
Contents lists available at ScienceDirect 

Pharmacological Research 

journal homepage: www.elsevier.com/locate/yphrs 

Blame the signaling: Role of cAMP for the resolution of inflammation 
Luciana P. Tavares (PhD)a,b,f,*, Graziele L. Negreiros-Lima (M.Sc)a,b, Kátia M. Lima (PhD)a,b,c,  
Patrícia M.R. E Silva (PhD)d, Vanessa Pinho (PhD)a,e, Mauro M. Teixeira (M.D.; PhD)a,  
Lirlândia P. Sousa (PhD)a,b,c,** 
a Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil 
b Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil 
c Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil 
d Inflammation Laboratory, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil 
e Department of Morphology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil 
f Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA.  

A R T I C L E  I N F O   

Keywords: 
Resolution pharmacology 
cAMP 
Phosphodiesterase 4 
Inflammation 
Pro-resolving mediators 

A B S T R A C T   

A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are 
sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal 
into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping 
pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms 
to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation 
is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. 
Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular sig-
naling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved 
in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. 
cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways 
have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been 
pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the 
role of cAMP at inducing important features of resolution of inflammation.   

1. Introduction 

Inflammation is a protective pathophysiological response of vascu-
larized tissues to infections or injury [1]. Complex inflammatory re-
sponses begin with the detection of an inciting stimulus leading to the 
production of pro-inflammatory mediators, recruitment and activation 
of leukocytes and terminates with reparative processes to restore tissue 
homeostasis and promote adaptive immunity [2]. Specific intracellular 
signaling events coordinate the three phases of inflammation: the onset, 
resolution and post-resolution [3–6]. 

The signaling pathways related to the onset of inflammation have 
been extensively studied [3]. Cellular sensors and receptors recognize 
harmful stimuli, activate signaling cascades and transmit the message 

to the nucleus through the activation of transcription factors, such as 
nuclear factor-kappa B (NF-κB), the prototypical activator of in-
flammatory genes [7,8]. This triggers the production of pro-in-
flammatory mediators, proteases, reactive oxygen species (ROS) and 
increases the expression of adhesion molecules on cell surface [7]. 
Consequently, neutralization of potential pathogens and clearance of 
debris are achieved while repair responses are promoted. 

Every step of the inflammatory process must be finely tuned to 
ensure an effective defense against harmful stimuli and later induction 
of resolution, with minimal collateral damage [9]. Uncontrolled in-
flammation is an unifying feature of diseases such as cancer, vascular 
and other chronic inflammatory diseases [10–12]. Excessive or altered 
inflammatory responses may result from a failure in pro-resolution 
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pathways [11,13,14]. Resolution of inflammation, as inflammation it-
self, is a complex active process that comprises (1) clearance of pa-
thogens by phagocytosis, (2) apoptosis and efferocytosis of granulo-
cytes and debris, (3) restoration of chemokine levels to baseline, (4) 
regeneration of damaged tissues, (5) regain of vascular integrity and (6) 
relief of inflammatory pain [15]. Pro-resolving mediators are lipids 
(specialized pro-resolving mediators – SPMs and short chain fatty 
acids), peptide or proteins (e.g. Annexin A1 - AnxA1), and gaseous 
molecules that coordinate resolution being produced during the initial 
stages of acute inflammation to program its termination [16,17]. This 
process (specially for SPMs) is evidenced by the called “mediator class 
switching” that is observed in self-limiting inflammatory conditions: 
pro-inflammatory mediators, such as leukotrienes, are replaced by 
SPMs, such as lipoxins and resolvins [15]. Understanding the signaling 
pathways of resolution of inflammation will pave the way for the de-
velopment of new therapeutic strategies for inflammatory diseases. 

Cyclic adenosine 3, 5′-monophosphate (cAMP) is one of the most 
versatile cellular second messenger and regulates important biological 
processes, including cell migration, activation, proliferation and sur-
vival [18,19]. The production of cAMP is triggered by the activation of 
membrane receptors (mainly G protein-coupled receptors - GPCRs) that 
activate cellular adenylyl cyclases (AC), which convert ATP to cAMP 
[20]. Downstream events include the activation of cyclic nucleotide- 
gated ion channels [21], exchange proteins directly activated by cAMP 
(Epac) [22] or protein kinase A (PKA), a heterotetramer formed by two 
regulatory subunits and two catalytic subunits [23]. cAMP activation of 
PKA is triggered by the binding of cAMP to the regulatory subunits of 
PKA followed by alterations of protein conformation that release the 
catalytic subunits to phosphorylate and activate the transcription factor 
CREB (cAMP response element binding protein). Moreover, PKA also 
phosphorylates and controls the activity of cellular motor proteins, ion 
channels and enzymes such as protein kinase C (PKC), phosphoinositide 
3-kinase (PI3K) and phospholipase C [24]. Depending on the cell type 
and pathway activated, cAMP controls different processes during in-
flammation and resolution. Fig. 1 summarizes the described cAMP-de-
pendent signaling pathways for resolution of inflammation that will be 
presented and discussed in the following sections of this review. 

Elevations in the intracellular levels of cAMP modulate the activa-
tion of innate immune cells, including monocytes, macrophages, and 
neutrophils, through the modulation of key cellular effector functions: 
generation of inflammatory mediators (e.g., cytokines, chemokines, and 
lipids), chemotaxis, production of ROS and neutrophil extracellular 
traps (NETs), phagocytosis and killing of ingested pathogens, and cell 
survival [25–27]. The cellular levels of cAMP are regulated by cyclic 
nucleotide phosphodiesterases (PDEs) that catalyze the hydrolysis of 
cAMP to AMP. There are 11 families of mammalian PDEs (PDEs 1–11) 
of which PDEs 1, 2, 3, 4, 7, 8, 10 and 11 act on the inactivation of cAMP 
[28]. PDE4 is mainly expressed in leukocytes (neutrophils, eosinophils, 
cytotoxic T-lymphocytes and macrophages) and, therefore, is particu-
larly important in inflammation [19,29]. During the onset of the in-
flammatory response, levels of PDE4 are increased and consequently 
those of cAMP are low [30]. As such, AC-mediated increase in cAMP is 
counter-regulated by PDE4 during inflammation. 

This review summarizes the growing amount of evidence that sup-
ports the role of cAMP in triggering key features of resolution of in-
flammation: induction of pro-resolving mediators, apoptosis, effer-
ocytosis and phagocytosis, nonphlogistic recruitment of macrophage, 
macrophage polarization, and return to tissue homeostasis. 

