DISSERTAÇÃO DE MESTRADO № 1281

#### CONTRIBUIÇÕES PARA ESTUDOS DE QUALIDADE DE ENERGIA EM UMA PLANTA DE MINERAÇÃO - ESTUDO DE CASO

Wiverton Nunes Silva

DATA DA DEFESA: 08/07/2022

Wiverton Nunes Silva

# Contribuições para Estudos de Qualidade de Energia em uma Planta de Mineração - Estudo de Caso

Belo Horizonte - Minas Gerais Julho, 2022

#### Wiverton Nunes Silva

### Contribuições para Estudos de Qualidade de Energia em uma Planta de Mineração - Estudo de Caso

Dissertação de Mestrado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do Título de Mestre em Engenharia Elétrica.

Área de concentração: Engenharia de Potência.

Universidade Federal de Minas Gerais - UFMG

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica - PPGEE

Orientador: Prof. Dr. Igor Amariz Pirez Co-orientador: Prof. Dr. Sidelmo Magalhães Silva

> Belo Horizonte - Minas Gerais Julho, 2022

#### Silva, Wiverton Nunes. S586c Contribuições para estudos de qualidade de energia em uma planta de mineração - estudo de caso [recurso eletrônico] / Wiverton Nunes Silva. - 2022. 1 recurso online (115 f. : il., color.) : pdf. Orientador: Igor Amariz Pires. Coorientador: Sidelmo Magalhães Silva Dissertação (mestrado) - Universidade Federal de Minas Gerais, Escola de Engenharia. Anexos e apêndices: f. 87-115. Bibliografia: f. 84-86. Exigências do sistema: Adobe Acrobat Reader. 1. Engenharia elétrica - Teses. 2. Energia elétrica - Qualidade - Teses. 3. Fator de potência - Teses. 4. Harmônicos (Ondas elétricas) - Teses. I. Pires, Igor Amariz. II. Silva, Sidelmo Magalhães III. Universidade Federal de Minas Gerais. Escola de Engenharia. IV. Título. CDU: 621.3(043)

Ficha catalográfica elaborada pelo bibliotecário Reginaldo César Vital dos Santos CRB/6 2165 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

13/07/22, 14:11

SEI/UFMG - 1560278 - Folha de Aprovação



UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

#### "CONTRIBUIÇÕES PARA ESTUDOS DE QUALIDADE DE ENERGIA EM UMA PLANTA DE MINERAÇÃO -ESTUDO DE CASO"

#### WIVERTON NUNES SILVA

Dissertação de Mestrado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do grau de Mestre em Engenharia Elétrica.

Aprovada em 08 de julho de 2022. Por:

Prof. Dr. Igor Amariz Pires (UFMG) - Orientador Prof. Dr. Sidelmo Magalhães Silva Prof. Dr. Tomas Perpetuo Correa Prof. Dr. Thiago Morais Parreiras



Documento assinado eletronicamente por **Igor Amariz Pires, Professor do Magistério Superior**, em 08/07/2022, às 16:06, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº</u> 10.543, de 13 de novembro de 2020.



A autenticidade deste documento pode ser conferida no site <u>https://sei.ufmg.br/sei/controlador\_externo.php?</u> <u>acao=documento\_conferir&id\_orgao\_acesso\_externo=0</u>, informando o código verificador **1560278** e o código CRC **F260AC92**.

Referência: Processo nº 23072.237451/2022-76

SEI nº 1560278

https://sei.ufmg.br/sei/controlador.php?acao=documento\_imprimir\_web&acao\_origem=arvore\_visualizar&id\_documento=1673652&infra\_sistema... 1/1

Dedico este trabalho a todos os mestres que constroem a ciência de grão em grão contribuindo para um mundo mais justo e melhor.

## Agradecimentos

Primeiramente agradeço ao Universo por proporcionar que eu conquistasse esse sonho, de concluir o Mestrado.

Em segundo lugar gostaria de agradecer a minha esposa Carolina de Évora Gomes, por me proporcionar o incentivo e ambiente para trilhar este caminho. Agradeço a minha mãe, pai e irmão por incentivar a busca contínua pelo conhecimento em todas as etapas da minha vida e nunca mediram esforços para me ajudar.

Ao meu orientador, Prof<sup>°</sup>. Dr. Igor Amariz Pires, por todo apoio, ajuda e orientação repassadas durante o processo do mestrado. Ao meu Coorientador Prof<sup>°</sup>. Dr. Sidelmo Magalhães Silva, pois foi a primeira pessoa a me orientar dentro da UFMG, meu muito obrigado.

À UFMG e ao PPGEE, por proporcionar ensino de qualidade com competência e fazendo da ciência uma realidade para todos.

