327	0,00418	0,00005	0,01258	27°
J266	3	496,9091	4,8918	0,4328	0,00420	0,00005	0,01247	28°
J145	3	496,9051	4,8915	0,4328	0,00420	0,00005	0,01199	29°
J265	3	496,9083	4,8918	0,4328	0,00420	0,00005	0,01195	30°
Constante de No	rmalização (gij)	2722,4063	26,1164	2,3781	l	l	l	l
Pondera	ıção (wj)	33,33%	33,33%	33,33%				
Obje		MIN	MIN	MAX				
Solução Ideal	Positiva (A*)	0,06084	0,05825	0,06097	•			
Solução Ideal	Negativa (A-)	0,06089	0,06244	0,06065				

Tabela A20: Ranking de cenários para aumento de demanda de 0,5% conforme método TOPSIS e sem aplicação de medidas de engenharia.

		Cenário sem	medidas de	engenharia				
Nó de expansão	Setor	PU	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J240	2	497,6727	4,4671	0,4329	0,00040	0,00495	0,92522	1º
J27	2	497,2899	4,4884	0,4332	0,00045	0,00468	0,91294	2°
J153	2	497,1879	4,4927	0,4335	0,00045	0,00463	0,91165	3°
J91	2	497,2557	4,4932	0,4335	0,00045	0,00462	0,91066	4°
J90	2	497,3052	4,4924	0,4332	0,00048	0,00463	0,90595	5°
J25	2	497,2901	4,4903	0,4328	0,00050	0,00465	0,90328	6°
J504	2	497,6398	4,4928	0,4323	0,00058	0,00462	0,88793	7°
J150	2	497,2593	4,4930	0,4316	0,00066	0,00461	0,87429	8°
J32	2	497,2873	4,4913	0,4314	0,00068	0,00463	0,87272	9º
J152	2	497,1444	4,4920	0,4314	0,00068	0,00462	0,87192	10°
J36	2	497,2883	4,4907	0,4312	0,00069	0,00464	0,87007	11°
J158	3	496,5778	4,8021	0,4344	0,00434	0,00077	0,15025	12°
J191	1	497,0316	4,8099	0,4350	0,00444	0,00074	0,14343	13°
J145	3	496,5776	4,8023	0,4338	0,00434	0,00072	0,14195	14°
J144	1	497,0761	4,7986	0,4329	0,00431	0,00070	0,14042	15°
J184	3	496,5760	4,8051	0,4335	0,00438	0,00067	0,13282	16°
J350	3	496,6137	4,8176	0,4344	0,00454	0,00062	0,11942	17°
J70	5	496,9774	4,8427	0,4356	0,00486	0,00063	0,11442	18°
J266	3	496,6120	4,8194	0,4342	0,00456	0,00058	0,11341	19°
J74	5	496,9910	4,8419	0,4355	0,00485	0,00062	0,11259	20°
J265	3	496,6086	4,8191	0,4339	0,00456	0,00055	0,10844	21°
J155	1	497,2294	4,8494	0,4348	0,00495	0,00051	0,09306	22°
J162	1	497,0223	4,8356	0,4342	0,00477	0,00046	0,08875	23°
J379	1	497,0439	4,8243	0,4330	0,00464	0,00041	0,08199	24°
J377	1	497,0974	4,8257	0,4331	0,00465	0,00041	0,08031	25°
J373	1	497,0960	4,8248	0,4327	0,00465	0,00038	0,07619	26°
J308	1	496,9941	4,8271	0,4327	0,00468	0,00037	0,07290	27°
J1058	1	496,8281	4,8373	0,4326	0,00481	0,00027	0,05319	28°
J8	1	496,8577	4,8373	0,4322	0,00481	0,00023	0,04581	29°
J334	1	497,0478	4,8404	0,4319	0,00486	0,00017	0,03367	30°
Constante de Normali	ização (gij)	2722,4516	25,7663	2,3730				
Ponderação (v	wj)	33,33%	33,33%	33,33%	-			
Objetivo		MIN	MIN	MAX	-			
Solução Ideal Posit	iva (A*)	0,06080	0,05779	0,06119	•			
Solução Ideal Nega	tiva (A-)	0,06093	0,06273	0,06057	-			

Tabela A21: Ranking de cenários para aumento de demanda de 1,0% conforme método TOPSIS e sem aplicação de medidas de engenharia.

		Cenário sem	medidas de	engenharia				
Nó de expansão	Setor	PU	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J158	3	496,1416	4,4590	0,4347	0,00021	0,00455	0,95612	1º
J145	3	496,1409	4,4485	0,4335	0,00033	0,00466	0,93415	2°
J350	3	496,3762	4,4743	0,4340	0,00043	0,00434	0,90971	3°
J184	3	496,1337	4,4635	0,4330	0,00045	0,00446	0,90856	4°
J266	3	496,3726	4,4755	0,4336	0,00047	0,00432	0,90114	5°
J265	3	496,3650	4,4752	0,4330	0,00053	0,00431	0,88961	6°
J504	2	497,7938	4,4702	0,4307	0,00081	0,00434	0,84310	7°
J240	2	497,9390	4,4582	0,4300	0,00087	0,00450	0,83806	8°
J27	2	497,5840	4,6040	0,4356	0,00205	0,00273	0,57181	9°
J25	2	497,5841	4,6051	0,4349	0,00206	0,00269	0,56587	10°
J90	2	497,6191	4,6105	0,4354	0,00213	0,00264	0,55348	11°
J32	2	497,8254	4,6087	0,4296	0,00229	0,00252	0,52467	12°
J36	2	497,8278	4,6097	0,4293	0,00232	0,00251	0,52017	13°
J150	2	496,6117	4,6242	0,4300	0,00244	0,00233	0,48783	14°
J152	2	496,3466	4,6232	0,4293	0,00247	0,00234	0,48704	15°
J91	2	496,5610	4,6403	0,4358	0,00251	0,00231	0,47876	16°
J153	2	496,3862	4,6399	0,4355	0,00251	0,00230	0,47826	17°
J144	1	496,7238	4,7030	0,4344	0,00334	0,00148	0,30739	18°
J191	1	496,7330	4,7436	0,4353	0,00387	0,00114	0,22794	19°
J1058	1	495,9828	4,7635	0,4347	0,00413	0,00094	0,18528	20°
J8	1	496,0511	4,7633	0,4340	0,00413	0,00086	0,17202	21°
J70	5	497,7807	4,7937	0,4349	0,00453	0,00079	0,14871	22°
J74	5	497,8124	4,7931	0,4347	0,00452	0,00077	0,14522	23°
J162	1	496,7333	4,7771	0,4336	0,00432	0,00071	0,14040	24°
J377	1	496,9218	4,7725	0,4332	0,00426	0,00068	0,13737	25°
J379	1	496,9070	4,7714	0,4329	0,00425	0,00066	0,13396	26°
J155	1	496,9275	4,8012	0,4342	0,00463	0,00071	0,13263	27°
J373	1	497,0288	4,7711	0,4325	0,00425	0,00061	0,12507	28°
J334	1	497,0122	4,7897	0,4328	0,00449	0,00053	0,10504	29°
J308	1	497,1595	4,7757	0,4319	0,00432	0,00050	0,10444	30°
Constante de Normal	ização (gij)	2721,7054	25,4436	2,3730				
Ponderação (v	wj)	33,33%	33,33%	33,33%	•			
Objetivo		MIN	MIN	MAX				
Solução Ideal Posit	iva (A*)	0,06074	0,05828	0,06122				
Solução Ideal Nega	tiva (A-)	0,06098	0,06290	0,06030	•			

Tabela A22: Ranking de cenários para aumento de demanda de 2,0% conforme método TOPSIS e sem aplicação de medidas de engenharia.

