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Resumo

Um passo importante, porém muitas vezes negligenciado, durante a análise de dados de

séries temporais é a imputação de dados ausentes. Nessa dissertação, as características de

séries temporais e mecanismos de perda são descritos para ajudar na identificação de qual

método de imputação deve ser utilizado para imputar dados ausentes, juntamente com

uma revisão bibliográfica de métodos de imputação e seu funcionamento. Os métodos de

imputação recomendados pela literatura são utilizados para imputar dados sintéticos com

diferentes características e os resultados são discutidos. Dois novos métodos de imputação

de séries temporais são apresentados e comparados com métodos de imputação clássicos e

métodos do estado-da-arte. O primeiro método de imputação apresentado é o de Imputação

pelo Padrão. Esse método se baseia na premissa que utilizando-se o método de imputação

recomendado pela literatura para cada padrão de série temporal se obterá os melhores

resultados. Heurísticas de separação das séries temporais por padrão foram desenvolvidas. O

segundo método apresentado é o de Imputação por Decomposição. Esse método consiste em

decompor a série temporal e depois imputar cada um de seus componentes pelos métodos

recomendados pela literatura. As combinações desses métodos e o filtro de Kalman também

foram testados. Os métodos de imputação discutidos são utilizados para imputar dados de

índices financeiros e rastreadores de instabilidade, dados sobre a COVID-19 e dados sobre

a dengue. Predições são realizadas com os dados dos casos de estudo e os resultados são

apresentados. Os resultados obtidos pelo método de Imputação por Padrão combinado

com o filtro de Kalman são consistentemente satisfatórios, apesar de nem sempre obter

os melhores resultados. O método de Imputação por Decomposição também obteve bons

resultados, principalmente quando algum tempo foi gasto para investigar qual de suas

variações se adequou melhor a cada conjunto de dados. No geral, ambos os métodos

mostraram resultados similares e/ou melhores que os métodos de imputação clássicos.

Palavras-chave: Dados Ausentes, Séries Temporais, Métodos de Imputação, Padrão, De-

composição.



Abstract

Dealing with missingness in time series data is a very important, but oftentimes overlooked,

step in data analysis. In this dissertation, the pattern of time series data and missingness

mechanisms are described to help identify which imputation method should be used to

impute missing data, along with a review of imputation methods and how they work.

Recommended methods from literature are used to impute synthetic data of different

pattern and the results are discussed. In this dissertation, two new methods to impute

missing time steps are presented and compared to other classical imputation methods, as

well as state-of-the-art methods. The first imputation method presented is Imputation by

Pattern. This method is based on the premise that imputing the data using the literature-

recommended methods will achieve the best results. Heuristics are proposed to separate

the time series by pattern. The second imputation method presented is Imputation by

Decomposition. This method consists in decomposing the time series in its components

and then imputing them using the literature-recommended methods. The combination of

these methods and the Kalman filter are also tested. The discussed imputation methods

are used to impute a financial indexes and instability trackers data set, a COVID-19 data

set and a deng data set and then predictions are made and the results are presented. The

Imputation by Pattern method combined with the Kalman filter achieved consistently

satisfactory results, although it did not always achieve the best results. The Imputation

by Decomposition method achieved good results, specially when some time was spent

investigating which variation worked better with each data set. Overall, both imputation

method achieved similar, and in some cases, better results than the classical imputation

methods.

Keywords: Missing Data, Time Series, Imputation Methods, Pattern, Decomposition.
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Chapter 1

Introduction

This chapter gives the introduction to this work and in the next sections the

motivation, objective, and contributions of the work are presented. Finally, the structure

of the dissertation is described.

1.1 Motivation

With the advent of the Internet and of the use of more and more sensors on tools,

machines, and vehicles, the amount of data produced in the world has reached significant

numbers. According to a study conducted in [DOMO, 2017], in 2017 the Internet alone

produced 2.5 millions of bytes per day. Along with the increase in the quantity of data

generated, the number of applications that utilize them has also grown. Machine learning

models have become a part of daily life for both people and the industry, allowing the

automation of numerous tasks as well as process optimization. The more verisimilar the

data, the more representative is the machine learning model and the better it performs.

However, missing data is a common problem in data acquisition. Given that data can

rarely be perfectly collected and many problems such as sensor and transmission failure,

human error, and even differences in the rate of the collection might occur, learning to

impute data is an important step in data analysis [Hang et al., 2011]. In cases in which it

is necessary to join sequential data from different sources, the obtained data set frequently

becomes full of missing data [Kim and Chi, 2018].

When missingness occurs in time series data, the problem can comprehend univari-

ate or multivariate time series, different missingness mechanisms, and different time series

pattern, such as trended, seasonal, white noise and combination trended and seasonal

data. A good understanding of these factors can be helpful when choosing the appropriate

imputation method. Choosing methods that take into account the temporal information

intrinsic of time series data is also important [Luo et al., 2018].

Much research has already been done on the subject of time series imputation,
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treating specific data sets and comparing the effectiveness of imputation methods. Impu-

tation methods, using information intrinsic to the data set, impute the missing values.

Research using traffic data has been reported [Wu et al., 2019] to mitigate the challenges

that Intelligent Transportation Systems encounter due to missingness that affects the

ability to predict traffic. Another study used meteorological data to evaluate different

(conventional and modern) imputation methods in time series [Yozgatligil et al., 2013].

A study [Wijesekara and Liyanage, 2020] tackling data imputation in air quality data

was conducted testing different imputation methods to mitigate bias and inefficiency in

modeling. More recent works [Saad et al., 2020b] [Saad et al., 2020a] focus on comparing

deep learning and/or machine learning imputation methods in time series.

1.2 Objective

The goal of this work is to study and evaluate solutions for the missing data

problem in time series. As such, this work presents a literature review of the proper

imputation methods to impute missing data in time series, which is the result of the

study and research done regarding the imputation methods and their usage. As a result

of the study, two new imputation methods (Imputation by Pattern and Imputation by

Decomposition) are proposed, using the knowledge acquired during research. To evaluate

the researched imputation methods, their impact is assessed on the results of three case

studies.

1.3 Contributions

This dissertation presents two new imputation methods. The first one is called

Imputation by Decomposition. It consists of decomposing the time series and imputing

its parts using the appropriate imputation method according to the literature, then

reassembles the time series. The second method presented is called Imputation by Pattern.

It consists of separating each time series by its pattern (seasonal, trended, white noise or,

combination of seasonal and trended) and then imputing each group using the method

recommended in the literature. A variant of both methods using the Kalman filter [Bishop

and Welch, 2001] after the imputation is also tested.

In a very instructive and procedural way, this dissertation presents the recom-

mended steps to be taken when treating missingness in time series data, alongside notebooks

to illustrate these steps1 and help apply them to other problems involving time series. The

usage of the library2 created containing the new imputation methods is also illustrated by

notebooks and the library itself is available.

1 https://github.com/silvanaribeiro/dissertacao
2 https://github.com/silvanaribeiro/imputationLibrary
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The imputation methods were applied to real problems involving time series

and compared to other imputation methods from literature. It was verified if the newly

proposed imputation methods have good performance when applied to three real-world

problems, having distinct characteristics and levels of difficulty. The results achieved by the

Imputation by Pattern combined with the Kalman filter method perform well, obtaining

accurate results for all data sets, and, although not always achieving the best result, it

works fairly well for all of them. Both of the proposed methods proved to be effective for

the tested data sets, showing similar performances to the classical imputation methods; it

is also noted that the Imputation by Decomposition should be tested with its possible

combinations to determine which one works better for each particular data set.

1.4 Structure

This chapter presented the motivation behind the study conducted and its ob-

jective. The remainder of this document is organized as follows: Chapter 2 presents the

theoretical background: the missing data problem formulation, information regarding

the pattern of time series and loss mechanisms. Chapter 3 presents the literature review:

general purpose, classical and state-of-the-art imputation methods are presented. Chapter 4

presents the methodology and results of the experiment conducted with synthetic data.

Chapter 5 presents in detail the two new imputation methods. In Chapter 6 the data

used in the case studies and the case studies themselves are explained. In section 7, the

experimental methodology used to compare the selected methods for the case studies is

presented, alongside details of implementation. Section 8 brings the the results found and

Section 9 presents the conclusions.
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Chapter 2

Theoretical Background

In the following sections the missing data problem formulation is presented, along

with concepts regarding time series pattern and missingness mechanisms.

2.1 Problem Formulation

Let X be a data set of dimensions n rows (samples) × d columns (features) and

M be the mask matrix, with the same dimensions n×d, that only takes values in {0, 1}d×n.

The mask matrix represents which values are missing from the X matrix by placing the

value 1 at the position of the missing values. Each value of the imputed matrix X̃ for all i

and j can be defined as follows:

X̃i,j =







Xi,j, if Mi,j = 0

∗, if Mi,j = 1.
(2.1)

The goal is to create a new data set X̃ in which all positions marked as one on the

mask M are imputed by some imputation method and the values from all other positions

come from the corresponding position in X.

Hereafter, a row of a data set will be referred to as a sample and a column of a

data set will be referred to as a feature. In addition, data that cannot be directly measured

[Curado et al., 2014] will be referred to as unobserved data, whereas data that can be

directly measured will be referred to as observed data. As an example, when dealing with

hospital patients, observed data would be the patient’s temperature, weight, and height,

whereas unobserved data would be pain level, health, and well-being.
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2.2 Data Pattern

When dealing with missing data in time series it is important to identify the

missingness mechanism of the data to choose the most appropriate method for imputation

[Kim and Chi, 2018]. Further, it might be helpful to identify the characteristics of the series.

The following concepts regarding the characteristics of time series data were extracted

mainly from the book “Forecasting: principles and practice” [?].

A time series might be trended, meaning it presents a long decrease or increase

with time, linear or not, and it can even change from increasing to decreasing. An example

of trended data is presented in Figure 1.

A time series might be seasonal, meaning it is affected by seasonal factors of a

fixed and known frequency. Seasonal data should not be confused with cyclic data, which

is defined by data that rises and falls in intervals of unfixed length. An example of seasonal

data is presented in Figure 2.

A white noise time series has none, or close to none autocorrelation [?]. An example

of white noise data is presented in Figure 3.

A time series might also be a combination of seasonal and trended data. An

example of seasonal and trended data is presented in Figure 4.

