
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Marcelo Antônio Mendes Bastos

Poda de Ensemble via uma abordagem de programação inteira com
restrições de diversidade

Belo Horizonte
2021



Marcelo Antônio Mendes Bastos

Poda de Ensemble via uma abordagem de programação inteira com
restrições de diversidade

Versão Final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do título de Mestre
em Ciência da Computação.

Orientador: Cristiano Arbex Valle
Coorientador: Humberto César Brandão de Oliveira

Belo Horizonte
2021



Marcelo Antônio Mendes Bastos

Ensemble pruning via an integer programming approach with diversity
constraints

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Cristiano Arbex Valle
Co-Advisor: Humberto César Brandão de Oliveira

Belo Horizonte
2021



 

© 2021, Marcelo Antônio Mendes Bastos. 

    Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Bastos, Marcelo Antônio Mendes.  
 

B327e          Ensemble pruning via an integer programming approach with      
               diversity constraints [manuscrito] / Marcelo Antônio Mendes  
               Bastos – 2021. 
                    xx,58 f. il. 
                      
                    Orientador: Cristiano Arbex Valle. 
                    Coorientador: Humberto César Brandão de Oliveira. 
                    Dissertação (mestrado) – Universidade Federal de Minas  
                Gerais, Instituto de Ciências Exatas, Departamento de Ciência  
                da Computação. 
                    Referências: f.49-53. 
                                   
                    1. Computação – Teses. 2. Aprendizagem por Ensemble –  
                Aprendizado do computador – Teses. 3. Programação Inteira –  
                Teses. I. Valle, Cristiano Arbex. II. Oliveira, Humberto César  
                Brandão de. III Universidade Federal de Minas Gerais; Instituto  
                de Ciências Exatas, Departamento de Ciência da Computação.  
               IV. Título. 
 

CDU 519.6*82.10(043) 

 
Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa 
CRB 6ª Região nº 1510 



 

 



Acknowledgments

First, I would like to thank God, for having always blessed me and given me strength in
all moments of this journey.

To my dear parents Antônio and Zelma, and my sister Natália, for all the love and
care given, for always supporting and encouraging me in times of difficulty.

To my cousins Rafael and Guilherme, the latter who unfortunately is no longer
with us, for inspiring me to get a graduate degree and go to a master’s program. Despite
of the difficulties, their intelligence and hardworking inspire me to keep studying and give
the best of myself.

To my co-advisor professor Humberto for helping to open the doors to I come to this
master’s program, for introducing me to the areas of machine learning and optimisation
and allowing me to work with his initial optimisation model, which gave rise to my
undergraduate thesis and following to this master’s thesis. More over, his experience
really contributed to improve my professional and academic qualifications.

I would like to give a special thanks to my advisor Professor Cristiano, for guiding
me through this work, for all the shared knowledge and all the support he gave me. He
was a very dedicated advisor, whose contributions really helped to improve the quality
this thesis. I really appreciate all the knowledge that I acquire from him during the period
of the master’s program, it has been of great value in both my academic and professional
life.

Finally, I also thank all the friends and other people who helped me in some way,
both during the development of this work and in the stages before it.



Resumo

Aprendizagem por ensemble utiliza múltiplos classificadores na expectativa de obter um
melhor desempenho preditivo. Estudos empíricos vem mostrando que a poda de ensem-
bles, isto é, a escolha de um subconjunto apropriado dos classificadores disponíveis, pode
levar a previsões comparáveis ou melhores do que usar todos os classificadores. Nesta
dissertação, consideramos um problema de classificação binária e propomos uma abor-
dagem de programação inteira (PI) para selecionar subconjuntos de classificadores ótimos.
Propomos uma função objetivo flexível para se adaptar aos critérios desejados de difer-
entes conjuntos de dados. Também propomos restrições para garantir níveis mínimos de
diversidade no conjunto. Apesar do caso geral de PI ser NP-Difícil, os solvers de última
geração são capazes de obter rapidamente boas soluções para conjuntos de dados com
até 60.000 pontos de dados. Nossa abordagem produz resultados competitivos quando
comparados a outros algoritmos de poda na literatura.

Palavras-chave: Programação Inteira, Poda de Ensemble, Seleção em Ensemble, Clas-
sificação



Abstract

Ensemble learning uses multiple classifiers in the hope of obtaining better predictive per-
formance. Empirical studies have shown that ensemble pruning, that is, choosing an
appropriate subset of the available classifiers, can lead to comparable or better predic-
tions than using all classifiers. In this thesis, we consider a binary classification problem
and propose an integer programming (IP) approach for selecting optimal classifier subsets.
We propose a flexible objective function to adapt to desired criteria of different datasets.
We also propose constraints to ensure minimum diversity levels in the ensemble. Despite
the general case of IP being NP-Hard, state-of-the-art solvers are able to quickly obtain
good solutions for datasets with up to 60000 data points. Our approach yields competitive
results when compared to others pruning algorithms in literature.

Keywords: Integer Programming, Ensemble Pruning, Ensemble Selection, Classification



List of Figures

4.1 K-Fold procedure. (a) Original dataset is shuffled and split in 10 folds. (b)
At each iteration, 1 fold is left out as the out-of-sample independent set, and
the other 9 as in-sample folds. (c) The in-sample folds are merged, shuffled
and split in two sets: the Training set used in the Machine learning stage, and
validation set used in the optimisation stage. In the figure this procedure is
illustrated for the 10th iteration. . . . . . . . . . . . . . . . . . . . . . . . . . 31



List of Tables

3.1 Binary classification confusion matrix . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Selected datasets from the UCI Machine Learning Repository [28] . . . . . . . 26
4.2 In-sample results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Average optimality gaps and corresponding standard deviations (in %). . . . . 29
4.4 Out-of-sample average accuraries and standard deviations. . . . . . . . . . . . 32
4.5 Comparation between in-sample and out-of-sample accuracies . . . . . . . . . 34
4.6 Out-of-sample average AUC’s and standard deviations. . . . . . . . . . . . . . 35
4.7 Out-of-sample average balanced accuraries and standard deviations. . . . . . . 37
4.8 Out-of-sample average accuraries and standard deviations for Majority Voting

Formulations and Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents

1 Introduction 11
1.1 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature review 13
2.1 Classifier generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Classifier selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Classifier combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 An integer programming model for ensemble pruning 19
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Computational experiments 25
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Solving the formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Out of sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Majority Voting Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Ongoing research: cutting-planes reformulations 40
5.1 Fixed threshold reformulation . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Variable threshold reformulation . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 A new diversity model based in lazy constraints . . . . . . . . . . . . . . . 48

6 Conclusions and future directions 50

Bibliography 52

A Description of the classifiers 56



11

Chapter 1

Introduction

Ensemble learning is a popular technique in the domain of machine learning. An ensemble
is defined as the aggregation of multiple classifications into a single final decision. It is
generally accepted in literature that the precision of an ensemble tends to improve when
compared to the behaviour of individual classifiers [47].

Well known approaches for efficiently generating ensembles include Bagging (boot-
strap aggregating) [6] and Boosting [21], the latter having given rise to popular variations
such as Random Forests [7] and extreme gradient boosting [11]. A general feature of these
approaches is that all classifiers are considered in the aggregation. There are, however,
theoretical and empirical studies which have shown that pruning an ensemble by selecting
a subset of the classifiers can lead to comparable or better predictions [29; 47]. Two cri-
teria are important when defining the most appropriate subset: the overall performance
of the ensemble and how diverse the selected classifiers are amongst themselves.

In this thesis we tackle the ensemble pruning problem by introducing an integer
programming (IP) approach for choosing an optimal subset of binary classifiers. Our
formulation optimises a weighted function of the patterns in the binary confusion matrix.
This provides enough flexibility to ensure suitable optimisation criteria dependent on
the properties of the underlying dataset. As our objective is performance-based we also
introduce linear constraints that ensure minimum diversity levels in the ensemble. The
formulation is original in considering the optimisation of the confusion matrix. To the
best of our knowledge our approach has not been proposed in literature before.

Despite several techniques for ensemble pruning having been previously proposed,
we believe that our approach contributes to the current knowledge in the field. IP mod-
elling is a flexible tool, adaptable to particularities of different problems. One of the most
important advantages in applying this tool to ensemble pruning is being able to combine
performance and diversity criteria. Moreover an IP framework provides an exact method,
as opposed to most algorithms in literature which are generally suboptimal.

The general IP problem is NP-Hard, however decades of research in algorithmic
techniques have led to state-of-the-art solvers which are able to effectively solve several
industrial-sized problems. In this thesis we show that with such solvers we can find good
solutions to relatively large problems in reasonable computational times.



1.1. Organisation 12

A problem that may come out while using optimisation to find optimal solutions in
machine learning problems is the risk of overfitting: This term is used in machine learning
for when the model learns “too much” from a training dataset but loses generality when
applied to new data points. For this reason, we use in-sample and out-of-sample sets to
validate our formulation regarding possible overfitting. The machine learning algorithms
and the formulations will only have access to in-sample data, and its results are validated
in out-of-sample data. We use a stratified K-fold cross-validation procedure in order to
generate out-of-sample results.

We compare our formulation to a full ensemble and two other well-known meth-
ods in literature: Reduced-Error Pruning With Backfitting [22] (performance-based) and
Kappa pruning [30] (diversity-based). We report competitive results for publicly available
datasets ranging from 195 to 60000 data points.

1.1 Organisation

This thesis is organised as follows. In Chapter 2 we give a brief overview of known
methods for the ensemble learning process and describe its three stages: classifier gen-
eration, classifier selection and classifier combination. In Chapter 3 we present our op-
timisation approach. We also amend the formulation with extra constraints to enforce
minimum diversity levels.

Our computational experiments are shown in Chapter 4. We present the datasets
used in our experiments and we examine both in-sample and out-of-sample performance,
comparing it to three different benchmarks. We also test the use of majority voting to
define the classification threshold in our formulations.

In Chapter 5 we discuss two cutting-plane reformulations of the problem. This
is a topic of ongoing research and we only introduce the formulations, separation algo-
rithms and some implementation details, but we do not include any computational results.
The main goal is to attempt to improve computational performance of our optimisation
approach. Finally, in Chapter 6 we present our concluding remarks.



13

Chapter 2

Literature review

The process of ensemble learning is generally composed of three stages: generation, se-
lection and combination of classifiers. In the next sections we describe and give examples
for each one of them.

2.1 Classifier generation

The ensemble process starts by generating a set of distinct classifiers. The useful-
ness of any ensemble depends on classifiers being both precise and diverse. High correla-
tions among classifications may hinder the benefits of combining multiple classifiers.

Several techniques for ensuring diversity in classifiers have been proposed [17; 14].
Here we list some of them:

1. Randomising classifiers: Some classifiers have built in random components. Using
different random initialisations in those components may create diverse classifiers.

2. Parameter Tuning: Classification models have their own parameters, and diversity
in classification can be increased by initialising models with different settings. Some
examples include using different pruning levels in decision trees or exploring different
architectures in multi-layer perceptron neural networks.

3. Combining distinct classifier models: The combination of distinct classifiers models
(e.g. Decision Trees, Neural Networks and SVM) into heterogeneous ensembles is
also a popular approach for ensuring diversity.

4. Different distributions of the training set: Diversity is achieved by using different
samples of the training data to construct each classifier. Some examples are the
aforementioned Bagging and Boosting techniques.



2.2. Classifier selection 14

5. Distinct features subsets: Diversity is accomplished by using distinct subsets of
features (e.g. Random Subspace Method [24; 41]) or different feature extraction
methods (e.g. extraction of facial image features [4]).

In this thesis, we do not focus on classifier generation. Our approach is general
given any set of previously selected classifiers.

2.2 Classifier selection

The second stage in the ensemble learning process is the selection of a subset of
classifiers to generate the final ensemble, a process known as ensemble pruning. This
is optional since it is possible to use the full set of generated classifiers to compose the
ensemble. However, as previously mentioned, there are theoretical and empirical studies
which have shown that pruning an ensemble can be advantageous [29; 47].

The selection process can be static or dynamic. In dynamic selection, different
subsets are chosen for different data points. In static selection, only one subset of classifiers
is chosen for all data points.

The reasoning behind dynamic selection is that certain subsets of classifiers are
more specialised in different parts of the feature space [49]. Generally clustering algorithms
are used for selecting multiple subsets. In this case, initially the data points are divided
into different clusters and then subsets of classifiers are selected for each cluster. An unseen
data point is first assigned to one of the clusters and then classified by the respective subset
of classifiers previously selected for that cluster. For more details we refer the reader to
[8; 14].

Our approach is based on static selection. Static selection policies can be ranking
based, cluster based and optimisation based [44]. In the following subsections we will detail
those policies. [44] refer to static selection as ensemble pruning, the same terminology we
adopt throughout this text.

2.2.1 Ranking based methods

Ranking based methods sort classifiers according to a fitness function. In general
they are computationally fast but suboptimal.



2.2. Classifier selection 15

In Kappa pruning [30], every pair of classifiers is sorted according to a statistical
measure of agreement, named k-statistic. The M pairs with the lowest agreement levels
are selected, where M is the parameter that specify the ensemble size.

Reordering techniques [31] in bagging classifiers have been used to build subensem-
bles of increasing size, adding first those classifiers that are expected to perform best when
combined.

A dynamic programming approach was proposed by [15] to improve computational
efficiency of ranking based methods, where it was integrated in a classical ranking-based
algorithm. Experimental results demonstrate significantly efficiency improvements ac-
quired with the integration.

2.2.2 Cluster based methods

Cluster based methods first apply a clustering algorithm to group similar classifiers
and then prune each cluster separately to increase general diversity.

There are some issues to consider in these methods. A first one is which clustering
algorithm to use. Known clustering algorithms include k-means [27; 40], hierarchical
agglomerative clustering [23] and deterministic annealing [2].

An important issue is the measure of distance between clusters. Different distance
measures have been used such as Euclidean distance in training set [27; 40]. [23] proposed
a measure based on an estimation of the probability that two classifiers make the same
mistakes in a separated validation set.

Another issue to consider is the number of clusters, a necessary parameter in some
clustering algorithms, like k-means. [40] determined it by analysing the performance on
a validation set and [27] gradually increased this number until the disagreement between
the cluster centroids stopped improving.

The remaining issue is the cluster pruning policy. [23] selected from each cluster
the classifier which is most distant from the others. [27] used an approach where the
models are iteratively removed in increasing order of accuracy, until the accuracy of the
ensemble starts to decrease. [40] selected the most accurate model of each cluster. In [2],
a new model is trained for each cluster, using the cluster centroids as values of the target
output.



2.2. Classifier selection 16

2.2.3 Optimisation based methods

Optimisation based methods attempt to find a subset that optimises a given per-
formance metric. Most methods found in literature offer approximate solutions due to
optimising non-linear metrics.

Hill climbing has been the most popular heuristic approach for ensemble pruning.
It is a local search algorithm that starts with an arbitrary solution to a problem and
makes incremental changes in the solution in order to find better ones. In the ensemble
pruning problem, hill climbing starts with an arbitrary subset of classifiers and constructs
a new subset by adding or removing classifiers from it. The metrics used in hill climbing
ensemble pruning approaches can be grouped in two categories: performance based and
diversity based.

