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Abstract  

Thinking about the global and local demand to increasing renewable energy share, a 
concern of this century, this research presents an outstanding workflow for the 
advancement of photovoltaic (PV) energy and smart and solar cities. The methodology 
allows producing and analyzing spatial information that can guide and accelerate 
sustainable energy transitions, making them more feasible, intelligent, social engaged, 
and affordable.  

The paradisiacal Fernando de Noronha Island (PE, Brazil) (FNI) was chosen as the study 
area because it predominantly depends on imported diesel to produce power, which 
results on an electrical matrix with higher costs and environmental impacts. Despite 
being a common reality for small and isolated islands, it is a paradoxical situation since 
FNI has great potential for generating wind and solar energy, is protected by 
environmental law, has high-standard tourism and sustainable development plans, and 
is internationally recognized by its extraordinary nature. 

To estimate the PV potential of each roof and open area, which are respectively the 
locations for the installation of decentralized and centralized PV systems, initially, an 
unmanned aerial vehicle (UAV) photogrammetric survey was performed to generate an 
orthophoto (GSD of 5.3 cm) and a digital surface model (DSM) (GSD of 50 cm). In 
sequence, the DSM was used to produce the solar irradiation model of the Environmental 
Protected Area of FNI, which was calibrated for local climatic conditions, and then used 
as a basis for estimating the individual and total photovoltaic potential of the available 
surfaces. The analysis resulted on a Total Combined PV Potential of 118.6 GWh/yr. For 
the 1272 buildings identified, the Total Decentralized PV Potential was 51.6 GWh/yr, and 
for the 26 open areas, the Centralized PV Potential was 67.0 GWh/yr. 

To demonstrate the application of this information in the context of planning PV 
transitions and solar cities, based on the analysis of the PV potentials, 9 energy transition 
scenarios were suggested, combining decentralized and centralized sources in different 
proportions to produce 20.2 GWh/year, in an integrated way. In addition to considering 
the location and photovoltaic potential of possible surfaces, these transition scenarios 
consider real factors that limit decentralized production, such as the percentage of 
buildings that will adopt PV systems (25%, 50%, 75%) and the roof area occupied by PV 
systems (10%, 25%, 50%). For example, in scenario “I” (greater use of decentralized 
sources), 22.0 GWh/yr of PV energy can be produced within rooftops, with centralized 
plants not being necessary. In scenario “A” (greater use of centralized sources), rooftops 
can produce 1.7 GWh/yr, requiring 18.5 GWh/yr, or 66443 m² of centralized PV energy. 
Depending on the degree of decentralization, the cost estimated for a PV transition vary 
between 550 and 2160 thousand US dollars. Finally, FNI has sufficient PV potential to 
achieve the transition, being able to combine centralized and decentralized production 
in different proportions. 

Keywords: Photovoltaic, Irradiation, UAV, Photogrammetry, Energy transitions, Islands. 

 

 



 
 

 
 

Resumo 

Pensando na demanda global e local de aumentar a participação de energias 
renováveis, uma preocupação deste século, esta pesquisa apresenta um fluxo de 
trabalho de destaque para o avanço da energia fotovoltaica (PV) e cidades solares. A 
metodologia permite gerar e analisar informações espaciais que podem guiar e acelerar 
transições energéticas sustentáveis, tornando-as mais viáveis, inteligentes e 
econômicas.  

A paradisíaca Ilha de Fernando de Noronha (PE, Brasil) foi escolhida como área de 
estudo pois depende predominantemente da importação de diesel para produzir 
eletricidade e, em consequência disto, possui uma matriz elétrica de altos custos e 
impactos ambientais. Apesar de ser uma realidade comum para ilhas pequenas e 
isoladas, é uma situação paradoxal visto que FNI possui grande potencial para geração 
de energia eólica e solar, é um ambiente com leis de proteção ambiental, turismo de alto 
padrão, planos de desenvolvimento e sustentabilidade, e natureza reconhecida 
internacionalmente.  

Para estimar o potencial PV de cada telhado e área aberta, que são respectivamente os 
locais para instalação de fontes PV descentralizadas e centralizadas, inicialmente foi 
realizado levantamento fotogramétrico com drone para gerar uma ortofoto (GSD de 5.3 
cm) e um modelo digital de superfície (DSM) (GSD de 50 cm). Em sequência, utilizou-
se o DSM para produzir o modelo de irradiação solar na APA de FNI, que foi calibrado 
para condições climáticas locais, e depois serviu de base para estimar o potencial PV 
individual e total das possíveis superfícies. Os resultados da análise apontam que o 
Potencial PV Total Combinado é de 118,6 GWh/ano, sendo que para as 1272 
edificações identificadas o Potencial PV Total Descentralizado é de 51,6 GWh/ano, e 
para as 26 áreas abertas o Centralizado é 67,0 GWh/ano. 

Para demonstrar a aplicação dessas informações para o planejamento de transições 
PV, com base na análise dos potenciais estimados, foram sugeridos 9 cenários de 
transição energética que combinam em diferentes proporções as fontes 
descentralizadas e centralizadas, para produzir de forma integrada 20.2 GWh/ano. Além 
de considerar a localização e o potencial PV das possíveis superfícies, estes cenários 
de transição consideram fatores reais que limitam a produção descentralizada, como a 
porcentagem de construções que vão adotar os sistemas PV (25%, 50%, 75%) e a área 
de telhado ocupada para produção PV (10%, 25%, 50%). Por exemplo, no cenário “I” 
(maior uso da produção descentralizada) pode-se produzir 22,0 GWh/ano nos telhados, 
sendo desnecessário usinas PV centralizadas. No cenário “A” (maior uso da produção 
centralizada), 1,7 GWh/ano podem ser produzidos em telhados, requirindo pelo menos 
18,5 GWh/ano, ou 66443 m² de produção PV centralizada. Dependendo do grau de 
descentralização, o custo estimado para uma transição fotovoltaica varia entre 550 e 
2160 milhares de dólares americanos. Por fim, FNI tem suficiente potencial PV para 
alcançar a transição, podendo combinar a produção centralizada e descentralizada em 
diferentes proporções.  

Palavras-chave: Fotovoltaica, Irradiação, Drone, Fotogrametria, Transição energética, Ilhas. 
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1. Introduction 

The social, environmental, and economic demands of the 21st century push-
forward our society towards a renewable energy transition. Typically, in the case 
of isolated islands, where diesel power plants are the main source of energy, the 
energy matrix is centralized and associated with high costs and environmental 
impacts. As power alternatives, renewable sources are technologies that are 
more reliable, economic, environmentally friendly, and capable of 
decentralization. In this context, solar photovoltaic (PV) energy is one of the keys 
technologies to achieve a clean energy future and sustainable world.  

Thinking on smart and solar cities, they aim to analyze and efficiently use the 
solar resource to produce PV. In this way, solar irradiation modeling is a powerful 
technique that enable estimation of PV potential in surfaces, such as rooftops or 
open areas, which are most common surfaces to produce PV power in 
decentralized and centralized ways, respectively. In irradiation modeling, the 
spatial resolution must be considered when using the tool for decision-making 
and planning. Only high spatial resolution irradiation models, with maximum 
ground sample distance (GSD) of 100 cm, can discount shading caused by 
buildings and trees and also model slope, aspect, and elevation of surfaces.  

In this perspective, unmanned aerial vehicles (UAVs) photogrammetry is a 
remote sensing (RS) technique that are transforming the production of high 
spatial resolution orthophotos and digital elevation models, and, in consequence, 
innovative and affordable solutions are being developed for spatial analysis on 
geographic information systems (GIS) environments. In the context of developing 
countries, where there is a huge demand for high quality GIS data, which could 
promote environment and territorial management, urban planning, renewable 
energy transition planning, among others development processes, UAV 
photogrammetry is a powerful tool to generate spatial data that assist policy and 
decision making.  

With all this perspective, this study took place in Fernando de Noronha Island 
(FNI), located 355 km offshore from the Brazilian northeast coast, at 3°51’S and 
32°25’W. It is a tropical, remote island that depend on diesel importation to 
produce electricity, with only 8% of renewable energy penetration. In that way, 
this research focuses on the integration of RS and GIS techniques to collect and 
produce spatial data that elucidate the PV potential of FNI. To this extent, a UAV 
photogrammetry survey was conducted in December 2019 to produce a digital 
surface model and an orthophoto, which were used to produce the solar 
irradiation model and to perform the PV potential analysis in FNI, considering the 
building rooftops as surfaces for decentralized PV production and the open areas 
as places to install PV plants, representing the centralized PV production. Based 
on real-world factors limiting decentralized PV Potential (percentages of buildings 
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adopting PV rooftop systems and rooftop area occupied by PV modules) and 
centralized PV Potential (areas already cleared, without vegetation), scenarios of 
PV energy transition considering different proportions of decentralization are 
suggested for FNI. 

1.1. Characterization of the problem and justifications of the research 

FNI faces a typical small island problem, the dependence fossil fuels for power 
production and energy security. Regarding renewable energy consumption in 
FNI, the Solar Plants Noronha I and Noronha II were designed to produce 1.4 
GWh, which corresponds to less than 8% of the electricity produced by the 
Tubarão Thermoelectric Plant in 2018, which were 19.4 GWh, as reported by 
Celpe (2019). Figure 1 illustrates the location of power plants in FNI. The 
negative, unnecessary consequence of that is a centralized energy system with 
a high rate of greenhouse gases (GHG) and pollutant emissions, high electricity 
costs, and low levels of energy security and autonomy. In this manner, FNI aims 
to reduce the reliance and consumption of fossil fuels and increase the 
participation of renewable energy sources. 

 

Figure 1. Location of PV and diesel power plants in the Archipelago of Fernando 
de Noronha. The background image is a modified Landsat 8 OLI/TIRS Level-1, 
from July 2019.  

Regarding photovoltaic energy production, it is well known that the greater the 
solar irradiation incident on a PV module installed on a given surface, the greater 
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the production of electricity. Thinking on an efficient transformation of solar 
radiation in PV power, it is recommended that PV module are installed on 
surfaces with less shading and with an optimum slope and orientation angles. In 
this context, solar irradiation modeling and analysis in high spatial resolution 
produce data that enlighten the numbers regarding the potential to generate PV 
power in any given area. However, it is worth mentioning that there is no available 
spatial data in high spatial resolution for modeling the solar resource in FNI, which 
is essential for the planning, acceleration, and guiding of a renewable energy 
transition.  

FNI is a place of remarkable, paradisiac landscapes, with a magnificent flora and 
fauna and a vulnerable ecosystem, which is particularly important for 
reproduction and nursery of birds and maritime species. Moreover, the 
Archipelago is protected by federal environmental legislation and is recognized 
as a Natural World Heritage Site (UNESCO, 2020). Thereby, the island was 
chosen as a study area because environmental awareness is vivid and 
sustainable actions are regularly engaged by the local islanders, government 
administration, tourists, private sector, and non-government organizations.  

Furthermore, FNI was also selected because of its territorial and populational 
sizes, which are suitable for the workflow proposed in this dissertation and works 
as a small-scale example that can be replicated later in larger areas. 
Nonetheless, taking advantage of FNI world-wide recognition, this research 
demonstrates that environmental sciences tools and methods have great 
potential to contribute to real world demands and decision-making processes, 
such as planning of renewable energy transitions. 

Key questions that guided this research were “Which and where are the available 
surfaces for installing PV systems?” and “Does FNI have enough photovoltaic 
potential to achieve a renewable energy transition?”. 

1.2. Proposed solution and methods 

1.2.1. General objective 

Integrate UAV photogrammetric surveying and GIS solar irradiation modeling and 
analysis to propose 9 scenarios of PV transition for FNI. 

1.2.2. Specific objectives 

To achieve the general objective, the specific objectives aimed in this research 
are: 

a) Perform and evaluate a UAV photogrammetric survey to produce an 
orthophoto and a digital surface model of FNI.  
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b) Model and analyze solar irradiation in the Area of Environmental 
Protection of FNI (APA-FNI) with a GSD of 50 cm. In sequence, estimate 
individual and total PV potential of rooftops (decentralized) and open areas 
(centralized). 

c) Propose scenarios of PV transitions, where decentralized (PV rooftop) and 
centralized (PV plants) sources are combined in different proportions, real-
world limiting factors are considered, and cost estimation analysis are 
performed.  

1.3. Originalities 

This research presents innovative ideas and point of views that were inspired on 
papers that focused on UAV photogrammetry, high spatial resolution irradiation 
modeling and renewable energy transitions in islands. In the course of the 
literature review, although papers discussed UAV photogrammetry and 
irradiation modeling in cities or analyzed low resolution irradiation data to locate 
PV plants in islands, none had integrated the three topics in a single research.  

It is likely that this research is the first one to do both, consider an island 
environment and produce an irradiation modeling based on UAV 
photogrammetric survey.  

Another original element of this research is to associate high resolution irradiation 
data to propose scenarios to achieve PV transition, in a way that centralized (PV 
plants) and decentralized (PV rooftops) sources are combined in several 
proportions. It is considered real-world limitations for PV decentralized 
production, such as percentage of rooftop area occupied by PV modules and 
percentage of buildings that will install PV power systems, because some 
buildings do not have enough roof structure to support the weight of PV systems. 
Moreover, the suggested areas to install centralized PV plants are areas that had 
been previously cleared, which contribute to reduce pressure on scarce 
vegetated lands.  

Worth noting that this research presented a complete process that started from 
almost zero and ends up with the finest data capable of addressing key demands 
in macro-problems, such as the production of a cartographic database and the 
planning of a centralized and decentralized PV energy transition.  

1.4. Social Implication 

The present research can be related to three sustainable development goals 
(SDG) of the 2030 Agenda of the United Nations: 7 (Affordable and clean energy), 
9 (Industry, innovation and infrastructure), and 11 (Sustainable cities and 
communities). 
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In the context of global climate change, where a global response will only be 
significant if local communities do their part concerning renewable energies, the 
workflow proposed in this research is of great importance to plan and perform 
efficient and planned PV transitions at the community and neighborhood scale. 
Even though this study is focused on a remote island environment, which is fossil 
fuel dependent and has an isolated electricity system, the methodology can be 
replicated in any place that plans to improve the PV percentage in the electricity 
matrix or perform a PV energy transition. It can be reproduced on areas 
connected to continental energy systems, such as entire cities, specific zoning 
area (residential, commercial, recreational, industrial), and particular properties 
(farms, hotels, factories). As well as on remote areas, with isolated energy 
system, for example small communities living in desert, forest or island 
environments, typically powered by diesel power generators. 

It is important to stress that the data offered by solar models in high spatial 
resolution has a great potential to plan, accelerate, and guide a PV energy 
transition because they provide data for both, the public administrators that want 
to make decisions based on cost-effective and technical data, and the individual 
consumers that want to install their own PV system.  

In the typical conditions of cities in developing countries, where there is a huge 
demand for the finest geospatial data that guide sustainable development and 
planning, this research demonstrated that public administrators and decision-
makers should make use of the advantages and vast applications offered by UAV 
photogrammetry.  

1.5. Scope and limits of this research  

It was out of the scope of this research: 

a) Consider other renewable energy sources than solar PV, such as 
concentrated solar panels, wind, biomass, oceanic, among others. 

b) Consider fundamental aspects of renewable energy transitions, such as 
storage battery systems, smart-grids control and automation, individual 
power consumption by building, diesel generator backup, among others. 

c) Validate irradiation data using an annual pyranometer monitoring station 
or similar measurement tool.  

d) Consider a life cycle analysis in calculation of CO2 emission avoidance 
when replacing diesel thermoelectric plants by PV modules 
(Environmental potential).  

e) Analyze PV potential in restricted areas. 

The limits of this research can be seeing as ideas for future research. 
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2. Background – Fernando de Noronha Island 

It is assumed that the Mappamundi of Juan de la Cosa, made around 1500, 
indicated an island with a format similar to FNI, and thereby, in some way, Juan 
de la Cosa can be considered a visual discoverer of FNI (Castro, 2001). At that 
time, the nobleman Fernán de Loronha was funding the Portuguese overseas 
expeditions. In one of those voyages, the Archipelago was found and described 
in detail by Amerigo Vespucci, another considered discoverer of FNI. The Italian 
explorer and navigator highlighted in his letters the exuberant flora and fauna, the 
isolation, the geology, and the lack of human occupation. Because of Loronha’s 
sponsorship, King Manuel I of Portugal donated the Archipelago to Loronha as 
the first Brazilian Captaincy Hereditary (Silva, 2013).  

The strategical position in the Atlantic Ocean marked the history of FNI by forced 
invasions of English, Dutch and French countries during the XVII and XVIII 
centuries, and by cooperation with the Allies during World War II and with the 
North Americans during Cold War. Moreover, the Archipelago was a place that 
exiles, political prisoners, and common prisoners were sent to serve time in 
prisons (Nascimento, 2009).  

The Military Federal Territory of Fernando de Noronha was ratified by the Decree-
Law No. 4.102/1942 (Brasil, 1942). Following that, the Decree-Law No. 
94.780/1987 and the 1988 Federal Constitution sanctioned it into a State Territory 
and settle the first civil administration ever in FNI (Brasil, 1987; Brasil, 1988b). In 
1988, the Decree-Law No. 95.922/1988 (Brasil, 1988a) established the ecological 
zoning of the Archipelago to control urbanization and conserve, preserve and 
restore natural resources. It consequently boosted the creation of the Fernando 
de Noronha National Marine Park, still in that year.  

The Archipelago of Fernando de Noronha is located at 3°51’S and 32°25’W, close 
to the Equator. According to the Global Wind Atlas (GWA, 2020), the average 
annual wind speed at 100 meters high on the Island is 8.4 m/s, and according to 
the Global Solar Atlas (GSA, 2020), the average annual Global Horizon 
Irradiation (GHI) is 2175 kWh/m²/year, or daily GHI is 5.95 kWh/m²/day. 
Therefore, the geographical location of the Fernando de Noronha Island within 
the equatorial belt (between 5° N and S latitudes) ensures abundance of 
renewable energy resources. Despite the high standard ecotourism and 
numerous sustainable and conservation projects, the island is still heavily 
dependent on fossil fuel importation. 

The Archipelago has one main island, the FNI, and 20 islets surrounding it. The 
FNI has approximately 2000 hectares of terrestrial area and is 350 Km distant 
from the Brazilian continental coast. Figure 2 presents different band 
compositions from a Landsat 8 OLI/TIRS Level-1 image of July 2019.  
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Figure 2. Different band composition (ArcGIS Pro tools) of a Landsat 8 OLI/TIRS 
Level-1, from July 2019. 

There are two well-defined main seasons, a dry from August to January and a 
rainy from February to July. The mean annual temperature is 25.4 °C and has a 
small variation. The typical winds come from SE direction, at an average speed 
of 6.6 m/s, being faster during July and August (Sales, 2018).  

The Brazilian Institute of Geography and Statistics (IBGE) database estimates a 
population of 3.061 inhabitants in 2019 and reports tourism as the main economic 
activity (IBGE, 2020, a). Although the island receives more tourists each year, 
over than 115,000 tourists in 2019, it is notable the need to improve management 
and infrastructure of basic sanitation (water treatment, wastewater treatment, 
stormwater drainage, and solid waste disposal). Worth noting that subsistence 
agriculture and artisanal fisheries are common habits in islanders’ families. 

