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"Fall in love with some activity, and do it! Nobody ever figures out what life is all about,
and it doesn’t matter. Explore the world. Nearly everything is really interesting if you go
into it deeply enough. Work as hard and as much as you want to on the things you like to
do the best. Don’t think about what you want to be, but what you want to do..."

Richard Feynman



Resumo
O problema de espalhamento eletromagnético inverso para imageamento em microondas
visa recuperar as propriedades dielétricas, localização, tamanho e forma de objetos espa-
lhadores dentro de um domínio de interesse inacessível. Este é um importante campo das
aplicações em eletromagnetismo como imagens biomédicas, detecção de objetos enterrados,
exploração de petróleo e gás e avaliação não-destrutiva. O imageamento é realizado anali-
sando as medições de campo espalhado. Nesse contexto, um método de inversão iterativo é
frequentemente necessário para minimizar uma função objetivo construída pelo erro entre
o campo espalhado medido e o campo espalhado calculado.

Nesta tese são apresentados diferentes algoritmos eficientes baseados no método do gradi-
ente conjugado (conjugate gradient method, CGM) para resolver problemas de espalhamento
inverso em duas e três dimensões. Este método consiste na solução do problema de espa-
lhamento direto e o cálculo da direção do gradiente da função objetivo dentro de cada
iteração. Dependendo da aproximação do gradiente, o CGM pode ser classificado em duas
abordagens principais: métodos linearizados e não linearizados. Cada cálculo do problema
direto pode ter um alto custo computacional. Assim, para evitar o esforço computacional
os solucionadores diretos são implementados eficientemente usando métodos iterativos
para resolver sistemas lineares combinados com algoritmos FFT (fast Fourier transform).

Os métodos de inversão propostos nesta tese são baseados em abordagens de gradiente
conjugado. Inicialmente é proposta uma implementação eficiente do CGM não linearizado, o
qual não requer o cálculo da matriz inversa. Essa abordagem reduz o custo computacional e
os requisitos de armazenamento do algoritmo de reconstrução em comparação com a versão
original. Em seguida, também é proposto um CGM baseado em subespaços (subspace-based
CGM, S-CGM), que é baseado no CGM linearizado e no conceito de subespaços. Por
fim, propomos um fast CGM para resolver problemas de espalhamento inverso com baixa
não linearidade. Várias simulações numéricas foram realizadas para validar os algoritmos
de inversão propostos. No caso 2D, os métodos foram testados com dados sintéticos
e experimentais. Os resultados da reconstrução apresentam eficácia na estimativa da
localização, forma do objeto e valores de permissividade dos espalhadores. Além disso,
simulações numéricas usando dados sintéticos mostram eficácia para reconstrução de
imagens em problemas tridimensionais.

Palavras-chave: Equações integrais, Imageamento em micro-ondas, Métodos de gradiente
conjugado, Problemas de espalhamento inverso, Reconstrução de imagens.



Abstract
The electromagnetic inverse scattering problem in microwave imaging aims to recover the
dielectric properties, location, size, and shape of scatterers inside an inaccessible domain.
This is an important field of electromagnetic wave applications, such as biomedical imaging,
buried object detection, oil-gas exploration, and nondestructive evaluation. The imaging is
performed by analyzing the scattered field measurements, which are usually cast into an
optimization problem. In this context, an iterative inversion method is often required to
minimize a cost function constructed by the mismatch of the measured scattered field and
the computed one.

In this thesis, different efficient algorithms based on the conjugate gradient method
(CGM) to solve two- and three-dimensional inverse scattering problems are presented.
The inversion CGM requires the solution of the forward scattering problem and the
calculation of the gradient direction of the cost function at each iteration step. Depending
on the gradient approximation, the CGM can be classified into two main approaches,
linearized and nonlinearized methods. Each computation of the forward problem can
be very time-consuming. To avoid the computational burden, the forward solvers are
efficiently implemented by using iterative methods to solve systems of simultaneous
equations combined with FFT (fast Fourier transform) algorithms.

The inversion methods proposed in this thesis are based on conjugate gradient approaches.
Firstly, an efficient implementation of the nonlinearized CGM is proposed, which does
not require calculating the inverse matrix. Such an approach reduces the computational
cost and storage requirement of the reconstruction algorithm compared to the original
one. Secondly, a subspace-based CGM (S-CGM) is also proposed, which is based on the
linearized CGM and the concept of subspaces. Lastly, we propose a fast CGM to solve
inverse scattering problems with a low degree of nonlinearity. Several numerical simulations
have been carried out to validate the proposed inversion algorithms. In the 2D case, the
methods are tested against both synthetic and experimental data. The reconstruction
results show effectiveness in estimating the location, object shape, and permittivity values
of the scatterers. In addition, numerical simulations using synthetic data show effectiveness
for image reconstruction in three-dimensional problems.

Keywords: Integral equations, Microwave imaging, Conjugate gradient methods, Inverse
scattering problems, Image reconstruction.
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1 Introduction

This chapter introduces the principles of the electromagnetic inverse scattering
problems. A brief review of some inversion methods and their applications in microwave
imaging problems is presented. A classification of the different algorithms, including the
main challenges in solving the inverse problem, is discussed. The research motivation and
the contributions of this thesis are presented. Finally, the work outline details the content
of the following chapters.

1.1 Background
Electromagnetic inverse scattering in microwave imaging has increased interest in

recent years. The inverse scattering problem (ISP) consists of recovering the dielectric
properties, location, and shape of unknown objects from scattered field measurements
under the illumination of incident electromagnetic (EM) waves. The research of microwave
imaging techniques is motivated by their potential in a wide range of practical applications.
For example, in biomedical imaging, the inverse scattering problem has been applied in
microwave tomography (Abubakar; Van den Berg; Mallorqui, 2002; Abubakar et al., 2012)
and breast cancer detection (Chandra et al., 2015). In nondestructive evaluation (NDE)
or nondestructive testing (NDT), this is often used for crack detection in civil structures
(Massa et al., 2006; Kharkovsky; Zoughi, 2007; Oliveri; Ding; Poli, 2015). In radar imaging,
it is applied to detection and identification of targets, such as the through-wall imaging
(Song; Yu; Liu, 2005; Xu et al., 2018). In geoscience, it is also used in subsurface prospecting
(Persico, 2014). Due to all these important civil and military applications, it is essential to
develop accurate and efficient methods to solve different ISPs.

In ISPs, the measured scattered field is linked to the electromagnetic properties of
the objects by an integral or differential equation. Unfortunately, this problem is nonlinear
and ill-posed; that is, the existence, uniqueness, and stability of the solution are not
simultaneously guaranteed (Hadamard, 1923). Such features represent the major difficulty
in solving inverse problems (Colton; Kress, 2019). The ill-posedness can be mitigated by
using regularization strategies. For example, the Tikhonov regularization and singular
value decomposition (SVD) have been widely used in solving inverse scattering problems
(Abubakar; Van den Berg; Mallorqui, 2002; Mojabi; LoVetri, 2009; Liu; Wang; Heng, 2003;
Chen, 2018). In most reconstruction algorithms, the cost function for the minimization
procedure is generally constructed by the mismatch between the measured and predicted
scattered field. One way to solve the inverse problem is to compute the forward problem
at each iteration step of an optimization algorithm. However, this is often time-consuming.
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The forward scattering problem is based on Maxwell’s equations, which can be represented
in differential or integral form.

Generally speaking, the formulation of the inverse scattering problem leads to a
nonlinear equation. Optimization procedures to solve the inverse scattering problem can
be classified into noniterative and iterative methods. First, noniterative methods have
been developed for the reconstruction of weak scatterers or low contrasts, i.e., there is only
a slight difference between the permittivity of the scatterer and the permittivity of the
background medium. The most common noniterative methods are based on Born or Rytov
type approximations (Pastorino, 2010). These approximations lead to a linear relationship
between the measured scattered field and the unknown contrast. For example, in the Born
approximation (BA) method the total electric field inside the object domain is replaced by
the incident field. When this approximation is applied in the forward and inverse problems,
the result is a linear system. However, this is only valid for weak scatterers and the size of
scatterers cannot be much larger than the wavelength (Chen, 2018). In order to increase
the range applicability, the extended Born approximation (EBA) method was developed
by Habashy, Groom and Spies (1993). Other approximation methods have been proposed
to extend the validity range of the original Born approximation method, such as the
quasi-linear (QL) approximation, quasi-analytical (QA) approximation (Zhdanov; Fang;
Hursán, 2000), and diagonal tensor approximation (DTA) (Song; Liu, 2004) methods.
Alternatively, a noniterative method based on back-propagation (BP) scheme is proposed
in Belkebir, Chaumet and Sentenac (2005), which works for the reconstruction of weak
scatterers illuminated by arbitrary incident fields. Despite their limited application ranges,
these noniterative methods are computationally efficient and can also be used as a starting
point or initial guess for iterative inversion methods.

A second kind of methods are addressed to inverse scattering problems involving
strong scatterers. These formulations of inverse problems include all the scattering pheno-
mena and are capable of reconstructing any dielectric object with high resolution image
in far field, using monochromatic waves, that is, only a single frequency data set (Cui
et al., 2001). In the last decades, many iterative inversion methods have been developed.
According to the optimization strategy adopted, they can be classified into two categories:
deterministic and stochastic algorithms. The first category is based on local inversion
techniques, such as the Gauss-Newton method (Abubakar et al., 2012; Mojabi; LoVetri,
2009), the Levenberg–Marquardt method (Franchois; Pichot, 1997), and the conjugate
gradient method (CGM) (Harada et al., 1995; Lobel et al., 1996; Chaumet; Belkebir, 2009).
The second one is based on global inversion techniques, such as the genetic algorithm
(GA) (Pastorino; Massa; Caorsi, 2000; Massa et al., 2005), the particle swarm optimization
(PSO) (Donelli; Massa, 2005; Donelli et al., 2009), and the evolutionary algorithms (EAs)
(Rocca et al., 2009).
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The deterministic optimization methods also include the Born iterative method
(BIM) (Wang; Chew, 1989) and the distorted Born iterative method (DBIM) (Chew; Wang,
1990), that is proven to be equivalent to the Newton-Kantorovich (NK) method (Remis;
van den Berg, 2000). These are referred to as field-type methods. In the BIM, the Green’s
function is fixed during the iterative procedure. Whereas in the DBIM, Green’s function
associated to inhomogeneous background medium is updated at each iteration. Usually,
these iterative methods use some regularization procedure to solve the ill-posed system.

The main drawback of stochastic algorithms is their high computational cost. One
way to speed up these algorithms is to use parallelization procedures (Caorsi et al., 2004).
On the other hand, the main advantage of deterministic algorithms is their convergence
speed. However, they are limited to a few scatterers and have difficulty dealing with high
contrasts. Due to its computational efficiency and simplicity, deterministic algorithms
could be applied in hybrid methods integrating deterministic and stochastic approaches.
Some hybridization techniques can be found in chapter 8 of Pastorino (2010). Recently,
deep learning schemes have also been used to solve the ISP (Li et al., 2019; Zhou et al.,
2021). Compared to the conventional inversion methods, these methods present a better
performance and are capable of recovering scatterers with higher contrast.