Figure 1 – Time series with trend and without seasonality

Figure 2 – Time series without trend and with seasonality
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Figure 3 – White Noise

Figure 4 – Time series with trend and with seasonality

An intuitive and visual way to identify trend and seasonality in time series is to

calculate and plot its autocorrelation function, which measures the linear relationship

between lagged values of a time series.

The autocorrelation plot for a trended time series slowly decreases as the lag

increases, as can be seen in Figure 5, which is the autocorrelation function of the time

series shown in Figure 1.

The autocorrelation plot for a seasonal time series presents larger values for the

multiples of the seasonal frequency, as can be seen in Figure 6, which is the autocorrelation

function of the time series shown in Figure 2.

The autocorrelation plot for a seasonal and trended time series presents a combina-

tion of the aforementioned effects, as can be seen in Figure 7, which is the autocorrelation

function of the time series shown in Figure 4.

The autocorrelation plot for a white noise time series is expected to have 95% of

the spikes to lie within an interval of ±1.96/
√
T , where T is the length of the time series,

as can be seen in Figure 8, which is the autocorrelation function of the time series shown

in Figure 3.

Besides visual analysis, statistical tests usually applied to verify the characteristics

of the time series are:

• Cox-Stuart Test: Recommended to verify the existence of increasing or decreasing

trend in time series data, this test is based on the hypothesis that there will not exist
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any trend if the probability of one sample being smaller than its successor is the

same as the probability of this same sample being greater than its successor for the

majority of the samples in the data. Otherwise, the data is trended [Amaral, 2014].

• Autocorrelation Testing of a certain order: Recommended to verify the existence of

seasonality in time series data, this test verifies if there is a correlation between the

signal and itself for a certain order. For example, if there exists yearly seasonality in

a series, the correlation of order twelve will be meaningful [?].

• Autocorrelation Testing: Recommended to verify if a time series is white noise, this

test verifies if there is a correlation between the signal and itself only at time zero.

In other words, for a signal to be white noise, the autocorrelation of the signal must

be different from zero only for order zero [Aguirre, 2004].

Figure 5 – Autocorrelation of time series with trend and without seasonality

Figure 6 – Autocorrelation of time series without trend and with seasonality

Figure 7 – Autocorrelation of time series with trend and with seasonality
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Figure 8 – Autocorrelation of white noise

2.3 Missingness Mechanisms

Concerning the missingness mechanisms, the data may suffer from a structural

deficiency or the loss may occur randomly.

The structural deficiency can be defined as a component of a feature that was

omitted from the data [Kuhn and Johnson, 2019]. As an example, in a data set about real

state, the lack of information about the number of cars that fit in the garage might mean

that, in fact, the building does not have a garage.

In case the loss is random, there are three categories of missingness mechanisms

[Kuhn and Johnson, 2019]:

• MCAR - Missing Completely At Random: The probability of the data being lost

is the same for all data. This probability depends neither on the observed nor the

non-observed data. This means that there is no logic behind the loss. The data is

lost by a random process, e.g, as a result of a sensor failure.

• MAR - Missing At Random: The probability of the data being lost is not the same for

all data. This probability depends on the observed data, but not on the non-observed.

That means that the absence of the data can be predicted by the observed data.

For example, consider a data set about income and education level, people with low

education level tend to not inform their incomes. That implies that the absence of

the data about income can be predicted by the information about the education

level.

• NMAR - Not Missing At Random: The missing data is related to the non-observed

data. In other words, the missingness is related to factors not taken into account,

for instance, in a data set about income, both the lower and higher incomes are not

disclosed by the respondents. It is not possible to define which of the extremities the

missing data belongs to nor predict if the data will be informed or not.
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Chapter 3

Literature Review

Applications that simply delete the samples or features that have missing values

or straightforwardly ignore the missingness, can produce biased results and incorrect

conclusions about the studies being conducted [Wijesekara and Liyanage, 2020].

The deletion of features and samples might be a viable option if the missingness

mechanism is MCAR and the loss rate is low [Kim and Chi, 2018]. If this approach cannot

be used, it is recommended that the data be imputed.

Performing analyses ignoring the missingness of the data is a risky approach,

especially if the loss rate is not low, and if the missingness mechanism is not MCAR

[Pratama et al., 2016]. In certain cases, it is not even an option to do so, depending on

the application and algorithms being used on the analysis.

Figure 9 brings a flowchart pointing out the more appropriate imputation methods

depending on the characteristics of the data and missingness mechanisms associated.

3.1 General Purpose Imputation Methods

Some classical imputation methods work for both time series and other types of

data. Some examples are mean imputation, median imputation, mode imputation, and

random sample imputation [Pratama et al., 2016].

In the next sections, general purpose, classical, and state-of-the-art imputation

methods are described.

3.1.1 Mean imputation, median imputation, and mode

imputation

These methods consist of computing the mean, median, and mode, respectively,

of the features where the loss occurs and imputing those computed values whenever the
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missingness occurs. The mean imputation method is recommended for normally distributed

data, whereas mode and mean imputation were invented to account for not normally

distributed data. To reduce the influence of outliers, the median imputation method is

recommended. These methods are appropriate when dealing with stationary time series,

e.g, white noise. Those methods decrease the variance of the data and therefore affect the

standard deviation, which can cause bias [Pratama et al., 2016].

3.1.2 Random Sample Imputation

This approach uses randomly selected values from the feature in question to do

the imputation. The value can be randomly selected from the whole set of possible values

or it can be selected randomly from a subset of it. This approach can be appropriate in

case the subset is carefully chosen and for series with seasonality and without trend. It

is important to mention two methods that are part of the random sample imputation

method: Hot Deck Imputation and Cold Deck Imputation [Kalton and Kish, 1984].

• Hot Deck Imputation: Finds samples that have similar values on the other features

as the sample with a missing value and, among the selected samples, chooses one

randomly to impute. This approach restricts the possible values to be imputed to

values that have already occurred on the data set and increases variability, resulting

in more accurate standard deviations [Andridge and Little, 2010].

• Cold Deck Imputation: This method is similar to Hot Deck Imputation, however,

instead of choosing randomly between similar samples within the same data set, it

replaces the missing values using a different data set [Duma et al., 2013].

3.2 Classical Imputation Methods for Time Series

Concerning well-known imputation methods specific for time series data, the

following methods should be mentioned:

3.2.1 Forward and Backward Filling

Forward Filling, also known as Last observation (or value) carried forward, imputes

the missing value with the last seen observation. Backward Filling, also known as Next

Observation (or Value) Carried Backward, imputes the missing value with the next seen

observation. These methods assume that adjacent data points are similar. However, this

is especially false if there is seasonality on the data [Molnar et al., 2008]. It is important

to notice that for problems using streaming data the backward filling method cannot be

used, since the next observation is not available immediately to impute the current missing

value.
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3.2.2 Multiple Imputation

This method imputes a missing value n-times (n > 1). They are imputed based

on the observed values for a given sample and the relations observed in the data for other

samples. The values represent a probability distribution to reproduce the uncertainty of the

value being imputed [Azur et al., 2011]. Since this method has a random element within

itself, these values should be similar, nonetheless different. The data sets with the imputed

values are then evaluated and the results are combined so that more realistic conclusions

and estimates can be obtained. This method works especially well for imputing survey

data, which in general have a MAR missingness mechanism [Little and Rubin, 2019]. If

made correctly, multiple imputation generates unbiased estimates of the parameters and

accurate standard deviations.

3.2.3 Linear Interpolation

This method assumes that an estimated point will be on the vector that connects

the nearest points on the right and left. In other words, it uses a linear function to

approximate the function that represents the data well and to compute the missing value

[Rantou, 2017]. Linear Interpolation also assumes that adjacent data points are similar

and, thus, have the same problems as Forward and Backward Filling.

3.2.4 Spline Interpolation

This method uses polynomial functions to approximate a function that represents

the data well and to calculate the missing value [Rantou, 2017]. It solves, to a certain

extent, the problem of assuming that adjacent data points are similar since it can represent

more abrupt variations of the data, although it depends on the polynomials chosen to

approximate the function.

3.2.5 Missing Indicators

This method imputes a default value chosen by the user of the method in every

occurrence of missing value and creates a new feature that indicates missingness with the

flag 1 on the position where it occurs and 0 where it does not. The results will be biased

if the missingness mechanism is not MCAR and if the original features themselves are

correlated [Groenwold et al., 2012].

3.2.6 Expectation Maximisation

This method is an iterative procedure that uses the other features to impute a

value and then checks if the imputed value is the most probable. In case it is not the most
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probable, re-computes a new value. This behavior is repeated until the most probable

value is found. Although it preserves the relation between features, it underestimates the

standard deviation [Dempster et al., 1977].

3.3 State-of-the-art imputation Methods for Time

Series

A few of the most recent methods that should be mentioned when dealing with

imputation in time series data are:

3.3.1 ST-2SMR

This method is composed of two steps to reconstruct missingness in space-temporal

data. The first step is a coarse-grained interpolation to eliminate the influence of continuous

missing data on the general result. Then, based on the result obtained in the first step,

a dynamic selection sliding window algorithm is used to identify the most relevant data

to make a fine-grained interpolation. Finally, the results are integrated using a neural

network model [Cheng and Lu, 2017].

3.3.2 TBM - Temporal Belief Memory

This method deals with missingness using recurrent neural networks [Kim and

Chi, 2018]. It is an imputation method that, unlike conventional neural networks, does not

ignore the real interval between consecutive samples, taking into account time continuity

and identifying the lack of data. It computes the belief of the last observed value in time

for each feature and imputes the data based on the individual belief both towards the

future and the past [Kim and Chi, 2018].

3.3.3 GAIN - Generative Adversarial Imputation Network

This method is an adaptation of Generative Adversarial Networks. It has a

generator that observes components of the real data and generates an imputed vector.

Then, a discriminator takes the imputed vector and tries to determine which values are real

and which ones were generated. The discriminator is given hints of the real distribution of

the data to ensure it forces the generator to improve the imputation. Once the generator

succeeds in deceiving the discriminator, the process is terminated [Yoon et al., 2018].
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3.3.4 Long Short-Term Memory - LSTM

Most of the concepts used hereafter to explain LSTM were extracted from [Siami-

Namini and Namin, 2018], [Greff et al., 2017], and [Abraham, 2005]. Long Short-Term

Memory is a type of Recurrent Neural Network that has the capability to remember values

from earlier stages with the purpose of improving the prediction of future values.