FNI is well known because of its scenic landscapes, preserved ecosystems, and 
importance for reproduction and feeding of oceanic birds and marine fauna. Since 
2001, the Archipelago is classified as a Natural World Heritage Site, by United 
Nations Education, Scientific, and Cultural Organization (UNESCO) (UNESCO, 
2020).  

Claudino-Sales (2018) pointed out that biodiversity (flora and fauna diversity) 
from FNI is relatively poor in variation but rich in endemism, which is expected 
due to the FNI isolation. The authors also stressed out that uncontrolled tourism 
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implicates in negative environmental impacts, such as soil trampling, the 
introduction of invasive species, biological disturbances, and pollution. They 
concluded their work highlighting that in FNI the threat to the natural property is 
relatively low and the state of conservation is considered good, with some 
concerns, for example, lack of resources and monitoring tools.  

In this context, Mello e Oliveira (2016) drew attention to an especially important 
issue that could be potentially managed by using high-resolution spatial data, 
which is the biological threats imposed on the island's natural balance by invasive 
species, particularly the tree “Leucaena leucocephala”. An initial step for 
managing negatives impacts from invasive species is the identification, 
quantification, and location of individuals, along with understanding their 
surrounding environment and relational species, which is why data with ultra-high 
spatial resolution is recommended.  

Some species and scenes found in FNI are illustrated in Figure 3. 

 

Figure 3. Photos of fauna and scenic views from FNI. For species, the first name 
is the Popular name (in portuguese) and the second is the scientific name. a) 
Praia do Sancho. b)  Aratu Vermelho (in portuguese), Goniopsis cruentata. c) 
Atobá de pata vermelha (in portuguese), Sula sula, and the “Morro do Pico” 
behind the sea bird. d) Mabuia (in portuguese), Mabuya maculata. e) Enseada 
dos tubarões. 

Ribeiro et al. (2017) indicated that the relief of FNI is composed by “beaches, 
plains, slopes, low plateaus, hills, shore cliffs and a high plateau, which is where 
the small town of Vila dos Remedios lies and where most of the inhabitants of the 
island live”. 

Since 1988, the Pernambuco Energy Company (CELPE), currently managed by 
Neoenergia and Iberdrola groups, is responsible for the generation, transmission, 
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and distribution of electricity in the FNI. According to the Pernambuco State 
Database (2020), in 2018 was consumed 18.590 MWh in FNI, as shown in Figure 
4. Moreover, 46% and 33% of electricity was consumed by the commercial and 
residential sectors, respectively (Figure 5). Celpe (2019) mentioned that there are 
976 power consumption units, and that the average monthly consumption of a 
unit is 900 KWh. The high-rate consumption can be justified by the high-standard 
tourism and energy consumption for water desalinization.  

 

Figure 4. History of annual electricity consumption in FNI. Based on Pernambuco 
State Database (2020).  

 

Figure 5. Electricity consumption by sector, in FNI, 2018. Based on Pernambuco 
State Database (2020). 

Celpe (2019) reported that electricity in FNI is generated by the Tubarão 
Thermoelectric Plant and the PV Plants Noronha I and II. The PV plants were 
designed to produce 1400 MWh annually and avoid the consumption of 375 m³ 
of biodiesel, which corresponds to 8% of electricity consumed in FNI. Regarding 
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the diesel consumption at the thermoelectric, a 10% parcel is replaced by 
biodiesel, a less polluting source. However, since 2017 the company is 
participating in a Research and Development (R&D) program that aims at 
developing an intelligent energy storage system. Moreover, Celpe (2019) 
indicated that the company performed an R&D program for smart grids from 2012 
to 2017, and in 2018 started another R&D program that aims to promote and 
implement electric vehicles in FNI. 

As reported by Celpe (2019), the energy generated in 2018 by Tubarão 
Thermoelectric Plant was 19.2 GWh, which corresponds to the consumption of 
5378 m³ of diesel. It is important to note that the numbers reported by Celpe 
(2019) are not the same as the ones presented by the Pernambuco State 
Database (2020).  

In 2000, the company expanded the existing wind turbine to a power capacity of 
225 kW but, unfortunately, in 2009 it was struck by lightning and collapsed down.  

It is important to note that the FNI, like most small and isolated islands, does not 
efficiently exploit the available renewable energy resources and continues to 
depend on fossil fuels. It is reasonable to stress that although some policies and 
actions seek sustainability and environmental preservation on the island, there is 
still a lot to improve in terms of renewable energy sources.  

Under the National System of Nature Conservation Units (SNUC) definitions of a 
protected area, detailed by the Decree-Law No. 9.985/2000 (Brasil, 2000), there 
are two main types of conservation units: Sustainable Use Units and Full 
Protection Units. The first allows organized human occupation and natural 
resources exploitation in a restrained form. The second is mainly focused on 
preserving the natural ecosystem. It prevents human occupation but authorizes 
scientific research, environmental education projects, and controlled tourism 
(MMA Brasil, 2011).  

The Archipelago’s area is composed of the National Marine Park of Fernando de 
Noronha (PARNAMAR-FNI) and the Environmental Protected Area of Fernando 
de Noronha (APA-FNI). PARNAMAR-FNI is a Full Protection Unit and APA-FNI 
a Sustainable Use Unit. Thereby, the PV energy production is limited to the APA-
FNI area. 

The Public Administration of Fernando de Noronha (ADEFN) represents the civil 
governmental power at the local scale, and the Chico Mendes Institute for 
Biodiversity Conservation (ICMBIO) the environmental federal agency power. 
The ADEFN concentrates his actions in the APA-FNI area, whilst in the 
PARNAMAR-FNI area the EcoNoronha, a private company, has the concession 
to operate and manage the ecotourism activities. The ICMBIO manages both 
conservation units through inspections and control actions.  
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3. Literature review 

3.1. Photovoltaic energy and solar cities and islands 

3.1.1. Overview 

Solar photovoltaic energy is the key to a clean energy future because it is 
renewable, affordable, abundant, does not emit GHG when electricity is produced 
and represents a long value chain with good job opportunities.  

The sun is a primordial and inexhaustible source of energy. Solar energy is 
harvested by PV generator systems mounted most commonly on the ground and 
rooftops.  

It is a key renewable energy resource that can substitute fossil fuels and reduce 
carbon emissions, which is a social, environmental, and economical concern in 
the last decades (Kabir et al., 2018).  

The main factors behind spatial and temporal variation in solar irradiation are the 
geographical location – defined by longitude, latitude, altitude; season – defined 
by solar distance and angles; atmosphere interactions – defined by cloud cover 
and aerosols; and shading effect – defined by topography obstructing sunlight 
rays. However, in urban areas, the solar irradiation in buildings' rooftop varies 
eminently due to complex urban morphology, such as buildings, trees, and 
objects above the surface. Therefore, for urban analysis and decision-making is 
essential to consider solar irradiation maps with sufficient spatial resolution and 
temporal distribution (Hofierka and Zlocha, 2012).   

As stated in the brief history elaborated by Green (2000), the solar cells were one 
of the most remarkable scientific developments of the 20th century. Its origins 
can be traced back to the energy levels described by Max Planck and to the 
photons and photoelectric effect explained by Albert Einstein, which were 
followed by Edwin Schrodinger, with the wave equation, and Wilson, which solved 
the wave equation for solid materials in 1930. According to Green (2000), at this 
point, it was possible to classify materials as good conductors, semiconductors, 
or insulators of electrons. In 1940, Russel Ohl identified regions in a metal impure 
silicon rod that was electrically charged negatively and positively, that later was 
defined as the p-n junctions in solar cells. In 1949, William Shockley presented 
the theory of devices with p-n regions, the first transistor designed. It was only in 
1954 that all this scientific progress culminated in an efficient solar cell. 

In systematic literature research, Sampaio and González (2017) observed that 
the terms “electricity”, “solar irradiance”, “direct generation” and “conversion” are 
the most commonly used by authors to define PV energy. In this way, they 
stressed the following definition: “electricity obtained directly from the conversion 
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of solar energy”. Smets et al. (2016) defined the photovoltaic effect, which is the 
phenomena behind PV energy and solar cells, as “the generation of a potential 
difference at the junction of two different materials in response to electromagnetic 
irradiance”. These materials are generated by the doping process, which is the 
addition of atoms with more or fewer electrons than Silicon (Si) to the crystal 
lattice layer, usually Boron or Phosphorus (Luque and Hegedus, 2011). One 
material is an n-type semiconductor, with more negative charges moving freely 
through the layer, and the other one is a p-type semiconductor, with positive 
charges moving freely, also known as “holes”. The n-p junction functions as a 
depletion zone, it prevents the “holes” to reach the n-semiconductor and the 
electrons to reach the p-semiconductor. Thus, the electrons freed due to the 
photovoltaic effect are orientated towards the electrodes instead of the p-
semiconductor layer (Smets et al., 2016). 

Moreover, to generate electricity, solar cells are made of semiconductors 
materials composed of two bands or levels of energy: the valence band (lower 
energy) and the conduction band (higher energy). The sunlight incident upon the 
metallic surface gives up energy to release the electron from the valent band to 
the conduction band. The difference in the level of energy (measured in electron-
Volts) between these bands is called a bandgap. In that way, the photons are 
responsible for providing the energy needed by electrons (from the valent band) 
to overcome the bandgap and reach the conduction band. In sequence, the 
released electron load is carried throughout the conduction band of conductive 
materials (electrodes) into the circuit, charge controller, and then the inverter, to 
transform direct current (DC) in alternate current (AC) (Luque and Hegedus, 
2011). Figure 6 illustrates a basic solar cell working. 
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Figure 6: Conventional photovoltaic cell. Source: US EIA, 2020. 

3.1.2. PV systems 

Lopez et al. (2012) classified solar power technologies in four types: urban PV 
farm, rural PV farm, rooftop PV, and concentrating solar power (CSP). A CSP 
system is a utility-scale farm that uses multiple reflexive surfaces to concentrate 
the solar heat in a specific point location. The urban PV plants are solar PV plants 
greater than 1.8 ha, and rural more than 100 ha. At a smaller scale, rooftop PV 
systems are owned by consumers and the produced electricity is consumed on-
site, stored in a battery system, or loaded into the grid. Indeed, rooftop PV 
systems represents decentralized sources, while the other types centralized. 

Brewer et al. (2015) stressed out that in the case of PV plants, the greater the 
terrain slope, the greater the difficulties and costs of construction. For example, 
Lopez et al. (2012) recommended that PV plants were installed in terrains where 
slope does not exceed 3%.  
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Although operation and maintenance (O&M) expenditures are relatively low in PV 
systems, they require an extensive initial capital investment (ICI), which depends 
on the size of the new PV system and represents a significant share on the 
Levelized Cost of Electricity (LCOE) (Vartiainen et al., 2019). The LCOE, typically 
expressed in $/KWh, was created to compare the relative cost of electricity 
produced by different sources or situations, considering life cycle period of the 
energy project, ICI, O&M, performance, fuel costs, etc. In some cases, it is 
needed to construct new power lines and substations to connect the PV plant to 
the existing distribution grid, which will increase ICI and LCOE. Moreover, the 
grid power line connected to the solar farm or rooftop PV must have the 
appropriate hosting capacity to support the added load of electricity, if not it can 
cause overcurrent and overvoltage on the network grid (Etherden and Bollen, 
2014).  

The electricity system, or electric power grids, is the integrated network 
composed of power plants, substations, transmission and distribution lines, and 
end-consumer units. The system can be planned at a centralized, decentralized 
or both levels.  

According to Hiremath et al. (2007), centralized generation systems focus on a 
few and distant power plants producing energy, giving preferences to distribution 
in large urban cities over small towns, rural areas, and urban poor communities. 
The authors argue that centralized systems do not consider social and 
environmental factors on a regional and local scale, which makes any intervention 
more challenging.  

Kaundinya et al. (2009) defined a decentralized system as a system that the 
generated energy is consumed nearby, e.g., rooftop PV or urban PV farm, and 
are designed to supply local energy demand. Although decentralized systems 
increase individual autonomy due to the benefits in energy security and financial 
savings in electric bills, the LCOE of PV energy on rooftops is higher than in solar 
farm systems mounted on-ground due to their smaller size and scale (Kuang et 
al., 2016). Furthermore, Goldthau (2014) claims that climate change targets and 
rising demand for electricity access will require decentralized energy solutions 
and advances in the energy infrastructure of countries. 

3.1.3. Global and Brazilian context 

According to REN21 (2019), the global expansion of the PV system in 2017 was 
supported by the market competition, growing demand for energy in developing 
countries, and the growing awareness to diminish pollution and GHG emissions 
and ensure everyone accesses to energy. The report indicated that innovations 
in industry were led by energy efficiency and cost reduction disputes. It 
highlighted that government policy was a significant driver to the global growth 
industry. In 2017, the bid prices reached low records of 30 USD/MWh (in Saudi 
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Arabia) compared to the 100 USD/MWh in 2010 (in the United States of America), 
representing a reduction of 73% in 7 years, or approximately 10% per year from 
2010 to 2017. For comparison, on average there was a cost reduction in bid 
prices of 6% each year over the last four decades, demonstrating that in the last 
7 years the bid prices are reducing more than previously. Still in the global 
context, IRENA (2019) highlighted that PV remained the top leader employer 
among renewables, representing one-third of all renewable energy jobs.  

In addition to that, Creutzig et al. (2017) pointed out that among renewables 
energy, PV energy has grown the most in the last 40 years and has the steepest 
learning curve (module price vs cumulated capacity). The authors concerned that 
the Southern hemisphere has huge potential for solar energy, but also has 
countries that are immature, with limited institutions and mechanisms to deal with 
the up-front capital investment required for renewable energy systems and 
transitions. They stressed that the need for automation and intelligent 
technologies in smart power grids are also a challenge to global energy 
management and industry. In the same context of PV expansion, Hofierka et al 
(2014) mention that policies and beneficial support represent a vital role in PV 
systems adoption, for example, subsidies, easy access to capital credit, tax 
reduction, and excessive energy production trading. 

In the context of islands, Kuang et al. (2016) highlighted that the majority of 
islands still rely on the importation of fossil fuels as the main energy source for 
power supply. The authors mention that in the Caribbean islands and most world 
islands, 90% of the energy demanded depends on imported fossil fuels. Thereby, 
energy costs can lead to difficulties in overall island management. For example, 
in Small Island Developing States, fuel imports can represent up to 20% of annual 
importation costs, and in some other world islands up to 30%.  

More information about the use of solar photovoltaic in cities and islands will be 
presented in 3.1.4 Solar cities and islands. 

3.1.3.1. Brazilian context 

The Brazilian Association of Photovoltaic Energy (ABSOLAR) highlighted in its 
most recent infographic regarding PV energy in Brazil (ABSOLAR, 2020): i) 2.2% 
of the electricity supply in Brazil was generated by PV sources in January 2020. 
ii) Between the years 2012 and 2019, the PV sector generated more than 130k 
jobs and it is estimated to create 120k more in 2020. iii) In 2019, PV decentralized 
sources accounted for 2226 MW (45%) and centralized 2673 MW (55%). In 2017 
it was 191 MW (16%) and 968 (84%), respectively. iv) Between the years 2013 
and 2019, the average price of energy auctions in the regulated market dropped 
from 103.00 USD/MWh to 20.33 USD/MWh, which represents a reduction of 
80.3%.  
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The National Electric Energy Agency (ANEEL) is responsible for regulating and 
supervising the generation, distribution, and transmission of electric energy in the 
country. The Normative Resolution (NR) 482 of April 2012 (ANEEL, 2012) 
classifies decentralized sources in two categories: mini-generation and 
microgeneration. The first includes systems with power generation capacity 
between 75 kW and less than or equal to 5 MW, while the second refers to 
systems with less than 75 kW. The regulation allows the consumers to install 
private energy renewable systems to generate their energy and supply the 
surplus to the distributor's network and use it as credits (ANEEL, 2012).  

De Andrade et al. (2020) presented a historic view of the distributed generation 
(DG) rules, focusing on the Public Hearings held by ANEEL since 2010 and the 
impacts of those in regulations. For example, NR 482/2012 was revised in NR 
687/2015 and NR 786/2017. The authors highlighted that NR 687/2015 allowed 
that DG could include condominiums, consortiums, cooperatives, and remote 
auto-consumption. They conclude that the NR 482/2012 was a big step for the 
decentralized sector because it allowed consumers to generate their electric 
energy, contributed to reducing market barriers for DG, and addressed issues 
related to public intervention in the energy sector. 

3.1.4. Solar cities and islands 

The term smart city is multidisciplinary, generic, and vastly discussed in the 
literature. It is typically associated with information and communication 
technologies (ICT), internet of things (IoT), artificial intelligence (AI), social and 
environmental sustainability, economic growth, and celerity. 

Caragliu et al. (2009) pointed out six general aspects in smart cities: economy, 
mobility, environment, people, living, and governance. It is understood that smart 
cities with clear socio-environmental visions can also be seen as a sustainable 
and livable city (Zygiaris, 2012).  

Calvillo et al. (2016) defined smart cities as sustainable and efficient cities that 
offer high living standards and appropriate resources management. In a way, they 
referred to urban infrastructures that promote environmental protection and 
reduction of CO2 emissions, in conjunction with growth and sustainability in 
social, economic, and technology dimensions.  

See Albino et al. (2018) for smart cities definitions, dimensions, and initiatives, 
and Camero and Alba (2019) for a bibliographic review.  

The idea of a solar city is to make the most of the solar resources to generate 
thermal and photovoltaic energy. Although it is a recent topic in literature, it is 
expected that a city becomes a solar city when there is widespread development 
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of photovoltaic systems on suitable rooftops (Byrne et al. 2015) and energy 
management improvement through deployment of a smart grid (Wan et al., 2015).  

Smart grids are autonomous bidirectional power grid infrastructures controlled by 
artificial intelligence that promote efficiency, communication, automation, and 
security (Gungor et al., 2011). Based on smart metering data and communication 
networks among all users of the grid, the smart grids controllers reduce impacts 
from variations in customer substations, generation, transmission, and 
distribution (Kabalci, 2016). In this manner, the IoT represents a key role in smart 
grids management as it enables fast communication between consumers’ smart 
meters and device power controllers. For example, IoT is applied to identify 
consumption house patterns, manage smart home devices, and recharge 
electrical vehicles (Reka and Dragicevic, 2018).  

Di Silvestre et al. (2018) paid attention to a recent concept in energy 
management, the three D’s: decarbonization, digitalization, and decentralization. 
The digitalization part is represented by the internet of things (IoT) and the 4th 
Industrial revolution modern changes, which are improving communication, 
business models, and transactions. The decentralized aspect surged due to the 
increasing customer participation and new strategies of power production 
distribution. Decarbonization is related to the reduction in CO2 emissions. 
Altogether they represent a disruptive phenomenon, which are considered by the 
authors as the main drivers of substantial transformations in our society.  

3.1.4.1. Solar and smart islands 

In the context of renewable energy in islands, it is crucial to analyze each island 
considering their particular local situation regarding the energy use and available 
resources. Samsø Island, in Denmark, is a great example of pursuing a 100% 
renewable transitions until 2030 (Nielsen and Jørgensen, 2015; Jantzen and 
Kristensen, 2018). Other articles that researched the use of renewable energy for 
remote islands are Liu et al. (2018) in the Maldives, Selosse et al. (2018) in 
Reunion Island, France, Eras-Almeida et al. (2020) in Galapagos Island and 
Curto et al. (2020) in Lampedusa Island, Italy. 

