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Resumo
Investigações sobre a origem microscópica da entropia de buracos negros revelaram uma
propriedade interessante sobre a quantidade de emaranhamento entre duas regiões espa-
ciais complementares para o estado de vácuo de um campo escalar real livre [17], sua
proporcionalidade à área da superfície que separa as duas regiões. Desde então, a entropia
de emaranhamento se tornou uma ferramenta importante para explorar a estrutura interna
de campos quânticos. Apesar da lei de área se provar um caso específico, novos estudos
revelaram a dependência dessa quantidade a propriedades geométricas do espaço-tempo,
pela presença de coeficientes universais [39]. Nesta dissertação, um estudo numérico da
entropia de emaranhamento de um campo escalar real livre com uma curvatura de fundo
é apresentado. Dois coeficientes universais são estimados. Os valores obtidos concordam
bem com os previstos analiticamente. Uma descrição das técnicas usadas assim como uma
breve revisão das teorias necessárias são também inclusas.

Palavras-chave: Entropia de emaranhamento, Teoria quântica de campos, Teoria de
campos na rede, Computação Numérica



Abstract
Investigations towards the microscopic origin of the entropy of black holes revealed an
interesting property of the amount of entanglement between two complementary spatial
regions for the vacuum state of a real free scalar field [17], its proportionality with the area
separating the regions. From that point, a measure of entanglement on pure states, called
entanglement entropy, became an important tool for exploring the internal structure of
quantum field theories. Although the area law proved to be a specific case, new studies
have unveiled the dependency of this quantity on geometric features of spacetime by the
presence of universal coefficients. In this dissertation, a numerical study of the entanglement
entropy of a real scalar field on a curved background is presented. Two universal coefficients
are estimated with good agreement with its predicted values. A description of the used
techniques as well as a brief revision of the necessary theories are also included.

Keywords: Entanglement entropy, Quantum Field Theory, Lattice field theory, Numerical
Computation.
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1 Introduction

In this chapter, we present a short historical motivation for the study of the
entanglement entropy of quantum fields by describing the development of the area law
for the entropy of black holes. The presentation is followed by a non-extensive review of
the numerical and analytical methods which revealed the geometric dependency of the
entanglement entropy on quantum fields and, in particular, the proportionality of such
quantity to the area of the entangling surface. Finally, we cite further references which
point out the impact of such quantity in other areas.

1.1 Entropy of black holes
Under certain circumstances, the Einstein equations, provided by the theory of

general relativity, allows for the gravitational collapse of matter and the subsequent
formation of a black hole [18, 33, 59]. As suggested by its name, a black hole defines a
region in spacetime where no light ray nor observer can escape. As a consequence, an
object captured by the black hole can have no causal relation with the future of the outside
region. The boundary of the black hole is then called an event horizon.

The event horizon of a spherically symmetric, static and non-charged black hole
with mass m is a two-dimensional spherical surface in a spacetime described by the
Schwarzschild metric [18, 33, 59]. The area of such horizon is given by:

A = 16πG2m2. (1.1)

A capture of a body by a black hole results in an increase of its mass and, as a consequence
of eq. (1.1), an increase in A.

Since there is no way for a particle to escape from the region defined by the event
horizon, it is reasonable to ask whether any energy can be extracted from a black hole.
In the case of a rotating black hole with angular momentum L and mass m, Penrose
suggested that energy can be extracted by means of what became known as the Penrose
process [47]. Such process consists in sending a particle with four-momentum p1 which
decays into a pair of particles with four-momenta p2 and p3, where the latter has negative
energy p0

3 < 0 when measured at the infinity. Conservation of four-momentum requires
that:

p1 = p2 + p3. (1.2)
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Penrose showed that a possible process where the first particle (with four momentum p2)
is swallowed and the second is ejected away, results in p0

3 > p0
1 at the cost of decreasing

the black hole’s rotational energy.

The efficiency of the Penrose process described above was later studied by Christodoulou
who showed [23] that the total mass energy m of a Black hole can be written in the form

m2 = m2
ir + L2

4m2
ir

, (1.3)

where mir is the irreducible mass, which cannot be decreased by any process. It was also
shown that an irreversible process is associated with an increase in mir. In the case of a
charged black hole, the rest mass is given by [24]

m2 =
(
mir + e2

4mir

)2

+ L2

4m2
ir

. (1.4)

Regarding the capture of a particle, it was pointed out by Penrose that the horizon
area of a black hole is increased even if its mass decreases. Such property was explored by
Hawking [30] in a general setting to derive the famous area theorem, which states that
the area A of a black hole never decreases with time:

dA ≥ 0. (1.5)

Hawking also showed that, in the specific case of two black holes merging, the area of the
final black hole is strictly greater than the sum of the initial ones. The result puts the
quantity A in close analogy with the thermodynamic entropy S which, by the second law
of thermodynamics, is also non-decreasing:

dS ≥ 0. (1.6)

The analogy between black hole physics and thermodynamics was developed
further by Bardeen, Carter and Hawking [5], who obtained an expression that relates the
parameters of two neighboring stationary solutions of the black hole. By comparison with
the first law of thermodynamics, one notes that the quantity

Tbh = κ

2π , (1.7)

where κ measures the magnitude of the acceleration of a test particle near the horizon,
plays the same role as the temperature in the suggested analogy.

The authors of [5] pointed out, however, that the thermodynamic temperature
of the black hole is absolute zero. Since it is unable to emit radiation, it could not
be in equilibrium with black body radiation at a non-zero temperature and thus, the
thermodynamic temperature and the analog given by κ/2π quantify distinct physical
parameters.
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A stationary black hole in four dimensions is characterized by three quantities only:
mass, angular momentum and charge. Such result is known as the no hair theorem [19,
20, 31, 36]. This property seems to violate the second law of thermodynamics, since a
system with arbitrary entropy falling into the black hole ends up in a state which has
none. A similar case, considered by Bekenstein [7, 8], indicated a violation of the law of
Baryon-Number conservation.

These results indicated that, in order to fix the second law of thermodynamics, one
would need to account for the entropy of a black hole. A candidate which was strongly
suggested by Bekenstein is the rationalized area of the horizon

Sbh = A

4π . (1.8)

In addition to that, only the sum of this entropy (1.8) and the common entropy Sc is never
decreasing [10]:

d(Sbh + Sc) ≥ 0. (1.9)

This proposition puts Sbh and Sc on equal footing since one may balance the other in
order to fulfill eq. (1.9). An interesting point arises regarding the microscopic source of Sbh.
Because a system constituted of Ω microstates at thermal equilibrium has a thermodynamic
entropy proportional to ln Ω [54], one might ask what degrees of freedom are associated to
the apparent eSbh states indicated by Sbh. Investigations on the microscopic source of such
entropy will be revised in the next section.

As pointed out earlier, the entropy Sbh is associated with a non-zero parameter
Tbh. In order to interpret Tbh as a temperature, one needs to consider outgoing black body
radiation from the black hole. This process is, however, prohibited by classical means since
the horizon, from its definition, is a region which no particle can escape. Such tension
was suspended by Hawking, who showed that a distant observer would indeed observe a
thermal radiation with temperature Tbh coming from an isolated Schwarzschild black hole
if a scalar quantum field is considered using a semiclassical treatment [32]. The particle
creation process originates from the curvature induced by the presence of the black hole.
A loss of energy by such creation process would then cause a slow decrease of the area of
the horizon over time and the evaporation of the black hole over a long period.

The calculation by Hawking was later generalized for the case of an incident number
of particles [12] thus supporting the radiative aspect of the phenomena.

1.2 Emergence of an area law
Interesting observations can be made from the establishment of Sbh as a correction

to the second law. From the microscopic derivation of thermodynamics, one defines
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the entropy as Sbol = kp ln Ω(pmac), where Ω(pmac) measures the volume of states with
macroscopic parameters pmac [54]. Note that:

• The Boltzmann entropy Sbol is then an extensive quantity Sbol ∝ V whereas Sbh ∝ A.

• Sbol is related to a set of degrees of freedom, which parametrizes the state space
where the surface with volume Ω lies. Assuming the same relation for Sbh, one might
induce that a set of eSbh/kb states is related to the presence of such quantity.

• On an informational theoretic perspective [55], Sbol measures the ignorance on the
microstate of a physical system. This is in close analogy to the proposal that the
entropy of the black hole is originated from an inability to determine its interior
state from the exterior [9].

A model called “Brick wall“ was proposed by ’t Hooft [11] as an attempt to
provide the degrees of freedom necessary to the emergency of an entropy Sbh. The model
considered a scalar field on the outside vicinity of the horizon under a series of assumptions
about the quantum treatment of the black hole. Added to the assumptions, the model
suffered a drawback on the addition of a parameter to guarantee the agreement with
previous results.

An alternative approach was given by Bombelli [17] in the following year. In an
enlightening work, Bombelli considered a free scalar field ϕ on the ground state given by
ρ = |0⟩⟨0|, situated on a flat spacetime. The black hole is modeled as a spatial region of
which one can have no knowledge about the associated degrees of freedom. Because the
states inside and outside might be correlated through entanglement, one should expect
that an ignorance of the inside state corresponds to an ignorance of the outside state. Such
“ignorance“ can be viewed as one of the possible sources of entropy and can be quantified
by computing the von Neumann entropy of the reduced density matrix associated to the
outside region.

A reduced density matrix ρred is given by tracing the degrees of freedom ψin which
are inaccessible to an outside observer:

ρred =
∑
ψin

⟨ψin|ρ|ψin⟩ . (1.10)

Because ρ is a pure state, the von Neumann entropy of ρred,

Sent = Tr(ρred ln ρred), (1.11)

is known to measure the degree of entanglement between the two spatial regions [45].
The relation between the amount of entanglement of a pure state and the von Neumann
entropy will be treated in detail in chapter 2. To compute ρred and evaluate the trace in
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eq. (1.11), Bombelli considered a short distance cutoff ϵ which maps the field ϕ into a
lattice of coupled harmonic oscillators separated by a distance of ϵ.

As a result, it is found that Sent ∝ A, where A is the area of the surface separating
the two regions. The proportionality constant depends on ϵ and is divergent in the
continuum limit ϵ → 0. Despite the divergence, it was a surprising discovery that such
formula holds on a flat background geometry.

The same method was revisited by Srednicki [57], who evaluated Sent numerically
for a scalar field on flat spacetime and explicitly demonstrated the dependence of such
quantity on the area of the sphere separating two spatial regions. The expressions which
permitted this computation of Sent will be derived in detail in section 5.1.

A drawback of these methods is that the calculation of Sent depends on the explicit
computation of ρred by tracing the degrees of freedom of the complement system. An
optimization aiming at such problem was later introduced to obtain Sent only in terms of
the field correlations inside the region of ρred [21, 49]. The updated method is known as
“real time approach“ and is the basis for the calculation of Sent developed further in this
work (published in [56]). Details of the formalism can be found in section 5.3.

This approach has been applied to several cases [21, 22, 35, 41, 42, 52, 56, 57] and
has revealed itself to be a robust tool for computing Sent numerically.

1.3 Deviations from the area law
An important analytical tool for the calculation of Sent in QFT follows from the

path integral description of quantum mechanics. By writing the ground state of the field
as a functional integral, one can relate the functions

Sα[ρred] = 1
1 − α

ln Tr ραred (1.12)

to the partition functions Zα. Such functions are known as Renyi entropies and the
entanglement entropy can be obtained when α → 1. This method is referred to as the
“Euclidean formalism“.

It follows from a generic analysis of a QFT in d dimensions, using the Euclidean
formalism, that the entropy Sent in the limit ϵ → 0 should take the form of [39, 46]

Sent = c2

ϵd−2 + c4

ϵd−4 + c6

ϵd−6 + . . . , (1.13)

where the coefficients c2k involve an integration over the entangling surface Σ and depend
on the parameter ϵ. The area law is recovered if c2 ∝ A(Σ), where A(Σ) is the area of the
entangling surface.

Smaller contributions to Sent on eq. (1.13) may appear, such as a logarithmic diver-
gence, ln ϵ. An interesting feature of these contributions is that they can be accompanied



Chapter 1. Introduction 15

by a multiplicative factor which is independent of ϵ. This factor is called a universal
coefficient and can reveal fundamental aspects of the underlying QFT. In chapter 6 we use
the real time approach to compute Sent and estimate two of these universal coefficients.

1.4 Further developments and connections
As we saw earlier, the area law proved to be a feature of a quantum field even in

the absence of a curved background. Further investigations led to the suggestion that the
fundamental degrees of freedom of a field are in fact embedded on a hypersurface of lower
dimension [34, 58]. Such proposal is known as the holographic principle.

The entanglement entropy has also a wide range of applications outside the scope
of fundamental physics. It plays an important role in some condensed matter systems [38],
for example, where entanglement serves as a mechanism for collective phenomena.

We will not list here the many areas in which the study of this quantity has a great
impact. The reader interested in such broad view might refer to the introduction of [46].
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2 Quantum Mechanics

Quantum mechanics is a theory which revolutionized the description of microscopic
physics in the 20th century. Despite the initial criticism related to its radical premises,
the theory has proved to be a robust set of rules from which a wide range of predictions
can be made. Such coverage includes accurate descriptions of chemical reactions, material
properties and atomic processes which no other contemporary theory is capable of achieving.

In this chapter, a short description of quantum mechanics is given from a funda-
mental perspective [45, 48, 53]. The mathematical framework is directly connected to
the postulates of the theory. Furthermore, the concepts of entanglement and (quantum)
entropy are developed, as they serve of basis for the content developed in the following
chapters.

2.1 Hilbert spaces and state vectors
Quantum mechanics prescribes the description of the physical state of a system by

an element of a Hilbert space. Before giving a refined statement of that postulate, let us
define the properties of a Hilbert space:

Definition 2.1: Hilbert Space

A complex vector space V is called an inner space if there is a complex-valued
operation of two vectors |a⟩ , |b⟩ ∈ V , denoted as ⟨a|b⟩ ∈ C, which satisfies the
following properties [50]:

1. Linearity: ⟨a| (α |b⟩ + β |c⟩) = α ⟨a|b⟩ + β ⟨a|c⟩.

2. Conjugacy: ⟨a|b⟩ = ⟨b|a⟩.

3. Positive definiteness: ⟨a|a⟩ ≥ 0, and ⟨a|a⟩ = 0 if and only if a = 0.

An operation satisfying the above requirements is called a inner product in V .
The presence of a inner product induces a metric

||a|| =
√

⟨a|a⟩. (2.1)

We also reefer to ||a|| as the norm of the vector |a⟩. It follows from the above
properties that ||a|| is always non-negative.
A Hilbert space is an inner space which is also complete (we refer the reader to
[50] for a definition of completeness in terms of Cauchy sequences).
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Now we might postulate that, if an experiment involving a physical system is
carried with the same preparation and produces the same statistical distribution of results,
the physical entity is said to be in a particular state |ψ⟩ [48], which is an element of a
Hilbert space H.

Postulate 2.1: State vectors

The state of a particular entity is given in terms of a complex vector |ψ⟩ (also
called “ket“) which is an element of a Hilbert space H. This space H contains all
the possible state vectors |ψ⟩ which the physical entity can be found. Physical states
|ψ⟩, in particular, have to be normalized:

⟨ψ|ψ⟩ = 1. (2.2)

Every ket |ψ⟩ has a unique correspondent ⟨ψ|, which is called “bra“ and describes
the same physical state.

The normalization condition stated in eq. (2.2) is necessary for connecting inner
products with probability theory, as will be shown latter. The fact that the state of a
physical entity is described by an element of a Hilbert space enables us to compare two
arbitrary states by using the inner product defined in definition 2.1. Since physical states
are normalized vectors, the inner product resembles the traditional notion of angle between
vectors of finite vector spaces. More precisely, the inner product measures the projection
of a vector on another vector. Whenever the length of that component is zero, the two
vectors are said to be orthogonal:

Definition 2.2: Orthogonality between states

Two arbitrary vectors |a⟩, |b⟩ are orthogonal whenever

⟨a|b⟩ = 0. (2.3)

For every Hilbert space there exists a set of vectors which can be used to represent
any other vector as a linear combination. If we further impose that every element of that
special set is normalized just as in eq. (2.2), and any pair of such vectors is orthogonal in
the sense of eq. (2.3), then this set is called an orthonormal basis for that Hilbert space:

Definition 2.3: Orthonormal Basis

A set of vectors B ∈ H such that its elements |k⟩ , |j⟩ satisfy the orthonormality
condition

⟨k|j⟩ = δk,j =

1 if k = j

0 if k ̸= j
(2.4)
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and can be used in conjunction to a set of complex coefficients αk to express any
vector |ψ⟩ ∈ H as

|ψ⟩ =
∑
k∈B

αk |k⟩ , (2.5)

is called an orthonormal basis for H. Also, an arbitrary element |i⟩ from the basis
is linearly independent of all others. This is, if |ψ⟩ = |i⟩ in eq. (2.5), we must have
αk = δik.

The number of coefficients necessary to represent an arbitrary state as a linear
combination of the elements of an orthonormal basis is called the dimension of that space.
For a generic Hilbert space, one might need an infinite number of coefficients, which turns
the expression (2.5) an infinite sum. In this case, questions about convergence, which will
not be treaded here, have to be addressed.