	g .	Cenário sem	medidas de	engenharia	D	D. (2)	Ctri	
Nó de expansão	Setor	PU	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J27	2	496,9223	4,0768	0,4361	0,00139	0,00902	0,86635	1º
J 90	2	496,9910	4,0810	0,4362	0,00145	0,00897	0,86098	2°
J25	2	496,9221	4,0775	0,4348	0,00146	0,00898	0,85999	3°
J1058	1	495,6876	3,9811	0,4257	0,00182	0,01021	0,84860	4°
Ј8	1	495,8471	3,9804	0,4247	0,00196	0,01022	0,83887	5°
J32	2	496,8965	4,0836	0,4291	0,00197	0,00881	0,81731	6°
J36	2	496,9023	4,0838	0,4285	0,00203	0,00880	0,81220	7°
J91	2	496,3934	4,2762	0,4361	0,00412	0,00632	0,60541	8°
J145	3	495,7075	4,2695	0,4321	0,00412	0,00630	0,60473	9°
J153	2	495,9153	4,2757	0,4341	0,00415	0,00626	0,60163	10°
J158	3	495,7086	4,2822	0,4345	0,00423	0,00619	0,59418	11°
J150	2	496,4110	4,2763	0,4285	0,00435	0,00614	0,58540	12°
J184	3	495,6782	4,2860	0,4308	0,00438	0,00604	0,57966	13°
J152	2	495,7726	4,2750	0,4255	0,00449	0,00614	0,57767	14°
J266	3	495,8839	4,2969	0,4328	0,00447	0,00594	0,57080	15°
J350	3	495,8920	4,2987	0,4335	0,00448	0,00594	0,57014	16°
J265	3	495,8653	4,2997	0,4315	0,00454	0,00587	0,56384	17°
J504	2	497,2782	4,4609	0,4371	0,00667	0,00396	0,37221	18°
J240	2	497,7035	4,4719	0,4374	0,00683	0,00383	0,35967	19°
J191	1	496,4325	4,6118	0,4387	0,00876	0,00245	0,21856	20°
J144	1	497,4068	4,6317	0,4348	0,00905	0,00184	0,16922	21°
J162	1	496,3880	4,6631	0,4346	0,00949	0,00158	0,14301	22°
J377	1	497,6328	4,6615	0,4337	0,00948	0,00147	0,13462	23°
J308	1	497,1867	4,6626	0,4330	0,00950	0,00139	0,12757	24°
J70	5	497,2099	4,6666	0,4328	0,00956	0,00133	0,12244	25°
J379	1	497,3189	4,6601	0,4322	0,00948	0,00132	0,12195	26°
J74	5	497,2882	4,6655	0,4326	0,00954	0,00132	0,12166	27°
J373	1	497,6256	4,6599	0,4321	0,00947	0,00131	0,12135	28°
J155	1	496,4920	4,7169	0,4347	0,01023	0,00141	0,12103	29°
J334	1	497,2323	4,6621	0,4315	0,00951	0,00122	0,11327	30°
Constante de Normal	ização (gij)	2720,1008	24,0257	2,2029				
Ponderação (wj)	33,33%	33,33%	0,33,33%	-			
Objetivo		MIN	MIN	MAX	•			
Solução Ideal Posit	iva (A*)	0,06074	0,05522	0,06170	-			
Solução Ideal Nega	tiva (A-)	0,06099	0,06544	0,05974				

Tabela A23: Ranking de cenários para aumento de demanda de 5,0% conforme método TOPSIS e sem aplicação de medidas de engenharia.

		Cenário sem	medidas de	engenharia			CIL.	
Nó de expansão	Setor	PU	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J350	3	493,2814	4,0202	0,4499	0,00008	0,01052	0,99261	1°
J266	3	493,2540	4,0159	0,4483	0,00024	0,01038	0,97767	2°
J265	3	493,1894	4,0148	0,4450	0,00070	0,01005	0,93452	3°
J91	2	495,2969	4,0357	0,4367	0,00191	0,00899	0,82447	4°
J240	2	500,2542	4,0228	0,4374	0,00198	0,00917	0,82272	5°
J158	3	495,1918	4,1501	0,4428	0,00221	0,00856	0,79468	6°
J145	3	495,1876	4,1271	0,4369	0,00247	0,00810	0,76668	7°
J377	1	497,5373	4,1404	0,4289	0,00353	0,00712	0,66886	8°
J184	3	495,0389	4,1798	0,4303	0,00367	0,00690	0,65274	9º
J150	2	495,3525	4,0348	0,4194	0,00434	0,00754	0,63456	10°
J373	1	497,5123	4,1385	0,4255	0,00394	0,00681	0,63350	11°
J504	2	498,7609	4,0164	0,4145	0,00507	0,00745	0,59500	12°
J153	2	493,8761	4,0361	0,4128	0,00528	0,00713	0,57430	13°
J191	1	496,7086	4,4116	0,4457	0,00575	0,00750	0,56582	14°
J308	1	498,3533	4,1940	0,4228	0,00468	0,00596	0,56033	15°
J162	1	496,3604	4,3793	0,4386	0,00550	0,00661	0,54615	16°
J379	1	496,4750	4,1387	0,4157	0,00519	0,00598	0,53539	17°
Ј8	1	494,0318	4,1797	0,4186	0,00504	0,00576	0,53331	18°
J144	1	496,9032	4,3600	0,4335	0,00550	0,00600	0,52168	19°
J1058	1	493,5883	4,1803	0,4149	0,00552	0,00546	0,49731	20°
J155	1	496,3454	4,4704	0,4399	0,00672	0,00660	0,49565	21°
J27	2	497,0830	4,4786	0,4361	0,00697	0,00606	0,46515	22°
J90	2	497,2918	4,4892	0,4367	0,00710	0,00614	0,46378	23°
J334	1	497,6796	4,1693	0,4094	0,00619	0,00515	0,45409	24°
J152	2	493,7058	4,0343	0,3935	0,00801	0,00661	0,45208	25°
J25	2	497,0836	4,4797	0,4327	0,00713	0,00558	0,43890	26°
J74	5	498,3546	4,4883	0,4301	0,00740	0,00520	0,41258	27°
J70	5	498,0677	4,4907	0,4283	0,00752	0,00495	0,39659	28°
J32	2	497,0604	4,4782	0,4198	0,00793	0,00375	0,32114	29°
J36	2	497,0853	4,4841	0,4183	0,00812	0,00354	0,30343	30°
Constante de Normal	ização (gij)	2717,8017	23,1794	2,3495				
Ponderação (wj)	33,33%	33,33%	33,33%	•			
Objetivo		MIN	MIN	MAX	•			
Solução Ideal Posit	iva (A*)	0,06049	0,05773	0,06383	•			
Solução Ideal Nega	tiva (A-)	0,06135	0,06458	0,05583				

Tabela A24: Ranking de cenários para aumento de demanda de 10,0% conforme método TOPSIS e sem aplicação de medidas de engenharia.

