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Abstract: Higher order correlation beams, that is, two-photon beams
obtained from the process of spontaneous parametric down-conversion
pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can
be used to encode information in many modes, opening the possibility of
quantum communication with large alphabets. In this paper we calculate,
analytically, the fourth-order correlation function for the Hermite-Gauss
and Laguerre-Gauss coherent and partially coherent correlation beams
propagating through a strong turbulent medium. We show that fourth-order
correlation functions for correlation beams have, under certain conditions,
expressions similar to those of intensities of classical beams and are de-
graded by turbulence in a similar way as the classical beams. Our results can
be useful in establishing limits for the use of two-photon beams in quantum
communications with larger alphabets under atmospheric turbulence.
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1. Introduction

The study of the effects of turbulent or random media on the propagation of non-classical
light has gained a considerable interest due to the possibility of implementing quantum optical
communication links with entangled photons [1, 2].

In order to avoid absorption effects in long-distance quantum optical communications, one
needs to exploit satellite-based free-space distribution of single photons or entangled photon
pairs. In this scheme, photonic quantum states are first sent through the aerosphere, then re-
flected from one satellite to another, and finally sent back to a ground station. Since the effective
thickness of the aerosphere is of the order of 5−10 km (i.e., the whole aerosphere is equivalent
to 5−10 km ground atmosphere) and photon losses and decoherence are negligible in the outer
space, one can achieve global free-space quantum communication as long as the quantum states
survive after penetrating the atmosphere.

Transmission through free space can be used as a channel for high-dimensional quantum
communication if an orthogonal propagating mode set is used as a d-level system (qudit). In this
context, electromagnetic beams carrying orbital angular momentum open an opportunity for
communication with large alphabets [3]. Unfortunately, unlike polarization, transverse mode
profiles can be severely distorted by turbulence. Transmission through turbulence could thus be
regarded as a depolarizing channel for the transverse spatial degrees of freedom [4, 5]. Several
theoretical studies have been devoted to the investigation of turbulence effects on the propa-
gation of electromagnetic beams carrying orbital angular momentum [6–9]. An experiment in
which orbital angular momentum states in free space propagation were used as a multiplex-
ing resource for classical communication was performed with radio waves (at a wavelength
λ = 12.5 cm) at a 442 m propagation distance [10]. In the optical domain, free-space classical
communication using orbital angular momentum has been demonstrated in Ref. [11]. Quan-
tum key distribution through free space should also be considered, since it is possible to distill
secure final keys even in the presence of some noise in the quantum channel [12]. The trans-
port of orbital-angular-momentum entanglement through a turbulent atmosphere has been stud-
ied experimentally using a turbulence chamber [13]. Alignment-free quantum key distribution
through free space for a distance of 210 m exploiting orbital angular momentum in combination
with polarization to encode the quantum bits has been demonstrated [14]. A recent experiment
demonstrating a distribution of quantum entanglement encoded in orbital angular momentum
over a turbulent intra-city link of 3 kilometers has been done [15].

The effects of the atmospheric turbulence can be simulated in the laboratory by artificially
inducing random phase fluctuations in optical beams. Most (theoretical and experimental) stud-
ies of the effect of atmospheric turbulence on the modal entanglement of photon pairs are based
on the single phase screen approach, which uses a single phase screen to model the turbulent
atmosphere [16]. The random phase function of such a phase screen represents the phase mod-
ulation caused by the turbulence under weak scintillation conditions. An alternative approach
valid in all scintillation conditions, the multiple phase screen approach, was recently used to de-
rive first-order differential equations that enable the study of turbulence-induced decoherence
of transverse spatial mode entanglement of photon pairs [7,17]. According to [7], the parameter
dependence in the atmospheric decoherence process is more complex than what is found in the
single phase screen approach [6].

An appreciable research activity on other related topics has been observed, including: com-
munication [18–23], entanglement in orbital angular momentum [24,25]; negative correlations
[26–28]; two-photon speckle [29–32]; spatial correlations [33–35]; ghost imaging [36–39];
interference, anti-bunching and symmetry properties [40, 41], and high-dimensional quantum
cryptography [42].

To the best of our knowledge, no analytical study considering the propagation of pairs of
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entangled photons (two-photon beams) through a turbulent atmosphere is available. In this pa-
per we study the optical turbulence effects on a transverse-mode entangled two-photon beam
generated by the parametric down-conversion process in a nonlinear χ(2) crystal [43]. As a re-
sult, we calculate the atmospheric fourth-order correlation function (the so called two-photon
speckle) in the cases when the χ(2) crystal is pumped by any coherent Hermite/Laguerre-Gauss
beam or by a partially coherent beam. In the former case, the higher-order correlation beams
can be used for quantum communication tasks with large alphabets if the quantum correlations
maintain after propagating through atmosphere. The later case is particularly interesting be-
cause the beams produced by partially coherent sources spread less in the random medium than
coherent beams [44–46].

The paper is organized as follows: In Sec. 2 we give a brief review of the theory of optical
turbulence. In Sec. 3 we develop the study of correlation beams in the atmosphere when the
nonlinear crystal is pumped by a coherent beam. In Sec. 4 we extend the theory to the case of
partially coherent correlation beams. Finally, in the appendices we provide some derivations of
the results discussed in Secs. 3 and 4.