Regarding performance based measures, accuracy was used in [30; 18; 9]. Addi-
tionally to accuracy, a metric called Benefit was also used in [18]. In [9], several metrics
were tested: Accuracy, mean cross-entropy, lift, precision/recall break-even point, pre-
cision/recall F-score, average precision, ROC Area, a measure of probability calibration
and SAR.

In diversity based methods, [42] tested several diversity metrics: disagreement,
double fault, Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and
difficulty. [33; 3; 37; 39] introduced diversity metrics specially designed for hill climbing.

A genetic algorithm was developed by [48]. The ensemble is represented as a string
of bits, where the number 1 means that the classifier is present in the ensemble, and 0
otherwise. The authors used the common operations of genetic algorithms, as mutation
and crossover. The Fitness function is the error rate of the selected subensemble of
classifiers.

Mathematical programming approaches have also been proposed. [47] formulated
the problem as a quadratic integer programming problem, aiming to optimise a trade-off
between diversity and accuracy. They used semi-definite programming to find approxi-
mate solutions to their formulation. [46] also employed a mathematical formulation to
optimise a trade-off between diversity and accuracy. Starting with an integer program-
ming formulation, they relax and reformulate it as a constrained eigenvector problem,
which can be solved with an efficient algorithm that is guaranteed to converge globally.



2.3. Classifier combination 17

2.2.4 Others

Other approaches include using statistical methods for heterogeneous ensembles,
reinforcement learning and a boosting based procedure.

[43; 45] use statistical tests to prune heterogeneous ensembles. The tests are used
to measure the significance of the prediction performances between the ensemble classi-
fiers. The classifiers with higher and statistically significant performance remain in the
ensemble.

Reinforcement learning is used by [36; 38]. The problem of selecting a subset of
an ensemble with n classifiers is modelled as an episodic task with n time steps in each
episode. An episode starts with an empty set of classifiers, and in each time step it takes
the action of include or exclude the corresponding classifier in the final ensemble. The
episodes iteration stops when the algorithm used to approximate the optimal policy of
their reinforcement learning problem converges.

[32] use a boosting based procedure. The authors use an iterative algorithm that
at each iteration selects the classifier with the lowest weighted error on the training set.
The initialisation and updating of the instance weights happens similar to the AdaBoost
algorithm. The difference is that the process is not finished when the weighted error
is larger than 0.5 as in AdaBoost, but the instance weights are reset and the model
selection continues. It continues until the desired number of selected classifiers (given by
a parameter) is achieved.

2.3 Classifier combination

The last stage is the process of combining the classifiers output. The outputs are
combined by a combination rule, generating the output of the final ensemble.

In discrete classification problems the most common approach for combining clas-
sifiers is through majority voting, where the output of a given data point is assigned to
the most voted class among the ensemble classifiers. In probability based classifications,
it is generally computed averages in the output of the classifiers.

Weights may be assigned to individual classifiers according to their importance in
the ensemble composition. For instance, in the weighted voting, one or more classifiers
can be counted multiple times during the voting, receiving more importance in the final
decision. The weighted average can also be used, where more important classifiers receive



2.3. Classifier combination 18

higher weights during the combination. For further details we refer the reader to [26].



19

Chapter 3

An integer programming model for
ensemble pruning

In this chapter we present our optimisation model, detailing our integer programming
formulation in Section 3.1 and restrictions created to enforce minimum diversity levels in
Section 3.2.

3.1 Formulation

Consider a binary classification problem where data points belong to classes 1
(positive) or 0 (negative). In this section we present an IP formulation for choosing an
optimal subset of binary classifiers.

Let K = {1, . . . , K} be the set of classifiers. Let N0 = {1, . . . , N0} and N1 =

{1, . . . , N1} be the sets of negative and positive data points respectively, with N = N0+N1

being the total number of data points. Consider a N1 × K matrix B where βik = 1 if
classifier k ∈ K correctly classified data point i ∈ N1 as positive, βik = 0 if it mistakenly
classified i as negative. Accordingly consider a N0×K matrix A where αjk = 0 if classifier
k ∈ K correctly classified data point j ∈ N0 as negative, αjk = 1 if j was mistakenly
classified as positive.

Suppose S ⊆ K is a set of S classifiers selected to compose a given pruned ensemble.
For any data point i ∈ N1,

∑
s∈S βis is the number of correct positive classifications within

S. Accordingly, for any data point j ∈ N0,
∑

s∈S αjs represents the number of (wrong)
positive classifications within S.

We define a threshold 0 ≤ L ≤ S such that for a given data point i ∈ N1,∑
s∈S βis > L implies that the ensemble classifies i as positive. If

∑
s∈S βis ≤ L, then i is

classified by the ensemble as negative. Similarly for j ∈ N0,
∑

s∈S αjs > L implies a pos-
itive ensemble classification and

∑
s∈S αjs ≤ L implies a negative ensemble classification.

For instance, if S = 10 and L = 5, then the ensemble classifies a data point as positive if



3.1. Formulation 20

at least 6 individual classifications are positive. If 5 or less are positive, then the ensemble
classifies that data point as negative.

In our formulation we let the optimisation define both S and L. Hence we include L
as a general integer variable representing the classification threshold and binary variables
xk = 1 if classifier k ∈ K is chosen to compose the ensemble (xk = 0 otherwise).

Predicted Class
1 0

A
ct

ua
l

C
la

ss 1 T+ F−

0 F+ T−

Table 3.1: Binary classification confusion matrix

Consider the binary confusion matrix given in Table 3.1. For each of the four
possible patterns we assign weights W+

T ,W−
T ,W+

F ,W−
F ∈ R. The objective function is

defined by the weighted sum W+
T T+ +W−

F F− +W−
T T− +W+

F F+.
For modelling this weighted sum we define further binary variables t+i , f

−
i if the

ensemble classification of i ∈ N1 is respectively a true positive or false negative. Similarly
we define binary variables t−j , f

+
j if the ensemble classification of j ∈ N0 is a true negative

or false positive. The IP formulation that optimises a weighted sum of the patterns in
the binary confusion matrix is given below:

max

N1∑
i=1

(W+
T t+i +W−

F f−
i ) +

N0∑
j=1

(W−
T t−j +W+

F f+
j ) (3.1)

subject to

(L+ 1)−
K∑
k=1

xk βik ≤ (K + 1)(1− t+i ), ∀i ∈ N1 (3.2)

K∑
k=1

xk βik − L ≤ (K + 1)t+i , ∀i ∈ N1 (3.3)

t+i + f−
i = 1, ∀i ∈ N1 (3.4)

K∑
k=1

xk αjk − L ≤ K(1− t−j ), ∀j ∈ N0 (3.5)

(L+ 1)−
K∑
k=1

xk αjk ≤ Kt−j , ∀j ∈ N0 (3.6)

f+
j + t−j = 1, ∀j ∈ N0 (3.7)

xk ∈ B ∀k ∈ K (3.8)

t+i , f
−
i ∈ B ∀i ∈ N1 (3.9)

t−j , f
+
j ∈ B ∀j ∈ N0 (3.10)

0 ≤ L ≤ K, (3.11)

L ∈ Z (3.12)



3.1. Formulation 21

Constraints (3.2) ensure that a positive data point i ∈ N1 has t+i = 1 if the number
of individual positive classifications exceeds L. Conversely, Constraints (3.3) ensure that
t+i = 0 if the number of individual positive classifications is no more than L. Constraints
(3.4) ensure that either t+i = 1 or f−

i = 1. Constraints (3.5) guarantee that a negative data
point j ∈ N0 has t−j = 0 if the number of positive classifications exceeds L. Otherwise,
constraints (3.6) make sure that t−j = 1. Constraints (3.7) ensure that either f+

j = 1 or
t−j = 1. Constraints (3.8-3.12) define variables bounds.

3.1.1 Objective function

For some classification problems, optimising some patterns may be prioritised in-
stead of others. Take, for instance, an investment decision problem where investing in the
wrong project may cause bankruptcy while not investing into a promising project may
prove to be a lost opportunity (regretful, but not as serious). In this case we need to
prioritise the minimisation of F+ at the expense of others. Observe that in order to min-
imise a pattern of the confusion matrix, we need to set its respective weight as negative.
In fact, as F+ and F− represents the misclassifications, we will usually minimise them or
set their weights to zero.

The weights in Equation (3.1) provide flexibility for defining optimisation criteria
depending on the characteristics of the dataset at hand (such as being highly imbalanced).
A few examples of possible criteria are outlined below.

Accuracy is defined as T++T−

N
. As N is constant we can maximise accuracy by

defining weights W+
T = W−

T = 1 and W+
F = W−

F = 0. Notice that if we choose this
objective then constraints (3.3) and (3.6) are redundant as maximising positive weights
W+

T and W−
T ensure that t+i = 1 and t−i = 1 if allowed by constraints (3.2) and (3.5).

Similarly recall is defined as T+

T++F− = T+

N1
and can be maximised by setting W+

T = 1 and
W−

T = W+
F = W−

F = 0 (with Constraints (3.3) being redundant).
Now consider θ = N1

N
as an imbalance parameter of the dataset. If, for instance,

θ ≤ 1 − ϵ for small ϵ, then a high accuracy can be obtained by simply classifying every
data point as positive. For such cases a possibly useful configuration of the objective
function is obtained by setting weights W+

T = (1− θ), W−
T = θ and W+

F = W−
F = 0. This

may provide a good approximation for more appropriate criteria for imbalanced datasets
such as precision, balanced accuracy and the area under the ROC (Receiver Operating
Characteristics) curve, best known as AUC [19].



3.2. Diversity 22

3.2 Diversity

As mentioned before many ensemble pruning algorithms are based on diversity
measures. Our proposed formulation optimises a performance measure, and in this section
we introduce a way to control diversity with linear constraints.

We consider a diversity measure called Pairwise Failure Crediting (PFC), proposed
originally by (author?) [10] and chosen due to past experience having achieved satisfac-
tory performance in imbalanced datasets [5; 20]. PFC measures how diverse an individual
classifier is from the remaining classifiers in the ensemble.

PFC is calculated as follows. For each classifier k, we compute a failure pattern
(FP). A FP is a string of 0’s and 1’s with length N . A ‘0’ in the string means that the
classifier failed to correctly predict the corresponding data point and a ‘1’ means that it
predicted the data point correctly (irrespective of its real value).

Once we have all failure patterns we take any two classifiers k and l and calculate
their Hamming distance. The Hamming distance between same-length strings is the
number of different characters in the same positions. For example, if FPk = {0011011101}
and FPl = {0110001110}, the Hamming distance between k and l is 5 (characters 2, 4, 6,
9 and 10 differ).

Next, we sum all failures by both classifiers - that is, we sum the number of zeros
in both strings which, in the example, is 9. The failure credit (FC) between k and l

is obtained by dividing the Hamming distance by the sum of failures. In the example,
FCkl = 5/9. For every pair k, l ∈ K we compute FCkl.

Consider again S as a set of S ≤ K classifiers that are selected to compose an
ensemble. We assume without loss of generality that classifiers in S are indexed by
k = 1, . . . , S. Their PFC values are given by:

PFCk =

∑S
l=1,l ̸=k FCkl

S − 1
k ∈ S

A (maximum) value of 1 in PFCk means that k classifies all data points differently from
every other classifier in the ensemble, and a (minimum) value of 0 means that k is identical
to all other classifiers. Both extreme cases imply that all other classifiers are identical
among themselves.

For ensuring minimum desired diversity levels, we propose two approaches:

• The minimum PFC value of any individual classifier is at least a certain threshold
0 ≤ τ ≤ 1 in order to prevent very similar pairs of classifiers.

• The average PFC value of the ensemble must be at least a certain threshold 0 ≤
γ ≤ 1 to ensure an overall good level of diversity. Clearly we must have γ ≥ τ .



3.2. Diversity 23

We add the following new decision variables. Let ykl = 1 if both classifiers k and
l have been selected to be part of the ensemble, and ykl = 0 if at most one of k and
l is chosen to compose the ensemble. This adds

(
K
2

)
extra variables (for every possible

pair k, l). For simplicity, both ykl and ylk denote the exact same variable. The following
constraints ensure that ykl takes the correct values:

ykl ≥ xk + xl − 1 ∀k, l ∈ K, k < l (3.13)

ykl ≤ xk ∀k, l ∈ K, k < l (3.14)

ykl ≤ xl ∀k, l ∈ K, k < l (3.15)

ykl ≥ 0 ∀k, l ∈ K, k < l (3.16)

Notice that there is no need for the ykl variables to be binary. As both xk and xl are
binary, ykl must have integer values in any integer solution.

We can then rewrite the PFC equation using variables xk and ykl:

PFCk =

∑K
l=1,l ̸=k FCkl ykl∑K

m=1 xm − 1
∀k ∈ K

The term
∑K

m=1 xm is the cardinality of the ensemble and any non-selected classifier k

(with xk = 0) has a PFC value of 0 (as all ykl = 0, l ̸= k).
The following linear constraints ensure that every classifier has a minimum PFC

value of τ :
K∑
l=1
l ̸=k

FCkl ykl ≥ τ
( K∑

m=1

xm − 1
)
−Kτ(1− xk) ∀k ∈ K (3.17)

The term Kτ(1 − xk) ensures that the constraints above are only enforced if classifier k

is chosen to compose the ensemble.
The following nonlinear constraint ensures that the average PFC of the ensemble

is at least γ:

1∑K
m=1 xm

∑K
k=1

∑K
l=1,l ̸=k FCkl ykl∑K

m=1 xm − 1
≥ γ (3.18)

Observe that in Equation (3.18) the FC value of every pair is added twice. We use this
fact to linearise this expression. For a given subset S, the average PFC µPFC is given by:



3.2. Diversity 24

µPFC =
1

S

S∑
k=1

∑S
l=1,l ̸=k FCkl

S − 1

=
1

S(S − 1)

S∑
k=1

S∑
l=1
l ̸=k

FCkl

=
2

S(S − 1)

S−1∑
k=1

S∑
l=k+1

FCkl

=
1(
S
2

) S−1∑
k=1

S∑
l=k+1

FCkl = µFC

where µFC denotes the average FC value of all pairs in the ensemble. We conclude that
µFC = µPFC , that is, the average PFC among all classifiers in the ensemble is equal to
the average FC among all pairs.

If S classifiers are selected in the ensemble, then the number of ykl variables that
take value 1 is exactly

(
S
2

)
. Therefore we can ensure that the average PFC value is at

least γ with the following linear constraint:

K−1∑
k=1

K∑
l=k+1

FCkl ykl ≥ γ

K−1∑
k=1

K∑
l=k+1

ykl (3.19)

The expanded formulation with minimum diversity levels is given by maximising
(3.1) subject to (3.2)-(3.17) and (3.19). It requires

(
K
2

)
extra variables and a similar

number of extra constraints, which could lead it to be more computationally demanding.
However we show in Section 4.2 that the inclusion of such constraints causes a negligible
decrease in solution quality.