Sperling (2017) stressed out that many authors focused on the end-results of 
renewable transitions, but few described the practices and conditions to achieve 
that. Therefore, the authors evaluated the internal and external factors that 
enabled the transaction in Samsø Island. They concluded that the main external 
conditions were governmental assistance with technology, expertise, and 
process support. In the internal context, the main factors that favored the 
renewable energy transaction were the community engagement and sense of 
cooperation and responsibility, individual entrepreneurship, and distribution 
network. 
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In a review paper of renewable energy for islands, Kuang et al. (2016) pointed 
out that technological advances permitted higher participation of renewable 
energy sources in islands power supply, and because of long distances and high 
costs of submarine transmission cables, usually there is no connection with the 
continent or adjacent islands, which affect the grid stability and reliability. 
Additionally, they detailed aspects that sustain renewable transactions: energy 
storage techniques, hybrid renewable energy system, microgrid, demand-side 
management, distributed generation, and smart grid.  

Blechinger et al. (2016) argued that renewable energy in small islands must be 
studied because of the high dependency on the importation of costly fossil fuel 
and abundant solar and wind energy resources. Moreover, due to their limited 
population and size, the authors claimed that there is a simplification in the 
management of technical and political approaches to increase renewable 
sources. Also, they highlighted that small islands serve as inspiring small-scale 
examples to replicate in larger areas.  

Curto et al. (2019) also mentioned that most small islands are powered by old 
diesel generators, although there are remarkable advances in renewable energy 
technologies and reduction of costs. The deployment of renewable energy 
sources in those cases could address some important issues, such as fossil fuel 
reliance, pollutant emission, and high electricity costs. 

Particularly in a small extension oceanic island case, where potable water is 
scarce and water supply faces growing anthropic pressure, it is important to 
observe the relationship between desalination water and energy supply. Bilton et 
al. (2011) presented a general process that evaluated the feasibility of PV-
powered reverse osmosis in remote areas, based on a cost comparison between 
desalinated water produced by conventional diesel power and photovoltaic. 
Mentis et al. (2015) also worked on a tool to improve the design and sizing of 
desalination systems integrated with renewable energy sources. They found out 
that the proposed approach is feasible in the majority of the remote areas 
analyzed. In a similar context, Wright et al. (2014) demonstrated through a GIS 
analysis (that combined water scarcity, salinity, and solar resource maps) in India 
that GIS is an essential approach for supporting decision-making processes. 
Also, within the view of feasibility analysis, the authors compared the costs of 
water desalination systems and salinity range to determine the most suitable 
integrated solution for specific locations. It is worth noting that their research 
considered salt groundwater in continental India, which has a distinguished socio-
environment condition when compared to ocean islands, but still, they are 
isolated remote areas, and the population size of a median Indian village range 
from 2000 to 5000, similar to FNI.  

More recently, Liu et al. (2018) investigated the feasibility to integrate water and 
energy supply systems in remote islands and proposed a framework for an 
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interconnected system in Maldives Islands. In the same context, Mehrjerdi (2020) 
conducted a study for an isolated island, associating three different types of 
desalination plants (reverse osmosis (RO), multi-stage flash (MSF), and multi-
effect distillation (MED)) supplied by a hybrid renewable energy system made of 
PV-wind, which is backed up by a battery energy storage system and a diesel 
generator. The store system supply power in hours of low energy production and 
store excess energy in hours of high production. The diesel generator is 
employed in case of emergencies and network instability. The author compared 
simulations between methods of desalination and concluded that RO presented 
better results than CSP methods, in terms of costs and reliability. With a different 
view than the previous author, Wang et al. (2020) also researched the integration 
of CSP and desalination plants but argued that their proposed system, where 
there is an integration between CSP+MED with renewable systems and RO, has 
better cost-effectiveness in comparison with other state-of-art systems when 
dealing with areas with high abundant renewable energy resources and high fuel 
costs. The three papers cited here highlighted that the integration of desalination 
plants and renewable power supply can potentially reduce energy costs and 
pollutant emissions, and the proposed nexus between water and renewable 
energy is a future trend for remote islands.  

Again, particularly in a small extension oceanic island case, where there is high 
pressure on land use, and occupation and land resources are scarce, it is 
important to consider more than one use for the same area. For example, 
installing PV power systems on parking lots, which can reduce charging costs of 
electric vehicles, or combining PV generation and agricultural activities, which 
could raise food supply and reduce electricity and food prices for residents.  

In the context of agrivoltaics, which is the combination of PV and agriculture, 
Sekiyama and Nagashima (2019) presented and demonstrated successful 
results of a stilt-mounted agrivoltaic system associated with a corn plantation, 
which is known as a typical shade-intolerant crop. In Saint Joseph, Reunion 
Island, similar to FNI in many aspects, there is an example of a real case study 
of a photovoltaic greenhouse with an annual production of 1.96 GWh 
(Scognamiglio et al., 2014). In the case of solar parking lots, Nunes et al. (2016) 
highlighted that although they are not yet economically viable, they offer great 
environmental and technical benefits. 

Within the frame of GIS context, Doorga et al. (2019) modeled in high spatial and 
temporal resolution the PV potential of Mauritius Island to optimize the location 
of solar plants, through GIS Multiple Criteria Decision Making (MCDM) analysis 
integrated to Analytical Hierarchy Process (AHP). Likewise, Suh and Brownson 
(2016) studied the solar plants’ suitability in Ulleung Island, Korea, using MCDM 
coupled to fuzzy methodology to normalize each spatial factor adopted in MCDM.  
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The method proposed in the present dissertation differs from the papers 
previously cited at the spatial resolution, the types of PV systems considered in 
the study, and the framework of decision of PV systems location. Their analyses 
were limited to utility-scale solar plants, Suh and Brownson (2016) adopted a 
digital elevation model (DEM) with grids of 5 x 5 m and Doorga et al. (2019) with 
10 x 10 m, while in this present research, it was produced a DEM with grids of 50 
x 50 cm. The gains provided by this ultra-high spatial resolution are in considering 
the PV potential analysis not only in open areas, where PV plants are installed, 
but also in rooftops, where individual and decentralized systems are analyzed. In 
the literature, no study associated the ultra-high spatial resolution and PV 
potential in an island environment.  

3.2 UAV Photogrammetry 

3.2.1. State of the art  

The American Society for Photogrammetry and Remote Sensing (ASPRS) 
defines photogrammetry as “the art, science, and technology of obtaining reliable 
information about physical objects and the environment through processes of 
recording, measuring, and interpreting photographic images and patterns of 
recorded radiant electromagnetic energy and other phenomena” (Wolf et al., 
2014). In that way, photogrammetry techniques encompass digital imagery, 
radiated acoustical energy patterns, laser ranging measurements, and magnetic 
phenomena. The remote sensing instruments used to acquire photos, laser, and 
irradiance data photos can be integrated to sensors onboard of manned or 
unmanned aerial vehicles, orbital satellites, or terrestrial cameras (Wolf et al., 
2014). 

Photogrammetry is separated into two main areas: metric and interpretative. 
Metric photogrammetry works with quantitative measurements and geographic 
location of points, which in turn provides information on distances, angles, areas, 
volumes, elevations, and sizes and shapes of objects. Interpretative 
photogrammetry attends to the recognition and identification of objects and their 
significance to the surrounding environment (Wolf et al., 2014).  

The metric photogrammetric surveys are performed to produce orthophotos, 
digital elevation models, triangular meshes, cloud points, and textured 3D 
models, where geometric measurements can be done.  While the application of 
interpretative photogrammetry focuses on algorithms of digital image processing 
segmentation and classification of objects and is typically associated with other 
RS sensors, like multi and hyperspectral.  

The photogrammetry basic principle is inspired on the stereographic vision 
phenomena, which allows humans to perceive depth from two different points of 
view or from a single observing point when the observer or the target is moving 
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(Ullman, 1979). In that way, a collection of bidimensional photos can reproduce 
a virtual tridimensional world, whose structure is represented by a point cloud.  

Photogrammetry was first published by the German architect Albrecht 
Meydenbauer, in an article called “Die Photogrammetrie” (“The photogrammetry” 
in English), in 1867. The photogrammetrist and his colleagues founded the Royal 
Prussian Photogrammetric Institution to research the field and preserve the 
architectural and cultural monuments of the German Empire (Albertz, 2002). 
However, the approach is marked by constant technological and methodological 
innovations that made it more flexible and effective. With the consolidation of 
airplanes, sensors, and stereo plotters during World War I, the analog 
photogrammetry was recognized as an efficient surveying and mapping method. 
Although the mathematical fundamentals were well known at the time, it was only 
after 1950, with the arrival of computers and AI, that analytical photogrammetry 
established itself, improving the precision of aerial triangulation by a factor of ten. 
Then, with the advent of digital images, the current digital photogrammetry 
appears (Schenk, 2005).  

This technological progress kept evolving and today we have well-established 
UAVs, sensors, computers, and algorithms that put photogrammetry as the main 
approach to collect and compute spatial data. It is not an exaggeration to affirm 
that almost all maps produced since World War II were produced by 
photogrammetry. Historically, the advances in photogrammetry were essential for 
pushing forward artificial intelligence and computers, spatial programs, inertial 
sensors, digital sensors, among others current technologies and projects. 

The term drone is used to represent unmanned aerial vehicles. More technical 
terminologies are used in this purpose too, such as small unmanned aircraft 
systems (SUAS) or remotely piloted aircraft (RPA). In the present research, the 
term UAV is adopted due to its popularity in scientific research and technical 
reports. 

In the last decade or so, there has been a great advance in the science of 
photogrammetry. The flexibility, safety, low cost, and simplicity of UAVs equipped 
with sensors, and the robustness and efficiency of computer vision algorithms are 
responsible for this rapid scientific development. The enhancement of the 
algorithms Structure from Motion (SfM) and MultiView Stereo (MVS) are the key 
elements behind the current photogrammetric computation.  

In literature, some books and articles review or take the photogrammetry SfM-
MVS as the main subject: Westoby et al. (2012), Turner et al. (2012), Colomina 
and Molina (2014), Nex and Remondino (2014), Pajares (2015), Biljecki et al. 
(2015), Carrivick et al. (2016), Agüera-Vega et al. (2017), James et al. (2017), 
Singh and Frazer (2018), Jeziorska (2019), Iglhaut et al. (2019), Yao et al. (2019), 
among others.  
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The use of UAVs and almost fully automated SfM-MVS workflow facilitates the 
production of high spatial resolution 3D point clouds, DEMs, and orthophotos of 
large areas, which were previously produced by costly and more complex LiDAR 
surveys and manned aerial missions (Wallace et al., 2016).  

It is important to mention that LiDAR surveys perform a direct measurement of 
the objects, by actively emitting and receiving laser pulses that physically hit the 
object's surface. The cloud point in SfM-MVS photogrammetry is originated from 
RGB pixel values belonging to a set of images, while the ones from LiDAR 
surveys are derived from the interpretation of pulses reflective values and 
waveforms. However, ultimately, both techniques belong to the field of 
photogrammetry.  

The techniques can be considered concurrent since both are capable of 
generating point clouds, or complementary when there is an integration of RGB 
data from the photographs with elevation from LiDAR (Zaragoza et al., 2017).  

Turner et al. (2012) highlighted some technical differences between 
photogrammetric surveys lead by traditional manned aerial vehicles and UAV: i) 
UAV flight lines show greater variations in overlap and intersections; ii) UAV 
images show greater variations in rotation and translation angles, light conditions, 
and spatial resolution; iii) exterior and interior orientation parameters from UAV 
imagery are unstable, unknown, or, if measured, are likely to be inaccurate. In 
the same context, Westoby et al. (2012) pointed out a fundamental difference 
between UAV SfM-MVS and conventional photogrammetry: “the geometry of the 
scene, camera positions, and orientation are solved automatically without the 
need to specify a priori, a network of targets which have known 3-D positions. 
Instead, these are solved simultaneously using a highly redundant, iterative 
bundle adjustment procedure, based on a database of features automatically 
extracted from a set of multiple overlapping images”. 

There are two UAV basic categories: fixed-wing and multi-rotor. Both categories 
have unique characteristics that give them advantages and disadvantages, which 
depends upon the context of the application. For example, Jeziorska (2019) 
indicated that multi-rotors land and take off vertically on the ground, while fixed 
wings need a manual or mechanical launching and a smooth and flat area to land. 
The author observed that rotary wings gained market popularity over the fixed-
wing due to its lower price and ease of use. Boon et al. (2017) compared both 
types of UAV in the context of environmental mapping and concluded that for 
vegetation and gully erosion modeling, multi-rotor is most suitable because there 
is less distortion in aerial images, although fixed wing delivers data with 
sufficiently quality. For wetland slopes and contour mapping, both can be applied 
without noticing differences. 
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Colomina and Molina (2014) described several studies that adopted fixed or 
multi-rotor wings, where one can think that the output data quality of 
photogrammetric surveys depends more upon the UAV model, the surveyors’ 
experience, the environment mapped, and the scale and application of the 
survey, than on the type of UAV used, if fixed-wing or multi-rotor type. 

The UAV photogrammetric approach has been used for many purposes and 
applied on different scales. Pajares (2015) and Yao et al. (2019) argued that the 
UAV photogrammetry capacity for ultra-high spatial and temporal resolutions 
increases the range of solutions and opportunities for remote sensing 
applications. Moreover, the quality and quantity of spatial data lead the decision-
making process to be more accurate and quicker.  

Regarding the georeferencing and positional accuracy in UAV SfM-MVS 
photogrammetry surveys, worth note that most consumer-grade UAVs have a 
navigational GNSS receptor (NAVGNSS) for image geotagging, with a positional 
accuracy about 10 m, which is insufficient for some applications. To improve the 
georeferencing of the UAV SfM-MVS photogrammetric model to a few cm-levels, 
surveyors add ground control points (GCP) typically measured by dual-frequency 
(L1/L2) cm-level GNSS receivers.  

The positional method Real-Time Kinematic (RTK) is extensively adopted for the 
GCP georeferencing (Forlani et al., 2018), yet Post-Processing Kinematic (PPK) 
(Fazeli et al. 2016) or NTRIP-RTK (Haas et al., 2016) are also feasible 
alternatives. More recently, L1/L2 GNSS receivers fixed onboard UAVs are used 
to direct georeferencing aerial photos to few cm-level positional accuracies 
(Forlani et al., 2018; Tomaštík et al., 2019; Ekaso et al., 2020). Padró et al. (2019) 
compared four georeferencing approaches: onboard NAVGNSS, onboard PPK 
L1/L2 with the base distance 4 km, onboard PPK L1/L2 with the base inside flight 
area, and traditional L1/L2 GCP. The authors reached positional accuracies at 
1.837 m, 0.443 m, 0.062 m, and 0.039 m, respectively. 

A UAV photogrammetry has two main phases: data collection and data 
processing. Before going to fieldwork to collect the GCP coordinates and aerial 
images, it is fundamental to have in mind the expected quality of the survey. It 
starts with the evaluation of the area of interest and the definition of 
photogrammetric flight parameters (areas for takeoff and landing, flight height, 
overlapping percentage, final spatial resolution) and GCP scheme (places for 
base station, quantity, and spatial distribution). After acquiring field data, 
computer vision algorithms are employed to detect matching points in 
overlapping photos, which are used to compute georeferenced cloud point, DEM 
and orthophoto.  
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The SfM-MVS main role is to compute a 3D model, e. g., a point cloud from a set 
of sufficiently overlapped photos, which is further processed into a dense point 
cloud, mesh, DEM, and ultimately, in an orthophoto (Figure 7).  

 

Figure 7. An example of image processing photogrammetric workflow from Ilha 
da Rata, an adjacent island from the Archipelago of Fernando de Noronha. (A) 
aerial photo coordinates and overlap; (B) sparse point cloud; (C) dense point 
cloud; (D) mesh; (E) DSM; (F) orthophoto.    
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3.2.2. Structure from Motion and algorithms in digital photogrammetry 
processing 

As the name itself, SfM stands for a structure derived from a moving sensor. The 
algorithm is responsible for the stereo plotting proceedings in modern digital 
photogrammetry processing. SfM aims to produce a sparse cloud and determine 
the location of matching features in a set of photos, taking from different 
perspectives (Westoby et al., 2012).  

In SfM, the photogrammetric process of Bundle Block Adjustment (BBA) begins 
with an image recognition algorithm, for example, the scale-invariant feature 
transform (SIFT), that identifies and matches common features that are visible in 
a set of overlapped images (Lowe, 2004). In SIFT, these features are written as 
3D vectors (represented by a unique feature descriptor) that are invariant to the 
scale and rotation of the images and are represented by a point cloud. The 
matched points in a set of photos are named keypoints, and they are responsible 
for the scene geometry reconstruction done by SfM (Carrivick et al., 2016).  

The SIFT algorithm is based on a digital recognition processing of multiscale 
image brightness and color gradient analysis. The main advantage of the first one 
is to deal with mixed image resolution (common in UAV photogrammetric 
surveys), and of the second is to use colors gradient instead of pixel values, which 
facilitate differentiation of targets and their backgrounds (Fonstad et al., 2013). 

After the recognition and description of features in overlapped photos, the SfM is 
responsible for calculating camera location and orientation based on the positions 
of the matched features. At the same time, SfM constructs a sparse 3D point 
cloud composed of the 3D vectors written by SIFT (Carrivick et al., 2016). Figure 
8 illustrates an SfM scene geometry reconstruction. 
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Figure 8. A: Demonstration of Structure from Motion process of 3D model 
reconstruction. Source: Sweeney (2016). B: Demonstration of MultiView Stereo 
process of image clustering. Source: Furukawa et al. (2010). 

The abilities to establish thresholds in computation calculus and filtering invalid 
3D reconstruction are essential to deal with a large number of images and 
produce high-quality photogrammetric products using SfM workflow (Remondino 
et al., 2017; Carrivick et al., 2016).  

To achieve higher quality in scene reconstruction, a multiview stereopsis (MVS) 
technique is applied to densify the sparse cloud. According to Furukawa and 
Ponce (2009), the first step is to organize the data into a manageable size by 
doing an image clustering based on their location (Figure 9). Then, the tie 
matched in SfM are used to generate new matched points, that are repeatedly 
expanded to neighboring pixels to find new correspondents’ points. In that way, 
the dense point cloud is generated by expanding the search radius and finding 
new matches around the sparse cloud points.  

The next steps consist of a derivation and interpolation of the dense cloud to 
compute the mesh, DEM, and orthophoto.  
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Finally, the entire process of modern photogrammetry can be partitioned in three 
main algorithms or steps: image matching, block bundle adjustment, and 
multiview stereopsis (Furukawa and Ponce, 2009). 

Iglhaut et al. (2019) elaborated two figures demonstrating the SfM-MVS workflow. 
The first (Figure 9) is a scheme of algorithms used on the three main stages 
(SIFT, SfM, and MVS) and the second (Figure 10) is a visual demonstration of 
results on each stage. The authors also mention that the main advantage of 
automation of the photogrammetric process is the unnecessary expertise to 
operate fully automated black-box software, but it can also be a disadvantage 
because there are less data quality control and error detection.  

 

Figure 9. Schematic workflow of the SfM-MVS process to obtain a dense point 
cloud. Source: Iglhaut et al. (2019). 
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Figure 10. The schematic illustrated workflow of the three main stages SIFT, SfM, 
and MVS. The process to obtain a dense point cloud. Source: Iglhaut et al. 
(2019). 