2. The crosstalk between cAMP and pro-resolving mediators 

Several, if not most, pro-resolving mediators that orchestrate the 
steps of resolution of inflammation act through specific GPCRs trig-
gering a cascade of intracellular signaling events that synergize to in-
duce pro-resolving cellular responses [14]. Of note, the production of a 
given pro-resolving molecule can induce biosynthetic pathways of other 

pro-resolving molecules potentiating the overall response [31]. Here, 
we discuss the role of cAMP as one central messenger in pro-resolving 
signaling pathways, being induced by or inducing the production of 
pro-resolving mediators (Fig. 1). 

Annexin A1 (AnxA1) is an endogenous pro-resolving mediator, first 
characterized as a glucocorticoid (GC) induced protein active on 
phospholipase-A2 (PLA2) inhibition and prevention of eicosanoid 
synthesis [32–34]. AnxA1 is involved in several biological effects 
during inflammation and resolution [35]. AnxA1 is an agonist of the N- 
formyl peptide receptor 2/lipoxin A4 receptor (FPR2/ALX) that has 
broad expression in leukocytes and non-immune cells [35]. In fact, 
AnxA1 was shown to be protective in several models of inflammatory 
diseases, including gout [36], tuberculosis [37], pleurisy [38], silicosis 
[39] and pneumonia [40] by regulating the amount of inflammation, 
triggering apoptosis and efferocytosis and decreasing the production of 
pro-inflammatory cytokines. Recently, we have shown that cAMP ele-
vating agents increase the levels of AnxA1 that on its turn contributes to 
resolution of pleurisy and pneumonia in mice [41,42]. Indeed, activa-
tion of CREB, triggers the transactivation of the AnxA1 promoter [43] 
and the consequent transcription of the AnxA1 gene. Of interest, cAMP 
can regulate AnxA1 phosphorylation [44], an event that is important 
for protein mobilization and function [41,45]. Therefore, inducing 
AnxA1 may be an important mechanism of protection for cAMP-ele-
vating agents during inflammatory diseases. In addition, cAMP-induced 
PKA activation promotes the phosphorylation of 5-lipoxygenase at 
serine 523 culminating with production of 15-epi-lipoxin A4, a potent 
SPM [46]. Altogether, there is a growing amount of evidence for the 
role of cAMP signaling in mediating the production of mediators of 
resolution (Fig. 2). 

Interestingly, pro-resolving mediators can also increase intracellular 
levels of cAMP (Fig. 1). The ability of AnxA1 to control the cellular pool 
of cAMP was suggested in culture of adipose explants from AnxA1 de-
ficient mice (AnxA1 KO) that showed decreased cAMP at basal levels 
and after isoprenaline stimulation, as compared to WT mice [47]. The 
authors suggested that such effect of AnxA1 might be attributed to its 
inhibitory effect on phospholipase A2, which depresses β-adrenoceptor- 
stimulated adenylyl cyclase [48]. Therefore, the direct effect of AnxA1 
on the induction of intracellular levels of cAMP remains to be un-
covered. Regulation of levels of cAMP is also observed as a mechanism 
of action of SPMs endogenously produced during resolution of in-
flammation, including Aspirin-triggered Resolvin D1 (AT-RvD1), Re-
solvin D1 (RvD1), Resolvin D2 (RvD2) and N-3 docosapentaenoic 
acid–derived Resolvin D5 (RvD5n-3 DPA) [49–51]. AT-RvD1 is an 
isoform of RvD1 that is produced by cyclooxygenase 2 (COX-2), after 
being covalently modified by aspirin [52]. AT-RvD1 can also be pro-
duced endogenously in the absence of aspirin by alternative pathways 
involving cytochrome P450 enzymes [53]. RvD1 and AT-RvD1 are 
agonists of resolution and, therefore, control several inflammatory 
diseases such as ischemia/reperfusion injury [54], infectious pneu-
monia [55], asthma [56], among others. The intracellular pathways 
triggered by AT-RvD1 are not completely understood; however, it was 
recently shown that it can increase cAMP levels with consequent acti-
vation of PKA in a FPR2/ALX dependent-manner [57]. Keeping with 
that, RvD1 (that also binds to FPR2/ALX) and RvD5 were shown to 
downregulate PDE4B in human macrophages stimulated with Escher-
ichia coli [58]. Therefore, one can hypothesize that resolution of E. coli 
peritonitis induced by RvD1 and RvD5 may be associated with in-
creased levels of cAMP. Keeping with that, RvD1 was shown to increase 
alveolar fluid clearance, an important feature of resolution of lung in-
jury, in a cAMP-dependent manner [51]. 

In contrast, other lipid mediators such as Resolvin E1 (RvE1) can 
block adenylyl cyclase through the activation of ERV-1/ChemR23 or 
BLT1 receptors leading to a reduction in intracellular cAMP levels 
[59,60]. Therefore, the induction of cAMP by some SPMs might be 
receptor or cell specific. In agreement with this hypothesis, increased 
levels of cAMP were observed in airway epithelial cells after LXA4 
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treatment, a pro-resolving lipid agonist of FPR2/ALX [61]. Curiously, it 
seems that treatment with LXA4has an indirect effect on cAMP levels. 
By inducing increased secretion of ATP by epithelial cells, LXA4 leads to 
the activation of purine receptors such as P2RY11 and consequent in-
crease of cAMP levels [61]. Adding to the complexity of the role of 
cAMP in LXA4 signaling, other studies have not reported increases in 
cAMP levels after LXA4 treatment [62,63], which could be due to a cell- 
specific effect of this pro-resolving mediator. Maresin 1 (MaR1) is a 
SPM produced by macrophages that promotes resolution of inflamma-
tion and tissue repair responses [64]. Recently, cAMP production and 
signaling via CREB were observed as features of activation of LRG6, the 
newly recognized receptor for MaR1 [64]. Because cAMP is an im-
portant regulator of macrophage function and phenotype [65,66], 
cAMP might be one of the mechanisms of action of MaR1 agonists. Of 
interest, MaR1 belongs to a cluster of SPMs (including RvD1, RvD5 and 
LXB4) that are upregulated during coagulation and activate ERK1/2 and 
CREB signaling pathways, promoting leukocyte antimicrobial responses 
[67]. Recently, the agonist of the GPR101 receptor, n-3 doc-
osapentaenoic acid–derived resolvin D5 (RvD5n-3 DPA), was shown to 

induce cellular cAMP increases with increases in efferocytosis and 
phagocytosis [49]. 