25

Chapter 4

Computational experiments

In this chapter we outline the computational experiments used to evaluate the proposed
formulation. In Section 4.1, we present the datasets used in our experiments. In Section
4.2 we examine the performance and solution quality of the formulation in a few selected
test sets. As previously mentioned the general case of IP formulations is NP-Hard, but
advances in solution techniques have yield effective solvers that are able to quickly find
solutions of high quality for several IP problems. In this section we intend to verify
whether that is true for our proposed formulation by analysing in-sample solutions.

Finally, in Section 4.3 we conduct out-of-sample experiments using a stratified 10-
fold cross-validation procedure, comparing our formulation with 3 benchmarks, using the
Accuracy (Subsection 4.3.2), AUC (Subsection 4.3.3) and Balanced Accuracy (Subsection
4.3.4) as evaluation metrics.

For the experiments in this Chapter, we prepared 10 different heterogeneous clas-
sifier models. Each model was instantiated a number of times with different random seeds
and parameters. We set K as multiples of 10 in order to have an equal number of instan-
tiations of each classifier. For instance, if K = 60, we have 6 classifiers of each model.
In our experiments, we used K = {10, 20, 30} for the experiments in Section 4.2 and
K = {40, 60, 80, 100} for experiments in Section 4.3. Each classifier produces, as output,
a probability of a data point being positive. This probability is rounded to define matrices
A and B. A more thorough description of the classifiers can be found in Appendix A.

4.1 Datasets

For computational experimentation we chose 9 publicly available datasets. All
datasets can be found at the UCI Machine Learning Repository [28]. They range from
N = 195 to N = 60000 datapoints. We also include columns with the number of features,
the number of datapoints in Class 0 (N0) and Class 1 (N1), the value of the imbalance
parameter θ (θ = N1/N) as well as the meaning of each class in the context of each



4.2. Solving the formulation 26

dataset. Table 4.1 lists all datasets.

Table 4.1: Selected datasets from the UCI Machine Learning Repository [28]

Identifier Dataset name Features N N0 N1 θ Class 0 Class 1
PRK Parkinsons 23 195 48 147 0.77 Healthy Parkinson’s

disease
MSK Musk (Version 1) 168 476 269 207 0.44 Non-musk Musk
BCW Breast Cancer

Wisconsin
32 569 357 212 0.37 Benign cancer Malignant cancer

QSR QSAR
biodegradation

41 1055 356 699 0.66 Ready
biodegradable

Not ready
biodegradable

DRD Diabetic
Retinopathy
Debrecen

20 1151 540 611 0.53 No signs of
diabetic
retinopathy

Signs of diabetic
retinopathy

SPA Spambase 57 4601 2788 1813 0.39 Not spam Spam
DEF Default of credit

card clients
24 30000 23364 6636 0.22 Default payment

(no)
Default payment
(yes)

BMK Bank Marketing 21 41188 36548 4640 0.11 Not subscribed to
a term deposit

Subscribed to a
term deposit

APS APS Failure at
Scania Trucks

171 60000 59000 1000 0.02 Not related to the
APS system
failure

APS system
specific
component failure

Dataset PRK aim is to discriminate healthy people from those with Parkinsons
disease. Dataset MSK describes molecules judged by human experts to be musks and
new molecules are predicted to be musks or non-musks. In dataset BCW the goal is to
predict whether data points represent benign or malignant cancer from features extracted
from digitized images. In dataset QSR, the task is to predict whether a molecule is ready
or not ready biodegradable. The goal of dataset DRD is to decide whether an image
contains signs of diabetic retinopathy or not. Dataset SPA attempts to identify spam e-
mails. Dataset DEF examines Taiwanese credit information to decide whether customers
are credible (low chance of default) or not. Dataset BMK consists of predicting whether
a client subscribed to a certain bank product or not. Dataset APS aims to predict if a
Failure in the Air Pressure system (APS) at Scania Trucks is due to a failure in a specific
component from the APS or due to components not related to the APS.

4.2 Solving the formulation

0-1 IP is notoriously computationally difficult. Its feasibility version is one of
Karp’s 21 NP-complete problems [25]. Modern day solvers however can effectively solve
large instances of several different IP problems by employing a combination of techniques
(such as branch-and-bound and cutting planes) for search space reduction. In this section
we verify whether that is true for the formulation proposed when solving the datasets



4.2. Solving the formulation 27

outlined in Section 4.1. Our goal is to check whether optimal or good enough solutions
can be found within reasonable computational times.

For all the experiment in this section and this thesis in general, we employed
CPLEX 12.8 [13] with default parameters as the IP solver and we run all experiments
in an Intel Core(TM) I7-7700 @ 3.60GHz with 32GB of RAM, using 8 cores and having
Linux as the operating system.

In all experiments in this section we set weights W+
T = W−

T = 1 and W+
F =

W−
F = 0, which as discussed earlier is equivalent to maximising accuracy. We test here

two versions of our formulation: F1, which employs only constraints (3.2)-(3.12) and
F3 which also employs minimum diversity constraints. In F3 we set τ = PFCmin and
γ = PFCmin+PFCavg

2
, where PFCmin and PFCavg are the minimum individual PFC and the

average PFC value of the full ensemble. So F1 does not make use of diversity constraints
while F3 does. More details on these configurations are given below in Section 4.3.2,
where we also define another configuration F2.

We run two different sets of experiments. In the first, we set a maximum time limit
of 1 hour. Here our intention is to evaluate whether optimal solutions are found within
this limit or, if not, how far we are from proving optimality. We set the total number of
classifiers as K = 10, 20, 30.

In the second set of experiments, we set a time limit of only 5 minutes and increase
the number of classifiers to K = 100. Since most methods reviewed in literature are
suboptimal requiring usually short computational times, we want to evaluate if commercial
solvers can “compete” with them when considering larger instances.

Table 4.2 presents the results considering a time limit of 1 hour. In this first set
of experiments, each classifier was initially trained with 70% of its original data points,
while the remaining 30% points were classified and used to generate the A and B matrices,
which were then used by our formulation to choose the subset of classifiers that maximised
accuracy. In the table, column N′ shows the number of data points (30% of the original
dataset) and column K shows the number of classifiers.

For F1 we include four columns. T(s) denotes the total time elapsed in seconds,
LB and UB respectively represent the best solution found (lower bound) and best upper
bound obtained at the end of the search, either when the instance was solved to proven
optimality or when the time limit was reached. GAP is defined as 100(UB−LB)/UB. An
empty value under T(s) means that the time limit of 1 hour was reached before proving
optimality. Empty values for both UB and GAP mean that the solution was solved to
optimality within the time limit.

For F3, we also include, under the Diff column, the relative difference in terms of
solution quality between F1 and F3. Here we intend to test the effect of adding diversity
constraints in the quality of in-sample solutions. Since F3 is more constrained, its optimal
solution can only be equal or worse than F1.



4.2. Solving the formulation 28

Dataset N ′ K
F1 F3 Best

classifier
Diff

Full

ensemble
Diff

T(s) LB UB GAP T(s) LB UB GAP Diff

PRK 59 10 0.0 55 - - 0.0 55 - - 0.00 52 -5.45 50 -9.09

20 0.0 56 - - 0.0 56 - - 0.00 53 -5.36 51 -8.93

30 0.0 56 - - 0.1 56 - - 0.00 53 -5.36 50 -10.71

BCW 171 10 0.0 165 - - 0.0 165 - - 0.00 165 0.00 163 -1.21

20 0.0 165 - - 0.0 165 - - 0.00 165 0.00 165 0.00

30 0.0 166 - - 0.0 166 - - 0.00 165 -0.60 164 -1.20

MSK 143 10 0.0 131 - - 0.0 131 - - 0.00 131 0.00 128 -2.29

20 0.0 134 - - 0.0 134 - - 0.00 132 -1.49 128 -4.48

30 0.0 134 - - 0.1 134 - - 0.00 132 -1.49 128 -4.48

QSR 317 10 0.0 281 - - 0.0 281 - - 0.00 276 -1.78 274 -2.49

20 0.1 285 - - 0.1 285 - - 0.00 281 -1.40 273 -4.21

30 0.1 285 - - 0.1 285 - - 0.00 281 -1.40 274 -3.86

SPA 1381 10 0.1 1333 - - 0.1 1333 - - 0.00 1328 -0.38 1320 -0.98

20 0.8 1335 - - 2.1 1335 - - 0.00 1328 -0.52 1322 -0.97

30 1.6 1336 - - 10.8 1336 - - 0.00 1328 -0.60 1317 -1.42

DRD 346 10 0.4 252 - - 0.6 252 - - 0.00 251 -0.40 238 -5.56

20 18.0 264 - - 9.1 264 - - 0.00 257 -2.65 240 -9.09

30 118.4 265 - - 86.2 265 - - 0.00 257 -3.02 238 -10.19

DEF 9000 10 30.2 7392 - - 24.0 7392 - - 0.00 7384 -0.11 7376 -0.22

20 - 7401 7479.2 1.06 - 7397 7494.2 1.31 -0.05 7384 -0.23 7369 -0.43

30 - 7404 7534.0 1.76 - 7399 7541.6 1.93 -0.07 7384 -0.27 7370 -0.46

BMK 12357 10 60.0 11364 - - 76.1 11363 - - -0.01 11363 -0.01 11321 -0.38

20 - 11377 11620.2 2.14 - 11377 11647.2 2.38 0.00 11363 -0.12 11321 -0.49

30 - 11382 11720.0 2.97 - 11378 11711.1 2.93 -0.04 11363 -0.17 11307 -0.66

APS 18000 10 0.3 17904 - - 1.0 17904 - - 0.00 17899 -0.03 17888 -0.09

20 3.9 17917 - - 5.7 17917 - - 0.00 17906 -0.06 17891 -0.15

30 12.2 17920 - - 29.8 17920 - - 0.00 17906 -0.08 17892 -0.16

Table 4.2: In-sample results

In the last four columns, we calculate the objective function value (number of
correct guesses) for the best classifier among the K chosen and for an ensemble composed
of all classifiers. The latter was calculated by setting xk = 1 to every classifier k. In both
these cases we set L = K/2. In other words, majority voting was used to choose the
appropriate ensemble prediction.

We also include the corresponding Diff column for each. Notice that the optimal
solution of F1 must always be equal or better than both these benchmarks, since both
benchmarks are feasible solutions to the F1 itself.

Within 1 hour, the solver used was able to optimally solve 23 out of 27 different
instances, for both F1 and F3. In the worst case, for BMK with K = 30, the gap between
the best solution and best upper bound was was 2.97% after one hour.

All solutions also had higher accuracy than the benchmarks in all cases. As pre-
viously mentioned this was expected for the cases where optimality was proven (as the
formulation maximises accuracy), however it also happened for the larger instances which



4.2. Solving the formulation 29

were not proven to optimality. We observed that for the experiments we run, the solver
with its default configurations generally found quickly solutions of high quality.

An interesting aspect we observed, not reported in the table, was that the linear
relaxation values after solving the first node were stronger for the larger instances than for
the smaller instances. We suspect that as more data points imply more constraints in the
formulation (albeit also adding extra dimensions), the convex hull is better approximated.
We leave a more thorough analysis of these observations for further work.

We also note that the addition of diversity constraints in F3 caused a negligible
decrease in performance, even considering the addition of O(

(
K
2

)
) extra variables and

constraints. In some cases the time required to find the optimal solution was even faster.
Also, the optimal solutions were either equal or very slightly worse than those of F1.

In the second set of in-sample experiments, we consider a time limit of 5 minutes,
with K = 100. Here we configure the experiments differently. We used 27% of the total
data points instead of 30% and we run each experiment 100 times, each execution varying
both the set of 27% data points selected as well as random seeds of each classifier. We used
the same configuration that was employed in the out-of-sample experiments, for which a
detailed explanation is given in Section 4.3. As mentioned before the goal of these results
is to verify how close to optimality solvers can achieve within a short time limit.

Table 4.3 summarises the average optimality gaps among 100 executions, as well as
their respective standard deviations. The largest instance, APS, had average gaps of only
0.1% in both configurations F1 and F3. The hardest instance in F1 was DEF (6.7% and
7.0% average gaps). The inclusion of diversity constraints made a noteworthy difference
for the DRD instance (4.4% and 7.1% average gaps), making it the hardest instance in
F3.

Table 4.3: Average optimality gaps and corresponding standard deviations (in %).

Instance 27% of N
F1 F3

Avg. Std. Avg. Std.

PRK 53 0.0 0.0 0.0 0.0
BCW 154 0.0 0.0 0.0 0.0
MSK 129 0.0 0.0 0.0 0.0
QSR 285 0.0 0.0 0.0 0.1
DRD 311 4.4 2.1 7.1 2.0
SPA 1242 0.0 0.0 0.2 0.2
DEF 8100 6.7 0.4 7.0 0.4
BMK 11121 5.4 0.3 5.6 0.3
APS 16200 0.1 0.0 0.1 0.0

In our view, even the hardest instances were still relatively close to optimality con-
sidering the low computational effort. For this reason, in all computational experiments
reported hereafter we set a time limit of 5 minutes. If the time limit is reached, we halt
the solver and retrieve the best available solution at that point.



4.3. Out of sample 30

4.3 Out of sample

In the previous section we established that, for the instances tested, optimal or
good enough solutions can generally be found within a short time. In practice by setting
a short time limit we are essentially treating an exact algorithm as a heuristic, such as
most methods in literature which are suboptimal in nature (Section 2.2). In this section
we evaluate whether the advantages of an exact approach (possibility of optimal solutions,
flexibility of an IP model) are helpful regarding out-of-sample performance.

For evaluating performance we used a stratified 10-fold cross-validation procedure.
The N data points are initially shuffled randomly and the dataset is then split into 10
folds. At each iteration, one of the folds is left out as an independent set (unseen by
the algorithms). The results presented below are based solely in this set. The other 9
folds, comprising 90% of the original dataset, are joined and further split into two sets: a
training set, containing 63% of the data points, is used to train the individual classifiers. A
validation set, comprising the remaining 27% data points, is used to optimise the ensemble
selection algorithms. The procedure is illustrated in Figure 4.1.

The procedure above is repeated 10 times: in each we vary the random seeds
required to both shuffle the dataset and initialise the individual classifiers. For each value
of K and for each instance shown in Table 4.1, we run 100 experiments: 10 random
initialisations × 10 folds.

4.3.1 Benchmarks

In order to evaluate our formulation, we compare it with three other approaches:
Full ensemble (without any pruning), Reduced-Error Pruning With Backfitting [22] (hereby
referred to as Backfitting) and Kappa pruning [30]. All three benchmarks classify data
points based on majority voting.