		Cenários sem						
Nó de expansão	Setor	PU	WA	R	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J158	3	491,8816	3,1362	0,4771	0,00066	0,03976	0,98370	1°
J145	3	491,8694	3,1108	0,4660	0,00207	0,03846	0,94883	2°
J350	3	492,1709	3,2545	0,4797	0,00261	0,03927	0,93779	3°
J266	3	492,0957	3,2618	0,4767	0,00277	0,03880	0,93327	4°
J265	3	491,7857	3,2603	0,4693	0,00312	0,03779	0,92366	5°
J184	3	491,4955	3,1682	0,4299	0,00755	0,03321	0,81483	6°
J240	2	505,8928	3,1604	0,4276	0,00812	0,03292	0,80207	7°
J90	2	496,9385	3,2327	0,4255	0,00847	0,03204	0,79080	8°
J27	2	496,4266	3,2207	0,4226	0,00884	0,03175	0,78217	9°
J191	1	496,0768	3,6307	0,4549	0,01011	0,03362	0,76876	10°
J25	2	496,4274	3,2210	0,4157	0,00985	0,03085	0,75805	11°
J308	1	496,0343	3,4302	0,4258	0,00997	0,03056	0,75412	12°
J91	2	494,1339	3,2002	0,4111	0,01043	0,03046	0,74490	13°
J74	5	493,9650	3,3995	0,4144	0,01111	0,02923	0,72452	14°
J162	1	496,4118	3,7110	0,4387	0,01247	0,03094	0,71271	15°
J377	1	496,1520	3,5604	0,4194	0,01218	0,02885	0,70320	16°
J32	2	495,4812	3,2419	0,3992	0,01233	0,02854	0,69828	17°
J36	2	495,5412	3,2442	0,3967	0,01271	0,02820	0,68933	18°
J373	1	496,0773	3,5597	0,4140	0,01277	0,02810	0,68751	19°
J70	5	493,4176	3,3999	0,3985	0,01327	0,02707	0,67109	20°
J155	1	495,7383	4,0681	0,4600	0,01752	0,03345	0,65635	21°
J150	2	494,1551	3,2056	0,3831	0,01461	0,02689	0,64801	22°
J144	1	495,4003	3,5903	0,3870	0,01640	0,02411	0,59518	23°
J8	1	489,7757	3,6284	0,3625	0,01991	0,02051	0,50746	24°
J334	1	496,0020	3,4719	0,3445	0,02132	0,01940	0,47642	25°
J379	1	494,7395	3,5598	0,3404	0,02243	0,01804	0,44583	26°
J1058	1	490,2083	3,6282	0,3243	0,02512	0,01541	0,38015	27°
J504	2	506,1459	3,1514	0,2561	0,03363	0,01676	0,33260	28°
J153	2	494,9171	3,1993	0,2618	0,03275	0,01614	0,33015	29°
J152	2	496,5184	3,2054	0,2372	0,03644	0,01559	0,29959	30°
Constante de Normal	ização (gij)	2712,0035	18,5005	2,2218				
Ponderação (wj)	33,33%	33,33%	33,33%				
Objetivo		MIN	MIN	MAX				
Solução Ideal Posit	iva (A*)	0,06020	0,05605	0,07198				
Solução Ideal Nega	tiva (A-)	0,06221	0,07330	0,03558				

Tabela A25: Ranking de cenários para aumento de demanda de 0,1% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J191	1	497,1370	4,8752	0,4048	0	0,00340	0,07538	0,95683	1º
J144	1	497,1420	4,8729	0,4047	0	0,00340	0,07538	0,95681	2°
J377	1	497,1379	4,8786	0,4047	0	0,00342	0,07538	0,95664	3°
J379	1	497,1280	4,8784	0,4047	0	0,00342	0,07538	0,95664	4°
J155	1	497,1406	4,8823	0,4047	0	0,00342	0,07538	0,95658	5°
J162	1	497,1298	4,8773	0,4046	0	0,00342	0,07538	0,95657	6°
J373	1	497,1369	4,8783	0,4046	0	0,00343	0,07538	0,95653	7°
J1058	1	497,0894	4,8780	0,4046	0	0,00343	0,07538	0,95652	8°
Ј8	1	497,0947	4,8780	0,4045	0	0,00344	0,07538	0,95639	9º
J334	1	497,1717	4,8829	0,4044	0	0,00345	0,07538	0,95622	10°
J308	1	497,1100	4,8819	0,4042	0	0,00347	0,07538	0,95597	11°
J70	5	497,3133	4,8714	0,4036	0	0,00353	0,07538	0,95529	12°
J74	5	497,3159	4,8712	0,4036	0	0,00353	0,07538	0,95526	13°
J350	3	496,9094	4,8901	0,4029	0	0,00361	0,07538	0,95431	14°
J158	3	496,9052	4,8912	0,4030	0	0,00361	0,07538	0,95430	15°
J266	3	496,9091	4,8918	0,4029	0	0,00362	0,07538	0,95423	16°
J265	3	496,9083	4,8918	0,4028	0	0,00362	0,07538	0,95414	17°
J145	3	496,9051	4,8915	0,4028	0	0,00362	0,07538	0,95412	18°
J184	3	496,9052	4,8904	0,4028	0	0,00363	0,07538	0,95407	19°
J27	2	489,4296	4,8398	0,4349	285,37	0,07538	0,00364	0,04602	20°
J90	2	489,4325	4,8417	0,4349	285,37	0,07538	0,00363	0,04599	21°
J504	2	489,4144	4,8412	0,4349	285,37	0,07538	0,00363	0,04598	22°
J153	2	489,3704	4,8411	0,4348	285,37	0,07538	0,00363	0,04593	23°
J25	2	489,4296	4,8403	0,4348	285,37	0,07538	0,00363	0,04592	24°
J91	2	489,3801	4,8411	0,4348	285,37	0,07538	0,00363	0,04591	25°
J240	2	489,4212	4,8393	0,4348	285,37	0,07538	0,00362	0,04588	26°
J32	2	489,4292	4,8414	0,4345	285,37	0,07538	0,00359	0,04552	27°
J36	2	489,4294	4,8414	0,4345	285,37	0,07538	0,00359	0,04548	28°
J150	2	489,3809	4,8411	0,4344	285,37	0,07538	0,00359	0,04540	29°
J152	2	489,3612	4,8411	0,4344	285,37	0,07538	0,00358	0,04538	30°
Constante de Norma	lização (gij)	2707,2800	26,6565	2,2757	946,47				
Ponderação ((wj)	25%	25%	25%	25%				
Objetivo		MIN	MIN	MAX	MIN				
Solução Ideal Posi	tiva (A*)	0,04519	0,04539	0,04778	0				
Solução Ideal Nega	ativa (A-)	0,04592	0,04588	0,04425	0,07538				

Tabela A26: Ranking de cenários para aumento de demanda de 0,5% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J27	2	497,2899	4,4884	0,4029	0	0,00386	0,10212	0,96361	1º
J90	2	497,3052	4,4924	0,4029	0	0,00386	0,10212	0,96359	2°
J25	2	497,2901	4,4903	0,4025	0	0,00390	0,10212	0,96323	3º
J32	2	497,2873	4,4913	0,4011	0	0,00406	0,10212	0,96177	4°
J36	2	497,2883	4,4907	0,4009	0	0,00408	0,10212	0,96158	5°
J191	1	497,0316	4,8099	0,4051	0	0,00476	0,10206	0,95548	6°
J158	3	496,5778	4,8021	0,4045	0	0,00476	0,10206	0,95547	7°
J145	3	496,5776	4,8023	0,4038	0	0,00482	0,10206	0,95495	8°
J184	3	496,5760	4,8051	0,4035	0	0,00486	0,10206	0,95458	9º
J350	3	496,6137	4,8176	0,4044	0	0,00486	0,10206	0,95458	10°
J144	1	497,0761	4,7986	0,4029	0	0,00487	0,10206	0,95443	11°
J266	3	496,6120	4,8194	0,4042	0	0,00488	0,10206	0,95434	12°
J265	3	496,6086	4,8191	0,4039	0	0,00491	0,10206	0,95409	13°
J70	5	496,9774	4,8427	0,4056	0	0,00493	0,10206	0,95394	14°
J74	5	496,9910	4,8419	0,4055	0	0,00493	0,10206	0,95391	15°
J162	1	497,0223	4,8356	0,4042	0	0,00499	0,10206	0,95336	16°
J379	1	497,0439	4,8243	0,4029	0	0,00503	0,10206	0,95304	17°
J377	1	497,0974	4,8257	0,4030	0	0,00503	0,10206	0,95302	18°
J155	1	497,2294	4,8494	0,4048	0	0,00504	0,10206	0,95296	19°
J373	1	497,0960	4,8248	0,4026	0	0,00506	0,10206	0,95274	20°
J308	1	496,9941	4,8271	0,4026	0	0,00507	0,10206	0,95264	21°
J1058	1	496,8281	4,8373	0,4026	0	0,00513	0,10206	0,95211	22°
Ј8	1	496,8577	4,8373	0,4021	0	0,00517	0,10206	0,95177	23°
J334	1	497,0478	4,8404	0,4018	0	0,00522	0,10206	0,95131	24°
J504	2	488,9894	4,6820	0,4368	285,37	0,10208	0,00438	0,04116	25°
J153	2	488,7718	4,6810	0,4365	285,37	0,10208	0,00436	0,04096	26°
J91	2	488,8376	4,6813	0,4366	285,37	0,10208	0,00436	0,04095	27°
J240	2	489,0417	4,6758	0,4364	285,37	0,10208	0,00436	0,04092	28°
J150	2	488,8406	4,6805	0,4346	285,37	0,10208	0,00416	0,03919	29°
J152	2	488,7263	4,6799	0,4344	285,37	0,10208	0,00415	0,03904	30°
Constante de Normal	ização (gij)	2713,2070	25,9701	2,2460	699,01				
Ponderação (wj)	25%	25%	25%	25%	•			
Objetivo		MIN	MIN	MAX	MIN				
Solução Ideal Posit	iva (A*)	0,04503	0,04321	0,04862	0				
Solução Ideal Nega	tiva (A-)	0,04582	0,04668	0,04462	0,10206				