2. Optical Turbulence

In fluid mechanics the Reynolds number is used to help predict similar flow patterns in differ-
ent fluid/gas flow situations. The Reynolds number is defined as the ratio of momentum forces
to viscous forces and quantifies the relative importance of these two types of forces for given
flow conditions. A turbulent flow occurs at high Reynolds numbers and is dominated by inertial
forces, which tend to produce chaotic eddies, vortices and other flow instabilities. Turbulent air
motion represents a set of vortices, or eddies, of various scale sizes, extending from a large scale
size L0 called the outer scale of turbulence to a small scale size l0 called the inner scale of tur-
bulence. Under the influence of inertial forces, large eddies break up into smaller ones, forming
a continuous cascade of scale sizes between L0 and l0 known as the inertial range. Scale sizes
smaller than the inner scale belong to the dissipation range. In the simplest case, when an op-
tical wave propagates through turbulence, the diffraction and scattering effects occur on these
eddies of different size (those by molecules or aerosols are neglected). A propagating beam
will deflect encountering an eddy that is larger than the beams transverse size, and will expand
- encountering an eddy smaller than its size, giving rise to intensity and phase fluctuations,
respectively, in the observation plane.

In the optical turbulence the most important process in optical wave propagation is the index-
of-refraction fluctuations. Fluctuations in the index of refraction are related to temperature and
pressure fluctuations. In particular, for optical and infrared wavelengths, the index of refraction
for the atmosphere can be written according to [47]

n(R)' 1+7.9×10−5 P(R)

T (R)
, (1)

where P is the pressure in millibars, and T is the temperature in Kelvin. There are a number
of turbulence models [16, 48–52] depending on whether one includes the effects of the inner
or outer scale. The simplest model is the Kolmogorov model for the power spectrum of index-
of-refraction fluctuations [52], which is valid in the inertial range between the inner and outer
scales:

Φ(κ) = 0.033C2
nκ
−11/3, 1/L0� κ � 1/l0, (2)

where C2
n is the index of refraction structure constant (in units of m−2/3). It determines the

strength of turbulence, with values ranging from 10−17m−2/3 for weak turbulence, to about
10−13m−2/3 for strong turbulence.
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To account for the behavior of the power spectrum outside the inertial range, several spectral
models were developed. These models include the Tatarskii spectrum [53]:

Φ(κ) = 0.033C2
nκ
−11/3 exp

(
− κ2

κ2
m

)
, (3)

which is valid when κ � 1/L0; κm = 5.92/l0, and the (modified) von Kármán spectrum [54]:

Φ(κ) = 0.033C2
nκ
−11/3 exp(−κ2/κ2

m)

(κ2 +1/L2
0)

11/6
, (4)

valid for 0≤ κ < ∞; κm = 5.92/l0. These latter models are not based on rigorous calculations
outside the inertial range, but more on mathematical convenience and tractability.

To describe an optical wave propagation through turbulent (random) media several approxi-
mation model were developed: the Born approximation, valid under extremely weak turbulence;
the Rytov approximation [55], valid under weak turbulence; for strong turbulence, the parabolic
equation method [56, 57], extended Huygens-Fresnel principle [58, 59], and the Feynman path
integral method [60, 61] have been developed. For non-classical light the parabolic equation
method has been used recently [62]. In this paper we adopt the extended Huygens-Fresnel prin-
ciple.

In the extended Huygens-Fresnel principle, the field that propagates from the source located
in the plane z = 0 is determined at the point r = (x,y) of the plane z = L via the expression

U(r,L) =
keikL

2πiL

∫ ∫
∞

−∞

d2s U0(s,0)exp
[

ik|s− r|2

2L
+ψ(r,s)

]
, (5)

where ψ(r,s) is the random part of the complex phase of a spherical wave propagating in the
turbulent medium from the point (s,0) to the point (r,L).

If the random medium is statistically homogeneous and isotropic, quantities that take the
account of statistical moments of the field are given by [16]

E1(0,0;0,0)≡ E1(0) = 〈ψ2(r,s)〉+
1
2
〈ψ2

1 (r,s)〉=−2π
2k2L

∫
∞

0
dκκΦn(κ), (6)

E2(r1,r2;s1,s2) = 〈ψ1(r1,s1)ψ
∗
1 (r2,s2)〉= 4π

2k2L
∫ 1

0
dξ

∫
∞

0
dκκΦn(κ)J0(κ|(1−ξ )p+ξ Q|), (7)

E3(r1,r2;s1,s2) = 〈ψ1(r1,s1)ψ1(r2,s2)〉

=−4π
2k2L

∫ 1

0
dξ

∫
∞

0
dκκΦn(κ)J0(κ|(1−ξ )p+ξ Q|)exp

[
− iLκ2

k
ξ (1−ξ )

]
,

(8)

where ξ ≡ 1− z/L, and p = r1− r2, Q = s1− s2.

3. Correlation Beams in the Turbulent Atmosphere

3.1. Correlation Beams

There exist correspondences between the fourth order correlation for the parametric down-
conversion field and the second-order correlation for the pump beam. In the degenerate para-
metric down-conversion process, the two-photon detection probability amplitude (or, equiva-
lently, the fourth-order correlation amplitude) behaves as a Huygens-Fresnel integral for the
electromagnetic field of pump propagating from the point S at z = 0 plane to the point r at the
detectors’ plane,

A(R1,R2) ∝ eikpz
∫

dSEp(S)e
ikp
2z (r−S)2

. (9)
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Here, Ep is the transverse (x,y) profile of the pump beam field, kp is the wavenumber of the
pump beam, ks = ki = kp/2, r = (r1 + r2)/2 and S = (s1 + s2)/2. In other words,

A(R1,R2) ∝ Ep

(
r1 + r2

2
,z
)
. (10)

Thus we see that the fourth-order correlation amplitude for the field generated by spontaneous
parametric down-conversion process resembles a field propagation integral, hence the expres-
sion “correlation beam”. This effect is a consequence of the transfer of angular spectrum of
pump to the downconverted field [63].