To better understand LSTM it is important to have some knowledge of Arti-

ficial Neural Networks and Recurrent Neural Networks. Artificial Neural Networks are

generalizations of mathematical models of biological nervous systems. Neurons are basic

processing elements of neural networks. They represent the effects of synapses by weighing

the connections that modulate the input signals. The nonlinear characteristic of the neuron

is represented by a transfer (or activation) function. The neuron impulse is therefore

computed as the weighted sum of the input signals transformed by the transfer function.

A learning algorithm is then used to adjust the weights, granting learning capability to

the neuron.

The neuron output signal O is given by (3.1)

O = f

(

n
∑

j=1

wjxj

)

(3.1)

where wj is the weight vector and f(.) is the activation function.

Neural Networks are formed by a combination of artificial neurons having non-

linear transfer functions. They might have different architectures but, the basic one consists

of three neuron layers: input, hidden, and output layers. Feed-forward networks have signal

flow from the input layer to the output layer, whereas Recurrent Neural Networks have

feedback connections. A Recurrent Neural Network uses sequential observations and learns

from the earlier stages to predict future values. The hidden layers store information

captured in the earlier stages, but they can only remember a few steps of the sequence. As

a result, RNNs are not suitable to predict longer sequences of data.

To solve the problem aforementioned, Long Short-Term Memory (LSTM) recurrent

networks were created. Using gates, LSTMs are able to choose if data in each cell will

be disposed of, filtered, or added for the next cell. The gates are based on the sigmoidal

neural network layer.

There are three types of gates controlling each cell, as shown in Figure 10: The

Forget gate, which outputs a number between 0 and 1, indicating if the data should be

completely forgotten or completely kept at the extremes, or how much of it should be

kept in-between. The Memory gate, that chooses which new data need to be stored in

the cell. A sigmoid layer (input door layer) chooses which new values will be modified.

A hyperbolic tangent layer produces a vector of new values that are candidates to being
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ōt = Woxt +Royt−1 + po � ct + bo (3.9)

ot = σ(ōt) (3.10)

yt = h(ct)� ot (3.11)

where σ is the logistic sigmoid activation function σ(x) = (1/1 + e−x). The pointwise

multiplication of two vectors is denoted by �.

Regarding the backpropagation through time, the deltas inside the LSTM block

are calculated as

δyt = ∆t +RT
z δzt+1 +RT

i δit+1 +RT
v δft+1 +RT

o δot+1 (3.12)

δot = δyt � h(ct)� σ′(ōt) (3.13)

δct = δyt � ot � h′(ct) + po � δot + pi � δit+1 + pf � δft+1 + δct+1 � δft+1 (3.14)

δft = δct � ct−1 � o′(f̄t) (3.15)

δit = δct � zt � o′(īt) (3.16)

δzt = δct � it � o′(z̄t) (3.17)

δxt = W T
z δzt +W T

i δit +W T
f δft +W T

o δot (3.18)

where ∆t is the vector of the deltas passed down from the layer above.

The gradients for the weights are calculated as follows, where ∗ can be any of

z, i, f, o and 〈·, ·〉 denotes the outer product of two vectors:

δW∗ =
T
∑

t=0

〈δ∗t, xt〉 (3.19)
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δpi =
T−1
∑

t=0

ct � δit+1 (3.20)

δR∗ =
T−1
∑

t=0

〈δ∗t+1, yt〉 (3.21)

δpf =
T−1
∑

t=0

ct � δft+1 (3.22)

δb∗ =
T
∑

t=0

δ∗t (3.23)

δpo =
T−1
∑

t=0

ct � δot. (3.24)

To use LSTM as an imputation method there are three possible courses of action:

• Remove samples that contain missing time steps. In other words, the rows that

contain missing values are deleted from the data set

• Mark the missing time steps and force the network to learn their meaning. The

missing values are imputed with a default value chosen by the user and then the

model is informed of the default value to learn from the missingness

• Mark the missing time steps and exclude them from calculations in the model. The

missing values are imputed with a default value chosen by the user and then the

model is informed that it should ignore those values when calculating the model.

Afterward, the model can be generated and the values predicted for the missing

time steps can be used to impute them.

3.3.5 Kalman Filter

The concepts used hereafter to explain the Kalman Filter were extracted from

[Bishop and Welch, 2001] and [Aguirre, 2004]. The Kalman filter provides an efficient

computational solution of the least-squares method. It supports the estimation of states

even when the pattern of the modeled system is unknown. It is an optimal recursive

estimator. The filter assumes that the system under study can be described by a linear

model. The discrete Kalman Filter tries to estimate the state x ∈ R
s of the linear stochastic

difference shown by:

xk+1 = Akxk +Buk + wk, (3.25)
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with a measurement y ∈ R
t shown by (3.26)

yk = Hkxk + vk, (3.26)

where wk represents the process noise and vk represents the measurement noise. They are

assumed to be mutually independent, white and with normal probability distributions as

shown by :

p(w) ∼ N(0, Q) (3.27)

p(v) ∼ N(0, R). (3.28)

The matrix As×s in (3.25) is the dynamic matrix relating the state of time steps

k and k + 1. The matrix Bs×l relates the control input u ∈ R
l to the state x. The matrix

H t×s in (3.26) relates the state to the measurement yk.

The Kalman filter predicts and then corrects the prediction once a measurement

is available. Thus, the Kalman filter has two groups of equations: time update (predictor)

equations;

x̂−

k+1 = Akx̂k +Buk, (3.29)

P̂−

k+1 = AkPkA
T
k +Qk, (3.30)

Kk = P̂−

k HT
k (HkP̂

−

k HT
k +Rk)

−1, (3.31)

and measurement update (corrector) equations;

Kk+1 = P−

k+1H
T
k+1(Hk+1P

−

k+1H
T
k+1 +Rk+1)

−1, (3.32)

x̂k+1 = x̂−

k+1 +K(zk+1 −Hk+1x̂
−

k+1), (3.33)

Pk+1 = (I −Kk+1Hk)P
−

k+1. (3.34)

The former group is responsible for propagating forward (in time) the a priori

statement, obtaining a prediction for the next step, whereas the latter is responsible for

the correction, incorporating the new measurement into the estimate to improve it.

Equation (3.32) computes the Kalman gain Kk, (3.33) updates the estimate with

measurement zk, and (3.34) updates the error covariance. Regarding the time update

equations, (3.29) projects the state ahead and (3.30) projects the error covariance ahead.

Initial estimates for x̂−

0 and P−

0 need to be provided.
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To use the Kalman filter as an imputation method the time update step is done

normally, but the measurement update step is skipped whenever there is a missing time

step. For those cases, the value predicted by the time update step is used to impute the

missing time step.
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Chapter 4

Experiment with Synthetic Data

To illustrate the effectiveness of some of the methods and verify the recommenda-

tions given by the literature, an experiment was conducted using univariate times series

such as the ones of Figures 1, 2, 3, and 4.

In the next sections, the methodology and results of the experiment using synthetic

data are presented.

4.1 Methodology

A flowchart representing the steps of the experiment is presented in Figure 11.

The first step of the experiment was to generate four synthetic univariate time

series of each pattern: one trended, one seasonal, one white-noise, and one trended and

seasonal time series.

The second step was the random removal of 20% of the samples of each one of the

four time series to emulated missingness, making the missingness mechanism MCAR. Then,

using the flowchart shown in Figure 9, one appropriate method was chosen for each type

of data. For the seasonal data, the Random Sample method was chosen. For the trended

data, the Forward Filling method was chosen. For the trended and seasonal data, the

Spline Interpolation method was chosen. For the white-noise data, the Mean Imputation

method was chosen. As the time series being imputed is univariated, the Random Sample

imputation method was implemented choosing a value randomly from a subset chosen

from the own time series. A window of size corresponding to 6% of the length of the time

series is used to choose the subset. This window is centered on the position of the missing

value, which means that the randomly selected value can come from samples preceding or

proceeding the missing value.

Each one of the time series was imputed using all four methods previously chosen,

accounting for the third step of the experiment. For reproducibility purposes, the library
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created with implementations of the imputation methods aforementioned is available1 and

it is called ImputationLibrary. The fourth step consisted of calculating the Root Mean

Square Error between the imputed data and the real data.

Considering that Spline Interpolation and Random Sample are stochastic methods,

they were run 30 times to compute the average RMSE.

The whole process of removing random samples and imputing them using the

chosen imputation methods (steps 2 through 4) was repeated 30 times to calculate the

average RMSE. That means that the stochastic methods were actually run 900 times.

For reproducibility purposes, the notebooks in which the experiment was conducted

are available2 and correspond to the notebooks starting with the prefix 00.

4.2 Results

The results obtained are shown in Table 1.

Data \ Method Forward Filling Random Sample Mean Imputation Spline Interpolation

Trend & Seasonal 3.675± 8.882e−163.675± 8.882e−163.675± 8.882e−16 23.616± 2.077 171.020± 8.527e−14 8.421± 1.776e−15

Seasonal 0.578± 0.00.578± 0.00.578± 0.0 20.943± 1.636 11.289± 3.553e−15 0.624± 2.220e−16

Trend 0.414± 1.110e−160.414± 1.110e−160.414± 1.110e−16 19.771± 1.497 9.717± 3.553e−15 0.432± 0.0
White Noise 0.481± 5.551e−17 0.403± 0.035 0.213± 0.00.213± 0.00.213± 0.0 0.542± 0.0

Table 1 – Average RMSE of the imputed data sets for each method

Observing Table 1 it can be seen that the best RMSE obtained for the time

series with trend and seasonality was achieved by the Forward filling method, followed

by the Spline Interpolation method, which is the one recommended by literature. For the

seasonal data, the best result was not achieved by the literature recommended random

sample method, it was also achieved by the forward filling method. However, this result

was followed closely by the result achieved by the Spline Interpolation method, which is

recommended for all cases. For the data with trend, the best result achieved was by the

forward filling method, which is the one recommended by the literature. Finally, for white

noise data, the best result achieved was by the mean imputation method, which is also

the one recommended by literature.

It is important to notice that, as expected, Spline interpolation did a fairly good

job for all types of time series. Even for white noise data, where it performed the worst, it

is still close to the other methods. This result is expected since the spline interpolation

method is recommended by the literature to be used with time series data of all pattern.

