
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Filipe Barreto do Nascimento

On the impact of sample reduction strategies for heterogeneous network

representation learning

Belo Horizonte

2021



Filipe Barreto do Nascimento

On the impact of sample reduction strategies for heterogeneous network

representation learning

Final version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Rodrygo Luis Teodoro Santos

Belo Horizonte

2021



c© 2021, Filipe Barreto do Nascimento.
Todos os direitos reservados.

Nascimento, Filipe Barreto do.

N224o On the impact of sample reduction strategies for
heterogeneous network representation learning [manuscrito] /
Filipe Barreto do Nascimento. — 2021.

76 f. il.

Orientador: Rodrygo Luis Teodoro Santos

Dissertação (mestrado) — Universidade Federal de Minas
Gerais, Instituto de Ciências Exatas, Departamento de Ciência
da Computação

Referências: f. 67-72

1. Computação – Teses. 2. Aprendizado de representações –
Teses. 3. Redes heterogêneas – Teses. 4. Passeio aleatório
(Matemática) – Teses. I. Santos, Rodrygo Luis Teodoro.
II. Universidade Federal de Minas Gerais, Instituto de Ciências
Exatas, Departamento de Ciência da Computação. III. Título.

CDU 519.6*82.(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende
Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx





Acknowledgements

First and foremost, I would like to thank my family, in particular my parents Simone and

Emídio and my brother Thiago, for their unconditional love and ever-present support.

Secondly, I am extremely grateful to my girlfriend Yasmin, for standing by me, even

when we were states apart, and being my safe haven, in good and bad times, over the

course of this work.

I am deeply indebted to my advisor, Rodrygo Santos, for believing in my work,

encouraging and guiding me in difficult moments and sharing his knowledge and ideas,

which were essential to the development of this dissertation. Every class, discussion,

feedback session and presentation we had during this time was instrumental in helping

me grow as a scientist.

Next, I would like to thank Leila Silva, from Universidade Federal de Sergipe, who

played a decisive role in my career by encouraging me to apply to the MSc program in

the first place, at a moment when I thought I had no chance of getting accepted.

Last but not least, I would like to express my sincere gratitude to my friends from

LATIN and DCC, whose warm reception and continued support throughout the years

have made me feel at home in Belo Horizonte from the very beginning.



“It is the business of the future to be dangerous; and it is among

the merits of science that it equips the future for its duties.”

(Alfred North Whitehead)



Resumo

Modelos de aprendizado de representações em redes mapeiam vértices de um grafo para

vetores em um espaço de baixa dimensionalidade, que por sua vez são utilizados em di-

versas tarefas de aprendizado de máquina, como classificação de vértices, agrupamento

(clustering) e visualização de dados. Tendo em vista o aumento na disponibilidade de

dados em larga escala sobre redes e grafos, tais técnicas devem ser capazes de lidar com

conjuntos de dados cada vez maiores e ainda assim garantir a obtenção de resultados

competitivos. Adicionalmente, a maioria dos grafos que modelam sistemas reais contêm

informações adicionais sobre os tipos de vértices e arestas do grafo, fazendo com que esses

sejam normalmente modelados como redes de informação heterogêneas. Assim, consid-

eramos abordagens escaláveis de aprendizado de representações em redes heterogêneas,

em particular aquelas baseadas em passeios aleatórios, que amostram sequências de vér-

tices no grafo e as utilizam como entrada pra algoritmos de aprendizado de máquina.

Nesta dissertação, propomos duas estratégias para reduzir a quantidade de amostras de

treino utilizadas como entrada para os algoritmos, com o intuito de treinar os modelos

baseados em passeios aleatórios mais rapidamente: (1) passeios baseados em centralidade,

que levam em consideração a informação estrutural de centralidade associada aos nós do

grafo e (2) passeios focados, que concentram sua atenção em tipos específicos de vértices

a depender da tarefa em questão. Nossas descobertas apontam que ambas as estratégias

contribuem para a redução no conjunto de amostras de treino necessárias e sugerem a pre-

sença de dados redundantes nos processos de amostragem tradicionais referentes a esses

modelos. Experimentos em três conjuntos de dados de sistemas reais demonstram que

nossas abordagens propostas são capazes de manter e, ocasionalmente, superar resulta-

dos obtidos por modelos já estabelecidos na literatura, validando assim sua adoção como

novas ferramentas no projeto de algoritmos escaláveis de aprendizado de representações

em redes.

Palavras-chave: Aprendizado de Representações. Redes Heterogêneas. Passeios

Aleatórios.



Abstract

Network embedding models map nodes of a graph to vectors in a low dimensional space,

which in turn are used for multiple machine learning tasks, such as node classification,

clustering, and visualization. With the growth of available large-scale network data, such

techniques must be able to deal with increasingly bigger data sets, while still maintaining

competitive results. In addition, most real-world graphs contain additional information

regarding node and edge types, leading those to be often modeled as heterogeneous in-

formation networks. Thus, we focus on scalable heterogeneous network embedding ap-

proaches, in particular random walk-based techniques, which sample sequences of nodes

on the graph and use these as input to machine learning algorithms. In this dissertation,

we propose two strategies to reduce the amount of input training data sampled from the

graph, so as to achieve faster training times when using random walk-based methods: (1)

centrality-based walks, which take into account structural centrality information of nodes

in the graph, and (2) focused walks, which concentrate on specific node types depending

on the task at hand. Our findings show that both strategies help alleviate the sample

input size and suggest the presence of redundant data in traditional sampling processes

for these models. Experimental results on three real-world graph data sets show that our

proposed strategies are able to maintain and sometimes improve results on established

network embedding methods using a reduced amount of training samples, validating their

use as a novel tool in the design of scalable network embedding algorithms.

Palavras-chave: Representation learning. Heterogeneous Networks. Random Walks.
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Chapter 1

Introduction

1.1 Motivation

Real-world networks, such as social and biological networks, are typically modeled

as graphs and, depending on the information captured by their nodes and edges, are either

classified as homogeneous (one type of node and edge) or heterogeneous (more than one

type of node and/or edge) Networks [Shi et al., 2016]. These powerful structures are

able to capture arbitrary types of relations between entities, providing researchers with a

valuable tool in the study of complex networks [Barabási et al., 2016].

Over the past years, different types of approaches have been proposed in order to

try and capture the information contained in such networks. Due to the large scale of

real networks, it is often prohibitively expensive to work with traditional graph represen-

tations and algorithms. In an attempt to solve this limitation, network representation

learning methods embed nodes in a low-dimensional vector representation. The resulting

latent representations manage to capture network information, while also alleviating the

laborious task of feature engineering [Hamilton et al., 2017b]. Network embeddings can

be used in end-to-end applications and also as input to other machine learning algorithms.

Most network representation learning techniques map nodes into a vector space

such that structural properties of nodes in the original graph are preserved. This is done

using varied techniques – each with its strengths and weaknesses. In this work, we base

our choices by looking at these techniques/models from a time complexity perspective. We

observe that matrix factorization scale quadratically with regard to the number of nodes

in the network |V | and linearly with regard to the dimension of the output representation

d (i.e. at least O(d|V |2)) [Zhang et al., 2018], whereas Graph Neural Networks, such as

Graph Convolutional Networks are typically bound by O(L|E|d+L|V |d2), where L is the

number of layers in the network, |V | and |E| are the total number of nodes and edges,

respectively and d is the dimension of the output representations [Chiang et al., 2019; Wu

et al., 2020]. This hinders the scalability of the aforementioned methods.

Due to the high computational cost of the previous approaches, we choose to focus
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on another well established family of methods that makes use of node pairs extracted from

random walks on the network as input samples to a language model, as first proposed in

[Perozzi et al., 2014]. This approach, when used with negative sampling [Mikolov et al.,

2013b] in the loss function, takes O(d|V |) time [Zhang et al., 2018; Cai et al., 2018].

In addition to the reduced time complexity, we choose to work with this unsupervised

random walk approach due to it being (1) scalable: the walks are easily parallelizable

and one does not need to resort to operations on costly structures, such as the adjacency

matrix or the graph Laplacian [Chung and Graham, 1997] and (2) versatile: the learning

process is such that the output representations may be used in different kinds of tasks

and scenarios. We also limit our attention to heterogeneous networks, since those are a

generalization of homogeneous information networks and are able to, whenever available,

capture additional information, which is often the case on real-world applications.

When it comes to heterogeneous networks, it is often the case that some node

types are much more frequent than others (e.g. authors and papers in comparison to

publication venues), thus having higher probability of being sampled in random walks on

the graph [Sun et al., 2011]. Traditional network embedding methods do not consider

node types in their walks, which make the node visit distributions biased toward highly

frequent node types, causing some types to "dominate" the learning process and limiting

the focus on important relations between less visible nodes.

To overcome the aforementioned issue and capture the underlying information in a

heterogeneous network, current embedding techniques either resort to sampling training

paths by following hand-engineered meta-paths [Dong et al., 2017; Shang et al., 2016]

defined over heterogeneous node types or designing random walk strategies that account

for node types [Hussein et al., 2018]. We limit our attention to the latter, since we are

interested in scalable methods and finding the right meta-path proves to be a compli-

cated task due to the number of possible meta-paths growing exponentially even for a

small number of node types [Huang and Mamoulis, 2017; Hussein et al., 2018], while also

requiring either expert domain knowledge or some sort of predefined algorithmic strategy,

contributing to the complexity of the problem.

Even though successful embedding algorithms were proposed for both homogeneous

and heterogeneous networks in recent years, we note that, for most techniques, nodes are

treated equally during the random walks. In contrast, the graph theory [Bondy et al.,

1976] and network science [Barabási et al., 2016] literature is often interested in developing

centrality measures, that is, coming up with ways to quantitatively assess the relative

importance of a node in a network. In light of this disparity, we posit that making

use of network centrality information – which is readily available and commonly used

in other fields of study pertaining to networks – to guide the sampling step may allow

us to reduce the number of training samples while maintaining efficacy. In addition, we

hypothesize that we can take advantage of the heterogeneous structure of a network and
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further reduce the number of required training samples. Thus, in this dissertation, we

propose and evaluate the impact of two complimentary sample reduction strategies on

random walk-based models for heterogeneous network embedding.

1.2 Dissertation Statement

Inspired by the concepts of preferential attachment [Barabási and Albert, 1999] and

node entropy [Small, 2013], we posit that since central nodes present higher probability

of attracting new nodes in complex networks and higher associated uncertainty (node

entropy), they carry more relevant information about the network and this should be

reflected in the learning process.

Additionally, we note that, while it is useful to learn embeddings for all types

of nodes in a heterogeneous network, it is often the case that we are only interested in

the output embeddings of a subset of nodes (e.g. users and items on a recommendation

network). Therefore, we argue that, depending on the task for which the embeddings will

be used, task-agnostic heterogeneous network embedding approaches may benefit from

focusing on learning embeddings for a subset of node types, as we are able to make use

of the heterogeneous structure to learn good embeddings while relieving the restriction of

generating embeddings for every single node in the graph.

Thus, the statement of this dissertation is that random walk-based heterogeneous

network embedding techniques may benefit from the use of sample reduction techniques.

In particular, by making use of centrality information and taking advantage of the het-

erogeneous structure of the network, the models will require less samples to learn repre-

sentations that perform just as well/better than their "naive" counterparts in terms of

effectiveness.

This statement leads us to raise the following research questions, which help guide

our work and are answered in the following chapters:

RQ1. To what extent can we improve efficiency without harming effectiveness?

RQ2. How do different random walk strategies impact our approach?

RQ3. How do different node properties impact our approach?