More recently, the melanocortin system emerged as an important 
inducer of resolution of inflammation [68]. Melanocortins are peptides 
produced by proteolytic cleavage of pro-opiomelanocortin (POMC), a 
hormone expressed within the pituitary and peripheral cells and tissues. 
The melanocortin peptides adrenocorticotrophin (ACTH), α-, β-, γ- 
melanocyte stimulating hormone (MSH) bind to five melanocortin re-
ceptors (MC1−5) that are small stimulatory GPCRs expressed in several 
cells and tissues such as leukocytes, endothelial cells, melanocytes and 
the hypothalamus [69]. Engagement of all the five MC receptors by the 
melanocortin peptides induce increased levels of cAMP and down-
regulation of NF-κB [70]. Because of their expression in leukocytes, 
MC1, MC3 and MC5 are the main receptors involved in regulation of the 
inflammatory responses [71]. Of note, MC1 and MC3 can be pharma-
cologically activated to induce resolution of inflammation. Agonists of 
melanocortin receptors can decrease the levels of pro-inflammatory 
cytokines and induce efferocytosis and IL-10 production, important 
features of resolution [71]. The direct role of cAMP as a major trigger of 

Fig. 1. Schematic representation of cAMP pathways in the context of the resolution of inflammation. cAMP levels are controlled by the activity of adenylyl 
cyclase (AC) and phosphodiesterase 4 (PDE4). AC increases cAMP levels by the conversion of ATP to cAMP, while PDE4 catalyzes the degradation of cAMP to AMP. 
Activation of GPCRs and release of the subunit Gα stimulates (Gαs) or inhibits (Gαi) AC activity. Chemokines and other inflammatory mediators, including leu-
kotrienes, reduce the levels of cAMP by engaging GPCRs with subunits Gαi. Conversely, endogenous pro-resolving mediators are produced to induce and coordinate 
resolution of inflammation. Resolvins (RvD1, RvD5 and AT-RvD1), lipoxins (LXA4), melanocortins (MSH), maresin 1 (MaR1), adenosine and potentially Annexin A1 
(AnxA1), increase AC activity through binding to GPCRs with subunits Gαs. Mediators such prostaglandin E2 (PGE2) are also inducers of cAMP. Pharmacological 
inhibition of PDE4 inhibition (iPDE4), membrane-permeable cAMP analog (db-cAMP), and activator of AC (Forskolin) promote accumulation of intracellular cAMP. 
cAMP can activate protein kinase A (PKA), the exchange protein 1/2 activated by cAMP (Epac1/2), and cAMP gated ion channels. Activation of PKA leads to the 
phosphorylation of the cAMP-responsive element binding protein (CREB) that translocates to the nucleus promoting the production of pro-resolving mediators, anti- 
inflammatory cytokines, and stimulation of macrophage polarization, efferocytosis and granulocyte apoptosis – features of resolution of inflammation. In addition, 
PKA can reduce the transcriptional activity of NF-κB preventing the expression of inflammatory genes and by inhibiting PI3K/Akt – both signaling for cell survival. 
PKA-dependent activation of ERK1/2 mediates the secretion of CCL2, consequent nonphlogistic recruitment of macrophages and contributes to induction of mac-
rophage polarization to pro-resolving phenotypes. cAMP also induces activation of STAT-3, STAT-6 and CRTC3→IL-10 that signaling M2 polarization. Activation of 
Epac1/2 inhibits the production of pro-inflammatory cytokines. Activation of cAMP signaling pathways represents a promising pharmacological strategy to treat 
inflammatory diseases by promoting resolution of inflammation. For simplicity, some of the pathways mediated by PKA, Epac, and Rap1 have been omitted. (Created 
with Biorender ®). 
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resolution induced by melanocortin peptides or synthetic agonists is 
still to be determined. Recent studies have shown that activation of 
non-canonical pathways, such as phosphorylation of ERK1/2, and not 
cAMP signaling pathway, might be major inducers of efferocytosis and 
modulators of cytokine production by inflammatory cells [72,73]. 
Therefore, more studies are necessary to clarify this controversy and to 
determine the exact role of cAMP as a mechanism for melanocortin- 
induced resolution of inflammation. 

As mentioned before, there is still much to be understood in the 
signaling mechanisms of pro-resolving mediators. cAMP intracellular 
pathways are often triggered during self or drug-induced resolution of 
inflammation and therefore, must be considered as an important com-
ponent of the complex network of resolution. 

3. cAMP regulates pro-inflammatory cytokines and granulocyte 
recruitment 

Among the features of resolution of inflammation, reduction of 
granulocyte recruitment and production of phlogistic cytokines are one 
the earliest steps of the effective termination of the inflammatory pro-
cess [4]. Activation of cAMP pathways are long described to control 
pro-inflammatory cytokine production and leukocyte recruitment [19] 
(Fig. 2). 

Pro-inflammatory cytokines such as chemokines, interleukins, and 
others, are relatively small proteins (< 40 kDa) produced by immune 
and non-immune cells during injury/infection [74]. Chemokines and 

cytokines act through different GPCRs leading to activation of leuko-
cytes, endothelial cells and stromal cells culminating with the recruit-
ment and/or activation of immune cells [75]. Differently from pro-re-
solving GPCRs, the chemokine receptors are Gαi/o-coupled and upon 
activation reduce adenylate cyclase activity limiting the intracellular 
levels of cAMP and PKA activation [76]. On the other hand, accumu-
lation of intracellular cAMP with consequent activation of PKA and 
Epac1/2 is widely known to decrease the expression of pro-in-
flammatory cytokines and chemokines with consequent decreased ac-
tivation and recruitment of leukocytes [25] (Fig. 2). Among the pro- 
inflammatory mediators, cAMP elevating agents were shown to di-
minish the levels of TNF-α [77], IL-12 [78], leukotriene B4 (LTB4) [79], 
IL-1β [80] and chemokines such as CCL3 [81], CXCL1 [42], CCL2, CCL4 
[82] and CCL11 [83]. Therefore, it is not surprising that evidence from 
pre-clinical and human studies have shown that increased cAMP levels 
can decrease T cell activation [84], neutrophil oxidative responses [85], 
migration of eosinophils [86], and counter-regulate the expression of 
adhesion molecules in leukocytes and endothelial cells [87–91]. As il-
lustrated in Fig. 2, cAMP activation of PKA inhibits RhoA-induced ex-
pression of integrins in the granulocyte surface [92]. The reduced ex-
pression of chemokines and adhesion molecules culminate with 
diminished recruitment of inflammatory leukocytes in tissues, which 
represents an interesting therapeutic strategy for several inflammatory 
diseases. Indeed, we and others have shown that PDE4 inhibitors reduce 
granulocyte recruitment and activation in the lungs and pleura [93], 
being protective in models of COPD, asthma [94], pleurisy [41,95,96] 