If the orthonormality condition of definition 2.3 is weakened into a linear indepen-
dence requirement, the resulting set which spans H is simply called a basis (or a Hamel
basis) [37]. It is possible to show that every space H admits a basis and, contrary to the
orthonormal case, every element of H can be represented as a finite sum of basis elements,
even on the infinite dimensional case.

2.1.1 Example: qubit

Consider a generalization of the quantum coin introduced together with the concept
of superposition. A system described by a Hilbert space of dimension two is called a qubit.
The computational basis is defined to be the basis that is constituted by the vectors |0⟩,
|1⟩. Using eq. (2.5), an arbitrary state |q⟩ can be written as:

|q⟩ = α1 |0⟩ + α2 |1⟩ , (2.6)

where α1 and α2 are two complex numbers which completely identify the state |q⟩ on
the computational basis. The normalization condition imposed by eq. (2.2) introduces a
constraint relating the coefficients:

|α1|2 + |α2|2 = 1. (2.7)

After imposing the normalization condition eq. (2.7), only two real numbers are
necessary to describe a generic qubit state. In that way, the arbitrary state |q⟩ in eq. (2.6)
can be rewritten in terms of θ ∈ [0, π] and γ ∈ [0, 2π]:

|q⟩ = sin θ |0⟩ + eiγ cos θ |1⟩ , (2.8)

where γ is called the relative phase between the states |0⟩ and |1⟩.
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2.2 Linear operators and measurements
Until now, the choice of a particular basis that is used to represent an arbitrary

state vector is irrelevant. However, due to the behavior of states upon the action of a
measurement, the choice of basis turns out to be guided by what quantity is being measured.
The way measurements are modeled in quantum mechanics is by the means of Hermitian
operators:

Definition 2.4: Linear Operators

A linear operator is a map between vectors of the same Hilbert space. If a linear
operator A maps a ket vector |ψ⟩ into another |ψ̃⟩ that relation is written as:

A |ψ⟩ = |ψ̃⟩ (2.9)

Alternatively, the operator A is uniquely related to the “complex conjugate“ version
of the above eq. (2.9), in which a hermitian conjugate A† is defined:

⟨ψ|A† = ⟨ψ̃| . (2.10)

If the operator A happens to be invariant under the complex conjugation †, that is
A† = A, then A is a Hermitian operator.

By fixing a particular basis, we can uniquely identify an operator A in matrix form
by calculating its action on the basis. Given that i and k are indexes of the basis elements
|i⟩ and |j⟩, the matrix elements Aij are the inner product ⟨i|A|j⟩. It’s clear from the
conjugation property defined in definition 2.1 that the matrix elements of A† are related
by ⟨i|A|j⟩ = ⟨j|A†|i⟩.

The relation between an operator and a specific basis is elucidated by the question
of which vectors have their directions kept invariant under the action of that operator.
The existence of such basis vectors for an arbitrary operator is not ensured. However, if
we restrict ourselves to Hermitian operators, then a basis can always be constructed:

Theorem 2.1: Spectral Theorem for Hermitian Operators

A Hermitian operator A defined on a Hilbert space H is related to a set of vectors
{|ak⟩} and real numbers {λk} by the equation:

A |ak⟩ = λk |ak⟩ . (2.11)

The vectors |ak⟩ and numbers λk are called eigenvectors and eigenvalues of A
respectively. The set {|ak⟩} forms an orthonormal basis for the space H. It follows
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that the operator A admits the spectral decomposition:

A =
N∑
k=0

λkPk, (2.12)

where N is the dimension of the space and the operator Pk projects a vector into
the direction of |ak⟩.

The operator Pk defined in eq. (2.12) is called a projector of the vector |ak⟩. A
convenient use of the bras and kets notation enables us write the projector Pk in terms of
a product of a ket with a bra:

Pk = |ak⟩⟨ak| . (2.13)

The operation defined in eq. (2.13) is different from the inner product in the sense
that the first produces an operator while the latter results in a complex number. By
applying Pk to a vector |ψ⟩, one should first calculate the projection ⟨ak|ψ⟩ and use that to
rescale |ak⟩. Since the vectors |ak⟩ form an orthonormal basis, it is clear that the projectors
exhibit the orthogonality property PiPj = δijPi.

A very useful representation of the identity operator 1 can be given as a sum
projectors. For any orthonormal basis {|ak⟩} or {|bk⟩} the identity operator can be written
as:

1 =
∑
k

|ak⟩⟨ak| =
∑
j

|bj⟩⟨bj| = . . . (2.14)

The language of projectors introduced by eq. (2.13) plays an important role in the
definition of measurements:

Postulate 2.2: Projective measurements

Every observable quantity of a system is associated to a Hermitian operator. Consider
the measurement of a quantity associated to the operator O of system in the state
|ψ⟩. Given that λk and Pk are eigenvalues and projectors associated to the spectral
decomposition of O (as defined in eq. (2.12)) we make the the following assertions:

• The values λk define the possible outcomes of an experiment that measures
the observable associated to O.

• The probability p(λk) of obtaining λk in a measurement is given by:

p(λk) = ⟨ψ|Pk|ψ⟩ . (2.15)

• If the outcome of a specific measurement is λk, the state of the system just
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after the measurement is given by:

|ψafter⟩ = Pk |ψ⟩√
⟨ψ|Pk|ψ⟩

= Pk |ψ⟩√
p(λk)

. (2.16)

It is important to point out that, although postulate 2.2 covers a wide class of
measurements, it is not the most general postulate about measurements of quantum systems.
A wider class called general measurements [45], which includes projective measurements
can be defined, however such generalization will not be necessary for us.

Consider a qubit which is found in the state 2.8

|q⟩ = sin θ |0⟩ + eiγ cos θ |1⟩ . (2.17)

Because |ψ⟩ is given as a linear combination of the states |0⟩ and |1⟩, it is said to
be on a superposition of these states. This phenomenon is responsible for major features
of data processing using quantum systems [29].

The probabilities of measuring an outcome associated to each state |0⟩ and |1⟩ are
given respectively by sin2 θ and cos2 θ. We note that, unless θ = 0 or π/2, one cannot
predict what state the qubit will collapse to. The theory is only deterministic in the sense
that the probabilities of such collapse can be predicted.

2.3 Composite systems
So far, only isolated systems were considered. By the postulate 2.1, those systems

are described by state vectors of a particular Hilbert space and the measurements of
observables are described by postulate 2.2. As no system is completely isolated from the
surrounding environment, we expect those rules to generalize without drastic modifications
for systems composed of multiple subsystems.

Before introducing the postulate which give us access to the state of the composite
system, let us introduce the definition of tensor product:

Definition 2.5: Tensor product

The tensor product of two Hilbert spaces denoted by H1 and H2 consists in the
Hilbert space generated by all possible tensor products |ψ1⟩ ⊗ |ψ2⟩ with |ψ1⟩ ∈ H1

and |ψ2⟩ ∈ H2. This definition can be extended parwise to include an arbitrary but
countable number of spaces H1,H2,H3, . . . . The Hilbert space H generated by the
tensor product of such states is written as:

H = H1 ⊗ H2 ⊗ H3 ⊗ . . . =
⊗
k

Hk. (2.18)
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Given that |ei⟩ and |ui⟩ are basis elements of two Hilbert spaces H1 and H2 the
generic operator A acting on the space H1 ⊗ H2 is given by:

A =
∑
ijkl

αijkl(|ei⟩ ⟨ej|) ⊗ (|uk⟩ ⟨ul|). (2.19)

A generalization of eq. (2.19) to an arbitrary number of spaces is found naturally by
considering all possible combinations of operators |ei⟩ ⟨ej| for each space.

A particular case arises when constructing an operator of H which reproduces the
action of a particular operator Ak of one of the subspaces Hk. This operator A is given by
composing Ak with the identities of each space:

A = 1 ⊗1 · · · ⊗ Ak ⊗ · · · ⊗ 1n. (2.20)

It is clear how the above property 2.20 is useful in separating the application of an
operator of a particular subsystem from the rest of the composite system. The postulate
connecting the composite system state with the individual ones by tensor products follows
immediately from the definition 2.5:

Postulate 2.3: Composite system state

The joint state |ψ⟩ of a system composed by the entities with respective states
|ψ1⟩ , |ψ2⟩ , |ψ3⟩ , . . . is constructed by the tensor product of the individual states:

|ψ⟩ =
⊗
k

|ψk⟩ . (2.21)

A basis for the composite system can be defined using all possible combinations
of the individual basis elements of each space Hk. An observable of the composite
system is also modeled as a Hermitian operator acting on the joint states |ψ⟩ ∈ H.

To exemplify the property introduced by postulate 2.3, let us consider an experiment
involving the preparation of a system with two particles in the joint state |ψ⟩ = |ψ1⟩⊗ |ψ2⟩.
The experiment consists in the measurement of the observable of the first particle described
by the operator O1. The expectation value ⟨O1⟩ can be calculated as:

⟨O1⟩ = ⟨ψ|(O1 ⊗ 12)|ψ⟩

= (⟨ψ1| ⊗ ⟨ψ2|) (O1 ⊗ 12) (|ψ1⟩ ⊗ |ψ2⟩)
= ⟨ψ1|O1|ψ1⟩ ⟨ψ2|ψ2⟩ = ⟨ψ1|O1|ψ1⟩

(2.22)

Note that the result obtained is just the same as if we were treating the first particle
isolated. In general, such simplification is not possible due to entanglement.
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2.4 Entanglement
Consider an experiment involving two qubits such that the joint state is prepared

to be

|ψ⟩ = 1√
2

(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) . (2.23)

The state described by eq. (2.23) is called a Bell state, and it describes a case where
the qubits are maximally entangled. Such entanglement can be observed as a correlation
between observables of each qubit. Suppose that a measurement described by the operator
MA is carried out on the qubit A:

MA = λ0 |0⟩⟨0|A + λ1 |1⟩⟨1|A . (2.24)

Such measurement projects the state of qubit A in one of the two components |0⟩,
|1⟩. Let |ψafter⟩ be the joint state after the measurement. Each possible outcome is given
by the application of postulate 2.2:

Measures λ0 ⇒ |ψafter⟩ = |0⟩A ⊗ |0⟩B
Measures λ1 ⇒ |ψafter⟩ = |1⟩A ⊗ |1⟩B

(2.25)

We consider the subsequent measurement of a quantity on the qubit B described
by on operator similar to MA:

MB = λ0 |0⟩⟨0|B + λ1 |1⟩⟨1|B . (2.26)

Because the state of the subsystem B is altered after the measurement of MA,
one observe that the outcomes of both measurements are correlated. Such correlation is
originated from the structure of the state 2.23. This feature is called entanglement and
can not be explained by classical means.

Entanglement also plays an important role in quantum information transmission,
since joint states remain entangled even if they are separated far apart [14].

2.5 Density Matrix
Until now, no uncertainty was introduced when considering the preparation of

states. We have assumed that, in some way, the state of our system could be prepared with
absolute certainty. This assumption is clearly not realistic, in the general case, assertions
about the apparatus used to produce the state would have to include inherent uncertainties.
In such situation, the state being prepared could turn out to be a stochastic variable. A
similar case arises when studying systems in thermodynamic equilibrium, where the states
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are inherently distributed according to a statistical law due to, for example, a known
interaction with a thermal reservoir [54].

In these cases, one might consider a statistical ensemble of states in which the
system can be found. To each possible state, a preparation probability pi can be assigned.
A convenient way of representing expected values of a physical observable in terms of the
preparation probabilities is by using the density matrix associated with that ensemble:

Definition 2.6: Density matrix

The density matrix or density operator ρ is an operator defined on the state space
H of the system which satisfies:

• Unitary trace:

Tr ρ = 1. (2.27)

• Positivity:

⟨ψ|ρ|ψ⟩ ≥ 0, for every |ψ⟩ ∈ H. (2.28)

If 0 ≤ pi ≤ 1 is the probability of the system being prepared in the (normalized)
state |ψi⟩, then ρ can be written as:

ρ =
∑
i

pi |ψi⟩⟨ψi| (2.29)

The density matrix ρ is a completely equivalent way of describing an arbitrary
state. The expected values are now given in terms of traces involving the density matrix
and the Hermitian operator associated.

Theorem 2.2: Expected values in terms of ρ

If an observable quantity is associated to a Hermitian operator O, then the expected
value of that quantity over a state defined by ρ is given by

⟨O⟩ = Tr ρO. (2.30)

Since any transformation described by a linear operator U on a state |ψ⟩ maps
its projector |ψ⟩⟨ψ| to U |ψ⟩⟨ψ|U †, the density operator ρ also transforms as ρ → UρU †.
In particular, if U describes a measurement operator, we can recover the content of
Postulate 2.2:
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Theorem 2.3: Projective measurements in terms of ρ

If a projective measurement, defined by the spectral decomposition of an opera-
tor M = ∑

k λkPk, is applied to a system whose initial state is given by ρ, the
measurement process produces a state ρafter which is given by:

ρafter = P †
kρPk
pk

, (2.31)

where pk is the probability of the measurement of λk and is given by

pk = TrPkρ. (2.32)

It is important to note that the decomposition in terms of the projectors |ψi⟩⟨ψi|
in eq. (2.29) is essentially different from the superposition definition in eq. (2.17). In
the first case, each projector describes a particular superposition of states. Then, the
resulting density matrix is a sum of these projectors each describing a possible way in which
the system could be prepared. Such composition of projectors is called an incoherent
mixture, as it describes a “classical uncertainty“ of which state a system is in.

It is important to establish a way of differentiating both cases. When a system’s
state is prepared with certainty, that is with probability pk = 1, then the density matrix is
given by a single projector of that state:

ρpure = |ψ⟩⟨ψ| . (2.33)

Every state which can be written as a single projector as in eq. (2.33) is called a
pure state. In contrast, if the preparation of a system’s state cannot be written in the
form of eq. (2.33), then its said to be in a mixed state. An important quantity for testing
the purity of a state is the trace of ρ2:

Theorem 2.4: Purity of a state

A state described by ρ is said to be a pure state if and only if:

Tr ρ2 = Tr ρ = 1. (2.34)

Otherwise, Tr ρ2 < 1 and ρ describes a mixed state.

2.6 Partial trace
Since the density operator is defined as an operator acting on state vectors of a

particular Hilbert space, it is natural to guess that the density operator associated with a
composite system is obtained by tensor products just as the operators in eq. (2.19). The
previous postulate about the space of composite systems may be reformulated as:
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Postulate 2.4: Composite system density matrix

Given an arbitrary joint state |ψj⟩ constructed by the tensor product of the subsystem
states |j⟩l:

|ψk⟩ =
∑
j1...jN

α
(k)
j1...jN |j1⟩ ⊗ |j2⟩ ⊗ · · · ⊗ |jN⟩ . (2.35)

The joint density operator is given by a combination of the operators |ψk⟩⟨ψk|
weighted by the associated probabilities pk

ρ =
∑
k

pk |ψk⟩⟨ψk| (2.36)

Again, the state described by ρ is called pure when only a single pk is non-zero.
An important definition arises when considering the case where all the states |ψk⟩⟨ψk| can
be written as a product of component projectors. In such case, the state described by ρ is
called separable, otherwise it is called entangled [60].

Definition 2.7: Separable and entangled states

Given that Hi is the Hilbert space of the i-th subsystem, a state |ψ⟩ is called
separable if every |ψk⟩⟨ψk| in eq. (2.36) can be written as:

|ψk⟩⟨ψk| = |k1⟩⟨k1| ⊗ |k2⟩⟨k2| ⊗ |k3⟩⟨k3| ⊗ . . . , (2.37)

such that each |ki⟩ ∈ Hi. If a state is not separable, it is entangled.

By means of definition 2.7 we now have a rigorous definition of entanglement.
However, given a generic density matrix ρ, the question whether ρ is separable or not is
far from trivial. An operational measure of entanglement will only be provided here for the
case of a pure state. We restrict ourselves further to the measure of entanglement between
two complementary parts of a system in a pure state.

Consider a system that is divided in two complementary subsystems A and B. It
can be showed that an arbitrary state |ψAB⟩ can be written in terms of two orthonormal
basis relative to each partition. This is called the Schmidt decomposition of |ψAB⟩ [45]:

Theorem 2.5: Schmidt decomposition

Given an arbitrary state |ψAB⟩ of a bipartite system, there always exists orthonormal
bases {|iA⟩}i and {|iB⟩}i relative to each partition A and B respectively and a set
of real coefficients λi which can be used to write |ψAB⟩ as:

|ψAB⟩ =
∑
i

λi |iA⟩ ⊗ |iB⟩ . (2.38)
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The λi are called Schmidt coefficients and are non-negative numbers satisfying∑
i λ

2
i = 1.

The number of non-zero Schmidt coefficients is called the Schmidt rank of the
system. A system with Schmidt rank equal to one has only one λi = 1. In that case, the
density matrix ρ for such state is given by a single term:

ρ = |ψAB⟩⟨ψAB|

= (|ψA⟩ ⊗ |ψB⟩) (⟨ψA| ⊗ ⟨ψB|)
= |ψA⟩⟨ψA| ⊗ |ψB⟩⟨ψB| ,

(2.39)

In this case, the ρ in eq. (2.39) matches the definition of a pure separable state as stated
in definition 2.7. The reverse argument can be made, so we conclude that a pure state is
only separable when it has Schmidt rank equal to one.

Before establishing an expression for the amount of entanglement of a system in a
pure state, let us define a useful tool to study the properties of subsystems. The partial
trace of an operator is obtained by averaging the degrees of freedom related to a specific
subsystem. The operator left acts only on variables of the complementary subsystem.