1 https://github.com/silvanaribeiro/imputationLibrary
2 https://github.com/silvanaribeiro/MissingDataInTimeSeries
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The results for the random sample imputation method show how difficult it is to

choose an appropriate subset from which to randomly select from.

Generally speaking, using the literature recommended methods is the best choice

to be made when deciding how to impute missing data. That being said, it is important

to note that this experiment was conducted using synthetic data. This makes the study

controlled and in the case where real data is used, the behaviour should be similar but can

vary due to several factors, such as rate of missingness, amplitude of the noise, and etc.
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Chapter 5

Novel Imputation Methods

This chapter presents in detail the two new imputation methods proposed by

this work. The section presenting the imputation by Time Series Pattern also includes

the results of the tests conducted to verify the assertiveness of the separation heuristics.

While the Imputation by decomposition tries to decompose each time series into its

three components (seasonal, trend and noise components), it may find trend and seasonal

components where there are none. As a consequence, this method cannot be used to

classify time series as being trended and/or seasonal. For that purpose, the Imputation by

Pattern method was created.

5.1 Imputation by Decomposition

Imputation by Decomposition is one of the two imputation methods proposed in

this work. The idea is that the time series is decomposed into the seasonal, trend, and

remainder (assumed to be white-noise) components, and each component is then imputed

by the literature recommended imputation methods. Seasonal additive or multiplicative

decomposition using moving averages is used to decompose each time series in its compo-

nents. The following concepts regarding decomposition were extracted mainly from the

book “Forecasting: Principles and Practice” [Hyndman and Athanasopoulos, 2018]. The

additive decomposition of a time series yt is given by:

yt = St + Tt +Rt, (5.1)

where yt is the data, St is the seasonal component, Tt is the trend-cycle component,

Rt is the remainder component, and t is the period. The multiplicative decomposition of a

time series ytis given by:

yt = St × Tt ×Rt, (5.2)
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where yt is the data, St is the seasonal component, Tt is the trend-cycle component,

Rt is the remainder component, and t is the period.

To understand the seasonal decomposition method, it is important to first under-

stand the moving average smoothing that is used to estimate the trend-cycle component

of the time series. A moving average of order m is:

T̂t =
1

m

d
∑

j=−d

yt+j (5.3)

where m = 2d+ 1, meaning the trend-cycle component at time t is obtained by averaging

values of the time series within d periods of t. The idea is that values that are close in

time are likely to be also close in value. The average eliminates some of the randomnesses

in the data. This is called m-MA (Moving average of order m). A moving average of a

moving average can be used to produce an even-order moving average symmetric and the

most common use of a centered moving average is for estimating the trend-cycle from

seasonal data. The combination of moving averages results in weighted moving averages,

represented by

T̂t =
1

m

d
∑

j=−d

ajyt+j, (5.4)

where d = (m− 1)/2 and the weights are [a−d, ..., ad].

Additive decomposition is done by computing the trend component by using

2 × m-MA if m is even or m-MA if m is odd, then calculating the detrended series

yt − T̂t. Afterward, the seasonal component for each season is calculated by averaging the

detrended values for that season. These seasonal component values are then adjusted to add

to zero and strung together. Finally, the remainder component is calculated by subtracting

the estimated seasonal and trend components from the time series. The multiplicative

decomposition follows the same steps as the additive decomposition, but the subtractions

are replaced by divisions. The python library statsmodels was used to implement the

mentioned decompositions. Before the decomposition, the missing values are imputed using

a very small valued placeholder (0.1× e−5). To determine which type of decomposition is

more suitable for the time-series data, firstly the multiplicative decomposition is attempted,

since in theory it can decompose more complex time-series. However, if there are numeric

problems, such as zero or negative values, and so on, the additive decomposition is done.

The decomposition using solely additive decomposition is also done separately to test its

performance.

Once the seasonal, trend, and remainder components are obtained, they are each

imputed with literature recommended methods for each of their natures. The seasonal

component is imputed using spline interpolation. The trend component is imputed by the
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forward-filling imputation method. The remainder component is assumed to be white noise,

and so it is imputed by its mean. The imputed components are then added or multiplied,

depending on the type of decomposition done, to form a new imputed time series.

5.2 Imputation by Time Series Pattern

The second imputation method proposed in this work is the imputation by Time

Series Pattern. It is more of a strategy than a method per se, and it works by firstly

determining if the time series is seasonal, trended, white-noise, or a combination of seasonal

and trended and then imputing it with the literature recommended method for its pattern.

To determine if the time series is close enough to white noise, firstly it is stan-

dardized by removing its mean and then scaling it to unit variance. Afterward, the

autocorrelation function of the standardized time series is calculated. The autocorrelation

plot for white noise time series is expected to have 95% of its spikes to lie within an interval

of ±1.96/
√
T , where T is the length of the time series [Hyndman and Athanasopoulos,

2018]. The values of the autocorrelation are then tested within the above-mentioned limit,

and in case 95% of them lie within the limit, the time series is considered to be close

enough to white noise. The pseudocode for the white noise pattern classification is shown

by Algorithm 1.

Algorithm 1 Pseudocode of the function isWhiteNoise(ts)

normalized← standardize(ts)
corr ← correlate(normalized, normalized)
upper_limit← 1.96√

length(ts)

lower_limit← −1.96√
length(ts)

COUNT ← 0
for i = 0 to i < length(corr) do

if corr[i] ≤ upper_limit or corr[i] ≥ lower_limit then
count = count+ 1

end if
end for
if count ≤ 0.05× length(ts)× 2 then

return Time series is white noise
else

return Time series is NOT white noise
end if

Granted that the time series is not white noise, it is checked to be seasonal. The

test starts by also standardizing the time series. Then, the autocorrelation is calculated

and a moving average with a window of size two is applied to it to avoid the occurrence of

small peaks. The peaks within the data are located using the function find_peaks from

python’s scipy library and the distance between them are checked to verify if all peaks lie
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within the same distance (with a tolerance of ±2 time steps. Then, if at least 95% of the

peaks lie within the same distance, the time series is considered to be seasonal. This test

is based on the fact that visually speaking, the autocorrelation plot for a seasonal time

series presents larger values for the multiples of the seasonal frequency [Hyndman and

Athanasopoulos, 2018]. The pseudocode for the seasonal test is shown by Algorithm 2.

Algorithm 2 Pseudocode of the function isSeasonal(ts)

if isWhiteNoise(ts) then
return Time series is NOT Seasonal

end if
normalized← standardize(ts)
corr ← correlate(normalized, normalized)
corr ← rollingWindowMean(corr, 2)
peaks← findPeaks(corr)
count← 0
if length(peaks) < 2 then

return Time series is NOT Seasonal
else if length(peaks) ≥ 6 then
comparison← peaks[5]− peaks[4]

else
comparison← peaks[2]− peaks[1]

end if
for i = 0 to i < length(peaks) do

if peaks[i+ 1]− peaks[i] > comparison+ 2
or peaks[i+ 1]− peaks[i] < comparison− 2 then
count = count+ 1

end if
if count > length(ts)× 0.05 then

return Time series is NOT Seasonal
else

return Time series is Seasonal
end if

end for

If the time series is neither white noise nor seasonal, it is tested to be trended.

This test starts by making a seasonal additive decomposition to the time series. The mean

of the trend component is then evaluated and if it is not close to zero (with some tolerance)

it is determined to be trended. The pseudocode for the trended pattern classification is

shown by Algorithm 3.

A time series that is both trend and seasonality will pass both the trend and

seasonal tests, but not the white noise one. The pseudocode for the trended and seasonal

pattern classification is shown by Algorithm 4.

The methods that classify the pattern of the time series are not exact, so the

possibility exists that a time series is not assigned to any pattern-based group. In this
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Algorithm 3 Pseudocode of the function isTrended(ts)

t, s, r ← seasonalMeanDecompose(ts)
if t.mean() > 0.19 then

return Time series is trended
else

return Time series is NOT trended
end if

Algorithm 4 Pseudocode of the function isTrendedAndSeasonal(ts)

if not isWhiteNoise(ts) and isTrended(ts)
and isSeasonal(ts) then

return Time series is trended and seasonal
else

return Time series is NOT trended and seasonal
end if

case, the mean of the distances between each non-assigned time series and each group time

series is calculated. Then, the smallest mean distance is determined and the non-assigned

time series is then assigned to the corresponding group. The pseudocode for the separation

method is shown by Algorithm 5. The variable df referenced by the algorithm is a data

frame in which each column is a time series and each row is a time step.

Once the time series is classified as trended, seasonal, white noise, or trended and

seasonal, it is then imputed by a literature recommended imputation method. Trended

time series are imputed using forward filling imputation, Seasonal time series are imputed

using spline interpolation imputation, white noise time series are imputed using mean

imputation, and seasonal and trended time series are imputed using spline interpolation.