3.2.2.1. Photogrammetric data processing in Agisoft Metashape 
1.6 

The overview provided by the User Manual Agisoft LCC (2019) states a brief 
description of the program: “Agisoft Metashape is an advanced image-based 3D 
modeling solution aimed at creating professional quality 3D content from still 
images. Based on the latest multi-view 3D reconstruction technology, it operates 
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with arbitrary images and is efficient in both controlled and uncontrolled 
conditions. Photos can be taken from any position, providing that the object to be 
reconstructed is visible on at least two photos. Both image alignment and 3D 
model reconstruction are fully automated.” Although it did not mention the 
mapping purposes, it is one of the most popular tools for processing UAV SfM-
MVS photogrammetric surveys.  

Typical steps of the workflow offered by Agisoft Metashape 1.6 are: load photos, 
align photos, perform white balance correction and gradual selection of undesired 
points, align GCPs, build dense point clouds, build 3D polygonal mesh, build 
DEM, build orthophoto (Agisoft LCC, 2019).  

The alignment step is performed by SfM and considers several keypoints to 
search for matching features in the set of images. In Agisoft LCC (2019) 
terminologies, keypoints are features of interest, typically texturized and with high 
contrast, from which can be easily recognizable on overlapped photos. When 
keypoints are matched on different cameras, they are assigned as a tie point 
(Agisoft LCC, 2019).  

Once the set of photos were aligned and sparse cloud generated, it is 
recommended three important steps executed in sequence: calibration of white 
balance color of points, gradual selection and exclusion of unsatisfactory points, 
and optimization of camera alignment (USGS, 2017). 

The step of color correction is performed to compensate for brightness and to 
adjust the white balance in images set. Along with that, a gradual selection of 
sparse cloud points is operated to reduce error and BBA optimization. It is 
recommended that the threshold adopted for reconstruction uncertainty is set to 
level 10, for projection accuracy level 3, and reprojection error level 0.3 (USGS, 
2017). The software does not inform the measurement units for the thresholds.  

The step of optimization of camera alignment is based on the known reference 
coordinates enhanced by GCP. The procedure removes non-linear deformations 
and improved georeferencing accuracy. It is executed by re-estimating both 
camera parameters and constructed sparse cloud. Ultimately, it optimized interior 
and exterior orientation (Agisoft LCC, 2019).   

After the refinement of the sparse cloud, the generation of the dense cloud is the 
next step. For that, the program calculates a depth map for every photo, which is 
then filtered to remove noisy and badly focused images. As recommended in 
aerial mapping, the filtering mode must be set to aggressive, because there is no 
need to model meaningfully small objects (Agisoft LCC, 2019). 

In sequence, the mesh is constructed based on a linear interpolation method that 
constructs a polygonal mesh that smoothed the high variability of the dense 
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cloud. It worth highlighting that the solar irradiation model based on a smoothed 
DSM (originated from a mesh) will be less noisy than if it were used a DSM 
created directly by the dense cloud - although the last one is more accurate. As 
recommended by Agisoft LCC (2019), the surface type for aerial mapping is the 
height field, which is the most efficient option to work with planar surfaces, such 
as terrains and roofs. The interpolation process is check-marked when the 
process fills possible holes that originated from bad matching in SfM and errors 
in cloud densification.  

After that, based on the inverse distance weighting (IDW) method, the elevation 
data of the polygonal mesh is interpolated into a regular raster grid to generate 
the DSM with a default spatial resolution (Agisoft LCC, 2019). 

The process of orthophoto generation is done by projecting and mosaicking 
undistorted orthogonalized photos onto the mesh surface (Agisoft LCC, 2019).   

3.2.3. Photogrammetric data collection 

The two basic data of photogrammetric surveys are aerial photos and GCPs 
coordinates. Typically, photos are collected by RGB cameras onboard UAVs and 
GCPs georeferenced by L1/L2 GNSS receivers. As in many other computational 
techniques, it is expected that if the inputs are somehow low quality, the output 
will also have low quality. 

3.2.3.1. Aerial images 

In that way, it is important to attend to some aspects during photo collection, like 
lighting conditions, occlusions, final spatial resolution, overlapping percentage, 
view angles, surface contrast, surface pattern, among others (Gienko and Terry, 
2014). For example, the SIFT algorithm matches more correspondent points 
when searching in a stony or heterogeneous soil surface than in a sandy or icy 
homogeneous and low contrast surface (Carrivick et al., 2016). Also, surfaces 
that are in movement during image collection, like vehicles, winding leaves and 
waving water, will cause optical distortions and reflections that propagate error in 
SIFT feature matching and, in consequence, in SfM matching procedures 
(Casella et al., 2016). 

The aerial photo scales are determined by the geometric relationship in Equation 
1 and 2. The flight height parameter defines the scale of photos and ultimately, 
the orthophoto spatial resolution. Another basic concept, which is the 
stereoscopic coverage or the frontal and lateral overlapping between photos are 
demonstrated in Figure 11. It is expected that an object covered by more photos, 
i. e., higher overlapping percentage, will have a better 3D reconstruction 
(Carrivick et al., 2016). The Ground Sample Distance (GSD), i. e., the size of the 
pixel, is also employed to indicate spatial resolution. 
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Eq. 1  Scale = Photo Distance / Ground Distance                  

Eq. 2 Scale = Focal Length / Altitude Above Ground Level    

 
Figure 11. Flight pattern in a typical UAV SfM-MVS photogrammetry survey. The 
photographs are taken with a forward and lateral overlap to feed the SIFT 
algorithm, where matching points in different photos are identified. 

The NAVGNSS, compass and IMU systems onboard a UAV are essential for 
geotagging photos and to control the automatic pilot program that makes the UAV 
follow a photogrammetric flight pattern. There are several applications available 
for smartphones and tablets for mission planning, like DroneDeploy, DJI Ground 
Station, MapPilot, etc. The programs allow users to estimate final spatial 
resolution and simultaneously set up flight path, direction, altitude, speed, overlap 
configuration, gimbal pitch angle, return to home options, and essential camera 
parameters. 

The UAV ability to execute missions with high overlapping percentage and low 
altitudes will result in digital maps with an ultra-high spatial resolution (UHSR) 
under one decimeter (Yao et al. 2019) and up to one centimeter (Agüera-Vega et 
al., 2017).  

Sanz-Ablanedo et al. (2018) affirmed that homogeneous coverage overlapping 
and constant altitude above ground will result in photogrammetric products with 
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less geometric distortion. Figure 12 illustrates the influences that variability on the 
altitude AGL have in overlapping parameters and the SIFT stitch process.  

 

Figure 12. Percentage of overlapping images when varying elevation of terrain, 
trees, and high buildings. Source: DroneDeploy (2019).  

Singh and Frazier (2018) found out in their meta-analysis and review on UAV 
imagery application that most of the authors consider at least 75% in the forward 
overlap and high variability in the side overlap, from 20 to 90%. Yet, they 
recommended percentages above 70% on the forward overlap and 60% on side 
overlap, it will depend on the final spatial resolution and the type of terrain and 
surface surveyed. Jeziorska (2019) noted that forward or side overlap must be at 
least 60-80%. 

Manfreda et al. (2019) suggested that the combination of two flights, one with 
nadir perspective (perpendicular to the ground) and a complimentary with a 20° 
angle tilted camera, improve the overall accuracy of the 3D model and vertical 
precision. Furthermore, Leitão et al. (2016) assessed four different mapping 
variables: flight altitude, image overlapping, camera pitch, and weather 
conditions. The low altitude flight, with at least 60% frontal overlap, in overcast 
weather conditions are preferable for high-quality DEMs. The authors considered 
the technology very robust to these variations and concluded that UAV 
photogrammetry competes with traditional LiDAR DEMs due to its flexibility and 
accuracy. 
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When setting up flight parameters and mission, it is important to look for an 
optimum equilibrium between final product quality and efficient field operation 
parameters, such as the number of photos acquired, flight length and duration, 
battery power supply, processing time and data storage.  

3.2.3.1. Ground Control Points 

As previously stated, GCPs are used to enhance the georeferencing of UAV 
photogrammetric maps. A survey must contemplate at least three GCP 
distributed in a triangular shape but requires more if it is needed better positional 
accuracy. The GCPs must have enough size and contrast to be identified on 
photos during the GCP photo targeting procedure. When adopting homogeneous 
GCP distribution and sufficient number of GCPs, authors achieved positional 
accuracies of less than 10 cm (Lucieer et al., 2014; James et al., 2017; Sanz-
Ablanedo et al., 2018).  

James et al. (2017) highlighted that the distribution and density of GCP on the 
area of interest are planned based on the required accuracy, network geometry, 
and quality of images.  

Villanueva and Blanco (2019) pointed out that the three main propagators of error 
in GCP operations are distribution, quantity, and inter distance between GCPs. 
The authors tested all of them in a quarry-site area and indicated that a greater 
distribution of GCPs placement will result in fewer errors, and in accordance, a 
concentrated distribution of GCPs results in higher errors. They also observed an 
inverse relationship between the quantity of GCPs and Root Mean Square Error 
(RMSE), up to a certain limit number of GCP placed. Finally, in the inter distance 
test, the authors conclude that the higher error group of GCP has also a higher 
inter distance between GCPs. Similarly, Manfreda et al. (2019) also evaluated 
the GCP quantity and placement in UAV photogrammetry. They demonstrated 
that a well-distributed number of GCPs placed in a small inter distance is the best 
approach to increase overall accuracy. The researchers cited in this paragraph 
did not consider the scenario of GCP and positional assessment in extensive 
areas, like FNI with more than 2000 ha. 

Within a more quantitative view, Sanz-Ablanedo et al. (2018) performed a 
comparative study combining multiple combinations of GCPs in photogrammetric 
surveys in an area of 1200 ha. They conclude that if few GCPs were used, the 
RMSE of checkpoints will be around 5 times the GSD, but if an appropriate 
number of GCPs were employed, this ratio could be up to 2 times. Furthermore, 
according to the authors, if independent checkpoints data are not available, the 
real accuracy can be estimated by multiplying the RMSE of GCPs by 3 (when a 
high number of GCPs is used) or 4-8 (when few GCPs are used). They suggest 
that large projects can achieve high accuracy when using >3 GCP per 100 photos 
in the area of interest. 
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3.2.4. UAV SfM-MVS Photogrammetry Applications 

The control of spatial and temporal resolution offered by SfM-MVS 
photogrammetry and UAVs are now a key changing point in GIS and remote 
sensing applications. There are new perspectives because advances in hardware 
and software have added more quality to cartographic products (point clouds, 
DEMs, and orthophotos) and safety, accessibility, simplicity, and flexibility to the 
photogrammetric process. 

Not only visible range sensors can onboard a UAV, but multispectral and 
hyperspectral sensors too. In that way, infrared spectral bands are measured and 
analyzed to identify, for example, vegetation stresses, water content, and thermal 
variations, which in some cases, can be a hard effort, sluggish and expensive 
task (Jeziorska, 2019). These portable and cutting edge technology sensors are 
being applied to precision agriculture (Zhang and Kovacs, 2012; Baluja et al., 
2012; Honkavaara et al., 2013; Bendig et al., 2015; Gago et al., 2015; Maes and 
Steppe, 2019), forest management (Anderson and Gaston, 2013; Lisein et al., 
2013; Zarco-Tejada et al., 2014; Sankey et al., 2017), fire management (Yuan et 
al., 2015; McKenna et al., 2017), damage inspection of photovoltaic systems 
(Tsanakas et al., 2017; Gallardo-Saavedra et al., 2018), among others. Although 
multispectral sensors are not used in the present case study of FNI, the papers 
cited in this paragraph demonstrated that multispectral sensors have a great role 
in GIS analysis and have the potential for further research. 

Using RGB sensors, there are applications in landslide measurements 
(Niethammer et al., 2012; Turner et al., 2015), superficial hydrological modeling 
(Shaad et al., 2016; Hashemi-Beni et al., 2018), urban planning, territorial 
management, environmental works in forest and coastal areas, among others.  

In the matter of urban planning, UHSR orthophoto and DEM allow automatic 
classifications and vectorization of semantic data to develop a basic 
geodatabase, such as thematic maps, properties boundaries, buildings, green 
parks, etc, essentials for decision support in city management (Crommelinck et 
al., 2016), although it needs further development of algorithms. Furthermore, 
elevation data supports visibility analysis and estimation of population, which is 
crucial data for several statistical and spatial analysis that directly involves 
demography (Biljecki et al., 2015). 

In territorial management, particularly in developing countries with low cadastral 
coverage, orthophotos are used for cadastral mapping and developing a 
geographic database. Cadastral maps are instruments that provide basic 
information and precise location of lands, properties, and buildings, being 
essential for the documentation of land rights, land taxation, control urban growth, 
infrastructure city planning, compose geodatabase, and geostatistics analysis 
(Crommelinck et al., 2016). For example, the cadastral mapping based on UAV 



52 
 

 
 

orthophoto was applied in Indonesia (Ramadhani et al., 2018), Namibia 
(Mumbone et al., 2015), Rwanda (Koeva et al., 2018), Brazil (Fonseca Neto et 
al., 2017), and many developed country cities. It is important to note that the land 
boundaries must be physical and visualized in orthophotos to manually vectorize 
or perform automatic classification of boundaries (Fetai et al., 2019; Xia et al., 
2019). 

According to Crommelinck et al. (2016), the increasing popularity of UAVs for 
cadastral mapping is justified by their flexibility to work on urban and rural 
environments, lower cost, and final products with higher spatial resolution than 
traditional RS methods. They also highlighted the high demand in developing 
countries for spatial information for new cadastral mapping, and in developed 
countries, for updating it.  

In the case of conservation works in protected areas, Koh and Wich (2012) 
developed a UAV prototype that cost less than 2000 USD and embraced the 
photogrammetry technique for surveying forests in Indonesia to obtain spatial 
information about the land use, illegal deforestation, and large animals. Based in 
flights up to 200 m above ground level, they discriminated features and generated 
land use occupation maps, like palm plantation, maze fields, human settlement, 
preserved and logged forests, trails, and also observed orangutans. Jiménez-
López and Mulero-Pázmány (2019) conducted a literature review on the use of 
UAVs for conservation in protected areas and alerted that the foster effectiveness 
of UAVs remains fundamentally unexplored. The authors argued that applying 
UAV photogrammetry for quantifying ecosystem services is especially efficient 
when there is a lack of useful remote sensing data, with little spatial and temporal 
resolution. And highlighted that UAVs have the potential to assess the 
implementation and results of conservation actions, site design, and zoning, and 
to assist the reintroduction plan of endangered species.  

In coastal ecosystem surveying, the approach plays a vital role in assessing post-
storm impacts, perform a land cover classification, extract geomorphic feature, 
measure topography and beach erosion, coastal line delineation, and monitor 
vegetation recovering (Gonçalves and Henriques, 2015; Papakonstantinou et al., 
2016; Turner et al., 2016; Sturdivant et al., 2017). 

The main application discussed in this dissertation, which is the modeling and 
analysis of solar irradiation based in UAV SfM-MVS photogrammetry maps, is 
discussed in 3.3. Solar Irradiation Modeling section, along with other remote 
sensing tools for collecting spatial data. 
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3.3. Solar Irradiation Modeling 

3.3.1. Geographic Information Systems 

GIS is a set of tools and frameworks for managing, visualizing, storing, consulting, 
analyzing, and editing data, maps, and spatial information in general. There are 
two main data types: vector and raster. The raster data is represented by one or 
more layers of a grid, which stores information inside of their bands, for example, 
color value, altitude, slope, incident solar irradiation, etc. It can be continuous or 
discrete. However, the vector data is represented by geometric graphics, like 
points, lines, and polygons. In practice, both data are used together for computing 
GIS operations (Sanchéz-Lozano et al., 2013; Longley et al., 2015). 

A Digital Elevation Model is defined as a Digital Surface Model (DSM) or as a 
Digital Terrain Model (DTM). The pixels in a DTM raster refer to the ground 
elevation, thereby there is no data about trees, buildings, cars, man-made 
structures, or other objects above the surface. In contrast, DSM contains 
information about both those elements above the ground and the ground itself.  

Particularly for GIS environmental analyses where natural processes and 
phenomena are modeled, DSMs are important because they mold the physical 
barriers that drive the propagation of fluids (air and water) and electromagnetic 
waves (noise, heat, microwaves, solar radiation, etc). However, DTMs are 
adopted on studies focusing on the ground surface and morphology, such as 
topographic measurements and earthworks.  

To generate a DTM in UAV SfM-MVS Photogrammetry, it is performed a point 
cloud classification to identify ground surfaces, which correspond to terrain data, 
DTM. In this case, the main limitations and challenges are in classifying the 
objects above surface and filling (by interpolation) gaps caused by removal of 
surface objects. Figure 13 illustrates the difference between a DSM and DTM and 
demonstrated that point cloud automatic classification needs improvement. 
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Figure 13. Sample of UAV SfM-MVS photogrammetric products in FNI: A) Point 
cloud. B) Point cloud automatically classified. C) DSM. D) DTM.  The difference 
between a DTM and a DSM is visualized in C-D. Buildings, trees, and objects 
above the surface are represented in DSM, but not in DTM, which only represents 
the ground surface. It is important to stress that the automatic point cloud 
automatic classification presented here needs to be manually refined to achieve 
a final-product DTM, because some structures above surfaces were considered 
as a ground point (red pixels in D). 

The comparison between LiDAR and UAV SfM-MVS photogrammetric surveys 
to produce DEM data is well discussed in the literature. It is important to highlight 
that in the context of PV potential analysis both methods are appropriate to model 
the complex morphology of an urban area, although they have different working 
principles.  

Szabó et al. (2016) indicated that LiDAR surveys have a higher relative cost per 
building modeled, require higher expertise to collect and process data, cover 
wider areas and work better with topographic gaps because of higher flight 
altitude. However, the authors highlighted that it is unlikely that a small town or a 
company would hire a LiDAR survey to evaluate the PV potential. Tenedório et 
al. (2016) highlighted that the UAV photogrammetry can be used for areas wider 
than 1 km², but it will also require expertise and computational effort relatively 
similar to LiDAR surveys. The authors suggested that UAV is more appropriate 
for small regions due to periodicity, spontaneity, simplicity, and low cost.  

Regardless of the survey technique, ideally, the DSM spatial resolution in urban 
solar irradiation modeling needs to represent all parts of rooftop structures and 
the features that shade rooftops and ground, where PV systems are typically 
installed. Moudrý et al. (2019) and Schuffert et al. (2015) argued that perform a 
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PV potential analysis in sub metric resolution DSMs are unnecessary due to the 
high annual variability caused by variations in atmospheric conditions and 
weather, which will have more significance than the variability caused by better 
spatial resolution. Simply put, the authors claimed that there is no need to use 
DSMs with a higher spatial resolution than 1 m/pixel, because the variations 
caused by meteorological and weather conditions are more significant and 
unpredictable. In contrast, Zink et al. (2015) and Besser et al. (2019) pointed out 
that 1-meter spatial resolution DSM cannot precisely identify PV available rooftop 
area because of miss-representation of chimes, water tanks, roof structures, 
elevator machine room, etc.  