Definition 2.8: Partial Trace

The partial trace TrA relative to a subsystem labeled A is defined as the trace over
the degrees of freedom of A. As a consequence of theorem 2.5, an arbitrary operator
for a bipartite system is written as:

O =
∑
ijkl

αijkl |eAi ⟩ ⟨eAj | ⊗ |eBl ⟩ ⟨eBk | , (2.40)

where the states |eAi ⟩ and |eBl ⟩ are the Schmidt basis for the subsystems A and B

respectively.
The partial trace TrAO is given by [45]:

TrAO =
∑
ijkl

αijkl Tr
(
|eAi ⟩ ⟨eAj |

)
|eBl ⟩ ⟨eBk |

=
∑
kl

(∑
i

αiikl

)
|eBl ⟩ ⟨eBk |

=
∑
kl

α′
kl |eBl ⟩ ⟨eBk | ,

(2.41)

where on the first line we used the fact that, for an orthonormal basis |eAi ⟩, we have
Tr
(
|eAi ⟩ ⟨eAj |

)
= δij.

It is convenient to define the quantity TrAO as the reduced operator OB. An
important quantifier of entanglement of pure bipartite systems can be defined in terms
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of the reduced density matrix ρA (or ρB), obtained by taking the partial trace of ρ over
B (or A). Given that a system is in the state |ψAB⟩, the density matrix can be expanded
using the Schmidt decomposition defined in eq. (2.38):

ρ = |ψAB⟩⟨ψAB|

=
(∑

i

λi |iA⟩ ⊗ |iB⟩
)∑

j

λj ⟨jA| ⊗ ⟨jB|


=
∑
ij

λiλj |iA⟩ ⟨jA| ⊗ |iB⟩ ⟨jB| .

(2.42)

The last expression for ρ in eq. (2.42) can be used for computing the reduced
density matrix ρA by taking the partial trace over the states |ψB⟩:

ρA = TrB ρ
=
∑
ij

λiλj |iA⟩ ⟨jA| Tr(|iB⟩ ⟨jB|)

=
∑
ij

λiλj |iA⟩ ⟨jA| ⟨jB|iB⟩

=
∑
ij

λiλj |iA⟩ ⟨jA| δij

=
∑
i

λ2
i |iA⟩⟨iA| .

(2.43)

where we used the fact that ⟨jB|iB⟩ = δij. Similarly, the reduced matrix ρB can be found
by tracing over A:

ρB = TrA ρ
=
∑
i

λ2
i |iB⟩⟨iB| , (2.44)

The expressions eq. (2.43) and eq. (2.44) are the spectral decomposition of the
operators ρA and ρB respectively. It is clear that both operators share the same eigenvalues
λ2
i .

It is important to note that, as we saw earlier, if the Schmidt rank of a state is
equal to one, that means it is a separable state. In that case, the reduced state of the
subsystem, described by ρA (ρB), also contains a single projector |iA⟩⟨iA| (|iB⟩⟨iB|) and it
describes a pure state. The reverse also holds, if one of the two reduced density matrices
ρA or ρB describes a pure state that means that only one Schmidt coefficient is non-zero,
and the joint state described by eq. (2.42) has only one product state |iA⟩⟨iA| ⊗ |iB⟩⟨iB|
term.

To summarize, the Schmidt decomposition and the partial trace are important tools
for determining the separability of a system in a pure state. If the reduced density matrix
of one subsystem describes a mixed state, we can immediately conclude that the joint
state is entangled. A quantitative measurement of entanglement can then be developed in
terms of how much the reduced state is mixed.
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2.7 Entropy of entanglement
A classical measure of “surprise“, “unpredictability“ of a discrete random variable

X was first given by Shannon [55]:

H[X] = −
∑
k

P (xk) logP (xk), (2.45)

where the logarithm is taken in the base 2, k indexes all the possible outcomes and P (xk)
is the probability associated to the xk outcome. A measure of entanglement, based on how
mixed a state is, can be constructed in a way that it matches the Shannon entropy 2.45
when applied to the Schmidt decomposition of the system in study:

Definition 2.9: Entropy of entanglement

Given that ρA and ρB are the reduced density matrix of each subsystem A and B

respectively, a measure of entanglement between the two subsystems is given by the
von Neumann entropy of any of the reduced density matrix [13]:

S = − Tr(ρA log ρA) = − Tr(ρB log ρB)
= −

∑
k

λ2
k log λ2

k,
(2.46)

where the λk are the Schmidt coefficients of the particular decomposition.

Since the coefficients are positive numbers satisfying ∑k λ
2
k = 1, their square can

be interpreted as probabilities and, in that case, the last line shows that the entanglement
entropy is the Shannon entropy of the squared Schmidt coefficients. In the special case
where ρ is separable, only one of the λk is non-zero and it is equal to one. In that case,
the entanglement entropy defined in eq. (2.46) vanishes:

ρ is separable (not entangled) ⇔ S = 1 log 1 = 0. (2.47)

Under the constraints ∑d
k=1 λ

2
k = 1 and at fixed d, the function S attains it

maximum when [45]:

λ2
k = 1

d
⇒ S = max

{λk}k

S = log d, (2.48)

where d is identified as the Schmidt rank of the state ρ. This result indicates that the
entropy S is maximized when the reduced density matrices ρA or ρB describes a uniform
distribution across the subsystem states. Shortly, S is maximized when ρA and ρB are
maximally mixed.

A convenient expression to calculate the entanglement entropy 2.9 was given by
Rényi [51] in terms of a family of functions Hα, with α > 0, that satisfies a set of postulates
characterizing them as different measures of entropy. Each function is called Rényi entropy
of order α:
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Definition 2.10: Rényi entropy

The Rényi entropy of order α, being α a strict positive real parameter, of a state
given by the density matrix ρ is given by:

Hα[ρ] = 1
1 − α

log (Tr(ρα)) . (2.49)

The von Neumann entropy S is then obtained by taking the limit α → 1:

S[ρ] = lim
α→1

Hα[ρ] = lim
α→1

1
1 − α

log (Tr(ρα)) (2.50)

Using eq. (2.50), one avoids computing the logarithm of an operator in order to
obtain S.
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3 Differential Geometry and Curvature

3.1 Manifolds and Tangent Spaces
As a premise of General Relativity’s theory, spacetime is not merely a static stage

in which physical events occur, instead it is a dynamical object which can be curved by
the presence of matter or energy and influence objects as a consequence of its curvature.
The presence of curvature calls for a definition of spacetime in terms of a more general
object than the pre-relativistic space R×R3. As a starting point for constructing a formal
notion of curvature, we define the spacetime to be a manifold[59]:

Definition 3.1: Manifold

A C∞ manifold M of dimension n is a set with a collection of subsets {Oα} ∈ M
such that:

1. Each point p ∈ M is in at least one Oα.

2. For each subset Oα there is a one-to-one map ψα from Oα to Uα where Uα is
an open subset of Rn. ψα is called a coordinate system.

3. If two subsets Oα, Oβ overlap (Oα ∩Oβ ≠ ∅) the mapping ψα ◦ ψ−1
β given by

the composition of ψα with ψ−1
β is C∞ (infinitely differentiable) and the sets

ψα(Oα ∩Oβ) and ψβ(Oα ∩Oβ) are open.

It is clear from the first item that by “gluing” all the Oα the starting Manifold M
is restored.

The coordinate maps ψα are of great importance since they enable us to define
new concepts in terms of tools of regular calculus. For example, a function f : M → M′

between two different manifolds M, M′ is said to be C∞ if for every ψα : M → Rn and
ψ′
β : M′ → Rn′ the mapping ψ′

β ◦ f ◦ ψ−1
α , which is a map from Rn to Rn′, is C∞ in the

sense of multivariate calculus [59].

A classic example of a two-dimensional manifold is the two sphere S2 consisting of
all points (x1, x2, x3) such that xi ∈ R and x2

1 + x2
2 + x2

3 = 1. Although this can be seen as
a unit spherical shell centered on the origin of R3 such notion of embedding on a space of
higher dimension is not necessary. In fact, a formal notion of curvature can be defined
without referring to an outer space.

We look further to extend the concept of vectors fields on flat spacetime to curved
ones. It is clear that the structure of vector space is lost when we consider, for example, the
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displacement vector defined over a sphere S2. By adding two different displacements, we
arrive at a point which is not contained by S2. Instead, we motivate ourselves to construct
a vector space which is point dependent on the manifold, and then transport it, in some
way yet to be defined, to another point for further comparison. This vector space defined
at each point p ∈ M is called the tangent space Tp.

Due to the requirement for a pointwise vector space, it is reasonable to consider
objects which depend at most on the vicinity of the considered point. It is known that a
directional derivative of a function Rn → R evaluated at fixed point of Rn forms a vector
space which is isomorphic to Rn [59]. The intuition of directional derivatives on Rn serves
then as a motivation for a rigorous definition of Tp:

Definition 3.2: Tangent space

Consider the set F of functions f : M → R such that M is a manifold. The tangent
space Tp consists of all maps v : F → R which satisfies:

1. Linearity property: v(αf + βg) = αv(f) + βf(g),

2. Leibniz’s rule: v(fg) = fv(g) + v(f)g,

for f, g ∈ F and α, β ∈ R.

The fact that this definition of tangent space actually produces a vector space is
made clear when we introduce a particular coordinate system ϕ : O → Rn, with O being
an open set of M. This choice of ϕ induces a set of maps Xµ : F → R which spans the
space Tp. Such set is called the coordinate basis for Tp since it depends on a particular
ϕ:

Theorem 3.1: Coordinate Basis for Tp

The set of n mappings Xµ : F → R given by

Xµ(f) = ∂

∂xµ
(f ◦ ϕ−1)

∣∣∣∣∣
ϕ(p)

(3.1)

forms a basis for the tangent space Tp at the point p of the n-dimensional manifold
M. The basis vector Xµ is often abbreviated as ∂

∂xµ .

The proof for theorem 3.1 can be found in [59] and it simply exploits the differen-
tiability of the function f ◦ ϕ−1 : Rn → R. It is important to point out that theorem 3.1
implies that Tp has the same dimension of M.
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Since Xµ forms a basis for Tp, an arbitrary vector v ∈ Tp may be written as:

v(f) = vµXµ(f), (3.2)

with vµ ∈ R and f ∈ F . It is clear by applying the chain rule on eq. (3.1) that by choosing
another coordinate system ϕ′ the new components of v are given by

vµ
′ = ∂xµ

′

∂xµ
vµ, (3.3)

where the function x′µ is the µ-th component of the map ϕ′ ◦ ϕ−1. The above eq. (3.3) is
called vector transformation law.

We might use a vector of each tangent space Tp at each point p to construct a
vector field over the manifold.

Definition 3.3: Vector field

A vector field (or tangent field) is an assignment of a tangent vector vp ∈ Tp for
each point p ∈ M.
Given a smooth function f : M → R, a vector field is said to be smooth if the
function vp(f) : M → R is also smooth.

In the case of adopting a coordinate basis, a vector field is smooth if and only if its
basis components vµ(p) at eq. (3.2) are smooth functions [59].

3.2 Dual vectors and Tensors
In the last section, a definition of a tangent space Tp has been given as a vector

space defined for each point p of a C∞ n-dimensional manifold. Just as any real valued
vector space, a dual vector space can be defined from the linear functionals ω : Tp → R.
Such a vector space, is called the dual of Tp and is denoted as T ∗

p .

A one-to-one relation between elements of both vector spaces can be fixed from
the choice of a basis on one space. In particular, it can be shown [40] that a basis for T ∗

p

with elements vµ can be constructed by demanding that

vµ(vν) = δµν , (3.4)

where vν is a generic basis element for Tp and δµν is the Kronecker delta. Since eq. (3.4)
defines an injective relation between two finite basis with the same size, it is clear that it
implies that Tp and T ∗

p are isomorphic and, therefore, share the same dimension. Another
isomorphism which does not depend on a choice of basis can be defined in terms of the
metric tensor as will be noted further in this section.
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Last section, we defined the coordinate basis as the basis formed by the partial
derivatives ∂µ at a fixed coordinate system ϕ : M → R. By using the relation eq. (3.4) we
define the basis of T ∗

p with element dxµ to be the unique basis satisfying:

dxµ(∂ν) = δµν . (3.5)

It is clear that, by exploring the above eq. (3.5) and the vector transformation law
in eq. (3.3), that, under a change of coordinate system, the new components vµ′ of a dual
vector should relate to the old as:

vµ′ = ∂xµ

∂xµ′ vµ. (3.6)

Because T ∗
p is also a vector space, one might consider the dual space (T ∗

p )∗ which,
in the finite dimension case, will correspond to the initial space Tp. The space Tp then
can also be viewed as the space of linear functionals v : T ∗

p → R. It should be pointed
out however that such association does not necessarily hold when dim(V ) = ∞, this is,
(V ∗)∗ = V is not necessarily true.

The fact that vectors and dual vectors can be seen as linear functionals motivate
us to consider a multilinear mapping that depends on a collection of k vectors and l dual
vectors. Such mapping is called a (k, l) tensor and takes k dual vectors and l vectors as
input and returns a real number as output.

Definition 3.4: Tensor

A (k, l) tensor T is a mapping:

T : V ∗
p × V ∗

p × . . .︸ ︷︷ ︸
k times

×Vp × Vp × . . .︸ ︷︷ ︸
l times

→ R, (3.7)

which is linear at each component when all others are kept fixed.
The vector space of all (k, l) tensors is defined as F(k, l) and has a basis formed
by all combinations of k basis elements vµ of Tp and l basis elements vν of T ∗

p . A
generic (k, l) tensor might be written as:

T =
∑

µ1µ2...
ν1ν2...

T µ1...µk
ν1...νl

vµ1 ⊗ · · · ⊗ vµk
⊗ vν1 ⊗ · · · ⊗ vνl , (3.8)

where the operation ⊗ is called outer product (or tensor product). The outer product
of two arbitrary tensors A : V → R and B : U → R, applied to x⊗ y where x ∈ V

and y ∈ U is given by

(A⊗B)(x⊗ y) = A(x)B(y). (3.9)

It is clear that a (1, 0) tensor is identified as a vector and a (0, 1) tensor as a dual
vector. From that identification and the multilinear property of definition 3.4 we can
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deduce that [59], under a change of coordinate system, the components of a tensor T
transform as

T
µ′

1...µ
′
k

ν′
1...ν

′
l

= ∂xµ
′
1

∂xµ1
. . .

∂xµ
′
k

∂xµk

∂xν1

∂xν
′
1
. . .

∂xνk

∂xν
′
k
T µ1...µk

ν1...νl
. (3.10)

The above eq. (3.10) is known as tensor transformation law. Since it is logically
reasonable to expect that physical laws are independent of a particular choice of a
coordinate system ϕ, we expect them to be manifested by equations relating quantities
that behave like a tensor, that is, quantities that follow a transformation law described by
eq. (3.10).

3.2.1 The Metric tensor

It is clear from the theorem 3.1 which defines a coordinate basis, that a basis
vector Xµ(f) measures the instant variation of a function f : M → R around a point
p with respect to the component xµ of a coordinate system. Since tangent vectors can
be viewed as a “infinitesimal variation”, it is then reasonable to guess that a measure of
“infinitesimal distance” can be computed from them. The mapping from tangent vectors to
real numbers which provides such a notion is the metric tensor:

Definition 3.5: Metric tensor

The metric tensor g is a (0, 2) tensor, this is, a Tp × Tp → R mapping which is:

1. Symmetric: g(v, u) = g(u, v),

2. Non-degenerate: g(v, u) = 0 for any v implies that u = 0,

for u, v ∈ Tp.

It can be shown that [18], for each spacetime point p, a basis vµ can be found such
that g(vµ, vν) = ±δµν which we call the canonical form of g. The occurrence of each
+1 or −1 is independent of which basis is chosen to bring g in its canonical form. These
sequences of +1 and −1 defines the metric’s signature. A metric with only plus signs is
called Riemannian, while a metric with a single negative sign is called Lorentzian. Since
spacetime has a Lorentzian signature, we will only consider the later case.

By fixing the first argument of g(v, u) one ends up with a (0, 1) tensor which is
a dual vector. Because of the non-degenerate property in definition 3.5, the resulting
functional is uniquely associated with the fixed vector. Furthermore, since both spaces
share the same dimension the relation is also surjective. As a consequence, the metric g
establishes a unique isomorphism between Tp and T ∗

p . The operation of mapping a (k, l)
tensor into a (k + 1, l − 1) (for example, a vector into a dual vector) using the metric is
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called index lowering:

gµλv
λ = vµ, (3.11)

where vµ ∈ T ∗
p is identified as the unique correspondent of vµ ∈ Tp after lowering indices.

Similarly, the inverse metric gµλ can be used to raise indices back:

gµλvλ = vµ. (3.12)

3.3 Connection and curvature
In the last section we stated the definition of a vector space and its dual which

are the basis for working with vectorial (and tensorial) quantities. In the same path, we
now aim to extend the notion of differentiation for manifolds. It can be easily checked by
direct calculation that, given a tensor T µ1...µk

ν1...νl
, the components of ∂λT µ1...µk

ν1...νl
do

not follow the tensor transformation law of eq. (3.10). Hence, physical laws involving ∂λ
cannot be written as equations between tensor quantities in a covariant way. For resolving
that, a new differential operator is used to replace the partial derivative ∂µ. Such operator
is the covariant derivative ∇µ and is formally defined as:

Definition 3.6: Covariant Derivative

A covariant derivative ∇µ is a map between (k, l) and (k+1, l) tensors which satisfies
the following properties:

1. Linearity:

∇µ(αAµ1...µk
ν1...νl

+ βBµ1...µk
ν1...νl

) = α∇µA
µ1...µk

ν1...νl
+ β∇µB

µ1...µk
ν1...νl

.