As previously mentioned, the pattern classification methods are not exact, they

are heuristics. To test their effectiveness, 500 synthetic data time series of each pattern

were generated with random components, and random noise. Since the data generation

process is controlled, it was possible to compute the accuracy of the classifications when

running the Algorithms 1, 2, 3, and 4 over the data frame (DF) of 500 synthetic time series

for each Pattern (totaling 2000 time series). The pseudocode of the generation of synthetic

data is shown by Algorithm 6. The isWhiteNoise() method was tested by running it over

the 500 white-noised time series and computing if any of them was not classified as white

noise. After, the isWhiteNoise() method was run over the 500 Seasonal, 500 Trended and

500 Trended and Seasonal time series and it was registered if any of them were wrongly

missclassified as white noise. This procedure was repeated for all three other methods:

is Seasonal(), isTrended(), and isTrendedAndSeasonal(). More test were conducted with

higher noise amplitudes kw. One fact worth noting is that the seasonality in trended and

seasonal time series should be recognized and those time series should be classified as

seasonal by the isSeasonal() method. The same should occur for tredend and seasonal
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Algorithm 5 Pseudocode of the function separate(df)

count_white_noise← 0
count_t_and_s← 0
count_trended← 0
count_seasonal ← 0
count_n_a← 0
for i = 0 to i < length(df.columns) do

if isWhiteNoise(df[:,i]) then
df_white_noise[:, count_white_noise]← df [:, i]
count_white_noise← count_white_noise+ 1

else if isTrendedAndSeasonal(df[:,i]) then
df_t_and_s[:, count_t_and_s]← df [:, i]
count_t_and_s← count_t_and_s+ 1

else if isTrended(df[:,i]) then
df_trended[:, count_trended]← df [:, i]
count_trended← count_trended+ 1

else if isSeasonal(df[:,i]) then
df_seasonal[:, count_seasonal]← df [:, i]
count_seasonal ← count_seasonal + 1

else
df_n_a[: count_n_a]← df [:, i]
count_n_a← count_n_a+ 1

end if
end for
for i = 0 to i < length(df_n_a.columns) do
dist_w_n← meanDist(df_n_a[:, i], df_white_noise)
dist_s← meanDist(df_n_a[:, i], df_seasonal)
dist_t← meanDist(df_n_a[:, i], df_trended)
dist_t_s← meanDist(df_n_a[:, i], df_t_and_s)
min_dist← min(dist_w_n, dist_s, dist_t, dist_t_s)
if min_dist == dist_w_n then
df_white_noise[:, count_white_noise]← df_n_a[:, i]
count_white_noise← count_white_noise+ 1

else if min_dist == dist_t_and_s then
df_t_and_s[:, count_t_and_s]← df_n_a[:, i]
count_t_and_s← count_t_and_s+ 1

else if min_dist == dist_trended then
df_trended[:, count_trended]← df_n_a[:, i]
count_trended← count_trended+ 1

else if min_dist == dist_seas then
df_seasonal[:, count_seasonal]← df_n_a[:, i]
count_seasonal ← count_seasonal + 1

end if
end for
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time series and the isTrended() method.

For kw = 2, the white noise test got all 500 white noise time series correctly

and did not misclassify any other time series of different pattern as white noise. The

seasonality test recognized 97% of the seasonal time series as seasonal, recognized that

there was seasonality in all time series that were both trended and seasonal, and did

not misclassify any other time series of different pattern as seasonal. The trended test

recognized 100% of the trended time series as trended, recognized that there was some

trend in all time series that were both trended and seasonal, and misclassified only one

seasonal time series as trended. The trended and seasonal test got everything correctly.

The errors of miss-classification are shown in Table 2.

Method v. Error White Noise Seasonal Trended
Trended

and Seasonal
isWhiteNoise() 0% 0% 0% 0%
isSeasonal() 0% 3% 0% 0%
isTrended() 0% 0,2% 0% 0%
isTrendedAndSeasonal() 0% 0% 0% 0%

Table 2 – Separation Methods versus the error when classifying 500 time series of each
pattern with kw = 2

Other tests with bigger kw, meaning higher amplitude noise, were also done and

the results continued to be satisfactory. For kw = 5, the white noise test got all 500 white

noise time series correctly and misclassified 6% of seasonal time series as white noise. The

seasonality test recognized 88% of the seasonal time series as seasonal, also recognized

that there was seasonality in all time series that were both trended and seasonal, and

did not misclassify any other time series of different pattern as seasonal. The trended

test recognized 100% of the trended time series as trended, recognized that there was

some trend in all time series that were both trended and seasonal, and misclassified 6%

of seasonal time series as trended. The trended and seasonal test recognized 100% of the

trended and seasonal time series as trended and seasonal and misclassified 4% of seasonal

time series as trended and seasonal. The errors of miss-classification are shown in Table 3.

Method v. Error White Noise Seasonal Trended
Trended

and Seasonal
isWhiteNoise() 0% 6% 0% 0%
isSeasonal() 0% 12% 0% 0%
isTrended() 0% 6% 0% 0%
isTrendedAndSeasonal() 0% 0% 4% 0%

Table 3 – Separation Methods versus the error when classifying 500 time series of each
pattern with kw = 5
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For kw = 10, the white noise test got all 500 white noise time series correctly and

misclassified 12.4% of seasonal time series as white noise. The seasonality test recognized

77% of the seasonal time series as seasonal, also recognized that there was seasonality in

all time series that were both trended and seasonal, and misclassified 4.8% of trended

time series as seasonal. The trended test recognized 100% of the trended time series as

trended, recognized that there was some trend in all time series that were both trended

and seasonal, and misclassified 13.4% of seasonal time series as trended. The trended and

seasonal test recognized 100% of the trended and seasonal time series as trended and

seasonal and misclassified 10.6% of seasonal time series and 5% of trended time series as

trended and seasonal. The errors of miss-classification are shown in Table 4.

Method v. Error White Noise Seasonal Trended
Trended

and Seasonal
isWhiteNoise() 0% 12.4% 0% 0%
isSeasonal() 0% 23% 4.8% 0%
isTrended() 0% 13.4% 0% 0%
isTrendedAndSeasonal() 0% 10.6% 5% 0%

Table 4 – Separation Methods versus the error when classifying 500 time series of each
pattern with kw = 10

The library1 created with implementations of the two newly proposed methods

is available for use and consultation. The generation of the synthetic time series and

implementation of the tests conducted are also available at the repository.

1 https://github.com/silvanaribeiro/imputationLibrary
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Algorithm 6 Pseudocode of the generation of the synthetic data for testing

lower_bound← 1
upper_bound← 10
lower_bound2← 100
upper_bound2← 200
upper_bound_w_n← 2
for i = 0 to i ≤ 500 do
white_noise[i]← random.gauss(0.0, 1.0)

end for
for i = 0 to i ≤ 500 do
k_s← random.int(lower_bound, upper_bound)
k_w ← random.int(lower_bound, upper_bound_w_n)
p← random.int(lower_bound, upper_bound)
xlim = 100
x← [0, 0.1, 0.2, ..., 100]
y ← sin(p× x)× k_s
seasonal ← y + white_noise× k_w

end for
for i = 0 to i ≤ 500 do
k_t← random.int(lower_bound, upper_bound)
k_w ← random.int(lower_bound, upper_bound_w_n)
xlim = 100
x← [0, 0.1, 0.2, ..., 100]
trend← k_t× x+ white_noise× k_w

end for
for i = 0 to i ≤ 500 do
k_t← random.int(lower_bound, upper_bound)
k_w ← random.int(lower_bound, upper_bound_w_n)
xlim = 50
x← [0, 0.1, 0.2, ..., 50]
x2← flip(x)
x← append(x, x2)
trend← k_t× x+ white_noise× k_w

end for
for i = 0 to i ≤ 500 do
k_s← random.int(lower_bound, upper_bound)
k_t← random.int(lower_bound, upper_bound)
k_w ← random.int(lower_bound, upper_bound_w_n)
p← random.int(lower_bound, upper_bound)
xlim = 100
x← [0, 0.1, 0.2, ..., 100]
y ← sin(p× x)× k_s
seasonal_and_trended← y + x× k_t+ white_noise× k_w

end for
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Chapter 6

Case Studies

The following sections present the three case studies used in this work to verify

the effectiveness of the imputation methods. The data and their origins are presented, as

well as the objective of each case study.

6.1 Financial Indexes and Instability Trackers

The case study consists of generating a model to predict (classify) US Market

instability (BEAR or BULL markets shown in Figure 12) through supervised learning

and given a group of stock market indexes and a group of trackers that correlate market

volatility to other subjects and keywords mentioned in newspaper articles [Chen and

Tsang, 2018] [Chen, 2019]. However, the data is full of missingness, to begin with, and,

as most data sets have different granularities, once merged the problem becomes even

greater. Being so, treating the missingness of the data set becomes crucial to achieve the

final objective of predicting market instability.

The data from financial indexes were taken from Yahoo Finance, and are described

as follows [Haugen, 1986]:

• Standard and Poor’s 500 (S&P 500): Stock Market index that tracks the stocks of

the 500 biggest large-capital US Companies.

• Volatility Index (VIX): Index based on S&P 500 that measures the market’s expec-

tation of future volatility.

• Dow Jones Industrial Average (Dow 30): Stock Market index that combines the stock

price of 30 large, publicly-traded companies to determine the industrial average.

• NASDAQ 100: Stock Market Index that includes the shares of the 100 largest

American and international non-financial companies that are traded on the Nasdaq

electronic stock exchange.
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Figure 12 – S&P 500 close index classified as BEAR or BULL

• NIKKEI 225: Japanese Stock Market Index that includes the shares of Japan’s top

225 companies traded on the Tokyo Stock Exchange.

• FTSE 100: Stock Market Index that consists of the 100 most highly capitalized

companies in the UK.

• Hang Seng (HSI): Stock Market Index that consists of the largest companies that

trade on the Hong Kong Exchange. It covers approximately 65% of the total market

capitalization of the Hong Kong Exchange.

• Euronext 100: European Stock Market Index that consists of the 100 largest and

most liquid blue-chip stocks traded on Euronext exchanges.

The trackers were taken from Economic Policy Uncertainty and are, as follows:

• US Equity Market Volatility Index: Newspaper-based Equity market Volatility tracker

that is constructed based on the counts of the monthly occurrences of the terms

"economic", "economy", "financial", "stock market", "equity", "equities", "Standard

and Poors" (and variants), "volatility", "volatile", "uncertain", "risk" and "risky"

on eleven major US newspapers [Baker et al., 2019]. This tracker has monthly

granularity.

• Daily Infectious Disease Equity Market Volatility Tracker: Newspaper-based In-

fectious Disease Equity Market Volatility Tracker that is constructed based on

the counts of the daily occurrences of the terms "economic", "economy", "finan-

cial", "stock market", "equity", "equities", "Standard and Poors" (and variants),
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"volatility", "volatile", "uncertain", "risk", "risky", "epidemic", "pandemic", "virus",

"flu", "disease", "coronavirus", "mers", "sars", "ebola", "H5N1" and "H1N1" on

approximately 3,000 US Newspapers [Baker et al., 2019]. This tracker has daily

granularity.

• Geopolitical Risk Index: Newspaper-based Geopolitical Risk Index that is constructed

by counting the occurrence of words related to geopolitical tensions in 11 leading

international newspapers [Caldara and Iacoviello, 2018]. This index has monthly

granularity.

• Trade Policy Uncertainty and Market Volatility: Newspaper-based Trade Policy

Uncertainty tracker that is constructed based on the counts of the frequency of

occurrences of trade policy and uncertainty terms across major newspapers over the

world [Caldara et al., 2020]. This tracker has monthly granularity.