Backfitting follows a greedy approach with revision. Its objective is maximising
accuracy. Initially, the classifier subset S is empty. Then, at each iteration, the algorithm
adds to S a classifier s such that the accuracy of S∪ s is maximised. This process repeats
until a predefined number M of classifiers is added to S. Ties are broken arbitrarily.
Whenever a classifier is added, the greedy choice is revised through a local search pro-
cedure. Each classifier in the ensemble is iteratively replaced by another previously left
out. If the overall accuracy is improved, the method starts again from the new subset S.
The local search stops after 100 iterations or whenever no classifier is able to improve the



4.3. Out of sample 31

Figure 4.1: K-Fold procedure. (a) Original dataset is shuffled and split in 10 folds. (b)
At each iteration, 1 fold is left out as the out-of-sample independent set, and the other 9
as in-sample folds. (c) The in-sample folds are merged, shuffled and split in two sets: the
Training set used in the Machine learning stage, and validation set used in the optimisation
stage. In the figure this procedure is illustrated for the 10th iteration.

solution, whichever happens first.
Kappa pruning follows a similar procedure, but with two notable differences: there

is no revision of the greedy choice and, instead of maximising accuracy, it optimises a
diversity measure. The fitness function is the κ-statistic [12], which is a measure of
statistical agreement between any two classifiers.

As opposed to our formulation, both Backfitting and Kappa pruning require the
ensemble subset size to be fixed. To allow a fairer comparison, we varied M within 20%
and 80% of K. The best in-sample results are used to evaluate the independent set. In
line with our choice of time limit for the IP formulation, both algorithms are allowed to
run for a maximum of 5 minutes.



4.3. Out of sample 32

4.3.2 Accuracy

In our first suite of experiments we set weights W+
T = W−

T = 1 and W+
F = W−

F = 0,
that is, we seek to maximise the classification accuracy regardless of the dataset imbal-
ance level. To evaluate both the formulation introduced in Section 3.1 and the diversity
constraints introduced in Section 3.2, we propose three different configurations.

In the first we employ only constraints (3.2)-(3.12), without enforcing diversity
constraints. We refer to this configuration as F1. The other two configurations, F2 and
F3, enforce minimum diversity levels in the hope of preventing possible overfitting of the
training and validation sets. In F2 we set τ = 0 and γ = PFCmin+PFCavg

2
, where PFCmin and

PFCavg are the minimum individual PFC and the average PFC value of the full ensemble.
So in F2 we only constrain the overall average PFC value. In F3 we also set τ = PFCmin,
so restricting individual PFC values as well as the average PFC. Here the F1 and F3
configurations are equivalent to the Section 4.2.

Table 4.4: Out-of-sample average accuraries and standard deviations.

Dataset K F1 F2 F3 Kappa pruning Backfitting Full Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PRK 40 0.90660 0.01453 0.91340 0.01364 0.91140 0.01297 0.89071 0.01487 0.90407 0.01556 0.90143 0.00656
60 0.90360 0.01236 0.90890 0.01025 0.90837 0.01134 0.88018 0.00858 0.89988 0.01457 0.89937 0.00876
80 0.90512 0.01436 0.90518 0.01245 0.90565 0.01306 0.88374 0.01265 0.90151 0.00838 0.90040 0.00909

100 0.90362 0.01535 0.90704 0.02023 0.90415 0.01828 0.88032 0.00912 0.90199 0.00804 0.89585 0.00925
BCW 40 0.96637 0.00511 0.96887 0.00522 0.96904 0.00536 0.96079 0.00675 0.96517 0.00580 0.96324 0.00578

60 0.96762 0.00431 0.97008 0.00359 0.97026 0.00382 0.96184 0.00535 0.96710 0.00558 0.96288 0.00559
80 0.96426 0.00573 0.96729 0.00324 0.96729 0.00324 0.96287 0.00292 0.96603 0.00485 0.96287 0.00507

100 0.96180 0.00523 0.96764 0.00355 0.96764 0.00400 0.96358 0.00392 0.96727 0.00469 0.96270 0.00565
MSK 40 0.91086 0.01098 0.91651 0.00928 0.91272 0.00901 0.89231 0.00884 0.91166 0.01218 0.88961 0.01005

60 0.91189 0.00855 0.91294 0.00917 0.91147 0.00911 0.88810 0.01284 0.90831 0.01361 0.88687 0.00967
80 0.91917 0.00973 0.92084 0.00779 0.92084 0.00759 0.89460 0.01399 0.91628 0.01165 0.88938 0.00994

100 0.91965 0.00658 0.91920 0.00748 0.91878 0.00849 0.89062 0.01216 0.90976 0.01347 0.88854 0.00958
QSR 40 0.87395 0.00406 0.87308 0.00379 0.87423 0.00469 0.87345 0.00441 0.87194 0.00462 0.87062 0.00327

60 0.87546 0.00562 0.87555 0.00452 0.87403 0.00550 0.87080 0.00482 0.87101 0.00502 0.86920 0.00390
80 0.87147 0.00475 0.87280 0.00473 0.87403 0.00329 0.87137 0.00380 0.87469 0.00449 0.87062 0.00250

100 0.87223 0.00541 0.87565 0.00267 0.87318 0.00419 0.87385 0.00532 0.87289 0.00502 0.87052 0.00281
DRD 40 0.74007 0.00598 0.74050 0.00910 0.73885 0.00747 0.73128 0.00848 0.74145 0.00795 0.70862 0.00801

60 0.74579 0.01137 0.74622 0.00964 0.74475 0.01038 0.73675 0.00930 0.74753 0.01002 0.71105 0.00766
80 0.74493 0.00627 0.74118 0.00539 0.74371 0.00683 0.71340 0.01084 0.74641 0.00599 0.70940 0.00785

100 0.74006 0.00834 0.74588 0.00539 0.74424 0.00651 0.71436 0.01386 0.74415 0.00645 0.71140 0.00764
SPA 40 0.95286 0.00144 0.95344 0.00128 0.95344 0.00131 0.94554 0.00110 0.95286 0.00080 0.94762 0.00104

60 0.95331 0.00133 0.95423 0.00150 0.95371 0.00172 0.94475 0.00106 0.95347 0.00145 0.94695 0.00070
80 0.95379 0.00180 0.95362 0.00203 0.95362 0.00143 0.94501 0.00104 0.95318 0.00137 0.94677 0.00079

100 0.95353 0.00182 0.95384 0.00157 0.95371 0.00162 0.94456 0.00108 0.95299 0.00135 0.94669 0.00065
DEF 40 0.82061 0.00050 0.82047 0.00052 0.82041 0.00049 0.82057 0.00052 0.82064 0.00039 0.82067 0.00042

60 0.82048 0.00050 0.82035 0.00053 0.82057 0.00029 0.82093 0.00028 0.82068 0.00029 0.82048 0.00055
80 0.82033 0.00056 0.82064 0.00061 0.82063 0.00077 0.82014 0.00076 0.82031 0.00037 0.82030 0.00041

100 0.82019 0.00039 0.82005 0.00033 0.82052 0.00057 0.81976 0.00103 0.82061 0.00043 0.82010 0.00040
BMK 40 0.91781 0.00045 0.91712 0.00062 0.91701 0.00061 0.91322 0.00047 0.91661 0.00059 0.91435 0.00074

60 0.91749 0.00049 0.91731 0.00058 0.91734 0.00062 0.91167 0.00040 0.91668 0.00035 0.91341 0.00071
80 0.91743 0.00070 0.91745 0.00066 0.91720 0.00051 0.91094 0.00049 0.91647 0.00056 0.91306 0.00052

100 0.91757 0.00036 0.91740 0.00052 0.91725 0.00069 0.91005 0.00043 0.91669 0.00042 0.91242 0.00056
APS 40 0.99369 0.00021 0.99376 0.00016 0.99376 0.00016 0.99329 0.00016 0.99361 0.00021 0.99287 0.00014

60 0.99377 0.00018 0.99378 0.00016 0.99381 0.00019 0.99293 0.00018 0.99357 0.00021 0.99250 0.00013
80 0.99385 0.00010 0.99380 0.00013 0.99382 0.00011 0.99251 0.00015 0.99357 0.00017 0.99254 0.00013

100 0.99382 0.00015 0.99389 0.00014 0.99391 0.00012 0.99242 0.00014 0.99369 0.00021 0.99247 0.00013
Average: 0.89847 0.00488 0.89972 0.00451 0.89932 0.00462 0.88926 0.00506 0.89791 0.00492 0.88938 0.00407

Table 4.4 presents the results for the 9 datasets and four different values of K.
For each algorithm, we include two columns: the average (Avg.) and standard deviation



4.3. Out of sample 33

(Std.) of the out-of-sample accuracy, calculated with the data points in the independent
set. We remind the reader that each entry in the table represents the average accuracy of
100 different runs.

A bold value in any of the first three Avg. columns means that our formulation
obtained a higher average than all three benchmarks. The last row gives an overall average
value of the corresponding column.

Backfitting, which explicitly attempts to maximise accuracy, had a higher overall
average accuracy than the other benchmarks. F1 obtained slightly better results when
compared to Backfitting: an overall average accuracy of 0.89847 compared to 0.89791 and
a very slightly lower standard deviation (0.00488 as opposed to 0.00492). In 22 out of the
36 cases, F1 obtained a higher average accuracy than all three benchmarks.

Results for F2 and F3 are improved when compared to F1. The overall average
accuracy increased to 0.89972 for F2 and 0.89932 for F3. The overall average accuracy
standard deviation decreased to 0.00451 and 0.00462. Both configurations were able to
obtain higher average accuracy for 28 out of the 36 cases. F2 and F3 had little discernible
difference.

This empirical evidence enforces the common knowledge that both performance
and diversity are important when pruning ensembles. It also suggests, in our view, that
the flexibility of our IP approach can be explored for improved predictive performance.

The use of integer programming, which attempts to find optimal solutions, may
overfit the selected ensemble to the dataset used in the optimisation. To have an overall
idea of overfitting, we compare the average accuracy in out-of-sample test data from Table
4.4 with the accuracy of the same selected classifiers, but in the in-sample validation data
used in the optimisation approach.

The comparison is in Table 4.5. In the Avg. column, we perform this comparison by
calculating the (average out-of-sample accuracy - average in-sample accuracy) / (average
in-sample accuracy). As the results are averages of 100 executions, we also include the
standard deviation in column Std.. The last row includes the average of all datasets and
values of K from its respective column. The more negative the values are, the more the
accuracy of the out-of-sample decreased related to the in-sample, which may be a sign of
overfitting to the in-sample data.

In the last row, Kappa Pruning has an average difference of -0.00453, which is the
best average among the results, followed by Backfitting with an average of -0.02528. The
average for F1, F2 and F3 are -0.03304, -0.03127 and -0.03143, respectively. They are
more negative than the corresponding values for Kappa Pruning and Backfitting.

From the table we can see that the overfitting problem affected the formulations
more strongly than the benchmark algorithms. We consider this as expected behaviour
since the formulation is solved by seeking optimality, while the other algorithms offer no
guarantees of optimality. As such, the accuracies of the formulations tend to be higher



4.3. Out of sample 34

than the Kappa Pruning and Backfitting algorithms in the in-sample sets, but deteriorate
more out-of-sample. However, even with higher deterioration, Table 4.4 suggests that the
out-of-sample accuracies of the formulations were similar or superior to the benchmarks.
This may indicate that with better overfitting control we may be able to improve the
out-of-sample results of our formulation.

Table 4.5: Comparation between in-sample and out-of-sample accuracies

Dataset K F1 F2 F3 Kappa Pruning Backfitting
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PRK 40 -0.05825 0.02230 -0.05125 0.01649 -0.05335 0.01727 -0.01857 0.02397 -0.05286 0.02566
60 -0.06580 0.01793 -0.06039 0.01433 -0.06087 0.01704 -0.02684 0.02654 -0.05977 0.02635
80 -0.06671 0.02418 -0.06661 0.02204 -0.06614 0.02142 -0.02476 0.02718 -0.06109 0.01778

100 -0.06989 0.02372 -0.06633 0.02832 -0.06933 0.02699 -0.02330 0.02776 -0.05748 0.01657
BCW 40 -0.02440 0.00573 -0.02188 0.00623 -0.02171 0.00651 -0.00433 0.00671 -0.01899 0.00835

60 -0.02474 0.00501 -0.02224 0.00507 -0.02206 0.00533 -0.00212 0.00454 -0.01812 0.00942
80 -0.02915 0.00682 -0.02608 0.00455 -0.02608 0.00455 -0.00407 0.00509 -0.01955 0.00742

100 -0.03233 0.00628 -0.02644 0.00443 -0.02644 0.00483 -0.00409 0.00646 -0.01880 0.00704
MSK 40 -0.05032 0.01493 -0.04446 0.01157 -0.04842 0.01215 0.00450 0.02122 -0.03436 0.01423

60 -0.05183 0.01561 -0.05079 0.01313 -0.05230 0.01417 -0.00032 0.02249 -0.03842 0.01665
80 -0.05218 0.01515 -0.05052 0.01305 -0.05049 0.01309 -0.00266 0.02359 -0.03517 0.01844

100 -0.05293 0.01083 -0.05347 0.01081 -0.05386 0.01375 -0.00384 0.02169 -0.04038 0.01870
QSR 40 -0.03809 0.00662 -0.03902 0.00744 -0.03773 0.00892 -0.00369 0.01032 -0.03155 0.01076

60 -0.04133 0.00876 -0.04124 0.00755 -0.04291 0.00794 -0.00245 0.00897 -0.03414 0.01068
80 -0.04993 0.01001 -0.04845 0.01081 -0.04710 0.00913 -0.00384 0.01035 -0.03317 0.00784

100 -0.05188 0.00876 -0.04811 0.00713 -0.05076 0.00936 -0.00015 0.01184 -0.03560 0.00762
DRD 40 -0.07302 0.00940 -0.07190 0.01374 -0.07418 0.01309 -0.00829 0.01688 -0.05161 0.01237

60 -0.07864 0.01534 -0.07657 0.01223 -0.07862 0.01240 -0.00580 0.01449 -0.05563 0.01300
80 -0.08580 0.01184 -0.08662 0.00807 -0.08070 0.01029 -0.01033 0.01443 -0.06383 0.00871

100 -0.09828 0.01143 -0.08438 0.01031 -0.08034 0.01159 -0.01178 0.01902 -0.07141 0.00936
SPA 40 -0.01183 0.00300 -0.01122 0.00233 -0.01122 0.00241 -0.00244 0.00193 -0.00923 0.00242

60 -0.01303 0.00244 -0.01207 0.00248 -0.01262 0.00325 -0.00169 0.00225 -0.01040 0.00264
80 -0.01357 0.00245 -0.01374 0.00320 -0.01374 0.00243 -0.00158 0.00226 -0.01135 0.00148

100 -0.01465 0.00248 -0.01418 0.00194 -0.01431 0.00198 -0.00173 0.00204 -0.01196 0.00193
DEF 40 -0.00459 0.00158 -0.00449 0.00124 -0.00449 0.00140 -0.00004 0.00094 -0.00352 0.00137

60 -0.00516 0.00158 -0.00493 0.00152 -0.00448 0.00141 0.00036 0.00107 -0.00386 0.00100
80 -0.00541 0.00145 -0.00475 0.00191 -0.00457 0.00123 0.00022 0.00136 -0.00470 0.00098

100 -0.00568 0.00152 -0.00512 0.00156 -0.00423 0.00171 0.00037 0.00127 -0.00448 0.00130
BMK 40 -0.00316 0.00093 -0.00350 0.00099 -0.00356 0.00124 -0.00006 0.00109 -0.00324 0.00111

60 -0.00375 0.00091 -0.00354 0.00102 -0.00341 0.00117 -0.00002 0.00113 -0.00354 0.00101
80 -0.00407 0.00125 -0.00342 0.00095 -0.00345 0.00108 -0.00001 0.00097 -0.00421 0.00121

100 -0.00396 0.00090 -0.00319 0.00089 -0.00315 0.00134 0.00007 0.00115 -0.00432 0.00075
APS 40 -0.00118 0.00026 -0.00110 0.00025 -0.00109 0.00024 -0.00002 0.00021 -0.00069 0.00017

60 -0.00122 0.00024 -0.00119 0.00022 -0.00116 0.00027 0.00002 0.00023 -0.00076 0.00016
80 -0.00131 0.00017 -0.00132 0.00016 -0.00129 0.00015 0.00002 0.00021 -0.00091 0.00019

100 -0.00145 0.00018 -0.00131 0.00014 -0.00126 0.00016 -0.00001 0.00021 -0.00093 0.00022
Average: -0.03304 0.00756 -0.03127 0.00689 -0.03143 0.00726 -0.00453 0.00950 -0.02528 0.00791

4.3.3 Area Under the Curve

In this section, we employ the out-of-sample AUC instead of accuracy when we
comparing the formulation and the benchmarks. For that we use two different assignments
of weights to objective function (3.1). Here the goal is to get insights on how seemingly
more appropriate weights impact the out-of-sample AUC performance, better suited for



4.3. Out of sample 35

imbalanced datasets.
As explained in the beginning of the Chapter 4, we round the probabilities given

by each classifier to each data point in order to generate A and B. AUC however requires
probability based predictions instead of a binary classifications. After employing our
proposed formulation, we ignore the threshold L given and for each data point we take
the average probabilistic prediction for the ensemble subset, so also ignoring the rounding
used to create A and B. AUC is then calculated by varying a probability threshold
between 0 and 1. AUC is generally considered to be more informative than accuracy for
imbalanced data [16].