Aos colegas do mestrado meu muito obrigado pelo apoio e incentivo nos em todos os momentos durante esta jornada.

Agradeço ao time de energia da Anglogold, por todo o suporte e incentivo dado durante esse processo, para que eu pudesse construir este sonho de me tornar mestre.

Agradeço ao mestre Henrique Fantoni da SM&A, por todo ensinamento compartilhado e incetivo dado.

Por fim agradeço a minha *coaching* Fabíola Gomes, por ser a chave ignitora deste processo, o qual finalizo com o sentimento de dever cumprido.

À todos o meu sincero agradecimento.

"A percepção do desconhecido é a mais fascinante das experiências. O homem que não tem os olhos abertos para o misterioso passará pela vida sem ver nada" Albert Einstein

## Resumo

Com a evolução da automação e a necessidade de variação de velocidade em processos industriais, as plantas estão sendo cada vez mais demandadas a operar com motores acionados com conversores/inversores de frequência. Fenômenos relacionados a qualidade de energia elétrica (QEE) tem preocupado as concessionárias e as empresas de forma geral, já que distúrbios classificados como afundamentos de tensão, transitórios e harmônicos são identificados nos EUA, como as principais causas de problemas de QEE que afetam os consumidores. O objetivo deste trabalho é contribuir com a análise de mitigação de harmônicos em sistemas elétricos industriais através da utilização de filtros passivos sintonizados para reduzir o nível de distorção harmônica total de tensão, DTHT.

Foram apresentados cinco cenários de operação de uma planta de mineração, com o foco de consolidar a prática das referências teóricas deste trabalho. O estudo de caso 01 e 02, serviram como validação da modelagem computacional, uma vez que que foi possível coletar os dados de medição do sistema operando nessas configurações. O cenário 03 apresenta um estudo de reforma do filtro existente e aplicação do mesmo na subestação principal. Os cenários 04 e 05 apresentam soluções de mitigação de harmônicos de forma distribuída com avaliação do custo financeiro para implantação.

**Palavras Chave:** Qualidade da Energia Elétrica (QEE), Harmônicos, Filtros Passivos, Variação de Tensão, Fator de Potência.

## Abstract

With the evolution of automation in process industrial the mineral industry has been needing each day to operate with motors driven by variable speed drives (VSD). Due this the process the power quality has worried utilities and industries in general. The Electric Power Research Institute (EPRI), has identified in USA, as a main disturbances of power quality (PQ) : the voltage sags, transients and harmonics. The objective of this paper is to contribute to the analysis of harmonic mitigation in industrial electrical systems through the use of passive filters tuned to reduce the level of total harmonic distortion of voltage  $_THD$ .

They were describe five scenarios of operation of a mining plant , with the aim of consolidating the practice of the theoretical references of this work. The scenarios 01 and 02 are serving as validation of the computational modeling, since they were possible to collect the measurement data of the system operating. In the scenario 03 is presented a study of reform of the existing Harmonic Filter - FH and assembly of It, in the main substation. In the scenarios 04 and 05 are presenting harmonic mitigation solutions in a distributed way with an assessment of the financial cost for implementation.

