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We prove three obstruction results on the existence of equations of state in clusters of stellar systems
fulfilling mass-radius relations and some additional bound (on the mass, on the radius or a causal bound).
The theorems are proved in great generality. We start with a motivating example of TOV systems and apply
our results to stellar systems arising from experimental data.
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I. INTRODUCTION

Since the works [1,2] of Chandrasekhar, the mathemati-
cal foundations of astrophysics have shown their impor-
tance and are being developed parallel to (and sometimes as
part of) general relativity theory. In this article we focus
on a specific topic of the mathematical foundations: the
axiomatization problem (for a deep philosophical discus-
sion see [3]). This means that we consider the question of
which kind of objects can be used to model an astrophysical
system. As a consequence, we obtain obstruction condi-
tions constraining the existence of certain stellar systems.
In order to motivate our results, let us first see how this

kind of obstruction appears in typical physical systems.
Recall that the structure of general relativistic and spheri-
cally symmetric isotropic stars is modeled by the Tolman-
Oppenheimer-Volkoff (TOV) equations [4], described in
terms of its density ρ and pressure p (setting G ¼ 1 and
c ¼ 1):

p0ðrÞ ¼ −
ðρðrÞ þ pðrÞÞðMðrÞ þ 4πr3pðrÞÞ

r2ð1 − 2MðrÞ
r Þ

ð1Þ

M0ðrÞ ¼ 4πr2ρðrÞ: ð2Þ

These equations are partially uncoupled and can be coupled
through an equation of state. A typical example is the
polytropic equation of state

fðp; ρ; k; k0; γÞ ¼ p − kργ − k0 ¼ 0; ð3Þ

where k; k0 ∈ R are the polytropic constant and the stiff-
ness constant, respectively, and γ ¼ ðnþ 1Þ=n ∈ Q is the
polytropic exponent. Since fðp; ρÞ ¼ 0 can obviously be
solved for p and ρ, it can be used to couple a TOV system.
Under this coupling, we say that the pair ðp; ρÞ corresponds
to a polytropic TOV system.
In thermodynamic systems where pressure and density

are related by an integrable equation of state, the speed of
sound within the system can be defined as v ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂p=∂ρp
. It

follows from (3) that v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kγpγ−1

p
in polytropic TOV

systems. A TOV system is causal if the speed of sound is
less than the speed of light, that is, kγργ−1 < 1. In
particular,

kγργ−1c < 1; ð4Þ

where ρc ¼ ρð0Þ is the density at the center.
Now, assume a star of radius R is modeled by a TOV

system and let the mass of the system beM ¼ MðRÞ, where
MðrÞ is the function given by (2). If this star is small, then it
usually admits mass-radius relations gðM;R; δÞ ¼ 0, relat-
ing M to R and other parameters [2]. For instance, it is
known that in the Newtonian limit polytropic TOV systems
satisfy

gðM;R; k; n; ρcÞ ¼ M − Aðk; n; ρcÞR2; ð5Þ

where
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Aðk; n; ρcÞ ¼
�

4π

ðnþ 1Þk
�

3=2
ρðn−3Þ=2nc

jp0ðRÞj
ρrel

and ρrel ¼ ρðRÞ=ρc is the relative density [2,4].
By means of isolating ρc in (5) and substituting the value

found in (4), one can show that there are obstructions for a
Newtonian polytropic TOV system to be causal. Indeed, the
polytropic constant must satisfy

k<
n

nþ1

�
R4

n3M2
β

�1
n

; where β¼ 64π3
�jp0ðRÞj

ρrel

�
2

:

The main aim of this article is to show that this kind of
obstruction exists not only in TOV systems, but actually in
generic clusters of stellar systems. In Sec. II we define what
we mean by a cluster of stellar systems. Roughly speaking,
for us a stellar system is a pair of functions describing the
density and the pressure internal to some star, so that a
cluster is just an arbitrary set of these systems (of which
TOV systems are particular examples). In that same section
we also formulate the equations of state and mass-radius
relations in an axiomatic framework. Then, in Sec. III, we
state and prove three different obstruction theorems, whose
statements have the following common structure:
Theorem (Roughly). Consider a small radius stellar

system with a mass-radius relation gðM;R; ϵÞ ¼ 0. Each
constraint on ϵ induces an obstruction on the possible
equations of state, depending on ϵ, that can be introduced in
that system.
The TOV systems were used as a motivating example.