We use two weights assignments: maximising accuracy and maximising the θ-
weighted configuration suggested in Section 3.1.1. The latter does not exactly maximise
AUC but, by taking into account class imbalance, may be more suited for improving this
particular performance metric. Here we do not apply any diversity constraints.

Table 4.6: Out-of-sample average AUC’s and standard deviations.

Dataset K F1 (Accuracy) F1 (θ-weighted) Kappa Pruning Backfitting Full Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PRK 40 0.95719 0.00900 0.95553 0.01005 0.94626 0.01018 0.95358 0.01292 0.95701 0.00707
60 0.95441 0.01127 0.95514 0.00945 0.94168 0.01183 0.95274 0.01413 0.95449 0.00630
80 0.94861 0.01782 0.95269 0.01589 0.94352 0.01396 0.95418 0.01061 0.95690 0.00477

100 0.95239 0.01487 0.95640 0.01148 0.93909 0.01174 0.95492 0.01106 0.95436 0.00657
BCW 40 0.99426 0.00137 0.99489 0.00096 0.99425 0.00094 0.99423 0.00134 0.99458 0.00103

60 0.99457 0.00132 0.99516 0.00067 0.99431 0.00133 0.99475 0.00068 0.99449 0.00089
80 0.99466 0.00122 0.99477 0.00123 0.99377 0.00109 0.99484 0.00088 0.99449 0.00094

100 0.99520 0.00088 0.99498 0.00104 0.99415 0.00120 0.99524 0.00100 0.99463 0.00087
MSK 40 0.97033 0.00465 0.96959 0.00496 0.95494 0.00686 0.96845 0.00491 0.95817 0.00422

60 0.96963 0.00418 0.96980 0.00647 0.95526 0.00637 0.96530 0.00541 0.95549 0.00436
80 0.97484 0.00525 0.97312 0.00542 0.95903 0.00661 0.97092 0.00427 0.95795 0.00402

100 0.97487 0.00479 0.97459 0.00508 0.95752 0.00612 0.96872 0.00450 0.95636 0.00400
QSR 40 0.93526 0.00221 0.93660 0.00261 0.93574 0.00158 0.93495 0.00251 0.93624 0.00208

60 0.93562 0.00218 0.93571 0.00227 0.93591 0.00232 0.93653 0.00199 0.93559 0.00204
80 0.93547 0.00331 0.93607 0.00191 0.93608 0.00210 0.93670 0.00228 0.93606 0.00196

100 0.93675 0.00302 0.93661 0.00128 0.93605 0.00188 0.93688 0.00289 0.93592 0.00202
DRD 40 0.82866 0.00522 0.82785 0.00436 0.81892 0.00470 0.82692 0.00606 0.79653 0.00459

60 0.82979 0.00410 0.82815 0.00297 0.82041 0.00606 0.82931 0.00578 0.79664 0.00413
80 0.82995 0.00437 0.82930 0.00425 0.80570 0.00690 0.83053 0.00680 0.79580 0.00426

100 0.82710 0.00429 0.82950 0.00480 0.80639 0.00699 0.82702 0.00670 0.79777 0.00430
SPA 40 0.98819 0.00037 0.98827 0.00036 0.98730 0.00029 0.98830 0.00065 0.98804 0.00023

60 0.98831 0.00067 0.98807 0.00038 0.98651 0.00035 0.98843 0.00040 0.98748 0.00025
80 0.98834 0.00062 0.98833 0.00050 0.98678 0.00028 0.98818 0.00056 0.98771 0.00026

100 0.98836 0.00060 0.98843 0.00064 0.98658 0.00029 0.98854 0.00055 0.98760 0.00024
DEF 40 0.78162 0.00167 0.78337 0.00057 0.78357 0.00063 0.78183 0.00084 0.78380 0.00043

60 0.78069 0.00204 0.78359 0.00049 0.78352 0.00059 0.78121 0.00097 0.78318 0.00036
80 0.78006 0.00218 0.78355 0.00055 0.78227 0.00169 0.78032 0.00134 0.78331 0.00055

100 0.77838 0.00275 0.78317 0.00058 0.78177 0.00160 0.77997 0.00131 0.78278 0.00045
BMK 40 0.94862 0.00046 0.94827 0.00027 0.94692 0.00024 0.94833 0.00060 0.94809 0.00026

60 0.94843 0.00021 0.94813 0.00045 0.94600 0.00028 0.94848 0.00028 0.94744 0.00023
80 0.94836 0.00044 0.94808 0.00025 0.94609 0.00025 0.94863 0.00024 0.94750 0.00023

100 0.94835 0.00031 0.94817 0.00040 0.94549 0.00027 0.94848 0.00029 0.94716 0.00022
APS 40 0.98322 0.00257 0.98280 0.00305 0.97636 0.00195 0.98634 0.00190 0.98359 0.00180

60 0.98147 0.00309 0.98286 0.00234 0.97914 0.00179 0.98532 0.00240 0.98237 0.00134
80 0.97948 0.00359 0.98384 0.00205 0.98216 0.00188 0.98268 0.00308 0.98357 0.00177

100 0.98037 0.00317 0.98387 0.00193 0.98276 0.00201 0.98176 0.00292 0.98387 0.00175
Average: 0.93144 0.00361 0.93220 0.00311 0.92645 0.00348 0.93149 0.00347 0.92686 0.00224

Table 4.6, which has the same structure as Table 4.4, presents the results. We



4.3. Out of sample 36

did not rerun the experiments for the accuracy version of F1 nor for the benchmarks,
rather we used the same ensemble subsets to calculate the corresponding AUC’s. Once
again, each entry in the Avg. column represents the average AUC of 100 executions, with
corresponding standard deviations given in column Std..

Backfitting still had the best overall average AUC among the benchmarks (0.93149
with 0.0347 standard deviation). Its performance was very similar to F1 with accuracy.
However, by changing the weights assignment to the θ-weighted configuration, we were
able to considerably improve the results. The overall average AUC increased to 0.93220
with a slightly reduced overall standard deviation of 0.00311. In 9 out of 36 cases, F1
with accuracy maximisation obtained a higher average AUC than all benchmarks. This
number increased to 16 when using the θ-weighted configuration.

4.3.4 Balanced accuracy

In this section, we analyse the same assignments of weights from last section to
(3.1), that is, maximising accuracy and maximising the θ-weighted configuration suggested
in Section 3.1.1. However here we evaluate a different performance metric, namely the
balanced accuracy. AUC is generally considered as a suitable metric for imbalanced
datasets, however it requires predicted probabilities to be calculated, while often in real
world problems we need to use 0 or 1 classifications instead of probabilities. This way,
we decided to also evaluate our results with a metric that is more related to the context
of a binary classification problem. The balanced accuracy is equal to the accuracy of the
out-of-sample data points of the positive class plus the accuracy of the out-of-sample data
points of the negative class divided by 2.

Table 4.7, which has the same structure as Table 4.4, presents the results. We used
the same ensemble subsets from the last section to calculate the corresponding balanced
accuracy. Once again, each entry in the Avg. column represents the average AUC of 100
executions, with corresponding standard deviations given in column Std..

Backfitting once again had the best overall metric results among the benchmarks
(0.83128 with 0.00689 standard deviation). The use of the weights assignment to the
θ-weighted configuration has considerably improved the results of balanced accuracy. In
31 out of 36 cases, F1 with accuracy maximisation obtained a higher average balanced
accuracy than all benchmarks. This number increased to 32 when using the θ-weighted
configuration. The more noticeable increase, however, can be seen in the overall aver-
age balanced accuracy: it increased from 0.84332 using the F1 original configuration to
0.86645 when using the θ-weighted configuration, and the standard deviation decreased



4.4. Majority Voting Formulation 37

Table 4.7: Out-of-sample average balanced accuraries and standard deviations.

Dataset K F1 F1 (θ-weighted) Kappa Pruning Backfitting Full Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PRK 40 0.84781 0.03275 0.85821 0.02893 0.80785 0.02071 0.85230 0.01768 0.83083 0.01097
60 0.84668 0.02422 0.85446 0.01805 0.77599 0.01359 0.83643 0.02422 0.82374 0.01575
80 0.84635 0.02897 0.85144 0.02045 0.78475 0.01961 0.84326 0.01694 0.82640 0.01461

100 0.84867 0.03063 0.85565 0.02664 0.77582 0.01500 0.84160 0.01035 0.81540 0.01199
BCW 40 0.96449 0.00566 0.96682 0.00496 0.95428 0.00792 0.95814 0.00660 0.95659 0.00773

60 0.96663 0.00520 0.96754 0.00371 0.95560 0.00653 0.96082 0.00637 0.95641 0.00726
80 0.96455 0.00545 0.96507 0.00444 0.95639 0.00385 0.96006 0.00588 0.95621 0.00689

100 0.96249 0.00505 0.96315 0.00563 0.95745 0.00474 0.96162 0.00590 0.95617 0.00732
MSK 40 0.91027 0.01022 0.91039 0.00826 0.88718 0.01034 0.90714 0.01332 0.88436 0.01080

60 0.91084 0.00797 0.90942 0.00838 0.88344 0.01418 0.90466 0.01429 0.88146 0.01020
80 0.91787 0.01005 0.91642 0.00747 0.88993 0.01496 0.91211 0.01241 0.88408 0.01046

100 0.91798 0.00712 0.91616 0.00577 0.88585 0.01305 0.90559 0.01433 0.88329 0.01022
QSR 40 0.85742 0.00656 0.86445 0.00494 0.84888 0.00524 0.84963 0.00520 0.84318 0.00365

60 0.86042 0.00719 0.86386 0.00524 0.84324 0.00559 0.84668 0.00511 0.84072 0.00396
80 0.85588 0.00456 0.86492 0.00379 0.84498 0.00587 0.85149 0.00498 0.84206 0.00251

100 0.85632 0.00498 0.86481 0.00523 0.84777 0.00669 0.84772 0.00490 0.84186 0.00297
DRD 40 0.74071 0.00561 0.74340 0.00617 0.73642 0.00866 0.74651 0.00782 0.71169 0.00793

60 0.74631 0.01145 0.74370 0.00884 0.74160 0.00925 0.75199 0.00983 0.71452 0.00750
80 0.74568 0.00639 0.74679 0.00455 0.71755 0.01046 0.75033 0.00572 0.71255 0.00773

100 0.74039 0.00881 0.74664 0.00932 0.71832 0.01331 0.74791 0.00631 0.71479 0.00750
SPA 40 0.94929 0.00176 0.95128 0.00226 0.93844 0.00143 0.94779 0.00120 0.94151 0.00127

60 0.94981 0.00165 0.95144 0.00199 0.93756 0.00134 0.94895 0.00179 0.94053 0.00082
80 0.95039 0.00212 0.95210 0.00184 0.93783 0.00120 0.94881 0.00174 0.94033 0.00089

100 0.94996 0.00223 0.95171 0.00249 0.93722 0.00124 0.94847 0.00196 0.94015 0.00078
DEF 40 0.66335 0.00218 0.69488 0.00228 0.65112 0.00157 0.65069 0.00108 0.65067 0.00112

60 0.66428 0.00204 0.69731 0.00214 0.65099 0.00091 0.64914 0.00184 0.64898 0.00120
80 0.66616 0.00139 0.69851 0.00163 0.64895 0.00288 0.64845 0.00197 0.64840 0.00111

100 0.66607 0.00188 0.69921 0.00141 0.64680 0.00413 0.64819 0.00181 0.64730 0.00123
BMK 40 0.77307 0.00548 0.86071 0.00152 0.68622 0.00271 0.73307 0.00376 0.69926 0.00388

60 0.77631 0.00488 0.86616 0.00186 0.66847 0.00329 0.73375 0.00281 0.68829 0.00376
80 0.77655 0.00552 0.86844 0.00155 0.65940 0.00369 0.73221 0.00462 0.68219 0.00363

100 0.77941 0.00527 0.86939 0.00122 0.65221 0.00326 0.73631 0.00404 0.67618 0.00314
APS 40 0.86904 0.00621 0.93815 0.00402 0.82961 0.00644 0.84039 0.00574 0.81550 0.00371

60 0.87154 0.00617 0.93860 0.00369 0.81498 0.00697 0.83920 0.00471 0.80149 0.00331
80 0.87306 0.00391 0.93947 0.00380 0.80086 0.00525 0.83984 0.00453 0.80205 0.00371

100 0.87348 0.00532 0.94160 0.00412 0.79968 0.00549 0.84472 0.00640 0.80064 0.00324
Average: 0.84332 0.00797 0.86645 0.00635 0.80760 0.00726 0.83128 0.00689 0.81111 0.00569

from 0.00797 to 0.00635. We see this as empirical evidence that the flexibility of setting
problem-dependent weights is effective when we need to give more importance to one class
over the other. Furthermore, other empirical evidence that corroborate our affirmative
are the AUC metric results from Section 4.3.3, where the θ-weighted configuration was
also able to perform better compared to F1 and the benchmarks.

4.4 Majority Voting Formulation

In a final experiment we tested the use of majority voting to define the classification
threshold on our formulations. In the formulations of the Chapter 3 we left the threshold
variable L free to get any value in 0 < L < S, where S is the number of classifiers selected



4.4. Majority Voting Formulation 38

in the ensemble. In order to use the majority voting, we have to ensure that the value of
L is equal to ⌊S/2⌋. Constraint (4.1) can be added to the formulation to ensure this.