Fig. 2. Schematic representation of cAMP dependent regulation of pro-inflammatory cytokines and pro-resolving mediators. Elevations in cAMP in-
tracellular levels activate protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac)-dependent pathways. PKA phosphorylates the tran-
scription factor CREB, leading to the transcription of anti-inflammatory cytokines and production of pro-resolving mediators such as Annexin A1 (AnxA1), and the 5- 
lipoxygenase (5-LOX) enhancing the production of 15-epi-lipoxin A4. In addition, PKA inhibits (glycogen synthase kinase 3) GSK3, the PI3K/Akt pathway and NF-κB 
decreasing secretion of pro-inflammatory cytokines and pro-survival signals. Moreover, PKA inhibits the Ras Homolog Family Member A (RhoA)-dependent ex-
pression of integrins in granulocytes. Among the cAMP/Epac-induced pathways, activation of the protein kinase B and consequent inhibition of GSK3β decreases 
production of pro-inflammatory cytokines, in part through the activation of the repressor transcription factor CCAAT displacement protein (CDP). Epac activates the 
Ras-proximate-1 or Ras-related protein 1 (Rap1) signaling leading to activation of c-Jun and C/EBP that promote the expression of SOCS-3 with consequent inhibition 
of IL-6 induced signaling. (Created with Biorender ®). 
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and even pneumonia [42]. This modulation of inflammation was also 
shown to improve the outcome from diseases not related to the lungs, 
such as psoriasis, inflammatory bowel diseases, rheumatic arthritis, 
lupus, and neuroinflammation [97]. 

The effects of cAMP on the regulation of pro-inflammatory media-
tors were first described to be mediated by PKA, an effect that can lead 
to inhibition of NF-κB-induced gene transcription [98–100]. NF-κB is a 
family of transcription factors that, upon activation, promote the ex-
pression of genes related to inflammatory and anti-apoptotic responses 
[101,102]. Proteins from the IκB (inhibitor of κB) family sequester NF- 
κB in the cytoplasm. Pro-inflammatory signals (cytokines, pathogen 
related molecules, etc) activates a complex of cytoplasmic kinases (IκB 
kinase - IKK) that phosphorylates IκB molecules. After being phos-
phorylated IκB undergoes degradation by proteasome and release the 
NF-κB dimer (mainly composed by p50-p65) that can translocate to the 
nucleus inducing its target genes [103]. cAMP-activated PKA can in-
hibit NF-κB through different mechanisms depending on the cell type 
and inflammatory stimuli. cAMP/PKA activation can prevent IκB de-
gradation, hence preventing NF-κB translocation [104,105], and in-
hibits signaling pathways that lead to NF-κB activation, such as PI3K/ 
Akt [96]. In addition, there is evidence for a role of the cAMP/PKA 
pathway in repressing NF-κB-induced gene expression through the 
formation of the repressive dimer (i.e. p50-p50) instead of activating 
NF-κB complexes (i.e. p50-p65) that have transcriptional activity 
[106,107]. 

Activation of Epac by cAMP was also shown to reduce NF-κB acti-
vation [108]. In addition, cAMP/Epac pathway modulates pro-in-
flammatory cytokine responses through the induction of suppressor of 
cytokine signalling-3 (SOCS-3) that inhibits signaling from gp130- 
linked class I cytokine receptors such as the IL-6 receptor [109,110], 
preventing inflammation-induced dysfuction in endothelial cells [111]. 
Epac induction of SOCS3 prevents JAK-dependent phosphorylation and 
activation of STAT1/3, preventing further signaling from this class of 
cytokine receptors [112]. Moreover, Epac was shown to decrease the 
production of interferon-β and CCL3/4 through the activation of the 
protein kinase B (PKB) and PI3K/Akt pathway with consequent in-
hibition of glycogen synthase kinase 3 beta (GSK-3β) in murine mac-
rophages [113] and dendritic cells [114]. Of note, inhibition of GSK-3 
prevents the phosphorylation and activation of the transcriptional re-
pressor CCAAT displacement protein (CDP), the downstream molecular 
mechanism for cAMP/Epac-mediated reduction of CCL3/4 levels [114]. 

The role of these different cAMP dependent pathways in reducing 
inflammatory cytokines may vary depending on the cell type and the 
mediator under investigation. Moreover, the balance of cAMP levels 
might also be important to determine the inhibitory action of this 
second messenger since overaccumulation of cAMP may induce, rather 
than block, chemokine release from macrophages in vitro [115]. Whe-
ther this effect also occurs in vivo and which type of cell would be re-
cruited still need clarification. 

4. cAMP modulates granulocyte apoptosis and phagocytosis 

Induction of granulocyte apoptosis and subsequent efferocytosis 
ensures nonphlogistic cell death and clearance of cells in the tissue, 
preventing chronic inflammation [116]. The signaling pathways 
leading to apoptosis have been widely studied and explored ther-
apeutically. Apoptosis of granulocytes can be triggered by two signaling 
cascades – intrinsic and extrinsic pathways [117]. The intrinsic 
pathway is triggered by extracellular or intracellular signals that in-
crease mitochondrial membrane permeabilization to internal cyto-
chrome C that is released to the cytosol [117]. Then, cytochrome C can 
associate with the adaptor protein Apaf-1 to form the apoptosome 
leading to downstream activation of caspase-9 that can further activate 
caspases-3 and 7 [117]. The extrinsic pathway is activated by the 
binding of the plasma membrane receptor Fas to Fas ligand (Fas-L) or 
other similar receptors, such as TNFR1 or TRAIL. Fas-L combines with 

Fas to form a death complex that recruits the death domain-containing 
protein (FADD) and pro-caspase-8, forming the death-inducing sig-
naling complex (DISC). This protein complex cleaves and activates pro- 
caspase-8 that will further activate caspase-3. When activated by either 
the intrinsic or extrinsic pathways, caspases-3 and -7 can cleave dif-
ferent cell substrates, ultimately leading to phosphatidylserine ex-
posure, nuclear condensation, membrane blebbing, and genomic DNA 
fragmentation - the classical features of apoptosis [117]. Of interest, 
neutrophil apoptosis through the extrinsic death receptor pathway is 
regulated by intrinsic pathway proteins, highlighting the pivotal role of 
the intrinsic pathway mediating cell death in this leukocyte [118,119]. 