However, thinking of computational effort and useful outputs, Zink et al. (2015) 
suggested a 25-cm spatial resolution for an optimum equilibrium in the 
classification of usable rooftop areas. The authors claimed that a higher spatial 
resolution in DSM does not necessarily reduce errors in solar modeling outputs. 
They evaluated the aspect and slope algorithm outputs in GRASS GIS on less 
than 10-cm spatial resolution DSM and alerted that higher resolutions aggregate 
false estimation in irradiation modeling because of the high variability caused by 
differences in every single tile. It is important to note that the authors did not 
mention a fundamental smoothing step in photogrammetry SfM-MVS workflow 
before DEM generation, which is the mesh generation, that could potentially avoid 
high variability in DSM. Furthermore, the 25-cm spatial resolution recommended 
by the authors will face a long processing time when the area of interest is 
extensive (more than 1000 ha). 

From the perspective of urban surveys and irradiation models for smart cities, 
Nelson and Grubesic (2020) discuss previous research and present differences 
and similarities between surveys with LiDAR sensors and those with 
photogrammetry with drone. In financial terms, one of the difficulties of LiDAR 
surveys is the high associated cost. The authors stressed that a manned plane 
or helicopter flight (one fuel tank operation) to cover a medium sized area can 
cost between US$ 20,000 – US$ 50,000, depending on the required operational 
logistics. In terms of spatial resolution, in general, UAV photogrammetry 
produces a denser point cloud than LiDAR surveys, managing to more accurately 
model small objects (like water tanks, air conditioners, etc) and the structures that 
shade or prevent the installation of photovoltaic systems on roofs. Thus, the 
authors demonstrated in their case study that the UAV photogrammetry DSM was 
able to estimate 36% more aggregate irradiation than the LiDAR DSM. 

3.3.2. Overview of Solar Irradiation Modeling 

To commence this section, it is convenient to distinguish the terms “irradiance” 
and “irradiation”. Solar irradiance regards to the instantaneous solar energy flux 
per unit area, typically expressed in W/m². However, solar irradiation represents 
the solar irradiance integration over the time, typically expressed in Wh/m², on an 
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annual or daily interval. In other words, irradiation modeling aims to estimate the 
Global Horizontal Irradiation (GHI) (Hofierka and Kaňuk, 2009). 

Understanding the solar irradiation phenomena is essential because life on Earth 
depends upon insolation, it influences energy flows, water balance, natural 
regimes, soil moisture, snow melting, evapotranspiration, and photosynthesis (Fu 
and Rich, 1999).  

In the context of photovoltaic potential and smart-solar cities, a GHI model works 
toward a rational, efficient, and feasible planning and design of photovoltaic 
power systems. 

Following the concepts presented by Perez et al. (1987), Fu and Rich (1999) and 
Šúri and Hofierka (2004), the GHI is composed of three independent 
components: direct, diffuse, and reflected. The solar irradiation that reaches a 
surface directly, without being reflected or scattered by atmosphere attenuation, 
is known as direct irradiation. It travels unimpeded in a line that starts at the Sun 
and finishes at the targeted surface (Adeleke, 2018). In that way, the irradiation 
scattered by the atmosphere attenuation is named diffuse irradiation, and the 
irradiation reflected by ground and superficial objects is called reflected 
irradiation. The three components combined are called GHI.  

Reflected irradiation contributes little to GHI, and is therefore neglected in some 
modeling tools, such as in ArcGIS Solar Radiation. Moreover, the direct 
irradiation is the one that contributes the most to global irradiation and the diffuse 
irradiation presents the highest variability due to atmospheric dynamics, 
therefore, it is the main source of errors (Šúri and Hofierka, 2004). 

The GIS-based solar irradiation modeling to estimate PV potential has been 
applied in different scales: a small area, a village, a town, a region, a nation, or a 
continent. For example, Nero et al. (2020) discussed the application and 
produced an irradiation model of some buildings of the Federal University of 
Minas Gerais, based on DEMs produced by UAV photogrammetry surveys. 
Mavromatidis et al. (2015) estimated the PV potential of a small village in 
Switzerland, Zernez, with 308 buildings and 1153 habitants, and presented a 
framework for the optimal integration of PV that considers the electricity demand 
profiles and PV potential. The authors considered a mixed 1-meter resolution 
DEM, a combination of topography and buildings height. Van Hoesen and 
Letendre (2010) used a 30 m resolution DEM to evaluate the PV potential for a 
rural community in Poultney, Vermont, USA. It worth noting that the papers cited 
did not consider the attenuation of irradiation caused by shading trees. The first 
because it was used a manipulated DEM that considered only terrain and 
buldings, and the second one, used a DEM with low spatial resolution, insufficient 
to distinguish trees, buildings, and terrain tiles. 
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On a big city, Wong et al. (2016) used a 50 cm spatial resolution LiDAR DEM (4 
pt/m²) to estimate PV potential in buildings from Hong Kong and identify optimal 
PV rooftops. In a similar approach, based on 1-meter spatial resolution LiDAR 
DEMs of 128 USA big cities and shapefile polygons of buildings, Margolis et al. 
(2017) estimated the rooftop solar technical potential for approximately 122 
million people. The paper demonstrated that freely available and high-resolution 
spatial data are essential for developing energy plans and targets of a sustainable 
future. Furthermore, Yushchenko et al. (2017) performed a regional scale GIS 
MCDM analysis to estimate geographical and technical potentials for the 
deployment of grid-connected and off-grid PV systems in rural areas in West 
Africa. The parameters considered in the MCDM were solar irradiation, distance 
to the grid, distance to roads, population density, protected areas, and distance 
from settlements.  

Janke (2010) and Sánchez-Lozano et al. (2013) applied similar MCDM analysis 
to determine solar farm locations, in Colorado State, USA, and Cartagena, Spain, 
respectively. Also, on a regional scale, Bergamasco and Asinari (2011) used the 
freely available European Solar Irradiance Atlas (ESRA) and cadastral 
information to analyze the PV potential for municipalities from Piedmont Region, 
Italy. On a national scale, Rediske et al. (2020) used GIS MCDM and AHP 
methodology to identify the best locations in Brazil to install large PV plants and 
found out that more than 1000 km² are suitable for it. Finally, Vardimon (2011) 
assessed PV potential in building scale for Israel and found out that if it were 
deployed PV system with 10% efficiency in buildings with a rooftop area larger 
than 800 m², they could meet 7% of national electricity consumption.  

In this review is important to mention the online platforms Project Sunroof (PS) 
by Google and the Global Solar Atlas (GSA) on behalf of World Bank Group, both 
are GIS models and are freely available for public administrators as well as final 
consumers of PV systems. The first one is based on a machine learning approach 
that constructs a 3D model by processing high spatial resolution satellite images 
available only in some cities in the USA and estimates PV potential based on 
shading and weather data from the National Renewable Energy Laboratory 
(NREL) (PS, 2020). As an example of using the data, Sunter et al. (2019) 
integrated PS data and the USA Census Bureau to analyze PV deployment by 
race and ethnicity in the USA. The second one, the GSA, provides global solar 
resource and PV power potential and also has a complex methodology to 
calibrate and estimate them (GSA, 2020). Dupont et al. (2020) used the GSA 
data, with a spatial resolution of 1 km/pixel, to analyze global PV potential and 
return of investments. Figure 14 presents the Global Horizon Irradiation map from 
GSA (GSA, 2020). 



58 
 

 
 

 

Figure 14. Global Horizontal Irradiation map from GSA. Source: GSA (2020). 

Compared to the PS, the GSA output data have a worse spatial resolution, being 
insufficient to model buildings and support decision making in an urban complex 
morphology. In contrast, GSA covers all land areas between 60°N to 45°S, while 
PS consider less than hundred USA cities. The ideal data would have the high 
spatial resolution provided by PS and the extensive land cover from GSA.  

In a different approach than online platforms, there are irradiation tools and 
algorithms available in commercial GIS software, for example, ArcGIS Solar 
Radiation (Fu and Rich, 1999; Kodysh et al., 2013) (used in this dissertation), and 
open-source GIS, for example, r.sun model integrated into GRASS GIS (Šúri and 
Hofierka, 2004; Nguyen and Pearce, 2012), SRAD and Solei-32 (Ruiz-Arias et 
al., 2009). Šúri and Hofierka (2004) informed that SolarFlux was the first GIS-
based irradiation model, described by Dubayah and Rich (1995).  

To model solar irradiation, ArcGIS Solar tool applies a geometrical approach that 
divides the sky into sectors defined by zenith and azimuth divisions, and the 
atmospheric attenuation is based on atmospheric transmissivity and proportion 
of diffusion (Fu and Rich, 1999).  

The SRAD considers surface geometry, albedo, topographic shading, vegetation 
classification, among others. SRAD atmospheric attenuation is based on monthly 
averaged atmospheric transmission or sunshine fraction (Wilson and Gallant, 
2000). The irradiation tools r.sun and Solei-32 use the turbidity coefficient of Linke 
to calculate atmospheric attenuation, which varies with latitude, time, and 
elevation. In that way, they are more appropriate for regional and continental 
modeling (Ruiz-Arias et al., 2009). 
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For more information about other GIS-based irradiation models, see Freitas et al. 
(2015), Martín et al. (2015), and Choi et al. (2019) reviews. The ArcGIS Solar 
Radiation toolset, the tool adopted in the present research, will be discussed in 
detail in the following 3.3.3. ArcGIS Solar Radiation toolset section. 

In the context of urban GIS high spatial resolution solar maps, Erdélyi et al. (2014) 
indicated that the ray-tracing technique or similar approaches aim to determine if 
a surface is shaded by an obstacle, in other words, if the sunbeam that started at 
the Sun will be intercepted or not by physical obstacles before reaching a given 
surface. They stress that the step of raytracing requires high computational 
capacity. In that background, the model computation needs an optimum 
equilibrium between the DSM spatial resolution, solar modeling discrete time 
resolution, and computer processing capacity to achieve efficient outputs. The 
authors also claimed that most existing models do not consider shadows cast by 
buildings, trees, and obstacles. So, it is important to understand the limitations 
and accuracy of solar models before using it as a decision tool for PV power 
systems.  

In this regard, Castellanos et al. (2017) discussed scalability and compared 
accuracies of irradiation maps produced by different methods, with varying spatial 
resolutions. Their results showed an average absolute percent difference of 
110% between the methods. Because of that, the authors argued that 
policymakers are in a difficult position because they depend upon potentially low 
accuracy data or have to invest in expensive data collection methods of high 
spatial resolution, such as LiDAR surveys. It is important to note that the authors 
did not consider UAV photogrammetry as an alternative methodology, which can 
potentially reduce the costs of the survey.  

Adeleke (2018) pointed out three main factors to compute solar irradiation 
modeling in a GIS environment. The first one is related to the constant extra-
terrestrial irradiance, mainly based on Sun-Earth distances and angles and 
Earth’s rotation and translation. The second referred to the atmospheric 
influences caused by clouds and aerosols. The natural variability and dynamism 
in atmospheric conditions represent the most common source of error in GIS 
irradiation models, which results in some level of inaccuracy. The third factor 
depended on the terrain and surface characteristics modeled by the DSM, which 
must have enough spatial resolution to compute the slope, orientation, and ray-
tracing operation that considers adjacent features and objects.  

Krüger and Kolbe (2012) suggested three levels of decision-making when dealing 
with the Energy Atlas of Berlin, which is a solar irradiation modeling tool: i) 
Political and entrepreneurial level, ii) Design and planning level, and iii) 
Engineering level. The first level, for a regional and city scale, has the 
competence to establish strategic goals and legal regulations. The second, for a 
neighborhood and urban district scale, addresses solutions in spatial planning 
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and conceptual design of PV systems. The third level, on a building scale, aims 
to build strategies for energy-efficient components, energy sources and 
production, and distribution networks. The authors did not enter in more details 
about the three levels, unfortunately. However, the authors noted that a wider 
scale requires more spatial aggregation and generalization, and in consequence, 
less spatial resolution and level of detail. In contrast to that, at a building scale, 
there are less generalization and more detail. From the perspective of this 
research, the solar irradiation model will be applied within a design and planning 
view for an urban district scale, the second level established by the authors.  

Even though irradiation maps are widely applied to solar cadaster and evaluate 
PV potentials, it is also used within other environmental analyses. Mezei et al. 
(2012) analyzed the relationship between the number of spruce bark beetles 
caught in pheromone traps and the solar irradiation potential and found out a 
significant statistically positive relationship between the two variables. In a similar 
subject, De Groot and Kogoj (2015) researched the abundance of oligophagous 
insects in the forest ecosystem considering solar irradiation and other natural 
phenomena.  The authors demonstrated a positive relationship between solar 
irradiation and larval (Cheilosia fasciata) abundance in its host plant (Allium 
ursinum). Pielech et al. (2015) indicated that solar irradiation is a landscape factor 
that influences the plant species composition and distribution in a spring riparian 
forest, but not in streamside forests, which have distance from river and stream 
power as driving forces. However, Salim (2012) presented a GIS analysis that 
involved solar irradiation, aquifer depth, aquifer salinity, among other factors, to 
support the decision-making process of selecting sites to install groundwater 
pump stations integrated with desalination by solar energy. Papers that present 
the relationship between solar irradiation resource and water desalination, 
agriculture, and other important subjects are presented in 3.1.4. Solar cities and 
islands section. 

3.3.3. ArcGIS Solar Radiation toolset 

The GIS tool adopted in this dissertation is the Solar Radiation toolset within ESRI 
ArcGIS Pro 2.4 software. This section describes the key calculations and steps 
behind the tool, which can be consulted on ESRI (2020) website, the theses 
Falklev (2017) and Adeleke (2018), and the paper originally presented by Fu and 
Rich (1999), when it was named Solar Analyst.  

The tool has the ability to calculate the global horizontal irradiance on given points 
or geographic areas, and to integrate (within specific time-step configuration) to 
compute GHI (irradiation) over a period of time (ESRI, 2020). In this case, the 
global irradiance comprises direct and diffuse irradiance, but neglects reflected 
irradiance due to the irrelevant amounts (Fu and Rich, 1999). The four steps for 
estimation of global irradiance are: i) Calculate an upward-looking hemispherical 
viewshed based on topography and horizon angle tracing, ii) overlay of produced 
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viewshed with sunmap layers to compute direct irradiance, iii) overlay of the 
produced viewshed with diffuse sky map to compute diffuse irradiance, iv) 
reiterating the process for every cell of interest to produce the insolation map 
(Adeleke, 2018; ESRI 2020).  

The first step, which is the calculation of an upward-looking hemispherical 
viewshed considering the upward point of view, outputs a raster for every DSM 
grid cell that represents the portion of the sky that is visible or obstructed. This is 
similar to taking a fisheye photograph located on the center of each cell and 
pointed to the sky, which will show the visible sky and obstructed sky caused by 
topography and surface elements, as illustrated by gray (obstructed) and blue 
(visible) color in Figure 17.  

Fu and Rich (1999) elaborated a sequence of figures that illustrate the step to 
calculate the viewshed for one DEM cell, which is represented and explained in 
Figures 15 a-e. The viewshed calculation role is to determine if a higher elevation 
DEM cell will shade lower elevation cells, like in a ray-tracing method. However, 
when dealing with smooth topography, the authors recommended tracing 16 
horizontal angle directions, but in a complex environment, more directions should 
be considered, 32 or 64, always a multiple of 8.  

Furthermore, another key parameter in ArcGIS Solar Radiation toolset, the 
viewshed resolution, or the sky size, must be sufficiently large to represent all sky 
directions, but small enough to allow efficient computation. The authors argued 
that a sky size of 200 x 200 cells is sufficient for most purposes, but if it is needed 
more accuracy and time calculation is not an issue, the sky size can be more 
detailed, 512 x 512. It is important to note that processing time quadruples when 
sky resolution goes from 200 x 200 to 400 x 400. 
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Figure 15. Calculation of the viewshed for one cell of a DEM. a) Horizon angles 
are traced along with a specified set of directions. b) Horizon angles are 
calculated for each direction. c) Horizon angles are interpolated in all directions. 
d) Horizon angles are converted to a hemispherical coordinate system. e) The 
resulting viewshed for a location represents which sky directions are visible and 
which are obscured. Numbers represent the calculated horizon angles. Source: 
Fu and Rich, 1999. 

Once a viewshed is calculated for every DEM cell (Figure 15.e and Figure 16.a), 
the next step is to compute the sunmap, a raster grid that represents the track of 
the sun, i.e., the sun position varying through time intervals (hours, days or years) 
(Fu and Rich, 1999). The purpose of the sunmap is to compute direct solar 
irradiance that reaches each DEM cell. The sunmap is based on the same 
hemispherical projection of the viewshed, so sunmap and viewshed can be 
overlayed  
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The zenith and azimuth angles of the sun, which represent the sun’s position to 
each DEM cell, are calculated based on astronomical equations that consider 
latitude and time parameters configured to define sunmap sectors. Each sunmap 
sector is defined by time configuration that symbolizes the position of the sun 
considering hour intervals through the day and monthly intervals throughout the 
year.  

Figure 16.b demonstrates a sunmap of latitude 45 degrees North with a 1-hour 
interval calculated from December 22 to June 22, winter solstice to summer 
solstice. In the ArcGIS Solar Radiation toolset, data and interval parameters are 
set in the configuration window. Once a sunmap is calculated for each cell, the 
viewshed and sunmap are overlaid to calculate the direct solar irradiance, 
illustrated in Figure 16.b.  

The next step is the calculation of skymaps, which represents a hemispherical 
view of the entire sky divided by sectors defined by the solar zenith and azimuth 
angles. Each sector from the bi-dimensional grid has a unique identifier value and 
has its centroid calculated to represent the direction of the sky sector to use in 
further calculations (Kodysh et al., 2013). In that way, the total diffusive irradiance 
that hits each DEM cell is the sum of all-sky map sectors irradiance value for that 
particular cell.  

The diffusive irradiance is calculated for each skymap based on a uniform sky 
diffuse model or a standard overcast sky diffuse model. The first considers that 
diffuse irradiance income has the same value from all-sky, while the second 
includes a variation in diffuse irradiance income that is based on the zenith angle 
(Fu and Rich, 1999). Figure 16.c illustrates a skymap divided by 8 zenith divisions 
and 16 azimuths and the overlaying operation between skymap and viewshed to 
compute the diffuse irradiance income.  

Within this framework, it is important to note that diffuse irradiance originates from 
the entire sky as a result of scattering caused by atmospheric elements (clouds 
and particles), and that the parameters diffuse proportion and transmittivity (in 
ArcGIS Solar Radiation toolset) adjust the atmospheric attenuations.  
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Figure 16. a) Left: Example of a fisheye photograph in an upward-looking manner. Right: 
Viewshed representation of the visible (blue) and obstructed (gray) sky. Source: Kodysh 
et al. (2013). b) Left: A sunmap representation from December 22 to June 22, within a 
1-hour time interval, for a latitude of 45 degrees North. The sun sectors are represented 
by different colors of the grid. Right: Overlay of sunmap and viewshed to calculate the 
direct solar irradiance. Gray area represents the obstructed sun sectors. Source: Huang 
and Fu (2009). c) Left: A Skymap defined by sectors originated from 8 zenith divisions 
and 16 azimuth divisions. Right: The overlay between viewshed and skymap. Gray area 
means sky obstructed directions. Source: Huang and Fu (2009). 
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The next paragraphs are based in ESRI (2020) and explain the equations 
adopted in the calculation of direct and diffuse irradiance.  