RQ4. Are traditional sampling approaches generating redundant training data?
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1.3 Dissertation Contributions

In this work, we investigate the aforementioned hypotheses and their applications

on heterogeneous network embeddings. As a result, the key contributions of this disser-

tation are:

1. Extend the idea proposed in [Gao et al., 2018] to generalize centrality-based walks

for networks of any type and degree of heterogeneity. This leads to random walks

that are able to consistently reduce sample size and, consequently, training time,

while maintaining competitive results;

2. Propose focused walks, a task-based walk strategy for heterogeneous networks which

helps reduce even further the training sample size;

3. Analyze the impact of the sample reduction approaches under different types of

networks and random walk strategies, validating our hypotheses via extensive ex-

perimentation and analyses.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the base concepts required to work with network embeddings

and random walks, along with real world applications for these techniques. We

also overview and discuss relevant research work on random walk-based network

embedding models;

• Chapter 3 introduces and formalizes our two proposed techniques for efficient

sample input size reduction, namely centrality-based and focused walks. We then

frame our contributions in the context of a learning algorithm with a customizable

random walk module in which our strategies (along with others) can be added or

removed with ease;

• Chapter 4 describes our experimental setup in terms of the datasets, tasks, metrics,

baselines and train/test procedures used in obtaining our results;
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• As a complement, Chapter 5 presents our results and discusses our findings in

terms of each walk strategy both individually and in conjunction. We also provide

a qualitative view of our results by means of a node visualization task;

• Finally, Chapter 6 concludes our work by summarizing our findings and contribu-

tions. It also discusses possibilities and directions for future research.
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Chapter 2

Background and Related Work

This chapter presents the necessary background knowledge for the concepts discussed in

this work in Section 2.1, then proceeds to illustrate common applications of network em-

beddings in Section 2.2. Finally, we review relevant work on random walk-based network

embedding models as well as models that make use of centrality measures in Section 2.3.

2.1 Definitions

In this section, we provide definitions for concepts that are used throughout the

dissertation. We also formalize the problem statement. First, we start by formalizing our

notion of a network. Then we move on to define random walks on graphs along with some

important properties and results.

Due to the way random walks are used in the context of network embedding tech-

niques, we will limit our attention to simple graphs, that is, undirected graphs containing

neither loops nor multiple edges between pairs of nodes. As such, the definitions that

follow focus on this type of graph in particular.

Definition 1 (Network). A network is a graph G = (V,E, φ, ψ), where V is the set of

vertices (or nodes) and E ⊆ V ×V is the set of edges (directed or undirected). In addition,

there exist node and edge type mapping functions φ : V → A and ψ : E → R, where A

and R are node type and edge type sets, respectively. If |A| + |R| > 2, we denote it by

Heterogeneous Network, or else, by Homogeneous Network.

Definition 2 (Neighborhood of a node). We denote by N(vi) = {vj | (vi, vj) ∈ E} the

neighborhood of node vi. Intuitively, it is the set of its immediate neighbors or nodes

whose edges connect with vi.

Definition 3 (Random Walk). A random walk [Lovász et al., 1993] on a graph G is a

sequence of random nodes (vi : i = 0, 1, ...), starting at a node v0 ∈ V , sampled from a

initial distribution P0 (note that we can assign probability 1 to some specific node so as
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to fix it as a starting state). Considering that we are currently visiting node vi at the

i-th step, we proceed to move to one of its neighbors vi+1 ∈ N(vi) at step i + 1 with

probability p(vi+1|vi).

Definition 4 (Node degree). The degree deg(vi) of a node vi is the number of its neighbors,

that is, deg(vi) = |N(vi)|.

Since we aim to work with heterogeneous networks, it is useful to expand the

concept of neighborhood in order to take node types into account. Therefore, we introduce

the concepts of Typed Neighborhood and Typed Degree [Rossi et al., 2019]. We also define

typed node subsets of a heterogeneous network.

Definition 5 (Typed Neighborhood). Given a node vi ∈ V , its typed neighborhood N t(vi)

is the set of nodes in its neighborhood with type t. Formally, we have N t(vi) = {vj | vj ∈

N(vi), φ(vj) = t}.

Note that, for all t ∈ A, we have N t(v) ⊆ N(v). Also, we can define the ho-

mogeneous neighborhood of a node as Nφ(v)(v) and its heterogeneous neighborhood as

N(v)−Nφ(v)(v).

Definition 6 (Typed Degree). The typed degree degt(vi) of a node vi ∈ V is given by the

number of nodes in its t-typed neighborhood, that is, degt(vi) = |N t(vi)|.

Definition 7 (Typed Node Subset). The typed node subset V t ⊆ V of a graph G is given

by the set of t-typed nodes in G, that is, V t = {vi ∈ V |φ(vi) = t}.

It is worth noting that a random walk is a finite, time-reversible Markov chain

[Norris, 1998]. Therefore, we can define the matrix Mij : vi, vj ∈ V of transition probabil-

ities, with Mij = p(vj|vi), if (vi, vj) ∈ E and pij = 0, otherwise. The choice of transition

probabilities is a crucial component both in this work and also in the design of random

walks in general. As such, in Section 3.1.2, we detail different strategies in the context of

the random walk module, which is a component of our learning framework.

We can also consider more complex random walks by modeling them as higher

order Markov chains [Li and Zhang, 2015].

Definition 8 (Higher order Markov chain). A n-th order Markov chain defines its transi-

tion probabilities to the next state/node based on the sequence of the n previously visited

states. Formally, we have that n-th order Markov chain must adhere to the following

property: at step i > n, for all vi ∈ V , p(vi|vi−1, vi−2, ..., v1) = p(vi|vi−1, vi−2, ..., vi−n).

Note that when n = 1, we have the simple random walk defined above.
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2.1.1 Problem Formulation

Our problem consists of learning low dimensional representations of nodes in a

network. Given a network G = (V,E, φ, ψ), we would like to learn a mapping function

f : V → R
d from the set of nodes to d-dimensional latent representations. In particular,

we would like the output representations to preserve important information (e.g. topology

and node content) about the network, such that, as per some similarity definition, similar

nodes should be embedded closely in the output space.

2.2 Tasks for Network Embedding

The output embeddings are commonly used as features that capture the informa-

tion about a node in a network. These features aid us in solving problems in the fields

of network science, recommender systems or machine learning, for instance. We are often

interested in inferring information, visualizing, and analyzing different kinds of networks.

In this section, we introduce three common tasks in which node embeddings are widely

used. We choose to focus on these tasks due to their being the most commonly used

evaluation methods in the field of unsupervised network embeddings [Zhang et al., 2018].

2.2.1 (Multi-Label) Node Classification

Node classification is a central task in the study of networks. Nodes are often

associated with many types of labeled information, such as areas of activity in academic

networks (e.g. a machine learning researcher) or video tags/categories in a streaming

network. As new nodes are added to the graph, the information might not be readily

available (e.g. a user might not have filled optional fields that would provide label infor-

mation) and we would like to infer the label(s) of those nodes in order to improve the

quality of our applications.

Thus, in this context, we have the node classification problem formulated as: given

a network G with a subset of labeled nodes L ⊂ V , we would like to predict the cor-

rect/best possible label for the set V − L of unlabeled nodes. In particular, if our set
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of labels consists of two classes, we typically denote the task as binary classification.

Conversely, if there are more than two classes, we have a multiclass classification prob-

lem. The multi-label classification problem is a variant of the more conventional binary

and multiclass classification problems: in this case, our data instances can have zero to

multiple associated labels.

In terms of related work, many models make use of the node classification task as

a way to assess the quality of the learned representations, such as [Tang and Liu, 2009a,b;

Perozzi et al., 2014; Tang et al., 2015; Kipf and Welling, 2016; Grover and Leskovec, 2016;

Hamilton et al., 2017a; Dong et al., 2017; Huang and Mamoulis, 2017; Fu et al., 2017;

Hussein et al., 2018].

2.2.2 Node Clustering

In some cases we do not have access to label information, which leads us to a

different, but not less important, problem: how to assign our nodes to clusters such

that similar nodes (based on some sense of similarity) are grouped together? This is a

common unsupervised learning task denoted by clustering. When clustering nodes, we

are often interested in detecting underlying patterns/connections in our nodes, such as

potential extremist users and associated political echo chambers in social networks, or yet

undiscovered scientific collaborators in an academic network, for instance.

While the notion of a cluster can be hard to define in quantitative terms, we

usually consider a grouping of data objects for which we have labels, but we omit the

label information during the entire evaluation procedure, only using such information to

evaluate the quality of the output clusters. When it comes to network embeddings, node

clustering is another rather common task used to evaluate embedding quality, as seen on

[Sun et al., 2011; Dong et al., 2017; Huang and Mamoulis, 2017; Hussein et al., 2018], to

name a few.

2.2.3 Node Visualization

Node visualization is an important task which aims to project nodes of a network

into a two dimensional space for plotting purposes. It is often used to qualitatively assess

the embedding capabilities of models by assuming that better visualizations (e.g. the ones



2. Background and Related Work 21

that manage to separate the nodes per label) mean better discriminative power associated

with a particular model [Tang et al., 2015; Huang and Mamoulis, 2017].

Visualizations can also help in analyzing intended properties of models, such as

seen in [Grover and Leskovec, 2016], where the authors color different clusterings based

on different parameters to illustrate that their algorithm captured desired properties (ho-

mophily and structural equivalence), or in [Dong et al., 2017], in which a visualization of

embeddings of CS venues depicts the effectiveness of the model in grouping conferences

of similar topics together.

2.3 Related Work

According to Zhang et al. [2018], approaches can be categorized from an algorithmic

perspective in terms of the following techniques: matrix factorization, random walk, edge

modeling, deep learning and hybrid methods. Our approach in this work builds on top of

homogeneous and heterogeneous random walk methods, of which we provide an overview

in this section. For additional information on other network embedding techniques, we

invite the reader to refer to the works by Battaglia et al. [2018], Cai et al. [2018], Cui

et al. [2018], Hamilton et al. [2017b], Zhang et al. [2018] and [Wu et al., 2020], each of

which does an excellent job in surveying the recent progresses in the field. We also present

related work on network embedding techniques that make use of centrality information

as some form of input to their learning algorithms.

2.3.1 Random Walk-based Network Embedding

Based on the idea that the distribution of vertices in short random walks follows a

power-law, much like the distribution of words in natural language, Perozzi et al. [2014]

proposed DeepWalk, the first random walk-based model. Influenced by the success of

the Skip-Gram [Mikolov et al., 2013a,b] model in natural language processing tasks, their

seminal work introduced the analogy of modeling node sequences sampled via unbiased

random walks as sentences and using them as input to Skip-Gram, essentially treating

individual nodes as words in a language model. In Figure 2.1, we describe the general

steps of this learning procedure for heterogeneous networks.

Expanding on this idea, Grover and Leskovec [2016] introduced parameters to
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They model these probabilities using exponential decay paired with an arbitrarily-sized

memory queue for previously visited node types. This probabilistic modeling attempts to

achieve the balanced node type distribution obtained when using meta-paths.

2.3.2 Centrality Measures for Network Representation Learning

LOG [Ma et al., 2017] leverages PageRank [Page et al., 1999] when trying to model

global information, optimizing it along with a Skip-gram model and PRUNE [Lai et al.,

2017] attempts to preserve global ranking by optimizing a PageRank related objective

function defined in the context of a siamese neural network.