cAMP modulates the apoptotic pathways in different cell types, in-
creasing or delaying death [120]. We have previously determined the 
important role of cAMP in inducing resolution of acute inflammation by 
promoting granulocyte apoptosis in vivo [41,95,96]. We have demon-
strated that activation of PKA triggered the intrinsic pathway leading to 
the ultimate neutrophil or eosinophil apoptosis [41,95,96]. Note-
worthy, cAMP induced neutrophil apoptosis was shown to be depen-
dent on AnxA1 and its receptor FPR2/ALX [41]. During inflammation, 
increased cAMP levels bends the balance between pro and anti-apop-
totic proteins favoring the induction of cell death. Indeed, anti-apop-
totic proteins, such as Mcl-1 and pro-survival proteins including PI3K/ 
Akt and NF-κB were shown to be reduced by analogs of cAMP and PDE4 
inhibitors [95]. In addition, increased cAMP enhanced the levels of the 
pro-apoptotic protein BAX [96], promoted caspase-3 activation [95] 
and phosphatidylserine eversion to outer cell membrane (as evaluated 
by Annexin V staining) [41,95,96] (Fig. 3A). The pro-apoptotic effect of 
cAMP elevating agents was also observed in cultured human neu-
trophils stimulated with bacterial lipopolysaccharides (LPS) [41]. 
Granulocyte fate (i.e. whether it undergoes apoptosis or remains viable) 
depends on the balance of pro-survival stimuli, such as LPS and GM- 
CSF, oxygen availability, and the presence of pro-apoptotic stimuli, 
including Fas ligand and TNF [121]. In contrast with our results, some 
in vitro studies have shown that increases of cAMP levels by cAMP 
analogs or PDE4 inhibitors delayed neutrophil apoptosis in the absence 
of pro-survival stimuli [122–125]. Interestingly, these studies also 
consider PKA as the mediator of the pro-survival responses. These 
contrasting results highlight the important role of the inflammatory 
milieu directing and dictating the cellular responses to cAMP. In pro- 
inflammatory conditions, the pro-survival stimuli to granulocytes found 
inside the inflammatory milieu may be counter-regulated by cAMP 
elevating agents [41]. Indeed, this environmental effect can also be 
noted in neutrophils treated with GCs. While GCs were shown to pro-
long neutrophil survival in culture [126], during inflammatory [38] or 
under hypoxia [126] conditions, the pro-survival stimuli for neutrophils 
are inhibited by GCs, leading to apoptosis. 

In addition to inducing leukocyte apoptosis, several studies have 
also shown that increased levels of cAMP induce death of tumor cells 
[127–129]. cAMP was implicated as a regulator of cell growth inducing 
arrest of proliferation and apoptosis of different types of tumor cells 
while contributing to decreased inflammation, a key determinant of 
cancer progression [127–129]. In this regard, roflumilast, a selective 
PDE4 inhibitor, was shown to effectively inhibit proliferation, and in-
duce apoptosis of two ovarian cancer cell lines in vitro and in vivo, acting 
through the activation of cAMP/PKA/CREB pathway [130]. 

Apoptotic cells must be cleared from the tissue to limit further in-
flammation. This task is achieved particularly by macrophages – but 
also other phagocytes – through a special type of phagocytosis, called 
efferocytosis. Efferocytosis has profound consequences on innate and 
adaptive immune responses in inflamed tissues [131] and is essential 
for normal tissue homeostasis and resolution of inflammation [132]. 
Soluble mediators such as cytokines (e.g. TGF-β and IL-10), serum 
proteins (e.g. complement factors, collectins), prostaglandins (e.g. 
PGE2) and pro-resolving such AnxA1 and SPMs (e.g. lipoxins, maresins, 
resolvins) play a crucial role in the resolution of inflammation by in-
ducing efferocytosis [132]. Indeed, the ability of macrophages to clear 
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apoptotic cells critically determines the rate at which inflammation 
resolves [132,133]. Of note, there is abundant evidence that effer-
ocytosis of apoptotic cells suppresses macrophage production of pro- 
inflammatory mediators such as TNF-α, IL-1, CXCL-1, IL-8, and leuko-
triene C4 (LTC4) and promotes release of anti-inflammatory molecules, 
including TGF-β, IL-10, nitric oxide, and prostaglandin E2 (PGE2) [134] 
and pro-resolving mediators such as resolvins and lipoxins [135]. In 
addition, failure to clear dead cells exacerbates inflammation empha-
sizing efferocytosis as a pivotal promoter of resolution [136–138]. 

Previously, we discussed the role of cAMP-triggered pathways in 
inducing apoptosis and shifting the production of pro-inflammatory to 
pro-resolving mediators. Therefore, one can hypothesize that cAMP 
could also be involved in induction of efferocytosis by different mac-
rophages (Fig. 3B). Increased levels of cAMP in macrophages are as-
sociated with increased engulfment of apoptotic granulocytes through 
the activation of the Rac Family Small GTPase 1 (Rac1) in a PKA-de-
pendent pathway [139]. In addition, enhanced levels of cAMP in 
macrophages, induced by binding to lysophosphatidylserine (lysoPS) 
expressed on apoptotic neutrophils, promotes eff ;erocytosis [140]. 
Recently, our group showed that db-cAMP, a cell-permeable cAMP 
mimetic, increases the expression of the brigding/engulfment mole-
cules CD36 and AnxA1 in a murine model of LPS-induced pleurisy [65]. 
We have shown that the long term treatment with db-cAMP increased 
apoptotic neutrophil efferocytosis in vivo (7 h of treatment) and in vitro 

(24 h of treatment) in a PKA-dependent manner [65]. On the other 
hand, Rossi and colleagues have shown that short exposure of human 
monocyte-derived macrophages to PGE2, PGD2, db-cAMP or 8-Br-cAMP 
(a cAMP analog) decreased efferocytosis of neutrophils [141]. Given 
the divergence of these two studies, we hypothesize that longer treat-
ment seems to be essential to alter macrophage responses through in-
creasing expression of engulfment/bridging molecules involved in the 
recognition and engulfment processes [65]. 

Pro-resolving mediators that are known to increase the levels of 
cAMP, such as melanocortins, MaR1 and RvD5n-3 DPA, are also in-
ducers of efferocytosis [49,68,142,143]. The agonism of melanocortin 
receptors, by LGR6 (the receptor for Mar1) or GPR101 (RvD5n-3 DPA 
receptor), profoundly enhanced the phagocytosis of human and mouse 
apoptotic neutrophils while increasing intracellular cAMP levels 
[49,64,142]. However, whether the induction of efferocytosis by SPMs 
is a direct action of cAMP remains to be described. In addition, RvD1 
increases efferocytosis by preventing the oxidative apoptosis of mac-
rophages. RvD1 is an agonist for FPR2/ALX in macrophages leading to 
increased intracellular cAMP levels and activation of PKA [144]. The 
triggered signaling pathway leads to reduction of pro-apoptotic proteins 
promoting macrophage survival and ensuring effective efferocytosis 
[144]. 