**KeyWords:** Power Quality (PQ), Voltage Deviations, Power Factor, Harmonics , Harmonics Filters.

# Lista de Figuras

| Figura 1 – Custo das perdas financeiras estimado para a parada de até um minuto.                                                                                                                                |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Reproduzido de Bruna Conrado [1]                                                                                                                                                                                | 19    |
| Figura 2 $-$ Circuito de potência fonte senoidal. Adaptado de [2]                                                                                                                                               | 24    |
| Figura 3 $-$ Forma de Onda com conteúdo harmônico $Reproduzido de$ [3]                                                                                                                                          | 27    |
| Figura 4 – Corrente no neutro 3 vezes maior que as correntes de fase. Adaptado                                                                                                                                  |       |
| de [4]                                                                                                                                                                                                          | 29    |
| Figura 5 $-$ Diagrama unifilar representativo de uma instalação comercial típica. $Reprodente representativo de uma instalação comercial típica. Reprodente representativo de uma instalação comercial típica.$ | ızido |
| de [5]                                                                                                                                                                                                          | 30    |
| Figura 6 – Decomposição de uma onda periódica. $Reproduzido de$ [6]                                                                                                                                             | 32    |
| Figura 7 $-$ Espectro Harmônico na barra 13,8 kV- Subestação Mina                                                                                                                                               | 32    |
| Figura 8 – Equivalente Norton com o LG da rede básica. Adaptado de $[7]$                                                                                                                                        | 33    |
| Figura 9 – Determinação LG. Reproduzido de [7]                                                                                                                                                                  | 34    |
| Figura 10 – Circuito simplificado ressonância série. $A dapta do de$ [3]                                                                                                                                        | 36    |
| Figura 11 – Circuito simplificado ressonância paralela. Adaptado de [3]                                                                                                                                         | 36    |
| Figura 12 – Diagrama unifilar do sistema elétrico com o filtro ativo. Adaptado de $\ [1]$                                                                                                                       | 42    |
| Figura 13 – Diagrama unifilar do sistema elétrico com o filtro Híbrido.<br><br>$Adaptado\ de\ [2]$                                                                                                              | 43    |
| Figura 14 – Diagrama unifilar do sistema elétrico com filtro passivo.<br><br>$Adaptado\ de\ \ [1]$                                                                                                              | 44    |
| Figura 15 – Tipologias de filtros passivos. $A daptado de$ [3]                                                                                                                                                  | 45    |
| Figura 16 – Representação gráfica da correção do fator de potência.<br>Adaptado de $\ [3]$                                                                                                                      | 48    |
| Figura 17 – Medidor de qualidade de Energia Fluke 435.                                                                                                                                                          | 56    |
| Figura 18 – Rolamento com falha passagem de corrente elétrica                                                                                                                                                   | 57    |
| Figura 19 – Diagrama Unifilar Básico Sem Filtros.                                                                                                                                                               | 59    |
| Figura 20 – Caso 1-Medições de QEE Na Subestação Principal sem Filtros.                                                                                                                                         | 61    |
| Figura 21 – Diagrama Unifilar Básico com Filtro 6 Mvar.                                                                                                                                                         | 62    |
| Figura 22 – Estudo de Caso 2- Forma Onda e Espectro Resultante Simulação.                                                                                                                                       | 64    |
| Figura 23 – Caso 2- Medições de QEE Na Subestação Principal com filtro 6 M<br>var                                                                                                                               |       |
| na Barra A.                                                                                                                                                                                                     | 65    |
| Figura 24 – Diagrama Unifilar Básico- Caso 3                                                                                                                                                                    | 67    |
| Figura 25 – Estudo de Caso 3-Forma Onda Resultante da Simulação                                                                                                                                                 | 69    |
| Figura 26 – Diagrama Unifilar Básico Caso 4.                                                                                                                                                                    | 70    |
| Figura 27 – Estudo de Caso 4- Forma de Onda e Espectro Resultante da Simulação.                                                                                                                                 | 73    |

| Figura 28 $-$ | Diagrama Unifilar Básico Estudo Caso 5.                                      | 74  |
|---------------|------------------------------------------------------------------------------|-----|
| Figura 29 –   | Espectro harmônico inversor 6 pulsos 250 CV ACS ABB).                        | 100 |
| Figura 30 –   | Espectro harmônico inversor 6 pulsos CFW 11 WEG                              | 101 |
| Figura 31 –   | Espectro harmônico inversor 6 pulsos 200 CV ACS ABB).                        | 102 |
| Figura 32 $-$ | Estudo caso 5- Forma de onda e Espectro harmônico da Barra Mina              | 107 |
| Figura 33 –   | Estudo caso 5- Forma de onda e Espectro harmônico da Barra Planta            | 107 |
| Figura 34 $-$ | Estudo caso 5- Forma de onda e Espectro harmônico da Barra A e               |     |
|               | Barra B- SE Principal                                                        | 108 |
| Figura 35 $-$ | Estudo caso 5- Forma de onda e Espectro harmônico da Barra $\mathrm{SV2SV4}$ | 108 |
| Figura 36 –   | Estudo caso 5- Forma de onda e Espectro harmônico da Barra 230 kV $^{\circ}$ | 108 |
| Figura 37 $-$ | Estudo de Caso 5-Impedância em Ohms frequência de sintonia do filtro         | 109 |
| Figura 38 –   | Diagrama Elétrico da Planta Completo Modelado no PTW                         | 110 |
| Figura 39 $-$ | Filtro Passivo 2,56 $MVA_r$ desativado.                                      | 111 |
| Figura 40 –   | Filtro Passivo 6 MVA $_r$ em operação                                        | 112 |
| Figura 41 –   | Medições de QEE Realizadas.                                                  | 112 |
| Figura 42 $-$ | Foto do Inversor WEG 12 pulsos.                                              | 113 |
| Figura 43 $-$ | Diagrama Funcional Inversor WEG 12 Pulsos.                                   | 114 |
|               |                                                                              |     |