In addition, BiNE [Gao et al., 2018] is a model specifically tailored for bipartite

networks. It proposes a multi-objective framework in which three objectives are optimized

together. Objective O1 models the explicit relations (first order proximity, as proposed in

[Tang et al., 2015]) by minimizing the Kullback-Leibler divergence between the empirical

distribution and the reconstruction distribution via parameters. Each of the other two

objectives O2 and O3 are related to the two partitions in the graph. For each partition,

they induce a homogeneous subgraph and perform biased random walks based on cen-

trality measures to be used with the Skip-gram model sharing the same parameters with

O1.

More recently, the GraphCSC (Graph Convolutions with Structure and Centrality

information) [Chen et al., 2019] framework introduced Centrality Defined Graph Convolu-

tions, a neighborhood aggregation mechanism based on a ranking generated by centrality

measures, extending the concept proposed in [Ying et al., 2018]. In addition, it uses

centrality-based random walks – as proposed in [Gao et al., 2018] – and centrality-based

negative sampling, paired with an additional pairwise ranking objective to learn their

embeddings.

While the aforementioned models make use of centrality information in their learn-

ing pipeline, all of them are proposed within a multi-objective optimization framework,

along with additional mechanisms (e.g. attention, convolutions, first-order proximity,

etc.), which dilute the impact of centrality in the learning process. As such, it is difficult

to pinpoint exactly what good does it do when it comes to network embedding models.

In an attempt to better understand and characterize our results, we choose to focus

solely on the interaction between random walk models and centrality-based walks. By

testing the walks with different models, we aim to eliminate any possible confounding

factors that might cloud our results.
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2.4 Summary

In this chapter, we provided necessary mathematical definitions pertaining to the

concepts discussed in this work, as well as a brief presentation on common tasks in the

field. We have also reviewed related work on random walk-based network embeddings

and pointed to some works where centrality measures are used together with network

representation learning. In particular, in Section 2.1, we presented definitions regarding

graphs/networks, random walks and Markov chains, while also formally defining the node

embedding problem.

We moved on to introduce tasks that are commonly seen in the literature and

help motivate the use of network embeddings in Section 2.2, namely (multi-label) node

classification, node clustering and node visualization. Finally, we overviewed the related

work in Section 2.3. Specifically, in Section 2.3.1 we first discussed the evolution of random

walk-based methods for network embeddings, ranging from simpler techniques (using first

order or biased/parametrized random walks) in the context of homogeneous networks to

more complex ones for heterogeneous networks, including a brief presentation of meta-

paths based models. In Section 2.3.2 we presented network embedding works that make

use of node centrality information at some point in the learning process (not necessarily

making use of random walks). We touched on works that leverage measures such as

PageRank and other centrality information to bias walks and also to define new loss

functions.

In the next chapter, we shall propose a random walk-based network representation

learning framework that consists of customizable modules so as to offer some degree of

flexibility when learning embeddings. We also formally define some of the walk sampling

strategies – introduced in this Chapter – in the context of our learning framework.
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Chapter 3

Sample Reduction Strategies for

Heterogeneous Network Embedding

3.1 Network Representation Learning Framework

In this section, we present a learning framework in terms of the Skip-gram with

Negative Sampling model [Mikolov et al., 2013a,b] paired with a customizable random

walk module and formalize three representative random walk techniques for network em-

beddings with the aim of providing a principled and organized way to analyze the impact

of sample reduction strategies.

3.1.1 Network Embeddings with Skip-gram

Initially conceived from a language modeling perspective, the Skip-gram model

aims to learn a set of parameters that maximize the probability of observing neighbor-

ing (context) words conditioned on a given word. In order to reframe this approach as

a network embedding problem, one must consider nodes in networks instead of words

in text corpora. Thus, we define S, a sampling strategy that generates a set of node

sequences given a network (akin to sentences – word sequences – in some text docu-

ment). Given a sequence v1, v2, ..., vn of length n sampled with S, we define C(vi) ⊂ V ,

the context of a node vi, considering a window of size k around the center node:

C(vi) = {vi−k, ..., vi−1, vi+1, ..., vi+k}. In practice, the context window size is sampled

uniformly from 1..k for each node in the network [Mikolov et al., 2013a].
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3.1.1.1 Basic Skip-gram Formulation

We would like to learn a function f : V → R
d, which can be seen as a param-

eter matrix of size |V | × d, that maps each node v ∈ V to a d-dimensional parameter

vector (its output node embedding). In order to learn the parameters, we use a simple

feedforward neural network [Rumelhart et al., 1985], with our parameter matrix being

the corresponding weights of the single hidden layer in this neural network. We train the

parameters using Asynchronous Stochastic Gradient Descent (ASGD) [Dean et al., 2012]

with Adagrad [Duchi et al., 2011].

Formally, given the nodes v ∈ V and their respective contexts C(v), we want our

neural network with parameters θ to maximize the following probability:

arg max
θ

∏

v∈V

∏

c∈C(v)

p(c | v; θ) (3.1)

Intuitively, given v, we would like to correctly predict its context (neighboring)

nodes c ∈ C(V ). The probability p(c | v; θ) is modeled with a softmax function:

p(c | v; θ) =
exp(θc · θv)

∑

c′∈V exp(θc′ · θv)
, (3.2)

where θc and θv ∈ R
d are vector representations for context and center nodes, respectively

(the same node has two representations: one for its center role and another one used when

it appears in another node’s context).

Now, we plug Eq. (3.2) in Eq. (3.1) and take the logarithm to obtain the following

objective function:

arg max
θ

∑

v∈V









∑

c∈C(v)

θc · θv



−

(

log
∑

c′∈V

exp(θc′ · θv)

)



 (3.3)

When dealing with large networks, the summation
∑

c′∈V exp(θc′ · θv) in Eq. (3.3)

becomes prohibitively expensive to compute in practice due to the many possible com-

binations of center and context nodes. In order to overcome this issue, researchers typi-

cally resort to either hierarchical softmax [Morin and Bengio, 2005] or negative sampling

[Mikolov et al., 2013b] to approximate the objective function. We choose to work with

the latter due to its simplicity and efficiency in comparison to the hierarchical softmax.



3. Sample Reduction Strategies for Heterogeneous Network Embedding27

3.1.1.2 Negative Sampling

Proposed as a simplification of Noise-Contrastive Estimation (NCE) [Gutmann and

Hyvärinen, 2012], which can be shown to approximately maximize the log probability of

the softmax, negative sampling is modeled after a different task, namely, telling whether

a given (center,context) pair came from the set of observed data D =
⋃

v∈V

v × C(v)

or not. Formally, we define a binary random variable Y that models the probabilities of

a sample pair (v, c) belonging (Y = 1) or not (Y = 0) to D, parametrized by θ. We also

assume that observations are independent of each other.

Mikolov et al. [2013b] model the probability p(Y = 1|v, c, θ) with a sigmoid, as

defined in Eq. (3.4). Also, note that p(Y = 0|v, c, θ) = 1− p(Y = 1|v, c, θ).

p(Y = 1|v, c, θ) = σ(θc · θv) =
1

1 + exp(−θc · θv)
(3.4)

We then are interested in maximizing the following (conditional) likelihood func-

tion:

arg max
θ

|D|
∏

i=1

p(Y = yi|vi, ci, θ)

= arg max
θ

|D|
∏

i=1

p(Y = 1|vi, ci, θ)
yi p(Y = 0|vi, ci, θ)

1−yi

(3.5)

Note, though, that if we were to rely solely on observed data, we would not have

any examples of p(Y = 0|v, c, θ), and therefore the likelihood would be simplified to (we

omit the indices i due to all observed data belonging to D):

arg max
θ

∏

(v,c)∈D

p(Y = 1|v, c, θ)

= arg max
θ

log
∏

(v,c)∈D

p(Y = 1|v, c, θ)

= arg max
θ

∑

(v,c)∈D

log p(Y = 1|v, c, θ)

(3.6)

However, Goldberg and Levy [2014] show that if we set θv = θc and θv · θc = K

for large enough values of K, we can obtain a trivial solution to objective 3.6, such that

p(Y = 1|v, c, θ) = 1 for all (v, c) pairs. As such, we must find a way to come up with

"negatively weighted" (v, c) pairs, that is, the set D′ of negative samples. Therefore,
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we generate D′ by randomly sampling γ unobserved pairs from the distribution (v, c) ∼

freq(v)freq(c)
3/4

Z
, where freq(·) denotes the relative frequency of a node in relation to all

node sequences sampled with strategy S and Z is a normalization constant. According

to Mikolov et al. [2013b], the exponent of 3
4

was obtained experimentally and is generally

left like that in most works and implementations.

Now that we have our set D′ of negative samples, we can return to Eq. (3.5) and

redefine it using D′:

arg max
θ

∏

(v,c)∈D

p(Y = 1|v, c, θ)
∏

(v′,c′)∈D′

p(Y = 0|v′, c′, θ)

= arg max
θ

∏

(v,c)∈D

p(Y = 1|v, c, θ)
∏

(v′,c′)∈D′

(1− p(Y = 1|v′, c′, θ))

= arg max
θ

∑

(v,c)∈D

log p(Y = 1|v, c, θ) +
∑

(v′,c′)∈D′

log (1− p(Y = 1|v′, c′, θ))

= arg max
θ

∑

(v,c)∈D

log

(

1

1 + exp(−θc · θv)

)

+
∑

(v′,c′)∈D′

log

(

1−
1

1 + exp(−θc′ · θv′)

)

= arg max
θ

∑

(v,c)∈D

log

(

1

1 + exp(−θc · θv)

)

+
∑

(v′,c′)∈D′

log

(

1

1 + exp(θc′ · θv′)

)

= arg max
θ

∑

(v,c)∈D

log σ(θc · θv) +
∑

(v′,c′)∈D′

log σ(−θc′ · θv′),

(3.7)

which is the formulation for Skip-gram with Negative Sampling (SGNS) used in practice.

3.1.2 Customizable Random Walks

We now present a general formulation for the walk sampling and feature learning

algorithms, which take into account the sampling strategy S, as well as a set U of starting

nodes, with U ⊆ V , and a function r : V → N that defines the number of walks per node.

As previously described in Figure 2.1, we are given an input (heterogeneous) graph, on

which we execute our RandomWalk algorithm, as described below. We then use the

output walks as input training samples to Network Embedding with Skip-gram (Eq. 3.7)

to obtain our embeddings.

When designing the algorithm in such way, we distinguish our work from previous

research by allowing for custom choices of U and r(·). In doing so, we provide additional

flexibility in the design of random walks and, consequently, in generating the output
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embeddings. Thus, in the following sections, we proceed to present our definitions of r(·)

and U for heterogeneous networks. It is worth noting that this formulation also opens up

new possibilities for future work in terms of novel design choices for random walks that

are complementary to the ones presented here.

Algorithm 1: RandomWalk

Input : Network G = (V,E, φ, ψ); Walk length l; Walks per node r(·);

Sampling strategy S; Set of starting nodes U .

Output: Set walks of sampled node sequences.

Initialize walks = ∅

for all nodes v ∈ U do

for i = 1 to r(v) do

Initialize walk = {v}

for j = 1 to l do

curr_node = walk[−1]

s = S(curr_node)

walk = walk ∪ {s}

end

walks = walks ∪ {walk}

end

end

return walks

As reviewed in Section 2.1, the sampling strategy S is often the main research

focus when it comes to network embeddings. In order to evaluate the impact of our mod-

ifications, we choose to use three well established sampling strategies from the literature,

as detailed in the following section.