Tabela A27: Ranking de cenários para aumento de demanda de 1,0% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J158	3	496,1416	4,4590	0,4045	0	0,00317	0,09455	0,96755	1°
J350	3	496,3762	4,4743	0,4038	0	0,00328	0,09455	0,96644	2°
J145	3	496,1409	4,4485	0,4032	0	0,00331	0,09456	0,96622	3°
J266	3	496,3726	4,4755	0,4034	0	0,00333	0,09455	0,96601	4°
J184	3	496,1337	4,4635	0,4026	0	0,00339	0,09455	0,96539	5°
J265	3	496,3650	4,4752	0,4027	0	0,00340	0,09455	0,96525	6°
J91	2	496,5610	4,6403	0,4059	0	0,00375	0,09451	0,96184	7°
J153	2	496,3862	4,6399	0,4056	0	0,00377	0,09451	0,96163	8°
J150	2	496,6117	4,6242	0,3998	0	0,00422	0,09451	0,95722	9°
J144	1	496,7238	4,7030	0,4044	0	0,00428	0,09450	0,95671	10°
J152	2	496,3466	4,6232	0,3991	0	0,00428	0,09451	0,95668	11°
J191	1	496,7330	4,7436	0,4053	0	0,00449	0,09450	0,95465	12°
J1058	1	495,9828	4,7635	0,4046	0	0,00468	0,09449	0,95286	13°
J8	1	496,0511	4,7633	0,4037	0	0,00473	0,09449	0,95228	14°
J377	1	496,9218	4,7725	0,4031	0	0,00486	0,09449	0,95108	15°
J162	1	496,7333	4,7771	0,4034	0	0,00487	0,09449	0,95100	16°
J379	1	496,9070	4,7714	0,4028	0	0,00487	0,09449	0,95096	17°
J373	1	497,0288	4,7711	0,4023	0	0,00491	0,09449	0,95058	18°
J70	5	497,7807	4,7937	0,4044	0	0,00494	0,09449	0,95035	19°
J74	5	497,8124	4,7931	0,4042	0	0,00495	0,09449	0,95026	20°
J308	1	497,1595	4,7757	0,4016	0	0,00500	0,09449	0,94975	21°
J155	1	496,9275	4,8012	0,4040	0	0,00501	0,09449	0,94967	22°
J334	1	497,0122	4,7897	0,4025	0	0,00503	0,09449	0,94946	23°
J27	2	488,9795	4,4239	0,4321	285,37	0,09449	0,00530	0,05314	24°
J504	2	489,1597	4,4239	0,4319	285,37	0,09449	0,00528	0,05297	25°
J90	2	489,0105	4,4281	0,4321	285,37	0,09449	0,00527	0,05286	26°
J240	2	489,3628	4,4127	0,4306	285,37	0,09449	0,00526	0,05274	27°
J25	2	488,9796	4,4254	0,4314	285,37	0,09449	0,00524	0,05253	28°
J32	2	488,9833	4,4235	0,4286	285,37	0,09449	0,00505	0,05069	29°
J36	2	488,9855	4,4241	0,4283	285,37	0,09449	0,00502	0,05041	30°
Constante de Normal	lização (gij)	2710,6769	25,2649	2,2451	755,02				
Ponderação ((wj)	25%	25%	25%	25%				
Objetivo		MIN	MIN	MAX	MIN	•			
Solução Ideal Posi	tiva (A*)	0,04510	0,04366	0,04812	0	•			
Solução Ideal Nega	ativa (A-)	0,04591	0,04751	0,04444	0,09449	•			

Tabela A28: Ranking de cenários para aumento de demanda de 2,0% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J1058	1	495,6876	3,9811	0,3950	0	0,00494	0,08409	0,94454	1º
J158	3	495,7086	4,2822	0,4045	0	0,00497	0,08388	0,94407	2°
Ј8	1	495,8471	3,9804	0,3939	0	0,00507	0,08409	0,94315	3º
J145	3	495,7075	4,2695	0,4018	0	0,00513	0,08389	0,94238	4º
J350	3	495,8920	4,2987	0,4034	0	0,00517	0,08387	0,94196	5°
J266	3	495,8839	4,2969	0,4026	0	0,00522	0,08387	0,94139	6°
J184	3	495,6782	4,2860	0,4003	0	0,00535	0,08388	0,93999	7°
J265	3	495,8653	4,2997	0,4012	0	0,00536	0,08387	0,93989	8°
J191	1	496,4325	4,6118	0,4087	0	0,00730	0,08378	0,91989	9º
J144	1	497,4068	4,6317	0,4046	0	0,00770	0,08377	0,91582	10°
J162	1	496,3880	4,6631	0,4042	0	0,00799	0,08377	0,91293	11°
J377	1	497,6328	4,6615	0,4034	0	0,00803	0,08377	0,91252	12°
J308	1	497,1867	4,6626	0,4023	0	0,00809	0,08377	0,91189	13°
J379	1	497,3189	4,6601	0,4018	0	0,00810	0,08377	0,91182	14°
J373	1	497,6256	4,6599	0,4016	0	0,00811	0,08377	0,91171	15°
J70	5	497,2099	4,6666	0,4021	0	0,00814	0,08377	0,91141	16°
J74	5	497,2882	4,6655	0,4019	0	0,00814	0,08377	0,91139	17°
J334	1	497,2323	4,6621	0,4008	0	0,00818	0,08376	0,91105	18°
J155	1	496,4920	4,7169	0,4043	0	0,00847	0,08377	0,90820	19°
J91	2	489,8148	4,5070	0,4389	285,37	0,07468	0,01075	0,12588	20°
J240	2	490,7044	4,5110	0,4381	285,37	0,07468	0,01070	0,12535	21°
J27	2	490,0593	4,4885	0,4362	285,37	0,07467	0,01066	0,12493	22°
J153	2	489,3516	4,5066	0,4369	285,37	0,07468	0,01066	0,12488	23°
J90	2	490,1258	4,4947	0,4363	285,37	0,07467	0,01065	0,12481	24°
J25	2	490,0594	4,4893	0,4348	285,37	0,07467	0,01059	0,12424	25°
J150	2	489,8363	4,5070	0,4314	285,37	0,07469	0,01040	0,12225	26°
J32	2	490,0510	4,4905	0,4294	285,37	0,07468	0,01035	0,12170	27°
J36	2	490,0566	4,4919	0,4287	285,37	0,07468	0,01032	0,12138	28°
J152	2	489,2010	4,5066	0,4284	285,37	0,07469	0,01028	0,12098	29°
J504	2	490,4783	4,5108	0,4395	320,89	0,08393	0,00549	0,06140	30°
Constande de Normal	ização (gij)	2706,5782	24,5710	2,2687	957,77				
Ponderação (v	wj)	25%	25%	25%	25%				
Objetivo		MIN	MIN	MAX	MIN				
Solução Ideal Posit	iva (A*)	0,04519	0,04050	0,04843	0				
Solução Ideal Nega	tiva (A-)	0,04597	0,04799	0,04340	0,08376				