We notice that this claim (about generic systems) is
reasonable. In general, mass-radius relations are closely
related to the atomic nature of the star, as stellar systems
with different atomic constitutions obey different relations
[2,5]. Reciprocally, constraints on the parameters of a mass-
radius relation provide information about the atomic
structure of the system. For instance, Newtonian polytropic
stars satisfying (5), but not the Chandrasekhar limit (resp.
Oppenheimer-Volkoff limit) cannot be stable white dwarfs
(resp. stable neutron stars); there are also bounds on n, of
course [4]. On the other hand, equations of state arise from
the statistical mechanics of the atomic structure. So, mass-
radius relations with constraints restrict the atomic structure
and, therefore, the possible equations of state, which is
precisely the content of the above theorem.
Finally, in Sec. IV we apply our obstruction theorems to

stellar systems arising from experimental data and in Sec. V
we end this paper with some concluding remarks.

II. DEFINITIONS

A stellar system is defined as a pair ðp; ρÞ of real
piecewise differentiable functions defined on an interval
I ⊂ R, possibly unbounded. It is natural to define a cluster
of stellar systems of degree ðk; lÞ as a vector subspace
StellarklðIÞ of Ck

pwðIÞ × Cl
pwðIÞ, where Ck

pwðIÞ denotes the

vector space of piecewise Ck differentiable functions on I.
It is important to notice that Ck

pwðIÞ has the canonical
generalized norm kfkk ≔ supIjfðkÞðtÞj, which is a func-
tional satisfying the norm axioms but possibly taking
infinite values. Like classical norms, generalized norms
induce a topology which can be characterized as the finest
locally convex topology that makes sum and scalar multi-
plication continuous [6]. Therefore, StellarklðIÞ has a
canonical locally convex space structure.
We are interested in stellar systems having well-defined

notions of mass and radius. This leads us to consider
clusters of stellar systems that become endowed with maps
M;R∶StellarklðIÞ → R assigning to each system ðp; ρÞ its
mass and radius. In TOV systems, Mðp; ρÞ is given by (2),
and its inverse is Rðp; ρÞ. Looking at these expressions,
we see that it is natural to assume M and R to be at
least piecewise continuous, i.e., M;R ∈ C0

pwðStellarklðIÞÞ.
We say that a (locally convex) subspace BoundklðIÞ ⊂
StellarklðIÞ has mass bounded from above (resp. radius
bounded from above) if when restricted to it the functionM
(resp. R) is bounded from above. Similarly, we define
subspaces with mass and radius bounded from below.
A function of state for a cluster of stellar systems is a

function f∶StellarklðIÞ × E → R, where E is a topological
vector space of parameters. We say that a function of state is
locally integrable at p if the corresponding equation of
state fðp; ρ; ϵÞ ¼ 0 can be locally solved for p. This means
that there exists a neighborhood U of p, open sets V ⊂
Cl
pwðIÞ andW ⊂ E, and a function ξ∶V ×W → U such that

fðξðρ; ϵÞ; ρ; ϵÞ ¼ 0. Additionally, if ξ is monotone in both
variables ρ, ϵ we say that f is a monotonically locally
integrable (MLI) function of state.
When a locally integrable function of state f is such that

ξ is differentiable (in some sense to be specified below), we
can define the squared speed of sound as v2 ¼ ∂ρξ. We are
interested in situations in which both ξ and v are monotone
with respect to both variables. A function of state satisfying
these properties is called a fully monotonically locally
integrable function of state.
The notion of differentiability of f depends on the

topological nature of both StellarklðIÞ and the space of
parameters E, leading to different generalizations of the
implicit function theorem (IFT). These versions of the IFT
imply that any function whose derivative in the direction of
p satisfies mild conditions is locally integrable.
We remark that some classical generalizations of IFT,

such as the IFT for Banach spaces [7] and the Nash-Moser
Theorem [8] for tame Fréchet spaces, cannot be used here,
because StellarklðIÞ is neither Banach nor Fréchet. General
contexts that apply here are when E is an arbitrary
topological vector space and, more concretely, when E
is locally convex (see [9] and [10], respectively). We will
work in an intermediate context: when E is Banach, so that
by means of embedding R in E we can regard f as a map
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f∶StellarklðIÞ × E → E and define the directional deriva-
tive ∂pf as usual for maps from a locally convex to a
Banach space, without the technicalities needed in the more
general situations. As proved in [11], the classical IFT
holds for f∶X × E → E when X is locally convex and E is
Banach, meaning that if ∂pf ≠ 0, then f is a locally
integrable function of state in a neighborhood of that point
and ξ is differentiable (in a certain generalized sense). This
IFT also gives an expression for the derivative of ξ at each
point, which depends on the derivative of f with respect to
the other variables at points of the neighborhood where ξ is
defined, and furthermore establishes that ξ is monotone
on any neighborhood where both partial derivatives
do not vanish.
A mass-radius function for a cluster of stellar systems is