3.2 Sampling Strategies

Sampling strategies define the transition probabilities required in order to decide

where to go next (sample the next node) during a random walk. These range from simple

strategies (e.g. uniform transition probabilities with no memory) to more complex ones

(higher order Markov chains with complex transitions). In this section, we present and

detail three different ways of sampling nodes in a random walk, which we use to test and

evaluate our work. For ease of reference, we name the strategies according to the network

embedding model that first introduced them.
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3.2.2 node2vec

The node2vec [Grover and Leskovec, 2016] model makes use of a 2nd-order Markov

chain to model a transition probability tensor using two additional parameters p and q.

With this, they attempt to provide the means to tune the walks between the traditional

breadth-first and depth-first search strategies. Formally, assuming the walker has recently

moved from node vi to vj via edge (vi, vj), we define the unnormalized transition proba-

bility for neighbors vk ∈ N(vj) as πijk = αijk ·wjk, where wjk is the weight of edge (vj, vk)

and

αijk =































1
p
, if (vi, vj) ∈ E, (vj, vk) ∈ E, i = k

1, if (vi, vj) ∈ E, (vj, vk) ∈ E, i 6= k, (vk, vi) ∈ E

1
q
, if (vi, vj) ∈ E, (vj, vk) ∈ E, i 6= k, (vk, vi) /∈ E

0, otherwise

(3.9)

Then, we normalize the probabilities to obtain the following probability tensor:

Nijk = p(vk|vi, vj) =
πijk

∑

vi′∈N(vj)
πi′jk

(3.10)

In Figure 3.2, we present the values for α, given i = p1 and j = p3 for all possible k

nodes. The return parameter p allows for the control of revisiting the immediate previous

node vi in the walk. Setting it high helps avoid frequent 2-hop redundancy in sampling

and forces the walker to explore further. The in-out parameter q controls the likelihood of

visiting nodes that are close to node vi. It encourages/discourages exploration away from

previously visited regions in the graph. For nodes that are adjacent to the previously

visited node (t1 and a2 in our example), node2vec assigns a neutral weight as it considers

it not to be a case of returning nor exploring ahead.

3.2.3 JUST

Specifically tailored for heterogeneous networks, JUST’s [Hussein et al., 2018]

JUmp and STay walks make use of the set of node types A to guide its walks and avoid

prioritizing nodes of certain types due to their high frequency in the graph, along with a

memory of size m, modeled as a queue Qhist to keep track of the previously visited node

types. This leads JUST to model the transition probabilities in two steps. Given that
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the same type. Formally, we define:

r(v) = max(Lmin, Lmax · ĉ(v)), (3.13)

where Lmin and Lmax are hyperparameters that control the minimum and maximum walk

lengths, respectively, and ĉ(v) is the heterogeneous normalized centrality of a given node

centrality measure c(v), defined by:

ĉ(v) =
c(v)
∑

v′∈V φ(v)

c(v′)
(3.14)

With this formulation, we define the relative centrality of a node within its type

subset. By doing this, we make sure to pay attention to nodes of all types, regardless

of their frequency in the network, while at the same time prioritizing central nodes in

comparison to nodes of that same type.

The choice of c(v) is left to the user, who can then define which aspect of centrality

they would like to capture, such as eigenvector centrality [Bonacich, 1987], betweenness

centrality [Brandes and Pich, 2007], among others. Since we are interested in scalability,

we would not like any of our strategies to require additional computations. As such, we

opt to utilize the degree centrality c(v) = deg(v) in our work, as it can be computed

at graph construction time. Additionally, the degree of a node is associated with other

quantities, which help bring insight to our work, as shown in the following sections.

3.3.1 Motivation: Stationary Distribution

Consider a random walk with uniform transition probabilities on a simple, non-

bipartite, homogeneous graph. In this case, we have that the corresponding Markov chain

is ergodic [Chung and Graham, 1997]. Thus, we can conclude that, regardless of the initial

distribution P0, there exists a unique stationary distribution π such that for all vi, vj ∈ V,

lim
t→∞

P0D
t
ij = π(vj)

(recall that Dij is the transition matrix defined in Section 3.2.1). Additionally, in this

case, we have that the stationary distribution [Brouwer and Haemers, 2011] is given by:

π(v) =
deg(v)

2 · |E|

Note, however, that [Bondy et al., 1976]:
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∑

v∈V

deg(v) = 2 · |E|

Thus:

π(v) =
deg(v)
∑

v′∈V

deg(v′)
(3.15)

which is exactly our definition of ĉ(v).

With this in mind, let us consider the estimation of P0. We do not know P0

directly, but we have many generated walk samples from our graph. We assume that the

probability of starting a walk on a given node v is given by the number of samples in our

set whose starting node is v. Therefore, for models that fix a constant number of walks η

for every node, we have:

P0(v) =
r(v)
∑

v′∈V

r(v′)
=

η
∑

v′∈V

η
=

1

|V |
(3.16)

that is, a uniform distribution on the set of vertices.

On the other hand, if we disregard the limiting hyperparameter Lmin, we have, in

our case:

P0(v) =
r(v)
∑

v′∈V

r(v′)
=

Lmax · ĉ(v)
∑

v′∈V

Lmax · ĉ(v′)
=

deg(v)
2·|E|

∑

v′∈V

deg(v′)
2·|E|

=
deg(v)
∑

v′∈V

deg(v′)
= π(v) (3.17)

We observe that our approach can then be seen as an attempt to sample walks

following the stationary transition probabilities on homogeneous graphs, which, given

enough time, is the natural tendency that random walks follow in the network.

For heterogeneous networks, we would have to take node types into account and

this result would also be valid if the sum of degrees of all nodes of a given type would

equal the same value for every node type in the network.

3.3.2 Motivation: Preferential Attachment

As pointed out by Barabási and Albert [1999], in real world networks, new nodes

tend to link themselves to more connected, or highly visible, nodes. For instance, in sci-

entific networks, we are more likely to read and a cite a paper with a lot of citations, since



3. Sample Reduction Strategies for Heterogeneous Network Embedding36

our time is limited and we simply cannot read each and every published paper out there.

This phenomenon is observed in many types of networks, such as social networks, where

famous people are followed by a huge number of regular users, and even the world wide

web, where tech giants concentrate a big part of global accesses and online interactions

[Moore, 2016].

On top of that, when we work with data from real networks, we are actually looking

at a snapshot of the current state of that network at a certain point in time. The data on

each node is by no means complete and we must take that into account when designing

our algorithms. In recommender systems literature, this problem is known as cold start

[Aggarwal et al., 2016], but the concept extends to any statistical inference problem. In

essence, low degree vertices do not offer enough information for us to make good guesses

about their real preferences/properties (e.g. other nodes that it might connect to at some

point in the future). Also, the less information we have on a node, the more likely it is for

us to put too much emphasis on it, which is a problem in case the information is wrong

or noisy. Conversely, as high degree nodes tend to attract new edges, they should be a

good source of information for our model and the information we obtain from it should

be resistant to noisy inputs.

In order to model the preferential attachment behavior, the authors model the

probability Π of a recently added node connecting to node v in the graph based on its

degree:

Π(v) =
deg(v)
∑

v′∈V

deg(v′)
(3.18)

which, just as in the previous section, comprises our proposed measure of centrality for

the walks.

3.3.3 Motivation: Entropy

Again, consider a random variable Xi with support V , representing the outcome

of transitioning to an arbitrary neighbor v of node vi modeled after its transition proba-

bilities.

If we consider the uniform transition probability case (DeepWalk), we can compute

the entropy of Xi, following Shannon [1948]’s definition:

H(Xi) =
∑

v∈V

p(v|vi)h(v), (3.19)
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where h(x) is the Shannon information content of an outcome, defined as:

h(x) = log2
1

p(x)
(3.20)

Plugging Eq. (3.20) in Eq. (3.19), we obtain:

H(Xi) =
∑

v∈V

p(v) log2
1

p(v|vi)
=
∑

v∈V

1

deg(vi)
log2 deg(vi) = log2 deg(vi) (3.21)

This quantity is also known as the node entropy [Small, 2013] of node vi. Entropy

is usually connected to the uncertainty associated with a random variable. Thus, Eq.

(3.21), points us to the fact that, between any two nodes, the one with high degree will

also have higher entropy/uncertainty.

The simple, yet useful idea of working with node degrees has proved to be effective

and arise naturally in perspectives coming from three different fields, as illustrated above.

This helps corroborate our choice of using the degree in our work instead of more complex

centrality measures. It also provides a bridge for us to look at the theoretical and empirical

results of these (and other) fields to try and understand our models with more depth.

3.4 Focused Walks

As previously mentioned in Section 3.1.2, the set U of nodes on which we start our

random walks provides another opportunity for walk customization. In this section, we

motivate and explain our proposed use of such subset.

While in some cases it might be useful to generate representations for nodes of

all types in the same space, there are several practical applications in which we are only

interested in a subset of node types for one or more tasks in particular. For instance, in

the context of academic networks, we might be interested in embeddings of papers (for

clustering and/or classification purposes), or perhaps authors and papers (for recommen-

dation purposes). In the case of a social network a user might want to take advantage

of the heterogeneous structure of a network (e.g. the structure and semantics of the het-

erogeneous edges), but only keep the representations for user and item node types. As

another example, when dealing with biological (onthology) networks [Valdeolivas et al.,

2019], for instance, one would focus in gene/protein and disease nodes in order to use

their representations to infer new possibilities of interactions.

We posit that, if we take the task in which we would like to apply our embeddings
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into account, we are able to focus on the right subset of node types, starting walks from

the nodes for which we want to generate meaningful output representations. In doing

so, we are able to relieve a strong restriction in random walk-based methods: we no

longer need to guarantee an output representation for every node in our network. As we

will see in the experimental results, in cases where our desired subset of output nodes is

significantly smaller than the complete set of nodes, we are able to significantly reduce

the number of generated samples, while still learning good representations.

It is worth mentioning that, due to the design of our learning algorithm, as long

as we visit a node once, we end up generating a set of parameters for it and, thus, an

output representation. As such, our parameter matrix in this case has dimensions ν × d,

bounded by |U | ≤ ν ≤ |V |.

Formally, we only require that U ⊆ V . In the context of our work, given a subset

Γ of node types for which we are interested in generating embeddings, we then define

U = {v ∈ V |φ(v) ∈ Γ}.

Since the choice of Γ is task-dependent, we define the subset for each of the datasets

presented in the experimental section.

Finally, even if we have a scenario where Γ = V , but we do not require every

embedding to be in the same vector space, we hypothesize that it is better to break the

learning process into multiple stages of learning with focused walks (each emphasizing a

different subtask), as we believe it will result in better representations. This hypothesis,

however, has not been tested and is left for future research.

3.5 Summary

In this chapter, we presented a framework for random walk-based representation

learning, which provides abstractions of certain algorithmic steps in the form of mod-

ules/components so as to provide a degree of customizability, which are also detailed in

the sections of this chapter. In particular, in Section 3.1, we presented the mathematical

formulation and motivation of the basic Skip-gram model for network embeddings, as well

as its updated version with negative sampling. Afterwards, we provided a general learning

algorithm with its associated modules and loss function. In Section 3.2, we discussed the

first component, presenting our choices of sampling strategies motivated by related work.

In the following sections, we presented our contributions in the form of the two re-

maining customizable modules. First, in Section 3.3, we introduced our idea of centrality-

based walks for heterogeneous networks, which make of use of node centrality per node

type in order to define the number of walks started from a given node, providing a way
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to increase/reduce the number of walks based on the centrality of a given node in the

network. In the same section, we also draw parallels between our chosen centrality mea-

sure and concepts from other areas to motivate our choice. Finally, in Section 3.4, we

proposed focused walks, which consist of defining a focused subset of node types from

which we start walks in our algorithm, contributing to a reduction on the total number

of walks

Now that we have defined our framework, the following chapter will cover the ex-

perimental setup used in our experiments aimed at answering our research questions. We

will present the chosen datasets, metrics, baseline models and training choices (hyperpa-

rameter tuning and train/test procedures).
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Chapter 4

Experimental Setup

In this chapter, we present the experimental setup of our work, which helps evaluate our

proposed centrality and focused walks, defined in Chapter 3. With these experiments, we

wish to address the following research questions:

RQ1. To what extent can we improve efficiency without harming effectiveness?