3.2. Two Photon Speckle

In order to study the effects of turbulent atmosphere on a non-classical light, e.g. a two-photon
field produced by spontaneous parametric downconversion process [43], one needs to take ac-
count of the fact that the two-photon (historically called signal and idler) probability amplitude
obeys the Wolf equations [64], and therefore exhibits propagation and diffraction phenom-
ena analogous to those of the second-order coherence function, including the Huygens-Fresnel
principle and van Cittert-Zernike theorem [65–67]. A duality accompanied with mathemati-
cal similarity between the two-photon probability amplitude and the second-order coherence
function for the incoherent source has previously been highlighted [68].

In the context of this work, light in a two-photon pure quantum state is described by a super-
position of pairs of spatiotemporal single modes, each mode pair with a certain probability of
being occupied by just two photons. This state may be entangled in frequencies and in trans-
verse modes.

Assuming that the two-photon state propagates through a random medium and that the co-
incidence rate P2 is measured as a function of the positions R1 and R2 of the two detectors at
times t1 and t2, one arrives at the concept of the two-photon speckle pattern P2(x1,x2), where
xi = (Ri, ti) [32]. For two independent photons, P2 factorizes: P2(x1,x2) = P1(x1)P1(x2), where
P1(xi) is the probability to detect a photon at a position ri at a time ti, i = 1,2. It describes
the one-photon speckle pattern and is proportional to the intensity of light at xi. It is important
to realize that P2 corresponds to a single realization of the random medium. It is therefore a
random quantity and fluctuates from one realization of disorder to another. To obtain a deter-
ministic quantity, one must average P2 over an ensemble of realizations of the random medium.
The problem of coincidence identification on the two remote locations without dedicated coin-
cidence hardware is solved using the time correlation of the photon pairs [69].

The two-photon speckle is given by the square magnitude of the two-photon probability
amplitude:

P2(x1,x2) = |A(x1,x2)|2 = |〈0,0|Ê
(+)
2 (x2)Ê

(+)
1 (x1)|ψ〉|2, (11)

where x1 = (r1,z1, t1) and x2 = (r2,z2, t2) . Ê(+)
1 (x1) and Ê(+)

2 (x2) are +z propagating, scalar,
quasi-monochromatic, paraxial, positive-frequency field operators [1] at x1, x2. They are ex-
pressed in terms of the annihilation operators âs(x) and âi(x) of the signal and idler systems at
the source (crystal) plane [68]:

Ê(+)
1 (x1) =

∫
dr hs(r1,r)âs(r, t1− z1/c), (12)

Ê(+)
2 (x2) =

∫
dr hi(r2,r)âi(r, t2− z2/c), (13)

with amplitude-response functions for signal and idler systems:

h j(r j,r) =
k jeik jz j

i2πz j
exp
{

ik j

2z j
|r j− r|2 +ψ

( j)(r j,r;k j)

}
, (14)
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with j = s, i. Finally, |ψ〉 is the two-photon state vector

|ψ〉=
∫∫

drdr′Ep

(
r+ r′

2

)
δ (r− r′)â†

s (r)â
†
i (r
′)|0,0〉

=
∫

drEp(r)|1r,1r〉,
(15)

which is maximally entangled in the configuration space variables. |1r〉 = 1
(2π)2

∫
dkeik·r|1k〉,

|1k〉 being the single photon Fock state of mode k.
Pictorially, the system is presented in the Fig. 1, where, for the completeness, we added an

amplitude-response system for the pump as well.

Fig. 1. Schematic diagram of the system considered. NLC represents a nonlinear crystal,
hp, hs and hi represent the amplitude response functions for the pump beam (p) and for
the down-converted photons (s, i). D1 and D2 represent the detectors and P2 represents
the fourth order correlation function, a measurable quantity which is proportional to the
two-photon joint detection probability.

When substituting Eqs. (12)-(15) into Eq. (11), the joint detection probability density func-
tion takes the following form:

P2(r1,r2) =
k2

4π2z2

∫∫
dr′dr′′Ep(r′)E∗p(r

′′)exp
{

ik
2z

[
|r1− r′|2−|r1− r′′|2 + |r2− r′|2−|r2− r′′|2

]}
×
〈
exp
[
ψ(r′,r1)+ψ

∗(r′′,r1)+ψ(r′,r2)+ψ
∗(r′′,r2)

]〉
,

(16)

where we dropped the time dependence in field operators and assumed the degenerate case, i.e.
k≡ ks = ki = kp/2, chose the detection plane at z≡ z1 = z2, also took a statistical average over
an ensemble of realizations of turbulent medium. Now, with the help of Eqs. (6)-(8) the last
exponential in Eq. (16) takes the form

〈exp [...]〉= exp
[
4E1(0)+2E2(0,0;r′,r′′)+E2(r1,r2;r′,r′′)+E2(r2,r1;r′,r′′)+2ReE3(r1,r2;0,0)

]
,

(17)
where it was assumed that the random part of the index-of-refraction is a Gaussian random field,
for which 〈exp(ψ)〉= exp

[
〈ψ〉+ 1

2

(
〈ψ2〉−〈ψ〉2

)]
holds. For the case x1 = x2 the two-photon

speckle takes the form

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2

∫∫
dr′dr′′Ep(r′)E∗p(r

′′)exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
−2Dsp(|r′− r′′|)

}
. (18)

Experimentally, it can be measured using, e.g., a two-photon absorber [65]. In Eq. (18), Dsp(ρ)
and σ2

sp(z) are the wave structure functions and the scintillation index for a spherical wave,
respectively, defined as

Dsp(Q) = 8π
2k2z

∫ 1

0
dξ

∫
∞

0
dκκΦ(κ) [1− J0(κξ Q)] , (19)

and

σ
2
sp(z) = 8π

2k2z
∫ 1

0
dξ

∫
∞

0
dκκΦ(κ)