Alternatively, source-type inversion methods have also been developed for the
reconstruction algorithms, such as the source type integral equation (STIE) method
(Habashy; Oristaglio; Hoop, 1994), the contrast source inversion (CSI) method (Van den
Berg; Kleinman, 1997), and its variant versions (Van den Berg; Van Broekhoven; Abubakar,
1999; Agarwal et al., 2013; Bevacqua et al., 2017). These methods do not need to solve
the corresponding forward problem, since the cast optimization problem consists of two
terms, the first is the mismatch in the data equation and the second one is the error in
satisfying the state equation. The two residual errors need to be updated at each iteration
of the optimization procedure. For example, the CSI uses the conjugate gradient (CG)
method to alternately update the contrast and the contrast source. Recently, other more
robust methods have also been proposed, such as the subspace-based optimization method
(SOM) (Chen, 2018; Chen, 2010), which uses the spectral property of the mapping from
the induced current to scattered fields. Some variations and improvements of the SOM are
presented in Zhong, Chen and Agarwal (2010) and Zhong and Chen (2011). Moreover,
the subspace concept of the SOM to calculate a deterministic part of the induced current
has inspired other works, among them are the subspace-based distorted Born iterative
method (S-DBIM) (Ye; Chen, 2017) and the subspace-based variational Born iterative
method (S-VBIM) (Liu; Nie, 2019).

In this thesis, we will focus mainly in an efficient implementation of conjugate
gradient-based methods. These inversion methods require the solution of both the forward
problem and the calculation of the gradient direction of the cost function during the
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1.3 Motivations and Contributions

1.3.1 Motivations

The conjugate gradient method (CGM) is a powerful deterministic technique for
solving nonlinear optimization problems, such as the electromagnetic ISP. This method
requires the solution of both the forward problem and the calculation of the gradient
direction of the cost function during the optimization procedure. There are two main
approaches: linearized and nonlinearized methods. In the first approach, the total electric
field is assumed to be independent of the optimization variable, e.g., the unknown contrast
(Chaumet; Belkebir, 2009). Therefore, the linearized CGM simplifies the gradient com-
putation at each iteration step, since it only needs to solve a forward problem to obtain
the gradient of the cost function. The second approach considers the total electric field
as an additional parameter to calculate the gradient direction. Consequently, this leads
to a nonlinear relation between the scattered field and the contrast (Lobel et al., 1996).
Moreover, the nonlinearized approach needs to solve multiple scattering forward problems.
One of the advantages of the CGM is that it works without any regularization scheme, e.g.,
Tikhonov regularization, even for moderate noise levels in the scattered data. Compared
with the nonlinear inversion CGM, the linearized inversion CGM is less time-consuming.
However, when the ISP is highly nonlinear, it fails to retrieve the scatterers.

The original nonlinearized CGM version needs a matrix inversion, which is used to
solve the forward problem and calculate the gradient direction. Due to the multiple forward
problems the computational cost and memory storage overhead in the computation of
the gradient direction are very expensive. Furthermore, the original CGM (Lobel et al.,
1996) has been little explored in inverse scattering applications in recent years. Motivated
by the limitations of both linearized and nonlinearized CGM inversion approaches, this
thesis proposes fast and efficient procedures for the implementation of inversion algorithms
based on CGM. The inversion methods discussed in this thesis are based on the electric
field integral equation (EFIE), and the method of moments (MoM) is used for the forward
problem model. An alternative to EFIE formulations is solving the partial differential
equation using differential equation formulations, such as the finite-difference method
(FDM) or the finite element method (FEM). While differential equation formulations, such
as the FDM, are most easily employed in the solution of closed domain electromagnetic
problems, open domain problems with the knowledge of Green’s function are well suited
to discretization by the MoM. Solving integral equations using MoM produces a dense
system of equations. However, the matrix associated with the integral equations has a
Toeplitz structure (Vogel, 2002). Toeplitz matrices are matrices having constant entries
along their diagonals. This convolutional structure leads to the implementation of more
efficient algorithms in both two- and three-dimensional scattering problems.
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In this context, the motivation of this work is mainly to investigate an alternative
way to implement efficient conjugate gradient-based methods. For example, iterative
methods to solve systems of simultaneous equations combined with FFT algorithms can be
used to accelerate the computation of both the forward problem and the gradient direction
of the cost function at each iteration. These reconstruction algorithms could be applied to
any kind of lossy dielectric scatterer, even for large domain discretizations.

Furthermore, new approximations of the total electric field are also important to
achieve faster convergence speed and higher accuracy, as well as extend inversion methods
to three-dimensional problems.

1.3.2 Contributions

The contributions of the thesis consist of two main parts: an efficient implementation
of the CGM and a new CGM based on the subspace concept for solving ISPs. The original
contributions are listed as follows.

• Proposal of an efficient implementation of a CGM for solving electromagnetic ISPs,
which is independent of a regularization parameter. For 2D ISPs, the forward problem
and gradient direction can be efficiently calculated by using CG-FFT procedures,
whereas the BiCGSTAB-FFT procedure is used to solve the forward problems in 3D
ISPs.

• Comparison of the computational cost and the storage requirements of the CGM
implementations. As a consequence, the computational complexity of the efficient
CGM (nonlinearized CGM approach) is found to be similar to that of the DBIM.

• Proposal of a subspace-based conjugate-gradient method (S-CGM) for solving elec-
tromagnetic ISPs. It updates the total field with the addition of the deterministic
part of the variational induced current instead of only the total field of the previous
iteration. This new approach achieves a better convergence speed and higher accuracy
solution than the original linearized CGM approach.

• Proposal of a fast forward-solver scheme based on inverse matrix approximation
and recursive approaches for updating the fields at each iteration within the CGM.
Under certain conditions, the solution converges and can improve the computational
efficiency of the CGM. In particular, the proposed fast CGM provides an accurate
solution to low-degree nonlinearity problems. In addition, this approximation is very
low computational complexity.



Chapter 1. Introduction 29

1.4 Thesis Organization
This thesis is organized in six chapters, including this one. Chapter 2 contains

the principles of the forward scattering problem. Integral equations and discretization
of the two- and three-dimensional continuous models are presented. The application of
the iterative methods combined with FFT algorithms for solving the equation system
derived from the integral equations is described here. In Chapter 3 the proposed inversion
algorithms based on the conjugate gradient methods are introduced. The results of image
reconstruction in 2D problems are presented in Chapter 4 and 3D inversion results are
presented in Chapter 5. Finally, Chapter 6 presents the conclusions and future research
work.
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2 Forward Problem

This chapter contains the foundation of electromagnetic theory. Here the electro-
magnetic scattering problem is governed by the electric field integral equation (EFIE).
Mathematical formulation and numerical examples of the EFIE for 2D and 3D scattering
problems are presented. In addition, some approaches for solving linear equation systems
are provided, which can be applied in later chapters.

2.1 Maxwell’s Equations
The electromagnetic field is governed by Maxwell’s equations. The time-harmonic

forms of Maxwell’s equations in differential form can be written as

∇ × E(r) = −jωB(r), (2.1)

∇ × H(r) = jωD(r) + J(r), (2.2)

∇ · D(r) = ρ(r), (2.3)

∇ · B(r) = 0, (2.4)

where r denotes the position vector in meters. E, H, D , B, J and ρ are the corresponding
complex spatial quantities (Balanis, 1989). E is the electric field intensity (V/m), H is the
magnetic field intensity (A/m), D is the electric flux density (C/m2), B is the magnetic
flux density (T), J is the electric current density (A/m2), and ρ is the volume electric
charge density (C/m3).

Note that all the equations above present both space and time dependency, here the
time derivatives are replaced by the factor jω. Throughout this work, the time dependence
is assumed to be ejωt, where ω and t are the angular frequency and time, respectively, and
j represents the unit imaginary number (j =

√
−1). In addition to Maxwell’s equations,

the continuity equation is given by

∇ · J(r) = −jωρ(r). (2.5)

In discontinuous media, boundary conditions for solving Maxwell’s equations are
needed. Considering two different media denoted as medium 1 and medium 2, in which
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In the volume equivalence theorem, the original scattering problem is replaced
by an equivalent problem. Here the dielectric properties and the total fields inside the
scatterer are related by equivalent sources. To obtain this relationship, consider Maxwell’s
equations in the presence of the scatterer

∇ × E = −jωµH, (2.10)

∇ × H = jωεE. (2.11)

Now, consider Maxwell’s equations in the absence of the scatterer, that is, the
background fields are denoted by

∇ × Eb = −jωµbHb, (2.12)

∇ × Hb = jωεbEb. (2.13)

From the total fields we have to E = Eb +Es and H = Hb +Hs, where the subscript
s denotes the scattered fields. By using Equations (2.10) to (2.13), we found the equivalent
sources

J = jω(ϵ − ϵb)E, (2.14)

M = jω(µ − µb)H. (2.15)

Note that M is mathematically equivalent to the magnetic current density, but it
does not exist physically.

Due to the superposition principle, it is possible to determine the radiation in the
background medium from a current density. We consider the situation where only electric
current density exists in the homogeneous background. From Maxwell’s equations we have

∇ × E(r) = −jωµbH(r), (2.16)

∇ × H(r) = jωεbE(r) + J(r). (2.17)

By taking the curl of Equation (2.16) and replacing the result in Equation (2.17),
we obtain the vector wave equation

∇ × ∇ × E(r) − k2
b E(r) = −jωµbJ(r), (2.18)
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where kb = ω
√

µbεb is the background wavenumber. The radiation field generated by an
arbitrary electric current distribution J(r) can be formulated by the following integral

E(r) = jωµb

∫∫∫
G(r, r′) · J(r′)dr′, (2.19)

where G(r, r′) is the dyadic Green’s function given by

G(r, r′) = −
[
I + 1

k2
b

∇∇
]

g(r, r′), (2.20)

where I is an identity matrix, and the scalar Green’s function g(r, r′) satisfies the following
differential equation

(
∇2 − k2

b

)
g(r, r′) = δ(r, r′). (2.21)

The g(r, r′) is related to an impulse response function, and the corresponding
expression in three dimensions is given by

g(r, r′) = e−jkb|r−r′|

4π |r − r′|
. (2.22)

2.2.2 Volume scattering by dielectric scatterers

From the relationship between the scattered fields and induced currents, (2.10) to
(2.13), we can be expressed the scattering problem in integral form as

E(r) − Einc(r) = jωµ0

∫∫∫
G(r, r′) · J(r′)dr′ +

∫∫∫ [
∇ × G(r, r′)

]
· M(r′)dr′. (2.23)

The equivalent sources J and M depend on the dielectric properties of the scatterer
and the total electric field. In this work, we assume nonmagnetic scatterers, that is, the
permeability of the background is equal to the vacuum permeability (µb = µ0), then the
equivalent magnetic current is eliminated, and the electric field integral equation (EFIE)
is defined as

E(r) − Einc(r) = jωµ0

∫∫∫
G(r, r′) · J(r′)dr′. (2.24)

In the forward scattering problem, the only unknown in Equation (2.24) is the
total electric field E(r) and the equivalent electric current distribution is given by

J(r) = jω [ε(r) − εb] E(r). (2.25)
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For convenience, the current density J(r) can be written as an induced contrast
current by using contrast function χ(r)

J(r) = jωεbχ(r)E(r), (2.26)

where the contrast function is given by

χ(r) = ε(r)
ϵb

− 1, (2.27)

and
ε(r) = ε0 εr(r), (2.28)

εb = ε0 εrb. (2.29)

Subscript b in the equations above denotes the background medium and ε0 is the
vacuum permittivity. In inverse scattering problems, we assume that the inhomogeneous
dielectric scatterer is characterized by the relative complex permittivity εr(r), and the
homogeneous background medium is known and is characterized by the relative complex
permittivity εrb. The complex permittivity is expressed as

ε(r) = ε0

[
εr(r) − j

σ(r)
ωε0

]
= ε0 [εr

′(r) − jεr
′′(r)] , (2.30)

where σ(r) is the electric conductivity (S/m) of the scatterer.