6.2 COVID-19

This data set can be found at Kaggle 1 and contains information about COVID-19

confirmed cases, recovered patients, and deaths of several cities throughout the world.

The time window is 30 minutes, although there are reported gaps. This data set has

different rows for each city. In order to turn it into a typical time series, the information

of confirmed cases, recovered patients and deaths were grouped by region and turned into

column information instead of a row for each region. The objective for this problem is

to predict Asia’s confirmed cases using information from other regions throughout time.

One particularity of this problem is that the target variable, confirmed cases in Asia, has

missing time steps as shown in Figure (13).

6.3 Deng

This data set can be found at Driven Data2 and it is from a competition to

predict disease spread. It has information from two cities: San Juan and Iquitos. This data

set’s granularity is weekly. It contains information about daily climate, precipitation, and

vegetation. This data set also contains different rows for different cities for the same date

and this information was transformed into columns for the same date. The objective for

this problem is to predict total cases of Deng for both cities as shown in Figure (14).

For each city there are the following features:

1 COVID-19 Timeseries https://www.kaggle.com/lihyalan/2020-corona-virus-timeseries
2 DengAI: Predicting Disease Spread https://www.drivendata.org/competitions/44/

dengai-predicting-disease-spread/page/82/
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Figure 13 – COVID-19 Asia Confirmed cases

Figure 14 – Deng total cases
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• week_start_date: Date of measurement

• station_max_temp_c: Maximum Temperature measurement from NOAA’s GHCN

weather station

• station_max_temp_c: Minimum temperature measurement from NOAA’s GHCN

weather station

• station_avg_temp_c: Average temperature measurement from NOAA’s GHCN

weather station

• station_precip_mm: Total precipitation measurement from NOAA’s GHCN weather

station

• station_diur_temp_rng_c: Diurnal temperature range measurement from NOAA’s

GHCN weather station

• precipitation_amt_mm: Total precipitation measurement from PERSIANN satellite

• reanalysis_sat_precip_amt_mm: Total precipitation measurement from NOAA’s

NCEP Climate Forecast System Reanalysis

• reanalysis_dew_point_temp_k: Mean dew point temperature measurement from

NOAA’s NCEP Climate Forecast System Reanalysis

• reanalysis_air_temp_k: Mean air temperature measurement from NOAA’s NCEP

Climate Forecast System Reanalysis

• reanalysis_relative_humidity_percent: Mean relative humidity measurement from

NOAA’s NCEP Climate Forecast System Reanalysis

• reanalysis_specific_humidity_g_per_kg: Mean specific humidity measurement from

NOAA’s NCEP Climate Forecast System Reanalysis

• reanalysis_precip_amt_kg_per_m2: Total precipitation measurement from NOAA’s

NCEP Climate Forecast System Reanalysis

• reanalysis_max_air_temp_k: Maximum air temperature measurement from NOAA’s

NCEP Climate Forecast System Reanalysis

• reanalysis_min_air_temp_k: Minimum air temperature measurement from NOAA’s

NCEP Climate Forecast System Reanalysis

• reanalysis_avg_temp_k: Average air temperature measurement from NOAA’s NCEP

Climate Forecast System Reanalysis

• reanalysis_tdtr_k: Diurnal temperature range measurement from NOAA’s NCEP

Climate Forecast System Reanalysis
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7.1 Data Collection and Data Preparation

The data sets were collected manually from all sources. As the three data sets

have distinct characteristics the data preparation step was very different for each one of

them and is presented separately in the following subsections.

7.1.1 Financial Indexes and Instability Trackers

Seven different data sources were used for this case study. As the granularity

of the data being analyzed is different for each data source used, once they are merged

the resulting data set becomes full of missing values. Some of the individual data sets

acquired from the seven sources already present missingness even before the merge. As

the missingness of the data can, in some cases, be predicted by the temporal feature, but

there is also missingness that cannot be predicted by the observed data, the missingness

mechanism is considered a combination of MAR and MCAR.

An analysis of the missingness in each data source was conducted to understand

them better. Using the S&P500 index as a base, the dates for which a value was expected

for all indexes were set and the analysis was done. This step is available at repository2

and corresponds to the notebooks starting with prefix 02 in the directories FinancialIn-

dex_FridayResampling and FinancialIndex_MeanResampling. Some of the missingness

occurs because different markets open on different days and some occur because the data

is not available. The results obtained for each data set were as shown in Table 5.

Data set Missing dates Missing values

S&P 500 0 0
VIX 0 0

Dow 30 0 0
NASDAQ 100 0 0
NIKKEI 225 173 124
FTSE 100 283 61

HSI 165 84
Euronext 100 37 32

Us Market Volatility Index NA 0
Daily Infectious Disease NA 0
Geopolitical Risk Index NA 0
Trade Policy uncertainty NA 24

Table 5 – Missingness analysis of each feature in relation to S&P 500 before merging the
data sets

The data were merged as illustrated by Figure 16. From the financial Indexes data

2 https://github.com/silvanaribeiro/dissertacao
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sources, the close and volume features were used from each index. From the trackers, the

features used were the Overal EMV tracker, Daily Infectious EMV index, GPR, US Trade

Policy Uncertainty, Japanese Trade Policy Uncertainty, and Trade Policy Uncertainty

EMV Fraction. The obtained data set has 22 features and 7383 samples. The period of

analysis ranges from January 2, 2015, to March 13, 2020. This step is available at the

repository and corresponds to the notebook starting with the prefix 03 in the directories

FinancialIndex_FridayResampling and FinancialIndex_MeanResampling.

The daily data set was resampled to weekly granularity by calculating each week’s

average. Another data set was created by resampling the data set using information

from each Friday. The final data sets are each composed of 1054 dates (rows or samples)

and 22 features (columns). The period of analysis ranges from January 2, 2015, to

March 13, 2020. This step is available at the repository and also corresponds to the

notebook starting with prefix 03 in the directories FinancialIndex_FridayResampling and

FinancialIndex_MeanResampling.

After merging the 12 data sets acquired from the 12 data sources, of different gran-

ularity and re-sampling it, another analysis was conducted to verify missingness. This step

is available at the repository and corresponds to the notebook starting with the prefix 04 in

the directories FinancialIndex_FridayResampling and FinancialIndex_MeanResampling.

The results are presented by Tables 6 and 7 for the data set resampled by the weeks’ mean

and Fridays respectively.

Feature Missing values

S&P 500 Close and Volume 0
VIX Close and Volume 0

Dow 30 Close and Volume 0
NASDAQ 100 Close and Volume 0
NIKKEI 225 Close and Volume 2
FTSE 100 Close and Volume 45

HSI Close and Volume 0
Euronext 100 Close and Volume 0

Us Market Volatility Index 813
Daily Infectious Disease 0
Geopolitical Risk Index 813
Trade Policy uncertainty 820

US Trade Policy uncertainty 820
Japanese Trade Policy uncertainty 820

Table 6 – Missingness analysis of each feature after merging and re-sampling the data sets
by each week’s mean
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Feature Missing values

S&P 500 Close and Volume 2299
VIX Close and Volume 2299

Dow 30 Close and Volume 2299
NASDAQ 100 Close and Volume 2299
NIKKEI 225 Close and Volume 2431
FTSE 100 Close and Volume 2514

HSI Close and Volume 2406
Euronext 100 Close and Volume 2217

Us Market Volatility Index 7141
Daily Infectious Disease 0
Geopolitical Risk Index 7140
Trade Policy uncertainty 7148

US Trade Policy uncertainty 7148
Japanese Trade Policy uncertainty 7148

Table 7 – Missingness analysis of each feature after merging and re-sampling the data sets
by each week’s Friday

The autocorrelation plot of every feature was visually analyzed as shown in Table

8. It was concluded that the data set is a mixture of all types of time series pattern, which

makes it difficult to choose one method that would fit all cases. The autocorrelation plots

of the features can be found at the repository and correspond to the notebook 05 in the

directories FinancialIndex_FridayResampling and FinancialIndex_MeanResampling.

Feature Trended Seasonal White-noise

S&P 500 Close and Volume X
VIX Close and Volume X

Dow 30 Close and Volume X
NASDAQ 100 Close and Volume X
NIKKEI 225 Close and Volume X
FTSE 100 Close and Volume X

HSI Close and Volume X
Euronext 100 Close and Volume X

Us Market Volatility Index X X
Daily Infectious Disease X
Geopolitical Risk Index X X
Trade Policy uncertainty X X

US Trade Policy uncertainty X X
Japanese Trade Policy uncertainty X

Table 8 – Visual analysis of the autocorrelation plot of each feature
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Feature Missing values

sj_ndvi_ne 210
sj_ndvi_nw 56
sj_ndvi_se 20
sj_ndvi_sw 20

sj_precipitation_amt_mm 9
sj_reanalysis_air_temp_k 8
sj_reanalysis_avg_temp_k 8

sj_reanalysis_dew_point_temp_k 8
sj_reanalysis_maxair_temp_k 8
sj_reanalysis_min_air_temp_k 8

sj_reanalysis_precip_amt_kg_per_m2 8
sj_reanalysis_relative_humidity_percent 8

sj_reanalysis_sat_precip_amt_mm 11
sj_reanalysis_specific_humidity_g_per_kg 8

sj_reanalysis_tdtr_k 8
sj_station_avg_temp_c 8

sj_station_diur_temp_rng_c 8
sj_station_max_temp_c 8
sj_station_min_temp_c 8
sj_station_precip_mm 8

iq_ndvi_ne 532
iq_ndvi_nw 532
iq_ndvi_se 532
iq_ndvi_sw 532

iq_precipitation_amt_mm 533
iq_reanalysis_air_temp_k 533
iq_reanalysis_avg_temp_k 533

iq_reanalysis_dew_point_temp_k 533
iq_reanalysis_maxair_temp_k 533
iq_reanalysis_min_air_temp_k 533

iq_reanalysis_precip_amt_kg_per_m2 533
iq_reanalysis_relative_humidity_percent 533

iq_reanalysis_sat_precip_amt_mm 533
iq_reanalysis_specific_humidity_g_per_kg 533

iq_reanalysis_tdtr_k 533
iq_station_avg_temp_c 566

iq_station_diur_temp_rng_c 566
iq_station_max_temp_c 543
iq_station_min_temp_c 537
iq_station_precip_mm 545

Table 10 – Missingness analysis of each feature of the Deng data set
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7.2 Training and Test Data separation

For all three data sets, approximately 70% of the data was designated as the

training set and the remaining 30% for the test set. For this separation, the temporal factor

of the data was taken into account and the data was not reordered. More information

regarding the separation of data in training and test data set can be found at the repository3.