1

2

K∑
k=1

xk − 0.5 ≤ L ≤ 1

2

K∑
k=1

xk (4.1)

The use of the majority voting may also help to reduce overfitting, since the op-
timisation will use only a subset of the thresholds values in comparison with the original
formulation.

In our experiments, we repeated the configurations of F1, F2 and F3 from Section
4.3.2, but adding the constraints 4.1 to ensure the use of majority voting. The new
configurations are respectively refered as FMV1, FMV2 and FMV3.

Table 4.8: Out-of-sample average accuraries and standard deviations for Majority Voting
Formulations and Benchmarks.

Dataset K FMV1 FMV2 FMV3 F2 Kappa Pruning Backfitting Full Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

PRK 40 0.91284 0.01535 0.91340 0.01022 0.91120 0.01182 0.91340 0.01364 0.89071 0.01487 0.90407 0.01556 0.90143 0.00656
60 0.91040 0.01531 0.91095 0.01232 0.91098 0.01173 0.90890 0.01025 0.88018 0.00858 0.89988 0.01457 0.89937 0.00876
80 0.90868 0.01330 0.91184 0.01183 0.91026 0.01403 0.90518 0.01245 0.88374 0.01265 0.90151 0.00838 0.90040 0.00909

100 0.90806 0.01338 0.90907 0.01431 0.90976 0.01709 0.90704 0.02023 0.88032 0.00912 0.90199 0.00804 0.89585 0.00925
BCW 40 0.96939 0.00662 0.97098 0.00685 0.97012 0.00574 0.96887 0.00522 0.96079 0.00675 0.96517 0.00580 0.96324 0.00578

60 0.97028 0.00683 0.97097 0.00595 0.97098 0.00623 0.97008 0.00359 0.96184 0.00535 0.96710 0.00558 0.96288 0.00559
80 0.96763 0.00592 0.96834 0.00491 0.96799 0.00547 0.96729 0.00324 0.96287 0.00292 0.96603 0.00485 0.96287 0.00507

100 0.96656 0.00538 0.97025 0.00442 0.96954 0.00582 0.96764 0.00355 0.96358 0.00392 0.96727 0.00469 0.96270 0.00565
MSK 40 0.91604 0.01211 0.91753 0.01187 0.91732 0.01437 0.91651 0.00928 0.89231 0.00884 0.91166 0.01218 0.88961 0.01005

60 0.91880 0.00912 0.91776 0.01223 0.91901 0.01027 0.91294 0.00917 0.88810 0.01284 0.90831 0.01361 0.88687 0.00967
80 0.92174 0.01164 0.92131 0.00994 0.92109 0.01091 0.92084 0.00779 0.89460 0.01399 0.91628 0.01165 0.88938 0.00994

100 0.91652 0.00753 0.91882 0.00842 0.91987 0.00991 0.91920 0.00748 0.89062 0.01216 0.90976 0.01347 0.88854 0.00958
QSR 40 0.87346 0.00463 0.87574 0.00429 0.87498 0.00517 0.87308 0.00379 0.87345 0.00441 0.87194 0.00462 0.87062 0.00327

60 0.87346 0.00593 0.87422 0.00491 0.87384 0.00488 0.87555 0.00452 0.87080 0.00482 0.87101 0.00502 0.86920 0.00390
80 0.87290 0.00404 0.87403 0.00623 0.87374 0.00359 0.87280 0.00473 0.87137 0.00380 0.87469 0.00449 0.87062 0.00250

100 0.87432 0.00336 0.87658 0.00284 0.87404 0.00377 0.87565 0.00267 0.87385 0.00532 0.87289 0.00502 0.87052 0.00281
DRD 40 0.74475 0.00903 0.74449 0.00725 0.74293 0.00920 0.74050 0.00910 0.73128 0.00848 0.74145 0.00795 0.70862 0.00801

60 0.74865 0.00673 0.74719 0.00805 0.74840 0.00875 0.74622 0.00964 0.73675 0.00930 0.74753 0.01002 0.71105 0.00766
80 0.74849 0.00652 0.74485 0.00826 0.74484 0.00527 0.74118 0.00539 0.71340 0.01084 0.74641 0.00599 0.70940 0.00785

100 0.74891 0.00922 0.74362 0.00638 0.74353 0.00690 0.74588 0.00539 0.71436 0.01386 0.74415 0.00645 0.71140 0.00764
SPA 40 0.95260 0.00118 0.95262 0.00153 0.95316 0.00163 0.95344 0.00128 0.94554 0.00110 0.95286 0.00080 0.94762 0.00104

60 0.95364 0.00122 0.95384 0.00090 0.95408 0.00148 0.95423 0.00150 0.94475 0.00106 0.95347 0.00145 0.94695 0.00070
80 0.95349 0.00141 0.95442 0.00211 0.95373 0.00184 0.95362 0.00203 0.94501 0.00104 0.95318 0.00137 0.94677 0.00079

100 0.95353 0.00138 0.95379 0.00089 0.95358 0.00125 0.95384 0.00157 0.94456 0.00108 0.95299 0.00135 0.94669 0.00065
DEF 40 0.82057 0.00046 0.82044 0.00045 0.82040 0.00043 0.82047 0.00052 0.82057 0.00052 0.82064 0.00039 0.82067 0.00042

60 0.82050 0.00027 0.82044 0.00050 0.82069 0.00045 0.82035 0.00053 0.82093 0.00028 0.82068 0.00029 0.82048 0.00055
80 0.82038 0.00052 0.82079 0.00037 0.82036 0.00036 0.82064 0.00061 0.82014 0.00076 0.82031 0.00037 0.82030 0.00041

100 0.82073 0.00042 0.82068 0.00035 0.82066 0.00042 0.82005 0.00033 0.81976 0.00103 0.82061 0.00043 0.82010 0.00040
BMK 40 0.91702 0.00055 0.91679 0.00059 0.91675 0.00068 0.91712 0.00062 0.91322 0.00047 0.91661 0.00059 0.91435 0.00074

60 0.91696 0.00036 0.91696 0.00073 0.91664 0.00048 0.91731 0.00058 0.91167 0.00040 0.91668 0.00035 0.91341 0.00071
80 0.91719 0.00039 0.91696 0.00035 0.91668 0.00060 0.91745 0.00066 0.91094 0.00049 0.91647 0.00056 0.91306 0.00052

100 0.91706 0.00040 0.91701 0.00060 0.91694 0.00069 0.91740 0.00052 0.91005 0.00043 0.91669 0.00042 0.91242 0.00056
APS 40 0.99368 0.00020 0.99373 0.00018 0.99367 0.00017 0.99376 0.00016 0.99328 0.00016 0.99361 0.00021 0.99288 0.00014

60 0.99367 0.00020 0.99370 0.00020 0.99370 0.00022 0.99378 0.00016 0.99293 0.00018 0.99357 0.00021 0.99250 0.00013
80 0.99376 0.00028 0.99377 0.00024 0.99372 0.00018 0.99380 0.00013 0.99251 0.00015 0.99357 0.00017 0.99254 0.00013

100 0.99379 0.00021 0.99379 0.00015 0.99384 0.00022 0.99389 0.00014 0.99242 0.00014 0.99369 0.00021 0.99247 0.00013
Average: 0.90029 0.00504 0.90060 0.00477 0.90036 0.00506 0.89972 0.00451 0.88926 0.00506 0.89791 0.00492 0.88938 0.00407

Table 4.4 presents the results and has the same structure as the previous results
tables. We keep F2 for comparison. The results for all three configurations are very
similar to each other and to F2, showing a small improvement in overall average values
and a slight increase in average standard deviations. We believe it is not possible yet to
conclude whether it is advantageous to let L to be chosen by the algorithm or to fix it
prior to solving the problem.



4.5. Summary 39

4.5 Summary

In this chapter we outlined the computational experiments used to evaluate both
the solution performance and out-of-sample results of our formulation.

In Section 4.2, when analysing the solution performance, we observed that good
solutions for our formulation can be found in reasonable computational times, even for the
hardest instances. The inclusion of the diversity constraints caused a negligible decrease
in performance.

In the out-of-sample results in Section 4.3, we evaluated our formulation with a
Stratified K-Fold Cross Validation procedure using 9 datasets. We compared our formu-
lation with 3 benchmarks: Kappa Pruning, Backfitting and the Full Ensemble, and we
evaluated it using the metrics accuracy, AUC and balanced accuracy.

In Subsection 4.3.2, we evaluated the accuracy of the F1, F2 and F3 configurations.
All configurations obtained a higher average accuracy than the benchmarks. The use of
diversity constraints improved the results of F2 and F3 when compared with F1. We
also verified that our formulation is more suitable to overfitting when compared to the
benchmarks.

Next, we tested the F1 and F1 (θ-weighted) configurations. In Subsection 4.3.3
we evaluated their AUC, and in Subsection 4.3.4 the balanced accuracy. Only F1 (θ-
weighted) obtained a higher average AUC than the benchmarks. All of them had a higher
balanced accuracy when compared to the benchmarks, where the most noticeable results
came with F1 (θ-weighted).

Finally, in Subsection 4.4, we tested the use of majority voting to define the classi-
fication threshold on the formulations F1, F2 and F3, creating the configurations FMV1,
FMV2 and FMV3. By analysing the results, it was not possible to conclude if the use of
majority voting constraints is advantageous or not.



40

Chapter 5

Ongoing research: cutting-planes
reformulations

A formulation generally referred to as “cutting-planes” has an exponential number of
constraints and thus cannot be readily solved by commercial solvers. To solve it the
exponential set of constraints is relaxed (that is, removed from the model) and during
the branch-and-bound search we add them on-the-fly, as needed. To add them during
the optimisation we need to pause the solver at each node of the branch-and-bound tree,
right after the current linear relaxation is solved, and attempt to identify constraints that
were relaxed but are violated by the current linear relaxation solution. If any are found
we add them to the model and re-solve the current node. We continue this procedure
until no other violated constraints are found, moving on to the next node. This method
is a simplified description of the Branch-and-cut algorithm [35] and the algorithm that
identifies violated constraints based on the current linear relaxation is called a separation
algorithm.

Cutting-plane based formulations are often used as a tool in improving computa-
tional performance of IP models. The reasoning is that often cutting-planes reformulations
have stronger linear relaxation bounds (that is, closer to the optimal integer solution) and
that we can solve the original model without necessarily adding all originally removed con-
straints, or in other words optimality can be proved long before all constraints originally
removed are reincluded in the relaxed model. For instance, the most successful exact
algorithm for the Travelling-Salesman Problem is a Branch-and-cut [34; 1].

In this section we propose two reformulations in an attempt to tackle a potential
drawback of the original formulation. In Constraints (3.2), (3.3), (3.5) and (3.6), a large
value of K may for instance weaken the value of the linear relaxation, perhaps making it
more difficult for the solvers to prune the branch-and-bound tree and/or prove optimality.
The reformulation we propose uses a cutting-planes approach to avoid the use of these
constraints.

However, currently the computational experiments for the reformulations are pre-
liminary and further research is necessary to verify whether they are able to improve
computational times required to find optimal solutions, especially for larger instances



5.1. Fixed threshold reformulation 41

containing more data points and more classifiers. For this reason we introduce the re-
formulations here but do not present any results, which are left as future work. We
do however discuss implementation details and other considerations as this is a topic of
ongoing research.

In Section 5.5 we also propose an alternative approach, once again based on cutting
planes, to include diversity in the formulation.

5.1 Fixed threshold reformulation

Before presenting this approach we introduce further mathematical notation. Let
K1

i ⊆ K be the set of classifiers which correctly classified data point i ∈ N1 as positive.
Accordingly let K1

j ⊆ K be the set of classifiers which incorrectly classified data point
j ∈ N0 as positive.

In our original formulation, L was defined as a variable classification threshold. In
our first proposed cutting-planes we define a fixed threshold 1 ≤ D < K, and thus it must
be solved once for every possible value of D. In the next section we propose a similar
reformulation which allows for a variable threshold.

For data point i ∈ N1, if at least D+1 classifiers in K1
i are selected to compose the

ensemble, then i is correctly classified as positive, or alternatively t+i = 1 (true positive).
Otherwise we must have that f−

i = 1 (false negative). This behaviour can be captured
by employing Constraints (3.4) together and:

∑
k∈U

xk −D ≤ t+i ∀i ∈ N1 : |K1
i | > D,U ⊆ K1

i , |U | = D + 1 (5.1)

1−
∑
k∈U

xk ≤ f−
i ∀i ∈ N1 : |K1

i | > D,U ⊆ K1
i , |U | = |K1

i | −D (5.2)

Constraints (5.1)-(5.2) replace Constraints (3.2)-(3.3). For a given i and D, there
is one constraint of type (5.1) for every subset U ⊆ K1

i containing exactly D+1 classifiers.
If enough of these classifiers are selected to make a true positive, then for at least one
subset U we have

∑
k∈U xk = D+1, which would force t+i = 1. For all data points i ∈ N1

such that |K1
i | ≤ d, we can fix variables f−

i = 1.
Similarly, if at least |K1

i | −D classifiers are not selected to compose the ensemble,
then there exists a subset U with size |K1

i | − D where
∑

k∈U xk = 0, which given the
corresponding constraint of type (5.2) would force f−

i = 1.



5.1. Fixed threshold reformulation 42

Note that if W+
T > W−

F Constraints (5.1) are unnecessary as the solver will natu-
rally set t+i = 1 if it is possible to set f−

i = 0. Accordingly if W+
T < W−

F , we do not need
Constraints (5.2). If W+

T = W−
F we need both.

For points j ∈ N0 such that |K1
j | > D, a similar set of constraints, together with

Constraints (3.7), ensure that variables t−j , f
+
j take the correct values:∑

k∈U

xk −D ≤ f+
j ∀j ∈ N0 : |K1

j | > D,U ⊆ K1
j , |U | = d+ 1 (5.3)

1−
∑
k∈U

xk ≤ t−j ∀j ∈ N0 : |K1
j | > D,U ⊆ K1

j , |U | = |K1
j | −D (5.4)

Constraints (5.3)-(5.4) replace (3.5)-(3.6). The logic behind these constraints is
the same as the one presented above for Constraints (5.1)-(5.2), the only difference being
that a data point classified as 1 is a false positive instead of a true positive. For all data
points j ∈ N0 such that |K1

i | ≤ D, we can fix variables t−j = 1.
Once again, if W−

T > W+
F , Constraints (5.4) are unnecessary, and if W−

T < W+
F ,

constraints (5.3) may be dropped. If W−
T = W+

F we need both.
Notice that given these constraints variables t+i , f

−
i , t

−
j , f

+
j do not need not be

binary, only nonnegative. Their integrality is ensured by any feasible solution that does
not violate any of Constraints (5.1)-(5.4). We then replace Constraints (3.9)-(3.10) with:

t+i , f
−
i ≥ 0 ∀i ∈ N1 (5.5)

t−j , f
+
j ≥ 0 ∀j ∈ N0 (5.6)

The number of possible different values for D is finite with 1 ≤ D < K. By solving
this formulation for every possible value of D we can take the best solution among all as
the global optimum.