Finally, substituting the Equation (2.26) in Equation (2.24), we have

E(r) = Einc(r) + k2
b

∫∫∫
G(r, r′) · χ(r′)E(r′)dr′. (2.31)

2.3 Two-Dimensional Scattering Problems
The scattering formulation presented in the previous section concerns general

three-dimensional problems. In some special cases, the three-dimensional problem can be
simplified to a two-dimensional problem by assuming parameters invariant in a spatial
coordinate. Throughout this work, we assume 2D domain objects invariant along the
z-axis. With this assumption, the cross section of the arbitrary cylinder (scatterer) is a
function of x and y. In addition, if illuminated by an incident field which is polarized in
the z-direction; that is, transverse magnetic (TM) field, the z component of the electric
current density J generates the TM field component, Ez. Consequently, the Equation
(2.31) is reduced to
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Ez(r) = Einc
z (r) + k2

b

∫∫
g(r, r′) · χ(r′)Ez(r′)dr′, (2.32)

where

g(r, r′) = 1
4j

H
(2)
0 (kb |r − r′|) , (2.33)

is the scalar Green’s function for two-dimensional problems, where H
(2)
0 is the Hankel

function of zeroth order and second kind. Einc
z (r) denotes the known incident field, and

the distance between the observation point r = (x, y) and the source point r′ = (x′, y′) is
calculated by

|r − r′| =
√

(x − x′)2 + (y − y′)2. (2.34)

2.3.1 Method of moments

In most EM problems the resulting equations cannot be solved analytically. The-
refore it is necessary to reformulate the equations by using some numerical method to
obtain an approximation to the solution. In this work, we use the method of moments
(MOM), which is a general procedure for approximating linear equations. Here, the MoM
is used to approximate the solution of the EFIE, which results in a linear system that can
be solved by an iterative method.

Consider the inhomogeneous equation (Harrington, 1968)

L(f) = g, (2.35)

where L is a linear operator, typically is an integral or integro-differential, g is the known
excitation or source function (incident field) and f is the unknown function (field or
current) to be determined. The MoM starts by expanding the function f into a series of
known expansion or basis functions, f1, f2, · · · , fN in the domain of L, as follows

f =
N∑

n=1
αnfn, (2.36)

where αn are expansion coefficients to be determined. Since L is linear, substitution of
(2.36) into (2.35) yields

N∑
n=1

αnL(fn) ≈ g. (2.37)

Introducing the weighting functions or testing functions w1, w2, · · · , wN , and taking
the inner product of the Equation (2.37) with each wm, produces
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N∑
n=1

αn ⟨wm, Lfn⟩ = ⟨wm, g⟩ for m = 1, 2, ..., N. (2.38)

The set of equations in (2.38) can be written in matrix form as


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

...
... · · ·

...
ZN1 Z2N · · · ZNN




α1

α2
...

αN

 =


⟨w1, g⟩
⟨w2, g⟩

...
⟨wN , g⟩

 (2.39)

or written in compacted form

[Z] [α] = [b] , (2.40)

where Zmn = ⟨wm, L(fn)⟩, bm = ⟨wm, g⟩, and the vector α contains the unknown coefficients.
We define an inner product ⟨w, g⟩ as

⟨w, g⟩ =
∫∫

D
w · g∗dD, (2.41)

where w is the testing or weighting function, g is the function being tested, D is the
domain of w and g, and the superscript ∗ denotes the complex conjugate operator.

The system of linear equations in (2.40) can be solved by direct or iterative
methods. This completes the MoM procedure. The accuracy of the solution to Equation
(2.40) depends on the choice of fn and wn. A common choice is that the same basis
functions are used as testing functions, that is, wn = fn. This procedure is known as
Galerkin’s method (Harrington, 1968). Another way is to ensure that Equation (2.37) is
satisfied at discrete points in the domain of interest. This method is called matching point
(Harrington, 1968), which is equivalent to using a delta function as the weighting function
in evaluating Zmn = ⟨wm, L(fn)⟩ with

wm(r) = δ(r). (2.42)

The characteristic of the basis function fn is useful to represent the behavior of
the unknown function in a domain of interest. Moreover, the complexity of evaluating
matrix elements also depends on the choice of the basis functions. Local basis functions
are commonly used in MoM, this approximation is referred to as the method of subsections
(Harrington, 1968).
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Einc(r) ∼=
N∑

n=1
En

fn − k2
b

∫∫
cell n

1
4j

H
(2)
0 (kb |r − r′|) χ(r′) dr′

 . (2.47)

Enforcing (2.47) at the center of each of the N cells, we obtain the following matrix
system


Einc

1

Einc
2
...

Einc
N

 =


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

... ... · · · ...
ZN1 Z2N · · · ZNN




E1

E2
...

EN

 (2.48)

where the matrix elements are given by

Zmn = −k2
b

4j

∫∫
cell n

H
(2)
0 (kbRm) χn dr′ m ̸= n (2.49)

Zmm = 1 − k2
b

4j

∫∫
cell m

H
(2)
0 (kbRm) χm dr′, (2.50)

where

Rm =
√

(xm − x′)2 + (ym − y′)2. (2.51)

To evaluate integrals (2.49) and (2.50) in closed-form, square cells are approximated
by a circle of radius a centered at rn (Richmond, 1965), as shown in Figure 4. Using
integrals in cylindrical coordinates, we introduce the Green’s function operator

Gmn = k2
b

4j

2π∫
0

a∫
0

H
(2)
0 (kb |r − r′|)ρ′dρ′dϕ′. (2.52)

For convenience, we rewritten the system of linear equations in compact form

E
inc = Z · E =

(
I − G · χ

)
· E, (2.53)

where E
inc is the N × 1 incident field vector, E is the N × 1 total electric field vector, I

is the N × N identity matrix, χ is the diagonal contrast matrix containing χn, and the
N × N matrix G represents the dyadic Green’s function, which has the following entries

Gmn =


πkba

2j
J1(kba)H(2)

0 (kbRmn) for m ̸= n

πkba
2j

H
(2)
1 (kba) − 1 for m = n

, (2.54)
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The conjugate gradient (CG) algorithm is an iterative method for solving matrix
systems. The CG method is a procedure to minimize an error function by using a sequence
of conjugate directions, which reduces to the process of generating the orthogonal vectors
and finding the proper coefficients to construct the desired solution (Peterson; Ray; Mittra,
1998).

Consider the linear equation system

Ax = b, (2.59)

where A denotes an N × N matrix, x is an unknown column vector of N × 1 , and b is a
N × 1 given column vector, or right-hand side. The error functional can be presented as

F (x) = ∥Ax − b∥2 , (2.60)

where ∥·∥2 is the Euclidean norm. The conventional CG method is restricted to the special
case of a Hermitian positive-definite matrix A. In order to apply the CG method to
arbitrary linear systems, we employ the so-called normal equations, as follows

A†Ax = A†b, (2.61)

where the superscript † denotes the transpose conjugate operator and operation A†A
is symmetric and positive defined. The implementation of a CG method for the normal
equations is summarized in the Algorithm 1 (Peterson; Ray; Mittra, 1998).

Algorithm 1: Conjugate gradient algorithm
Initial steps:
Guess x0

r0 = Ax0 − b
p1 = −A†r0

Iterate (n = 1, 2, ...):

αn = − ⟨Apn,rn−1⟩
∥Apn∥2 = ∥A†rn−1∥2

∥Apn∥2

xn = xn−1 + αnpn

rn = Axn − b = rn−1 + αnApn

βn = ∥A†rn∥2

∥A†rn−1∥2

pn+1 = −A†rn + βnpn

Terminate when a norm of rn falls below some predetermined
value.
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The CG algorithm stops the iterations when the maximum number of iterations
nmax is reached, or the residual norm decreases to a predetermined value. We use the
following convergence criterion

∥rn∥
∥b∥

= ∥Axn − b∥
∥b∥

< ϵ, (2.62)

where ϵ is the tolerance. The CG method has been used widely in computational elec-
tromagnetics. The implementation steps of the CG algorithm in EM problems, matrix
eigenvalues features, and convergence rate are reviewed in Peterson et al. (1991) and
Wilton and E. Wheeler III (1991).

2.3.4 Matrix-vector multiplication using FFT

Electromagnetic problems posed in terms of integral equations with convolutional
kernels can sometimes be discretized to yield matrices with discrete convolutional symme-
tries (Peterson; Ray; Mittra, 1998). In the one-dimensional case, we consider the following
operation

ym =
N∑

n=1
Gm−n xn, (2.63)

where y, x, and G denote sequences of numbers. The Equation (2.63) can be written in
matrix form as



y1

y2

y3
...

y
N


=



G0 G−1 G−2 · · · G1−N

G1 G0 G−1 · · · G2−N

G2 G1 G0 · · · G3−N

... ... ... . . . ...
G

N−1 G
N−2 G

N−3 · · · G0





x1

x2

x3
...

x
N


. (2.64)

The matrix N × N depicted in the matrix system of (2.64) is a general Toeplitz
matrix. This matrix is described by a total of 2N − 1 different values, corresponding to
the entries in the first row and column. If the elements of the sequence G repeat with
period N , so that, the operation

G
n−N

= Gn n = 1, 2, ..., N − 1, (2.65)

is known as the circular discrete convolution. However, (2.65) is not a circular discrete
convolution, since the second row of the N × N matrix is not a circular right shift of
the elements of the first row. Otherwise, it is well known that any noncircular discrete
convolution can be embedded into a circular discrete convolution. This can be performed
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by extending the original sequence G to repeat with period 2N −1. The extended sequence
Ge can be written as a vector and the elements are given by

G
e = [G0, G1, G2, · · · , GN−1, G1−N , G2−N , G−1]T , (2.66)

And the extended sequence xe is obtained by zero-padding the original sequence x

into a vector of size 2N − 1, as follows

xe = [x1, x2, x3, · · · , xN , 0, 0, · · · 0]T . (2.67)

According to the discrete convolution theorem, the discrete convolution operation
of (2.63) can be implemented using the FFT and inverse FFT algorithm

ye = FFT−1
[
FFT(Ge) ⊙ FFT(xe)

]
, (2.68)

where ⊙ denotes point-wise multiplication. If the discrete convolution is linear,
then the FFTs must be of length 2N − 1 rather than length N , and the result of the
operation in (2.68) is extracted from the first N elements of ye.

We can extend to the case of two-dimensional discrete convolution

yij =
M∑

m=1

N∑
n=1

Gi−m,j−n xmn

i

j

 = 1, 2, ...,

M

N

 . (2.69)

The equivalent MN × MN matrix can be written as

G =



G0 G−1 G−2 · · · G1−M

G1 G0 G−1 · · · G2−M

G2 G1 G0 · · · G3−M

... ... ... . . . ...
G

M−1 G
M−2 G

M−3 · · · G0


(2.70)

where each element is an N × N block Toeplitz matrix, which is itself a Toeplitz matrix
of the form presented in (2.64). This procedure can be easily generalized to multiple
dimensions by using Equation (2.68).

In summary, for a matrix of size N × N , the matrix-vector product using FFT algo-
rithms has a computational complexity of O(N log N), which is lower than the counterpart
O(N2) of the traditional iterative methods (Peterson; Ray; Mittra, 1998).