2. Leibniz rule:

∇µ(Aµ1...µk
ν1...νl

C
µ′

1...µ
′
k

ν′
1...ν

′
l
) = (∇µA

µ1...µk
ν1...νl

)Cµ′
1...µ

′
k

ν′
1...ν

′
l
+

Aµ1...µk
ν1...νl

(∇µC
µ′

1...µ
′
k

ν′
1...ν

′
l
).

3. Commutativity with contraction:

∇µ(Aµ1...λ...µk
ν1...λ...νl

) = ∇µA
µ1...λ...µk

ν1...λ...νl
.

4. Reduction to partial derivative on scalars:

∇µ(ϕ) = ∂µϕ.

5. Torsion free:

∇µ∇νϕ = ∇ν∇µϕ.
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Where for all items, we have that A and B are (k, l) tensors, C is a (k′, l′) tensor,
α and β are real scalars and ϕ is a real field. It can be shown [59] that, given the
listed properties, the operator ∇µ applied to a vector V must be written as:

∇µV
ν = ∂µV

ν + ΓµνλV λ, (3.13)

where Γµνλ are called the connection coefficients and its values are yet to be fixed
by the introduction of another condition, namely a connection.

If the manifold in question is equipped with a metric gµν following the definition 3.5,
the coefficients Γλµν can be calculated by imposing an additional condition:

∇αgµν = 0. (3.14)

The above eq. (3.14) is called metric compatibility and can then be used together with
the torsion free property of definition 3.6 to find the particular connection:

Γλµν = 1
2g

λρ(∂µgνρ + ∂νgρµ − ∂ρgµν ), (3.15)

which is called Christoffel connection and will be used in the rest of the following work.
The coefficients Γλµν given by the above eq. (3.15) are then called Christoffel Symbols.

From the definition 3.6 the covariant derivative ∇µ is meant to produce a tensorial
quantity when applied to an arbitrary tensor. Because of that construction, the quantity
∇µV

ν , where V is an arbitrary vector, is a well-defined tensor which transforms as
eq. (3.10).

The concept of a covariant derivative can be also used to define a relation between
tangent vectors of neighboring points in such a way that a vector is transported along a
path keeping itself constant.

Definition 3.7: Parallel Transport

A (k, l) tensor T is paralleled transported along a curve if the following condition
is satisfied:

∂xσ

∂λ
∇σT

µ1...µk
ν1...νl

= 0, (3.16)

where λ is the parametrization of the curve.

By solving eq. (3.16) for an initial value of T one can compare the tensor T at
different points at space. It should be pointed however, that the resulting tensor after
the transport depends upon the chosen path. Such path dependent property is a direct
consequence of the presence of curvature on the manifold in question.
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One can give a precise definition of curvature in terms of the change on a vector
after being paralleled transported over an infinitesimal closed path. It is possible to show
[59], up to second order, that the change in the vector vµ when paralleled transported over
a small parallelogram with sides ∆s and ∆t is given by

δ(vρ) = ∆t∆svσT µSνRρ
σµν , (3.17)

where the vectors T µ and Sν are parallel to the parallelogram’s sides with length ∆t and
∆s respectively. The tensor R arises from the failure of two successive applications of ∇µ

to commute locally, and is called the Riemann tensor:

Definition 3.8: Riemann curvature tensor

The Riemann curvature tensor is a (1, 3) tensor which is defined by its contraction
with an arbitrary dual vector ωρ:

Rρ
σµνωρ = (∇µ∇ν − ∇ν∇µ)ωσ, (3.18)

or to the arbitrary vector vσ as:

Rρ
σµνv

σ = −(∇µ∇ν − ∇ν∇µ)vρ. (3.19)

It can also be defined explicitly in terms of the connection Γσµν as:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (3.20)

The following properties follow directly from the definitions of eq. (3.18) and
eq. (3.19) as from the properties of the covariant derivative listed in definition 3.6 (a
detailed derivation can be found at [18]):

1. Rρσµν = −Rσρµν .

2. Rρσµν = −Rρσνµ.

3. Rρ[σµν] = 0.

4. The Bianchi identity:

∇[λRρσ]µν = 0.

From eq. (3.20) it is clear that, using a Christoffel connection given by eq. (3.15),
the Riemann tensor would vanish for a constant metric. Indeed, it can be shown [18] that
having Rρ

σµν = 0 everywhere in the manifold, implies that the metric is globally flat.

An important measure of curvature can be derived by contracting the first and
third indices of the Riemannian tensor Rρ

σµν :

Rµν = Rλ
µλν . (3.21)
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The resulting tensor Rµν is called Ricci tensor. One could also consider other possible
contractions of Rρ

σµν , however, by its anticommuting properties it can be easily shown
that these contractions either vanish or are related to Rµν . We can further take its trace
and obtain a scalar measure of curvature called Ricci scalar:

R = Rλλ = gλµR
µ
λ. (3.22)

The Ricci scalar or scalar curvature is an important measure of curvature since
scalar fields are independent of the coordinate system of choice.
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4 Quantum Field Theory

In this chapter, we provide the basic tools to work with quantum scalar fields. We
start by defining the Lagrangian formalism for a classical field and apply it to derive its
equations of motion. Then, the field is submitted to the process of canonical quantization
in order to obtain an operator-valued field, which is later decomposed into a continuous
set of independent harmonic oscillators. At the end, we consider the extension of the field
formalism to the context of a curved spacetime.

4.1 Classical Field Theory
A field is generally a function which maps a point on a space-time manifold to a

mathematical object. For example, a real (or complex) scalar field ϕ has the signature
ϕ : M → R (or ϕ : M → C). The procedure of finding a realizable configuration for the
field is imported from the Lagrangian formalism of classical mechanics. In this formalism,
the realizable trajectories qi(t) of a set of particles are obtained by finding the extrema of
a functional S [27], called action:

S[qi] =
∫ tf

ti
dt L(qi(t), q̇i(t), t), (4.1)

at fixed tf and ti, where L is the Lagrangian, defined as the difference between the kinetic
and potential energies L = K−V . To shorten the notation, we abbreviated the dependency
on all q1, q2, . . . by qi. Each trajectory can be obtained by imposing that S is an extremum,
or equivalently δS = 0, which leads to the Euler-Lagrange equations:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 i = 1, . . . . (4.2)

The above eq. (4.2) can then be solved for qi(t).

In order to generalize this treatment for a field, one might informally replace the
discrete index i by a continuous 4-dimensional coordinate x = (t, x⃗). The Lagrangian L

becomes a functional of the field ϕ and its derivatives ∂µϕ:

Definition 4.1: Action and Lagrangian

The action S is the integral in time of the Lagrangian, which is a functional of the
field ϕ:

S[ϕ] =
∫ t2

t1
dtL[ϕ(x), ∂µϕ(x)]. (4.3)
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The equations of motion, whose solution gives a realizable configuration of ϕ, are
obtained by the extremization of S defined in eq. (4.3):

δL

δϕ
− ∇ δL

δ(∇ϕ) − ∂

∂t

δL

δϕ̇
= 0, (4.4)

where δ
δϕ

denotes the functional derivative with respect to ϕ(x), defined as:

Definition 4.2: Functional Derivative

The variation δF [ϕ] of a functional F [ϕ] with respect to a small variation δϕ(x) near
the function ϕ(x) is given by:

δF [ϕ] = F [ϕ+ δϕ] − F [ϕ]

=
∫
dx

δF

δϕ(x)δϕ(x),
(4.5)

where the quantity δF
δϕ

(x) is defined as the functional derivative of F [ϕ] with respect
to ϕ.

To calculate the functional derivative δF/δϕ, one can compute the difference
δF [ϕ + δϕ] − F [ϕ] up to first order in δϕ and identify the term multiplying δϕ on the
integrand of eq. (4.5).

In order to preserve causality, our treatment of the fields will be restricted to allow
only local interactions. The Lagrangian L will then be written in terms of a spatial density
L,

L =
∫
d3x L(ϕ(x), ∂µϕ(x)), (4.6)

which we will also refer as the Lagrangian for simplicity.

An equivalent formulation can be obtained from the Legendre transform of L,

H =
∫
d3x

(
δL
δϕ̇
ϕ̇− L

)
, (4.7)

which allow us to define the density in the integral as the Hamiltonian density:

Definition 4.3: Hamiltonian and conjugate momentum

The conjugate momentum π of a field ϕ is defined as

π = δL

δϕ̇
= ∂L
∂ϕ̇

. (4.8)

The Hamiltonian H is defined as the Legendre transform of L:

H = πϕ̇− L. (4.9)
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The equations of motion (4.4) are then equivalent to the Hamilton equations of
motion:

π̇ = −δH

δϕ
, ϕ̇ = δH

δπ
. (4.10)

Or in terms of the Poisson bracket:

ϕ̇ = {ϕ,H}, π̇ = {π,H}, (4.11)

where {F,G} =
∫
d3x

(
δF

δϕ(x)
δG

δπ(x) − δF

δπ(x)
δG

δϕ(x)

)
. (4.12)

More generally, the temporal evolution of any functional F is given by Ḟ = {F,H}.

4.2 Lorentz invariance
We aim to work with theories that satisfy the covariance principle of special

relativity. As a consequence, we require L to be invariant under Lorentz transformations.
In addition to that, the fields ϕ must belong to an irreducible representation of the Lorentz
Group:

Definition 4.4: Lorentz Group

The Lorentz group is the set of linear transformations Λ acting on the coordinates
x = (t, x, y, z) which satisfies:

ΛTηΛ = η, (4.13)

where η is the Minkowski metric:

η = Diag(−1, 1, 1, 1). (4.14)

A field ϕ(x) which is invariant under a Lorentz transformation x′ → Λx, satisfies:

ϕ′(x′) = ϕ′(Λx) = ϕ(x), (4.15)

and belongs to the trivial representation. Such field ϕ is called a scalar field. The trivial
representation is irreducible if and only if it is unidimensional, so it can be described by a
single real or complex component.

Other fields ψ that belong to a distinct representation R of the Lorentz Group
would in general transform as

ψ′(x′) = T−1
R (Λ)ψ(Λx), (4.16)

where TR(Λ) is a linear transformation on R associated to Λ. Some examples of repre-
sentations R are four-vectors, spinors or tensors made out of such objects. The trivial
representation can be recovered by setting TΛ = 1 for any Λ.
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In addition to Lorentz transformations, one must require invariance under transla-
tions by a constant shift vector aµ:

xµ → xµ + aµ. (4.17)

By combining the transformations Λ with the translations one obtains a larger group
called the Poincaré Group, which encompasses all the space-time symmetries required by
special relativity.

4.3 Canonical Quantization of the Klein-Gordon field
In order to obtain a quantum theory of fields one has to construct a set of field

operators which act on a Hilbert space. One of the procedures to obtain such operators is
called canonical quantization. It consists in first defining a classical Hamiltonian H

in terms of a field ϕ and its conjugate momentum π, promoting those fields to operators
while imposing the equal time commutation relations:

Definition 4.5: Equal time (bosonic) commutation relations

The equal time commutation relations (ETQC) for the operator valued fields ϕ(x⃗, t)
and π(x⃗, t) are:

[ϕ(x, t), π(x′, t)] = iδ3(x − x′),
[ϕ(x, t), ϕ(x′, t)] = [π(x, t), π(x′, t)] = 0.

(4.18)

Note that eq. (4.18) says nothing about the commutation of ϕ and π at different
times.

More generally, the canonical quantization process maps the Poisson bracket (4.12)
to the commutator

{A,B} → −i[A,B], (4.19)

where A,B in the commutators are the promoted operators originated from the functional
in the brackets. By setting A and B to ϕ and π and using the properties of functional
derivatives [27], one recovers definition 4.5.

We may now apply the canonical quantization process to a real scalar field ϕ having
the following Hamiltonian:

H = 1
2
[
π2 + ∇ϕ · ∇ϕ+m2ϕ2

]
. (4.20)

The field satisfying the above Hamiltonian of 4.20 is called the Klein-Gordon field. The
equations of motion for such field are obtained by calculating the commutators of ϕ and π
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with H:

ϕ̇(x) = −i[ϕ(x), H] = π(x), (4.21)
π̇(x) = −i[π(x), H] = (∇2 −m2)ϕ(x). (4.22)

The first eq. (4.21) can be differentiated with respect to t to obtain π̇, which can be
substituted in the second 4.22 for obtaining:

(∇2 −m2)ϕ = ϕ̈. (4.23)

We now expand ϕ in Fourier modes, passing the temporal dependency to the
operators bp(t),

ϕ(x) =
∫ d3p√

2ωp(2π)3
bp(t)eip⃗·x⃗, (4.24)

where ωp =
√

|p|2 +m2. Inserting the expansion into eq. (4.23) and using the hermiticity
of ϕ, we obtain bp(t) = ape

−iωpt + a†
pe
iωpt, and hence:

ϕ(x) =
∫ d3p√

2ωp(2π)3
(apeipx + a†

pe
−ipx), (4.25)

where px = p⃗ · x⃗ − ωpt. Note that the operators ap and a†
p are time-independent. The

commutation relations for these operators are obtained by substituting the above expansion
in the equal time commutation relations, resulting in

[ap, a†
p′ ] = δ3(p− p′). (4.26)

When p′ = p the commutator is infinite. This behavior can be understood by
first considering a finite box of side L. The momenta are then restricted to a discrete set
of values depending on L and the normalization of δ3(p) implies that the commutator
at eq. (4.26) is proportional to L3δpp′ [43]. At this point, the commutator for each p

is equivalent to the one of a harmonic oscillator in momentum space. Taking the limit
L → ∞, one recovers eq. (4.26).

We can then interpret the Klein-Gordon field as a continuum of harmonic oscillators,
each associated to a momentum p. Because the excitations of such operators are related
to plane waves, we might interpret each of them as a particle with momentum p.

A diagonal basis for H can be constructed in terms of the eigenvectors of the
number operators for each mode p:

np = a†
pap. (4.27)
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The eigenvalues of each np are separated by an integer amount, and it quantifies the
number of particles occupying each momentum state. The state which has no occupation
for every p is given by:

ap |0⟩ = 0 , for all p, (4.28)

and is called the ground state of the field ϕ. Because translations and boosts are
symmetries of the Minkowski spacetime, every inertial observer may agree in measuring a
vanishing number of particles. However, we emphasize that, a general spacetime may not
enjoy such symmetries and, in that case, the vacuum state (4.28) for an observer might
not correspond to the vacuum for another observer. We will return to this phenomena in
detail in the following section.

4.4 Klein-Gordon field in curved spacetime
A generalization of the Klein-Gordon equation for a curved spacetime [16] can

be obtained by the introduction of a background metric gµν , which we assume to not
be affected by the presence of the field. The partial derivatives ∂µ are then replaced by
covariant ones ∇µ and the Lagrangian L is rescaled by √

−g, since it describes a density.
A coupling to the curvature is introduced by a term involving the Ricci scalar R, leading
to:

L = 1
2

√
−g

[
gµν(∂µϕ)(∂νϕ) − (m2 + ξR)ϕ2

]
, (4.29)

where ξ is a real coupling constant and we have used the fact that ϕ is a scalar quantity to
write ∇µϕ = ∂µϕ. The above Lagrangian 4.29 leads to the following equation of motion:

(
□c +m2 + ξR

)
ϕ = 0, (4.30)

where the D’Alambertian □c is defined as:

□c = gµν∇µ∇ν . (4.31)

We can find specific values for ξ which makes eq. (4.30) invariant under the
conformal transformations:

gµν → ḡµν = Ω2(x)gµν , (4.32)

where 0 < Ω(x) < ∞ is a real function. It can be showed by direct calculation [16] that
the following term is invariant:(

□ + 1
4

(n− 2)
(n− 1)R

)
ϕ →

(
□̄ + 1

4
(n− 2)
(n− 1)R̄

)
ϕ̄, (4.33)
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where ϕ̄ = Ω(2−n)/2ϕ and n is the dimension of the manifold. We can fix the value of ξ by
demanding eq. (4.30) to be invariant under the conformal transformation 4.32. In our case,
n = 4 gives ξ = 1/6 and this situation corresponds to a conformal coupling between
the field ϕ and the curvature.

The quantization of the field ϕ can be done just as in the case of a Minkowski metric
gµν = ηµν by expanding it on a complete set of modes up(x), together with creation and
annihilation operators ap which satisfy the commutation relations of eq. (4.26). However,
because of the lack of symmetry on a generic spacetime, a particular decomposition (like
(4.25) which is based on rectangular coordinates) might not be of physical significance
to all inertial observers as in the case of a Minkowski spacetime. The measurement of
particles becomes sensitive to observer dependent properties [25].