In summary, for 1 ≤ D < K the cutting-planes formulation with a fixed threshold
is to optimise (3.1) subject to (3.4), (3.7), (3.8) and (5.1)-(5.6). Depending on how the
weights W−

T , W+
F , W+

T and W−
F are defined some of constraints (5.1)-(5.4) are unnecessary.

5.1.1 Separation algorithm

We initiate the model without any of Constraints (5.1)-(5.4) since there are an
exponential number of them. The separation of all four classes of constraints can be done
by inspection in a straightforward procedure. The algorithm works as follows:

1. Initiate the model without any constraints of type (5.1)-(5.4).



5.2. Variable threshold reformulation 43

2. For every node in the branch-and-bound tree, let x̂k, t̂
+
i , f̂

−
i , t̂

−
j , f̂

+
j be the variables

values in the current linear relaxation.

a) Constraints (5.1): For i ∈ N1 : |K1
i | > D

i. Consider a sorted list of classifiers by descending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first D+1 classifiers in this list.
If
∑

k∈U x̂k > t̂+i +D, add the corresponding constraint to the model.

b) Constraints (5.2): For i ∈ N1 : |K1
i | > D

i. Consider a sorted list of classifiers by ascending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first |K1

i | −D classifiers in this
list. If

∑
k∈U x̂k < 1− f̂−

i , add the corresponding constraint to the model.

c) Constraints (5.3): For j ∈ N0 : |K1
j | > D

i. Consider a sorted list of classifiers by descending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first D+1 classifiers in this list.
If
∑

k∈U x̂k > f̂+
j +D, add the corresponding constraint to the model.

d) Constraints (5.4): For j ∈ N0 : |K1
j | > D

i. Consider a sorted list of classifiers by ascending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first |K1

i | −D classifiers in this
list. If

∑
k∈U x̂k < 1− t̂−j , add the corresponding constraint to the model.

3. If any violated constraint is added to the model, re-solve the current node. Other-
wise, move on to the next node.

Sorting x̂k can be done once at the beginning of the procedure with cost O(K log(K)).
Assuming N > K the separation algorithm is polynomial with complexity O(NK), which
includes the cost of cycling through all data points and computing

∑
k∈U x̂k.

5.2 Variable threshold reformulation

The first cutting-planes reformulation simplifies the original problem by fixing the
classification threshold. We here modify such that the threshold is not fixed, and where
we are effectively solving the same problem as the first formulation. For that we need
extra binary variables Ld = 1 if the threshold is 1 ≤ d < K, 0 otherwise. To ensure that
only one threshold value is selected, we need the following constraint:



5.2. Variable threshold reformulation 44

K−1∑
d=1

Ld = 1 (5.7)

We need to rewrite Constraints (5.1)-(5.4) without assuming a fixed threshold. We
can achieve that by making use of the Ld binary variables. For data points i ∈ N1 such
that |K1

i | > Ld, Constraints (5.1) and (5.2) can be rewritten as:

∑
k∈U

xk −D
D∑

d=1

Ld − (D + 1)
K−1∑

d=D+1

Ld ≤ t+i ∀D = 1, . . . , K − 1, i ∈ N1, (5.8)

U ⊆ K1
i , |U | = D + 1

LD −
∑
k∈U

xk ≤ f−
i ∀D = 1, . . . , K − 1, i ∈ N1, (5.9)

U ⊆ K1
i , |U | = |K1

i | − d

In Constraints (5.8), the expression D
∑D

d=1 Ld − (D + 1)
∑K−1

d=D+1 Ld replaces the
constant value of D in Constraints (5.1). The logic can be illustrated with an example.
Consider K = 10 and that exactly 6 classifiers in K1

i have been chosen to compose
the ensemble. If U is composed of these 6 classifiers, we have that

∑
k∈U xk = 6 and∑

K1
i \U

xk = 0. Suppose D = 5. In this case, if Ld = 1 for some unique d ≤ 5 (the others
being zero), we have 6 − 5 ≤ t+i , which would correctly ensure that t+i = 1 so that the
constraint is not violated.

On the other hand, if Ld = 1 for some unique d > 5, we would have 6 − 6 ≤ t+i .
In this case t+i can be zero (but could be one as well). However, since

∑
k∈K1

i \U
xk = 0 in

the corresponding Constraint (5.9) we would have the expression 1− 0 ≤ f−
i . In this case

f−
i = 1, and due to Constraints (3.4) we know that t+i = 0.

For every i ∈ N1 such that K1
i = ∅, we fix variables f−

i = 1, and for every i such
that K1

i = K we fix variables t+i = 1.
For data points j ∈ N0, we use the same logic as above. We ensure correct values

for variables t−j , f
+
j with the following constraints:

∑
k∈U

xk −D
D∑

d=1

Ld − (D + 1)
K−1∑

d=D+1

Ld ≤ f+
j ∀D = 1, . . . , K − 1, j ∈ N0, (5.10)

U ⊆ K1
j , |U | = D + 1

LD −
∑
k∈U

xk ≤ t−j ∀D = 1, . . . , K − 1, j ∈ N0, (5.11)

U ⊆ K1
j , |U | = |K1

j | −D



5.2. Variable threshold reformulation 45

Also, for every j ∈ N0 such that K1
i = ∅, we fix variables t−i = 1 and for every j

such that K1
j = K we fix variables f+

i = 1.
To summarise the cutting-planes reformulation with a variable threshold is to op-

timise (3.1) subject to (3.4), (3.7), (3.8) and (5.5)-(5.11).

5.2.1 Separation algorithm

We initiate the model without any of Constraints (5.8), (5.9), (5.10), (5.11) since
there are an exponential number of them. The separation of all four classes of constraints
can be also done by inspection. The algorithm works as follows:

1. Initiate the model without any constraints of type (5.8)-(5.11).

2. For any given integer solution, take d as the index of the variable Ld whose value in
the solution is 1.

3. For every node in the branch-and-bound tree, let x̂k, t̂
+
i , f̂

−
i , t̂

−
j , f̂

+
j , L̂d be the vari-

ables values in the current linear relaxation.

4. For 1 ≤ D < K:

a) Constraints (5.8): For i ∈ N1 : |K1
i | > D

i. Consider a sorted list of classifiers by descending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first D + 1 classifiers in this
list. If

∑
k∈U x̂k > t̂+i +D

∑D
d=1 L̂d+(D+1)

∑K−1
d=D+1 L̂d, the corresponding

constraint is a candidate for being added to the model.

b) Constraints (5.9): For i ∈ N1 : |K1
i | > D

i. Consider a sorted list of classifiers by ascending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first |K1

i | −D classifiers in this
list. If

∑
k∈U x̂k < L̂D − f̂−

i , the corresponding constraint is a candidate
for being added to the model.

c) Constraints (5.10): For j ∈ N0 : |K1
j | > D

i. Consider a sorted list of classifiers by descending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first D+1 classifiers in this list.
If

∑
k∈U x̂k > f̂+

j + D
∑D

d=1 L̂d + (D + 1)
∑K−1

d=D+1 L̂d, the corresponding
constraint is a candidate for being added to the model.

d) Constraints (5.11): For j ∈ N0 : |K1
j | > D



5.2. Variable threshold reformulation 46

i. Consider a sorted list of classifiers by ascending values of x̂k (ties broken
arbitrarily). Let U be a set containing the first |K1

j | −D classifiers in this
list. If

∑
k∈U x̂k < L̂D − t̂−j , the corresponding constraint is a candidate

for being added to the model.

5. In the step above, multiple constraints may have been found to be violated. Add
one or more of these constraints to the model and re-solve the current node. If no
violated constraints are found, move on to the next node.

The procedure has an extra cost of cycling through all possible threshold values,
1 ≤ D ≤ K − 1. The separation algorithm is polynomial with complexity O(NK2).

With regards to the implementation, a decision that is not yet clear is what is
the best strategy for adding violating constraints. It is possible, for instance, to add all
violated constraints found, which can perhaps lower the linear relaxation bound quicker
but may make solving the linear relaxation slower. On the other hand, it is possible to add
only the most violated constraint of each type, which adds less overhead to solving the
linear relaxation but may be slower in reducing the optimality gap. Further experiments
are necessary to determine the best option.

5.2.2 Further constraints

A few extra constraints can be added to possibly reinforce the cutting planes
formulation with a variable threshold. We present them below.

For i ∈ N1, if |K1
i | ≤ d and Ld = 1 we must have that f−

i = 1. In other words, if
we use a threshold d that is larger than the number of classifiers that correctly classify i,
then i must be a false negative. This can be represented with the following constraints:

Ld ≤ f−
i ∀i ∈ N1, d = |K1

i |, . . . , K − 1 (5.12)

Equivalently, for j ∈ N0, if d is larger than the number of classifiers that wrongly classify
j as positive, then j must be a true negative:

Ld ≤ f+
j ∀j ∈ N0, d = |K1

j |, . . . , K − 1 (5.13)

Both these sets of constraints may help in reducing the number of Constraints (5.8)-(5.11)
that need to be added to the model.



5.3. Summary 47

Suppose also that the number of selected classifiers is K ′ < K. If Ld = 1 for any
K ′ ≤ d ≤ K − 1, then all data points are classified as negative. All these possible feasible
solutions are identical, with the same objective value. We can discard all but one of them
to reduce the solution space with the following constraints:

Le ≤ Ld +
K∑
k=1

xk − d+ d
d−1∑
c=1

Lc d = 1, . . . , K − 2, e = d+ 1, . . . , K − 1 (5.14)

The constraints above work as follows. If
∑K

k=1 xk > d, then Constraints (5.14) are always
satisfied. If

∑K
k=1 xk = d, then Le ≤ Ld for any e > d, effectively eliminating multiple

identical solutions as
∑K−1

d=1 Ld = 1. If
∑K

k=1 xk < d, then there must be Lc = 1 for c < d

as the corresponding Constraints (5.14) for c = d ensure that Ld = 0 for any d > c.
In this case the term d

∑d−1
c=1 Lc ensures that the right-hand side is not negative and the

constraint is not violated.

5.3 Summary

We have presented two cutting-planes reformulations. The first is to optimise (3.1)
subject to (3.4), (3.7), (3.8) and (5.1)-(5.6). This reformulation assumes a fixed threshold
D. Since the possible values for the threshold are finite, this formulation must be solved
for each value 1 ≤ D < K. If all subproblems are solved than the optimal solution is the
best among them.

The second formulation is a modification of the first in which the threshold is once
again variable. Its goal is to optimise (3.1) subject to (3.4), (3.7), (3.8) and (5.5)-(5.11).
We will also test whether the inclusion of (5.12)-(5.14) helps in speeding up the solution
process.

5.4 Considerations

While we do not present computational results for the reformulations in this the-
sis, we have some considerations regarding their implementation and some steps we are
currently undertaking.



5.5. A new diversity model based in lazy constraints 48

One of the most important aspects in implementing these formulations is to decide
on the policy of adding violated constraints to the model. In the second reformulation, we
have the potential to find NK violated constraints in a single execution of the separation
algorithm. Generally adding many cuts in multiple iterations can considerably slow down
the linear relaxation solution procedure. Moreover, there is a possibility of several cuts
being added which will not be tight in the optimal solution.

For instance, if in the optimal solution Ld = 1 for some d, then all Constraints
(5.8)-(5.11) with Le, e ̸= d, are unnecessary. Thus finding the best balance in adding the
most promising violated constraints is a challenge in this research.

Also, giving higher priority in branching to the Ld binary variables may help the
solver into focusing on the most promising candidates for threshold earlier on, while help-
ing reduce the number of unnecessary violated constraints added to the model. Whether
that will hold remains an open question.

Another important aspect is to prove mathematically whether the second reformu-
lation presented here is “stronger” than the first. By stronger we mean that after solving
the first linear relaxation without any fixed variables, we consistently find stronger upper
bounds. We will attempt, in our work, to prove this mathematically in case it is true, but
we have not yet done so.

Initially however we can get an idea of whether the reformulation is stronger or not
by running a set of experiments in which we solve both linear relaxations and compare to
see which, if any, is consistently stronger.

We mention mostly the second reformulation since, as previously stated, we need
to solve the first reformulation multiple times to obtain the global optimum. In this
case it is not straightforward how we should compare it to the original formulation. If
the global optimum is achieved than we can compare required computational times, but
other important metrics such as global optimality gap or the bound provided by the
linear relaxation cannot be easily calculated. We thus intend to dedicate more effort to
the second reformulation, which is directly comparable. Nevertheless we opted to keep
both in this text as the first reformulation acts as a “bridge” to the more mathematically
complex second reformulation.

5.5 A new diversity model based in lazy constraints

We introduced in Section 3.2 a set of constraints in order to control diversity in
our initial model. We considered the Pairwise Failure Crediting (PFC) as our diversity
measure. Pairwise measures are those that are calculated based on a relation of a pair



5.5. A new diversity model based in lazy constraints 49

of classifiers. The PFC is calculated between the pair of the individual classifiers, and as
we calculated it statically before the optimisation and used its values as a parameter, we
were able to create a linear integer model that requires

(
K
2

)
extra variables and a similar

number of extra constraints that as showed in Section 4.2 causes a negligible decrease in
solution quality.

There are alternative ways to calculate diversity. For instance, instead of com-
puting a measure between each pair of classifiers, we can measure the relation between
the output of an individual classifier and the output of the current ensemble. Examples
of such diversity measures are complementariness [33], concurrency [3] and Uncertainty
Weighted Accuracy (UWA) [39].

Such diversity measures that uses the current ensemble output cannot be computed
statically as we do with the PFC measure. In this section we use a generic lazy constraints
approach which allows controlling such diversity measures. Here we describe our idea using
the formulation presented in Chapter 3. In our model, the output of the classifiers are
in the A and B matrices, of N0 × K and N1 × K dimensions. The ensemble output is
accessed by the variables t+i , f

−
i , vectors of size N1, and t−j , f

+
j of size N0. For this reason,

to create any diverse constraints that considers the entire ensemble, we would need to
use the values of the integer variables t+i , f

−
i , t−j , f

+
j in relation with K classifiers. So

we would need at least 2K(N0N1) new constraints, a number that should be increased
depending on the diverse measure. Depending on the size of the dataset, adding those
number of constraints that are dependent of integer variables may really complicate the
model and decrease its solution quality.

For this reason, we think that the use of lazy constraints may contribute to avoid
this problem. In our idea, when a given integer solution is found, we verify if this solution
is undesirable from the point of view of diversity. If it is, we can take some decision based
on it. For instance, we can use a constraint that will not allow this specific ensemble U

to be chosen as our final ensemble. We can do it using the Constraint 5.15.

∑
k∈U

xk +
∑

k∈K\U

(1− xk) ≤ K − 1 (5.15)

Observe that the Constraint (5.15) will only prohibit the current ensemble U to
be a possible solution. The inclusion or exclusion of any classifier is allowed.

The method introduced above is interesting because it is independent of diversity
measure. As the computation of the diversity measure is done via lazy-constraints, we do
not need to create constraints to compute this measure. This way we can easily adapt it
to any suitable measure we find. We intend to implement this methodology as a future
work and test it with alternative diversity metrics.