Tabela A29: Ranking de cenários para aumento de demanda de 5,0% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J350	3	493,2814	4,0202	0,4201	0	0,00168	0,19436	0,99142	1º
J266	3	493,2540	4,0159	0,4182	0	0,00188	0,19436	0,99041	2°
J265	3	493,1894	4,0148	0,4145	0	0,00228	0,19435	0,98839	3°
J158	3	495,1918	4,1501	0,4131	0	0,00288	0,19432	0,98542	4°
J91	2	495,2969	4,0357	0,4061	0	0,00325	0,19433	0,98354	5°
J240	2	500,2542	4,0228	0,4066	0	0,00331	0,19434	0,98325	6°
J145	3	495,1876	4,1271	0,4065	0	0,00341	0,19431	0,98273	7°
J377	1	497,5373	4,1404	0,3984	0	0,00434	0,19430	0,97813	8°
J184	3	495,0389	4,1798	0,3993	0	0,00436	0,19429	0,97803	9°
J373	1	497,5123	4,1385	0,3945	0	0,00475	0,19430	0,97616	10°
J191	1	496,7086	4,4116	0,4155	0	0,00483	0,19429	0,97576	11°
J162	1	496,3604	4,3793	0,4073	0	0,00502	0,19428	0,97483	12°
J144	1	496,9032	4,3600	0,4029	0	0,00518	0,19427	0,97401	13°
J308	1	498,3533	4,1940	0,3917	0	0,00524	0,19429	0,97372	14°
J150	2	495,3525	4,0348	0,3877	0	0,00527	0,19432	0,97359	15°
J155	1	496,3454	4,4704	0,4087	0	0,00573	0,19427	0,97137	16°
J27	2	497,0830	4,4786	0,4055	0	0,00600	0,19427	0,97003	17°
J90	2	497,2918	4,4892	0,4060	0	0,00607	0,19427	0,96972	18°
J25	2	497,0836	4,4797	0,4016	0	0,00625	0,19427	0,96882	19°
J74	5	498,3546	4,4883	0,3990	0	0,00652	0,19426	0,96753	20°
J70	5	498,0677	4,4907	0,3971	0	0,00666	0,19426	0,96685	21°
J32	2	497,0604	4,4782	0,3887	0	0,00719	0,19426	0,96433	22°
J36	2	497,0853	4,4841	0,3870	0	0,00737	0,19426	0,96347	23°
J504	2	492,7448	4,0164	0,4345	35,52	0,02497	0,16945	0,87157	24°
J153	2	488,3201	4,0360	0,4278	45,44	0,03195	0,16246	0,83567	25°
J379	1	490,4680	4,1388	0,4233	45,44	0,03199	0,16242	0,83544	26°
J152	2	488,3649	4,0341	0,4160	45,44	0,03201	0,16243	0,83539	27°
J334	1	491,6807	4,1692	0,4183	90,88	0,06392	0,13048	0,67117	28°
Ј8	1	490,5692	4,4417	0,4280	185,5	0,13047	0,06405	0,32928	29°
J1058	1	490,4337	4,4543	0,4299	276,38	0,19432	0,00490	0,02458	30°
Constante de Normal	ização (gij)	2711,3468	23,2789	2,2383	355,68				
Ponderação (wj)	25%	25%	25%	25%				
Objetivo		MIN	MIN	MAX	MIN				
Solução Ideal Posi	tiva (A*)	0,04503	0,04312	0,04853	0				
Solução Ideal Nega	tiva (A-)	0,04613	0,04823	0,04322	0,19426				

Tabela A30: Ranking de cenários para aumento de demanda de 10,0% conforme método TOPSIS e com substituição de tubulações.

Nó de expansão	Setor	PU	WA	R	Custo (R\$)	Distância até A* (S*)	Distância até A- (S-)	Ci*	Ranking
J191	1	496,0768	3,6307	0,4253	0	0,00936	0,15107	0,94168	1°
J162	1	496,4118	3,7110	0,4073	0	0,01145	0,15099	0,92952	2°
J377	1	496,1520	3,5604	0,3876	0	0,01184	0,15106	0,92731	3°
J144	1	489,8179	3,5903	0,4442	92,75	0,01205	0,14189	0,92173	4°
J373	1	489,7401	3,5596	0,4258	92,75	0,01264	0,14184	0,91816	5°
J379	1	488,7394	3,5598	0,4167	90,88	0,01300	0,14200	0,91612	6°
J155	1	495,7383	4,0681	0,4289	0	0,01416	0,15096	0,91423	7°
J350	3	487,3018	3,2597	0,4829	138,19	0,01398	0,13787	0,90791	8°
J266	3	487,2618	3,2635	0,4798	138,19	0,01400	0,13784	0,90783	9°
J265	3	487,0406	3,2620	0,4729	138,19	0,01403	0,13779	0,90759	10°
J308	1	492,3743	3,4192	0,4283	183,63	0,01974	0,13287	0,87067	11°
J334	1	490,6231	3,5943	0,4205	181,76	0,02044	0,13290	0,86668	12°
J240	2	491,5556	3,1781	0,4259	285,37	0,02923	0,12298	0,80794	13°
J90	2	488,6534	3,2308	0,4237	285,37	0,02931	0,12290	0,80744	14°
J27	2	488,1535	3,2200	0,4207	285,37	0,02937	0,12291	0,80712	15°
J25	2	488,1541	3,2200	0,4139	285,37	0,02954	0,12289	0,80618	16°
J32	2	487,0580	3,1908	0,4003	285,37	0,02992	0,12290	0,80423	17°
J36	2	487,1183	3,1936	0,3978	285,37	0,03000	0,12290	0,80380	18°
J158	3	487,2348	3,1283	0,4713	361,84	0,03626	0,11571	0,76139	19°
J145	3	487,2230	3,1119	0,4604	361,84	0,03632	0,11565	0,76101	20°
J91	2	485,6450	3,2067	0,4163	378,12	0,03855	0,11367	0,74677	21°
J150	2	485,8245	3,2066	0,3937	378,12	0,03906	0,11363	0,74420	22°
J504	2	490,9424	3,1588	0,4298	411,77	0,04163	0,11044	0,72623	23°
Ј8	1	490,1614	3,6571	0,4255	414,57	0,04261	0,10960	0,72006	24°
J184	3	487,2970	3,1512	0,4556	454,59	0,04562	0,10635	0,69978	25°
J1058	1	490,2113	3,6538	0,4351	507,32	0,05159	0,10038	0,66053	26°
J152	2	485,3204	3,2040	0,3879	516,31	0,05270	0,09988	0,65461	27°
J153	2	485,8233	3,2046	0,4141	642,71	0,06479	0,08737	0,57417	28°
J74	5	489,7078	3,3805	0,4339	1135,72	0,11392	0,03862	0,25317	29°
J70	5	489,7696	3,3818	0,4398	1506,72	0,15101	0,01082	0,06684	30°
Normalização	(gij)	2680,8164	18,5111	2,3531	2496,22				
Ponderação (wj)	25%	25%	25%	25%				
Tipo		MIN	MIN	MAX	MIN				
Solução Ideal Posi	tiva (A*)	0,04526	0,04203	0,05131	0				
Solução Ideal Nega	tiva (A-)	0,04629	0,05494	0,04118	0,15090	•			

Tabela A31: Ranking de cenários para aumento de demanda de 0,1% conforme método TOPSIS e com substituição de bombas.