Another simple example which illustrates this phenomenon involves the creation
of particles due to a time-dependent metric which is asymptotically flat at t = ±∞ [15].
In this case, two inertial observers located respectively at future and past infinity could
observe a different number of particles while being on the same state.
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5 Entanglement entropy of scalar fields

As we saw earlier in chapter 2, any pure state |ψ⟩ of an arbitrary quantum system
can also be characterized by a density operator:

ρ = |ψ⟩⟨ψ| . (5.1)

We also saw that if we consider two complementary regions A and B of such system, a
measure of entanglement can be constructed in terms of the Von Neumann entropy (2.9)
of one of the reduced density matrices ρA or ρB:

S = − Tr ρA log ρA = − Tr ρB log ρB. (5.2)

In this chapter, the calculation of S is performed for a lattice of coupled harmonic
oscillators. The lattice can describe, in particular, the discretization of a scalar field as done
in the next chapter. In this case, the entanglement entropy for the system of oscillators
provides an approximation for that of the theory in the continuum

5.1 Lattice of harmonic oscillators
The harmonic oscillator is a classical example of a quantum system subjected

to a non-vanishing potential which can be solved analytically. A single oscillator, which
could for instance describe the position x of a particle subjected to a parabolic potential
proportional to x2, has the simple Hamiltonian given by [53]

Ĥ = 1
2m

(
p̂2 + (ω0m)2x̂2

)
, (5.3)

where p̂ and x̂ are the momentum and position operators, given by −i∂x (with ℏ = 1) and
x in the position basis, and m and ω0 are the mass and the oscillation frequency of the
particle, respectively. The energy levels Ek and wave functions ⟨x|ψk⟩ of such a system
are the solutions of the Schrödinger equation Ĥψk(x) = Ekψk(x). They are given by [28]:

Ek =
(1

2 + k
)
ω0, (5.4)

ψk(x) =
(
mω0

π

)1/4 1√
2nk!

Hk(
√
mω0x) exp

(
−mω0

2 x2
)
, (5.5)

where Hk is the Hermite polynomial of order k. It follows from eq. (5.5) that the ground
state is given by

Ek = ω0

2 and ψ0(x) =
(
mω0

π

)1/4
e− mω0

2 x2
. (5.6)
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In the two subsequent subsections, the calculation of the entanglement entropy
between two complementary sets of interacting harmonic oscillators in the ground state
[57] is given. In both sections, each oscillator is subjected to a parabolic potential around
a fixed point in space in addition to a quadratic potential which depends on the relative
displacement of each oscillator.

5.1.1 Two oscilators case

Consider a system of two harmonic oscillators described by the two degrees of
freedom x1 and x2 which describe the displacement of each oscillator to its lowest potential
energy point. The mass of both oscillators is taken to be the same and is absorbed in the
coupling constants. It follows that the Hamiltonian H (in the position basis) is given by:

H = 1
2
[
−∂2

x1 − ∂2
x2 + k0(x2

1 + x2
2) + k1(x1 − x2)2

]
, (5.7)

where ∂xk
is an abbreviation for ∂

∂xk
and k0 and k1 are two positive coupling constants.

We introduce normal variables x+ and x− inspired by their success in decoupling classical
coupled harmonic oscillators:

x+ = 1√
2

(x1 + x2)

x− = 1√
2

(x1 − x2)
⇒

x1 =
√

2
2 (x+ + x−)

x2 =
√

2
2 (x+ − x−) .

(5.8)

The momentum operators in terms of x+ and x− can be obtained by applying the
chain rule on each variable:

∂2
x1 =

(
∂x1

∂x+
∂x+ + ∂x1

∂x−
∂x−

)2

= 1
2
(
∂2
x+ + ∂2

x− + 2∂x+∂x−

)
,

∂2
x2 =

(
∂x2

∂x+
∂x+ + ∂x2

∂x−
∂x−

)2

= 1
2
(
∂2
x+ + ∂2

x− − 2∂x+∂x−

)
,

(5.9)

where the derivatives have been evaluated by straight differention of eq. (5.8). Using the
new variables, the Schrödinger equation can be written as:

1
2
[
−∂2

x+ − ∂2
x− + k0x

2
+ + (k0 + 2k1)x−

]
ψ(x+, x−) = Eψ(x+, x−). (5.10)

The presence of terms on eq. (5.10) depending on x+ or x− separately suggests
that the solution may take the form of ψ(x+, x−) = ψ+(x+)ψ−(x−). Inserting this guess,
one finds that the eq. (5.10) is only satisfied if each of the following equations are satisfied
separately:

1
2
(
−∂2

x+ + k0x
2
+

)
ψ+ = E+ψ+,

1
2
(
−∂2

x− + (k0 + 2k1)x2
−

)
ψ− = E−ψ−,

E = E+ + E−.

(5.11)
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Since by the above eq. (5.11), the energy E is additive in both separation variables
E+ and E−, the minimal energy is given by minimizing both parameters independently. It
is clear that both equations for ψ+ and ψ− are equations of two independent harmonic
oscillators for the variables x+ and x−, respectively. The ground state for each of them is
given in terms of eq. (5.6). The joint ground state ψ0(x+, x−) is then:

ψ0(x+, x−) = (ω+ω−)1/4
√
π

exp
[
−1

2(ω+x
2
+ + ω−x

2
−)
]
,

ψ0(x1, x2) = (ω+ω−)1/4
√
π

exp
[
−1

4
(
(ω+ + ω−)(x2

1 + x2
2) + 2(ω+ − ω−)x1x2

)]
,

(5.12)

where ω2
+ = k0 and ω2

− = (k0 + 2k1).

We now proceed to calculate the entanglement entropy between the two oscillators.
By construction, the system is in a pure state, so the matrix elements of ρ in the position
basis are given by:

ρ(x1, x
′
1, x2, x

′
2) = (⟨x′

1| ⊗ ⟨x′
2|) |0⟩⟨0| (|x1⟩ ⊗ |x2⟩)

= ⟨x′
1x

′
2|0⟩ ⟨0|x1x2⟩

= ψ∗
0(x′

1, x
′
2)ψ0(x1, x2).

(5.13)

The reduced density matrix ρout is computed by taking the partial trace of the
inside region:

ρout(x2, x
′
2) = ⟨x′

2| Trin(ρ) |x2⟩

=
∫ ∞

−∞
ψ∗

0(x1, x
′
2)ψ0(x1, x2)dx1

=
∫ ∞

−∞
dx1

(ω+ω−)1/2

π
exp

[
−1

4
(
(ω+ + ω−)(2x2

1 + x2
2 + x′

2
2) +

+ 2(ω+ − ω−)(x2 + x′
2)x1

)]
(5.14)

We can complete the square on the exponent to isolate a single term which depends on x1:

ρout(x2, x
′
2) =

∫ ∞

−∞
dx1

(ω+ω−)1/2

π
exp

−(ω+ + ω−)
4

(x1 + 1
2
ω+ − ω−

ω+ + ω−
(x2 + x′

2)
)2

− x2x
′
2

−1
4

(
ω+ − ω−

ω+ + ω−

)2

(x2 + x′
2)2 +

(
x2 + x′

2√
2

)2
 .

(5.15)

The terms on the exponent of eq. (5.15) which do not depend on x1 can then be factored
out as multiplicative constants and the resulting integrand is a Gaussian shifted by
−1

2
ω+−ω−
ω++ω−

(x2 + x′
2). The Gaussian integral yields:

ρout(x2, x
′
2) =

√
ω+ω−

π

√
2π

ω+ − ω−
exp

[
−(ω+ + ω−)

4 (x2
2 + Ex′

2
2) − β

2 (x2 + x′
2)2
]

=
√

(γ − β)
π

exp
[
−γ

2 (x2
2 + x′

2
2) − βx2x

′
2

]
,

(5.16)



Chapter 5. Entanglement entropy of scalar fields 50

where the two newly introduced constants γ and β are given by:

β = 1
4

(ω+ − ω−)2

ω+ + ω−
and γ + β = ω+ + ω−

2 . (5.17)

By having an expression for ρout(x2, x
′
2), the next step is to compute the entangle-

ment entropy S = − Tr(ρout ln ρout). To evaluate the trace present on S, the position basis
is taken and the eigenvalues of ρ̂out are computed by solving:

ρ̂out |fk⟩ = pk |fk⟩

⟨x| ρ̂out
(∫ ∞

−∞
dx′ |x′⟩⟨x′|

)
|fk⟩ = ⟨x| pk |fk⟩∫ ∞

−∞
dx′ρout(x, x′)fk(x′) = pkfk(x).

(5.18)

It can be verified by substitution [57] that the solutions of eq. (5.18) are given by:

fk(x) = Hk(α1/2x) exp
(

−α

2 x
2
)

and pk = (1 − ξ)ξk (5.19)

where α = (γ2 − β2)1/2 and ξ = β/(γ + α).

The substitution of the eigenvalues pk computed in eq. (5.19) leads to the evaluation
of a geometric series and a series of the form ∑

k kξ
k which is done in appendix A. After

evaluating such series, the entropy S is written as:

S(ξ) = −
∞∑
k=0

pk ln(pk) = − ln(1 − ξ) − ξ

1 − ξ
ln(ξ) (5.20)

5.1.2 N oscillators case

In the general case of N of oscillators, the Hamiltonian is written (in the position
basis) as:

H = 1
2

 N∑
i=1

p2
i +

N∑
i,j=1

xikijxj

 = 1
2
(
P TP +XTKX

)
, (5.21)

where we have introduced the vectors P = (−i∂x1 , . . . ,−i∂xN
)T and X = (x1, . . . , xN)T

ando also the symmetric matrix (K)ij = kij. For a numerical convenience, uppercase
symbols, like X,P and K, refer to the one (or two) dimensional array of numbers which
determine the components of these objects in a particular basis. This basis in question
will be determined by the transition matrix explicitly defined at each step.

Following the same path developed for the case of two oscillators, a suitable choice
of basis is made to decouple the oscillators into normal modes. Since K is symmetric, it
admits a diagonalization of the form KD = UTKU where KD is diagonal and UT = U−1

[40]. In this case, the positions vector is written as

X = UXD (5.22)
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and the momenta vector P follows a transformation which is determined by the chain rule:

∂xDj
=

N∑
i=1

(
∂xi
∂xDj

)
∂xi

=
N∑
i

uij∂xi
⇒ P = UPD, (5.23)

where the partial derivatives in the above eq. (5.23) are obtained by differentiating eq. (5.22).
Hence, the Hamiltonian in eq. (5.21) can be rewritten in terms of XD, PD and KD as:

H = 1
2
(
P T
DPD +XT

DKDXD

)
, (5.24)

where the property UTU = U−1U = 1 has been used.

Since KD is diagonal, the Schrödinger equation for the time-independent wave
function ψ

1
2

(
N∑
i=1

−∂2
xDi

+ x2
Di
kDii

)
ψ = Eψ, (5.25)

is separable in the variables xDi
:

1
2

−
(∂2
xDi
ψi)

ψi
+ x2

Di
kDii

ψi(xDi
) = Eiψi(xDi

),

∑
i

Ei = E,

(5.26)

where ψ(xD1 , . . . ) = ∏N
i=1 ψi(xDi

).

Similarly to the case of two oscillators, each equation in eq. (5.26) corresponds to
a single harmonic oscillator. The ground state ψ0 is then given by the product of each
individual mode ground state ψi. By substituting the state found in eq. (5.6) the resulting
joint state is a multivariate Gaussian in the positions XDi

:

ψ0 = 1
πN/4 (

N∏
i=1

k
1/2
Di

)1/4 exp
[
−1

2

N∑
i=1

k
1/2
Di
x2
Di

]

= 1
πN/4 (detK1/2

D )1/4 exp
[
−1

2X
T
DK

1/2
D XD

]
.

(5.27)

One can return to the original set of variables by writing Ω = UK
1/2
D UT and using

the inverse of eq. (5.22) and eq. (5.23) into eq. (5.27):

ψ0 = π−N/4(det Ω)1/4 exp
[
−1

2X
TΩX

]
. (5.28)

Now that the ground state has been explicitly found, the calculation of ρout is
carried out by tracing out the degrees of freedom inside a region V . To accomplish such
task, we partition the quantities in eq. (5.28) according to the region where they belong.
If the region V includes the first n degrees of freedom, then the partition follows as:

Ω =
 A B

BT C

 , X =
Xin

Xout

 , (5.29)
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where the matrix A has size n × n, B : n × (N − n), and C : (N − n) × (N − n). Since
Ω =

√
K is symmetric, so are A and C. The vectors Xin and Xout have sizes n and N − n,

respectively.

The reduced density matrix ρout in the position representation can be written as

ρout(Xout, X
′
out) =

(
det Ω
πN

)1/2

exp
[
−1

2
(
XT
outCXout +X ′

out
TCX ′

out

)]
×

×
∫
dXin exp

[
−1

2
(
2XT

inAXin + 2XT
inB(Xout +X ′

out)
)]
,︸ ︷︷ ︸

(∗)

(5.30)

where the terms in the argument of the exponential which are independent of Xin were
factored out of the integral. We then proceed to a separate calculation of the integral
highlighted as (∗) in eq. (5.30). By introducing an auxiliary vector P = A−1B(Xout +X ′

out)
one notes that (∗) in eq. (5.30) can be written as

(∗) =
∫
dXin exp

[
−
(
XT
inAXin +XT

inAP
)]
. (5.31)

To carry out the integration on the Xin variables, we may write the exponent in the
integrand of eq. (5.31) as a bilinear form. This can be achieved by noticing the following
equivalence:

XT
inAXin +XT

inAP =
(
Xin + 1

2P
)T

A
(
Xin + 1

2P
)

− 1
4P

TAP, (5.32)

leading to

(∗) = exp
[1
4P

TAP
] ∫

dXin exp
[
−
(
Xin + 1

2P
)T

A
(
Xin + 1

2P
)]
. (5.33)

The remaining integral in eq. (5.33) can be computed by choosing a basis in which A
is diagonal. Since A is symmetric, its diagonalization takes the form of A = GTADG, where
AD is diagonal and GT is orthogonal. Performing the change of variables X ′

in = GTXin

would lead to a Jacobian factor of | detG|, but since V is orthonormal we have that
detG = 1 and the integral’s measure remains unchanged upon this change of variables.
The integration of the n variables then yields:

(∗) = exp
[1
4P

TAP
] (

πn

detA

)1/2
. (5.34)

Inserting eq. (5.34) back in eq. (5.30), ρV is given by:

ρV (Xout, X
′
out) =

(
1

π(N−n)
det Ω
detA

)1/2

exp
[
−1

2
(
XT
outCXout +X ′

out
TCX ′

out

)
+ 1

4P
TAP

]

=
(

1
π(N−n)

det Ω
detA

)1/2

exp
[
−1

2
(
XT
outγXout +X ′

out
TγX ′

out

)
+XT

outβX
′
out

]
,

(5.35)
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where the definition of W has been used and the two new matrices are given by 2β =
BTA−1B and γ = (C − β).

The last expression of eq. (5.35) is further developed by diagonalizing γ = V TγDV

and introducing the new coordinates X = V Tγ
−1/2
D Y :

ρout(Yout, Y ′
out) =

(
1

π(N−n)
det Ω
detA

)1/2

exp
[
−1

2
(
Y T
outYout + Y ′

out
TY ′

out

)
+ Y T

outβ
′Y ′
out

]
,

(5.36)

where β′ = γ
−1/2
D V βV Tγ

−1/2
D . Finally, another variable Z = W TY related to the diagonal-

ization of β′ = Wβ′
DW

T is introduced:

ρout(Zout, Z ′
out) =

(
1

π(N−n)
det Ω
detA

)1/2 N∏
i=n+1

exp
[
−1

2
(
z2
i + z′

i
2
)

+ β′
iz

2
i z

′
i
2
]
, (5.37)

where β′
i is the i-th eigenvalue of β′.

To compute the entanglement entropy associated with ρout one must find its
eigenvalues pk by solving:

⟨xn+1 . . . xN | ρ̂out |fk⟩ = pk ⟨xn+1 . . . xN |fk⟩∫
dX ′

outρout(Xout, X
′
out)fk(X ′

out) = pkfk(Xout).
(5.38)

Note that by performing a change of variables Xout → Z = GXout, with G = W Tγ1/2V ,
one must account to a factor of detG rescaling the matrix element in eq. (5.37) which can
be easily understood by requiring that Tr ρout = 1. Such factor however is cancelled by
the Jacobian | detG|−1 appearing when changing the integration variables of eq. (5.38),
leaving the eigenvalues unchanged.

The integration of ρout(Z,Z ′) is carried out in each variable z′
i independently. The

solution fk is clearly given by a product of N − n one dimensional solutions given by
eq. (5.19) with γ → 1 and β → β′

k. Since the solution is given in terms of a product of
ordinary functions, the entropy is additive:

S =
∑
k

S(ξk), where ξk = β′
k

1 + (1 − β′
k)1/2 , (5.39)

and S(ξk) is given by eq. (5.20).