RQ2. How do different random walk strategies impact our approach?

RQ3. How do different node properties impact our approach?

RQ4. Are traditional sampling approaches generating redundant training data?

In order to empirically verify our hypotheses, we run experiments on three publicly

available real-world networks. We focus our efforts on three main tasks/applications in

network embedding literature: multi-label node classification, node clustering and visu-

alization, as presented in Section 2.2. For each of the datasets and sampling strategies

defined in Section 3.2, we test our strategies both paired together and in an isolated

manner.

In the following Sections, we describe the datasets, along with the corresponding

evaluation metrics used for each task. We also present our choice of baseline models for

result comparison. Finally, we present our training procedure in terms of train/test data

splitting, learning settings and hyperparameters.

4.1 Datasets

We have conducted our experiments on three publicly available real world hetero-

geneous network datasets. In this section, we describe and provide statistics for these

datasets. Tables 4.1 and 4.2 presents a summary of statistics of these networks. Figure

4.1 presents the degree distribution per node type for each dataset.
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Table 4.1: Summary of datasets.

Dataset DBLP Foursquare MOVIE
|V | 15649 29771 22857
|E| 51363 83407 83988

|E|homogeneous

6984
(13.6%)

5695
(6.8%)

49634
(59.1%)

|E|heterogeneous
44379

(86.4%)
77712

(93.2%)
34354

(40.9%)
# Labels 4 10 5

• MOVIE (YAGO subset) [Huang and Mamoulis, 2017]: a subset of the YAGO

[Suchanek et al., 2007] knowledge base consisting of movie information. This dataset

contains four node: 11069 actors (A), 7290 movies (M), 3015 directors (D) and 1483

composers (C). The heterogeneous edges on this graph are A-M, D-M and C-M.

Additionally, there are homogeneous edges between actors A-A and movies M-M.

Each movie is associated with one or more genre labels among "action", "horror",

"adventure", "scifi" and "crime";

• DBLP 4-Area [Huang and Mamoulis, 2017; Sun et al., 2011]: a subset of the DBLP

academic database comprising authors from four big computer science subareas:

database, data mining, machine learning and information retrieval. There are 5237

papers (P), 5915 authors (A), 18 venues (V) and 4479 topics (T). The heterogeneous

edges are A-P, P-V and P-T. In this dataset, there are homogeneous edges between

papers P-P;

• Foursquare (NYC) [Yang et al., 2015, 2016]: a check-in network collected from

Foursquare check-ins in New York City. It consists of 2449 users (U), 25904 check-

ins (C), 1250 points of interest/venues (P) and 168 timestamps (T). Heterogeneous

edges U-C, P-C and T-C are available, while homogeneous edges are defined be-

tween users U-U. Additionally, each point of interest is associated with a label

among 10 categories.

We can observe in Figure 4.1 that, in all datasets, the degree distribution of most

node types roughly follow a power law, which is a trait of a scale-free network [Barabási

et al., 2016]. In practical terms, it means that there are a lot of nodes with low degree

connectivity, and a few nodes with high degree. In particular, due to the construction of

the Foursquare dataset, all Check-in nodes have exactly 3 edges.

Finally, in Figure 4.2, we provide statistics regarding the class distribution for each

dataset. Due to the randomized nature of the Foursquare dataset, we lack precise label

information: although we know there are ten venue categories, we do not know whether

those are bars, restaurants, etc, as those were not publicly available.
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4.1.1 Focused Node Subsets

For our experiments, we are interested in the embeddings of the set of nodes for

which we have labels in the aforementioned datasets. Therefore, when defining our set U

for the Focused walks strategy, we choose to focus on the labeled set of nodes for each

dataset, as presented in the following table.

Table 4.4: Focused subset U per dataset.

Dataset Focused subset
DBLP Authors

Foursquare Points of interest
MOVIE Movies

4.2 Evaluation Metrics

4.2.1 F1-score

The F1-score [Chinchor, 1992; Van Rijsbergen, 1979] is an accuracy measure usu-

ally applied in the context of binary classification. It combines the precision and recall

of the classifier, that is, the fraction of true positive examples among the ones that the

model classified as positive, and the fraction of positives classified by the model among

all positive examples, respectively.

We make use of the usual formulation of the F1-score, obtained by setting the

F-score factor β = 1, yielding the harmonic mean of precision and recall:

F1 = 2 ·
precision · recall

precision+ recall
(4.1)

Since we are working with multi-label classification, we consider two extensions

[Yang and Liu, 1999] of the F1-score: Macro-F1, where we compute metrics for each

label, then calculate their unweighted mean, and Micro-F1, where we compute metrics

globally by counting total true positives, false negatives and false positives (in this case,

we account for class imbalance).
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4.2.2 Normalized Mutual Information

Used for clustering experiments, Normalized Mutual Information (NMI) [Kvalseth,

1987] normalizes the Mutual Information [Shannon, 1948] measure, widely used in the field

of Information Theory, by averaging via harmonic mean, yielding the following equation:

NMI(Y, C) =
2 · I(Y ;C)

H(Y ) +H(C)
, (4.2)

where Y and C are the class and cluster labels, respectively. H(·) is the entropy, as

defined in Equation 3.19, and I(Y ;C) is the mutual information, given by:

I(Y ;C) = H(Y )−H(Y |C) = H(C)−H(C|Y ), (4.3)

This measure gives us a good idea of the clustering quality in the occasions where

we have the class labels at our disposal.

4.3 Baseline Models

Our experimental setup is meant to answer whether the use of our strategies can

help in reducing the required number of samples to obtain competitive results when using

random walk-based algorithms. To that end, we consider three well established models

in the literature, which use the sampling strategies presented in Section 3.2: DeepWalk,

node2vec and JUST. We set the standard random walk parameter settings for all baselines,

that is, number of walks per node r = 10, walk length l = 100 and window size k = 10.

We define the embedding dimension to be d = 128 and the number of negative samples

γ = 5. Additionally, we set the parameters that are particular for each model as follows:

• node2vec: return parameter p = 0.5, in-out parameter q = 0.5;

• JUST: memory size m = 2, initial stay parameter α = 0.25.

In order to further contrast the impact of our proposed strategies, in addition to

comparing the models based on their usual settings, we propose a Basic sample reduction

strategy. In order to generate a reduced number of samples for each of the baseline

models, we simply define our Basic-1 and Basic-2 baselines by reducing the number of

walks started per node (usually set to 10) to 1 and 2, respectively. With this set up,

we end up generating 10% and 20% of the usual amount of samples, which is closer to
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the values we obtain with our strategies. Do note that these simple strategies do not

allow for a finer tuning of sample reduction such as the one we manage to achieve with

the variation of hyperparameters in centrality walks. By merely changing the number of

walks started per node, we are limited to having big leaps in terms of generated samples

(as we have to apply the same number to every node in the graph).

4.4 Learning and Evaluation Procedures

4.4.1 Hyperparameter Tuning

Following [Grover and Leskovec, 2016], we obtain the best values for our Lmin and

Lmax parameters using 10-fold cross validation on 10% of the available datasets with a

grid search over Lmin ∈ {1, 2, 3, 4, 5, 10, 20} and Lmax ∈ {20, 24, 28, 32, 36, 40}. Our final

hyperparameter choice takes not only the metrics into account, but also its balance in

relation to the relative number of generated samples. In general, we would like to reduce

the most our number of generated samples while obtaining good results. Therefore, we

define Lmax = 32 for every case, and in general, we set Lmin = 1. The only exceptions

happen when using the Focused strategy with the Foursquare dataset: due to the small

amount of target labeled nodes (4.2% of the whole network, as seen in Table 4.2), we

require a significantly bigger amount of walks to obtain good results. As such, in this

context we set Lmin = 20 when using Focused and Centrality strategies together, and

r = 20 when using the Focused strategy on its own.

4.4.2 Train/Test Procedure

We follow the train/test settings defined in [Perozzi et al., 2014; Dong et al., 2017;

Fu et al., 2017; Hussein et al., 2018]. For the multi-label classification task, we first train

the model, then proceed to use the output embeddings as input features to train a one-

vs-rest1 logistic regression classifier2 using the scikit-learn implementations with default

1https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
2https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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parameters. The training set is randomly sampled from the set of labeled nodes and the

rest of nodes are used in the test set. We repeat this procedure 10 times and report the

average output. We conduct our experiments using a 80%-20% train/test split.

Similarly, in the case of the node clustering, we use the output embeddings as

input vectors to the k-means algorithm [Arthur and Vassilvitskii, 2006]. With the aim

of minimizing the effect of local minima that might affect the result of k-means, we

run the algorithm with 20 randomized centroid initializations and report the average of

the results. Whenever not mentioned, we use the default parameters of the scikit-learn

implementation of k-means3.

Finally, for the qualitative node visualization task, we use the same trained em-

beddings as input features to the t-SNE algorithm [Maaten and Hinton, 2008], with two

components and the default settings of the scikit-learn implementation4. We obtain the

two-dimensional representations and plot them, coloring each node based on their label.

Note that the output visualization is obtained with no label information whatsoever and

has no relation to the clusterings obtained with the k-means algorithm.

To check for statistically significant differences between results for the multi-label

classification and node clustering tasks, we verify the assumption of homogeinety of vari-

ance using Levene’s test [Levene, 1961] and then proceed to use a One-Way analysis of

variance (ANOVA) test among variants of the same algorithm (e.g. node2vec, node2vec-

Basic-1, node2vec-Centrality, etc.). We then carry out post-hoc analysis using Tukey’s

test [Tukey, 1949]. Due to the many possibilities of combinations for statistically sig-

nificant pairings, for each algorithm we use letters to distinguish between groupings of

variants that present statistically significant differences in results at the 5% significance

level. Each result can be labeled with zero (if it is significantly different from every other

result) to one or more letters (if it is assigned to one or more groupings of variants). For

instance, if a result is reported with letters bc, it means there is a statistically significant

difference between results labeled a, but not ab, ac, b or c. Also, note that while we use

the letters abc for every algorithm, they are not related to each other (e.g. some grouping

a in the results of JUST has no relation to a grouping a reported for DeepWalk).

4.5 Summary

This chapter restated our research questions and proceeded to introduce the chosen

experimental setup aimed at answering them. In Section 4.1, we presented and detailed

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
4https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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the three datasets used in our experiments (MOVIE, DBLP and Foursquare), providing

information about their schemas, nodes, edges, along with label and degree distributions.

Next, in Section 4.2, we introduced the metrics used for the quantitative result analysis of

the classification (Micro and Macro F1) and clustering (Normalized Mutual Information)

tasks. In Section 4.3, we described the baseline models against which we compare our

experimental results. Aside from three standard sampling models (DeepWalk, node2vec

and JUST), we also propose two variations of a "naive" undersampling strategy, named

Basic-1 and Basic-2. Finally, our choices of hyperparameters, as well as the steps taken

when dividing the train, test and validation sets are presented in Section 4.4.