The discrete convolutional procedure described above can be applied to the integral
equation for the two-dimensional scattering problem formulated in subsection 2.3.2. From
(2.53) we have the following discrete system
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Einc
ij = Eij −

Nx∑
m=1

Ny∑
n=1

Gi−m,j−n χmn Emn,

i = 1, 2, ..., Nx

j = 1, 2, ..., Ny

(2.71)

This can be embedded into a circular discrete convolution by extending the para-
meter G

e
of size (2Nx − 1) × (2Ny − 1)

Ge(p, q) = Gp′,q′

p′ =
 p − 1, if 1 ≤ p ≤ Nx

p − 2Nx, Nx ≤ p ≤ 2Nx − 1
, q′ =

 q − 1, if 1 ≤ q ≤ Ny

q − 2Ny, Ny ≤ q ≤ 2Ny − 1
(2.72)

For convenience, Equation (2.71) is generalized by introducing the notation U = χE.
Therefore, U represents any parameter. In practice, U can be replaced by the electric field
or it can also be the electric current density J as in Chen (2018) and Peterson, Ray and
Mittra (1998). The extended parameter U

e
of size (2Nx − 1) × (2Ny − 1) is defined in the

extend domain by zero padding as

U e(p, q) =
U(p, q), if 1 ≤ p ≤ Nx and 1 ≤ q ≤ Ny

0, else
(2.73)

By using (2.68) the matrix-vector multiplication can be efficiently calculated by

G · U = FFT−1
2

{
FFT2(G

e
) ⊙ FFT2(U

e
)
}

, (2.74)

where FFT2 denotes a two-dimensional fast Fourier transform. Finally, the result of the
product of (2.74) is extracted from the elements of its upper left sub-matrix of size Nx ×Ny.
More details on the implementation and examples of the convolution-type matrix-vector
products are provided in Appendix A.

To solve the matrix system of (2.53), the CG algorithm can be efficiently implemen-
ted by using the matrix-vector multiplication procedure presented above. This approach is
known as the CG-FFT method (Peterson; Ray; Mittra, 1998). The CG algorithm requires
two types of matrix-vector multiplication at each iteration, one with A and the other
with A†, that is, the CG implies that the transpose conjugate matrix also needs to be
computed. In discrete form, A† is written as AH , where the superscript H denotes the
Hermitian operator, i.e., transpose conjugate operator. Therefore, the discrete system in
terms of FFTs produces

(I − G · χ) · E = E − FFT−1
{
FFT(G

e
) ⊙ FFT(χ · E

e
)
}

(2.75)
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and
(I − G · χ)H · E = E −

{
χ · FFT−1

[
FFT(G

e
) ⊙ FFT(E

e∗
)
]}∗

. (2.76)

This implementation is computationally efficient since the computation of matrix-
vector operations is performed by FFTs instead of storing the whole matrix G and
computing full matrix-vector products. The advantage of using the CG-FFT scheme is
that it only requires O(N log N) operations and necessary storage of O(N), where N is
the number of unknowns.

2.4 Three-Dimensional Scattering Problems
This section describes the scattering problem in three dimensions. Similar to the

two-dimensional problem of the previous section, we consider EFIE formulations applied
to scattering by objects of arbitrary shape. Approaches using the dyadic Green’s function
(DGF) for both the electric field and the magnetic vector potential are presented.

For a three-dimensional problem, all spatial components are present. In this case,
the object domain D ⊂ R3 embeds an arbitrary scatterer and the spatial domain is
r = (x, y, z). The electromagnetic scattering is governed by the following electric field
volume integral equation based on the well-known Lippmann–Schwinger equation

E(r) = Einc(r) + k2
b

∫∫∫
G(r, r′) · χ(r′)E(r′)dr′. (2.77)

where the electric field E(r) contains the three components (Ex, Ey, Ez) and the contrast
tensor is χ = diag[χx χy χz]. If an isotropic medium is assumed then χx = χy = χz, that
is, the diagonal of the tensor χ corresponds to three replicas of the isotropic contrast
function.

For 3D scattering problems, the electric field can be expressed in terms of both
electric and magnetic dyadic Green’s functions. The conventional method to solve the
integral equation (2.77) is the method of moments. The aforementioned DGFs can be
evaluated with analytic expressions (Livesay; Chen, 1974; Zhang; Liu, 2015). In comparison,
the DGF for the magnetic vector potential is computed using weak-form discretization.
Whereas, the DGF for the electric field uses the conventional MoM with the pulse basis
functions. We point out that both formulations of DGF have been successfully applied to
3D inverse scattering problems (Zhang et al., 2003; Zhong; Chen, 2011; Estatico et al.,
2018). However, the conventional 3D MoM (without the weak-form discretization) works
well for low dielectric contrasts. The limitations of the conventional MoM are discussed
in Massoudi, Durney and Iskander (1984). Meanwhile, the weak-form discretization also
works for high dielectric contrasts, as shown in Zhang et al. (2003).
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It is important to emphasize that the DGFs in the integral equation have a
singularity. Much research has been done to treat this singularity, such as the numerical
method presented in Livesay and Chen (1974), which uses the conventional MoM. Here, the
singularity is computed with the contribution of a unit current density in the discretized
cell, when r = r′, and adding a correction term (Van Bladel, 1961). On the other hand,
the scheme developed by Zwamborn and van den Berg (1992) leads to a weaker singularity
in the dyadic Green’s function operation, which does not involve the surface charge term
in Su (1993).

In this thesis, we exhibit two alternatives to solve the forward scattering problem
in 3D, where the singularity is circumvented in different ways. We focus on numerical
implementations and efficient methods that combine iterative and FFT algorithms. We
would prefer to use the weak-form scheme, which appears to be more accurate (Zhang et
al., 2003). However, the scatterers of the inverse scattering problems used in this work do
not deal with high contrasts, so either of the two formulations can be adopted.

2.4.1 Dyadic Green’s function for 3D scattering problems

For three-dimensional scattering by isotropic dielectric objects, the volume integral
equation (2.77) can be rewritten in terms of the DGF for the magnetic vector potential A
(DGFA)

Einc(r) = E(r) − (k2
b + ∇∇·)A(r), r ∈ D (2.78)

where the magnetic vector potential is given by

A(r) =
∫

D
GA(r, r′) · χ(r′)E(r′)dr′ (2.79)

where GA is the DGFA, which is defined as

GA(r, r′) = g(r, r′)I (2.80)

where I is the unit tensor and g(r, r′) is the 3D scalar Green’s function (2.22). The
Equation (2.79) can be treated as a convolution since the translational invariance of the
dyadic Green’s function can be written as G(r, r′) = G(r − r′) and

|r − r′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2. (2.81)

Alternatively, if the DGF for the electric field E (DGFE) is adopted, the volume
integral equation can be rewritten as

Einc(r) = E(r) − k2
b

∫
D

GE(r, r′) · χ(r′)E(r′)dr′, r ∈ D (2.82)
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where Einc
i,j,k = Einc(ri,j,k), Ei,j,k = E(ri,j,k), Ai,j,k = A(ri,j,k). If the contrast and the total

electric field are assumed to be constant in each cell, the magnetic vector potential Ai,j,k

can be expressed as

Ai,j,k =
Nx∑

i′=1

Ny∑
j′=1

Nz∑
k′=1

∫
G(ri,j,k, r′)χi′,j′,k′Ei′,j′,k′dr′. (2.86)

For a homogeneous and isotropic medium, in Zwamborn and van den Berg (1992) is
presented a spherical mean (weak-form) of the Green’s function to suppress the singularity
when r = r′. Using spherical coordinates, the weak-form of the Green’s function can be
defined as

[G](r) =

∫
|r′′|<(1/2)∆r

G(r + r′′)dr′′

∫
|r′′|<(1/2)∆r

dr′′ . (2.87)

Therefore, the weakened Green’s function can be implemented as

[G](r, r′) =



(1+ 1
2 jkb∆r)e− 1

2 jkb∆r−1
1
6 πk2

b
(∆r)3 |r − r′| = 0,

e−jkb|r−r′|
[

− sinh(− 1
2 jkb∆r)

1
2 jkb∆r

−cosh(− 1
2 jkb∆r)

]
1
3 π(kb∆x)2|r−r′| |r − r′| > 1

2∆r,

(2.88)

where ∆r = min(∆x, ∆y, ∆z). As a consequence, the discritized form of the magnetic
vector potential Ai,j,k can be written as

Ai,j,k = ∆x∆y∆z
Nx∑

i′=1

Ny∑
j′=1

Nz∑
k′=1

Gi−i′,j−j′,k−k′χi′,j′,k′Ei′,j′,k′ (2.89)

where i ∈ [0, Nx + 1], j ∈ [0, Ny + 1], k ∈ [0, Nz + 1], which is denoted as domain D′

containing D, as shown in Figure 8. As in Zhang and Liu (2003), the Cartesian components
of (∇∇ · A)i,j,k in (2.85) are approximated by the following central finite differencing
scheme

(∇∇ · A)x;i,j,k ≈ Ax;i+1,j,k − 2Ax;i,j,k + Ax;i−1,j,k

∆x2

+ Ay;i+1,j+1,k − Ay;i+1,j−1,k − Ay;i−1,j+1,k + Ay;i−1,j−1,k

4∆x∆y

+ Az;i+1,j,k+1 − Az;i+1,j,k−1 − Az;i−1,j,k+1 + Az;i−1,j,k−1

4∆x∆z

(2.90)
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where N = Nx × Ny × Nz is the number of unknowns. However, it is possible to use the
discrete convolution theorem and FFT algorithms to perform matrix-vector multiplications,
similar to the two-dimensional case presented in Section 2.3. Consequently, each iteration
requires only O(N log N) operations and necessary storage of O(N).

In solving the three-dimensional scattering problem, many efficient methods combi-
ning iterative methods and FFT algorithms have been developed, such as the CG-FFT
method (Zwamborn; van den Berg, 1992; Ma et al., 2009), the BiCG-FFT method (Gan;
Chew, 1995; Zhang; Liu, 2001), and the BiCGSTAB-FFT method (Zhang; Liu; Xu, 2003).
In this work, we adopt a biconjugate gradient stabilized (BiCGSTAB) method combined
with a 3D FFT algorithm to solve the linear system in (2.93). The iterative method and
FFT procedures are presented in subsections 2.4.4 and 2.4.5, respectively.

2.4.3 Evaluation of the DGFE

From (2.82) the scattered field by an arbitrary shape object can be described by
the following EFIE

Esca(r) = k2
b

∫
D

GE(r, r′) · χ(r′)E(r′)dr′ for r ∈ S. (2.94)

According to Van Bladel (1961), a correction term in the scattered field must be
added, thus Esca(r) can be rewritten as

Esca(r) = k2
b PV

∫
D

GE(r, r′) · χ(r′)E(r′)dr′ + [Esca(r)]correction, (2.95)

Esca(r) = k2
b PV

∫
D

GE(r, r′) · χ(r′)E(r′)dr′ − 1
3χ(r)E(r), (2.96)

where PV denotes the principal value of the integral. The total electric field is the sum of
the incident field and scattered field, so that,

E(r) = Einc(r) + k2
b PV

∫
D

GE(r, r′) · χ(r′)E(r′)dr′ − 1
3χ(r)E(r). (2.97)

Rearranging terms we have

Einc(r) =
(

1 + 1
3χ(r)

)
E(r) − k2

b PV
∫

D
GE(r, r′) · χ(r′)E(r′)dr′. (2.98)

Assume a three-dimensional scatterer, which is partitioned into N subvolumes or
cells, as in Figure 7. Here, we apply MoM to approximate (2.98) into a matrix system.