As stated, the Solar Radiation toolset considers that the global irradiance of a 
given DEM cell is the sum of the direct and diffuse irradiance income (Equation 
3). The total direct irradiance is the sum of direct irradiance (Dirθ,α) that comes 
from all sunmap sectors (Equation 4). Each sector is defined by the Zenith angle 
(θ) and Azimuth angle (α) and takes into consideration (Equation 5): the solar 
constant flux at 1367 W/m² (Sconst), the transmissivity of the atmosphere (β), 
the relative optical path length (m(θ)), the time duration represented by the sky 
sectors (SunDurθ,α), the obstructed gap fraction from the overlay of sunmap and 
viewshed (SunGapθ,α) and the incident angle between axis normal to the 
surface and sky sector centroid. In Equation 5, m(θ) is in the function of θ and the 
elevation. 

Eq. 3 GlobalTot = DirTot + DifTot 

Eq. 4 DirTot = Σ Dirθ,α 

Eq. 5  Dirθ,α = SConst * (βm(θ)) * SunDurθ,α * SunGapθ,α * cos(AngInθ,α) 

The tool allows users to set up the value for the parameter β, the discrete-time 
interval modeling configuration, and also to define if the surface aspect and 
orientation will originate from the DEM inputted or a specific value. 

β values range from 0 (no transmission) to 1 (full transmission), being 0.5 typical. 

Continuing ESRI (2020) explanation, to calculate the DifTot, which is the sum of 
diffuse irradiance incoming from every sky sector (Difθ,α), the Solar Radiation 
toolset adopts the following parameters to calculate Difθ,α (Equation 6): global 
normal irradiance (Rglb), the proportion of diffuse irradiance compared to Rglb 
flux (Pdif), time interval configuration (Dur), the obstructed gap fraction from the 
overlay of skymap and viewshed (SkyGapθ,α), the proportion of diffuse irradiance 
in a given sky sector relative to all sectors (Weightθ,α) and the incident angle 
between the sky sector and the surface (AngInθ,α).  

It is important to note that Pdif has a typical value of 0.2 for a truly clear sky and 
0.7 for a very cloudy sky. Moreover, during the phase of calibration of the model, 
Pdif and β have an inverse relationship. Furthermore, Weightθ,α has a different 
method of calculation if it is adopted the uniform diffusive model or standard 
overcast sky model. 

Eq. 6 Difθ,α = Rglb * Pdif * Dur * SkyGapθ,α * Weightθ,α * cos(AngInθ,α)     



66 
 

 
 

In the context of GIS, the type of GHI rasters generated by ArcGIS Radiation 
Toolset are floating-point and their measurement unit is watt-hours per square 
meter (Wh/m²).  

The tool allows users to export some optional outputs raster, for example, annual, 
monthly or daily GHI (Wh/m²), direct irradiation raster (Wh/m²), diffuse irradiation 
raster (Wh/m²), direct duration raster (h), and graphic representation of viewshed, 
sunmap, and skymap.  

A georeferenced DEM raster is the only mandatory file input needed for the 
irradiation modeling and it is recommended by ESRI (2020) that the data has a 
projected coordinate system in a unit of meters, otherwise, Z-factor corrections 
must be applied to the proper calculation.  

The typical configuration parameters from the solar modeling geoprocessing tool 
are presented in Figure 17 and are classified into three categories:  

(a) General modeling: latitude, sky size resolution, and timestep configuration.  

(b) Topographic parameters, which control the viewshed raster generation: 
calculation directions and slope and aspect input type.  

(c) Radiation parameters, which control the direct and diffuse irradiances 
calculus: zenith and azimuth divisions, diffuse model type, diffuse proportion, and 
transmittivity.  
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Figure 17. Configuration parameters window in ArcGIS Solar Radiation toolset. 

Hofierka et al. (2002) alerted that adopting only one value for latitude for the entire 
DEM area limits the application to a local scale. Because of that, the authors 
considered the ArcGIS Solar Radiation modeling not flexible enough for 
calibration of atmospheric transmissivity and diffuse proportion for large areas. 
They recommended that if the DEM covers areas larger than 1 degree, the project 
should be divided into smaller areas for accurate results.  

In the context of adjusting parameters in the ArcGIS toolset, to consider the 
modeling results as reliable and useful for making important decisions, it is 
necessary to calibrate the values for diffuse proportion and atmospheric 
transmissivity, and ultimately the output GHI. Although Fu and Rich (1999) 
claimed that validation data is not typically available, the model calibration can be 
done by calculating diffuse proportion and atmospheric transmissivity from: (i) 
analyzing cloud-cover data acquired by ground weather stations (Huang et al., 
2008), (ii) by interpolation of pyranometer stations data and comparison with the 
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output model value (Zhang et al., 2020), (iii) by comparing thermal satellite data 
with the output model value (Majumdar, 2018), (iv) or by comparing the nearest 
pyranometer station, prior calibrated models and the output model value 
(Marešová, 2014). However, when the aimed objective of the irradiation modeling 
is to quantify relative variations as a function of surface slope and aspect and 
shading effect, the radiation parameters do not require calibration and typical 
values can be adopted (Pelletier and Swetnam, 2017). 

3.3.4. Potential assessment 

The GIS DEM-based solar irradiation modeling aims to generate a raster file 
where cells values represent the estimated GHI, which is a theoretical potential 
of total available solar resources. This modeled data, also named resource or 
physical potential, is the base layer for afterward calculations and assessments 
of subsequent potentials. Following the concepts presented by Lopez et al. 
(2012), Fath et al. (2015), Lukač et al. (2016), Hong et al. (2016), Lee et al. 
(2018), and Bódis et al. (2019), the potentials that are in the scope of this review 
are physical, technical, economic and environmental. Figure 18 demonstrates the 
relationship between GIS solar potentials.  

 

Figure 18. Demonstration of the relationship between solar potentials estimated 
using GIS tools and irradiation models. The economic and environmental 
potential derives from the technical potential, which in turn, derives from the 
physical (modeled) potential.  
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As detailed in the previous section, key factors in the calculation of physical 
potential are the surface orientation, aspect, sun and global position, shading 
technique to identify sunlight obstructions, atmospheric conditions, and model 
specifications and parameters. 

The most aimed metric of a PV system is the technical PV Potential, i.e., the 
annual yield for electricity generation. Peronato (2019) estimated PV potential 
based on the physical potential, rooftop available area, panel efficiency (η), 
inverter efficiency, system performance ratio (PR), and ambient temperature. For 
the last three factors, Lopez et al. (2012) substituted them for an overall capacity 
factor, which is the ratio of actual electricity produced by a given power system 
over the maximum possible electricity output that it can generate. The approach 
of using a capacity factor is typically adopted when dealing with large scale 
renewable energy plants, thereby is out of the scope of this dissertation.  

In the studies presented by Schallenberg-Rodríguez (2013), Eicker et al. (2013), 
and Fath et al. (2015), once area and physical potential were determined, the 
factors η and PR were adopted to predict the potential to produce PV electricity. 
More simply, Lee et al. (2018) considered only the η.  

In that matter, solar cells made of different materials have different η, for example, 
organic thin-film cells have an efficiency of 11.0 ± 0.3%, Si (crystalline) 25.6 ± 0.5 
and Si (multi-crystalline) 20.8 ± 0.6 (Green et al., 2015). However, Fath et al. 
(2015) adopted 15% for multi-crystalline modules. Moreover, Lukač et al. (2016) 
noted that η will decrease as time passes and irradiance varies (Figure 19), and 
Lee et al. (2018) assumed that the system degradation rate of the technical 
performance reduces 0.8% annually and highlighted authors that indicated that 
during the useful 25 years lifetime project, the PV technical performance 
degraded 20%. Furthermore, the PR depends on variations on material quality, 
irradiance, temperature, and internal losses from inverter operation.  
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Figure 19. Lifetime nonlinear efficiency for three PV systems composed of 
different materials and the same microinverter. Source: Lukač et al. (2016). 

The PR annual average adopted by Fath et al. (2015) was 90%. For purposes of 
comparison, studies showed that PR annual average range from 70% to 88% in 
real measurement (Shukla et al., 2016) and 73% to 76% in well-known PV 
simulation web-platforms, e.g., SolarGis, PVSOL, PVGIS and SISIFO (Dondariya 
et al., 2018).  

The economic analysis of a PV system based on irradiation maps focuses on two 
relative financial indices: the payback period (PP) and the return of investment 
(ROI). This kind of analysis investigates whether the location of a PV system is 
profitable or not. PP refers to the time required for the PV system to be able to 
cover the costs of the system itself. The lower the PP, the better for the PV system 
owner. ROI indicates the profitability for PV systems, it stands for the ratio of cash 
inflows and outflows. A ratio greater than 1 indicates that the PV system is 
economically attractive and is profitable throughout its lifecycle (Lee et al., 2018). 
In general, the economic analyses depend upon the amount of energy produced, 
the selling price of a KWh in the feed-in tariff, the project lifetime, the interest rate, 
the ICI and O&M costs (Fath et al., 2015; Lukač et al., 2016; Lee et al., 2018).  

As well as in technical PV potential, the economic mathematical functions used 
by modelers vary in levels of complexity and scale. For example, Miranda et al. 
(2015) evaluated the economic potential of PV systems on Brazilian rooftops 
considering low spatial resolution GHI maps and included specific data in their 
calculation, for example, residential income, electricity consumption, available 
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rooftop area, load curve, ICI and O&M costs, and renewable energy financing 
policy by public banks.  

On a local scale, based on a high-resolution LiDAR DEM and GHI map, Lukač et 
al. (2016) estimated the net present value (NPV) of PV systems in residential 
areas taking into consideration the shadowing effect, pyranometer irradiance 
measurements, local feed-in tariff and market statistics. The authors also 
estimated two scenarios based on the minimum and maximum average yearly 
feed-in tariff, where the most suitable roofs had positive NPV after 3 and 11 years, 
respectively (Figure 20). Nonetheless, Fath et al. (2015) pointed out that 
economic potential assessments are not common in potential studies and that 
the unexpected plant dropping prices, such as the 66% reduction occurred from 
2006 to 2013, undermined the economic assessments made before that.  

 

Figure 20. The number of years for the investment to be returned (i.e. NPV(y) > 
0) for the two considered feed-in tariffs scenarios in Slovenia and three different 
PV systems. Source: Lukač et al. (2016).  

The environmental potential assessment refers to the quantity of CO2 that would 
have been emitted if fossil fuel had been used as a source of energy (Desthieux 
et al., 2018), simply called carbon savings or ecopotential. The carbon intensity 
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conversion rate (CI) represents the amount of CO2 emissions per kWh of 
electricity produced, which is in the function of the source of energy. For example, 
in a case studied in Madrid, Esclapés et al. (2014) assumed a CI of 600 g/KWh 
of CO2, while in Western Europe, Lukač et al. (2016) considered 420 g/KWh of 
CO2. Peronato (2019) went further in a more complete and complex assessment 
by introducing the life cycle analysis into the assessment. In their case, the author 
used 300 g/KWh of CO2 for CI and included the carbon footprint of solar panels 
as 70 g/kWh of CO2.  

The environmental potential data is crucial to evaluate the environmental impacts 
in the context of sustainable and solar cities, particularly for the public 
administration that needs quantitative data to develop environmental policies that 
combat climate change (Camargo et al., 2015). Mavromatidis et al. (2015) 
pointed out that in the case of the absence of environmental policies, it is common 
to follow economic criteria in decision-making processes.  

4. Methodology   

The methodology approached in this research made use of a sequential workflow 
that combined (i) UAV photogrammetry, (ii) high spatial resolution irradiation 
modeling and PV Potential assessment, and (iii) proposition of scenarios of PV 
transition. In that way, this chapter has one topic dedicated to each technique. 
Figure 21 presents a flowchart of the methodology. 

In brief, the orthophoto produced by the UAV photogrammetric survey were used 
to identify all buildings and open areas, which are the surfaces that can produce 
decentralized and centralized PV energy, respectively. Further, the DSM were 
employed to produce the high spatial resolution GHI model. In sequence, 
buildings and open areas vectors were used in zonal statistics tools to tabulate 
individual irradiation data. The output table was then used to assess the PV and 
Environmental Potentials for every building and open area and calculate total PV 
potentials. 

After analyzing the Total PV Potential for decentralized and centralized sources 
in APA-FNI, it was possible to schematize 9 scenarios where combined PV 
production surpasses the annual electric consumption, meaning that a PV 
transition is technically feasible. Scenarios were constructed considering real 
world limitations, such as percentage of buildings that will adopt PV rooftop 
systems, percentage of roof area occupied by PV systems, and available (already 
cleared) open areas to install PV plants. The key result is presented on a table 
containing for each scenario numbers of (i) Decentralized Rooftops PV-Potential 
(GWh/yr), (ii) Centralized PV complementary power (GWh/yr), (iii) Centralized PV 
plants area required (m²).  
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Figure 21. Flowchart of the methodology. 

The information about FNI is available in the 2. Background – Fernando de 
Noronha Island section. 

Worth noting that “Morro do Pico” and “Morro do Espinhaço” were not fully 
covered by the UAV because of their high altitude, which brought risk and 
uncertainty for the aerial missions.  

4.1. Phase 1: Photogrammetric survey 

This case study followed a typical photogrammetry SfM-MVS workflow 
mentioned in literature review, to ultimately produce an orthophoto and a digital 
surface model georeferenced, with very-high spatial resolution. 

Once the scope of the project has been defined, the next steps were to plan and 
collect UAV imagery data and measure GCP coordinates, which were described 
in the following 4.1.1. Photogrammetric Data Collection section.  
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After that, the 4.1.2. Photogrammetric Data Processing section described the 
methodology adopted in Agisoft Metashape 1.6 software to produce the point 
cloud, mesh, DSM, and orthophoto, and the positional accuracy analysis. 

The planning of the UAV photogrammetry survey included the definition of 
coverage area, composition of the field team, identification of takeoff areas and 
access and transportation routes, definition of  UAV and GNSS receiver models 
and accessories needed, evaluation of the site and local topography, verification 
of current legislation, registration of research project in areas of environmental 
protection, requisition of flight notification, among other basic actions before 
going on a field campaign. 

The field team was composed by three members of the Post-graduation Program 
in Analysis and Modeling of Environmental Systems at the Universidade Federal 
de Minas Gerais: Daniel Salim (the author, student), Guilherma Gandra (student), 
and Professor Marcelo Nero (Advisor Profesor). Worth mentioning that ICMBio 
helped the field team with accommodation and getting around hard access places 
with 4x4 vehicles to install RTK basis and take-off the UAV. Moreover, the Post-
graduation Program also helped with basic logistics, such as GNSS equipment 
rental and flight tickets. 

For the present research on FNI, the data collection phase of the 
photogrammetric survey took place between the morning of the 10th and midday 
of the 17th of December 2019. The plan was to be on the field until the 19th, but it 
was not possible due to the bad weather caused by the natural phenomenon 
called “Swell”, originated by strong winds coming from the ocean. The forecast 
forced the team to work faster and more efficiently.  

Once data was collected, the phase of data processing was performed on a 
dedicated computer. 

4.1.1. Photogrammetric data collection 

The UAV photogrammetric methodology proposed in this research needed two 
basic input data: sufficiently overlapped aerial images and GCP precise 
coordinates. Both tasks were initially planned with the limited image and elevation 
data provided by Google Earth, which was complemented using SRTM DEM and 
Copernicus Sentinel-2 satellite image. Based on that, were identified landing and 
takeoff points, accessible trails, highest risk flight areas, potential locations for 
GCP distribution, and obstacles that could obstruct the GNSS receiver’s 
connection link. Moreover, the Geodetic Database from IBGE (2020, b) offered 
potential locations for RTK base installation, which were geodetic stations ratified 
by IBGE.  
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For the flying mission, the UAV DJI Phantom 4 Pro was used as a remote sensing 
platform to acquire aerial images. Together with the remote controller and the 
tablet, they constituted the unmanned aerial system. The flight routes and 
parameters were programmed on the Drone Deploy application.  

For the GCP measurement, were used the GNSS receiver Zenith 10 and X-PAD 
Ultimate survey application. The deployment of GCPs was shrunk to a feasible 
area of interest due to bad weather forecast, time management, positional quality 
required, and access issues.  

Figure 22 presents the calendar of field operations and basic numbers of the 
photogrammetric data collection phase.  

  

Figure 22. Calendar of field operations. On the 18th and 19th of December, 2019, 
bad weather precluded field operations.  

4.2.2.1. Image acquisition 

The DJI Phantom 4 Pro used in this research is a consumer-grade UAV that 
carries onboard: NAVGNSS, single-frequency GNSS receiver, IMU system and 
Vision System with multilateral sensors to avoid obstacles, DJI FC6310 camera, 
LiPo intelligent battery 5870mAh, 3-axis (pitch, roll, yaw) Gimbal, etc. The camera 
lens has an 8.8 mm focal length and a 13.2 mm width, which corresponds to a 
13.2 x 8.8 mm image size of 5472 x 3648 pixels and a pixel size of 2.61 x 2.61 
μm. It also includes a 1” CMOS sensor of 20M effective pixels. Including the 
battery and propellers, the aircraft weights 1388 g and can stay up to 30 min flying 
on a single new battery (DJI, 2020).  
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For image acquisition, the camera was configured to automatic settings to avoid 
over or underexposure, blur, and white balance variations on photographs. 

Once the coverage area and UAV model were defined, the primary flight 
parameters for the photogrammetric flight mission were altitude and overlapping 
percentage. The other parameters were resultant from them, for example, the 
number of photos, flight speed, length, and time. In this manner, the altitude 
influenced directly the orthophoto spatial resolution and the overlapping 
percentage determined the quality of 3D and 2D reconstruction. 

In that regard, it was determined a constant percentage of 75% for longitudinal 
overlap and 65% for side overlap, and a flight height varying from 120 (in APA-
FNI area) to 200 meters (in PARNAMAR-FNI). In that configuration it is expected 
that terrain and objects above surface (trees and buildings) are modeled through 
the SfM-MVS stitching process, which is fundamental for shading calculations in 
GIS irradiation modeling.  

A set of 13 batteries were used to cover the 2200 ha area in 8 days. To cover 
FNI, the flight missions were divided into 50 programmed, adjacent flight blocks 
of around 50 ha each. It was guaranteed that at least one flight line overlapped 
between adjacent flight blocks. In total, 64 gigabytes of data and 8383 aerial 
photos were acquired. The coordinates of the aerial photos are illustrated in 
Figure 23.  

 

Figure 23. Coordinates of the aerial photos acquired in FNI.   
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4.2.2.2. Ground Control Points measurement 

The GCP coordinates were measured using the RTK positional mode and a pair 
of dual-frequency L1/L2 Geomax Zenith 10 receivers, which have horizontal 
accuracy of 10 mm + 1 ppm and vertical of 20 mm + 1 ppm. They were configured 
within the Geomax X-PAD Ultimate application and were set to consider fixed 
points with horizontal and vertical accuracy below 5 cm. The project coordinate 
system was set to SIRGAS 2000 / UTM zone 25S (EPSG::31985). 

The GCP considered in this research were all already built or painted structures, 
e. g., arrows, crosswalks, sidewalk corners, culverts, stones, etc. Out of 241 
points collected, 63 were used on the point cloud georeferencing (GCP-
Georefencing) and 22 as a checkpoint (GCP-Checkpoint) for positional 
assessment. They were selected based on their distribution and inter-distance 
(Villanueva and Blanco, 2019), size, sharpness, and distinctiveness to their 
surrounding environment (Carrivick et al., 2016), Figure 24 exemplifies a GCP 
measuring and marking task.  