• Financial Indexes: The data is available from January 1, 2000 to March 13, 2020.

The training set has data from January 1, 2000, to December 26, 2014, accounting

for 782 weekly time steps. The test set has data from January 2, 2015, to March 13,

2020, accounting for 272 weekly time steps.

• COVID-19: The data is available from January 22, 2020, at 9 AM to March 11, 2020,

at 9:30 PM. The training set has data from January 22, 2020, at 9 AM to February

26, 2020, at 2 PM, accounting for 1667 30-minute-window time steps. The test set

has data from February 26, 2020 at 2 PM to March 11, 2020 at 9:30 PM, accounting

for 715 30-minute-window time steps.

• Deng: The data is available from April 30, 1990, to June 25, 2010. The training set

has data from April 30, 1990, to June 3, 2004, accounting for 734 weekly time steps.

The test set has data from June 10, 2004 to June 25, 2010, accounting for 315 weekly

time steps.

7.3 Imputation

All three data sets were imputed using the same imputation methods. The test

data sets were imputed using only information from the training data sets. For instance,

when imputing the test set using the Mean Imputation method, the mean of the training

data set was used.

Table 11 shows the characteristics of each imputation method: if it is deterministic,

how many times it was executed and if the data were standardized. For the LSTM

imputation method, the data standardization was done by a Min-Max Scaler. For all other

methods that standardized the data, it was done by removing its mean and then scaling

to unit variance before the imputation.

For the imputation using Missing Indicators the empty time steps were filled with

the value zero. The imputation using Decomposition, Additive Decomposition, and the

imputation by Pattern combined with the Kalman filter were done by firstly imputing the

data using the new methods and afterward applying the Kalman filter just to smooth the

data. The imputation using LSTM for the Financial Index data set, used 30 time steps to

3 https://github.com/silvanaribeiro/dissertacao/
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Imputation Method\
Characteristics

Deterministic Times Run Standardized

KNN Yes 1 Yes
Mean Yes 1 No
Missing Indicators Yes 1 No
Regression Yes 1 Yes
Pattern No 30 No
Pattern & Kalman No 30 No
Decomposition Yes 1 No
Additive Decomposition Yes 1 No
Decomp. & Kalman Yes 1 No
Add. Decomp & Kalman Yes 1 No
Kalman Yes 1 No
LSTM No 30 Yes

Table 11 – Imputation Methods Characteristics

predict 1 future time step, whereas, for the COVID-19 and Deng data sets, 10 time steps

were used. Thirty epochs were used to fit the LSTM model.

7.4 XGBoost

The XGBoost4 algorithm was used to train models for the three data sets. XGBoost

is an optimized gradient boosting library. It uses the Gradient Boosting framework

[Friedman, 2001], providing a parallel tree boosting.

• Financial Indexes: The objective in this case is a binary classification using logistic

regression. The F1 score is the evaluation metric used for this data set. The tunning

of the hyperparameters was done manually and separately for each imputed data

set. The usage of each hyperparameter can be found in the library documentation5.

The hyperparameters that were tunned, as well as the ranges tested were as follows:

– colsample_bytree: 0.3-1, step 0.1.

– gamma: 0-10, step 1.

– learning_rate: 0.1, 0.01, 0.001, 0.0001, 0.00001.

– max_delta_step: 0-10, step 1.

– max_depth: 0-10, step 1.

– min_child_weight: 1-10, step 1.

4 https://xgboost.readthedocs.io/en/latest/build.html
5 "XGBoost Parameters" https://xgboost.readthedocs.io/en/latest/parameter.html
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– n_estimators: 30-300, step 5, 300-2000, step 100.

– reg_alpha: 0.1, 0.01, 0.001, 0.0001, 0.00001.

– scale_pos_weight: 1-10, step 1, 20-1000, step 5.

– subsample: 0.3-1, step 0.1.

• COVID-19 and Deng: The objective in this case is regression with squared error loss.

The RMSE is the evaluation metric used for these data sets. The hyperparameters

that were tuned, as well as the ranges tested, were as follows:

– learning_rate: 0.1-0.9, step 01, 0.01, 0.001, 0.0001, 0.00001.

– max_depth: 0-10, step 1.

– n_estimators: 20-300, step 5, 300-1500, step 100.
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Chapter 8

Results

The following sections present the results found for each data set and the imputa-

tion methods are ranked according to their effectiveness. Finally, the mean rank for each

imputation method is presented.

8.1 Financial Indexes and Instability Trackers

Resampled by the Week’s Mean

The results for the Financial Indexes and Instability Trackers data set resampled

using the week’s mean are presented in Table 12. For the stochastic methods, the results

presented by the column Mean F1 are the mean evaluation metric for the 30 rounds,

along with its standard deviation. If the standard deviation is not presented, it is because

the method is deterministic and was executed only once. The column Best F1 presents

the best result achieved on the 30 rounds. Finally, the imputation methods are ranked

using the mean and the best results. As it can be noted, the ranking did not change when

considering the mean F1 or the best F1.

The best results were achieved by Kalman, Pattern plus Kalman, and Decompo-

sition plus Kalman, in that order. Figures 19, 20 and 21 show the real versus predicted

regime for the three best results in order. It can be noted that the results obtained are

very similar.
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Imputation Method\
Data set

Mean F1 Best F1 Rank - Mean F1 Rank - Best F1

KNN 0.7162 0.7162 8 8
Mean 0.7480 0.7480 5 5
Missing Indicators 0.7407 0.7407 6 6
Regression 0.7343 0.7343 7 7
Pattern 0.7142 ± 0 0.7142 9 9
Pattern & Kalman 0.8644 ± 0 0.8644 2 2
Decomposition 0.7074 0.7074 10 10
Additive Decomposition 0.7074 0.7074 10 10
Decomp. & Kalman 0.8305 0.8305 3 3
Add. Decomp & Kalman 0.8166 0.8166 4 4
Kalman 0.8717 0.8717 1 1
LSTM 0.6416 ± 0.0154 0.6720 11 11

Table 12 – Comparison of the mean F1 scores and best F1 scores for each imputed data
set and ranking.

Figure 19 – BULL and BEAR real data and prediction made by model generated using
the Kalman imputed data set

Figure 20 – BULL and BEAR real data and prediction made by model generated using
the Pattern & Kalman imputed data set

Figure 21 – BULL and BEAR real data and prediction made by model generated using
the Decomposition & Kalman imputed data set



Chapter 8. Results 66

For the Financial Indexes data sets, whose problems are classifications, the Confu-

sion Matrices using each imputation method are presented in Table 13. For the stochastic

methods, the confusion matrices presented are the mean of the results of the thirty runs.

Imputation Method Resample by Mean Resample by Friday

KNN
Real v. Pred. True False Real v. Pred. True False
True 53 30 True 48 21
False 12 177 False 17 186

Mean
Real v. Pred. True False Real v. Pred. True False
True 49 17 True 47 16
False 16 190 False 18 191

Missing Indicators
Real v. Pred. True False Real v. Pred. True False
True 50 20 True 47 16
False 15 187 False 18 191

Regression
Real v. Pred. True False Real v. Pred. True False
True 47 16 True 48 16
False 18 191 False 17 191

Pattern
Real v. Pred. True False Real v. Pred. True False
True 55 34 True 47 21
False 10 173 False 17 186

Pattern & Kalman
Real v. Pred. True False Real v. Pred. True False
True 51 2 True 38 1
False 14 205 False 27 206

Decomposition
Real v. Pred. True False Real v. Pred. True False
True 52 30 True 49 27
False 13 177 False 16 180

Additive Decomposition
Real v. Pred. True False Real v. Pred. True False
True 52 30 True 48 26
False 13 177 False 17 181

Decomposition & Kalman
Real v. Pred. True False Real v. Pred. True False
True 49 4 True 34 1
False 16 203 False 31 206

Additive Decomposition & Kalman
Real v. Pred. True False Real v. Pred. True False
True 49 6 True 33 1
False 16 201 False 32 206

Kalman
Real v. Pred. True False Real v. Pred. True False
True 51 1 True 46 0
False 14 206 False 19 207

LSTM
Real v. Pred. True False Real v. Pred. True False
True 45 30.4 True 24 0
False 20 176.6 False 41 207

Table 13 – Confusion Matrices of predictions made using the Financial Indexes data sets

8.2 Financial Indexes and Instability Trackers

Resampled by Fridays

The results for the Financial Indexes and Instability Trackers data set resampled

using Fridays are presented in Table 14. For the stochastic methods, the results presented

by the column Mean F1 are the mean evaluation metric for the 30 rounds, along with its

standard deviation. If the standard deviation is not presented, it is because the method is
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Imputation Method\
Data set

Mean F1 Best F1 Rank - Mean F1 Rank - Best F1

KNN 0.7164 0.7164 5 5
Mean 0.7344 0.7344 3 3
Missing Indicators 0.7344 0.7344 3 3
Regression 0.7442 0.7442 2 2
Pattern 0.7011 ± 0.0020 0.7121 6 6
Pattern & Kalman 0.7308 ± 0 0.7308 4 4
Decomposition 0.6950 0.6950 7 7
Additive Decomposition 0.6906 0.6906 8 8
Decomp. & Kalman 0.68 0.68 9 9
Add. Decomp & Kalman 0.6666 0.6666 10 10
Kalman 0.8288 0.8288 1 1
LSTM 0.5393 ± 0 0.5393 11 11

Table 14 – Comparison of the mean F1 scores and best F1 scores for each imputed data
set and ranking.

deterministic and was executed only once. The column Best F1 presents the best result

achieved on the 30 rounds. Finally, the imputation methods are ranked using the mean

and the best results.

The best results were achieved by Kalman, Regression, and Missing Indicators

and Mean tied for the third place. It is important to note that the results achieved by

Pattern plus Kalman are fairly close to third place. Figures 22, 23 and 24 show the real

versus predicted regime for the three best results in order. Figure 25 shows the results

achieved by Pattern plus Kalman method. As it can be noted, although the Regression

and Missing Indicators achieved better results, the Pattern plus Kalman did a better job

in predicting real BULL market. This is probably the result of the Kalman filter having

smoothed the data and as such, prevented the model to learn small variations as BULL.