Applying the pulse basis functions
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E(x, y, z) ∼=
N∑

n=1
(x̂Exn + ŷEyn + ẑEzn)fn(x, y, z), (2.99)

where

fn(x, y, z) =
1 if (x, y, z) ∈ cell n

0 otherwise
(2.100)

Enforcing Equation (2.98) at the center of each cell, where each cell is denoted by
vm(m = 1, 2, · · · , N), then the dyadic Green’s function can be rewritten as follows

Gmn
xpxq

= k2
b

[
δpq + 1

k2
b

∂2

∂xp∂xq

]
gn∆v p, q = 1, 2, 3. (2.101)

where ∆v = ∆x × ∆y × ∆z is the volume of the rectangular cell, δpq is the Kronecker
delta function, and x1 = x, x2 = y, and x3 = z. After tedious calculations, we obtain the
matrix elements of the Green’s function for off-diagonal entries

Gmn
xpxq

= −∆ve−jkbRmn

4πR3
mn

{(1 − k2
b R2

mn + jkbRmn)δpq

+ (xm
p −xp

n)(xm
q −xq

n)
R2

mn
[k2

b R2
mn − 3jkbRmn − 3]}, m ̸= n,

(2.102)

where
Rmn = |rm − rn| (2.103)

rm = (xm
1 , xm

2 , xm
3 ) rn = (xn

1 , xn
2 , xn

3 ) . (2.104)

However, when rm = rn the Green’s function has singularity. In order to evaluate
this integral, the subvolume vn is approximated by an equivolumic sphere of radius a

centered at rn (Livesay; Chen, 1974), that is

a =
(

3∆v

4π

)1/3

. (2.105)

Then, the matrix diagonal elements are given by

G nn
xpxq

= δpq[
2
3(jkba + 1)e−jkba − 1], m = n. (2.106)

For convenience, we introduce the operators G
D

and G
S

which are operators
mapping the domain integral equations in the domain of interest (DOI) and the transmitter-
receiver region, see Figure 2. Mathematically, it is written as
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k2
b

∫
cell

[
I + 1

k2
b

∇∇
]

g(r, r′)dr′ =


G

D
for r ∈ D

G
S

for r ∈ S

. (2.107)

Then the forward problem can be written in compact notations

E = E
inc + GD · χ · E (2.108)

E
sca = GS · χ · E, (2.109)

Finally, the matrix system in (2.108) can be written as

E
inc = (I − GD · χ) · E, (2.110)

where

GD =


GD;xx GD;xy GD;xz

GD;yx GD;yy GD;yz

GD;zx GD;zy GD;zz

 (2.111)

is a 3N × 3N matrix whose entries are obtained from Equations (2.102) and (2.106), where
N = Nx × Ny × Nz. Note that Equation (2.110) is approximate to the matrix system of
the Equation (2.93) (LE = Einc) obtained from the DGFA formulation. In this way, the
BiCGSTAB method and the FFT procedure to perform matrix-vector products can be
applied to both DGFA and DGFE formulations.

2.4.4 Biconjugate gradient stabilized method

The implementation of the BiCGSTAB algorithm to solve the matrix system
LE = Einc is given in Algorithm 2. For three-dimensional scattering problems, the
BiCGSTAB-FFT method converges much faster than the CG-FFT and BiCG-FFT methods
(Xu; Liu; Zhang, 2003; Zhang; Liu; Xu, 2003). Moreover, the BiCGSTAB has shown much
smoother convergence curves than the BiCG method (Van der Vorst, 1992). Compared
to the CG scheme, the BiCGSTAB scheme does not require the transpose conjugate
of the matrix L, which is a difficult operation to evaluate. These advantages make the
BiCGSTAB method a good alternative for solving large linear systems. Note that in this
BiCGSTAB, the dominant computational cost is associated with two operations: Lpn and
Ls, in which an FFT algorithm is used to evaluate the discrete convolution kernel.
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p′ =
 p − 1 if 1 ≤ p ≤ Nx

p − 2Nx Nx ≤ p ≤ 2Nx − 1

q′ =
 q − 1 if 1 ≤ q ≤ Ny

p − 2Nx Ny ≤ p ≤ 2Ny − 1

r′ =
 r − 1 if 1 ≤ r ≤ Nz

r − 2Nz Nz ≤ r ≤ 2Nz − 1

(2.114)

The 3D extended parameter U
e

of size (2Nx − 1) × (2Ny − 1) × (2Nz − 1) is defined
in the extend domain by zero padding as

U e(p, q, r) =



U(p, q, r), if 1 ≤ p ≤ Nx

and 1 ≤ q ≤ Ny

and 1 ≤ r ≤ Nz

0, else

(2.115)

Finally, the matrix-vector multiplication can be efficiently calculated by

G · U = FFT−1
{
FFT(G

e
) ⊙ FFT(U

e
)
}

, (2.116)

where FFT denotes a three-dimensional fast Fourier transform and the result of the product
of (2.116) is extracted from the elements of its upper left sub-matrix of size Nx × Ny × Nz.
More details on the implementation of convolution-type matrix-vector products for 3D
problems are provided in Appendix A.

2.5 Numerical Simulations
In this section, some numerical results in 2D and 3D dimensions are presented to

validate the accuracy and efficiency of the EM forward solvers. We consider the scattering
by a dielectric cylinder and a dielectric sphere. Then, the numerical solutions are compared
with the corresponding analytical solution. The forward solvers are implemented with
Matlab on an AMD Ryzen 5 2400G with Radeon Vega Graphics, 3.6GHz with 16GB
RAM.

2.5.1 Scattering by a dielectric cylinder

We choose the scatterer to be a dielectric circular cylinder with εr = 3.2 - j0.8,
this has a radius R of 0.5λ centered at the origin. The background is air, εrb = 1. The
cylinder is illuminated by an incident plane wave, as shown in Figure 11(a). The operating
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case, both DGFA and DGFE can be used to approximate the solution of the EFIE. In
addition, we use an efficient iterative method combining the stabilized biconjugate-gradient
(BiCGSTAB) method and the FFT algorithm to compute the electromagnetic fields in 3D
problems. In this case, the difference between the solutions obtained through DGFA and
DGFE is negligible.

The efficient solvers combining the iterative methods and the FFT algorithms imply
symmetry in the domain of interest to preserve the convolutional symmetry in matrix
coefficients. For the purpose of utilizing the FFT algorithms, we choose a rectangular
domain embedding the scatterers. In this context, it is possible to discretize any domain
with a minimum storage requirement without compromising the solution accuracy.

In reconstruction algorithms, the EM forward solver is important to generate
numerical synthetic data, which is often used to test the performance of the inversion
methods. Moreover, it can also be used to compute the corresponding forward problem
during the optimization procedure in some inversion methods. In the next chapter, we will
study some inversion methods based on forward solvers.
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3 Inversion Methods

This chapter presents some inversion methods based on the conjugate gradient
method, which are addressed to the reconstruction of permittivity profiles from measured
scattering data. We present the forward model and inversion procedures. First, we present
the original methods, then the proposed procedures and their implementation are described.
Furthermore, the distorted-Born iterative method (DBIM) is also presented, which is used
to compare the performance and computational complexity of the nonlinearized CGM.

3.1 Forward Problem Formulation
We consider that the domain of interest D is illuminated successively by Ni different

incident electric fields Einc
l , l = 1, ..., Ni. For each incidence, the scattered field is measured

by an array of Nr different receivers located in the domain S, as shown in Figure 2. The
receivers are located at rs

m, m = 1, ..., Nr. For each incidence l, the total electric field E(r)
at any point r can be expressed by the following integral equation

El(r) = Einc
l (r) + k2

b

∫
D

G(r, r′)χ(r′)El(r′)dr′ r ∈ D, (3.1)

where χ(r) is the contrast function that relates to the wave-scattering properties of the
scatterer and G(·) denotes the Green’s function of the background medium. From the
total electric field in (3.1) the scattered field Esca(r) is defined by

Esca
l (r) = k2

b

∫
D

G(r, r′)χ(r′)El(r′)dr′ r ∈ S. (3.2)

For convenience, we introduce the operators G
S

and G
D

for both 2D and 3D
problems, which are defined as

k2
b

∫
cell

1
4j

H
(2)
0 (kb |r − r′|) dr′ =


G

2D

D
for r ∈ D

G
2D

S
for r ∈ S

, (3.3)

and

(k2
b + ∇∇·)

∫
cell

g(r, r′)I dr′ =


G

3D

D
for r ∈ D

G
3D

S
for r ∈ S

. (3.4)
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Then the forward problem can be written in two different compact notations. The
first form is referred to as field-type equations

E = E
inc + G

D
· χ · E (3.5)

E
sca = G

S
· χ · E, (3.6)

here the total electric field is involved in both equations. By using the normalized contrast
current density J(r) = χ(r)E(r), the governing equations can be written in source-type
equations form

J = χ · (E + G
D

· J) (3.7)

E
sca = G

S
· J. (3.8)

The matrix G
S

is also known as the radiation operator matrix (Liu; Nie, 2019),
which maps from the space of the induced current in domain D to the space of the
scattered field on the receivers. Usually, Equations (3.5) and (3.7) are referred to as the
state equations, and Equations (3.6) and (3.8) are referred to as data equations.

3.2 Conjugate Gradient Methods
The conjugate gradient method (CGM) recasts the inverse scattering problem

as a minimization of a cost function. This starts with the field-type integral equations
and applying the method of moments (Harrington, 1968; Richmond, 1965) leads to a
nonlinear relation between the scattered field and the contrast. This approach results in a
cost function that depends only on the error between measured data and the computed
scattered field (Harada et al., 1995). The cost function is defined by

F (χ) = W
Ni∑
l=1

∥ ρl ∥2
S , (3.9)

where ρl = E
sca
l − G

S
· χ · El is the residual error and W is a weighting coefficient given by

W =
 Ni∑

l=1

∥∥∥ E
sca

l

∥∥∥2

S

−1

. (3.10)

The solution of contrast profile χ is obtained by minimizing (3.9); according to
Lobel et al. (1996), this consists of iterative construction of sequences {χn} as follows
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χn = χn−1 + αnDn, (3.11)

where Dn is the updated search direction, which is a diagonal matrix, formed by the vector
dn. And α is a complex parameter (weight factor), which is obtained by

αn = argminα{F (χn + αdn)}. (3.12)

According to Lobel et al. (1996), the Polak-Ribière search direction is used in the
conjugate gradient method, then the update direction dn is given by

dn = gn + Re[(gn − gn−1)H · gn]∥∥∥ gn−1

∥∥∥2

D

dn−1, (3.13)

where the superscript H denotes the Hermitian operator and gn is the gradient of the cost
function, which is calculated by the Fréchet derivative. Two main approaches to calculate
the gradient direction gn can be distinguished: the nonlinearized and linearized approaches.
These formulations are described in the next two subsections.