5.2 Symplectic diagonalization of quadratic Hamiltonians
Before generalizing the procedure of computing the entanglement entropy for

discretized scalar fields, we will develop a general technique for diagonalizing a quadratic
Hamiltonian of a system constituted of a discrete set of bosonic variables. The procedure
is then used to compute the covariance matrix for a set of coupled harmonic oscillators,
which will be of central importance to the entropy calculation motivated by the real time
approach. An external reference for the described method can be found in [1, 3, 4, 44].
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5.2.1 Symplectic group

Consider the set of N pairs of bosonic variables (ϕi, πi) satisfying the canonical
commutation relations eq. (4.18). We will aggregate all these variables in a single vector

ξT =
(
ϕ1, . . . , ϕN , π1, . . . , πN

)
, (5.40)

so the relations (4.18) can be compactly written as:

[ξi, ξj] = iJij where J =
 0 IN

−IN 0

 . (5.41)

Consider a transformation S which maps ξ into a new set of variables ξ′ = Sξ. The
commutator in terms of the new variables read as:

[ξ′
i, ξ

′
j] =

∑
kl

SikSjl[ξk, ξl] =
∑
kl

SikSjl(iJkl) = i(SJST )ij. (5.42)

Note that the commutator is left invariant if we require that SJST = J . As a consequence,
the new set of variables ξ′ also satisfy the bosonic commutation relations of eq. (4.18).
Matrices which satisfy the described condition are called symplectic.

Definition 5.1: Symplectic Group

The real symplectic group Sp(2N,R) consists of all real 2N × 2N matrices S:

S =
A B

C D

 , (5.43)

which satisfy the equivalent relations:

SJST = J =
 0 1

−1 0

 ⇐⇒

AD
T −BCT = 1

ABT , CDT are symmetric
. (5.44)

where A,B,C,D are N ×N blocks.
If S is a symplectic matrix, so is ST , −S and S−1.

5.2.2 Complex form of a symplectic matrix

A change of basis can be employed in the variables ϕ′
i, π

′
j so that the creation and

annihilation operators are recovered:

ai = 1√
2

(ϕ′
i + iπ′

i), a†
i = 1√

2
(ϕ′

i − iπ′
i), [ai, a†

j] = δij. (5.45)
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This transformation can be written in terms of the vector ξ′ as

ξ′
(c) =



a1
...
an

a†
1
...
a†
n


= W



ϕ′
1
...
ϕ′
n

π′
1
...
π′
n


, where W = 1√

2

1 i1

1 −i1

 , (5.46)

so that, in terms of the unprimed variables, we have:

ξ′
(c) = Wξ′ = WSξ = (WSW †)(Wξ) = S(c)ξ(c). (5.47)

We can define a new matrix S(c) which we refer to as the complex form of S. In block
structure, S(c) is written as:

S(c) =
M N

N∗ M∗

 = 1
2

A+D − i(B − C) A−D + i(B + C)
A−D − i(B + C) A+D + i(B − C)

 , (5.48)

where the N×N matrices M and N have complex entries. The constraints (5.44) introduced
by the symplectic requirement are written as:

MM † −NN † = 1,

MNT is symmetric.
(5.49)

A particular case which will be of great interest in the following developments
consists in taking B = C = 0, which is equivalent to imposing the realness of M and N ,
and A = D = O where O is a real orthogonal matrix. In such case, we have:

S = S(c) = O ⊕O, (5.50)

and consequently:

ϕi =
N∑
k=0

αik(ak + a†
k),

πi = i
N∑
k=0

βik(ak − a†
k),

(5.51)

where we defined α and β as:

α = 1√
2
OT , β = − 1√

2
OT . (5.52)

Note that the above definitions give us α and β real and αβT = −1

2 .
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5.2.3 Symplectic diagonalization

We introduce now a physical problem described by a set of canonical pairs (ϕi, πi)
and a Hamiltonianion which is quadratic in these bosonic variables:

H = 1
2
∑
ij

Kijξiξj = 1
2ξ

TKξ, (5.53)

where K is a symmetric and positive definite matrix (KT = K > 0). The system is
assumed to be in the ground state.

In general, K has off-diagonal terms which mixes different variables and turns the
calculation of observables a dificult task. If a symplectic transformation S can be used to
cast V in a diagonal form, the Hamiltonian in terms of the variables ξ′ = S−1ξ can be
simply written as:

H = 1
2ξ

TKξ = 1
2(ξ′)TSTKSξ′ = 1

2(ξ′)TKDξ
′ = 1

2
∑
j

(KD)jj(ξ′
j)2. (5.54)

For a generic V , a symplectic diagonalization may not be possible. However, for a
symmetric and positive definite V there is always a real symplectic matrix which provides
a diagonal form of V . This fact is ensured by the Williamson theorem:

Theorem 5.1: Williamson Theorem

Let M be a 2N × 2N symmetric and positive definite, that is MT = M > 0. Then
there exists SM ∈ Sp(2N,R) such that:

SMMSTM = ΛM

where ΛM = Diag(µ1, . . . , µN , µ1, . . . , µN),
(5.55)

with each µj satisfying:

det(JM ± iµjI2N) = 0 for j = 1, . . . , N. (5.56)

The matrix ΛM is called the Williamson normal form of M .

Note that ΛM has repeated diagonal blocks of size n× n, this enables us to rewrite
H as

H = 1
2
∑
k

µk
(
(ϕ′)2 + (π′)2

)
, (5.57)

or in its complex form as

H =
∑
k

µk

(
a†
kak + 1

2

)
. (5.58)

The Hamiltonian of eq. (5.58) describes a set of N decoupled harmonic oscillators.
Because each oscillator is independent, the total energy is obtained by minimizing each
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term separately. As a consequence, the ground state is given by a product of the individual
Gaussian states which is also Gaussian in the original variables ϕi, πi.

5.2.4 Covariance matrix for a set of harmonic oscillators

We now focus on computing the covariance matrix of a set of harmonic oscillators
using the techniques developed above. The covariance matrix of the system described by
the canonical variables ϕi, πi is defined as:

γij = 1
2 (⟨ξiξj⟩ + ⟨ξjξi⟩) = 1

2 Tr(ρ(ξiξj + ξjξi)), (5.59)

whose n× n blocks are related to the two-point correlation functions:

γ =
 ⟨ϕkϕl⟩ 1

2 (⟨ϕkπl⟩ + ⟨πlϕk⟩)
1
2 (⟨πkϕl⟩ + ⟨ϕlπk⟩) ⟨πkπl⟩

 , (5.60)

with k, l = 1, . . . , N .

Let us consider the following restrictions on the class of systems described by H:

1. H has no terms of the type ϕiπj or πiϕj.

2. H has no terms of the type πiπj for i ̸= j.

3. The kinetic terms π2
i have all the same weight, which is kp.

The absence of cross terms is equivalent to stating that the N ×N off-diagonal blocks of K
are zero. The second two conditions, imply that the lower block related to the momentum
πj coupling is proportional to the identity 1N . These conditions enable us to write K as
the following direct sum:

K = Kx ⊕ kp1N =
Kx 0

0 kp1N

 , (5.61)

where Kx is an N ×N block matrix. Since K is symmetric, we also have that Kx = KT
x so

it admits a diagonalization by a N ×N orthogonal matrix S [40]. It can be checked that
K can be diagonalized by the orthogonal transformation S ⊕ S which is also symplectic:

(S ⊕ S)TK(S ⊕ S) = (S ⊕ S)T (Kx ⊕Kp)(S ⊕ S)
= (STKxS) ⊕ (STkp1NS)
= (STKxS) ⊕ (kp1N),

(5.62)

where to obtain the last line we used the orthogonality property STS = 1N . Since STKxS

is diagonal by assumption, eq. (5.62) shows that S ⊕ S in facts diagonalizes K. We note
that the symplectic matrix S ⊕ S has vanishing off-diagonal blocks. As a consequence,
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B = C = 0 in eq. (5.48) and the respective transformation S(c) is given by real matrices
N and M .

The Hamiltonian in terms of the primed variables is given as:

H =
N∑
i=1

(
µiϕ

′
i
2 + kpπ

′
i
2
)
, (5.63)

where ϕ′
i = ξ′

i, π′
i = ξ′

(N+i) for 1 ≤ i ≤ N with ξ′ = (S ⊕ S)T ξ and µi is the i-th eigenvalue
of Kx. Since the oscillators are decoupled, each correlator is computed by considering an
individual unidimensional harmonic oscillator with m = 1/(2kp) and ωi = 2

√
µikd [53]:

⟨ϕ′
i
2⟩ = 1

2

√
kp
µi
, ⟨π′

i
2⟩ = 1

2

√
µi
kp
, ⟨ϕ′

iπ
′
i⟩ = − ⟨π′

iϕ
′
i⟩ = i

2 . (5.64)

Since ⟨ϕ′
i⟩ = ⟨π′

j⟩ = 0, correlators with mixed indices are zero and thus, are omitted from
eq. (5.64). Note that (K ′

x)1/2 = Diag(µ1/2
1 , . . . ), so γ′ can be written as:

γ′ = 1
2
[
k1/2
p (K ′

x)−1/2 ⊕ k−1/2
p (K ′

x)1/2
]
. (5.65)

Using the inverse transformation γ = (S ⊕ S)γ′(S ⊕ S)T , one obtains:

γ = 1
2
[
k1/2
p K−1/2

x ⊕ k−1/2
p K1/2

x

]
= 1

2

k1/2
p K−1/2

x 0
0 k−1/2

p K1/2
x

 . (5.66)

Note that we can directly compute the cross correlators with the unprimed variables
⟨ϕiπj⟩ by noting that:

⟨ϕiπj⟩ =
∑
k,l

STikS
T
jl ⟨ϕ′

kπ
′
l⟩

=
∑
k,l

STikS
T
jl

(
i

2δkl
)

= i

2[STS]ij = i

2δij,

(5.67)

since STS = 1N .

5.3 Real time approach
In the section 5.1, we have computed the entanglement entropy by explicitly

integrating the degrees of freedom outside the region of interest in order to obtain a
reduced density matrix. We now may search for a way of calculating S for a discretized
field ϕ having only knowledge of ϕ inside the region in question.

The reduced density matrix ρA of a region A is expected to reproduce the statistics
of all the local observables in that region, that is:

⟨OA⟩ = Tr(ρAOA). (5.68)
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One might take an axiomatic approach to a quantum field theory [61] and define these
observable quantities in terms of the correlation functions of the fields ϕ and π inside A. In
such case, ρA is expected to have the same physical content of these correlation functions.
In the case of a Gaussian state, one only needs the knowledge of the two point correlation
functions and the expectations ⟨ϕi⟩, ⟨πi⟩ in order to characterize the state [1].

Let’s consider the case of a discretized bosonic field described by the hermitian
variables ϕi, πj, with i, j = 1, 2, . . . , N , and the commutation relations:

[ϕi, ϕj] = 0, [πi, πj] = 0,
[ϕi, πj] = iδij.

(5.69)

The two point correlators inside an arbitrary region A are listed as two matrices:

Xij = ⟨ϕiϕj⟩ = tr(ρAϕiϕj)
Pij = ⟨πiπj⟩ = tr(ρAπiπj).

(5.70)

Given that our Hamiltonian does not have mixed terms consisting of the product of ϕi
and πj, the mixed correlators of the form ⟨ϕiπj⟩ are given by eq. (5.67) in section 5.2:

⟨ϕiπj⟩ = − ⟨πjϕi⟩ = i

2δij. (5.71)

We now make two assumptions about the current system. First, we assume canonical
variables ϕi, πj are related to a set of creation and annihilation operators aI , a†

I by the real
matrices α, β:

ϕi = αiI(aI + a†
I),

πi = iβiI(aI − a†
I).

(5.72)

The use of upper-case letters on the indices i ↔ I emphasizes the distinction between the
original Hilbert space and the Fock space spawned by aI and a†

I . These operators obey
the commutation relations:

[aI , a†
J ] = δIJ . (5.73)

The α and β matrices have a N ×NF shape, where NF is the dimension of the Fock space.

Inserting the above eq. (5.72) into the commutation relations defined in eq. (5.69),
we obtain:

[ϕi, πj] = i
∑
IJ

αiIβjJ
(
[a†
J , aI ] + [a†

I , aJ ]
)
. (5.74)

Substituting the commutators for aI and a†
J defined in eq. (5.73), the above eq. (5.74)

reads as:

[ϕi, πj] = −2i
∑
IJ

αiIβjJ . (5.75)
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Since the commutator on the left is defined by eq. (5.69) to be iδij, the above eq. (5.75)
can be written in matrix form as:

αβT = −1

2 . (5.76)

The second assumption consists in fixing the form of the modular Hamiltonian on
the region A and consequently the reduced density matrix ρA. The latter is assumed to be
diagonal in the occupation basis:

ρA = C exp
[
−
∑
I

ϵIa
†
IaI

]
, (5.77)

where C = ∏
I(1 − e−ϵI ) is a normalization constant and the energies ϵI are yet to be

determined. Due to the relations (5.72), we note that the modular Hamiltonian appearing
in eq. (5.77) is quadratic in the fields ϕ and π.

Using this expression, the correlation matrices can be obtained by evaluating the
trace in eq. (5.70) on the occupation number basis |nK⟩. For this, we note that ρA is
diagonal in this basis, and only terms of the form a†

IaJ or aJa†
I will contribute to the sum:

Xij =
∑
KIJ

⟨nK |
[
αiIαjJ(aI + a†

I)(aJ + a†
J)
]

|nK⟩

=
∑
KIJ

αiIαjJ ⟨nK |
(
aIaJ + aIa

†
J + a†

IaJ + a†
Ia

†
J

)
|nK⟩ .

(5.78)

Note that a nonzero term in eq. (5.78) will only be produced if an excitation created by a†
I

is annihilated by its conjugate aI . It follows that only terms consisting of a pair of creation
and annihilation with I = J will not vanish:

Xij =
∑
KI

αiIαjI ⟨nK |
(
aIa

†
I + a†

IaI
)

|nK⟩

=
∑
KI

αiIαjI ⟨nK |
(
2a†

IaI + [aI , a†
I ]
)

|nK⟩

=
∑
KI

αiIαjI ⟨nK | (2nI + 1) |nK⟩

(5.79)

The other Pij, ⟨ϕiπj⟩ matrix elements can be computed in the same way. In summary, they
can be written in matrix form as:

X = α(2n+ 1)αT (5.80)
P = β(2n+ 1)βT (5.81)

−1

2 = αβT , (5.82)

where n is a NF ×NF diagonal matrix whose elements are given by [n]II = ⟨nI⟩ we used
eq. (5.71) in eq. (5.82).
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We will now use the obtained equations to write the spectrum ϵk in terms of the
local correlators Xij and Pij . By computing the product XP and inverting the relation in
eq. (5.82) one obtains:

XP = 1
4αr(2n+ 1)2α−1

r , (5.83)

which shows that XP is similar to 1
4(2n+1)2 and, therefore, they share the same eigenvalues.

The diagonal elements of n are, by construction, the mean occupation for each mode I,
which can be easily computed since ρV is already diagonal in the nI operators:

[n]II = ⟨a†
IaI⟩ = 1

eϵI − 1 . (5.84)

Therefore, the eigenvalues of the left-hand side of eq. (5.83) can be written as:

1
4(2nII + 1)2 =

(1
2 coth(ϵI/2)

)2
, (5.85)

where coth(x) = (ex + 1)/(ex − 1).

One can invert the relation between the eigenvalues of ρ and XP in eq. (5.83) by
considering the square root of the equation. Let νI be the I-th eigenvalue of C =

√
XP .

By using eq. (5.85), one has:

νI = 1
2 coth(ϵI/2) ⇔ ϵI = ln

(
νI + 1

2
νI − 1

2

)
, (5.86)

where we have used the following expression for the inverse hyperbolic cotangent function:

coth−1(x) = 1
2

[
ln
(

1 + 1
2x

)
− ln

(
1 − 1

2x

)]
. (5.87)

A possible path for computing the entanglement entropy (2.46) is to use eq. (5.86)
and the inverse of eq. (5.72) for rewriting eq. (5.77) in terms of the fields ϕI , πJ . Then, the
resulting problem consists in computing the entropy for a Gaussian state in terms of the
N field variables, which was already done in the last section when considering a lattice of
N oscillators. Instead of taking this path, one can quickly obtain the entanglement entropy
by considering the limit case of a Rényi entropy presented in definition 2.10.

The calculation of Hr(ρV ) with r → 1 starts by computing the trace of the r-th
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power of ρA:

tr(ρrA) = tr

(
Cr

∏
I

exp (−rϵInI)
)

= Cr
∏
I

∑
nI

(xrI)nI , where xI = exp(−ϵI) = νI − 1/2
νI + 1/2

=
∏
I

(
1 − νI − 1/2

νI + 1/2

)r [
1 −

(
νI − 1/2
νI + 1/2

)r]−1

=
∏
I

[(
νI + 1

2

)
−
(
νI − 1

2

)]r [(
νI + 1

2

)r
−
(
νI − 1

2

)r]−1

=
∏
I

[(
νI + 1

2

)r
−
(
νI − 1

2

)r]−1
.

(5.88)

The above expression 5.88 can then be inserted in eq. (2.50):

S = lim
r→1

1
r − 1

∑
I

ln
[(
νI + 1

2

)r
−
(
νI − 1

2

)r]
. (5.89)

Note that both numerator and denominator of eq. (5.89) approach 0 when the limit
r → 1 is taken resulting in an indetermination 0

0 . This indetermination can be avoided by
applying L’Hôpital’s rule and differentiating the numerator and denominator with respect
to r. Note that:

∂r [ln ((x+ c)r − (x− c)r)]
∣∣∣∣
r=1

= 1
2c [(x+ c) ln(x+ c) − (x− c) ln(x− c)] , (5.90)

so by setting c = 1/2, the derivative of the numerator in eq. (5.89) is obtained. The entropy
reads:

S =
∑
I

(
νI + 1

2

)
ln
(
νI + 1

2

)
−
(
νI − 1

2

)
ln
(
νI − 1

2

)
, (5.91)

or, in terms of the matrix C =
√
XP whose eigenvalues are νI :

S = tr
[(
C + 1

2

)
ln
(
C + 1

2

)
−
(
C − 1

2

)
ln
(
C − 1

2

)]
(5.92)

In summary, for computing the entanglement entropy S between a subregion A and
its outside, only the knowledge of the correlation matrices X and P inside A are needed.