Not surprisingly, the role of cAMP during phagocytosis, as it is for 
efferocytosis, is controversial. Classically, increased intracellular levels 

Fig. 3. Schematic representation of the cAMP dependent regulation of granulocyte apoptosis and efferocytosis. (A) Increased levels of cAMP and consequent 
activation of PKA in granulocytes leads to inhibition of pro-survival pathways (PI3K/Akt and NF-κB) and decrease the amount of Mcl-1, an anti-apoptotic member of 
the Bcl-2 family. Activation of PKA also leads to increased expression of the pro-apoptotic Bcl-2 family member Bax. By shifting the balance between pro-and anti- 
apoptotic members of Bcl-2 family, cytochrome C is released with further caspase-3 activation, promoting apoptosis. In addition, there is cAMP-dependent phos-
phatidylserine externalization, another marker of apoptosis. (B) cAMP enhances efferocytosis by promoting Annexin A1 (AnxA1) and CD36 expression in the 
phagocyte surface. In addition, cAMP/PKA activates Rac1 GTPAse that promotes cytoskeleton changes to favor efferocytosis. cAMP also induces macrophage 
polarization to the M2 phenotype. M2 macrophages are more prompt to engulf apoptotic cells and debris, enhancing resolution processes. PKA mediates the 
phosphorylation of STAT-3/6 and activates ERK1/2 leading to transcription of M2-associated genes. In addition, PKA inhibits SIK-inhibition of CRTC3 leading to its 
translocation to the nucleus and association with PKA-phosphorylated CREB (p-CREB) promoting the expression of M2 genes. p-CREB promotes the expression of 
anti-inflammatory cytokines such as IL-10. (Created with Biorender ®). 
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of cAMP are correlated with impaired phagocytosis and killing of 
bacteria or other particles [25,100]. Mechanistically, increased cAMP 
levels reduced expression of phagocytosis-related receptors such as 
complement receptors, scavenger receptors and Fc gamma receptors via 
PKA/Epac pathways [145,146]. In addition, cAMP was shown to inhibit 
the production of ROS impairing bacterial killing [145,147]. In contrast 
with these findings, there is evidence to suggest that the clearance of 
pathogens, a feature of resolution of inflammation, may be enhanced by 
cAMP [42,58,148,149]. Recently, treatment of Mycobacterium tubercu-
losis (Mtb)-infected macrophages with lysophosphatidylcholine (LPC) 
was shown to increase cAMP levels and activate PKA to promote pha-
gosome maturation [148]. This process was dependent on the PKA 
phosphorylation of GSK3β that also reduced NF-κB, leading to de-
creased secretion of pro-inflammatory cytokines and increased pro-
duction of anti-inflammatory cytokines. Therefore, LPC could effec-
tively control Mtb growth by promoting phagosome maturation via 
cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway [148]. 
Similarly, we have shown that PDE4 inhibition increases phagocytosis 
of Streptococcus pneumoniae during the later stages of lung infection 
[42]. In addition, increased cAMP levels was shown to increase the 
phagocytic uptake and ROS-mediated killing of bacteria in human and 
mouse neutrophils [149]. Moreover, treatment with RvD5 decreased 
expression of PDE4 (potentially increasing cAMP levels) leading to 
enhanced E. coli phagocytosis in human macrophages [58]. Further-
more, RvE1, RvD1, RvD5, LXB4, and MaR1, a cluster of SPMs upregu-
lated during normal coagulation, were shown to signal resolution 
through the CREB pathway increasing phagocytosis and killing of 
bacteria by human leukocytes [67]. The discrepancy among studies 
may be related to the timing and magnitude of cAMP intracellular le-
vels. Moreover, depending on the environment (e.g. cytokines and 
other stimuli in the milieu), cAMP can trigger different pathways ex-
plaining these contrasting effects. 

5. cAMP induces macrophage polarization 

Macrophages coordinate both the onset and resolution of in-
flammation: promoting inflammation and clearance of pathogens; but 
also performing efferocytosis and production of pro-resolving molecules 
[135]. As such, different phenotypes of macrophages have been de-
scribed to play segregated functions [6,138,150,151]. 

Recently, macrophage subtypes and nomenclature have been dis-
cussed. During inflammation, a continuum of macrophage phenotypes 
coexists orchestrating the different phases of the response. The cate-
gorization of macrophage phenotypes, although artificial, is helpful for 
research and teaching purposes. The most commonly accepted classi-
fication or nomenclature for the different macrophages phenotypes are 
M1 and M2 (M2a, M2b, M2c and M2d) or classically activated and 
alternatively activated, respectively [152,153]. In vitro, the M1 pro- 
inflammatory phenotype is induced by exposure to IFN-γ combined 
with LPS or TNF-α, whereas the M2 anti-inflammatory phenotype is 
induced by IL-4/IL-13 (M2a), immune complexes and Toll-like receptor 
agonists such as LPS (M2b), IL-10, TGF-β or glucocorticoid hormones 
(M2c) and, IL-6 and agonists for the adenosine receptor A2A (M2d) 
[152–156]. A variety of markers are used to determine these pheno-
types, including proteins, cytokines, chemokines, receptors, and others. 
The most commonly used markers to characterize the M1 phenotype 
are the expression of inducible nitric oxide synthase (iNOS) and pro- 
inflammatory cytokines, such as IL-1β, TNF-α, and IL-6 [152,153,157]. 
The traditional M2 markers are Arginase 1 (Arg-1), CD206 (mannose 
receptor) and anti-inflammatory cytokines, such as IL-10 and TGF-β 
[152,153,157]. 

Macrophage polarization is a feature of the resolution of in-
flammation [17] and might be induced before or after efferocytosis of 
apoptotic bodies [158–160]. Bystrom and colleagues firstly identified 
the involvement of cAMP pathways in macrophage polarization, 
showing increased production of cAMP by resolution phase 