a function

g∶ C0
pwðStellarklðIÞÞ × C0

pwðStellarklðIÞÞ × F → R;

where F is a topological vector space of parameters,
such that the mass-radius relation gðM;R; δÞ ¼ 0 can be
locally solved for some δ, so that we can locally write
δ ¼ ηðM;RÞ. If η is monotone, we say that g is a locally
monotone mass-radius function. As in the previous case, if
F is Banach, then a mass-radius function can be obtained
by requiring ∂δg ≠ 0, and can be guaranteed to be locally
monotone if the other partial derivatives also do not vanish.

III. STATEMENT AND PROOF

We can now state and prove our obstruction theorems.
Theorem 1. Let C ¼ ðStellarklðIÞ;M; RÞ be a cluster of

stellar systems of degree ðk; lÞ endowed with a locally
monotone mass-radius function gðM;R; ϵÞ. Then any upper
(resp. lower) bound on the mass and on the radius induces a
bound on each MLI function of state of C depending on ϵ
(and possibly on other parameters). If a function of state is
fully MLI at some p, then the bounds induce bounds on the
speed of sound near p.
Proof. After the previous discussion, the proof

becomes easy. We only work with upper bounds; the proof
for lower bounds is essentially the same. By definition, the
mass-radius relation gðM;R; ϵÞ ¼ 0 can be solved in a
neighborhood of some ϵ, that is, locally ϵ ¼ ηðM;RÞ. Since
M and R are bounded, say M ≤ m and R ≤ r, and g is
locally monotone, we see that ηðM;RÞ≤ηðm;RÞ≤ηðm;rÞ.
Therefore, ϵ is also bounded, say by ϵ0. Now, notice that if a
parameter ϵ is bounded then any monotone function fðx; ϵÞ
depending on that parameter is bounded by the function
hðxÞ ¼ fðx; ϵ0Þ. In particular, any MLI function of state
fðp; ρ; ϵÞ for the cluster C depending on ϵ has an upper
bound. Furthermore, if f is fully MLI at some p, then the
squared speed of sound vðρ; ϵÞ2 near p is well defined and
it also depends monotonically on ϵ, so that it also has an
upper bound. □

The above theorem only applies for clusters whose
function of state and mass-radius function depend on
the same parameter. This hypothesis can be avoided by
adding a continuity equation, defined as follows. Let
C ¼ ðStellarklðIÞ;M; RÞ be a cluster of stellar systems in
whichM is at least piecewise C1. A continuity equation for
C is an ordinary differential equationM0ðRÞ ¼ FðR; ρÞ. We
will only work with continuity equations which can be
locally solved for ρ. The basic example is Eq. (2).
Theorem 2. Let C ¼ ðStellarklðIÞ;M; RÞ be a cluster of

stellar systems of degree ðk; lÞ endowed with a locally
monotone mass-radius function gðM;R; δÞ and a continuity
equation. Then any upper (resp. lower) bound on the
derivative of the mass and on the radius induces a bound
on each MLI function of state of C. If a function of state is
fully MLI at some p, then bounds are induced on the speed
of sound near p.
Proof. The proof is similar. Because the mass-radius

function gðM;R; δÞ is locally monotone, it can be locally
solved for M, allowing us to write MðR; δÞ. From
the continuity equation, we have ∂RMðR; δÞ ¼ FðR; ρÞ.
On the other hand, the RHS can be solved for ρ as
ρðRÞ ¼ ∂RMðR; δÞ. It follows that any bound ∂RMðR; δÞ ≤
M0ðδÞ induces a bound ρðRÞ ≤ M0ðδÞ. Consequently, if
fðp; ρ; ϵÞ is a MLI function of state, we have the desired
bound fðp; ρ; ϵÞ ≤ M0ðδÞ, which clearly induces a bound
on the speed of sound when f is fully MLI. □