	_				_				Ponto ideal	das bombas		
Nó de expansão	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J373	1	1 e 2	490,64	4,68	0,44	88,34	41,69	52449	0,1109	33,86	0,60266	1º
J155	1	1 e 2	490,71	4,69	0,44	88,36	41,72	52479	0,1110	33.86	0,60225	2°
J144	1	1 e 2	490,62	4,69	0,44	88,37	41,77	52526	0,1111	33,86	0,60218	3°
J191	1	1 e 2	490,62	4,70	0,44	88,38	41,80	52565	0,1112	30,86	0,60189	4°
J162	1	1 e 2	490,60	4,71	0,44	88,39	41,81	52571	0,1112	33,86	0,60177	5°
J377	1	1 e 2	490,64	4,70	0,44	88,39	41,82	52579	0,1113	33,86	0,60177	6°
J334	1	1 e 2	490,65	4,70	0,44	88,40	41,84	52602	0,1113	33,86	0,60169	7°
J8	1	1 e 2	490,56	4,71	0,44	88,39	41,82	52580	0,1113	33,86	0,60168	8°
J308	1	1 e 2	490,67	4,70	0,44	88,40	41,86	52623	0,1114	33,86	0,60164	9°
J1058	1	1 e 2	490,56	4,71	0,44	88,39	41,82	52588	0,1113	33,86	0,60163	10°
J379	1	1 e 2	490,61	4,72	0,44	88,42	41,89	52658	0,1115	33,86	0,60133	11°
J27	2	6 e 7	489,55	4,51	0,44	69,97	34,48	45101	0,0264	93,08	0,48917	12°
J240	2	6 e 7	489,62	4,51	0,44	69,93	34,38	45005	0,0263	93,08	0,48749	13°
J91	2	8 e 9	489,54	4,51	0,44	69,93	34,38	45006	0,0263	93,08	0,48749	14°
J152	2	6 e 7	489,65	4,51	0,44	69,87	34,26	44883	0,0262	93,08	0,48561	15°
J32	2	6 e 7	488,51	4,75	0,44	70,00	34,55	45170	0,0265	93,08	0,48342	16°
J150	2	6 e 7	488,61	4,75	0,44	70,01	34,57	45187	0,0265	93,08	0,48316	17°
J90	2	8 e 9	488,48	4,75	0,45	69,99	34,51	45135	0,0265	93,08	0,48314	18°
J36	2	6 e 7	488,62	4,75	0,44	70,01	34,56	45183	0,0265	93,08	0,48309	19°
J153	2	6 e 7	489,80	4,53	0,44	69,73	33,96	44591	0,0259	93.08	0,48106	20°
J25	2	6 e 7	489,82	4,53	0,44	69,73	33,95	44584	0,0259	93,08	0,48097	21°
J504	2	6 e 7	489,86	4,53	0,44	69,72	33,94	44573	0,0259	93,08	0,48083	22°
J350	3	4 e 5	487,68	4,73	0,47	65,74	22,88	34271	0,0190	80,76	0,39898	23°
J145	3	4 e 5	487,78	4,72	0,47	65,77	22,93	34307	0,0190	80,76	0,39893	24°
J266	3	4 e 5	487,78	4,72	0,47	65,76	22,92	34300	0,0190	80,76	0,39892	25°
J70	5	8 e 9	488,69	4,74	0,46	66,12	23,51	34821	0,0196	81,00	0,39786	26°
J158	3	4 e 5	488,23	4,84	0,47	66,05	23,34	34670	0,0195	80,76	0,39745	27°
J184	3	4 e 5	487,45	4,83	0,47	65,72	22,85	34243	0,0190	80,76	0,39736	28°
J265	3	4 e 5	487,50	4,83	0,47	65,87	23,08	34443	0,0192	80,76	0,39704	29°
J74	5	8 e 9	488,62	4,97	0,46	66,39	23,91	35178	0,0200	81,00	0,39316	30°
Constante de N	ormaliza	ção (gij)	2680,69	25,70	2,44	4,18	191,00	249312				
Ponder	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%				
Obj	jetivo		MIN	MIN	MAX	MAX	MAX	MIN	•			
Solução Idea	l Positiva	(A*)	0,030	0,029	0,032	0,035	0,037	0,023	•			
Solução Ideal	l Negativa	a (A-)	0,031	0,032	0,030	0,026	0,020	0,035				

Tabela A32: Ranking de cenários para aumento de demanda de 0,5% conforme método TOPSIS e com substituição de bombas.

									Ponto ideal	das bombas		
Nó de expansão	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J144	1	1 e 2	490,66	4,66	0,44	88,49	42,10	52883	0,1122	33,86	0,55872	1º
J379	1	1 e 2	490,57	4,68	0,43	88,53	42,22	53003	0,1125	33,86	0,55871	2°
J191	1	1 e 2	490,57	4,67	0,43	88,51	42,15	52936	0,1123	30,86	0,55861	3°
J377	1	1 e 2	490,70	4,68	0,44	88,51	42,14	52924	0,1123	33,86	0,55858	4°
J308	1	1 e 2	490,82	4,68	0,43	88,52	42,18	52959	0,1124	33,86	0,55849	5°
J334	1	1 e 2	490,76	4,68	0,43	88,51	42,16	52940	0,1123	33,86	0,55848	6°
J1058	1	1 e 2	490,38	4,70	0,44	88,51	42,16	52942	0,1123	33,86	0,55844	7°
Ј8	1	1 e 2	490,40	4,70	0,44	88,51	42,15	52933	0,1123	33,86	0,55834	8°
J162	1	1 e 2	490,58	4,69	0,43	88,51	42,16	52944	0,1124	33,86	0,55821	9°
J373	1	1 e 2	490,63	4,66	0,44	88,46	42,02	52794	0,1119	33,86	0,55811	10°
J155	1	1 e 2	490,60	4,70	0,43	88,49	42,10	52881	0,1122	33,86	0,55784	11°
J240	2	6 e 7	491,58	4,50	0,43	76,97	54,12	66203	0,0456	93,08	0,55280	12°
J150	2	6 e 7	489,74	4,51	0,44	70,52	35,71	46319	0,0276	93,08	0,46782	13°
J36	2	6 e 7	489,75	4,51	0,44	70,51	35,68	46295	0,0276	93,08	0,46770	14°
J32	2	6 e 7	489,79	4,51	0,44	70,50	35,67	46282	0,0275	93,08	0,46757	15°
J90	2	8 e 9	489,82	4,51	0,44	70,49	35,63	46246	0,0275	93,08	0,46756	16°
J91	2	8 e 9	489,76	4,50	0,44	70,44	35,52	46136	0,0274	93,08	0,46681	17°
J152	2	6 e 7	489,27	4,46	0,44	70,38	35,40	46014	0,0273	93,08	0,46635	18°
J153	2	6 e 7	489,19	4,44	0,44	70,25	35,10	45719	0,0270	93,08	0,46483	19°
J25	2	6 e 7	489,30	4,44	0,44	70,24	35,08	45692	0,0270	93,08	0,46460	20°
J504	2	6 e 7	489,50	4,46	0,44	70,24	35,07	45686	0,0270	93,08	0,46431	21°
J27	2	6 e 7	489,55	4,51	0,44	69,97	34,48	45101	0,0275	93,08	0,45983	22°
J158	3	4 e 5	488,23	4,60	0,46	66,84	24,53	35735	0,0207	80,76	0,43107	23°
J70	5	8 e 9	487,41	4,59	0,46	66,55	24,15	35392	0,0202	81,00	0,43002	24°
J74	5	8 e 9	488,70	4,67	0,46	66,81	24,55	35750	0,0206	81,00	0,42999	25°
J350	3	4 e 5	487,67	4,61	0,46	66,58	24,12	35369	0,0203	80,76	0,42991	26°
J266	3	4 e 5	487,79	4,60	0,46	66,60	24,16	35399	0,0203	80,76	0,42990	27°
J145	3	4 e 5	487,51	4,59	0,46	66,58	24,12	35370	0,0203	80,76	0,42982	28°
J265	3	4 e 5	487,39	4,64	0,46	66,70	24,32	35542	0,0205	80,76	0,42980	29°
J184	3	4 e 5	487,79	4,59	0,46	66,53	24,05	35306	0,0202	80,76	0,42967	30°
Constante de N	ormaliza	ção (gij)	2681,37	25,16	2,42	4,21	199,13	257638				
Ponder	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%	•			
Ob	jetivo		MIN	MIN	MAX	MAX	MAX	MIN	•			
Solução Idea	l Positiva	(A*)	0,030	0,029	0,032	0,035	0,045	0,023	•			
Solução Idea	l Negativa	a (A-)	0,031	0,031	0,030	0,026	0,020	0,043	•			

Tabela A33: Ranking de cenários para aumento de demanda de 1,0% conforme método TOPSIS e com substituição de bombas.