Having defined our experimental setup, in the next chapter we will report and

discuss our results, in an attempt to address the research questions (re)stated in this

chapter.
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Chapter 5

Experimental Results and Analyses

In this chapter, we present and analyze the results of our experiments, outlined in Chapter

4. With this, we aim to answer the research questions stated in the previous chapter. We

start by investigating to what degree we are able to improve efficiency without harming

effectiveness when reducing the number of training samples in Section 5.1. Next, in

Section 5.2, we compare the impact of the sample reduction in terms of the random

walk strategies. In Section 5.3, we analyze the results based on node characteristics.

Finally, in Section 5.4, we attempt to quantify the degree of redundancy that happens

between our sampling variations and the base strategies and understand how these relate

to experimental results.

As we would like our embeddings to be versatile in terms of applications, we use

the same set of learned embeddings for every task. We present the experimental results

for classification in Figure 5.1 and clustering in Figure 5.2. For the complete results in

tabular form, refer to Appendix A. As a reminder, we use letters to distinguish between

statistically significant results, as described in Section 4.4.2.

5.1 Efficiency-Effectiveness Tradeoff

The main hypothesis of our work is that we can benefit from principled ways to

improve efficiency while retaining or improving effectiveness. To verify this hypothesis

and address RQ1, we assess our results in terms of the classification and clustering tasks,

while considering the reduction in the training sample size used to obtain these results.

In Table 5.1 we present the total number of sampled walks for each model and

dataset. We consider the baselines to use 100% of the input sample size since there is no

sample reduction attempt in those. Note that each walk contributes to multiple training

samples proportionally to the walk length l and the window size k. In our experiments,

we fix both l and k, which makes the total number of walks comparable in terms of the

number of generated samples.
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Table 5.1: Number of sampled walks per model and dataset.

Dataset Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DBLP
156,490
(100%)

15,649
(10%)

31,298
(20%)

37,853
(24.19%)

59,150
(37.8%)

24,897
(15.91%)

Foursquare
297,710
(100%)

29,771
(10%)

59,542
(20%)

36,377
(12.22%)

25,000
(8.4%)

25,038
(8.41%)

MOVIE
228,570
(100%)

22,857
(10%)

45,714
(20%)

46,327
(20.27%)

72,900
(31.89%)

24,296
(10.63%)

Given the input sample reductions, we tackle RQ1 by assessing which of our strate-

gies achieved statistically significant improvements or at least equivalent results in compar-

ison to the baselines for both classification and clustering. Our aim here is to consistently

obtain results that are as good or better than the regular models with our strategies that

reduce the sample input size. This analysis is presented below in Table 5.2.

Table 5.2: Overview analysis of strategy per task. We compare our results with the
baselines and report a checkmark (X) for each dataset if we observe them to be statistically
superior or if there are not statistically significant differences (e.g. statistically, our results
are at least as good as the baselines). We use teal, violet and brown for the DBLP,
Foursquare and MOVIE datasets, respectively.

Classification

Algorithm Centrality Focused Cent. + Focus.
DeepWalk X X X X X X

node2vec X X X X X X X

JUST X X X X X X X X X

Clustering

Algorithm Centrality Focused Cent. + Focus.
DeepWalk X X X

node2vec X X X

JUST X X X X X X X

From Table 5.2, we note that, in general, the two strategies have been successful,

showing significant improvements for every dataset and every algorithm. Breaking down

results, for node classification, we observe success in all datasets, especially in MOVIE,

whose results benefit from every combination of strategies and algorithms. Similarly, we

also note promising results in DBLP, with 8 out of 9 checkmarks (only missing DeepWalk

using Centrality + Focused walks). For node clustering, we are not successful in matching

baseline results on the DBLP dataset. However, as seen in Figure 5.2, we were able to

get very close and, when using the Centrality strategy together with JUST, we actually

outperformed the baselines. Results on Foursquare, on the other hand, are balanced on

both tasks.
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In light of these results, which we managed to obtain by reducing from 24.19% up

to 8.41% of the total number of walks when compared to baselines, as seen in Table 5.1,

we answer RQ1 and confirm our hypothesis that it is indeed possible to reduce training

samples while consistently learning effective representations and maintaining good results

in the evaluated tasks when using all base algorithms. Our results show that the strategies

have been successfully applied in different tasks, datasets, and sampling strategies, which

helps corroborate their strength and versatility.

Note that for every algorithm and dataset combination, we are successful in our

objective of obtaining results that are at least as good as the baselines while promoting

a significant reduction in the number of training samples. While in some cases the Basic

strategies also match the results of other strategies/baselines, we argue that since it does

not happen regularly and, in addition, sometimes starting a single walk from each node

yields better results than starting two walks, using those is unreliable and therefore should

not be considered in practice. Instead, we suggest that one or either of our proposed

strategies should be adopted.

5.1.1 Node Visualization

Another useful application for network embeddings is to aid in the 2D visualization

of networks. It is often the case that the output representations are used as input to some

dimensionality reduction algorithm such as PCA or t-SNE. We now take a look at the

efficiency-effectiveness tradeoff by qualitatively addressing the visualization task as a way

to corroborate the usage of our strategies from a different perspective. To do so, we used

our learned embeddings as input to t-SNE in order to be able to compare the overall

visual quality of the output visualizations. We color each node based on its label, which

is unknown to the algorithm during training. The results are presented in Figure 5.3.

As seen in the plotted visualizations, it seems that each of our proposed techniques

affect the visualizations in a different way. Centrality walks (Figure 5.3.d) do not seem to

behave differently from the baselines by itself, whereas Focused walks (Figure 5.3.e) tend

to push nodes of different types away from each other.

The baseline approaches, in particular DeepWalk and node2vec, manage to sepa-

rate the classes to a point, like when using the Centrality approach, but there is still a lot

of overlapping in the central regions of the plots. By using JUST with both strategies,

however, we are able to obtain a clearer separation of author nodes by their areas, as seen

in Figure 5.3.f. We posit that both effects listed above are combined to contribute to a

better visualization. Note that even though some of these areas are highly correlated,
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we were still able to obtain a good result while only using 15.91% of the total amount of

walks used to train the baselines.

The effects discussed above also happen when using our strategies with DeepWalk

and node2vec, but in a less significant way. To keep the comparison clear and easy to

interpret, we only report the visualizations obtained by using our strategies with JUST.

Now, we would like to address the other research questions. To do so, in the

following sections we look at our findings from a different perspective: we analyse results

from a sampling strategy point of view as well as break them down by node degree.

5.2 Impact of Sampling Strategies

In the previous section, we have seen experimental results indicate the possibility of

reducing the number of input samples without harming the effectiveness of the models. We

now move on to RQ2, with the aim of determining the impact of the proposed strategies

in relation to the sampling strategies used in this work, which vary in complexity. To

this end, we return to the experimental results (Figures 5.1 and 5.2) and analyze them

by considering the three sampling techniques: DeepWalk, node2vec and JUST.

Prior to discussing the results, it is worth noting that with regard to Micro-F1

versus Macro-F1 performance, the results happen to be very similar in absolute terms in

the case of DBLP (due to the label distribution being balanced), slightly less similar on the

MOVIE dataset and very different in the case of Foursquare, which has an unbalanced

class distribution. For both metrics, though, the relative results between models and

strategies are similar, which help indicate that no class is overly favored over the other in

any of the strategies.

According to our experimental results, we observe that, in terms of multi-label

classification, the centrality approach seems to lead to a good trade-off between results

and sample reduction on all sampling strategies. In particular, for DeepWalk, using

centrality by itself is consistently better than the other choices, managing to outperform

the baseline in the MOVIE and DBLP datasets, also being the only approach to match the

baseline on Foursquare. It is worth noting, though, that using focused walks and pairing

the two approches together also yields good results and even more sample economy. On

the other hand, when it comes to clustering, the focused approach is the better choice for

DeepWalk-based sampling, whereas centrality showed a decrease in NMI on MOVIE and

Foursquare. Even though the baseline was slightly better on DBLP, both centrality and

focused walks by themselves proved to be good choices for sample reduction while staying

quite close to the baseline in terms of effectiveness.
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In terms of classification with node2vec, which is more complex than its predeces-

sor, centrality is still the best choice for MOVIE, but we can notice that our choices are not

as consistent, since the "naive" approaches seem to perform just as well on the other two

datasets. Still, combining both strategies consistently match the baseline performance,

which is desirable. As with DeepWalk, using focused walks is better for clustering with

node2vec. However, our results show that combining centrality and focused walks is also

a good choice for node2vec when clustering, but not for classification.

Finally, JUST seems to benefit more consistently from the combination of both

centrality and focused walks than the previous strategies for both classification and clus-

tering, which is a good outcome, since in this case we are able to reduce the number of

walks even further. Still, we also note more variation in the behavior of all approaches,

with the Basic ones sometimes performing well, but not as consistently as our techniques,

but also focused and centrality not being consistent over different datasets. This might

happen due to the complexity of JUST-based sampling, which is able to drastically change

the walks and that seems to have a bigger effect on our techniques.

In trying to answer RQ2 we observe that as the complexity of sampling strategies

grow, there is a higher degree of fluctuation in results, which sometimes make our tech-

niques present less of an impact. Nevertheless, we posit that our proposed techniques

offer a positive contribution to be seen in almost every case, as using them to reduce

the required number of samples provide more consistent results than using the naive

approaches.

5.3 Impact of Node Properties

Section 5.1 provided evidence that we can consistently improve training efficiency

without harming effectiveness, while Section 5.2 showed the impact of different sampling

strategies in relation to our approaches. In this section, we tackle RQ3 and analyze our

approaches at the node level. To do so, we make use of the previously trained embeddings,

while switching metrics to average accuracy – defined as the ratio of correct predictions

in all samples of the test set – which takes the individual contribution of a node and,

as such, can be broken down by node properties. That way, we are able to group our

results by degree ranges on the classification task. Since clustering metrics evaluate the

predictions in terms of groupings of nodes instead of their individual labels, we do not

conduct a breakdown analysis on clustering results. We define four categories based on

the degree ranges that might arise in real world scenarios:
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• (Degree = 1): "extreme" cold-start nodes, for which we have little information that

might not be reliable;

• (2 ≤ Degree ≤ 5): nodes for which we have some information, but are still seen as

cold-start nodes due to their low degrees;

• (6 ≤ Degree ≤ 15): regular nodes with moderate degrees and associated informa-

tion;

• (Degree > 15): high-degree nodes that centralize a lot of information.

We have separated the results for each dataset, such that Figures 5.4, 5.5 and

5.6 present the results for Foursquare, MOVIE and DBLP, respectively. In each of these

figures, we also break down the contributions per sampling strategy and present the

output accuracy for each model. Since we run the experiments multiple times, we report

the average amount of nodes in the test set per range so as to illustrate their contribution

in terms of "global" accuracy results. Due to the amount of results to address, we choose

to present our discussions based on the degree ranges we have just defined.

When analyzing our first category ("extreme" cold start nodes), we note that for

the Foursquare dataset we have a low amount of 1-degree nodes (with an average of 1.2

per test set), which makes the data unreliable. As such, we focus our analysis on the

other two datasets. We observe that, when it comes to cold start nodes, the baseline

models are a solid choice, consistently yielding good accuracy results. It is worth noting,

however, that both of our strategies seem to work very well for these nodes, with the

focused strategy being particularly good for the MOVIE dataset, whose amount of 1-

degree nodes is considerably lower in relation to other degree ranges, which gives us a

boost in accuracy by focusing on nodes that are deemed unimportant from a centrality

point of view. On the other hand, in the case of DBLP, the amount of cold start nodes

is bigger in comparison to the overall graph, which leads to them having a bigger impact

in temrs of centrality and, as such, it turns out that using the centrality approach is

better than the focused one in this case, and pairing both is even better. This leads us

to consider that, even if we break down nodes by their degrees, we must also take their

relation to the global graph structure when analyzing the impact of our strategies.