50

Chapter 6

Conclusions and future directions

In this thesis we proposed an IP approach for the problem of selecting a subset of classifiers
in ensemble learning. The objective is to maximise a weighted function of the patterns
in the confusion matrix. In order to combine performance and diversity criteria, we also
proposed linear constraints to enforce minimum diversity levels. We observed that state-
of-the-art solvers can find good solutions in reasonable computational times for the chosen
publicly available datasets. The IP approach is, in our view, able to provide a flexible exact
algorithm (with regards to both the choice of performance metric and desired diversity
levels) which can also be used as a heuristic by enforcing a time limit to the solver. This
approach has also the additional advantage of providing bounds on optimal values.

We compared our formulation to three benchmarks: the full ensemble and two of
the most popular algorithms found in literature. We used a stratified 10-fold cross valida-
tion procedure and evaluated the effect of enforcing minimum diversity levels, varying the
weights assignments of the objective function and using majority voting as our classifica-
tion threshold. We observed slightly lower variability and improved overall performance
compared to the benchmarks algorithms when the formulation without minimum diversity
levels is applied. We were able to reduce that variability while also improving performance
by including diversity constraints in the formulation. In the case of adding majority vot-
ing constraints, we improved our results both with and without diversity constraints, but
increasing variability.

We also tested the use of weights in our formulation, tackling the class imbalance
problem. We were able to improve the AUC results with the θ-weighted formulation in
comparison with our formulation without weights, also beating the benchmarks. Using a
balanced accuracy as our metric, the benefits of the weights were even more highlighted.

When it comes to the problem of overfitting, we verified that our formulation
really has a higher deterioration in the out-of-sample results compared to the in-sample
ones. This is expected as our formulation finds optimal in-sample solutions while most
algorithms in literature are suboptimal in nature. However, even with this problem, our
formulation was still able the get better overall performance.

In our view, those results suggest that our approach is competitive and its flexibility
can be beneficial when adapting to datasets with different characteristics.



51

As future work we intend to experiment with different criteria and larger datasets,
as well as implementing other methods in literature for a more thorough out-of-sample
performance comparison. We also intend to explore our cutting planes reformulation in
order to improve general computational times, as outlined in Section 5.4. While for the
instances tested we considered that the computational performance was satisfactory, we
believe it will deteriorate when we include larger datasets. We intend also to research other
IP techniques and formulation-based heuristics for both finding good solutions quickly and
solving the formulation to optimality faster. Other lines of research include the study of
alternative diversity based models (e.g. the model outlined in Section 5.5) and presenting
an alternative formulation for the problem of maximising AUC.



52

Bibliography

[1] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The
traveling salesman problem: a computational study. Princeton university press, 2006.

[2] Bart Bakker and Tom Heskes. Clustering ensembles of neural network models. Neural
Networks, 16(2):261–269, 2003.

[3] Robert E. Banfield, Lawrence O. Hall, Kevin W. Bowyer, and W.Philip Kegelmeyer.
Ensemble diversity measures and their application to thinning. Information Fusion,
6(1):49–62, 3 2005.

[4] Saman Bashbaghi, Eric Granger, Robert Sabourin, and Guillaume Alexandre
Bilodeau. Robust watch-list screening using dynamic ensembles of SVMs based on
multiple face representations. Machine Vision and Applications, 28(1-2):219–241,
2017.

[5] Urvesh Bhowan, Mark Johnston, Mengjie Zhang, and Xin Yao. Evolving diverse
ensembles using genetic programming for classification with unbalanced data. IEEE
Transactions on Evolutionary Computation, 17(3):368–386, 2012.

[6] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[7] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[8] A. S. Britto, R. Sabourin, and L. E.S. Oliveira. Dynamic selection of classifiers - a
comprehensive review. Pattern Recognition, 47(11):3665–3680, 2014.

[9] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble
selection from libraries of models. In Proceedings of the twenty-first international
conference on Machine learning, page 18. ACM, 2004.

[10] A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary algo-
rithms. Journal of Mathematical Modelling and Algorithms, 5(1):417–445, 2006.

[11] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794. ACM, 2016.

[12] J. Cohen. A coefficient of agreement for nominal scales. Educational and psychological
measurement, 20(1):37–46, 1960.



Bibliography 53

[13] CPLEX Optimizer. IBM. Available from https://www.cplex.com, last accessed
November 15th, 2019.

[14] R. M. O. Cruz, R. Sabourin, and G. D. C. Cavalcanti. Dynamic classifier selection:
Recent advances and perspectives. Information Fusion, 41(May):195–216, 2018.

[15] Q. Dai and X. Han. An efficient ordering-based ensemble pruning algorithm via
dynamic programming. Applied Intelligence, 44(4):816–830, 2016.

[16] J. Davis and M. Goadrich. The relationship between Precision-Recall and ROC
curves. In Proceedings of the 23rd International Conference on Machine learning,
pages 233–240, 2006.

[17] R. P. W. Duin. The combining classifier: to train or not to train? Object recognition
supported by user interaction for service robots, 2(c):765–770, 2002.

[18] Wei Fan, Fang Chu, Haixun Wang, and Philip S. Yu. Pruning and dynamic scheduling
of cost-sensitive ensembles. In AAAI/IAAI, pages 146–151, 2002.

[19] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

[20] Everlandio RQ Fernandes, André CPLF de Carvalho, and André LV Coelho. An evo-
lutionary sampling approach for classification with imbalanced data. In IJCNN’15.
International Joint Conference on Neural Networks., pages 1–7. IEEE, 2015.

[21] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–
139, 1997.

[22] J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the
American statistical Association, 76(376):817–823, 1981.

[23] G. Giacinto, F. Roli, and G. Fumera. Design of effective multiple classifier systems
by clustering of classifiers. In Proceedings 15th International Conference on Pattern
Recognition. ICPR-2000, volume 2, pages 160–163. IEEE, 2000.

[24] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forest. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[25] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972.

[26] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE
transactions on pattern analysis and machine intelligence, 20(3):226–239, 1998.



Bibliography 54

[27] Aleksandar Lazarevic and Zoran Obradovic. Effective pruning of neural network clas-
sifier ensembles. In IJCNN’01. International Joint Conference on Neural Networks.,
volume 2, pages 796–801. IEEE, 2001.

[28] M. Lichman. UCI Machine Learning Repository. Available from
http://archive.ics.uci.edu/ml, last accessed November 15, 2019, 2019.

[29] Z. Lu, X. Wu, X. Zhu, and J. Bongard. Ensemble pruning via individual contribution
ordering. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 871–880. ACM, 2010.

[30] D. D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In Proceedings
of the 14th International Conference of Machine Learning, volume 97, pages 211–218.
Citeseer, 1997.

[31] G. Martínez-Muñoz and A. Suárez. Pruning in ordered bagging ensembles. In Pro-
ceedings of the 23rd International Conference on Machine Learning, pages 609–616.
ACM, 2006.

[32] G. Martínez-Muñoz and A. Suárez. Using boosting to prune bagging ensembles.
Pattern Recognition Letters, 28(1):156–165, 2007.

[33] Gonzalo Martınez-Muñoz and Alberto Suárez. Aggregation ordering in bagging. In
Proc. of the IASTED International Conference on Artificial Intelligence and Appli-
cations, pages 258–263. Citeseer, 2004.

[34] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman
problem by branch-and-cut. Operations Research Letters, 6(1):1–7, 1987.

[35] M. W. Padberg and L. A. Wolsey. Trees and cuts. North-Holland Mathematics
Studies, 75(1):511–517, 1983.

[36] Ioannis Partalas, Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. En-
semble pruning using reinforcement learning. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Berlin, Germany, 2006. Springer.

[37] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Focused ensemble
selection: A diversity-based method for greedy ensemble selection. Frontiers in Ar-
tificial Intelligence and Applications, 178:117–121, 2008.

[38] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Pruning an ensemble
of classifiers via reinforcement learning. Neurocomputing, 2009.



Bibliography 55

[39] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. An ensemble uncer-
tainty aware measure for directed hill climbing ensemble pruning. Machine Learning,
81(3):257–282, 2010.

[40] Fu Qiang, Hu Shang-Xu, and Zhao Sheng-Ying. Clustering-based selective neural
network ensemble. Journal of Zhejiang University-Science A, 6(5):387–392, 2005.

[41] Marina Skurichina and Robert P W Duin. Bagging, boosting and the random sub-
space method for linear classifiers. Pattern Analysis and Applications, 5(2):121–135,
2002.

[42] E Ke Tang, Ponnuthurai N Suganthan, and Xin Yao. An analysis of diversity mea-
sures. Machine learning, 65(1):247–271, 2006.

[43] G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective voting of heterogeneous classi-
fiers. In European Conference on Machine Learning, pages 465–476. Springer, 2004.

[44] G. Tsoumakas, I. Partalas, and I. Vlahavas. An ensemble pruning primer. In Ap-
plications of supervised and unsupervised ensemble methods, pages 1–13. Springer,
2009.

[45] Grigorios Tsoumakas, Lefteris Angelis, and Ioann Vlahavas. Selective fusion of het-
erogeneous classifiers. Intelligent Data Analysis, 2005.

[46] L. Xu, B. Li, and E. Chen. Ensemble pruning via constrained eigen-optimization.
In 2012 IEEE 12th International Conference on Data Mining, pages 715–724. IEEE,
2012.

[47] Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-definite program-
ming. Journal of Machine Learning Research, 7(Jul):1315–1338, 2006.

[48] Zhi-Hua Zhou and Wei Tang. Selective ensemble of decision trees. In International
Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing,
pages 476–483. Springer, 2003.

[49] X. Zhu, X. Wu, and Y. Yang. Dynamic classifier selection for effective mining from
noisy data streams. In 4th IEEE International Conference on Data Mining, pages
305–312. IEEE, 2004.



56

Appendix A

Description of the classifiers

As mentioned in Chapter 4, we prepared 10 different heterogeneous classifier models, but
used up to K = 100 different classifiers for creating ensembles. Each model of the 10
models was initiated 10 times with different random seeds and parameters. It is worth
reminding that, as mentioned in the paper, we used subsets of the full set of classifiers,
varying their sizes in K = {10, 20, 30, 40, 60, 80, 100}. We set K as multiples of 10 in
order to have an equal number of instantiations of each classifier.

For each classifier model, their initialisation differs in two ways: parameter settings
and random seeds required by the algorithms. The 10 classifier models are shown below.
We include the following information: Model Package, Package Class (sklearn package
models), GitHub, documentation, version, parameters varied and normalisation (when
applicable).

1. XGBoost

• Package: xgboost

• GitHub: https://github.com/dmlc/xgboost

• Documentation: https://xgboost.readthedocs.io/en/latest/

• Used version: 0.80

• Used parameters: objective, booster, num_boost_round, eta, max_depth,
subsample, colsample_bytree, colsample_bylevel, colsample_bynode, gamma,
min_child_weight

2. LightGBM

• Package: lightgbm

• GitHub: https://github.com/microsoft/LightGBM

• Documentation: https://lightgbm.readthedocs.io/en/latest/

• Used version: 2.2.0

• Used parameters: objective, boosting_type, num_boost_round, learning_rate,
max_depth, num_leaves, feature_fraction, bagging_fraction, bagging_freq,
min_data_in_leaf, max_cat_to_onehot, lambda_l1, lambda_l2

https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/latest/
https://github.com/microsoft/LightGBM
https://lightgbm.readthedocs.io/en/latest/


57

3. Catboost

• Package: catboost

• GitHub: https://github.com/catboost/catboost

• Documentation: https://catboost.ai/docs/

• Used version: 0.11.1

• Used parameters: iterations, cat_features, learning_rate, l2_leaf_reg, one_hot_max_size,
bootstrap_type, Bayesian, subsample, depth, rsm

4. Adaboost

• Package: scikit-learn

• Class: sklearn.ensemble.AdaBoostClassifier

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.AdaBoostClassifier.html

• Used version: 0.19.2

• Used parameters: base_estimator, n_estimators, learning_rate

5. Gradient Boosting

• Package: scikit-learn

• Class: sklearn.ensemble.GradientBoostingClassifier

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.GradientBoostingClassifier.html

• Used version: 0.19.2

• Used parameters: n_estimators, learning_rate, max_depth, criterion, sub-
sample, max_features, min_samples_split, min_samples_leaf

6. Bagging

• Package: scikit-learn

• Class: sklearn.ensemble.BaggingClassifier

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.BaggingClassifier.html

https://github.com/catboost/catboost
https://catboost.ai/docs/
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html


58

• Used version: 0.19.2

• Used parameters: base_estimator, n_estimators, learning_rate, max_features,
max_samples

7. Random Forest

• Package: scikit-learn

• Class: sklearn.ensemble.RandomForestClassifier

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html

• Used version: 0.19.2

• Used parameters: n_estimators, criterion, max_features, max_depth, min_samples_split,
min_samples_leaf

8. Extra Trees

• Package: scikit-learn

• Class: sklearn.ensemble.ExtraTreesClassifier

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.ExtraTreesClassifier.html

• Used version: 0.19.2

• Used parameters: n_estimators, criterion, max_features, max_depth, min_samples_split,
min_samples_leaf

9. Logistic Regression

• Package: scikit-learn

• Class: sklearn.linear_model.LogisticRegression

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.LogisticRegression.html

• Used version: 0.19.2

• Used parameters: max_iter, solver, penalty, dual, fit_intercept, C, tol

10. Multilayer Perceptron

https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


59

• Package: scikit-learn

• Class: sklearn.neural_network.MLPClassifier.html

• GitHub: https://github.com/scikit-learn/scikit-learn

• Documentation: https://scikit-learn.org/stable/modules/generated/

sklearn.neural_network.MLPClassifier.html

• Used version: 0.19.2

• Used parameters: max_iter, hidden_layer_sizes, activation, solver, learn-
ing_rate, learning_rate_init, momentum

• Normalisation: sklearn.preprocessing.StandardScaler with default parameters -
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html

We used a stratified 10-Fold procedure to evaluate the proposed method, described
in Section 4.3. To generate different folds we varied the random seeds required shuffle the
datasets.

Random number generation is executed twice (classifier initialisation and dataset
shuffling). For the shuffling we used random seeds 10, 20, 30, . . . , 100. The seeds used in
the classifiers depended on the stratified 10-fold seed. For instance, if K = 100 and we
used seed 10, then the seeds for each of the 10 classifiers of each model were 10, 11, . . . 19.

https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

	1 Introduction
	1.1 Organisation

	2 Literature review
	2.1 Classifier generation
	2.2 Classifier selection
	2.3 Classifier combination

	3 An integer programming model for ensemble pruning
	3.1 Formulation
	3.2 Diversity

	4 Computational experiments
	4.1 Datasets
	4.2 Solving the formulation
	4.3 Out of sample
	4.4 Majority Voting Formulation
	4.5 Summary

	5 Ongoing research: cutting-planes reformulations
	5.1 Fixed threshold reformulation
	5.2 Variable threshold reformulation
	5.3 Summary
	5.4 Considerations
	5.5 A new diversity model based in lazy constraints

	6 Conclusions and future directions
	Bibliography
	A Description of the classifiers