									Ponto ideal	das bombas		
Nó de expansão	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J191	1	1 e 2	489,99	4,63	0,44	88,66	42,59	53395	0,1137	30,86	0,55390	1º
J379	1	1 e 2	490,05	4,62	0,44	88,68	42,62	53431	0,1138	33,86	0,55384	2°
J308	1	1 e 2	490,16	4,63	0,44	88,69	42,68	53487	0,1140	33,86	0,55371	3°
J144	1	1 e 2	490,69	4,61	0,44	88,64	42,52	53324	0,1135	33,86	0,55360	4°
J377	1	1 e 2	490,17	4,62	0,44	88,65	42,55	53353	0,1136	33,86	0,55359	5°
J1058	1	1 e 2	489,55	4,66	0,44	88,68	42,62	53431	0,1138	33,86	0,55317	6°
J334	1	1 e 2	490,13	4,62	0,44	88,66	42,57	53371	0,1136	33,86	0,55304	7°
J162	1	1 e 2	490,08	4,67	0,44	88,67	42,60	53407	0,1137	33,86	0,55277	8°
J373	1	1 e 2	490,67	4,63	0,44	88,61	42,43	53222	0,1132	33,86	0,55233	9°
J155	1	1 e 2	490,22	4,68	0,44	88,66	42,58	53380	0,1136	33,86	0,55228	10°
Ј8	1	1 e 2	490,22	4,68	0,43	88,67	42,61	53422	0,1138	33,86	0,55177	11°
J240	2	6 e 7	491,51	4,38	0,43	77,40	55,67	68022	0,0472	93,08	0,54177	12°
J153	2	6 e 7	490,41	4,39	0,43	77,34	55,44	67745	0,0470	93,08	0,54170	13°
J504	2	6 e 7	491,76	4,42	0,43	77,29	55,27	67547	0,0468	93,08	0,54155	14°
J27	2	6 e 7	490,35	4,43	0,43	77,54	56,17	68608	0,0477	93,08	0,54121	15°
J90	2	8 e 9	490,12	4,43	0,43	77,55	56,20	68646	0,0477	93,08	0,54111	16°
J152	2	6 e 7	491,15	4,41	0,42	77,41	55,71	68068	0,0472	93,08	0,54085	17°
J32	2	6 e 7	490,25	4,43	0,42	77,56	56,24	68684	0,0478	93,08	0,54071	18°
J36	2	6 e 7	490,25	4,43	0,42	77,56	56,25	68698	0,0478	93,08	0,54065	19°
J91	2	8 e 9	490,69	4,50	0,43	77,44	55,83	68203	0,0473	93,08	0,54046	20°
J25	2	6 e 7	490,77	4,50	0,43	77,41	55,69	68037	0,0472	93,08	0,54033	21°
J150	2	6 e 7	490,73	4,50	0,43	77,49	56,00	68404	0,0475	93,08	0,54031	22°
J145	3	4 e 5	488,25	4,31	0,45	67,63	25,78	36863	0,0220	80,76	0,44160	23°
J70	5	8 e 9	489,06	4,41	0,46	67,36	25,41	36529	0,0215	81,00	0,44015	24°
J158	3	4 e 5	487,71	4,55	0,45	67,87	26,18	37229	0,0224	80,76	0,43946	25°
J184	3	4 e 5	487,21	4,61	0,46	67,59	25,71	36799	0,0219	80,76	0,43927	26°
J74	5	8 e 9	488,69	4,50	0,45	67,60	25,81	36888	0,0220	81,00	0,43881	27°
J350	3	4 e 5	487,36	4,59	0,45	67,66	25,84	36915	0,0221	80,76	0,43860	28°
J265	3	4 e 5	487,81	4,58	0,45	67,78	26,03	37089	0,0223	80,76	0,43849	29°
J266	3	4 e 5	487,60	4,59	0,45	67,68	25,87	36945	0,0221	80,76	0,43821	30°
Constante de No	ormaliza	ção (gij)	2682,68	24,84	2,40	4,35	244,14	305736				
Pondera	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%	·			
Obj	jetivo		MIN	MIN	MAX	MAX	MAX	MIN	•			
Solução Ideal	l Positiva	(A*)	0,030	0,029	0,032	0,034	0,038	0,020				
		a (A-)	0,031	0,031	0,029	0,026	0,017	0,037	•			

Tabela A34: Ranking de cenários para aumento de demanda de 2,0% conforme método TOPSIS e com substituição de bombas.

					_				Ponto ideal	das bombas		
Nó de expansão	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J379	1	1 e 2	489,94	4,54	0,44	88,90	43,27	54113	0,1158	33,86	0,54426	1º
J377	1	1 e 2	490,30	4,54	0,44	88,87	43,19	54034	0,1156	33,86	0,54394	2°
J144	1	1 e 2	490,76	4,54	0,44	88,86	43,16	54005	0,1155	33,86	0,54377	3°
J191	1	1 e 2	490,32	4,61	0,44	88,98	43,50	54364	0,1165	30,86	0,54352	4º
J373	1	1 e 2	490,83	4,54	0,43	88,83	43,07	53903	0,1152	33,86	0,54275	5°
J25	2	6 e 7	490,31	4,12	0,42	78,07	58,17	70988	0,0497	93,08	0,54219	6°
J1058	1	1 e 2	488,95	4,61	0,43	88,97	43,46	54316	0,1164	33,86	0,54165	7°
J8	1	1 e 2	489,11	4,61	0,43	88,96	43,45	54308	0,1164	33,86	0,54144	8°
J150	2	6 e 7	490,04	4,12	0,42	78,16	58,48	71360	0,0501	93,08	0,54132	9º
J162	1	1 e 2	490,35	4,65	0,44	88,99	43,52	54385	0,1166	33,86	0,54114	10°
J240	2	6 e 7	493,08	4,22	0,43	78,04	58,03	70823	0,0496	93,08	0,54092	11°
J155	1	1 e 2	490,41	4,69	0,44	88,99	43,52	54383	0,1166	33,86	0,54009	12°
J91	2	8 e 9	490,68	4,32	0,43	78,11	58,31	71156	0,0499	93,08	0,53843	13°
J152	2	6 e 7	489,92	4,32	0,42	78,08	58,20	71020	0,0498	93,08	0,53717	14°
J153	2	6 e 7	489,67	4,36	0,42	78,01	57,92	70693	0,0495	93,08	0,53708	15°
J27	2	6 e 7	490,58	4,54	0,43	78,20	58,65	71566	0,0502	93,08	0,53397	16°
J90	2	8 e 9	490,52	4,55	0,43	78,21	58,68	71604	0,0503	93,08	0,53387	17°
J32	2	6 e 7	490,60	4,54	0,42	78,22	58,72	71650	0,0503	93,08	0,53316	18°
J36	2	6 e 7	490,61	4,55	0,42	78,22	58,73	71665	0,0503	93,08	0,53305	19°
J504	2	6 e 7	492,50	4,60	0,43	77,93	57,63	70344	0,0492	93,08	0,53276	20°
J308	1	1 e 2	491,58	4,82	0,43	88,91	43,29	54136	0,1159	33,86	0,53224	21°
J334	1	1 e 2	491,69	4,85	0,44	88,88	43,21	54051	0,1156	33,86	0,53087	22°
J158	3	4 e 5	488,65	4,58	0,45	69,36	28,77	39620	0,0252	80,76	0,44612	23°
J145	3	4 e 5	488,31	4,58	0,45	69,14	28,38	39251	0,0248	80,76	0,44573	24°
J350	3	4 e 5	488,62	4,61	0,45	69,23	28,54	39400	0,0249	80,76	0,44530	25°
J265	3	4 e 5	488,62	4,61	0,45	69,33	28,73	39575	0,0251	80,76	0,44519	26°
J266	3	4 e 5	488,59	4,62	0,45	69,25	28,57	39431	0,0250	80,76	0,44516	27°
J184	3	4 e 5	488,39	4,62	0,45	69,10	28,31	39186	0,0247	80,76	0,44478	28°
J74	5	8 e 9	490,32	4,70	0,44	69,06	28,31	39190	0,0246	81,00	0,44208	29°
J70	5	8 e 9	490,16	4,71	0,44	68,84	27,92	38828	0,0242	81,00	0,44193	30°
Constante de N	ormaliza	ção (gij)	2684,65	24,90	2,38	4,39	254,05	316819				
Ponder	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%				
Obj	jetivo		MIN	MIN	MAX	MAX	MAX	MIN				
Solução Idea	l Positiva	(A*)	0,030	0,028	0,031	0,034	0,039	0,020	i			
Solução Idea	l Negativa	a (A-)	0,031	0,032	0,029	0,026	0,018	0,038	i			

Tabela A35: Ranking de cenários para aumento de demanda de 5,0% conforme método TOPSIS e com substituição de bombas.