3.2.1 Nonlinearized approach

The CGM for solving inverse scattering problems was originally presented by Lobel
et al. (1996). This method recasts the nonlinear inverse problem as a minimization of a
cost function. The nonlinearized CGM considers the total electric field as an additional
parameter in the calculation of the gradient direction of the cost function. Following the
procedure used in Lobel et al. (1996), we have

αn =

Ni∑
l=1

〈
ρl,n, V l,n

〉
S

Ni∑
l=1

∥∥∥V l,n

∥∥∥2

S

(3.14)

where
V l,n = G

S
· [L(χn−1 )]T · Dn · El,n, (3.15)

where L(χn−1 ) = (I − G
D

· χn−1)−1 and the superscript T denotes the transpose operator.
The electric field El,n is obtained from (3.5) with the contrast taken equal to χn−1. The
gradient direction gn of (3.9) is determined by the Fréchet derivative

〈
∇F (χn−1), dn−1

〉
D

= Ni∑
l=1

∂

∥∥∥ρ
l(χn)

∥∥∥2

S

∂αn

∣∣∣∣∣∣
αn=0

, (3.16)

which is equivalent to
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〈
∇F (χn−1), dn−1

〉
D

= −W
Ni∑
l=1

〈
ρ

l,n
, V l,n

〉
S

. (3.17)

By developing (3.17), the gradient of the cost function is obtained as

gn = −W
Ni∑
l=1

[
diag(El,n) · L(χn−1 )

]∗
· GH

S
· ρ

l,n
. (3.18)

where the superscript ∗ denotes the complex conjugate operator. Finally, the CGM depends
on an initial guess χ0. This initial solution can be calculated using the back-propagation
method (Lobel et al., 1996; Belkebir; Chaumet; Sentenac, 2005). The formulation of the
back-propagation procedure can be found in Appendix B.

3.2.2 Linearized approach

In the linearized iterative inversion approach, the cost function is given by (3.9)
and the optimization procedure is similar to the nonlinearized approach. In the linearized
CGM, the total electric field is estimated from the best available contrast (Chaumet;
Belkebir, 2009; Mudry et al., 2012), i.e., El,n ≈ El,n−1. According to Chaumet and Belkebir
(2009) the unique minimum of the cost function F (αn) is reached for

αn =

Ni∑
l=1

〈
ρl,n, G

S
· Dn · El,n

〉
S

Ni∑
l=1

∥∥∥G
S

· Dn · El,n

∥∥∥2

S

. (3.19)

where
ρl,n = E

sca − G
S

· χn−1 · El,n. (3.20)

The contrast is updated at each iteration by (3.11). Assuming that the total electric
field El do not change, the gradient of the cost function is obtained as

gn = −W
Ni∑
l=1

(El,n)∗ ⊙ GH
S

· ρl,n. (3.21)

The inversion algorithm is completed with the estimation the initial guess, e.g.,
using the back-propagation procedure (Belkebir; Chaumet; Sentenac, 2005).

Compared with the nonlinearized approach, the gradient direction in (3.21) is
simpler and therefore less time-consuming than the gradient obtained in (3.18). Note that
the linearized approach does not involve the contrast variable in the gradient calculation,
since the total electric field is fixed at each iteration. However, this linearized CGM works
for slightly nonlinear ISPs. Therefore, this linear approximation has a limited range of
applicability.
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3.3 Distorted-Born Iterative Method
In the distorted Born iterative method (DBIM), the cost function is chosen as the

quadratic error of mismatch of measured scattered field and computed one. In addition, a
Tikhonov regularization term is added to the cost function to stabilize the optimization
procedure. The cost function is defined as

f(∆χ) =
Ni∑
l=1

∥∥∥ E
sca
l − G

S
· χ · E

b
l − Gbs · ∆χ · E

b
l

∥∥∥2

S

+ γ ∥ ∆χ ∥2
D

, (3.22)

where E
sca
l is the measured scattered field, E

b
l represents the incident electric field in the

presence of the inhomogeneous background medium and Gbs is the inhomogeneous Green’s
function for the background medium contrast, which is given by Remis and van den Berg
(2000)

Gbs,n = G
S

· (I − χn · G
D

)−1. (3.23)

The DBIM needs to solve the forward problem to calculate E
b

l,n at each iteration
step, which can be obtained as

E
b
l,n = (I − G

D
· χn)−1 · E

inc
l . (3.24)

Equation (3.22) is linear for ∆χ, however, a regularization procedure should be
required in solving this linear equation due to ill-posedness. By minimizing (3.22), we
obtain the following matrix equation system

(AH · A + γI) · ∆χn = AH · ∆E
sca

l,n , (3.25)

where A = Gbs,n · E
b

l,n, ∆E
sca

l,n = E
sca

l − G
S

· χn · E
b

l,n, and γ is the Tikhonov regularization
parameter. Once ∆χn has been determined, the contrast solution is updated by

χn+1 = χn + ∆χn. (3.26)

In the DBIM, the forward solver is also efficiently implemented by iterative methods
combined with FF algorithms. Moreover, it is possible to solve (3.25) using the conjugate
gradient method, which requires the Fréchet derivative and its adjoint operator (Cui et
al., 2001).
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3.4 Efficient Conjugate Gradient Methods
In this section, three methods for solving the electromagnetic inverse scattering

problem will be introduced. All these inversion methods are applied to reconstruct dielectric
scatterers. First, we introduce an efficient implementation of the nonlinearized CGM,
which adopts the FFT algorithms for efficient matrix-vector multiplication, because the
convolutional kernels of integral equations produce a discrete type convolution, as described
in Chapter 2. With these features, we can use iterative methods to efficiently calculate of
total electric field and the gradient direction in the nonlinearized CGM. Secondly, a new
inversion method is proposed, the subspace-based conjugate-gradient method (S-CGM),
which has better convergence and accuracy than the linearized CGM. Finally, a fast CGM
based on the approximation of the inverse matrix by using Neumann series expansion is
introduced.

3.4.1 Efficient implementation of the CGM

In the formulation presented in subsection 3.2.1, the total field El,n can be efficiently
obtained by a forward solver using iterative methods and FFT algorithms. However, direct
multiplication operations in (3.15) and (3.18) remove the convolutional symmetry of
the matrix coefficients in L(χn−1). Without proper treatment, these procedures can make
the computational cost-prohibitive, even for small-scale problems. In the worst case, a
direct matrix inversion is required. Therefore, the bottleneck is in operations involving the
inverse matrix L(χn−1). We avoid the calculation and storage of L(χn−1) by using an efficient
forward solver twice at each iteration step. Instead of storing the whole matrix G

D
, the

convolutional kernels of the integral equations can be performed in O(N log N) operations
using FFT algorithms. The CG-FFT method is used for 2D-TM problems, whereas the
BiCGSTAB-FFT method is used for solving 3D problems. In order to implement the
reconstruction algorithm, we propose to rewrite Equations (3.15) and (3.18) as follows

V l,n = U s,n · Dn · El,n (3.27)

and
gn = −W

Ni∑
l=1

(El,n)∗ ⊙ UH
s,n · ρ

l,n
, (3.28)

where U s,n is computed by iterative methods combined with FFT procedures satisfying

U s,n = G
S

+ G
D

· χn−1 · U s,n. (3.29)

or
U s,n = G

S
· (I − χn−1 · G

D
)−1. (3.30)
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The implementation of the efficient CGM is summarized in Algorithm 3.

Algorithm 3: Efficient Conjugate Gradient Method

Step 1: Calculate GD and GS

Step 2: Initial iteration, n = 0
Choose initial guess χ0
Initialize the search directions d0
Obtain E0 and U s,0

Step 3: Iteration n = n + 1
Calculate the gradient gn by using (3.28)
Determine the search directions from (3.13)
Calculate the weight factor αn from (3.14)
Update χn = χn−1 + αn Dn

Update En and U s,n

Step 4: If predetermined convergence criterion is satisfied,
then STOP. Otherwise, go to Step 3.

The computational complexity of this CGM implementation is dominated by the
forward solvers and the Fréchet derivative matrix operations. Note that the total electric
field E is of size N × Ni and the operator U s is of size Nr × N , then the total number of
calls to the forward solver in Algorithm 3 is (Ni + Nr). Therefore, the computational cost
of the inversion algorithm at each iteration step becomes

CCGM ∼ NforNc(Ni + Nr)N log N + NiNrN, (3.31)

where Nfor is the number of iterations of the forward solver, Nc is a constant coefficient
due to FFT, which depends on the FFT routine, and N is the total number of discretized
cells. The second term of the right-hand side of (3.31) is the contribution of calculating
the gradient direction of the cost function.

In comparison, the distorted Born iterative method (DBIM) has a computational
complexity of

CDBIM ∼ NforNc(Ni + Nr)N log N + NTK
CG NiNrN, (3.32)

where NTK
CG is the number of iterations to solve the matrix equation of the Tikhonov

regularization (Cui et al., 2001). The forward problems in the CGM and the DBIM are
equivalents, except that the DBIM considers an inhomogeneous background medium, while
the CGM assumes a homogeneous background, and solves the forward problem to find
the total field inside the domain and calculate the gradient direction. Note that the first
term of the right-hand side of (3.31) and (3.32) corresponds to the computation of the
forward solvers, which dominates the number of operations for small and moderately sized
problems. However, the dominance of the complexity of the second term is relevant for
large-scale problems. Regarding storage efficiency, the storage requirement of the inversion
methods is proportional to (Ni + Nr)N .
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3.4.2 Subspace-based conjugate gradient method

In this contribution, a new inversion method denoted as the subspace-based con-
jugate gradient method (S-CGM), is proposed. This method is based on the ideas of
linearized CGM and the S-VBIM proposed by Liu and Nie (2019). As in the S-VBIM,
we retrieve the deterministic part of the variational induced current by performing the
singular value decomposition (SVD) of the radiation operator matrix G

S
. In the S-CGM,

the gradient calculation is derived from the linearized CGM.

In order to improve the total field estimation, we propose the following scheme to
update the total field

El,n = El,n−1 + δE. (3.33)

Considering small variations of the total field, we have

El,n = El,n−1 + G
D

· δ(χ · E), (3.34)

where the term δ(χ · E) can be understood as the variational induced current δJ . Since the
radiation operator matrix G

S
is a compact operator (Chen, 2018), which has an infinite

number of small singular values accumulating at zero, the induced current δJ can be
divided into two parts: a portion of the variational induced current that produces the
scattered field on receiver and a portion that produces zero or negligible scattered fields
(Liu; Nie, 2019). Thus, the variational induced current δJ cannot be uniquely retrieved
from the scattered field data.

The SVD of G
S

is represented as G
S

= ∑
i ūiσiv̄

∗
i and G

S
· v̄i = σiūi. This means

that the radiating portion of the variational induced current is in the span of right
singular vectors v̄i that corresponds to the nonzero singular values, whereas the non-
radiating portion is in the span of the orthogonal subspace of right singular vectors v̄i

that corresponds to the zero singular values (Ye; Chen, 2017). In practice, the retrieval of
the portions of the induced current is difficult due to the fact that the scattered data are
often contaminated with noise. We can order the singular values in a descending order
such that, σ1 ≥ σ2 ≥ · · · ≥ σL0 ≥ σL0+1 = σL0+2 = · · · = σN = 0, where it is assumed
that there are a total number of L0 nonvanishing singular values (Chen, 2018). A part of
the variational radiating induced current can be retrieve by using the largest L leading
singular values, where L can be any integer as long as it is no larger than L0

δJ
d =

L∑
i=1

ūH
i · δE

sca

σi

v̄i, (3.35)

where δE
sca represents the variational scattered field, which is given by

δE
sca = E

sca − E
sca
n−1. (3.36)
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The induced current δJ
d is known as the deterministic part of the variational

induced current (Liu; Nie, 2019) and it contributes to the major part of the scattered
fields on the receiver. It is worth mentioning that both S-VBIM and S-DBIM minimize
a cost function in the sense of least squares to solve the contrast difference δ(χ), while
in the S-CGM the optimization variable is directly the contrast matrix χ. Although the
S-CGM does not use any regularization procedure, e.g., the Tikhonov regularization, the
integer value L serves as a regularization parameter. The choice of the optimal value of
L depends on the noise level and the criteria used to determine it are discussed in Chen
(2010), Zhong and Chen (2011), and Ye and Chen (2017). Finally, the proposed iteration
procedure of the S-CGM is as follows