[
1− cos

(
zκ2

k
ξ (1−ξ )

)]
. (20)
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For different models of turbulence power spectrum Φ(κ), they are given in the Appendix III of
Ref. [16] expressed in turbulence parameters. Going back to the more general case we recognize
in Eq. (17)

4E1(0)+E2(r1,r2;r′,r′′)+E2(r2,r1;r′,r′′) =−1
2
[
Dsp(p,Q)+Dsp(−p,Q)

]
, (21)

and

2E2(0;r′,r′′)+2ReE3(r1,r2;0) = 8π
2k2z

∫ 1

0
dξ

∫
∞

0
dκκΦ(κ)

×
[

J0(κξ Q)− J0(κξ p)cos
(

zκ2

k
ξ (1−ξ )

)]
= Dsp(p)−Dsp(Q)+4π

2z3
∫ 1

0
dξ

∫
∞

0
dκκ

5
Φ(κ)J0(κξ p)ξ 2(1−ξ )2,

(22)

where Dsp(p,Q) is the so called two-point spherical wave structure function:

Dsp(p,Q) = 8π
2k2z

∫ 1

0
dξ

∫
∞

0
dκκΦ(κ) [1− J0(κ|(1−ξ )p+ξ Q|)] . (23)

In the last line of Eq. (22), to have an analytical expression, we used geometrical optics approx-
imation, viz. zκ2/k� 1, to replace cosα by 1−α2/2 ( [16], ch.9). Using Tatarskii spectrum
(Eq. (3)) we evaluated the integral in Eq. (22) (for details, see the Appendix A). Now Eq. (16)
amounts to

P2(r1,r2) =
k2

4π2z2 exp

[(
1.58σ2

R,p

Λ0,pW 2
0
− 2

3ρ2
pl

)
p2−0.043π

2C2
nz3 p−7/3

]

×
∫∫

dSdQEp(S+Q/2)E∗p(S−Q/2)exp
[

ikp

z
(S ·Q− r ·Q)

]
× exp

[
−

(
1.58σ2

R,p

Λ0,pW 2
0

+
2

3ρ2
pl

)
Q2

]
,

(24)

where r = (r1 + r2)/2, Λ0,p = 2z/(kpW 2
0 ), ρpl is the so called plane-wave spatial coherence

radius and σ2
R,p = 1.23C2

nk7/6
p z11/6 is the Rytov variance.

It is interesting to compare the two photon speckle with the one-photon speckle which is
obtained in single photocounts (second order effect). The single-photon probability density is
given by [70]

P1(r1) =
∫

dr|Ep(r)|2|h1(r1,r)|2. (25)

Substituting the definition (14) in Eq. (25) one arrives at

P1(r1) =

(
k

2πz

)2 ∫
dr|Ep(r)|2 exp [ψ(r1,r;k)+ψ

∗(r1,r;k)] . (26)

Expanding ψ , as always, up to the second order, ψ1 +ψ2, ψ2� ψ1, and making an ensemble
average of the exponent we obtain

〈exp [ψ(r1,r;k)+ψ
∗(r1,r;k)]〉= exp

[
2σ

2
r1
−T

]
, (27)

where σ2
r1

describes the atmospherically induced change in the mean intensity profile in the
transverse direction, and T describes the change in the on-axis mean intensity at the receiver
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plane caused by turbulence [16, Ch. 6]. The one-photon speckle now looks like

P1(r1) =

(
k

2πz

)2
exp
[
2σ

2
r1
−T

]∫
dr|Ep(r)|2

=

(
k

2πz

)2
exp
[
2σ

2
r1
−T

]
× Ip|z=0.

(28)

It is proportional to the pump intensity at the crystal (z = 0), additionally affected by the turbu-
lence parameters represented by σ2

r1
and T .

3.3. Coherent Hermite-Gauss and Laguerre-Gauss Pump of any Order.

Now we consider the two-photon speckle for the case when the pump field is a Hermite-Gauss
beam

Ep(r) =UHG
mn (rx,ry,0) = Bm,nHm

(√
2

W0
rx

)
Hn

(√
2

W0
ry

)
exp

(
− r2

W 2
0

)
, (29)

where Hn(ρ) are Hermite polynomials and Bm,n =
[
W0
√

π2m+n+1m!n!
]−1

. In this case Eq. (18)
takes the following form

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2 |Bm,n|2
∫∫

dSdQ Hm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx−

Qx

2

)]

×Hn

[√
2

W0

(
Sy +

Qy

2

)]
Hn

[√
2

W0

(
Sy−

Qy

2

)]

× exp

[
− 2

W 2
0

(
S2

x +S2
y

)]
exp

[
− 1

2W 2
0

(
Q2

x +Q2
y

)]

× exp
[

ikp

z

(
SxQx +SyQy

)]
exp
[
−

ikp

z

(
rxQx + ryQy

)]
× exp

[
−

3.16σ2
R,p

Λ0,pW 2
0

(
Q2

x +Q2
y

)]
,

(30)

where we made the following change of variables in the source plane

Q = r′− r′′, S =
1
2
(
r′+ r′′

)
, Q = |Q|, S = |S|. (31)

In the Appendix B we evaluated this integral analytically. The result is

P2(r,r) =
e−σ 2

sp(z)

2πW 2
LT

exp
[
− 2r2

W 2
LT

] m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)[
W 2

2W 2
LT

]k+l H2k

[ √
2

WLT
rx

]
H2l

[ √
2

WLT
ry

]
k!l!