					_				Ponto ideal	das bombas		
Nó de expansão	Setores	Bombas	PU	WA	R	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J191	1	1 e 2	490,27	4,42	0,45	89,76	45,84	56884	0,1239	30,86	0,56227	1º
J162	1	1 e 2	490,25	4,48	0,44	89,78	45,89	56945	0,1240	33,86	0,55715	2°
J155	1	1 e 2	490,93	4,57	0,45	89,86	46,14	57209	0,1248	33,86	0,55668	3°
J144	1	1 e 2	490,51	4,41	0,44	89,74	45,76	56795	0,1236	33,86	0,55579	4º
J377	1	1 e 2	492,06	4,59	0,44	89,77	45,85	56895	0,1363	33,86	0,55007	5°
J373	1	1 e 2	491,94	4,58	0,43	89,73	45,73	56762	0,1235	33,86	0,54862	6°
J308	1	1 e 2	492,22	4,58	0,43	89,76	45,84	56882	0,1239	33,86	0,54791	7°
J8	1	1 e 2	487,72	4,52	0,42	89,78	45,89	56936	0,1240	33,86	0,54528	8°
J240	2	6 e 7	495,64	3,98	0,43	80,10	66,39	81150	0,0582	93,08	0,54397	9º
J379	1	1 e 2	491,08	4,59	0,42	89,79	45,92	56975	0,1241	33,86	0,54320	10°
J27	2	6 e 7	490,90	4,01	0,42	80,29	67,23	82225	0,0591	93,08	0,54167	11°
Ј90	2	8 e 9	491,09	4,02	0,42	80,29	67,27	82265	0,0591	93,08	0,54162	12°
J91	2	8 e 9	490,43	4,04	0,42	80,18	66,77	81636	0,0586	93,08	0,54148	13°
J334	1	1 e 2	491,66	4,59	0,42	89,75	45,81	56853	0,1238	33,86	0,54082	14°
J504	2	6 e 7	494,31	4,02	0,41	80,01	66,00	80654	0,0578	93,08	0,53704	15°
J25	2	6 e 7	491,66	4,20	0,42	80,18	66,76	81623	0,0586	93,08	0,53659	16°
J32	2	6 e 7	490,87	4,01	0,41	80,30	67,30	82305	0,0592	93,08	0,53638	17°
J36	2	6 e 7	490,90	4,01	0,41	80,30	67,31	82320	0,0592	93,08	0,53585	18°
J150	2	6 e 7	492,13	4,21	0,40	80,22	66,94	81842	0,0588	93,08	0,53010	19°
J153	2	6 e 7	488,65	4,40	0,40	80,10	66,39	81153	0,0582	93,08	0,52731	20°
J152	2	6 e 7	489,56	4,42	0,38	80,16	66,66	81489	0,0585	93,08	0,52047	21°
J1058	1	1 e 2	484,82	4,26	0,32	91,01	49,84	61315	0,1240	33,86	0,50848	22°
J350	3	4 e 5	489,51	3,89	0,43	73,03	36,40	47011	0,0336	80,76	0,49942	23°
J74	5	8 e 9	493,53	4,05	0,42	72,45	35,17	45781	0,0321	81	0,48705	24°
J70	5	8 e 9	492,75	4,18	0,42	72,28	34,79	45410	0,0316	81	0,48324	25°
J266	3	4 e 5	488,59	4,62	0,45	69,25	28,57	39431	0,0336	80,76	0,47464	26°
J265	3	4 e 5	488,62	4,61	0,45	69,33	28,73	39575	0,0338	80,76	0,47438	27°
Constante de N	ormaliza	ção (gij)	2550,49	22,42	2,19	4,30	279,38	345052				
Ponder	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%	•			
Ob	jetivo		MIN	MIN	MAX	MAX	MAX	MIN	•			
Solução Idea	ıl Positiva	(A*)	0,032	0,029	0,034	0,035	0,040	0,019				
Solução Idea	l Negativa	a (A-)	0,032	0,034	0,025	0,027	0,017	0,040	,			

Tabela A36: Ranking de cenários para aumento de demanda de 10,0% conforme método TOPSIS e com substituição de bombas.

Né do ormana≅-	Cotoms-	Dombs -	PU	WA	R	m (9/)	D (KW)	Create (4)	Ponto ideal	das bombas	Ci*	Doubin -
Nó de expansão	Setores	Bombas	PU	WA	K	η (%)	P (KW)	Custo (\$)	Q (m ³ /s)	H_m (m)	Ci*	Ranking
J240	2	6 e 7	502,01	3,21	0,43	82,59	78,24	96863	0,0708	93,08	0,61579	1º
J90	2	8 e 9	491,48	3,21	0,42	82,97	80,21	99597	0,0729	93,08	0,60050	2°
J27	2	6 e 7	490,43	3,19	0,41	82,96	80,18	99554	0,0728	93,08	0,59728	3°
J25	2	6 e 7	491,02	3,22	0,41	82,88	79,72	98914	0,0724	93,08	0,59448	4°
J155	1	1 e 2	490,11	4,29	0,46	91,37	51,06	62689	0,1405	33,86	0,59284	5°
J91	2	8 e 9	488,64	3,21	0,40	82,79	79,29	98322	0,0719	93,08	0,59129	6°
J191	1	1 e 2	491,26	4,29	0,46	91,13	50,23	61755	0,1378	30,86	0,58389	7°
J32	2	6 e 7	490,33	3,20	0,39	82,97	80,21	99597	0,0729	93,08	0,57243	8°
J36	2	6 e 7	490,39	3,20	0,39	82,97	80,22	99613	0,0729	93,08	0,56985	9°
J162	1	1 e 2	491,31	4,35	0,44	91,15	50,31	61838	0,1381	33,86	0,56982	10°
J74	5	8 e 9	497,86	3,35	0,38	78,62	52,44	64267	0,0519	81,00	0,56475	11°
J150	2	6 e 7	488,90	3,20	0,38	82,83	79,46	98552	0,0721	93,08	0,56173	12°
J377	1	1 e 2	492,11	4,26	0,42	90,99	49,76	61224	0,1363	33,86	0,55669	13°
J373	1	1 e 2	491,95	4,25	0,42	90,95	49,64	61088	0,1359	33,86	0,55236	14°
J70	5	8 e 9	497,72	3,34	0,37	78,51	52,09	63865	0,0515	81,00	0,54629	15°
J144	1	1 e 2	491,37	4,38	0,39	91,03	49,89	61365	0,1367	33,86	0,51762	16°
Ј8	1	1 e 2	484,67	4,28	0,36	91,05	49,98	61464	0,1370	33,86	0,49825	17°
J334	1	1 e 2	492,30	4,23	0,34	91,03	49,88	61361	0,1367	33,86	0,48014	18°
J379	1	1 e 2	490,48	4,26	0,34	91,01	49,84	61306	0,1365	33,86	0,47508	19°
J1058	1	1 e 2	484,82	4,26	0,32	91,01	49,84	61315	0,1366	33,86	0,45630	20°
J153	2	6 e 7	489,45	3,21	0,25	82,72	78,93	97810	0,0715	93,08	0,43458	21°
J504	2	6 e 7	501,79	3,18	0,25	82,52	77,86	96344	0,0704	93,08	0,43412	22°
J152	2	6 e 7	490,37	3,20	0,23	82,77	79,19	98172	0,0718	93,08	0,41780	23°
Constante de N	ormaliza	ção (gij)	2358,54	17,86	1,83	4,13	316,04	390882				
Ponder	ação (wj)		16,667%	16,667%	16,667%	16,667%	16,667%	16,667%	-			
Ob	jetivo		MIN	MIN	MAX	MAX	MAX	MIN	•			
Solução Idea	l Positiva	(A*)	0,034	0,030	0,042	0,037	0,042	0,026	•			
Solução Idea	l Negativa	a (A-)	0,035	0,041	0,021	0,032	0,026	0,042	•			