Albeit slightly bigger, the average node amount for the 2-5 range is still too small

for the Foursquare dataset, as in the 1-degree case. Thus, we keep our attention on

DBLP and MOVIE for this degree category as well. In this case, we see that the impact

of centrality walks improve on the MOVIE dataset. We posit that this happens due to

the increase in the proportion of nodes for this bracket. The same effect happens when

we look at the DBLP results, where we also see a big amount of nodes on average in this

bracket, which corroborates the idea that centrality walks tend to perform better when

we have more nodes of that "centrality range" in the graph. Focused walks lose a bit in
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no upper bound in terms of node degree, which might make its results vary significantly

within the bracket. To better understand this effect, we would need to define additional

categories depending on the node distribution on a graph-by-graph basis. Such specificity

would certainly be interesting, but it does not fall within the scope of our study. Secondly,

we hypothesize that the high degree of these nodes make it so that our strategies could

be insufficient in understanding their complex neighborhoods, which is better achieved by

thoroughly sampling walks on the whole graph as done by the baselines. While we cannot

explain this effect with certainty, we believe that it suggests that different centrality

intervals would profit by making use of different embeddings. While this idea would

go against our efficacy requirement, as it would involve training multiple models on the

whole graph, it could be an interesting future research direction if one is not limited by

computing constraints.

In summary, when addressing RQ3 we note that, in terms of consistency, we ob-

tain our best results from the mid categories 2-5 and 6-15. Those also happen to be

representative in all datasets (2-5 for DBLP and MOVIE and 6-15 for Foursquare and

MOVIE), which helps explain why we sometimes outperform other models when looking

at our general classification metrics. In future work, we would like to draw inspiration

from these breakdown analyses and design hybrid approaches that behave differently by

changing the sampling strategy and/or the window size based on the centrality of a node.

5.4 Sample Redundancy Analysis

With RQ4, we would like to investigate the hypothesis that there are redundant

samples being generated by the base models. In this analysis, we consider that a base

model generates redundant samples if we are able to obtain a high fraction of the same

node pairs while using a smaller quantity of random walks, as in our approaches.

Thus, with the aim of comparing our samples to their corresponding baselines, we

analyze the walks generated by the models during the experiments. Given the walks for

each model, we generate node pairs following the Skip-gram algorithm. However, due

to the combinatorial explosion of big window sizes, we limit our analysis to node pairs

generated with a window of size 2 (in our experiments, we use a window of size 10).

In order to quantify the degree of redundancy, we compute the Jaccard coefficient

(Eq. (5.1)) between the set of node pairs from the base model (A) and from the different
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models (B) we are using.

J(A,B) =
|A ∩ B|

|A ∪ B|
(5.1)

We report the average value of 5 different generated walks for each strategy and

dataset. The results are presented in Table 5.3.

Table 5.3: Comparison of Jaccard coefficient of node pair sets between each proposed
strategy and the base sampling model for each dataset.

DBLP

Base model Basic-1 Basic-2 Centrality Focused Cent. + Focus.
DeepWalk 0.3884 0.4879 0.5136 0.5681 0.3026
node2vec 0.3736 0.4719 0.4975 0.5469 0.3474

JUST 0.3493 0.4527 0.4839 0.5520 0.2728

MOVIE

Base model Basic-1 Basic-2 Centrality Focused Cent. + Focus.
DeepWalk 0.5069 0.6360 0.6491 0.7046 0.4979
node2vec 0.4830 0.6100 0.6252 0.6778 0.4876

JUST 0.6155 0.6962 0.7064 0.7356 0.6066

Foursquare

Base model Basic-1 Basic-2 Centrality Focused Cent. + Focus.
DeepWalk 0.2993 0.4250 0.3327 0.1767 0.2661
node2vec 0.2725 0.3863 0.3027 0.1613 0.2419

JUST 0.2912 0.4099 0.3230 0.2215 0.2607

We note from the results that, for DBLP and MOVIE, our strategies exhibit a

higher degree of sample similarity in comparison to the baselines, while the opposite

happens in the case of Foursquare, which is different in structure from the other datasets

by both its Check-in and Timestamp node types, which do not follow regular centrality

distributions, as seen in Figure 4.1. Still, while in some cases there exists a high degree of

redundancy, as in the case of MOVIE, where we have a Jaccard coefficient above 70% with

our strategies, these results are not consistently correlated with the performance observed

in our experimental results. For instance, combining our strategies, which proves to be

a good choice experimentally, as seen in the previous sections, often presents the lowest

Jaccard coefficient here.

With this in mind, we have tried taking the amount of repeated samples into

account when defining our idea of redundancy so as to look for additional answers. To

do so, we built vectors of node pair frequencies (e.g. each dimension is associated with

a pair of node ids, with the vector dimension being the number of unique node pairs)

and computed the cosine similarity between these vectors. Since we obtained a similarity

above 0.9 for every comparison, we opt to not report the results individually here. We
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found out that this effect happens due to high-frequency node pairs – which show up in all

strategies – contributing significantly to the cosine similarity computation. This leads us

to believe that the difference in results lies in how each strategy handles lower frequency

pairs.

As such, in trying to address RQ4, we argue that even though we were able to find

signs of sample redundancy, we still need to investigate further before drawing further

conclusions. Our analysis indicates that lower frequency node pairs might be a good

place to look for answers and we leave these considerations to future work. We believe

that a thorough comprehension of these samples and their relation to the training process

can provide valuable information and help develop better sampling techniques.

5.5 Summary

In this chapter, we reported and discussed the experimental results which helped

us in validating our proposed ideas.

In Section 5.1, we addressed our first research question, concerning the tradeoff

between efficiency and effectiveness. We verified that we were able to achieve statistically

equivalent or better effectiveness in most experiments with varied amounts of sample

reduction, as well as provided a qualitative analysis in the form of a visualization ex-

periment, showing that we can drastically reduce the number of sampled walks while

sacrificing little predictive power (or none whatsoever).

In Section 5.2, we answered our second research question by analyzing experimental

results from the point of view of different sampling strategies. We have presented results

for classification and clustering and shown that our techniques work in most cases, while

showing a higher degree of fluctuation in results as the complexity of sampling strategies

increases.

In Section 5.3, we observed how node degrees impact our strategies by breaking

down our experimental results by node ranges, addressing our third research question. We

saw that our approaches are more consistent in terms of results within intermediate degree

ranges and suggested ways how hybrid strategies could take advantage of this behavior.

Finally, in Section 5.4, we addressed our last research question by providing an

analysis of sample redundancy. We compared the samples generated by the base mod-

els with our strategies and discussed how further analyses could possibly approach the

redundancy problem so as to better characterize this phenomenon.

We conclude the experimentation and analyses of our proposed sample reduction

strategies and corresponding research questions in this chapter. In the next chapter, we
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review the contributions of this work and discuss possibilities for future work.
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Chapter 6

Conclusions and Future Work

With the ever growing usage and size of graph structured data, network representation

learning techniques have become commonplace both in industry and academia due to

their strength in capturing complex information in a compact data structure. Because of

that, the need for scalable algorithms is paramount for many real world applications and,

as such, every contribution toward efficiency proves to be extremely important in present

times. In light of this, we proposed two sample reduction strategies for heterogeneous

network embedding, which is known to be a complex task (and sometimes computationally

costly) due to the multiple types of information inherent to its structure. We also proposed

the organization of random walk-based models into separate customizable steps, with the

aim of providing an easy way to experiment and come up with novel approaches for future

applications.

The following sections summarize our contributions and findings, present our con-

cluding remarks and provide directions for future research.

6.1 Summary of Contributions

In this section, we summarize the main contributions of this work.

1. In Chapter 3, we generalized centrality-based walks for heterogeneous networks,

contributing with a way to capture centrality information for networks of any type

and degree of heterogeneity. We also proposed focused walks, a task-based strategy

that defines a subset of starting node types. The first technique is useful when we

want to concentrate our attention on nodes following some predefined measure of

centrality per node type, whereas the latter is particularly effective when we want

to learn embeddings for node types that are underrepresented in our graph;

2. Also in Chapter 3, we framed the aforementioned centrality and focused walks as

part of a customizable random walk module that allows for custom choices of the set
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of starting nodes and the function that defines the number of walks starting from a

given node. In doing so, we offer flexibility in the design of sampling strategies and

make it easy to extend our work;

3. In Chapter 5, we thoroughly validated the proposed strategies experimentally and

analyzed to which degree they could be used as sample reduction alternatives for

random walk-based heterogeneous network embedding techniques from both quanti-

tative and qualitative points of view. We also evaluated the relation of our strategies

to different types of sampling approaches and their effectiveness in learning node

representations of different degree ranges. Finally, we attempted to quantify the

degree of sample redundancy present in regular sampling approaches.

6.2 Summary of Conclusions

In this work, we presented two sample reduction strategies for heterogeneous net-

work embedding, along with the generalization of certain steps in the learning framework

that allow for further customization. Our approaches are based on using centrality mea-

sures to define the number of walks starting from each node in the network and making

use of the heterogeneous type information to define a subset of starting nodes. While

these were proposed in the context of this work, we encourage further experimentation

with the many possible ways to define the number of starting walks and the starting sub-

set. Extensive experimentation on multiple publicly available datasets demonstrated the

effectiveness of our strategies in reducing the required number of samples to obtain good

embeddings, which helps pave the way for their usage in the context of regular network

embedding methods, as well as being part of more complex techniques.

6.3 Future Work

We believe our strategies to be generally useful for network representation learning.

In order to confirm this hypothesis, we must evaluate them on various methods and

approaches. As such, in the future, we aim to experiment with the proposed strategies on

other types of models that make use of random walks, either directly or indirectly, such

as GraphSAGE [Hamilton et al., 2017a].



6. Conclusions and Future Work 66

Another direction for future work is to experiment with different ways to define

r(·) and U . As previously mentioned, there are many possibilities when using centrality

information to define these. One might even focus on ways that do not make use of

centrality, or define different centrality measures depending of the node type and its

degree distribution or overall presence in the graph. Another possible approach would

be to propose a hybrid method that makes use of our methods along with novel ideas.

As seen in Section 5.3, results seem to vary based on the node degree, which could point

that defining a set of functions to be chosen depending on the centrality of a node would

improve further results.

Finally, we would like to pursue a theoretically principled way to quantify and

answer the following research question: up to which point can we use our strategies

without affecting the generalization properties of the base algorithms? In particular, we

believe that a possible answer might be obtained by trying and relating our techniques

to known bounds for sample complexity in representation learning [Seibert, 2019]. In

general, results in learning theory would be a good place to start looking for insights

regarding this question.



67

Bibliography

Aggarwal, C. C. et al. (2016). Recommender systems. Springer.

Arthur, D. and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding.

Technical report, Stanford.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science,

286(5439):509--512.

Barabási, A.-L. et al. (2016). Network science. Cambridge university press.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Ma-

linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018).

Relational inductive biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261.

Bonacich, P. (1987). Power and centrality: A family of measures. American journal of

sociology, 92(5):1170--1182.

Bondy, J. A., Murty, U. S. R., et al. (1976). Graph theory with applications, volume 290.

Macmillan London.

Brandes, U. and Pich, C. (2007). Centrality estimation in large networks. International

Journal of Bifurcation and Chaos, 17(07):2303--2318.

Brouwer, A. E. and Haemers, W. H. (2011). Spectra of graphs. Springer Science & Business

Media.