, (32)

where W represents the spot size of the pump beam on the observation plane in the absence
of turbulence. We also made the following definition: WLT ≡W

√
1+6.32σ2

R,pΛ. Note that, as

one would expect, in the no turbulence limit, σ2
sp(z)→ 0, WLT →W , and Eq. (32) reduces to

P2(r,r) = |Bm,n|2
W 2

0
W 2 H2

m

[√
2

W
rx

]
H2

n

[√
2

W
ry

]
exp
[
−2r2

W 2

]
, (33)

where we have used the identity [71]:

H2
m(x) = 2m(m!)2

m

∑
k=0

H2k(x)
2k(k!)2(m− k)!

. (34)
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Similarly, we have a final exression for r1 6= r2 case

P2(r1,r2) =
1

2πW 2
LT 1

exp

[(
1.58σ2

R,p

ΛpW 2 −
2

3ρ2
pl

)
p2−0.043π

2C2
nz3 p−7/3

]
e
− 2r2

W2
LT 1

×
m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)[
W 2

2W 2
LT 1

]k+l H2k

[ √
2

WLT 1

( rx2+rx1
2
)]

H2l

[ √
2

WLT 1

(
ry1+ry2

2

)]
k!l!

,

(35)

where WLT 1 = W
√

1+6.32σ2
R,pΛ+ 4Λ2W 2

3ρ2
pl

. Eq. (35) also reduces to an expected expression

(see Eq. (10)) for the vacuum limit justifying the concept of the correlation beam

P2(r1,r2) = |Bm,n|2
W 2

0
W 2 H2

m

[√
2

W

(
rx2 + rx1

2

)]
H2

n

[√
2

W

(
ry1 + ry2

2

)]
exp
[
−2r2

W 2

]
, (36)

with r = |r1 + r2|/2.
It is interesting to analyse the m = 1, n = 0 case, for which Eq. (32) takes the form

P(10)
2 (r,r) =

e−σ 2
sp(z)

2πW 2
LT

exp
[
− 2r2

W 2
LT

](
1+

4W 2

W 4
LT

r2
x −

W 2

W 2
LT

)
. (37)

In Fig. 2 we plot the normalized version of Eq. (37) as a function of rx for ry = 0 correspond-
ing to the cases: vacuum, moderate turbulence, moderate-to-strong and strong turbulence for a
propagation distance of z = 5km. The normalization is made by dividing Eq. (37) by its maxi-
mum value (1/πW 2e) in the absence of turbulence. For simplicity, we took σ2

sp(z) = 0.4σ2
R for

the Kolmogorov spectrum (2) from the Appendix III of ref. [16].

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

x (m), w0=0.013m

z= 5000 m

Vacuum
Cn
2=10-13.2 m-2/3

Cn
2=10-13.8 m-2/3

Cn
2=10-14.5 m-2/3

Fig. 2. The normalized two-photon speckle (TPS) for the HG10 pump case under turbulence
conditions: strong (dashed), strong-to-moderate (dashed-dotted), moderate (dotted) and no
turbulence (solid). The normalization is made by dividing Eq. (37) by its maximum value
(1/πW 2e) in the absence of turbulence. For simplicity, we took σ2

sp(z) = 0.4σ2
R for the

Kolmogorov spectrum.

The plot resembles the result [16, ch.17] for HG10 laser beam intensity. This is again a
manifestation of the beam-like behavior of spatial correlations in two-photon states generated
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by spontaneous parametric down-conversion. We see that the coincident counts reduce signif-
icantly in the strong turbulence regime. Another important conclusion can be drawn from this
result: the amount of the HG00 mode is appreciable even in moderate turbulence, meaning that
cross-talk between modes increases with turbulence, degrading the dimensionality of the alpha-
bet based on higher-order Gaussian modes. The dimensionality degradation of Laguerre-Gauss
modes due to turbulence has been experimentally demonstrated in Ref. [13].

3.4. Coherent Laguerre-Gauss Pump of any Order.

In calculating the two-photon speckle we have used Hermite-Gauss functions to represent the
transverse profile of the pump. We have done so due to relatively simpler manipulations that
Hermite-Gauss functions permit, which lacks when dealing with Laguerre-Gauss functions.
Using the fact that Hermite-Gauss and Laguerre-Gauss modes are converted one into another
by a basis change [72], viz.

ULG
mn (x,y,z) =

m+n

∑
k=0

ikb(m,n,k)UHG
m+n−k,k(x,y,z), (38)

where

b(m,n,k) =

√
(m+n− k)!k!

2m+nm!n!
1
k!

dn

dtn [(1− t)m(1+ t)n]t=0 , (39)

and m+n = 2p+ |l|, one immediately has a solution for the two-photon speckle for a Laguerre-
Gauss pump of any order.

4. Partially Coherent Pump

When the χ(2) crystal is pumped by a partially coherent beam in the expression for the two-
photon speckle (Eq. (16)) one must take the ensemble averaged quantity 〈EpE∗p〉 over different
realizations of the field, which, assuming a monochromatic source, is the cross-spectral den-
sity function W (c)(r1,r2), where the superscript (c) indicates the cross-spectral density propa-
gated until the surface of the χ(2) crystal. The monochromaticity condition is not crucial here
since one could use, instead of cross-spectral density function, the mutual coherence func-
tion Γ(r1,r2,τ), which is related with the cross-spectral density function by two-dimensional
Fourier transformation. In this case the equation holds for each Fourier component.

The two photon speckle now takes the form

P2(r1,r2) =
k2

4π2z2

∫∫
dr′dr′′W (c)(r′,r′′)

× exp
{

ik
2z

[
|r1− r′|2−|r1− r′′|2 + |r2− r′|2−|r2− r′′|2

]}
× exp

[
−1

2
[
Dsp(p,Q)+Dsp(−p,Q)

]
+Dsp(p)−Dsp(Q)−0.043π

2C2
nz3 p−7/3

]
,

(40)

where we dropped the ω-dependence. For the case x1 = x2 we have

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2

∫∫
dr′dr′′W (c)(r′,r′′)

× exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
−2Dsp(|r′− r′′|)

}
.