63

6 Numerical calculation of the entanglement
entropy

In this chapter, we compute the entanglement entropy of a scalar field in its
ground state on a static closed universe. This task is accomplished by implementing a
numerical scheme based on the real time approach [21, 46] described in the last chapter.
The entanglement entropy is then used to estimate two perturbative coefficients, which
encode the dependency of this quantity on the intrinsic and extrinsic geometry of the
problem. The contents of this chapter are a description of the work published in [56].

6.1 Model definition

6.1.1 Scalar field in an Einstein universe

We consider a spherically symmetric static universe R × S3 described by the line
elements

ds2 = −dt2 +R2(dχ2 + sin2 χdΩ2). (6.1)

where the infinitesimal solid angle given by

dΩ2 = dθ2 + sin2 θdα2. (6.2)

The temporal component t ∈ R parametrizes a set of 3-spheres of radius R described
the parameters θ, χ ∈ [0, π] and α ∈ [0, 2π]. Using these coordinates, the metric tensor
elements gµν reads

gµν =


−1 0 0 0
0 R2 0 0
0 0 R2 sin2 χ 0
0 0 0 R2 sin2 χ sin2 θ

 (6.3)

and the associated volume element is
√

−g = R3 sin2 χ sin θ. (6.4)

The scalar curvature R (defined in eq. (3.22)) is given by

R = 6
R2 . (6.5)
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We now consider a real scalar field given by the Klein-Gordon Lagrangian 4.29.
Using the particular metric given by eq. (6.3) and integrating by parts, one finds:

L = 1
2

∫
S3
dχdθdα

{
R3 sin2 χ sin θ

[
Φ̇2 −

(
m2 + 6ξ

R2

)
Φ2
]

−R sin θ
[
sin2 χ(∂χΦ)2 − Φ∆S2Φ

] }
,

(6.6)

where ∆S2 is the Laplace-Beltrami operator in the unit 2-sphere, given by:

∆S2 = 1
sin θ∂θ(sin θ∂θ) + 1

sin2 θ
∂2
α. (6.7)

The Hamiltonian formalism can be obtained by directly computing the conjugate momenta
Π:

Π = ∂L

∂(Φ̇)
= R3 sin2 χ sin θΦ̇, (6.8)

which, together with Φ, satisfies the Poisson bracket (defined in eq. (4.12)):

{Φ(x),Π(y)} = δ(x− y),
{Φ(x),Φ(y)} = {Π(x),Π(y)} = 0.

(6.9)

Using the above expression for Π, one obtains:

H = 1
2

∫
S3
dχdθdα

[
Π2

R3 sin2 χ sin θ +R sin θ
(
sin2 χ(∂χΦ)2 − Φ∆S2Φ

)
+

+R3 sin2 χ sin θ
(
m2 + 6ξ

R2

)
Φ2
] (6.10)

The spherical symmetry is exploited by expanding the field Φ in spherical harmonics:

Φ(t, χ, θ, α) =
∞∑
l=0

l∑
µ=−l

Φlµ(t, χ)Ylµ(θ, α), (6.11)

and noting that the spherical harmonics are eigenfunctions of ∆S2 :

∆S2Ylµ = −l(l + 1)Ylµ. (6.12)

Using the orthonormality of the Ylµ functions, one obtains a Lagrangian which is given in
terms of the fields Φlµ:

L = R3

2
∑
lµ

∫ π

0
dχ sin2 χ

{[
Φ̇2
lµ −

(
m2 + 6ξ

R2 Φ2
lµ

)]
− 1
R2 (∂χΦlµ)2 + l(l + 1)

R2 sin2 χ
Φ2
lµ

}
.

(6.13)
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6.1.2 Radial discretization

In order to obtain a discrete set of field variables, we need to discretize the only
continuous variable left in the Lagrangian of eq. (6.13). The radial component, described
by χ ∈ [0, π], is partitioned into N intervals of the same size, π/N indexed by j = 1, . . . , N .
The physical length of each interval is given by:

ϵ = R
π

N
. (6.14)

The field Φlµ(χ) is then approximated by a set of N variables corresponding
to its value at the center of each interval. The spatial derivative ∂χΦlµ(χ) can also be
approximated by a finite difference between two adjacent field variables. Together, these
approximations are given by the replacements:

Φlµ(χ) → Φlµj = Φlµ

((
j − 1

2

)
π

N

)
,

∂χΦlµ(χ) → Φlµj+1 − Φlµj

π/N
.

(6.15)

With this scheme, the integral in the Lagrangian is replaced by a sum involving
N − 1 terms which contain the discretized space derivative and N terms with no spatial
derivatives. Because these terms with spatial derivatives also includes spatial functions
(such as sin2 χ) a choice regarding where these spatial functions should be computed has
to be made. In order to preserve the symmetry under a reflection about the equatorial
surface χ = π/2, we compute such functions on the edge of the two adjacent intervals
χ = jπ/N , thus resulting in a different discretization for terms with and without spatial
derivatives:

sin2 χΦlµ(χ)2 → sin2 χj−1/2Φ2
lµj ,

sin2 χ(∂χΦlµ(χ))2 → sin2 χj

(
Φlµj+1 − Φlµj

π/N

)2

.
(6.16)

To illustrate the difference between the discretization for each type of terms, we sketched
the process for a fixed j in fig. 1.

After replacing the integral by a sum
∫

→ π
N

∑
j and applying the discretization

prescription, we obtain the discretized Lagrangian:

L = R2ϵ

2
∑
lµ

 N∑
j=1

sin2 χj−1/2Φ̇2
lµj −

N+1∑
i,j=1

ΦlµiṼ
(lµ)
ij Φlµj

 , (6.17)

where the symmetric coupling matrix Ṽij is given by:

Ṽ
(lµ)
ij = δij

{
sin2 χj−1/2

[
l(l + 1)

R2 sin2 χj−1/2
+m2 + 6ξ

R2

]
+ 1
ϵ2 (sin2 χj + sin2 χj−1)

}

− 1
ϵ2 (δi+1,j sin2 χi + δi,j+1 sin2 χj).

(6.18)



Chapter 6. Numerical calculation of the entanglement entropy 66

(1)

sin2 χj−1/2

(2)

Φ2
lµj

(1)

sin2 χj


(2)

Φlµj+1 −
(3)

Φlµj

π/N

2

Figure 1 – Sketch of the discretization for a single term. The annotated numbers indicate
where each factor is evaluated.

The conjugate momenta for each field variable Φlµj is given by:

Πlµj = ∂L

∂Φ̇lµj

= ϵR2 sin2 χj−1/2Φ̇lµj (6.19)

which allow us to write the Hamiltonian as:

H =
∑
lµ

 N∑
j=1

1
2ϵR2 sin2 χj−1/2

Π2
lµj + ϵR2

2

N∑
i,j=1

ΦlµiṼ
(lµ)
ij Φlµj

 . (6.20)

We can further simplify the expression for H by employing a transformation which leaves
the bracket in eq. (6.9) invariant, and also the corresponding commutator after quantization.
Transformations that follow this property are called canonical, and the one used here
simply rescales the fields:

Φlµj → Φlµj

R sinχj−1/2
, Πlµj → ΠlµjR sinχj−1/2, (6.21)

leaving the product of Φlµj and Πlµj invariant. Then, the Hamiltonian reads as

H =
∑
lµ

Hlµ (6.22)

where

Hlµ =
 N∑
j=1

1
2ϵΠ

2
lµj + ΦlµiV

(lµ)
ij Φlµj

 , (6.23)

with the coupling matrix V (lµ)
ij now given by:

Vij = δij
2ϵ

(
ϵ2m2 π2l(l + 1)

N2 sin2 χi−1/2
+ sin2 χi

sin2 χi−1/2
+ sin2 χi−1

sin2 χi−1/2
+ 6πξ
N2

)

− 1
2ϵ

(
δi+1,j

sin2 χi
sinχi−1/2 sinχi+1/2

+ δi,j+1
sin2 χj

sinχj−1/2 sinχj+1/2

) (6.24)

Note that the obtained Hamiltonian (6.23) is given by a sum of independent
Hamiltonians Hlµ, each one consisting of a lattice of Harmonic oscillators coupled by the
matrix V (lµ)

ij .
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6.2 Entropy calculation
As we saw in the last section, the mode expansion of the field Φ and the subsequent

discretization of the radial component χ led us to a Hamiltonian expressed in terms of
a set of canonical pairs {(Φlµj,Πlµj)} indexed by the indices l, µ and j. We now aim to
apply the real time approach described in the last chapter to compute the entanglement
entropy associated to spherical regions.

We note that the full state space H of the obtained system consists of the tensor
product of the Hilbert spaces associated with the canonical pairs indexed by (l, µ, j):

H =
⊗
lµj

Hlµj. (6.25)

A decomposition into two complementary regions can be obtained by separating the
degrees of freedom as j < n and j ≥ n, given an integer n associated with a distance
nπ/N along the radial direction χ:

H =
⊗

lµ
j<n

Hlµj


︸ ︷︷ ︸

HA

⊗

⊗
lµ
j≥n

Hlµj


︸ ︷︷ ︸

HB

= HA ⊗ HB. (6.26)

The distance nπ/N describes the radius of a 2-sphere that forms the common boundary
of the A and B. Such interface has area

An = 4πR2 sin2 χn = 4πR2 sin2
(
πn

N

)
. (6.27)

Note that each mode l, µ corresponds to an independent quadratic term in the
Hamiltonian (6.23). As a consequence of (5.2), the ground state of the system is given
by a product of independent Gaussian functions. The total entanglement entropy is then
additive on the modes:

S =
∑
lµ

Slµ, (6.28)

where Slµ corresponds to the entropy associated with the subsystem with Hamiltonian Hlµ.
We can further exploit a redundancy in this calculation by noting that these Hamiltonian
Hlµ are actually independent of µ and, thus, contribute equally to S. Because for each
value of l we have a set of 2l + 1 modes with the same entropy, we can write:

S =
∞∑
l=0

(2l + 1)Sl, (6.29)

where Sl is the entropy of any mode (l, µ).

A single subsystem associated with Hlµ corresponds to a chain of coupled harmonic
oscillators. A procedure for computing the entropy contribution Sl is outlined as:
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1. Obtain the covariance matrix blocks X and P by employing a symplectic diagonal-
ization of Hlµ.

2. Truncate the matrices Xij and Pij by discarding the degrees of freedom outside the
3-sphere determined by i, j < n.

3. Use the truncated matrices to determine
√
XredPred and then compute the entangle-

ment entropy Sl using the real time approach described earlier.

It is easy to see that, for large lm the potential matrix (6.24) takes the form
of l(l + 1)J where J is diagonal. Then

√
XredPred simply reduces to 1

21, which gives a
vanishing entropy Sl. We can then estimate the total entropy S by truncating the sum in
eq. (6.29). This can be accomplished by introducing a finite upper limit lmax. The total
entanglement entropy between the two spatial regions is then given approximately by:

S ≈
lmax∑
l=0

Sl. (6.30)

The value lmax is tuned in order to produce a stable value for S.

6.3 Universal coefficients
An analytical approach to the computation of the entanglement entropy of massive

free scalar fields [39, 56] shows that such quantity is divergent in the continuum limit. It is
remarkable that, at non-vanishing ϵ, the entropy is proportional to the interface area. Such
constant of proportionality consists in a series of divergent terms when ϵ → 0 multiplied by
numerical constants that are independent of ϵ. The constants multiplying logarithmically
divergent terms are called universal coefficients. We aim to obtain a numerical estimative
for two of them.

A perturbative analysis of the Rényi entropies of a free massive field on spherical
waveguides [39] reveals the dependency of Sα on the curvature of the entangling surface.
Using a particular result for a 4-dimensional manifold and a 2-dimensional interface surface
found on eq. (2.42) of [39] and setting the spherical waveguide radius to R cos(r/R) this
contribution to the entanglement entropy S = S1 reads:

S(1) = A

24π

[
1

2ϵ2 +
(
m2 + 6ξ − 1

3R2 cos2(r/R)

)
log(mϵ)

]
, (6.31)

where A is the area of the entangling surface and re is its radius relative to the equator
χ = π/2.

Another contribution to S can be obtained by a perturbation of the metric of the
spherical waveguide, which we quote from our work [56]:

S(2) = A

360πR2

[
1 − tan2

(
re
R

)]
log(mϵ). (6.32)
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Because the metric around the entangling surface in consideration can be approximated
by a perturbed spherical waveguide, we expect to observe a contribution to S of the form
(6.32).

We now consider the conformal case ξ = 1/6 and compute the sum of both
contributions for an entangling surface given by fixing ξ = π/2 (re = 0), this is, a 2-sphere
located at the equator:

S ≈ S(1) + S(2) =
[
(α1m

2 + α2) log(mϵ)
]
A. (6.33)

The α1 and α2 are universal coefficients that can be calculated by eqs. (6.31) and (6.32):

α1 = 1
24π ≈ 1.32 × 10−2,

α2 = π

360(Nϵ)2 ≈ 8.73 × 10−3

(Nϵ)2 ,

(6.34)

where we substituted the discretization parameters in R = (Nϵ)/π.

A numerical estimate for these coefficients can be made by computing the entropy
using the real time approach and fitting the α1 and α2 to best reproduce the value of S
under the model described by eq. (6.33). In particular, we opted to fix a value for N and
R which also fix ϵ and vary the mass m over a chosen interval. The motivations for the
choice of such interval for m are discussed in the next section.

From the analytical results, the entropy is also expected to include mass dependent
terms on the form (mϵ)p with p ∈ 2N, which are finite in the limit ϵ → 0. In order to avoid
underfitting the data, we can include free parameters associated to those terms. Other
terms which are finite but independent of m are effectively included in α0. A prototype
for models which reproduce the computed S is then given by:

S(m) =
[
α0 + (α1m

2 + α2) log(ϵm) +
pmax∑
even p

βpm
p

]
A, (6.35)

where each value of pmax results in a different model with 3 + ⌊pmax/2⌋ free parameters.
In the results sections, we fit the data to a set of models up to pmax = 8 and compare the
estimated values of α1 and α2 to the analytical ones listed in eq. (6.34).

6.4 Implementation

6.4.1 Numerical scheme

The recipe outlined above was implemented in Fortran 90 using the OpenBLAS
and LAPACK libraries. Because each Sl is independent, its computation was parallelized
by using the OpenMPI framework, taking the advantages of its distributed model. The
entropy per mode was then aggregated into the total entropy S.
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To compute the entropy for a mode l associated to a Hamiltonian Hl = Hlµ, one
needs to obtain the correlation matrices X and P associated with the field variables ϕi, πj
inside the region i, j < n. The Hamiltonian Hl satisfies the requirements of the procedure
in which we calculated the covariance matrix in section 5.2.4. Following that procedure,
the diagonal blocks X and P are obtained by computing the square root of V . Setting
kp = ϵ−1 and Kx = V in eq. (5.66):

X = 1
2(ϵV )−1/2, P = 1

2(ϵV )1/2. (6.36)

The fractional powers of V appearing in eq. (6.36) can be computed in terms of its
eigenvalues. Let λk be an eigenvalues of V and let M be the matrix which implements its
diagonalization, the correlation matrices X and P are then given by:

X = ϵ−1/2

2 M Diag(λ−1/2
1 , λ

−1/2
2 , . . .)MT ,

P = ϵ1/2

2 M Diag(λ1/2
1 , λ

1/2
2 , . . .)MT .

(6.37)

From the explicit expression for V in eq. (6.24) one notes that it is a band matrix, so its
diagonalization can be optimized by using a specialized LAPACK’s routine designed to
solve such task.

The correlations inside A are then obtained by truncating the X and P at the n-th
site:

[Xred]ij = Xij, [Pred]ij = Pij for i, j < n. (6.38)

The next step is to apply the real time formalism for obtaining the entanglement
entropy using the correlations Xred and Pred. It follows from eq. (5.91) that Sl is given by:

Sl =
∑
i

(
νi + 1

2

)
ln
(
νi + 1

2

)
−
(
νi − 1

2

)
ln
(
νi − 1

2

)
, (6.39)

where the νi are the eigenvalues of
√
XredPred. These νi can be computed by first diago-

nalizing the product XredPred and then taking the square root of its eigenvalues. We can
then use eq. (6.39) to compute the entropy contribution for that mode.

In order to compute the total entanglement entropy, the process described above
is repeated for every value 0 ≤ l ≤ lmax. As noted earlier, the computation of each Sl is
independent, so it can be distributed among a set of available CPU cores. A computation
of S involves a fixed set of parameters described in table 1.