Algorithm 4: Subspace-Based Conjugate-Gradient Method

Step 1: Calculate GD and GS

Calculate the thin SVD of GS and choose the appropriate value of L
Step 2: Initial iteration, n = 0

Choose initial guess χ0
Initialize the search directions d0

Step 3: Iteration n = n + 1
Calculate the electric field

El,n−1 = (I − GD · χn−1)−1 · E
inc
l . (3.37)

Calculate the deterministic part of the variational induced current
using

δJ
d
l =

L∑
i=1

ūH
i · (Esca

l − GS · χn−1 · El,n−1)
σi

v̄i. (3.38)

Then, update the total field

El = El,n−1 + GD · δJ
d
l . (3.39)

Calculate the gradient

gn = −W
Ni∑
l=1

(El)∗ ⊙ GH
S

· ρl,n. (3.40)

Determine the search directions from (3.13)
Calculate the weight factor αn

αn =

Ni∑
l=1

〈
ρl,n, GS · Dn · El

〉
S

Ni∑
l=1

∥∥∥GS · Dn · El

∥∥∥2

S

. (3.41)

Update the contrast profile: χn = χn−1 + αn Dn

Step 4: Evaluate (3.9). If predetermined convergence criterion is
satisfied, then STOP. Otherwise, go to Step 3.
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The proposed Algorithm 4 needs to calculate of SVD of the radiation operator
matrix only once when initializing the algorithm. The size of matrix G

S
is Nr ×N . Usually,

the number of discretized cells is greater than the number of receivers, i.e., N ≫ Nr.
The computational complexity of a thin SVD is O(N2

r N) (Stewart, 1998). Therefore, the
additional computational cost is very small. Furthermore, the matrix-vector multiplication
in the right-hand side of (3.39) can be performed in O(N log N) operations and the electric
field in (3.37) can be efficiently solved by using an iterative method and FFT algorithms,
as demonstrated in Chapter 2.

3.4.3 Fast CGM based on inverse matrix approximation

In this approach, we propose to reduce the consumption time of the forward solvers
by introducing an approximation of the inverse matrix. We have

E = (I − G
D

· χ)−1 · E
inc

. (3.42)

Consider the series expansion (Neumman series) of the inverse matrix

(I − G
D

· χ)−1 = (I + (G
D

· χ) + (G
D

· χ)2 + · · · ). (3.43)

By substituting (3.43) in (3.42), we obtain

E = (I + (G
D

· χ) + (G
D

· χ)2 + · · · ) · E
inc

. (3.44)

For example, using only the linear term (G
D

· χ) of the expansion the residual error
in the conjugate gradient method can be calculate by

ρ
l(χ) = E

sca
l − G

S
· χ · (I + G

D
· χ) · E

inc
l . (3.45)

As a result, the total electric field is obtained from (3.44) using only the linear
term. However, the inverse problem is still nonlinear for the unknown χ. The inherent
nonlinearity of the inverse scattering problem means that for high dielectric contrasts this
approximation is not valid. In order to improve this approximation, we consider small
variations of the total and scattered fields as follows

∆E = G
D

· ∆(χ · E) (3.46)

∆E
sca = G

S
· ∆(χ · E), (3.47)
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where ∆(χ · E) can be defined by product rule differentiation

∆(χ · E) = ∆χ · E + χ · ∆E. (3.48)

Substituting (3.48) and (3.44) into (3.46) and (3.47) produces

∆El,n = (I + (G
D

· χn−1) + (G
D

· χn−1)2 + · · · ) · G
D

· ∆χ · El,n−1 (3.49)

∆E
sca

l,n = G
S

· (I + (χn−1 · G
D

) + (χn−1 · G
D

)2 + · · · ) · ∆χ · El,n−1. (3.50)

For the nth iteration, the contrast variation is obtained from the search direction
and the weight factor as ∆χn = αnDn, and the update of the fields at each iteration is
given by

El,n = El,n−1 + ∆El,n (3.51)

E
sca
l,n = E

sca
l,n−1 + ∆E

sca
l,n . (3.52)

Following the procedures of the gradient conjugate method presented in the previous
subsections, we have

αn =

Ni∑
l=1

〈
ρl,n, U s,n · Dn · El,n

〉
S

Ni∑
l=1

∥∥∥U s,n · Dn · El,n

∥∥∥2

S

(3.53)

where

U s,n = G
S

· (I + (χn−1 · G
D

) + (χn−1 · G
D

)2 + · · · ). (3.54)

Finally, the gradient direction is obtained by

gn = −W
Ni∑
l=1

(El,n)∗ ⊙ UH
s,n · ρ

l,n
. (3.55)

The accuracy of the approximation depends on the number of order terms in the
expansion. In addition, the matrix-vector products can be efficiently performed by FFT
algorithms. This procedure is a good approximation for scatterers slightly above the range
of the weak scattering (i.e., low dielectric contrast). To be specific, the convergence is
determined by

∥∥∥G
D

· χ
∥∥∥ ≤ 1.
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The implementation of the fast CGM is summarized as follows

Algorithm 5: Fast Conjugate Gradient Method

Step 1: Calculate GD and GS

Step 2: Initial iteration, n = 0
Choose initial guess χ0
Initialize the search directions d0
Obtain E0 and E

sca
0

Calculate the residual error
Step 3: Iteration n = n + 1

Calculate the gradient gn by using (3.55)
Determine the Polak–Ribière conjugate-gradient search

directions from (3.13)
Calculate the weight factor αn from (3.53)
Update χn = χn−1 + αn Dn

Update En and E
sca
n from (3.51) and (3.52), respectively.

Step 4: If predetermined convergence criterion is satisfied,
then STOP. Otherwise, go to Step 3.
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Table 5 – Permittivity profile error of numerical experiments.

Target ERRε

Nonlinearized CGM Linearized CGM S-CGM Fast CGM
Kite 0.1378 0.1390 0.1376 0.2068

Two circles 0.1539 0.1536 0.1490 0.2024
Coated cylinder 0.0859 0.1035 0.0921 0.1228
Multiple objects 0.0997 0.1093 0.0960 0.1664

Finally, the CPU time per iteration for the reconstruction of each target is listed
in Table 6.

Table 6 – CPU time per iteration of numerical experiments.

Target Second/iteration
Nonlinearized CGM Linearized CGM S-CGM Fast CGM

Kite 6.53 2.84 3.16 0.50
Two circles 5.30 2.54 2.81 0.51

Coated cylinder 9.59 4.51 4.06 0.51
Multiple objects 11.71 5.85 5.43 0.55

4.3 Test with experimental data
This experiment aims to validate the inversion algorithms against experimental

data from the Institut Fresnel database (Geffrin; Sabouroux; Eyraud, 2005). All targets
are elongated objects, which have no variation in the z-direction, and measured data
with TM polarization are used. The FoamDielInt target consists of one smaller cylinder
with εr = 3, which is embedded in a larger cylinder with εr = 1.45, see Figure 42(a). In
the FoamTwinDiel target, one smaller cylinder is added, as shown in Figure 42(b). The
smaller cylinders have a radius of 3.1 cm and the radius of the larger cylinder is 8 cm.
The measured data were collected for 241 receivers and 9 frequencies from 2 to 10 GHz.
The FoamDielInt and FoamTwinDiel targets are illuminated by 8 and 18 transmitters,
respectively. In the experimental setup performed by the Institut Fresnel, the receiving
aperture is from 60◦ to 300◦, that is, only 2/3 of a full aperture is used. To calibrate
the scattered data, the procedure outlined in Geffrin, Sabouroux and Eyraud (2005) is
adopted, where the transmitting antennas are approximated by electric line sources and a
single calibration factor per transmitter is used. This calibration factor is derived from the
ratio of the simulated incident field and the measured one at the receiver located opposite
the transmitter (incidence angle of 180◦). The distance from the receivers to the center of
the target is 1.67 m. For each incidence, we use 72 receiving points out of 241 receivers,
which are evenly distributed around the target. However, for each illumination angle, the
field is measured for only 49 of the 72 receiver angles due to the physical limitations of
the receiving aperture, and the field at the remaining receiving points is set to zero.
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4.4 Conclusion
In this chapter, we have presented some 2D numerical results using both synthetic

and experimental data. The proposed inversion algorithms show robustness against noise
in the scattered data when a priori information on the unknown contrast is introduced.
In the nonlinearized CGM, the CG-FFT approach reduces the computational cost and
storage requirement of the reconstruction algorithm compared to the original version. The
numerical experiments validate the reconstruction algorithm in the 2D TM case. Note
that this reconstruction algorithm does not use any regularization technique. Moreover,
the modified implementation makes the nonlinearized CGM significantly more efficient for
large domain problems with high resolution in the reconstructed profile.

The proposed S-CGM combines the advantages of the linearized CGM and the
subspace-based methods. We retrieve the deterministic part of the variational induced
current by performing the SVD of the radiation operator matrix, which is calculated only
once at the beginning of the iterative procedure. Thus, the S-CGM updates the total
field as the sum of the estimated total field of the previous iteration and the contribution
of the induced current obtained from the deterministic part of the variational induced
current. The reconstruction results prove the S-CGM achieves faster convergence speed
and better image reconstruction than the linearized CGM. In the S-CGM, the optimal
value of parameter L can be easily chosen from different integer values rather than a
single value. Therefore, the proposed S-CGM is a very interesting inversion method for
the microwave imaging systems.

On the other hand, the approximation of the gradient in the fast CGM works
for the reconstruction of low contrasts. This approach is computationally faster because
it does not solve the full-forward problem. The approximate inverse matrix fails in the
reconstruction of strong scatterers. Nevertheless, we obtain some information regarding
the shape and location of the scatterers.
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6 Conclusions and Future Research

6.1 Conclusions
We have presented different conjugate gradient methods for solving two- and three-

dimensional electromagnetic inverse scattering problems. These reconstruction algorithms
can be applied to different inhomogeneous dielectric scatterers with noise-corrupted
scattered data.

The proposed inversion methods in this thesis are based on gradient-based optimi-
zation approaches:

• The efficient CGM, nonlinearized CGM, reduces the computational cost and storage
requirements of the original CGM implementation. In addition, this efficient CGM
is found to share a computational complexity similar to the distorted-Born iterative
method (DBIM). In comparison, the DBIM depends a lot on the Tikhonov regula-
rization parameter to ensure fast convergence, while the nonlinearized CGM also
achieves good results without using any regularization term.

• The subspace-based CGM (S-CGM) takes the advantages of the linearized CGM and
the subspace-based methods by updating the contrast with a new total electric field
approximation. Different from the original CGMs, the S-CGM uses a regularization
parameter, which is defined by the number of leading singular values. This parameter
can be easily chosen from different consecutive integer values instead of a single
value.

• The fast CGM follows the nonlinearized CGM approach, i.e., using the nonlinear
Fréchet operator to compute the gradient. This proposed method improves the
computational efficiency since it uses a fast forward-solver based on inverse matrix
approximation by using the Neumann series. This proposed inversion algorithm is
computationally faster because it does not solve the full-forward problem. As a result,
the fast CGM has good accuracy in low-degree nonlinearity problems and very short
computation time.

All the inversion methods are validated in two-dimensional problems by using
both synthetic and experimental data. The numerical results in the 2D case prove that
the different reconstruction algorithms proposed in this thesis are feasible for microwave
imaging. Depending on the contrast and electrical size of the scatterers, the nonlinear
gradient approach provides a better reconstruction solution than its linear counterpart.
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Besides, the forward solver approximation in the fast CGM is able to provide inversion
results in a shorter period of time. For example, in problems with a low degree of
nonlinearity.