(41)

As a model we choose a Gaussian-Schell-model source, which is characterized by a cross-
spectral density function of the form [45, 65]

W (0)(r1,r2,ω) =

√
S(0)(r1,ω)S(0)(r2,ω)µ(0)(r1,r2,ω), (42)
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where

S(0)(r,ω) = M exp
[
− |r|

2

2σ2
s

]
, µ

(0)(r1,r2,ω) = exp

[
−|r1− r2|2

2σ2
µ

]
(43)

are the spectral density and the spectral degree of coherence of the source, respectively. M is a
positive constant, σs and σµ are the effective widths of spectral density and spectral degree of
coherence, respectively. Now one can rewrite Eq. (41) in the form

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2

∫∫
dSdQ W (c)(S+Q/2,S−Q/2)exp

{
ikp

z
[S ·Q− r ·Q]−2Dsp(Q)

}
=

Mk2e−σ 2
sp(z)

4π2z2

∫∫
dSdQ exp

[
− S2

2σ2
s
− Q2

2σ2
∆

]
exp
{

ikp

z
[S ·Q− r ·Q]−2Dsp(Q)

}
,

(44)

where 1/σ2
∆
= 1/4σ2

s +1/σ2
µ .

The integral (44) evaluates to

P2(r,r) =
Me−σ 2

sp(z)

∆2(z)
exp
{
− r2

2σ2
s ∆2(z)

}
, (45)

where

∆
2(z) = 1+

1
(kpσs)2

(
1

4σ2
s
+

1
σ2

µ

)
z2 +

1.58C2
nk1/6

p

σ2
s

z13/6. (46)

In Eq. (45)
√

2σs∆(z) represents the overall spread (vacuum and turbulence induced) of the
partially coherent two-photon correlation beam. We note that Eq. (45) recovers the result in
Ref. [45] for a partially coherent beam but our result is for fourth order correlations. This is
a manifestation of the concept of correlation beam introduced in Sec. 3.1. Eq. (46) depicts
the spread of a partially coherent beam in the atmosphere when the approximation z� zi is
satisfied where zi represents the propagation distance at which the transverse coherence radius
of optical wave is of the order of the inner scale l0. For the other limit, z� zi, Eq. (46) takes
the following form

∆
2(z) = 1+

1
(kpσs)2

(
1

4σ2
s
+

1
σ2

µ

)
z2 +

0.55C2
n l−1/3

0
σ2

s
z3. (47)

In Eqs. (46) and (47), the first two terms represent the vacuum induced spreading, the third
therm – the turbulence induced spreading. As we see from Eqs. (46) and (47), turbulence effects
become dominant for long propagation distances. For a fully coherent Gaussian beam (σµ =∞),
∆2(z) is larger, and (45) is appreciably changed in comparison with the beam propagating in
free space. In Fig. 3 we show the normalized version of Eq. (45) for fully and partially coherent
Gaussian pump beam cases. The normalization is made by dividing it by the on-axis probability
P2(r = 0,z)|C2

n=0,σµ=0 = M/(1+(πz/2kpσ2
s )

2) and by e−σ2
sp(z):

PN
2 (r,r) =

1+(z/2kpσ2
s )

2

∆2(z)
exp
{
− r2

2σ2
s ∆2(z)

}
. (48)

As the figures show, the two-photon speckle of the fully coherent correlation beam propagat-
ing through the atmospheric turbulence is appreciably changed in comparison with that of the
same beam propagating in vacuum, whereas the two-photon speckle of the partially coherent
correlation beam is nearly the same as of the correlation beam propagating in vacuum. Thus, in
analogy with the classical case [45], partially coherent correlation beams are also less affected
by atmospheric turbulence than fully coherent ones. It should be noted that despite this robust-
ness of partially coherent beams to atmospheric turbulence, it is not clear that they can be used
to implement larger alphabets for quantum communications.
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Fig. 3. Normalized two-photon speckle profile for the case when the χ(2) crystal is pumped
by (a) a fully coherent (σµ → ∞) Gaussian beam and (b) a partially coherent (σµ = 2mm)
Gaussian beam, both under the conditions kp = 10−7m−1, C2

n = 10−13.6m−2/3, l0 = 0.01m,
σs = 5mm.

4.1. Two-Photon Speckle in Coherent-Mode Representation.

The cross-spectral density function of a planar, rectangular Gaussian-Schell-model sources may
have coherent-mode representation of the following form [45]

W (0)(r1,r2,ω) = ∑
m

∑
n

βm,n(ω)φ
(0)∗
n (r1,ω)φ

(0)
n (r2,ω), (49)

where

βm,n(ω) = M
(

π

a+b+ c

)(
b

a+b+ c

)m+n
, (50)

with a = 1/4σ2
s , b = 1/2σ2

µ , c =
√

a2 +2ab, and the coherent modes φ (0)(r,ω) are given
by

φ
(0)(r,ω) = φ

(0)(rx,ry,ω) = Bm,nHm

[√
2

W0
rx

]
Hn

[√
2

W0
ry

]
exp

[
−

r2
x + r2

y

W 2
0

]
, (51)

with W0 = 1/
√

c. Using (49) with (51), the two-photon speckle (41) takes the form

P(pcoh)
2 (r,r) =

k2e−σ 2
sp(z)

4π2z2 ∑
m

∑
n

βm,n|Bm,n|2

×
∫∫

dr′dr′′ Hm

[√
2

W0
r′x

]
Hm

[√
2

W0
r′′x

]
Hn

[√
2

W0
r′y

]
Hn

[√
2

W0
r′′y

]

× exp

[
−

r′2x + r′′2x + r′2y + r′′2y

W 2
0

]
exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
−2Dsp(|r′− r′′|)

}
.