For the estimation of the universal coefficients, the entropy S has to be calculated
under a mass interval {mi}. The choice of such interval is detailed in the next subsection.
These data points are then fitted into the models described in eq. (6.35). Note that
S(m) depends linearly on each coefficient, so the problem of finding αi and βi which best
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Parameter Description Commentary
R Universe radius -
N Number of radial sites Determines ϵ = Rπ/N
n Number of radial sites inside A -
m Field mass -

ξ Gravity coupling Fixed at ξ = 1/6
(conformal coupling)

lmax
Upper bound for the
interval l ∈ [0, lmax]

-

ϵtol Numerical tolerance Controls log(x) at x ≈ 0.
(Justified below)

Table 1 – List of parameters necessary for computing S for a free scalar field with a fixed
Lagrangian L.

reproduce the generated data is equivalent to a multilinear regression problem. The latter
can be solved by employing a QR factorization or SVD decomposition on the matrix
formulation of the problem [6].

6.4.2 Choice of parameters

As described above, the discretization procedure introduced an integer variable N
which corresponds to the number of radial sites. If the radius of the universe R is fixed,
both parameters determine a lattice spacing given by

ϵ = π

R

1
N
. (6.40)

To explore the stability of the method under different discretizations, we fixed the universe
radius R and increased N . It follows that such increase on N leads to a smaller value of
the lattice spacing ϵ which we expect to generate results which are closer to the continuum
limit. However, by increasing the number of sites one has to deal with larger matrices,
thus significantly increasing the running time required for a single computation of S.

Before discussing the choice of the Hamiltonian parameters, we note that, for a
fixed number λ, the transformation V → λV leaves the

√
XP product invariant:

V → λV ⇒

X → λ−1/2X

P → λ1/2P
⇒

√
XP →

√
XP. (6.41)

For this reason, we can ignore the leading factors of (1/2ϵ) on the potential matrix in
eq. (6.24), which would correspond to λ = 2ϵ. Since the ϵ powers of eq. (6.37) cancel out
when the product of both matrices is taken, we are only left with a dependency on the
product ϵm.

We are interested in fitting the entropy S(m) with respect to the mass m, so a
choice of interval for m has to be made. Because the quantity m−1 for a free scalar field is
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related to its correlation length rcor ∼ m−1 [43], it defines a length scale at fixed m. The
choice of interval for m is then motivated by the two requirements:

1. The perturbative analysis assumes rcor ≪ R ⇒ m−1 ≪ Nϵ.

2. In order to reproduce the continuum limit, the lattice spacing should be much smaller
than the typical length scale, given by the correlation length. So m−1 ≫ ϵ.

Both inequalities can be written as:

1
mNϵ

≪ 1 and mϵ ≪ 1. (6.42)

To avoid privileging one of the inequalities, we can set the left-hand sides of eq. (6.42)
equal. In that case, both inequalities can be simultaneously satisfied for a sufficiently large
N. Therefore, we have:

m−1
opt =

√
Nϵ, (6.43)

which is an estimate for an optimal mass that fulfills the required conditions.

6.4.3 Implementation details and optimizations

Since the task of calculating the entropy S for a fixed set of parameters consists
in the repetition of an intensive linear algebra for a large interval of l’s, the use of an
optimized library has a great impact in reducing the running time. To demonstrate the
gain in using specialized routines, consider the task of building the X and P matrices in a
situation where the eigenvalues λi and eigenvectors M of V are already known.

For both cases, we start by noting the fact that the expression for X and P in
eq. (6.37) includes a multiplication by a diagonal matrix. We can define an intermediary
variable aux, which is a N ×N matrix containing the result of XV −1/4

D :

1 ! Assuming that V_evals(i, i) = λi

2 aux = M
3 DO i = 1, N
4 aux(:, i) = aux(:, i) * V_evals(i, i)**(-0.25)
5 END DO

In this way, the matrix X can be obtained by computing aux × (aux)T . The
advantage of this approach is an optimization on data access. Because all the necessary
data of the final multiplication operation is explicitly contained in a smaller set of memory,
a good compiler would use this fact to avoid cache misses.
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We now present two different implementations for the aux × (aux)T operation. An
approach using FORTRAN’s standard matrix multiplication MATMUL() function would
read as:

1 X = 0.5d0 * MATMUL(aux, TRANSPOSE(aux))

which, apart from the ϵ factor that can be ignored, corresponds to the expression in
eq. (6.37).

A different implementation uses the DGEMM() routine, which solves a general
multiplication problem:

1 CALL DGEMM("N", "T", N, N, N, 0.5d0, aux, N, aux, N, 0.0d0, X, N)

where the transpose operation is specified in the second parameter "T".

In addition to the implementations in our code, a LAPACK library may have
different internal implementations. In figure 2 we show a performance test comparing the
standard MATMUL() with two implementations of the LAPACK library. One based on the
OpenBLAS package and the other included by the Intel’s MKL library. The results show a
massive gain of performance by using a LAPACK specialized routine. In particular, Intel’s
MKL surpasses OpenBLAS at the cost of working only on Intel processors.
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Figure 2 – Performance test comparing the usage of FORTRAN’s standard MATMUL()
against two different implementations of the LAPACK’s library. The highlighted
area in gray on the left plot is zoomed in the right plot.

The performance increase would be even higher if we consider the case of diagonal-
izing the band matrix V where the redundancy involving the null entries on the triangular
blocks is intentionally avoided. The used LAPACK routines are listed on table 2.
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Routine Used for
DSBEV() Diagonalizing V
DGEMM() Calculating X and P matrices
DSYMM() Calculating XredPred

DGEEV() Computing the eigenvalues
of XredPred

Table 2 – Specialized routines used to solve each task of computing the mode entropy Sl.
The leading character D on each routine’s name indicates that it handles double
precision floats.

An important detail concerns the calculation of the term νi log(νi) in the expression
for Sl in eq. (6.39) when νi ≈ 0. Arround this value, the log νi exhibits a large numerical
instability, which can result in erroneous contributions for S. This can be avoided by
ignoring the contributions of νi’s which are lower than a small ϵtol parameter.

6.5 Results
The results listed in this section were obtained using an implementation of the

described scheme in FORTRAN 90. This program makes use of the LAPACK library [2]
based on OpenBLAS [62] and the OpenMPI [26] as parallelization framework.

All the results are given for a fixed radius of the universe R = 1000/π and with
ξ = 1/6, corresponding to a conformal coupling. The mass intervals M = {mi} of
each estimation are chosen so adjacent masses are equally spaced mi −mi+1 = δm. The
entangling surface is a 2-sphere located at the equator χ = R/2. The uncertainties included
in the estimated coefficients are statistical uncertainties from the multilinear regression.

As a first case of study, we considered a system with N = 1000 sites, corresponding
to ϵ = 1. These values give an optimal mass of m−1

opt ≈ 31.6 which leads us to choose a
set of 48 equidistant masses M = (30, 50). We then compared the regression models up
to pmax = 8 for different mode bounds lmax = 5 × 103 and lmax = 10 × 103. The obtained
results are shown in table 3.

We can observe a small relative variation on the estimation of α1 under an increase
of the number of considered modes. Alternatively, the second coefficient α2 exhibits a
relative variation which is much more sensible to a change in S(m). This behavior can be
understood by noting that the expected analytical value for α2 has an order of magnitude
much smaller than α1, as can bee seen in eq. (6.34). In order to observe contributions of α2

to S(m), one needs a more precise measurement of the latter. We then take lmax = 5 × 103

as a base parameter to investigate other sources of error.

A better approximation of the continuum limit is expected to be obtained by
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pmax α
(1)
1 δα1/α

(1)
1 α

(1)
2 δα2/α

(1)
2

2 0.0132295(30) −1.90 × 10−6 −2.0(2) × 10−9 0.019
4 0.0132595(10) −7.83 × 10−5 8.2(3) × 10−9 −0.046
6 0.0132450(60) −3.27 × 10−4 5.0(20) × 10−9 0.226
8 0.0133600(700) 8.12 × 10−3 2.5(12) × 10−8 0.717

Table 3 – Comparison of two estimations of α1 and α2 with the input parameters differing
only on the maximum summed entropy lmax. The variation columns measure
the relative difference of both values δα1 = (α(1)

1 − α
(2)
1 )/α(1)

1 . For each run, we
have l(1)

max = 5 × 103 and l(2)
max = 10 × 103. Other fixed parameters are given by

N = 1000, n = 500, ϵ = 1, ξ = 1/6, ϵtol = 10−35. The mass interval consists in
48 equidistant masses at m−1 ∈ (30, 50).

decreasing the lattice spacing and increasing the number of degrees of freedom N . We then
considered different refinements of the lattice under a fixed value of Rπ = Nϵπ = 1000
and computed the entropy for the same interval of 48 masses with m−1 ∈ (30, 50). We
finally fixed pmax = 4 to produce the table 4 comparing different lattice refinements. This
expression for S(m) is chosen because it gives the model with least number of parameters
which still reproduces the computed data with satisfactory stability, as will be explicitly
shown when we consider a movable mass interval.

N α1 α2

1000 0.0132595(10) 8.2(3) × 10−9

1250 0.0132615(14) 8.7(5) × 10−9

1500 0.0132625(16) 8.9(5) × 10−9

Table 4 – Estimation of the universal coefficients for pmax = 4 and different lattices
refinements at fixed R.

Because an increase on the density of sites on the lattice results in estimations
of α1 and α2 which are closer to the analytical values 6.34, we take N = 1500 as a base
parameter to our next considerations.

As described in section 6.4.2, a fixed mass m introduces a length scale given by the
correlation length rcor ∝ m−1. A poor choice of such quantity can introduce a systematic
error originated from the discrete nature of the lattice, as well as break the assumptions
made by the perturbative analysis which we are interested to observe. In any case, we
might expect a poor estimation for the universal coefficients.

In order to investigate an optimal interval of inverse mass m−1 ∈ (m−1
low,m

−1
up ),

we considered a set of 256 equally spaced inverse masses ranging from m−1
low = 2.45 to

m−1
up = 50.57, which we denote by M. A subset Mi ⊂ M of W adjacent masses is then

chosen so its median equals m−1
med = m−1

i :

Mi = {mi−W/2, . . . ,mi, . . . ,mi+W/2}. (6.44)
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We then analyze the regression quality for each subset Mi by computing the mean squared
error χ(Mi)/W . The values of χ(Mi)/W are plotted in figure 3, where the value of m−1

med

is used in the horizontal axis. The plots clearly show that the regression stabilizes when
considering intervals with larger m−1

med. As the mass interval ∆m−1 ∝ W is increased, a
larger median mass m−1 is required to obtain the same fitting quality of a lower W . Such
behavior can be justified by the fact that a fit with larger W includes masses at a wider
range which degrades the regression quality.
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Figure 3 – Mean square error χ2(Mi)/W plotted against the median value m−1
med of each

interval Mi.

A similar procedure can be employed to verify the stability of the fitted coefficients.
In figure 4, we have the values of each universal coefficient, estimated using a mass interval
Mi with W = 110, plotted against the median mass of each Mi on the horizontal axis.
We see that the regression stabilizes at m−1 ≈ 20 similarly as indicated by the χ2/W plot.

An optimal fit which accounts for the parameter analysis done in this section can
be made by considering all values of S(m) with m−1 > 30 for the lattice with N = 1500.
Under such circumstances, we report the best fit in table 5, which was obtained for
pmax = 4.

Estimated Analytical Relative difference
α1 0.0132611(11) ≈ 0.0132629 −1.4 × 10−4

α2 8.43(36) × 10−9 ≈ 8.73 × 10−9 −3.4 × 10−2

Table 5 – Estimates for the universal coefficients obtained by considering all points with
m−1 > 30 and N = 1500 is given on the first column. The second column is a
reproduction of the perturbative coefficients found in eq. (6.34). The deviation
in the third column is relative to the perturbative prediction.



Chapter 6. Numerical calculation of the entanglement entropy 77

10 15 20 25 30 35 40
m−1
med

0.0127

0.0128

0.0129

0.0130

0.0131

0.0132

0.0133
α

1

Analytical
pmax = 2

pmax = 4

pmax = 6

10 15 20 25 30 35 40 45
m−1
med

1.5

1.0

0.5

0.0

0.5

1.0

α
2

1e 5

30 35 40 45
1.0

0.5

0.0

0.5

1.0

1e 8

Analytical
pmax = 2

pmax = 4

pmax = 6

Figure 4 – Graph showing the dependency of the estimated values for each coefficient (α1
on the left and α2 on the right) on the chosen mass interval Mi. Each interval
includes a set of W = 110 masses and is centered at the point represented by
mi.

In order to demonstrate qualitatively the accuracy of the fit, we plot on fig. 5 the
values of S(m−1) normalized by the area A(n = N/2) used to obtain the results of 5.
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Figure 5 – Graph of the entropy per area S(m)/A for R = 1500 and the regression, whose
parameters are listed on table 5.
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7 Conclusion

7.1 On the geometric entropy
Entanglement is a unique feature of quantum mechanics. Any theory whose degrees

of freedom are described by quantum states may exhibit properties which are originated
from it. For a quantum field theory, the degrees of freedom are often related to a spacetime
coordinate, so the presence of entanglement can be related to geometric properties.

As described on chapter 2, on a pure state, the amount of entanglement between two
subsystems can be quantified by the von Neumann entropy S of the reduced density matrix
of one of the subsystems. In the particular case where these subsystems are associated
to complementary spatial regions, the quantity S becomes a function of the geometric
variables which parametrize such regions. For that reason, S is then often referred as
geometric entropy.

In the context of free quantum fields, the geometric entropy can reveal the spatial
structure of a theory without the necessity of referring to a particular observable. Then, it
can be a useful tool for directly probing the fundamental aspects of such theory, as in the
case of the study of universal coefficients appearing on the expansion of S.

7.2 On the calculation of the geometric entropy
As reviewed in the introduction 1, the entropy S of a general quantum field theory

is divergent on the continuum limit ϵ → 0. The behavior of such divergence can reveal
features of the theory, such as properties of its geometry. In order to compute S numerically,
one could opt for fixing a small but non-vanishing ϵ. Despite the numerical convenience,
a regularization of the entropy is expected to be motivated by quantum effects on the
geometry.

When considering a real scalar free field, taking ϵ ̸= 0 results in a lattice of harmonic
oscillators coupled by a matrix K. The properties of such systems can be obtained by
exploiting the symplectic nature of the commutation relations and the quadratic form
of the Hamiltonian 5.2. In particular, the ground state of such system is given by a
Gaussian function determined by values of the expectations ⟨ϕi⟩ , ⟨πj⟩ and the correlations
⟨ϕiϕj⟩ , ⟨ϕiπj⟩ , ⟨πiπj⟩.

For computing the entanglement entropy of discrete bosonic systems, the real time
formalism provides a robust framework in which only the knowledge of the correlations
inside the region of interest V are required to obtain S. However, we emphasize that, for
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calculating these correlations, one can not avoid dealing with degrees of freedom outside
V . The brute force calculation carried on section 5.1 explicitly shows the dependency of
the outside reduced density matrix on the inside blocks of the correlation matrix K1/2.
On our numerical computation, this fact translates to the necessity of calculating the full
N ×N matrix K1/2 before truncating it to the n× n matrices Xred, Pred.

On a general level, one should not expect to avoid dealing with the outside subsystem
variables, since the very quantity S we are aiming to compute measures the correlation
between the two regions. An exception to this would be the case where the two regions
are unentangled and S = 0 trivially.

The calculation of S for a free scalar field by employing this formalism also has
the advantage of only requiring that KT = K > 0 on the character of the coupling matrix.
This restriction includes a variety of systems, defined over a spacetime with arbitrary
dimension. In particular, if we assume the presence of a background curvature coupled with
the field by a term of the form ξRϕ2, this coupling is simply equivalent to the addition of
terms in the diagonal entries of K (as showed in eq. (6.24)).

7.3 On the estimation of universal coefficients
On chapter 6 we described a numerical implementation of the real time formalism

for a free scalar field defined over a closed universe. Our main task consisted on measuring
the contribution of two universal terms on S by statistically estimating the respective
universal coefficients.

The contribution of these universal terms is only expected to be observed on the
domains of validity of the assumptions used in their derivation. In order to find a set of
parameters which reproduce the intended behavior of S, we subdivided the results and
analyzed the behavior of the statistical fit in each subset of parameters. The stability of
the estimated coefficient under a small variation of the input parameters proved itself as a
robust criterion for finding the region of interest.

Using a suitable domain of parameters, a final estimation of the universal coefficients
was made. Since one of the coefficients, namely α2, contributes with a variation of 7 orders
of magnitude lower than the typical variation of S, one can conclude that the calculation
of S was made with such accuracy that otherwise the contribution of α2 would not
been observed. The further agreement between the estimated and predicted values of the
coefficients shows not only the robustness of the real time formalism, but the validity of
the perturbative analysis.
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A Appendix 1: ∑
n nx

n series evaluation

Consider the partial summation Sn of geometric series of ratio |r| < r:

Sn = 1 + r + r2 + · · · + rn, (A.1)

whose limit of n → ∞ is:

S∞ = 1
1 − r

. (A.2)

Consider now the partial sum of the series in question as An:

An = 0 + r + 2r2 + 3r3 + · · · + nrn. (A.3)

Note that An − rAn = An(1 − r) can be related to Sn:

An(1 − r) = r + r2 + r3 + · · · + rn − nrn+1 = Sn − 1 − nrn+1. (A.4)

Since, for |r| < 1, nrn+1 → 0 when n → ∞, the limit A∞ can be computed by
solving for An in eq. (A.4) using eq. (A.2):

A∞ = S∞ − 1
1 − r

= r

(1 − r)2 . (A.5)
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