 

Figure 24. Up: GCP measured in a stripe painted on the floor (Professor Marcelo 
Nero). Down: Placing a marker on a photo. 



78 
 

 
 

Among the five installed IBGE geodesic basis on the main island, only the 91569 
IBGE base station located on top of the Forte Nossa Senhora dos Remédios and 
the 91571 located at the Mirante do Vor were preserved (IBGE, 2020 b), while 
the others three had their landmarks removed or damaged.  

Figure 25 presents the RTK scheme adopted in this study case. The bases were 
installed in three locations: in 91569 IBGE base, to cover the Eastside of the APA-
FNI; in 91571 IBGE base, to cover the Westside; and in front of ICMBio head 
office, to cover the central area. The last one was transported from 91571 IBGE 
base. Figure 25 also reveals the GCP distribution and a straight line connecting 
the RTK base to the GCPs measured with the hover receptor.  

 

Figure 25. RTK positioning scheme of GCPs measurement. The GCP distribution 
was mostly concentrated on the urban areas, on the areas that do not have 
environmental restrictions for installing PV plants, or where high-quality positional 
accuracy was needed. In those areas, the GCP distribution followed the 
recommendations presented in the literature review.  

Although Villanueva and Blanco (2019) and Manfreda et al. (2019) recommended 
and verified that distribution of points in the extremities and at homogeneous inter 
distances in photogrammetric surveys resulted in better positional accuracy, their 
recommendations were not completely followed on this survey because of three 
factors. Firstly, particularly for this research, there was no need for high positional 
accuracy in PARNAMAR-FNI because of environmental legislation preventing 
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the installation of PV plants there. Secondly, due to its remoteness, these areas 
are hard to reach and walk. This would not be a problem if time were not an issue 
and 4x4 vehicles and boats were easily available. Thirdly, in some areas, there 
were no distinctive ground elements that could be used as GCPs. Nevertheless, 
in urban areas of APA-FNI the GCP network was homogeneously distributed and 
followed the mentioned literature.  

Regarding the orthophoto positional quality, it was followed the Point-to-Raster 
comparison method proposed by Carrivick et al. (2016), using GCPs coordinates 
measured on fieldwork to analyze the positional accuracy of the orthophoto 
raster. The residual difference between ground truth GCP-Checkpoints and 
orthophoto coordinates were calculated to feed the RMSE statistic calculation 
(Equation 7). The positional analysis was limited to the area covered by the 91571 
IBGE basis, the only undamaged inside APA-FNI, and encompassed 22 GCP-
Checkpoints.  

Eq. 7. RMSE =  

(𝑬_𝑂𝑟𝑡ℎ𝑜𝑝ℎ𝑜𝑡𝑜 𝒊  −  𝑬_𝐺𝐶𝑃_𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝒊 )² +  (𝑵_𝑂𝑟𝑡ℎ𝑜𝑝ℎ𝑜𝑡𝑜 𝒊  −  𝑵_𝐺𝐶𝑃_𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝒊 )²

𝑛
 

4.1.2. Photogrammetric data processing 

The Agisoft Metashape 1.6 was adopted for the SfM-MVS photogrammetry 
process that aimed to produce an orthophoto and a DSM, used further to conduct 
the solar irradiation modeling. The computer used had the following configuration: 
Windows 64-bit, RAM 128 Gb, CPU Intel(R) Core (TM) i9-9900KF CPU @ 
3.60GHz, and GPU GeForce RTX 2080.   

The processing methodology was described in 3.2.2.1. Photogrammetric data 
processing in Agisoft Metashape 1.6 section and was based in Agisoft LCC 
(2019). Moreover, the parameters used in the photogrammetric process followed 
USGS (2017) recommendations. 

The parameters adopted for the alignment were: high quality, reference selection, 
key point limit set to 60,000, and tie point limit set to 0 (no limit) (USGS, 2017). 
After filtering the sparse point cloud, where the unwanted points were removed, 
9.9 Million points were selected out of 21 Million. 

The next step generated the dense point cloud. The processing quality was set 
to high, so rooftop buildings could be well represented in the dense cloud. The 
densification of the sparse point cloud produced 2.8 Billion points. 
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In sequence, the mesh was constructed using a high-quality set, which produced 
212 Million polygonal faces. The high-quality mesh reduces noise and variation 
in DSM pixels, which provides a smoother GHI model. 

In sequence, the DSM was generated with a default spatial resolution, GSD of 
10.6 cm. But, because of better efficiency in solar GHI modeling, the raster was 
resampled to a GSD of 50 cm.  

Finally, the orthophoto was generated with a GSD of 5.3 cm. The elevation 
surface considered to ortho mosaicking was the DSM built using the mesh. 

4.2. Phase 2: Solar irradiation modeling and PV Potential assessment 

As stated, the ArcGIS Solar Radiation toolset was employed for the solar 
irradiation modeling. In that regard, the irradiation modeling and analysis 
occurred at a GSD of 50 cm. Thereby, buildings and open areas can be well 
represented in the modeling.  

Although a better spatial resolution would represent the objects above rooftops 
with more details and thereby, produce a more accurate solar irradiation data, it 
was not applied because the meteorological annual variability is more significant 
than higher spatial resolutions variability, and it would increase computational 
processing time significantly (Nelson and Grubesic, 2020). 

4.2.1. ArcGIS Solar Radiation calibration 

The ArcGIS Solar Radiation toolset employed two meteorological calibration 
parameters: diffuse proportion and atmospheric transmittivity. In the present 
research, calibration followed the approach proposed by Majumdar (2018), which 
computed multiple models varying calibration parameters and selected the most 
suitable pair, with the lower RMSE. In this research, the DEM used in calibration 
was an SRTM resampled to the same spatial resolution that the observed data, 
277 m/pixel. The observed data were provided by the World Bank Group’s GSA 
(2020).  

The calibration was done in two steps, the first considered a variation of 0.1 in 
the parameters, and the second 0.05. The diffuse proportion parameter varied 
from 0.20 to 0.40 and the atmospheric transmittivity from 0.50 to 0.65.  

The RMSE error was calculated based on Equation 8. The Raster Calculator tool 
was used to compute mean difference and the RMSE for every pair variation of 
diffuse proportion and atmospheric transmittivity.  

Eq. 8. RMSE Error = ∑
( . 𝐢  . )²
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In this case, n is 2448, the number of cells in the raster file, which is defined by 
raster columns and rows. Table 1 details the calculation performed for the model 
calibration. Green background cells represent the most accurate modeling in 
each calibration phase. The pair with less RSME had a diffuse proportion of 0.25 
and atmospheric transmittivity of 0.60. In that way, the parameters adopted in the 
best calibration scenario were the same used to generate the GHI models in 
higher spatial resolution. 

Table 1. Calibration of ArcGIS Radiation toolset 

 

In spite of its low spatial resolution, the GSA (2020) data are adjusted by satellite 
historical time series data in several spectral channels, environmental variables 
(altitude, terrain shading, air temperature), atmospheric parameters (water vapor, 
aerosol optical depth, aerosol type, ozone), Solar-Earth geometry, and advanced 
algorithms for cloud quantification. Palmer et al. (2018) and Copper and Bruce 
(2018) evaluated GSA as the most accurate application in comparison with four 
techniques in the UK and three in Australia, respectively. The information 
presented in this paragraph justified the adoption of GSA (2020) as observation 
data for model calibration. 

4.2.2. ArcGIS Solar Radiation parameters 

The parameters adopted in the ArcGIS Solar Radiation were based on Fu and 
Rich (1999) and calibration procedures. The pair that generated the solar 
irradiation model with the minimum RMSE was a diffuse proportion of 0.25 and a 
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transmittivity of 0.60. Thereby, the solar irradiation model (GSD of 50 cm) used 
for PV Potential analysis was produced using these calibrated parameters.  

Fu and Rich (1999) indicated that a 512 x 512 sky size and sky calculation 
directions of 64 is enough to represent all sky directions. Regarding skymap 
divisions, the authors recommended a minimum of 16 zenith divisions and 16 
azimuth divisions for detailed studies. Regarding the diffuse model adopted in 
Solar Radiation toolset, as there was no detailed information about irradiance flux 
coming from specific sky directions, the uniform diffuse model was adopted. 

The parameters were divided into three categories: general modeling, 
topography, and Radiance. Table 2 presents the parameters used in this 
research. 

Table 2. Parameters used in ArcGIS Solar Radiation tools for irradiance 
modeling of FNI. 

Parameter Value 
General modeling parameters 

Latitude -3.84362 
Sky size / resolution 512 x 512 
Time configuration Whole Year 

Day and Hour interval 14 and 0.5 
Topographic parameters 

Z factor 1 
Slope and aspect input From DEM 
Calculation directions 32 

Radiance parameters 
Zenith divisions 16 

Azimuth divisions 16 
Diffuse model type Uniform Sky 
Diffuse proportion 0.25 

Transmittivity 0.60 

4.2.3. PV and Environmental Potentials assessment 

Based on the photointerpretation of the orthophoto, the buildings and open areas 
were manually vectorized to be used on potential assessment of decentralized 
and centralized PV sources. The created polygons were used to extract individual 
solar GHI data of likely installation sites; in sequence, zonal statistics operation 
was applied to compute the mean GHI values for each polygon feature, as 
presented in Chiabrando et al. (2017). 

The next step was to estimate the PV and Environmental potentials of rooftops 
and open areas that are suitable for PV power production.  
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The PV Potential means the electricity yield estimated for a given surface. In this 
case, it was assumed that the useful surface area (Asurface) is delimited by 
manual vectorization and the average global horizon irradiation (GHI) is 
calculated by the mean GHI value of zonal statistics operations applied on 
vectorized areas.  

Following Fath et al. (2015), the value assumed for PR was 90% and η was 15%. 

Eq. 9. PV-Potential = Asurface * GHI * η * PR 

The Environmental potential accounted for the emission of carbon dioxide that 
will be avoided when one energy source is replaced by a renewable. In the 
context of this research, the oil diesel-burning in thermoelectric would be replaced 
by PV energy systems.  

The avoided quantity of carbon dioxide was calculated based on Equation 10, 
where it was considered the carbon intensity conversion rate (CI) and the type of 
energy source. Following the special report from the Intergovernmental Panel on 
Climate Change by Edenhofer et al. (2011), diesel has a CI of 840 g/kWh.  

Eq. 10. Environmental-Potential = PV-Potential * CI 

4.3. Phase 3: Scenarios of PV transition for FNI 

The photovoltaic transition scenarios in FNI were developed by equalizing the 
renewable power needed to achieve a transition with scenarios of decentralized 
and centralized integrated arrangements of PV production in FNI.  

The first consist of the sum of the diesel generators electrical production in 2018 
(19.4 GWh/yr) and the estimated electrical demand for desalination plants for 
local islanders (0.8 GWh/yr), a total of 20.2 GWh/yr. In that way, energy and water 
securities are enhanced in FNI. 

In the other side, the integrated arrangements were elaborated assuming that the 
decentralized sources (PV modules in rooftops) are not able to supply the entire 
electrical demand. Thus, the remaining power demand will be supplied by the 
centralized sources (PV plants in open areas).  

To quantify scenarios of decentralized PV production, were considered some 
real-world conditions, for example, not all roofs are capable to physically support 
the heavy weight of typically commercialized crystalline PV modules, also, not all 
owners can afford the initial costs or are willing to install PV. Thinking on those, 
three percentages (25%, 50% and 75%) were considered to account for buildings 
that would install PV systems. In this case, constructions are selected in crescent 
order of GHI value. 
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Besides those factors, building’s rooftops are not entirely occupied by PV 
modules, so it was suggested three percentages (10%, 25% and 50%) of roof 
area occupation for PV production. In that way, considering the suggested 
percentages, 9 scenarios of PV decentralized production were built. For example, 
the scenario where most of decentralized PV energy is arranged consider that 
75% of buildings adopt PV systems and that 50% of their rooftop are occupied 
by PV modules. 

Ultimately, each scenario will indicate the complementary area needed for 
centralized PV production, which were calculated considering 2.06 MWh/m²/yr 
(the average GHI value measured in all APA-FNI open areas). Combined with 
that, the previous PV Potential analysis in open areas guides the decisions about 
the size and location of centralized PV plants. 

To estimate the cost of each scenario, the LCOE (USD/MWh) adopted for 
decentralized and centralized PV energy production followed the numbers 
presented by the report IRENA (2020) and the Energy Auction from New Power 
Generation Projects no. 04/2019 (ANEEL A-6, 2019), respectively. In that way, 
IRENA (2020) informed that in 2019 Brazilian residential PV systems had an 
LCOE of 111.00 USD/MWh, therefore used for PV decentralized cost estimation. 
On the other side, the average sale prices negotiated on the 11 PV power plants 
projects dealt in ANEEL A-6 (2019) was 20.52 USD/MWh, the value adopted for 
PV centralized cost estimation.  

Worth noting that the scenario planning was based on the principle that installing 
PV systems in rooftops is more appropriate than in-ground because there will be 
more social benefits and participation in the PV energy transition if the energy 
system is decentralized, although it could represent a higher initial capital 
investment. In addition to that, social and environmental impacts should be 
minimized inside the APA-FNI and installing PV plants in open areas would 
implicate in more land occupation, pressure, and conflicts. 

Before suggesting locations to install PV plants, it is recommended to follow the 
environmental zoning and restrictions in the area of study. However, in the APA-
FNI case, the orthophoto revealed many irregular occupations and land uses, 
which prevented the use of zoning as a decision criterion. 
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5. Results 

5.1. Photogrammetric survey  

This topic presented the data produced by the photogrammetric survey: an 
orthophoto with a GSD of 5.3 cm, a DSM resampled to a GSD of 50 cm, and one 
dense cloud with a point density of 89.2 points/m².  

5.1.1. Sparse and Dense point cloud 

The recognition of features on a set of overlapped photos was exemplified in 
Figure 26, which illustrates the true and invalid keypoints matched on two pairs 
of photos. A true correspondence, that was assigned as a tie point, was 
represented by blue dashes, while red dashes represent the invalid matches.  

 

Figure 26. True (blue) and invalid (red) matches on a pair of photos. a) illustrated 
a pair of photos with 368 matches, from which 368 are true and 113 invalids. b) 
1235 matches, from which 524 true and 711 invalids. In the last case, there were 
no matches over the ocean surface because it is in constant movement, which in 
consequence obfuscates below-surface targets and disturbs SfM reconstruction. 
In the first case, there was only one match over the ocean surface. 

The tie points calculated in the step of photo alignment composed the 3D sparse 
cloud.  The densification of the point cloud was observed in comparing figures 27 
and 28, which illustrate sparce and dense cloud, respectively. In the context of 
coastal 3D reconstruction, because of shallow and clear water and visible rocks, 
the software matched some features below the ocean surface. A negative point 



86 
 

 
 

for coastal areas was that waves and foam disturbed feature recognition 
procedures and added noise to the 3D model and subsequent DSMs.  

However, for urban and infrastructure modeling the focus of this research, the 3D 
reconstruction was able to model buildings and man-made objects in sufficient 
detail. For example, Figure 29 presents the point cloud of tilted PV modules of 
the Noronha II PV Plant and some sloping rooftops. 

 

Figure 27. Sparse point cloud of Praia do Sancho, Baía dos Porcos e Praia 
Cacimba do Padre. 
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Figure 28. Dense point cloud of Praia do Sancho, Baía dos Porcos e Praia 
Cacimba do Padre. 

 

Figure 29. Dense point cloud representation of Noronha II PV Plant and sloping 
rooftop. 
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5.1.2. Digital Surface Model  

The photogrammetric survey produced a DSM with a very refined spatial 
resolution, with a GSD of 10.9 cm. At this level, the computation of the irradiation 
modeling takes an unfeasible processing time. Because of that, the DSM was 
resampled to a GSD of 50 cm, enough for the urban irradiation modeling 
proposed in this research. Figure 30 presents the DSMs with a GSD of 10.9 cm 
and 50 cm. 

As expected, it was observed that objects above the rooftops (for example trees, 
water tanks, and fractions of the roof structure itself) were better modeled on 
higher resolution DSM. It could potentially help to identify objects that increase 
shading effect and reduce PV feasible installation area. Although it works at the 
scale of individual PV project installation and dimensioning, it was not the 
objectives of this research, which focus more on a city scale. Therefore, the 
reduction in spatial resolution did not affect this study case. Worth noting that a 
GSD of 50 cm is more refined than typical urban LiDAR surveys.   

 

Figure 30. Visual comparison of a DSM with a GSD of 10.9 cm and 50 cm. Worth 
noting that objects above rooftops, trees and buildings are well represented in 
both spatial resolutions.  
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Figure 31 presents the DSM produced for the area covered in FNI (“Morro do 
Espinhaço” and “Morro do Pico” were not flown by UAV missions). However, 
considering that the area of interest for PV production is limited to APA-FNI limits, 
the DSM raster was extracted later to reduce the size of the raster and, in 
consequence, diminish irradiation modeling processing time.  

 

Figure 31. DSM produced by the photogrammetric survey. Although it did not 
influence PV potential analysis in buildings and open areas, the variation in ocean 
elevation is caused by erroneous interpolation process in water surfaces and lack 
of GCP located on extremities of FNI.  

5.1.3 Orthophoto. 

A few reconstruction failures were noted on the top of some hills. Figure 32 
illustrates a sample of a reconstruction failure in “Morro do Medeira”. It was 
caused because of a low number of overlapping photos, which was a 
consequence of the low flight height in relation to the top of the hill. Although 
these few holes did not compromise the photogrammetric survey objectives, 
because they were few and occurred in small areas, they could be avoided by 
applying a higher percentage of the frontal and side overlap photo collection or 
higher flight height.  

The proposed configuration of 75% longitudinal and 65% lateral overlap could be 
set to 85% and 75%, for example. Consequently, it would have implicated in more 
flying time, battery usage, photos acquired, and processing time. In this context, 
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was important to look for an equilibrium in data collection logistics, data 
processing, and expected final quality.  

 

Figure 32. Reconstruction failures identified on Morro do Medeira. 

The positional accuracy of the photogrammetric survey was evaluated by 
calculating the statistic index RMSE, by comparing RTK observed GCP-
Checkpoints coordinates with the ones collected in orthophoto. Table 3 presents 
the calculation of each element of the summation parcel in Equation 7 (8th column 
in Table 3), which resulted in 0.5295. By solving the Equation 7, the RMSE 
calculated was 0.155 m. 
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Table 3 – Positional analysis of the orthophoto. 