macrophages (rMs) [66]. Later, the direct involvement of cAMP in 
polarization of murine macrophages (RAW 264.7) was determined 
through the cAMP dependent induction of Arg-1 expression [161]. In 
agreement with that, treatment with forskolin (activator of AC) in a 
model of autoimmune encephalomyelitis (EAE) increased M2 (miR- 
124, Arg-1, Mrc-1, Fizz-1 and Ym-1) and decreased M1 markers (NOS2 
and CD86), a process dependent on ERK signaling, with an additional 
reduction of proinflammatory cytokines produced by pathogenic T CD4 
cells [162]. Similarly, we have recently shown that db-cAMP increases 
the expression of Arg-1, CD206, Ym-1 and IL-10 levels (M2 markers) in 
bone marrow-derived macrophages (BMDMs) and RAW 264.7 macro-
phages, in a PKA-dependent manner [65]. Of note, db-cAMP promotes 
non-typical polarization to the M2 profile, as it induces iNOS expres-
sion, albeit at significantly lower levels than that induced by LPS/IFN-γ 
[65]. The expression of iNOS is indeed an important determinant for 
the clearance of bacteria, through the production of reactive nitrogen 
species (RNS) [163], and might explain the protective effect of rolipram 
during the late stages of bacterial infection [42]. Noteworthy, cAMP 
elevating agents (forskolin, IBMX, 8-Br-cAMP and db-cAMP) may sy-
nergize with IL-4 to induce M2 polarization of BMDMs, RAW 264.7 cells 
or human alveolar macrophages [65,161,162,164]. Mechanistically, 
cAMP induces M2 polarization through phosphorylation of STAT3 
[65,165] and STAT6 signaling [161] and also re-educates M1 macro-
phages towards an M2-like phenotype by decreasing STAT1 phos-
phorylation [65]. In keeping with that, we have shown that db-cAMP 
decreases the number of M1 macrophages in LPS-induce pleurisy, while 
inhibition of the cAMP-pathway by using a PKA inhibitor prevents 
natural resolution of inflammation [65]. These results evidenced the 
critical role of cAMP not only in macrophage polarization, but also for 
the efficient resolution of inflammation. Fig. 3B illustrates the main 
signaling pathways triggered by cAMP to induce macrophage polar-
ization. 

Pro-resolving mediators known to induce cAMP-dependent cellular 
responses, such as RvD2 [50,166,167], RvD1 [144,167], melanocortin 
[168,169], MaR1 [64,170] and AnxA1 [41,171], promote the polar-
ization of macrophages to a regulatory phenotype. As such, the po-
tential antifungal and anti-inflammatory mechanism of the synthetic 
melanocortin peptides (Ac-Cys-Lys-Pro-Val-NH2)2 and (CKPV)2 is the 
polarization of M1 macrophages to the M2 phenotype, what was as-
sociated with increased cAMP, Arg-1 and IL-10 levels in macrophages 
[169]. Similarly, PGE2 induces the expression of several M2 markers in 
BMDMs via cAMP-induced CREB/CRTC2/3/KLF4 pathway [172] and 
in gilthead seabream macrophages through the cAMP/PKA/CREB 
pathway [173]. Of interest, PGE2 signaling through CREB activation 
was shown to be protective in models of periodontal disease promoting 
tissue repair [174], a feature of M2 macrophages [151]. 

Additional signaling pathways related to macrophage polarization 
are beginning to be unraveled. The activation of salt-induced kinase 2 
(SIK2) seems to be an important step to change macrophage phenotype. 
cAMP activated-PKA phosphorylates SIK2 that consequently prevents 
the phosphorylation of CREB-regulated transcription coactivator 3 
(CRTC3). Unphosphorylated CRTC3 translocates to the nucleus to in-
teract with CREB, which in turn can induce the transcription of M2 
genes such as IL-10 in macrophages (Fig. 1) [175,176]. The mechanism 
of action of the clinically approved cancer drugs bosutinib and dasa-
tinib is by the induction of CRTC3 dephosphorylation, interaction with 
CREB, transcription of IL-10 and polarization of macrophages to reg-
ulatory phenotypes. This effect occurs in a SIK2-dependent manner 
[177]. Indeed, pharmacological or genetic inhibition of SIKs also pro-
motes the dephosphorylation of CRTC3 in BMDMs, resulting in the 
translation of CRTC3 into the nucleus, where it acts as a cofactor for the 
transcription of CREB-dependent genes, including a transcription of IL- 
10 and other macrophage markers (M2b), such as SPHK1, LIGHT and 
Arg-1 [178]. These studies demonstrate the importance of the cAMP→ 
PKA→SIK→CTCR3→CREB→IL-10 axis in the polarization of macro-
phages to anti-inflammatory profiles, suggesting that drugs already 
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approved for different clinical uses might be assigned to treat in-
flammatory diseases. It is important to note that since PKA can directly 
activate CREB, the axis described above may not occur in a linear 
fashion. As such, different intracellular pathways can be triggered and 
converge in many points to induce macrophage polarization. 

M2 macrophages produce IL-10 and favor further efferocytosis and 
resolution [179]. Part of the pro-resolving mechanism of some SPMs, 
such as RvD1, include macrophage polarization to M2 phenotype and 
increased expression of IL-10 [180]. We have shown that the pro-re-
solving proteins plasminogen and plasmin [181] also induce macro-
phage polarization associated with increased production of IL-10 [182]. 
Interestingly, LPS has been shown to have a synergistic effect with 
isoproterenol, a cAMP-inductor, on IL-10 expression through CREB 
activation, demonstrating that cAMP induces IL-10 not only in a non- 
inflammatory context, but also during inflammation, what contribute to 
modulation of the response and induction of resolution [183]. In 
agreement with that, we have shown that db-cAMP was able to induce 
IL-10 production during inflammation both in vitro and in vivo, re-
inforcing its resolving properties [65]. 

Polarization of macrophages is a coordinated process that can be 
initiated by the very same stimuli that induce their activation, such as 
pathogen-associated molecular patterns (PAMPs) and damage-asso-
ciated molecular patterns (DAMPs) [184]. Activated macrophages un-
dergo metabolic alterations that lead to ATP production and release. 
Macrophage ectoenzymes in the cell surface, such as CD39 and CD73, 
can convert ATP to adenosine [184]. Adenosine is a purine nucleoside 
and mediator of metabolic stress that can act through binding to A2A 
and A2B receptors and activate AC to increase intracellular cAMP levels 
[185], leading to downregulation of inflammatory cytokines and in-
duction of a regulatory state in macrophages [184]. Adenosine has been 
shown to have a synergistic effect with IL-4 and IL-13 on the induction 
of Arg1 and TIMP-1 (M2 markers) in murine macrophages via C/EBPβ 
and p38 pathways [186]. In vitro adenosine has been shown to have 
synergistic effects with IL-10 on the repolarization of macrophages to 
an M2c profile in RAW 264.7 macrophages by inducing Arg-1, BCL-3 
and TIMP-1, an event dependent on the A2A, A2B receptors and STAT3 
[187]. Interestingly, the induction of M2c phenotype in murine peri-
toneal macrophages increases the expression of CXCR4 leading to 
macrophage egression to the lymph nodes, what might contribute to 
resolution of inflammation [188]. Whether cAMP is directly involved 
with this import step remains to be determined. 