The extensive validation of inversion methods to solve two-dimensional inverse
scattering problems exhibits the potentialities and limitations of each of the CGMs.
Fortunately, the extension of the CGMs to the three-dimensional case is straightforward.
Therefore, the inversion methods are also validated in three-dimensional problems. In this
case, numerical synthetic data are used.

In the 3D inversion, the performance and the solution accuracy are maintained the
same as in the 2D inversion case. As expected, the numerical experiments show that the
nonlinearized CGM obtains better reconstruction results in 3D problems. Reconstruction
results also show robustness to noise in the scattered data. Compared to the 2D case, the
computation time in the 3D case increases considerably, this is due to the fact that the
three vector components of the electric fields are considered in the inversion procedures.
Finally, the numerical results suggest that the proposed CGMs applied to inversion from
experimental data of the three-dimensional scatterers will be feasible.

6.2 List of publications
The following journal and conference papers have been performed during the

development of this thesis:

• Jose O. Vargas, André Costa Batista, Lucas S. Batista and Ricardo Adriano. On
the computational complexity of the conjugate-gradient method for solving inverse
scattering problems, Journal of Electromagnetic Waves and Applications, v. 35, n.
17, p. 2323-2334, 2021. DOI: 10.1080/09205071.2021.1946862.

• Jose O. Vargas and Ricardo Adriano. Subspace-based conjugate gradient method for
solving inverse scattering problems. IEEE Transactions on Antennas and Propagation.
(Accepted).

• Jose O. Vargas, André Costa Batista, Ricardo Adriano and Lucas S. Batista. A
fast conjugate gradient method for solving two-dimensional electromagnetic inverse
scattering problems. 20◦ Simpósio Brasileiro de Micro-ondas e Optoeletrônica, 2022.
(Accepted).

6.3 Future research
The methods developed in this thesis could be expanded in many research aspects

that can be addressed in future works. Suggestions for future work are as follows:
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• Development of inversion algorithms integrating new regularization schemes and the
conjugate gradient method. The standard methods are all developed in Hilbert spaces.
However, regularization techniques in Banach spaces have been studied recently
(Estatico; Pastorino; Randazzo, 2012; Bisio et al., 2018; Estatico et al., 2018). The
Banach-space regularization approach allows for reducing the over-smoothing effects,
which are often present in the standard methods.

• Propose hybrid algorithms to solve the inverse scattering problem. The efficient
CGMs can be combined with stochastic algorithms, e.g., genetic and evolutionary
algorithms, to improve the reconstruction in highly nonlinear problems.

• A more extensive study to validate the inversion methods in three-dimensional
complex scenarios (e.g., objects buried in multilayered media), as well as validation
with experimental data, in order to highlight the advantages and limitations of
the CGMs when using 3D vector formulations. In addition, the frequency-hopping
technique can be applied in three-dimensional inverse scattering problems, as in the
2D inversion presented in this thesis.
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APPENDIX A – Implementation details

This appendix presents some important details for the Matlab implementation of fast
algorithms for matrix-vector multiplication in scattering problems. The Matlab commands
provided in this appendix can be easily ported into other programming languages.

A.1 Two-dimensional case
The first step of the implementation consists in discretizing the domain of interest

as follows

%% DISCRETIZATION BY CELLS

% Length of each cell in x and y-axis
dx = (xmax-xmin)/Nx;
dy = (ymax-ymin)/Ny;

% Centers of each cell
x = xmin-(Nx/2-1)*dx : dx: xmax+(Nx/2 -1)*dx;
y = ymin-(Ny/2-1)*dy : dy: ymax+(Ny/2 -1)*dy;
[xe,ye] = ndgrid(x,y); % Extended domain (2Nx-1)x(2Ny-1)

% distance between the cells
Rmn = sqrt(xe.^2 + ye.^2); % size (2Nx-1)x(2Ny-1)

The second step is to compute the dyadic Green’s function. The entries of the
matrix G produce a Toeplitz matrix due to the property of translational invariance of
the Green’s function kernel. Therefore, we use uniform cells to preserve the convolutional
symmetry in the matrix and the elements of the matrix are calculated as follows

%% COMPUTING DYADIC GREEN’S FUNCTION

% Matrix elements for off-diagonal entries
Gmn = -((1i*pi*kb*a)/2)*besselj(1,kb*a)*besselh(0,2,kb*Rmn); % m=/n

% Matrix elements for diagonal entries
Gmn(Nx,Ny)= -((1i*pi*kb*a)/2)*besselh(1,2,kb*a) - 1; % m==n
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The next step is to create a circular discrete convolution, then the extended matrix
Ge is obtained by

% Extended matrix Ge. (2Nx-1)x(2Ny-1)
Ge = zeros(2*Nx-1,2*Ny-1);
Ge(1:Nx,1:Ny) = Gmn(Nx:2*Nx-1,Ny:2*Ny-1);
Ge(Nx+1:2*Nx-1,Ny+1:2*Ny-1) = Gmn(1:Nx-1,1:Ny-1);
Ge(1:Nx,Ny+1:2*Ny-1) = Gmn(Nx:2*Nx-1,1:Ny-1);
Ge(Nx+1:2*Nx-1,1:Ny) = Gmn(1:Nx-1,Ny:2*Ny-1);

Finally, the matrix-vector product is performed using FFT and the result is
extracted from the extended matrix as follows

%% Computing matrix-vector product by using two-dimensional FFT

u = reshape(u,Nx,Ny);
e = ifft2(fft2(Ge).*fft2(u,2*Nx-1,2*Ny-1)); % Product G*U
e = e(1:Nx,1:Ny,:);
e = reshape(e,Nx*Ny,1);

A.2 Three-dimensional case
In this case, the 3D domain is discretized as follows

%% DISCRETIZATION BY CELLS

% Length of each cell in x, y, and z-axis
dx = (xmax-xmin)/Nx;
dy = (ymax-ymin)/Ny;
dz = (zmax-zmin)/Nz;

% Centers of each cell
x = xmin-(Nx/2-1)*dx : dx: xmax+(Nx/2 -1)*dx;
y = ymin-(Ny/2-1)*dy : dy: ymax+(Ny/2 -1)*dy;
z = zmin-(Nz/2-1)*dz : dz: zmax+(Nz/2 -1)*dz;
[xe,ye,ze] = ndgrid(x,y,z); % Extended domain (2Nx-1)x(2Ny-1)x(2Nz-1)

% distance between the cells
R = sqrt(xe.^2 + ye.^2 + ze.^2); % size (2Nx-1)x(2Ny-1)x(2Nz-1)
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The second step is to compute the dyadic Green’s function. For example, for DGFE
implementation the elements of the matrix are calculated as follows

%% COMPUTING DYADIC GREEN’S FUNCTION

% Matrix elements for off-diagonal blocks
Gxy = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*(((x.*y)./R.^2)...

.*((kb*R).^2 - 3*1i*kb*R - 3));
Gxy(Nx,Ny,Nz) = 0;

Gxz = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*(((x.*z)./R.^2)...
.*((kb*R).^2 - 3*1i*kb*R - 3));

Gxz(Nx,Ny,Nz) = 0;

Gyz = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*(((y.*z)./R.^2)...
.*((kb*R).^2 - 3*1i*kb*R - 3));

Gyz(Nx,Ny,Nz) = 0;

% Matrix elements for diagonal blocks
Cn = (2/3)*(1i*kb*a + 1)*exp(-1i*kb*a) - 1;

Gxx = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*...
((1-(kb*R).^2 +1i*kb*R)+(x./R).^2.*((kb*R).^2 - 3*1i*kb*R - 3 ));

Gxx(Nx,Ny,Nz) = Cn;

Gyy = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*...
((1-(kb*R).^2 +1i*kb*R)+(y./R).^2.*((kb*R).^2 - 3*1i*kb*R - 3 ));

Gyy(Nx,Ny,Nz) = Cn;

Gzz = -(dv./(4*pi.*R.^3)).*exp(-1i*kb*R).*...
((1-(kb*R).^2 +1i*kb*R)+(z./R).^2.*((kb*R).^2 - 3*1i*kb*R - 3 ));

Gzz(Nx,Ny,Nz) = Cn;

The next step is create a 3D circular discrete convolution, then the extended matrix
of each block Ge

xpxq
is obtained by

% Extended matrix Ge. (2Nx-1)x(2Ny-1)x(2Nz-1)
Ge = zeros(2*Nx-1,2*Ny-1,2*Nz-1);
Ge(1:Nx,1:Ny,1:Nz) = G(Nx:2*Nx-1,Ny:2*Ny-1,Nz:2*Nz-1);
Ge(1:Nx,1:Ny,Nz+1:2*Nz-1) = G(Nx:2*Nx-1,Ny:2*Ny-1,1:Nz-1);
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Ge(1:Nx,Ny+1:2*Ny-1,1:Nz) = G(Nx:2*Nx-1,1:Ny-1,Nz:2*Nz-1);
Ge(1:Nx,Ny+1:2*Ny-1,Nz+1:2*Nz-1) = G(Nx:2*Nx-1,1:Ny-1,1:Nz-1);
Ge(Nx+1:2*Nx-1,1:Ny,1:Nz) = G(1:Nx-1,Ny:2*Ny-1,Nz:2*Nz-1);
Ge(Nx+1:2*Nx-1,1:Ny,Nz+1:2*Nz-1) = G(1:Nx-1,Ny:2*Ny-1,1:Nz-1);
Ge(Nx+1:2*Nx-1,Ny+1:2*Ny-1,1:Nz) = G(1:Nx-1,1:Ny-1,Nz:2*Nz-1);
Ge(Nx+1:2*Nx-1,Ny+1:2*Ny-1,Nz+1:2*Nz-1) = G(1:Nx-1,1:Ny-1,1:Nz-1);

Finally, the matrix-vector product of each component of the DGF is performed
using 3D FFT and the result is extracted from the extended matrix as follows

%% Computing matrix-vector product by using three-dimensional FFT

u = reshape(u,Nx,Ny,Nz);
e = ifftn(fftn(Ge).*fftn(u,[2*Nx-1 2*Ny-1 2*Nz-1])); % Product G*U
e = e(1:Nx,1:Ny,1:Nz,:);
e = reshape(e,Nx*Ny*Nz,1);
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APPENDIX B – Back-propagation method

B.1 Back-propagation procedure to obtain an initial guess
The reconstruction algorithm based on back-propagation (BP) procedure uses the

adjoint operator or conjugate transpose GH
S

. For each incidence l, we estimate the contrast
source

J l = γ GH
S

· E
sca

l , (B.1)

where the scalar weight γ is determined by minimizing the following cost function

F (γ) =
Ni∑
l=1

∥∥∥Esca
l − γ G

S
· GH

S
· E

sca
l

∥∥∥2

S
. (B.2)

The minimization of (B.2) requires that ∂F
∂γ

= 0, this leads to an analytical solution
for γ, given by

γ =

〈
E

sca
l , G

S
· GH

S
· E

sca
l

〉
S∥∥∥G

S
· GH

S
· E

sca
l

∥∥∥2

S

. (B.3)

The total electric field El inside the domain of interest can be calculated by

El = E
inc

l + G
D

· J l. (B.4)

Finally, the solution for the contrast function χ inside the domain can be obtained
analytically as

χ =

Ni∑
l=1

J l ⊙ E
∗
l

Ni∑
l=1

∥∥∥El

∥∥∥2
. (B.5)
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