In the last two theorems we showed that bounds on the
mass-radius function induce bounds on the functions of
state, which can be taken to be on the speed of sound. On
the other hand, additional conditions could be imposed
a priori on the speed of sound, such as causal conditions.
We will show that these conditions give rise to new bounds
on the functions of state. In order to do this, given a fully
MLI function of state fðp; ρ; δÞ, let us define a causal
condition for f near p as an upper bound v2ðρ; ϵÞ ≤
v20ðρ; ϵÞ for the speed of sound near p. We assume that
both v2 and v20 are locally invertible, meaning that we can
locally invert v2ðρ; ϵÞ to write ϵðv2; ρÞ, and similarly for v20.
Restricting to the Banach space of parameters E, this can be
formally described again through the IFT for Banach
spaces.
Theorem 3. Let C ¼ ðStellarklðIÞ;M; RÞ be a cluster of

stellar systems of degree ðk; lÞ, with M piecewise C2,
endowed with a fully MLI function of state f and with a
mass-radius function g satisfying a continuity equation.
Then, any locally monotone invertible causal condition on
f and any upper bound on the radius induce an upper bound
on f depending only on the additional parameters of g.
Proof. Once more we start by writing ρðRÞ ¼

∂RMðR; δÞ. The difference is that, instead of using bounds
on the right-hand side in order to get bounds on f, we
consider the speed of sound v2ðρ; ϵÞ, which becomes
v2ðR; δ; ϵÞ. If we have a bound for v2 we can write
v2ðR; δ; ϵÞ ≤ v20ðR; δ; ϵÞ, translating to a bound on ϵ via
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the invertibility hypothesis. If R ≤ R0 is a bound on the
radius, from the monotone property of v20 we obtain
ϵðR; v2δÞ ≤ ϵ0ðδÞ, where ϵ0ðδÞ ¼ ϵðR0; v20δÞ. This gives
the desired bound on f, due to the MLI hypothesis. □

IV. APPLICATIONS

Here, we apply our obstruction theorems to stellar
systems inspired by experimental mass-radius relations.
By this we mean relations found in the astrophysical
literature as optimal approximations to experimental data
describing zero age main sequence (ZAMS) stars and
terminal age main sequence (TAMS) stars. These stars
satisfy polytropic equations of state and the causal con-
dition, so that the previous theorems can be applied.

A. Monomial mass-radius relations

A simple model for mass-radius relations of ZAMS and
TAMS stars was developed in [12] by considering mono-
mial polynomials. The model was also applied recently to
neutron stars in [5]. This means that in the cluster C ¼
ðStellarklðIÞ;M; RÞ of ZAMS and TAMS stars we have a
mass-radius function given by

gðM;R; a; bÞ ¼ M − aRb; ð6Þ

where a, b, M, R are real functions on StellarklðIÞ. By
definition, a stellar system belongs to the main sequence
(MS) when the temperature at its nucleus is high enough to
enable hydrogen fusion in such a way that the system
becomes stable. This generally happens if the mass is at
least 0.1 M⊙ [2], so that these systems are naturally
endowed with a lower bound on the mass. On the other
hand, the mass of a MS-star determines many of its
properties, such as its luminosity and MS lifetime. Thus,
different classes of MS-stars are characterized by upper
bounds M ≤ M0.
Additionally, stars at the beginning of the MS have

smaller radius than those near MS’s end. Therefore, ZAMS
and TAMS have intrinsic bounds R ≤ R0. Furthermore,
each partial derivative of g in (6) does not vanish except at
R ¼ 0 and b ¼ 0; the point R ¼ 0 is excluded by the bound
M ≥ 0.1 M⊙, and b ¼ 0 is excluded from experimental
data. Therefore, Theorem 1 applies, giving the following
corollary:
Corollary 1. Let C ¼ ðStellarklðIÞ;M; RÞ be a cluster of

ZAMS or TAMS stars fulfilling natural upper bounds M ≤
M0 and R ≤ R0. Then any function of state of C depending
monotonically on a and b is bounded from above. □

Because ZAMS and TAMS stars are MS-stars, they
follow Eddington’s standard model, which means that
polytropic function of states f ¼ p − Kργ are good models
to be chosen. In order to use Corollary 1 on f, we need
some dependence on a and b. If the dependence is on K,
i.e., if Kða; bÞ is a monotone function, Corollary 1 leads to

bounds on γ in terms of b, ρðR0Þ and pðR0Þ. If the
dependence is on γ, we find bounds on K in terms of
the same parameters. Finally, if both K and γ depend of a,
b, we get bounds on b in terms of ρðR0Þ and pðR0Þ.
In Eddington’s standard model, the MS-stars fulfill the

continuity equation (2), allowing us to apply Theorem 2
and find bounds even when K and γ do not depend on a, b.
Explicitly, Eq. (2) combined with the mass-radius function
[12] allows us to write the density as