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of graph

embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge

and Data Engineering, 30(9):1616--1637.

Chen, H., Yin, H., Chen, T., Nguyen, Q. V. H., Peng, W.-C., and Li, X. (2019). Exploiting

centrality information with graph convolutions for network representation learning. In

2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 590--

601. IEEE.

Chen, T. and Sun, Y. (2017). Task-guided and path-augmented heterogeneous network

embedding for author identification. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, pages 295--304.



Bibliography 68

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). Cluster-gcn: An

efficient algorithm for training deep and large graph convolutional networks. In Pro-

ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 257--266.

Chinchor, N. (1992). Muc-4 evaluation metrics in proc. of the fourth message understand-

ing conference 22–29.

Chung, F. R. and Graham, F. C. (1997). Spectral graph theory. Number 92. American

Mathematical Soc.

Cui, P., Wang, X., Pei, J., and Zhu, W. (2018). A survey on network embedding. IEEE

Transactions on Knowledge and Data Engineering, 31(5):833--852.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior,

A., Tucker, P., Yang, K., et al. (2012). Large scale distributed deep networks. In

Advances in neural information processing systems, pages 1223--1231.

Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec: Scalable representation

learning for heterogeneous networks. pages 135--144. ACM.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12(7).

Fu, T.-y., Lee, W.-C., and Lei, Z. (2017). Hin2vec: Explore meta-paths in heterogeneous

information networks for representation learning. In Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management, pages 1797--1806. ACM.

Gao, M., Chen, L., He, X., and Zhou, A. (2018). Bine: Bipartite network embedding.

In The 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval, pages 715--724.

Goldberg, Y. and Levy, O. (2014). word2vec explained: deriving mikolov et al.’s negative-

sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discov-

ery and data mining, pages 855--864. ACM.

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized

statistical models, with applications to natural image statistics. The journal of machine

learning research, 13(1):307--361.

Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation learning on

large graphs. In Advances in Neural Information Processing Systems, pages 1024--1034.



Bibliography 69

Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on graphs:

Methods and applications. arXiv preprint arXiv:1709.05584.

Huang, Z. and Mamoulis, N. (2017). Heterogeneous information network embedding for

meta path based proximity. arXiv preprint arXiv:1701.05291.

Hussein, R., Yang, D., and Cudré-Mauroux, P. (2018). Are meta-paths necessary?: Re-

visiting heterogeneous graph embeddings. pages 437--446. ACM.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of

the ACM (JACM), 46(5):604--632.

Kvalseth, T. O. (1987). Entropy and correlation: Some comments. IEEE Transactions

on Systems, Man, and Cybernetics, 17(3):517--519.

Lai, Y.-A., Hsu, C.-C., Chen, W. H., Yeh, M.-Y., and Lin, S.-D. (2017). Prune: Preserving

proximity and global ranking for network embedding. In Advances in neural information

processing systems, pages 5257--5266.

Levene, H. (1961). Robust tests for equality of variances. Contributions to probability and

statistics. Essays in honor of Harold Hotelling, pages 279--292.

Li, C.-K. and Zhang, S. (2015). Stationary probability vectors of higher-order markov

chains. Linear Algebra and its Applications, 473:114--125.

Lovász, L. et al. (1993). Random walks on graphs: A survey. Combinatorics, Paul erdos

is eighty, 2(1):1--46.

Ma, Y., Wang, S., Ren, Z., Yin, D., and Tang, J. (2017). Preserving local and global

information for network embedding. arXiv preprint arXiv:1710.07266.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579--2605.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111--3119.

Moore, M. (2016). Tech giants and civic power. Centre for the study of Media, Commu-

nication & Power, King’s College London. Retrieved February, 5:2020.



Bibliography 70

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language

model. In Aistats, volume 5, pages 246--252. Citeseer.

Norris, J. R. (1998). Markov chains. Number 2. Cambridge university press.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford InfoLab.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701--710. ACM.

Rossi, R. A., Ahmed, N. K., Carranza, A., Arbour, D., Rao, A., Kim, S., and Koh, E.

(2019). Heterogeneous network motifs. arXiv preprint arXiv:1901.10026.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal represen-

tations by error propagation. Technical report, California Univ San Diego La Jolla Inst

for Cognitive Science.

Seibert, M. (2019). Sample Complexity of Representation Learning for Sparse and Related

Data Models. PhD dissertation, Technische Universität München.

Shang, J., Qu, M., Liu, J., Kaplan, L. M., Han, J., and Peng, J. (2016). Meta-path

guided embedding for similarity search in large-scale heterogeneous information net-

works. arXiv preprint arXiv:1610.09769.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system

technical journal, 27(3):379--423.

Shi, C., Hu, B., Zhao, W. X., and Philip, S. Y. (2019). Heterogeneous information

network embedding for recommendation. IEEE Transactions on Knowledge and Data

Engineering, 31(2):357--370.

Shi, C., Li, Y., Zhang, J., Sun, Y., and Philip, S. Y. (2016). A survey of heterogeneous

information network analysis. IEEE Transactions on Knowledge and Data Engineering,

29(1):17--37.

Small, M. (2013). Complex networks from time series: Capturing dynamics. In 2013

IEEE International Symposium on Circuits and Systems (ISCAS2013), pages 2509--

2512. IEEE.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic knowl-

edge. In Proceedings of the 16th international conference on World Wide Web, pages

697--706.



Bibliography 71

Sun, Y., Han, J., Yan, X., Yu, P. S., and Wu, T. (2011). Pathsim: Meta path-based top-

k similarity search in heterogeneous information networks. Proceedings of the VLDB

Endowment, 4(11):992--1003.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: Large-scale

information network embedding. In Proceedings of the 24th international conference on

world wide web, pages 1067--1077.

Tang, L. and Liu, H. (2009a). Relational learning via latent social dimensions. In Pro-

ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 817--826.

Tang, L. and Liu, H. (2009b). Scalable learning of collective behavior based on sparse

social dimensions. In Proceedings of the 18th ACM conference on Information and

knowledge management, pages 1107--1116.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics,

pages 99--114.

Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G., Levy, N., Cau, P., Remy,

E., and Baudot, A. (2019). Random walk with restart on multiplex and heterogeneous

biological networks. Bioinformatics, 35(3):497--505.

Van Rijsbergen, C. J. (1979). Information retrieval. 2nd. newton, ma.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A comprehensive

survey on graph neural networks. IEEE transactions on neural networks and learning

systems.

Yang, D., Zhang, D., Chen, L., and Qu, B. (2015). Nationtelescope: Monitoring and

visualizing large-scale collective behavior in lbsns. Journal of Network and Computer

Applications, 55:170--180.

Yang, D., Zhang, D., and Qu, B. (2016). Participatory cultural mapping based on collec-

tive behavior data in location-based social networks. ACM Transactions on Intelligent

Systems and Technology (TIST), 7(3):1--23.

Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. In

Proceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, pages 42--49.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018).

Graph convolutional neural networks for web-scale recommender systems. In Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 974--983.



Bibliography 72

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2018). Network representation learning: A

survey. IEEE Transactions on Big Data.



73

Appendix A

Experimental Results



A. Experimental Results 74

Table A.1: Comparison of Micro-F1 results for node classification per model and dataset.

Foursquare
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.5676
a 0.5368b 0.5385b 0.5509

ab 0.5401b 0.5373b

node2vec 0.5560
a 0.5284ab 0.5384b 0.53b 0.5356b 0.5464

ab

JUST 0.5672
a 0.5424c 0.5456bc 0.5629

ab
0.56

a
0.5539

abc

# Walks
297710
(100%)

29771
(10%)

59542
(20%)

36377
(12.22%)

25000
(8.4%)

25038
(8.41%)

MOVIE
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.5048a 0.5059a 0.5149b 0.5236 0.5167b 0.518b

node2vec 0.514ab 0.4961 0.5148ab 0.5287 0.5196b 0.5073a

JUST 0.503a 0.5107
b 0.5071a 0.5096a 0.5094a 0.5173

b

# Walks
228570
(100%)

22857
(10%)

45714
(20%)

46327
(20.27%)

72900
(31.89%)

24296
(10.63%)

DBLP
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.8602a 0.8484 0.8623a 0.878 0.8615a 0.8662a

node2vec 0.8624
a 0.8385 0.8569

a
0.8612

a
0.8552

a
0.862

a

JUST 0.8694
ab 0.855b 0.8599

ab
0.8641

ab
0.8691

ab
0.8777

a

# Walks
156490
(100%)

15649
(10%)

31298
(20%)

37853
(24.19%)

59150
(37.8%)

24897
(15.91%)
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Table A.2: Comparison of Macro-F1 results for node classification per model and dataset.

Foursquare
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.5009 0.4604a 0.4730a 0.4775a 0.4671a 0.4615a

node2vec 0.4830 0.4589a 0.4583a 0.4559a 0.4389b 0.4463ab

JUST 0.5055
a 0.4616c 0.4788bc 0.4915

ab 0.4753bc 0.4678c

# Walks
297710
(100%)

29771
(10%)

59542
(20%)

36377
(12.22%)

25000
(8.4%)

25038
(8.41%)

MOVIE
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.4731ab 0.4538 0.4805
bc

0.4878
c

0.4806
bc 0.4663a

node2vec 0.4784a 0.4391 0.4797ba 0.4902
c

0.4869
bc 0.4545

JUST 0.4682a 0.4776
b 0.476ab 0.474ab 0.4736ab 0.4792

b

# Walks
228570
(100%)

22857
(10%)

45714
(20%)

46327
(20.27%)

72900
(31.89%)

24296
(10.63%)

DBLP
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.8610a 0.8459b 0.8643
ac

0.8723
c 0.8553ab 0.8586a

node2vec 0.8616
a 0.8378 0.8564

a
0.8605

a
0.8546

a
0.8616

a

JUST 0.86a 0.8539a 0.8635a 0.8613a 0.8587a 0.8653a

# Walks
156490
(100%)

15649
(10%)

31298
(20%)

37853
(24.19%)

59150
(37.8%)

24897
(15.91%)
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Table A.3: Comparison of Normalized Mutual Information results for node clustering per
model and dataset.

Foursquare
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.2725
a

0.2644
ab 0.2594b 0.26b 0.2715

a
0.2672

ab

node2vec 0.272a 0.2703a 0.2564 0.2649a 0.2788
b

0.2809
b

JUST 0.2714
a 0.2613bc 0.2583c 0.2746

a
0.2676

ab
0.2707

a

# Walks
297710
(100%)

29771
(10%)

59542
(20%)

36377
(12.22%)

25000
(8.4%)

25038
(8.41%)

MOVIE
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.0608
a 0.0503c 0.0514bc 0.0508bc 0.0632

a 0.0549b

node2vec 0.0634 0.0397 0.0495a 0.0481a 0.0577b 0.0574b

JUST 0.0582
a 0.0493bc 0.0420c 0.0547

a
0.0622

abc
0.0551

ab

# Walks
228570
(100%)

22857
(10%)

45714
(20%)

46327
(20.27%)

72900
(31.89%)

24296
(10.63%)

DBLP
Model Baseline Basic-1 Basic-2 Centrality Focused Cent. + Focus.

DeepWalk 0.6196 0.5525 0.5869 0.6128 0.6097 0.5848

node2vec 0.6081 0.4540 0.5858a 0.5874a 0.6025 0.5972

JUST 0.6236 0.6013 0.6035 0.6302 0.6069 0.6289

# Walks
156490
(100%)

15649
(10%)

31298
(20%)

37853
(24.19%)

59150
(37.8%)

24897
(15.91%)
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