GCP E_Ortho E_GCP N_Ortho N_GCP (ΔE) (ΔN) 
(ΔE)^2 

+ 
(ΔN)^2 

GCP Root 
Square 
Error 

1 565938,92 565938,89 9574901,23 9574901,26 0,03 0,03 0,0018 0,0424 
2 565883,32 565883,34 9575126,04 9575126,12 -0,02 0,08 0,0068 0,0825 
3 565851,24 565851,30 9575283,94 9575283,91 -0,06 -0,03 0,0045 0,0671 
4 566067,78 566067,84 9575632,45 9575632,39 -0,06 -0,06 0,0072 0,0849 
5 566608,87 566608,87 9576118,51 9576118,52 0,00 0,01 0,0001 0,0100 
6 565658,46 565658,52 9574907,30 9574907,16 -0,06 -0,14 0,0232 0,1523 
7 565421,05 565421,03 9575469,19 9575469,34 0,02 0,15 0,0229 0,1513 
8 565450,14 565450,11 9575218,42 9575218,39 0,03 -0,03 0,0018 0,0424 
9 565362,65 565362,62 9574892,18 9574892,22 0,03 0,04 0,0025 0,0500 

10 565147,15 565147,10 9574608,08 9574608,06 0,05 -0,02 0,0029 0,0539 
11 565375,34 565375,22 9574783,90 9574783,89 0,12 -0,01 0,0145 0,1204 
12 565286,61 565286,54 9575078,38 9575078,34 0,07 -0,04 0,0065 0,0806 
13 565191,35 565191,31 9574974,27 9574974,34 0,04 0,07 0,0065 0,0806 
14 565026,30 565026,29 9574812,46 9574812,45 0,01 -0,01 0,0002 0,0141 
15 565016,79 565016,74 9574640,46 9574640,39 0,05 -0,07 0,0074 0,0860 
16 564896,12 564896,14 9574755,29 9574755,28 -0,02 -0,01 0,0005 0,0224 
17 564763,56 564763,63 9574627,52 9574627,48 -0,07 -0,04 0,0065 0,0806 
18 564650,04 564650,07 9574511,04 9574511,00 -0,03 -0,04 0,0025 0,0500 
19 564456,47 564456,40 9574404,26 9574404,13 0,07 -0,13 0,0218 0,1476 
20 563935,53 563935,84 9574445,97 9574445,84 -0,31 -0,13 0,1130 0,3362 
21 563143,72 563144,17 9574761,99 9574761,84 -0,45 -0,15 0,2250 0,4743 
22 563482,63 563482,80 9574698,04 9574697,89 -0,17 -0,15 0,0514 0,2267 

Eq. 7 Calculation: 

RMSE = ∑
(𝑬_ 𝒊  𝑬_ _ 𝒊 )²  (𝑵_ 𝒊  𝑵_ _ 𝒊 )²

=  

RMSE = 0,5295
= 0.155 

Figure 33 presents the spatial distribution of the 22 GCP-Checkpoints adopted in 
this research. It was noted that the 3 GCPs-Checkpoints placed behind Morro do 
Pico (20, 21, and 22) had the largest errors (33.6 cm, 47.4 cm, and 22.7 cm, 
respectively), which can be justified by the interference in the link-communication 
between the base and the hover in the RTK survey caused by the “Morro do Pico” 
topographic obstruction, as shown in Figure 37. Although this positional error is 
relatively low for the purposes of this case study research, we could get better 
results by adding intermediate RTK bases. Moreover, the 19 (1 to 19) GCP-
Checkpoints measured without any topographical interference had RMSE of 8.5 
cm. Figure 34 represent the error distribution of GCP-Checkpoints. 
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Figure 33.  Distribution of 22 GCP-Georeferencing inside APA-FNI. 

 

Figure 34. Distribution of errors in GCP-Checkpoints.  

Ultimately, the positional accuracy achieved in this case study was satisfactory, 
considering the purposes of GIS irradiation modeling and scenarios of PV 
transition. 

The vectorization process of buildings and open areas was performed manually 
and aimed to account for centralized and decentralized areas suitable for PV 
production. To this extent, by interpreting the orthophoto, were identified 1,272 
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roofs and 26 open areas, accounting in total 199,743 m² and 239,603 m² of 
potential areas to install PV modules, respectively. Among the open areas, 9 have 
more than 10,000 m², with the largest having 39,740 m². In regards of roofs, 40 
have more than 500 m². Figure 35 presents the results of the vectorization.  

 

Figure 35. Vectorization of buildings and open areas, the surfaces considered to 
produce decentralized and centralized PV energy, respectively.  

The high spatial resolution of orthophotos produced by UAV SfM-MVS 
photogrammetry new solutions and applications for mapping and remote sensing. 
In this case, with a GSD of 5.3 cm, the orthophoto can be used by urban 
administrators for infrastructure (roads, harbor, airport, landfills, buildings) 
inspection, monitoring of construction and development sites, documentation of 
historic and archeological features, territorial/land management, sustainable 
tourism and agricultural planning, and GIS database for cadastral and thematic 
maps. In conjunction, environmental managers of park and protected areas can 
use the data for ecosystems (coastal, vegetation, waterbodies) and natural 
resources assessment, erosions monitoring, land use classification and change 
detection analysis, environmental impact analysis, planning and monitoring of 
sustainable actions, nursery grounds assessment, among others. 

As a remote sensing technique, the UAV photogrammetry produced a map with 
exceptional positional accuracy and impressively detailed, was able to survey “on 
demand”, and demonstrated to be practical, effective, and with great cost-benefit. 
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5.2. Open area and rooftop irradiation modeling and PV potential 
assessment 

The irradiation model produced for APA-FNI, with a GSD of 50 cm, is presented 
in Figures 36, 37 and 38. The irradiation data extracted by masks of buildings 
and open areas are presented with a better scale in figures 39 and 40. As 
expected, the highest values were obtained on flat surfaces and distant from 
shading structures (trees, buildings, or hills). For example, pixels with maximum 
irradiation were found on the airport runway, clearings in vegetation areas, small 
water dams, parts of the main road, unshaded roofs, and in the sea. In opposition, 
the minimum values were found on steep surfaces, beaches surrounded by cliffs 
and places adjacent to hills, houses, and trees.  

 

Figure 36. Irradiation model of APA-FNI.  
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Figure 37. Irradiation map of the same areas represented by point clouds in 
figures 27 and 28. The high irradiation open area in the southwest position is a 
plantation area, and the one near the center is a cleared and low vegetation area. 
Beaches and hills have lower irradiation because of cliff shading and steep terrain 
slope. 
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Figure 38. Irradiation map of sector in Vila dos Remédios neighborhood. It is 
notable that GHI varies because of the shading caused by trees and buildings 
and due to variation in slope and orientation of the surfaces.  

 

Figure 39. Irradiation data extracted by building vectors.  
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Figure 40. Annual Irradiation data extracted by open area vectors. 

The Total Decentralized PV-Potential estimated for the 1272 buildings was 51.6 
GWh/yr, corresponding to an Environmental-Potential of 43344 tons of CO2-eq. 
Likewise, the Total Centralized PV-Potential estimated for the 26 open areas was 
67.0 GWh/yr, and an Environmental-potential of 56028 tons of CO2-eq. The 
combined Total PV-potential of decentralized and centralized sources, 118.6 
GWh/yr, is almost 5.8 times the annual power consumption for a sustainable 
transition, 20.2 GWh/yr. Worth remember that 20.2 GWh/yr represents the annual 
power produced by Tubarão Diesel Plant in 2018 (19.4 GWh/yr) coupled with the 
power required to produce potable water for local people, with reverse osmosis 
membrane treatment (0.8 GWh/yr). 

Summing up the PV-Potential of the four largest open areas in APA-FNI, 26.25 
GWh/yr, and taking a 5% rate discount because of the area occupied by modules 
spacing and access corridors, reveals that a PV transition is feasible only with 
those four open areas. With a different point of view, APA-FNI must explore only 
17% of its Total PV-Potential to achieve a renewable transition. Those 
affirmations are important to demonstrate and motivate the society to plan and 
pursue a renewable energy transition.  

To give an example of the output results of Equations 9 (PV-Potential) and 10 
(Environmental-Potential), Table 4 presents the data of the 10 largest rooftops 
and open areas of FNI. Figure 41 presents the PV-Potential of some open areas. 
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Table 4. PV-Potential and Environmental-Potential of the 10 largest rooftops 
and open areas of FNI. 

Open areas Rooftops 
AREA 
(m²) 

Mean GHI 
(MWh/m²/yr) 

PV-Pot 
(GWh/yr) 

Env. Pot 
(ton CO2-

eq/yr) 

AREA 
(m²) 

Mean GHI 
(MWh/m²/yr) 

PV-Pot 
(GWh/yr) 

Env. Pot 
(ton CO2-

eq/yr) 
39780 2.03 10.90 9157 3001 1.99 0.81 677 
20625 2.07 5.76 4841 1464 1.92 0.38 319 
17331 2.08 4.87 4088 1181 2.06 0.33 276 
16328 2.14 4.72 3962 1115 1.96 0.29 248 
16183 2.13 4.65 3909 1110 1.86 0.28 234 
12237 1.98 3.27 2748 1055 2.00 0.28 239 
11543 2.13 3.32 2788 1016 2.11 0.29 243 
10955 2.09 3.09 2596 958 2.13 0.28 232 
10643 1.97 2.83 2378 923 2.01 0.25 211 
9811 2.03 2.69 2259 899 2.00 0.24 204 

 

Figure 41. PV-Potential of some open areas in APA-FNI. 
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It is important to mention that some of these areas were cleared for agricultural 
purposes, but they could be strategically developed to PV greenhouses, like the 
2 GWh/yr in Reunion Island (Scognamiglio et al., 2014), or to stilt-mounted 
agrivoltaic systems (Sekiyama and Nagashima, 2019). Those kinds of solutions 
could make a more efficient and intelligent use of the available surfaces to 
enhance at the same time energy and food securities.  

As stated in methodology, environmental zoning in APA-FNI was not considered 
as a location criterion because of many irregular occupations and uses found in 
there. For example, were found recent earthwork activities, buildings, and 
agricultural fields inside zones of Conservation and Wildlife Protection, meaning 
that the environmental zoning is not being followed or it is outdated. Worth 
mentions that some open areas that were identified in this study are also inside 
those zoning areas. Moreover, the APA-FNI management and zoning plan does 
not discuss land use for the production of renewable energy.  

Although some areas are extensive and have high irradiation and PV-Potential, 
they were not considered suitable for installing centralized PV plants and, 
therefore, were neglected on this study case. For example, the area aside the 
runway airport (200000 m²) was not contemplated because of sunlight reflex 
during aircrafts landing. Due to preservation of vulnerable ecosystem, the dunes 
(100000 m²) located at Northeastern side of APA-FNI were also neglected. 
Moreover, the soccer field (5000 m²) was also excluded because the community 
uses it for sports and meetings.  

To exemplify the monthly variation in GHI, Figure 42 presents the monthly GHI of 
two sample buildings. It is notable that between March and September the 
rooftops facing North have higher GHI. However, between October and February 
the ones facing South have higher GHI. This happens because FNI is near the 
Equator Line (latitude of 3°S) and the Sun-rising position vary throughout the year 
(represented by positions of equinox and summer/winter solstice), in that way, 
between March and September the Sun rises above the Zenith Angle of a rooftop 
in FNI, favoring GHI in northern oriented faces, and between October and 
February it rises below, favoring southern oriented faces.  

By simply visual analyzing the annual GHI in FNI (figures 38, 39, and 42), it was 
observed that the orientation of the rooftop (pointed to north or to south) is not as 
significant as the shading caused by trees and objects above surface and roofs. 
This means that the GHI at high spatial resolution (GSD of 50cm) was a key data 
for estimating accurately the PV-Potential in rooftops because they compute the 
attenuation caused by shading objects. 
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Figure 42. Monthly GHI in two sample buildings to illustrate the GHI variation 
throughout the year in rooftop faces oriented to north and south. Between March 
and September, GHI is higher in faces pointing north. Between October and 
February, GHI is higher in faces pointing south.  

Despite not having historical data measured by pyranometers to validate 
irradiance values estimated in this research, which is highly recommended, it was 
observed that flat and unshaded areas, like the ocean and water reservoir 
surface, airport runway and most cleared open areas, had relatively similar 
irradiation values compared to the data provided by GSA (2020), between 2100 
and 2200 kWh/m². Minding that GSA (2020) data is trustable but does not 
account for high spatial resolution shading effect, it is believed that the calibration 
procedures achieved its purposes, meaning that the GHI model produced can be 
trusted and applied in PV-Potential analysis.  
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Thinking of a way to share the mean GHI of rooftops in FNI, two shapefiles were 
added to a web GIS application. The first contained the 1272 rooftop buildings 
footprint (polygon vectors), presented in Figure 35. The second one was 
produced by transforming the raster GHI into a shapefile of points, with distance 
between points of 50 cm (same as the GSD of the GHI raster). The link to access 
the web GIS platform is: https://arcg.is/5D044 . Because of the server 
maintenance expenses, the platform may be unavailable in the future. 

 

Figure 43. Web GIS platform. Clicking on a building footprint opens a pop-up 
window informing area and mean annual and daily GHI.  

 

Figure 44. Web GIS platform. Zooming in will show the shapefile of points 
informing the annual GHI in rooftops. 
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5.3. Suggestion of scenarios of PV transition  

The scenarios of PV transition present possible arrangements that integrate 
decentralized and centralized PV sources, considering the percentages of 
houses that will install PV systems (25%, 50%, 75%) and the rooftop area 
occupied by them (10%, 25%, 50%). 

In that way, to produce 20.2 GWh/yr of renewable power to achieve energy 
transition, the 9 possible scenarios of decentralized PV energy production were 
complemented by centralized PV plants. Table 5 presents the results of this 
integration. 

Table 5. Scenarios of renewable transitions considering decentralized and 
centralized PV sources. 

 

Scenario “I”, whereas the decentralized sources are most integrated, highlights 
that a decentralized rooftop PV system in FNI can produce 108% of the electricity 
required to achieve a renewable transition, a surplus of 1.8 GWh/yr. In the other 
side, scenario “A” needs to be complemented with 18.5 GWh/yr, i.e., 66443 m² 
of useful area of centralized PV plants. Moreover, the midway Scenario “E” needs 
that complementary centralized PV plants produce 12.0 GWh/yr.  

As predicted, scenarios with the largest share of decentralized sources had a 
higher cost than those with the highest share of centralized sources. Scenario “A” 
had an estimated cost of 550 thousand USD, scenario “E” 1064 thousand dollars, 
and scenario “I” 2160 thousand dollars. In that way, an 100% decentralized PV 
energy transition - Scenario “I” - can cost almost four times a less decentralized 
PV transition – Scenario “A”. Worth highlighting that the analysis of cost 
estimation is particularly important for the viability of renewable energy 
transitions, however different aspects must also be considered, for example 
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environmental restrictions for land occupation, public hearings about the degree 
of decentralization and social engagement, rooftops and soils technical viabilities, 
among others. Moreover, particularly for FNI, it is important that tourists, the 
largest source of income, have a good impression of the participation of islanders 
in the production of renewable energy and their commitment to sustainability and 
preservation of the environment. Therefore, the scenario cost is not the most 
important aspect on an energy renewable transition.  

The decisions regarding the locations and sizes of centralized PV plants are 
supported by the previous analysis that identified and estimated the PV-Potential 
of open areas in APA-FNI. For example, the centralized PV power needed in 
scenario “C” (11.7 GWh/yr) could be located on the three open areas near the 
airport and the PV Plant Noronha II (Figure 41.a), which have a combined PV 
Potential of 17.4 GWh/yr. Worth noting that is recommended to discount a 5% 
rate in calculation of available centralized PV Potential because of the area 
required for spacing between modules, access roads, parking lots, and structures 
needed on PV plants. With that in mind, the useful combined PV Potential of that 
areas are 16.5 GWh/yr. 

However, the centralized PV potential can be interpreted with a different point of 
view. The mentioned 16.5 GWh/yr is enough to fulfill the scenarios B, C, E, F, G, 
H, and I. This approach is recommended if areas are somehow preferred due 
external factors, such as the distribution network location, environmental zoning 
and legislation, development plans, or if there are pavemented roads to access 
the areas. 

Worth remembers that the scope of this study was limited to GHI modeling and 
analysis to suggest scenarios that produce more PV energy than the power 
consumed annually. It was out of the boundary to discuss fundamental aspects 
of a renewable energy transition, such as battery storage systems, other 
renewable energy sources, mismatch daily power consumption, smart grids, 
among others.  

However, in terms of renewable power and transitions plan, smart and 
sustainable islands or cities should have hybrids renewable energy systems 
(wind-solar, wind-solar-hydro, wind-solar-oceanic, etc.) to take advantage of the 
concept of complementarity among renewable sources. Moreover, a smart-grid 
system coupled with an energy battery storage system must be dimensioned 
properly to solve the mismatch between the grid load demand and the variability 
in renewable power production. If a complete storage system is not feasible 
(because of high initial costs), diesel generators that already exists could be 
minimally integrated to control the grid load, since they have a flexible operation, 
good ramp capability (control of increasing/decreasing output power), and a short 
time to start-up/shutdown the system. The topics presented in this paragraph 
were out of the scope of this study but are recommended as future research. 
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6. Conclusions  

The workflow proposed in the present research demonstrated that the integration 
of UAV photogrammetry and GIS solar irradiation modeling and PV potential 
analysis produce applicable data and solutions in the context of smart and solar 
cities, contributing for smarter, faster and more socially engaged PV transition. 

Although this study case took place on a remote island environment, with an 
isolated power system, the workflow could be replicated in several scales and 
almost any environment. For example, isolated communities in forests, islands, 
and arid regions, whole cities connected to national power systems, specific 
zoning areas (residential, commercial, industrial, recreative), and private 
enterprises (agricultural and rural properties, hotels, factories, among others). 

It was demonstrated that UAV photogrammetry worked fine on mapping a 2000 
ha area and was capable of produce GIS data with high spatial resolution and 
positional accuracy. As a remote sensing technique, considering the on-demand 
and high-quality mapping results achieved in this case study, UAV 
photogrammetry had excellent cost-effectiveness and practicality. The technique 
is substantial and directly contribute to innovations and solutions on GIS and 
remote sensing fields. 

Moreover, the high spatial resolution survey was particularly important for 
irradiation modeling and PV potential analysis at the scale of buildings and open 
areas because it was possible to accurately model shading tracks caused by 
trees, buildings, above-rooftop objects, among other surface elements. Although 
none ground truth pyranometer data was used to validate the irradiation modeling 
(recommended for future research), the estimation was considered reliable 
because GHI calibration procedures for atmospheric attenuation were applied 
and verified.  

Worth noting that irradiation models could be somehow used by almost all energy 
stakeholders (individual consumers, small neighborhoods, public administrators, 
power companies, shareholders, entrepreneurs, non-governmental 
organizations). The high-resolution irradiation model could also be used in best-
location and decision-makings process of different technologies, such as PV light 
poles, PV integration with water desalination and wastewater treatment plants, 
electric car station, agrivoltaics systems, PV wide-spread projects funding, 
among others. 

The results of this research indicate that the FNI can achieve a renewable energy 
transition, powered by centralized and decentralized PV sources located in APA-
FNI. It was estimated that the PV systems used to achieve the renewable energy 
transition cost between 550 and 2160 thousand US dollars, depending on the 
degree of decentralization.   
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For a small island like FNI, it is important to highlight that achieving a renewable 
energy transitions means (i) an improvement of energy and water security, (ii) a 
reduction of water and energy costs and of environmental impacts and risks, (iii) 
an efficient use and management of natural resources, (iv) a strengthening in 
economic, social, and environmental aspects, and (v) more publicity and 
revenues for sustainable tourism.  

Nonetheless, the spatial data (orthophoto, DSM, and GHI) produced in this 
research could be used by ICMBio and ADEFN for (i) inspection, management, 
protection and preservation of urban and environmental assets and resources, 
(ii) monitoring and planning of efficient uses and occupations of the territory, (iii) 
Planning, developing and looking for funding projects of sustainable renewable 
energy, sustainable and smart cities, community-based agriculture, ecotourism, 
environmental preservation, archaeological, among others, and (iv) facilitate 
future research. 
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