(52)

We notice that the integral in (52) is exactly the one in (30) if one makes the change of variables
(31), so that we can write

P(pcoh)
2 (x,x) =

∞

∑
m=0

∞

∑
n=0

βm,n|Bm,n|2P(coh)
2 (x,x), (53)

which is an incoherent sum of probabilities of type (32) with βm,n given in (50).
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5. Conclusion

In conclusion, we have analytically derived expressions for joint detection probability density
function (two photon speckle) for the correlation beams that propagate through highly turbu-
lent atmosphere. We considered the cases when (i) the beam pumping the χ(2) crystal in spon-
taneous parametric down-conversion process is coherent Hermite-Gauss and Laguerre-Gauss
beam, and (ii) when it is a partially coherent beam from a Gaussian-Schell model source. The
joint detection probability density function for the partially coherent source is shown to be an
incoherent sum of those for coherent sources. In addition, we reproduce, in fourth order cor-
relations, the results in Refs. [16, Ch. 17], [73] and [45], done for classical case i.e. in second
order correlation for ordinary classical beams.

As a perspective, one can consider the problem for different pump beam models, e.g. cosh-
Gauss, Hermite-cosh-Gauss beams [75], Bessel and Bessel-Gauss beams, etc. which have inter-
esting properties and may be applied in communication schemes. As for the partially coherent
case one can also consider the phase screen model [76] instead of the Gaussian-Schell model
we considered here.

An important potential application of our results is the determination of the turbulence pa-
rameters: the strength of turbulence σR or C2

n , the inner l0 and outer L0 scales, etc. by measuring
the signal and idler photons in coincidence. The question whether the correlation beams are
advantageous in comparison with a laser beams is still open. The extended Huygens-Fresnel
principle that we extensively used for correlation beams can be applied in two-photon imaging
systems, together with ABCD ray matrix formalism and Zernike polynomials [77], to calculate
the first few turbulence induced aberrations such as piston, tilt, focus, astigmatism, coma and
so forth.

Appendix A: Evaluation of the integral in Eq. (22)

I = 4π
2z3
∫ 1

0
dξ

∫
∞

0
dκκ

5
Φ(κ)J0(κξ p)ξ 2(1−ξ )2. (54)

Using Tatarskii spectrum (3), viz.,

Φ(κ) = 0.033C2
nκ
−11/3 exp

(
−κ2

κ2
m

)
, (55)

we have ∫
∞

0
κ

4/3 exp
[
− κ2

κ2
m

]
J0(κξ p)dκ = 0.033C2

n
Γ(7/6)κ7/3

2 1F1

(
7
6

;1;−ξ 2 p2κ2
m

4

)
, (56)

where we used the integral 14 of [16, Appendix II]. 1F1(a;c;−z) is the Confluent Hypergeo-
metric Function.

Now, using the asymptotic form of the Hypergeometric Function for the case Re(z)� 1,
viz.,

1F1(a;c;−z)∼ Γ(c)
Γ(c−a)

z−a, Re(z)� 1,

we can simplify Eq. (56) further:

∫
∞

0
κ

4/3 exp
[
− κ2

κ2
m

]
J0(κξ p)dκ ≈ 0.033C2

n
Γ(7/6)

2Γ(1−7/6)

(
ξ 2 p2

4

)−7/6

≈−0.016C2
nξ
−7/3 p−7/3.

(57)

This approximation is valid since ξ 2 p2κ2
m/4� 1 for the following reasons: ξ is a variable

that changes between 0 and 1, p is the distance between the detectors, so it can be chosen
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appropriately. Lastly and most importantly, κm ≡ 5.29/l0� 1 for the inner scale l0 is a small
quantity.

Finally, Eq. (54) takes the form

I =−0.046π
2z3C2

n p−7/3
∫ 1

0
ξ
−1/3(1−ξ )2dξ =−0.043π

2z3C2
n p−7/3. (58)

Appendix B: evaluation of the Integral (30)

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2

∫∫
dSdQ Hm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx−

Qx

2

)]

×Hn

[√
2

W0

(
Sy +

Qy

2

)]
Hn

[√
2

W0

(
Sy−

Qy

2

)]

× exp

[
− 2

W 2
0

(
S2

x +S2
y

)]
exp

[
− 1

2W 2
0

(
Q2

x +Q2
y

)]

× exp
[

ikp

z

(
SxQx +SyQy

)]
exp
[
−

ikp

z

(
rxQx + ryQy

)]
× exp

[
−

3.16σ2
R,p

Λ0,pW 2
0

(
Q2

x +Q2
y

)]
.

(59)

All the integrals’ limits are ±∞ unless stated otherwise.

Integration in Sx and Sy variables. Separating the Sx integral and calling it Ix we have

Ix =
∫

dSx Hm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx−

Qx

2

)]
exp

[
−

(
2

W 2
0

S2
x −

ikpQx

z
Sx

)]
. (60)

The expression in the exponent can be written as

2
W 2

0
S2

x −
ikpQx

z
Sx =

(√
2

W0
Sx−

ikpQxW0

2
√

2z

)2

+
k2

pQ2
xW 2

0

8z2 .

We define ξ =
√

2
W0

Sx−
ikpW0
2
√

2z
Qx so that dSx =

W0√
2
dξ and

√
2

W0

(
Sx±

Qx

2

)
= ξ +

Qx√
2W0

(
i
kpW 2

0
2z
±1
)
.