As it can be noted, the ranking did not change when considering the mean F1 or the best

F1. The confusion matrices are shown in Table 13.

Figure 22 – BULL and BEAR real data and prediction made by model generated using
the Kalman imputed data set
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Figure 23 – BULL and BEAR real data and prediction made by model generated using
the Regression imputed data set

Figure 24 – BULL and BEAR real data and prediction made by model generated using
the Missing Indicators imputed data set

Figure 25 – BULL and BEAR real data and prediction made by model generated using
the Pattern & Kalman imputed data set

8.3 COVID-19

The results for the COVID-19 data set are presented in Table 15. As the target

variable was imputed, both the RMSE with the imputed values and with only previously

known values (Real RMSE) are presented. For the stochastic methods, the results presented

by the column Mean RMSE are the mean evaluation metric for the 30 rounds, along with

its standard deviation. If the standard deviation is not presented, it is because the method

is deterministic and was executed only once. The column Best RMSE presents the best

result achieved on the 30 rounds. Finally, the imputation methods are ranked using the

mean and the best results.
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Imputation Method\
Data set

Mean RMSE
Mean

True RMSE
Best RMSE

Best
True RMSE

Rank
Mean RMSE

Rank
Best RMSE

KNN 4959.24 8048.64 4959.24 8048.64 3 3
Mean 7686.72 13351.19 7686.72 13351.19 6 6
Missing Indicators 7796.75 13542.29 7796,75 13542.29 7 7
Regression 18983.71 13346.56 18983.71 13346.56 8 8
Pattern 7684.22 ± 0 13345.79 ± 0 7684.22 13345.79 5 5
Pattern & Kalman 3470.46 ± 0 13793.94 ± 0 0.7308 13793.94 2 2
Decomposition Inf Inf 13685.59 13685.59 9 9
Additive Decomposition Inf Inf 13202.91 13202.91 9 9
Decomp. & Kalman Inf Inf 26726.02 26726.02 9 9
Add. Decomp & Kalman Inf Inf 19176.85 19176.85 9 9
Kalman 6930.11 6930.11 13900.60 13900.60 4 4
LSTM 558.33 ± 375.82 13803.86 ± 60.24 106.60 13836.69 1 1

Table 15 – Comparison of the mean RMSE scores and best RMSE scores for each imputed
data set and ranking.

The best results were achieved by the data sets imputed using LSTM, Pattern and

Kalman, and KNN, in this order, when taking into account the imputed target variable.

One fact worth mentioning is that the LSTM imputation method takes approximately

one and a half hours to impute each data set, while all the other methods take minutes.

Regarding the real RMSE, the best results were achieved by the KNN imputed data set,

followed by the Additive Decomposition imputed and Regression imputed data sets. The

RMSE computed using the imputed target variable for all data sets imputed by a variation

of the Imputation by Decomposition method present the Inf value because the imputed

values are very small in magnitude, and when computing the RMSE the biggest float

available in python is not big enough to store it. As it can be noted, the ranking did not

change when considering the mean RMSE or the best RMSE.

Figures 26, 27 and 28 show the real versus predicted data for the three best results

in order. As it can be noted, the first two models were not able to model the highest peaks

well, but the model generated using KNN was able to detect the peaks occurrence but not

its amplitude.

Figure 26 – Real COVID-19 data and prediction made by model generated using the
LSTM imputed data set
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Figure 27 – Real COVID-19 data and prediction made by model generated using the
Pattern & Kalman imputed data set

Figure 28 – Real COVID-19 data and prediction made by model generated using the KNN
imputed data set

8.4 Deng

The results for the Deng data set are presented in Table 16. For the stochastic

methods, the results presented by the column Mean RMSE are the mean evaluation

metric for the 30 rounds, along with its standard deviation. If the standard deviation

is not presented, it is because the method is deterministic and was executed only once.

The column Best RMSE presents the best result achieved on the 30 rounds. Finally, the

imputation methods are ranked using the mean and the best results.

The best results were achieved by Additive Decomposition plus Kalman, Kalman,

and Pattern Plus Kalman, in this order. However, the best result achieved by the Pattern

and Kalman sets was superior to all other results, having reach an RMSE of 26.40.

Figures 29, 30 and 31 show the real versus predicted data for the three best results



Chapter 8. Results 71

Imputation Method\
Data set

Mean RMSE Best RMSE
Rank

Mean RMSE
Rank

Best RMSE
KNN 28.59 28.59 5 6
Mean 29.66 29.66 9 11
Missing Indicators 27.67 27.67 4 5
Regression 28.62 28.62 6 8
Pattern 29.27 ± 0.5760 28.6 11 7
Pattern & Kalman 27.39 ± 0.6902 26.40 3 1
Decomposition 29.22 29.22 8 10
Additive Decomposition 29.69 29.69 10 12
Decomp. & Kalman 28.91 28.91 7 9
Add. Decomp & Kalman 26.99 26.99 1 3
Kalman 27.16 27.16 2 4
LSTM 29.84 ± 2.22 26.83 12 2

Table 16 – Comparison of the mean RMSE scores and best RMSE scores for each imputed
data set and ranking.

in order. As it can be noted, none of the models was able to model the highest peaks very

well.

Figure 29 – Real Deng data and prediction made by model generated using the Additive
Decomposition imputed data set

Figure 30 – Real Deng data and prediction made by model generated using the Kalman
imputed data set
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Figure 31 – Real Deng data and prediction made by model generated using the Pattern &
Kalman imputed data set

8.5 Ranking

The mean ranking of the mean and best evaluation metrics were computed for

each imputation method and the results are presented by Table 17. As it can be seen,

on average the best results were achieved by the Kalman imputed data sets, followed

by Pattern and Kalman and Missing Indicators. When considering the best results, the

Pattern and Kalman data sets achieved the best ranking, followed by Kalman and Missing

Indicators.

Imputation Method\
Data set

Mean Rank Mean Best Rank

KNN 4 4
Mean 5 5
Missing Indicators 3 3
Regression 5 5
Pattern 8 6
Pattern & Kalman 2 1
Decomposition 9 8
Additive Decomposition 11 9
Decomp. & Kalman 7 7
Add. Decomp & Kalman 6 6
Kalman 1 2
LSTM 10 5

Table 17 – Comparison of the mean RMSE scores and best RMSE scores for each imputed
data set and ranking.
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Overall, the two new methods proposed in this work achieved good results, being

very competitive when compared to the other imputation methods and adapting well

for different types of time series. The Pattern and Kalman imputation method proved

to be a good alternative for imputation, as well as the Kalman imputation method.

The results achieved by the imputation by Decomposition method were good, but it is

necessary to test if only Additive decomposition should be done, or if both Additive and

Multiplicative decomposition will work best for each particular data set. The combination

of Decomposition plus the Kalman filter should also be experimented with.
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Chapter 9

Conclusion

This work explored the problem of missing data in time series. It was observed

that literature recommended methods work very well for well-behaved data. However,

when trying to impute a real data set with mixed types of time series and/or different

types of loss mechanisms it is very important to try several different methods and choose

the one that fits the problem better.

Additionally, when dealing with missing data in time series, choosing an ap-

propriate imputation method can have great impact on the final results. The classical

imputation methods, although easy to implement and comprehend, have limited success

for some time series. However, some methods such as Kalman and Pattern and Kalman

imputation methods have shown to achieve good results for the different real-world data

time series used as case-studies in this work. This might indicate their ability to also

work well for different real-word data. The imputation by Decomposition method works

well, but its combinations (Decomposition plus Kalman, Additive Decomposition, and

Additive Decomposition plus Kalman) should be tested to discover which works best for

each particular data set. Although the LSTM-based imputation method is promising due

to its inherent properties for handling sequences, it has shown to be complex to implement.

It also depends on the hyperparameters to achieve satisfactory results and the results vary

significantly between executions. It is also important to note that the LSTM imputation

method takes approximately one and a half hours to impute each data set, while all the

other methods take minutes.

The author believes that the main findings of the study are:

• reinforcing the importance of analyzing and categorizing the set of time series data

before imputation. The classical theory of time series provides the mechanisms

and tools for such analysis. Coupled with the literature-recommended imputation

methods, this strategy can yield good results compared to state-of-the-art more

complex imputation methods;
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• Real-world time series usually come with noise. Therefore, the use of smoothing

mechanisms such as the Kalman Filter to filter noise during imputation can also

lead to better results.

The literature-recommended approach to choosing the imputation method for

time series data, consists on finding out some of its characteristics such as its pattern and

missing mechanisms. It seems only logical that separating the data by pattern and then

using the literature-recommended imputation methods to impute each group will achieve

good results. Filtering noisy data is also a well-known approach to improve predictions,

hence using a filter to, not only smooth the data, but also impute it, seemed like a

good strategy. The imputation by Decomposition idea was based on the fact that, if the

imputation by Pattern produced good results, imputing each component of a time series

with its literature-recommended method could result in a more assertive imputation as a

whole.

This work produced a library to separate time series by its pattern, in which the

user does not have to input any information regarding the time series (such as period

or frequency). No visual analysis of the data has to be done to evaluate its pattern

and the user does not need worry about which imputation method works best for each

pattern. Four other separation methods were used to try to separate time series by pattern:

Kolmogorov-Smirnov Clustering, FTCA, Agglomerative Clustering and K-means. The

goal was to experiment a data-driven approach to achieve time series clustering, compared

to the heuristics presented. The synthetic time series generated by Algorithm 6 were used

to test the four algorithms but their performances were nowhere near as good as the

performance of the separation accomplished by the algorithm 5.

The imputation by Decomposition method is also available for users of the library

and, as noted, achieved accurate results, specially when some time was taken to investigate

which of its variants worked best for the data set in question.

The opportunities to continue this work include: investigating the effects of the

methods in a real problem, but with all data present. This way, the removal of the samples

for testing can be controlled, its rate of missingness can be varied, but the data set would

still represent a real-word scenario; investigate how a irregular sampling of data would

have affected the synthetic data experiment; use the proposed imputation methods to try

to detect outliers. This could be done by assuming that each time step was missing, one

at a time, and imputing it. Then, the imputed value is compared to the real value, and if

the values are too different (compared to a threshold) the time step could be considered

an outlier.
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