ρðR; a; bÞ ¼ abRb−3

4π
: ð7Þ

The speed of the sound within the star becomes

vðR; a; bÞ ¼ k

�
ab
4π

�
β

Rβ−1 with β ¼ γðb − 3Þ: ð8Þ

If we assume bounds on M0 we get bounds on (7) and,
therefore, on the parameters of the polytropic equation of
state, as well as on the speed of sound (8), as ensured by
Theorem 2. For instance, if M0 ≤ M0 and we are working
only with stars of radius R ≤ R0 we find that γ must satisfy
M1=γ

0 ≥ abRb−1
0 . This can also be understood as an upper

bound on the radius that a polytropic MS-star of mass M0

fulfilling the mass-radius relation defined by (7) may have:

R0 ≤ ðM
1=γ
0

ab Þ1=ðb−1Þ. Just to illustrate, for a massive ZAMS
stars, say withM0 ≈ 120 M⊙, we have γ ¼ 3, a ¼ 0.85 and
b ¼ 0.67 [12], so that b − 1 < 0, implying that R0 is very
small, agreeing with the fact that massive MS-stars stay
only a short time as ZAMS stars. On the other hand, b ¼
1.78 for M0 ≈ 120 M⊙ TAMS stars, meaning that in the
terminal stage massive MS-stars may have a large radius.
We could also go in the direction of Theorem 3 and use

causal conditions (instead of conditions on M0) to get
bounds. In natural units, the canonical choice of causal
condition is v < 1. Assuming this and working in the same
regime R ≤ R0, we obtain

k <

��
ab
4π

�
β

Rβ−1
0

�
−1

with β ¼ γðb − 3Þ: ð9Þ

B. Rational mass-radius relations

In the last subsection, we studied monomial mass-radius
relations for ZAMS and TAMS stars, found in [12]
following analysis of experimental data. However, for
ZAMS stars with luminosity Z ¼ 0.02, the monomial
relation can be replaced by a rational one, as pointed out
in [13]. So, let us consider mass-radius functions

gðM;R;ai;ci;bi;diÞ¼pðM;ai;ciÞ−RqðM;bi;diÞ; ð10Þ

on a cluster of stellar systems, where pðMÞ ¼ P
iaiM

bi

and qðMÞ ¼ P
jcjM

dj are polynomials and ai, bi, ci, di are
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real functions on the cluster. We can apply Theorems 1, 2
and 3 to find constraints on the possible functions
of state. Since we are interested in MS-stars, we study
the distinguished polytropic function of state. Let us see
how Theorems 2 and 3 work in this case. Notice
that gðM;R; ai; ci; bi; diÞ ¼ 0 can be globally solved for
R as

RðM; ai; ci; bi; diÞ ¼
pðM; ai; ciÞ
qðM; bi; diÞ

: ð11Þ

This function is clearly piecewise C1 and, for each fixed
A≡ ðai; bi; ci; diÞ, it is singular in a finite number of
points. In the neighborhood of each regular point,
RðM; ai; bi; ci; diÞ can be inverted for M, so that we have
MðR;AÞ. Using the continuity equation (2), we can write
ρðR; A;M0Þ ¼ M0=42. Setting bounds M0 ≤ M0 and work-
ing with R ¼ R0, we get a bound ρ ≤ M0=piR2

0 and,
therefore, a bound on the polytropic function of state, as
in Theorem 2. If instead of M0 ≤ M0 we impose the
canonical causal condition v2 ¼ kγργ−1 < 1, recalling that
ρ ¼ ρðR;A;M0ðR; AÞÞ, we get the constraint

k <
1

γργ−10 ðAÞ ; where ρ0ðAÞ ¼ ρðR0; AÞ; ð12Þ

exactly as in Theorem 3.

V. CONCLUDING REMARKS

We established, in an axiomatic way and in great general-
ity, that generic clusters with finitemass and finite radius can
only simultaneously accommodate mass-radius relations
and equations of state when certain bounds are satisfied.
Mass-radius relations can be found experimentally, while

equations of state arise from theoretical modeling. In this
context, our results emphasize that experimental data
constrain a priori the possible theoretical models. We
believe that these general results point towards an axio-
matic formulation of Astrophysics, a problem pointed out
and extensively studied by Chandrasekhar.
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