Now Ix looks like

Ix =
W0√

2
exp

[
−1

2

(
kpQxW0

2z

)2
]∫

dξ Hm [ξ +η ]Hm [ξ +ζ ]e−ξ 2
, (61)

where we also defined η = Qx√
2W0

(
i kpW 2

0
2z +1

)
and ζ = Qx√

2W0

(
i kpW 2

0
2z −1

)
. Using [74, formula

7.377], viz.,∫
dξ Hm [ξ +η ]Hn [ξ +ζ ]e−ξ 2

= 2n√
πm!ζ n−mLn−m

m (−2ηζ ), [m≤ n],

where Lα
m are the generalized Laguerre polynomials, L0

m ≡ Lm , one arrives at

Ix =
W0√

2
exp

[
−1

2

(
kpQxW0

2z

)2
]

2m√
πm!Lm

[(
1

W 2
0
+

(
kpW0

2z

)2
)

Q2
x

]
. (62)
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Similar steps bring us to the expression for Iy, viz.,

Iy =
W0√

2
exp

[
−1

2

(
kpQyW0

2z

)2
]

2n√
πn!Ln

[(
1

W 2
0
+

(
kpW0

2z

)2
)

Q2
y

]
. (63)

Now (59) has the form (note that the coefficients exactly cancel B2
m,n)

P2(r,r) =
k2e−σ 2

sp(z)

4π2z2

∫∫
dQxdQy Lm(αQ2

x)Ln(αQ2
y)exp[−β (Q2

x +Q2
y)]exp

[
−

ikp

z
(rxQx + ryQy)

]
,

(64)
where we defined

α ≡ 1
W 2

0
+

(
kpW0

2z

)2

, β ≡
3.16σ2

R,p

Λ0,pW 2
0

+
1

2W 2
0
+

1
2

(
kpW0

2z

)2

=
3.16σ2

R,p

Λ0,pW 2
0

+
α

2
.

Integration in Qx and Qy variables. The integral in Qx, which we call Jx, is the following

Jx =
∫

dQx Lm[αQ2
x ]exp

[
−
(

βQ2
x +

ikprx

z
Qx

)]

= exp

[
− 1

β

(
kprx

2z

)2
]∫

dQx Lm[αQ2
x ]exp

−(√βQx +
ikprx

2
√

β z

)2
 . (65)

Changing the variables ξ ≡
√

βQx and η ≡−ikprx/(2
√

β z), we have

Jx =
1√
β

exp

[
− 1

β

(
kprx

2z

)2
]∫

dξ Lm

(
α

β
ξ

2
)

e−(ξ−η)2
. (66)

Now we use the series representation of the Laguerre polynomial [71]

Lm(x) =
m

∑
k=0

(
m
k

)
(−1)k

k!
xk,

to write the above integral as

Jx =
1√
β

exp

[
− 1

β

(
kprx

2z

)2
]

m

∑
k=0

(
m
k

)
(−1)k

k!

(
α

β

)k ∫
dξ e−(ξ−η)2

ξ
2k. (67)

Using formula 3.462−4 of Ref. [74],∫
dxe−(x−y)2

xn = (2i)−n√
πHn(iy),

we arrive at

Jx =
1√
β

exp

[
− 1

β

(
kprx

2z

)2
]

m

∑
k=0

(
m
k

)
(−1)k

k!(2i)2k

(
α

β

)k
H2k

[
kprx

2
√

β z

]
. (68)

Integration in Qy brings us to a similar expression,

Jy =
1√
β

exp

[
− 1

β

(
kprx

2z

)2
]

n

∑
l=0

(
n
l

)
(−1)l

l!(2i)2l

(
α

β

)l
H2l

[
kprx

2
√

β z

]
. (69)
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Finally, Eq. (64) takes the following form

P2(r,r) =
k2e−σ 2

sp(z)

4πz2β
exp

[
− 1

β

(
kpr
2z

)2
]

m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)[
α2

2β 2

]k+l H2k

[
kprx

2
√

β z

]
H2l

[
kprx

2
√

β z

]
k!l!

. (70)

One can write this expression in terms of output pump-beam parameters. To do so, notice
that

W =W0

√
1+Λ2

0,p =W0Λ0,p

√
1+

1
Λ2

0,p
=

2z
kpW0

√
1+

1
Λ2

0,p
,

where we used input parameters Θ0 = 1− z
F0
, Λ0 = 2z

kW 2
0

and the output beam parameters

Θ = 1+ z
F = Θ0

Θ2
0+Λ2

0
, Λ = 2z

kW 2 = Λ0
Θ2

0+Λ2
0
, Θ = 1−Θ, with Θ0 = 1 for a collimated beam,

α =
1

W 2
0

(
1+

1
Λ2

0

)
=

W 2k2
p

4z2 , β =
3.16σ2

R,p

Λ0,pW 2
0

+
α

2
=

3.16σ2
R,p

ΛpW 2 +
W 2k2

p

8z2 ,

kp

2
√

β z
=

kp

2z

√
3.16σ2

R,p
ΛpW 2 +

W 2k2
p

8z2

=

√
2

W

√
1+

3.16σ2
R,p

ΛpW 2
8z2

k2
pW 2

≡
√

2
WLT

,

where WLT ≡W
√

1+6.32σ2
R,pΛ and β/α =

(
1+6,32σ2

R,pΛ

)
/2 =W 2

LT/(2W 2).

With these formulas, Eq. (70) takes the form

P2(r,r) =
e−σ 2

sp(z)

2πW 2
LT

exp
[
− 2r2

W 2
LT

] m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT )

2k+2l

2k+lk!l!
H2k

[ √
2

WLT
rx

]
H2l

[ √
2

WLT
ry

]
. (71)
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