The observation that macrophage functional phenotypes can be 
manipulated has drawn attention to macrophages as a potential ther-
apeutic target [189,190]. Thus, elucidation of the signaling pathways 
that regulate macrophage functional polarization will aid in the design 
of strategies for modification of macrophage responses. 

6. cAMP promotes nonphlogistic recruitment of monocytes/ 
macrophages 

Another key step for resolution of inflammation is the nonphlogistic 
recruitment of monocytes to the inflammatory site and further differ-
entiation in macrophages with pro-resolving phenotypes [14,191]. This 
additional recruitment of cells provides a further opportunity to pro-
mote the clearance of debris and apoptotic neutrophils in the site of 
inflammation, preventing secondary necrosis and exposure to harmful 
neutrophil intracellular contents in the tissue [14]. Indeed, pro-resol-
ving molecules including LXA4 [192,193], AnxA1 [194,195] and plas-
minogen/plasmin [182,196] regulate the spatiotemporal nonphlogistic 
recruitment of monocytes/macrophages, events that contribute to ef-
ferocytosis and consequent resolution of inflammation. Of interest, we 
recently showed that db-cAMP promotes specific and timely regulated 
monocyte recruitment in vivo, which was associated with increased 
production of IL-10 and CCL2, but not other pro-inflammatory cyto-
kines/chemokines such as IL-6, TNF-α and CXCL1. Mechanistically, db- 
cAMP-induced macrophage recruitment was shown to be dependent on 

the CCL2:CCR2 axis and activation of PKA [65]. Noteworthy, the MEK/ 
ERK1/2 pathway, which triggers CCL2 production and controls cell 
migration [196–198], was shown to mediate the db-cAMP-induced 
mononuclear cell migration (unpublished data from our group). 
Therefore, a growing amount of evidence supports the role of cAMP in 
the recruitment and polarization of macrophages to the M2 phenotype 
contributing to resolution of inflammation. 

7. Concluding remarks 

The complexity of inflammation is well-appreciated by the myriad 
of intracellular signaling pathways that have been identified and stu-
died in detail [7]. Different pro-inflammatory signals trigger a multi-
faceted net of synergic pathways that culminate with cell activation, 
migration, production of cytokines and other molecules, that ultimately 
ensure an effective immune response against an invading pathogen [3]. 
In the past years, the molecular mechanisms related to inflammatory 
responses have been vastly explored therapeutically [199]. On the 
other hand, the signaling pathways triggered and regulated during the 
resolution of inflammation are still less understood. Different pro-re-
solving mediators activate interconnected intracellular pathways 
leading to important features of resolution: apoptosis, efferocytosis/ 
phagocytosis, reduction of inflammatory mediator production and re-
cruitment of granulocytes, macrophage recruitment and polarization 
[200]. Of note, signaling pathways elicited during inflammation may 
induce the switch to the cell pro-resolutive status leading to the pro-
duction of pro-resolving mediators [15,184]. Here we suggest cAMP as 
an important intracellular inducer of resolution during both sterile and 
infectious inflammatory responses. Evidence gathered by our group and 
others have shown that increased cAMP levels are associated with the 
induction and mechanism of action of different pro-resolving mediators 
(Fig. 4). 

Increased intracellular levels of cAMP are often associated with anti- 
inflammatory effects such as production of IL-10 and blockage of leu-
kocyte infiltration and pro-inflammatory cytokine production [25]. In 
the context of autoimmune or chronic inflammatory diseases, anti-in-
flammatory drugs are very useful to prevent overwhelming responses 
and tissue damage [11,13,25]. However, sustained anti-inflammation 
may increase host susceptibility to infections. Therefore, inflammation 
plays a dual role in the context of infectious diseases; ie. it is crucial for 
pathogen clearance but detrimental if uncontrolled/exaggerated, when 
it can cause tissue damage and contribute to morbidity and mortality 
[201]. In this regard, pro-resolving mediators and drugs that induce 
resolution, rather than block inflammation, represent a better phar-
macological strategy. The growing field of resolution pharmacology is 
based on innovative approaches that utilize patients’ endogenous re-
solution pathways for tissue protection and improvement of in-
flammatory diseases [202]. In this regard, cAMP elevating agents might 
represent new resolution therapeutics for inflammatory diseases. No-
teworthy, PDE4 inhibitors have been recently suggested as a treatment 
option for the hyperinflammation seen in patients with pneumonia 
caused by the pandemic SARS-CoV-2 virus [203]. As for influenza in-
fections, PDE4 inhibition might decrease inflammation in the lungs 
without causing immunosuppression and increased virus proliferation 
[204]. Indeed, the prolonged use of apremilast (a selective PDE4 in-
hibitor approved for psoriasis treatment) was associated to protection 
effect against COVID-19 severity, an effect considered secondary to 
drug-induced modulation of inflammation [205]. Further clinical stu-
dies with bigger cohort are needed to prove this hypothesis. 

Here, we present evidence for a central role of cAMP as a messenger 
of resolution of inflammation promoting apoptosis of granulocytes, 
efferocytosis/phagocytosis, macrophage recruitment and polarization 
and production of pro-resolving molecules (Fig. 4). The cAMP effectors 
PKA and Epac have been shown to coordinate specific features of re-
solution triggering cell-dependent pathways. Importantly, while PKA is 
often suggested as the main effector of cAMP-responses in the induction 
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of resolution, some of the evidence in the reported studies is supported 
solely by pharmacological inhibition of PKA by drugs such as H89. This 
compound is a competitive antagonist of the adenosine triphosphate 
(ATP) site on the PKA catalytic subunit, preventing its actions. Note-
worthy, H89 has off-target actions as it also inhibits other kinases, in-
cluding the mitogen- and stress-activated kinase-1 (MSK-1), which is a 
regulator of NF-κB, a promoter of inflammation and cell survival [206]. 
Trying to overcome the pharmacological problems of PKA inhibition, 
some of the studies utilized the compound Rp-adenosine-3′,5′-cyclic 
monophosphorothioate (Rp-cAMPS) [41]. Although often considered 
selective inhibitors of PKA, Rp-cAMPS can also bind to other molecules, 
including Epac, contain cyclic nucleotide–binding sites similarly to PKA 
[207]. Therefore, while there is robust amount of evidence for cAMP 
actions in the induction of resolution of inflammation, the use of re-
levant genetic strategies such as RNAi or gene knockout must be pur-
sued to clarify the triggered effectors that signal the biological effect of 
cAMP. Understanding the molecular aspects and the dynamic of sig-
naling pathways of resolution offers a new perspective on the devel-
opment of novel therapeutic strategies for inflammatory diseases. 
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