# Lista de Tabelas

| Tabela 1 –  | Ordem, Frequência e sequência das harmônicas [8].                          | 28 |
|-------------|----------------------------------------------------------------------------|----|
| Tabela 2 –  | Limites individuais para os indicadores DTHI e DTHTS95% [9].               | 29 |
| Tabela 3 –  | Indicadores de Distorção - Nomenclatura [9]                                | 29 |
| Tabela 4 –  | Limites das distorções harmônicas totais (em % da tensão fundamental)      |    |
|             | [10].                                                                      | 30 |
| Tabela 5 –  | Terminologia Procedimento de rede ONS 2.8 [10]                             | 37 |
| Tabela 6 –  | Limites de distorção de corrente para sistemas de distribuição geral [11]. | 39 |
| Tabela 7 –  | Limites de distorção de corrente para sistemas de transmissão [11].        | 39 |
| Tabela 8 –  | Distribuição das Cargas nas Barras de 13,8 kV na Subestação Principal      | 55 |
| Tabela 9 –  | Quantidade de Conversores na Planta                                        | 55 |
| Tabela 10 – | Resultado Harmônicas Individuais sem Filtros                               | 60 |
| Tabela 11 – | Resultados- Operação sem Filtros- Modelagem PTW                            | 61 |
| Tabela 12 – | Espectro Harmônico - Planta interna modelada com filtro de 6 Mvar.         | 63 |
| Tabela 13 – | Resultados- Operação com 01 Filtro 6 Mvar- PTW                             | 64 |
| Tabela 14 – | Estudo de Caso 03- Custo de Reparo FH 2,56 Mvar                            | 66 |
| Tabela 15 – | Espectro Harmônico - Planta interna modelada com filtro de 6 M<br>var $+$  |    |
|             | 2,56 Mvar                                                                  | 68 |
| Tabela 16 – | Resultado Estudo de Caso 3                                                 | 69 |
| Tabela 17 – | Aplicação dos Filtros Existentes nas Cargas da Mina e Planta               | 71 |
| Tabela 18 – | Estudo de Caso 04- Custo de Reposicionamento dos Filtros                   | 72 |
| Tabela 19 – | Resultado Estudo de Caso 4                                                 | 72 |
| Tabela 20 – | Estudo de Caso 05- Custo da Solução Com FH                                 | 75 |
| Tabela 21 – | Subestações escolhidas e potência reativa necessária para corrigir o fator |    |
|             | de potência do sistema                                                     | 75 |
| Tabela 22 – | Dados técnicos dos filtros para mitigação distribuída                      | 75 |
| Tabela 23 – | Espectro Harmônico na Barra 230 kV- Estudo Caso 5                          | 76 |
| Tabela 24 – | Resultados Estudo de Caso 5                                                | 77 |
| Tabela 25 – | Comparativo de Resultado de casos Simulados- Distorção Harmônica           |    |
|             | Total de Tensão                                                            | 78 |
| Tabela 26 – | Comparativo de resultado de casos Simulados - Fator de Potência            | 79 |
| Tabela 27 – | Comparativo de Resultado de casos Simulados- Variação de Tensão            | 79 |
|             |                                                                            |    |

| Tabela 28 – Dados da Fonte de Energia                                               | 98  |
|-------------------------------------------------------------------------------------|-----|
| Tabela 29 – Dados do Transformador de força                                         | 98  |
| Tabela 30 – Dados dos cabos de força                                                | 98  |
| Tabela 31 – Dados dos Inversores e Motores da Planta                                | 99  |
| Tabela 32 – Dados técnicos dos filtros Existentes                                   | 99  |
| Tabela 33 – Espectro harmônico inversor 6 pulsos - 250 CV.                          | 99  |
| Tabela 34 – Espectro harmônico inversor WEG - 6 pulsos - 60 CV.                     | 100 |
| Tabela<br>35 – Espectro harmônico inversor 6 pulsos - 200 CV- ABB ACS 800           | 101 |
| Tabela<br>36 – Espectro harmônico inversor 6 pulsos - 400 CV. ABB ACS 800           | 102 |
| Tabela<br>37 – Espectro harmônico inversor 6 pulsos - 350 CV. Micromaster Siemens   | 103 |
| Tabela<br>38 – Espectro harmônico inversor 6 pulsos - 125 CV. Danfoss Aquadrive     | 103 |
| Tabela<br>39 – Espectro harmônico inversor 12 pulsos - 1400 CV. GE<br>$\rm PEC80$   | 104 |
| Tabela 40 – Espectro harmônico inversor 12 pulsos - 750 CV. GE PEC80                | 104 |
| Tabela<br>41 – Espectro harmônico inversor 12 pulsos -1600 CV. SIEMENS GA<br>150 $$ | 105 |
| Tabela 42 – Espectro harmônico inversor 12 pulsos -1250 CV. CFW 11-WEG              | 105 |
| Tabela 43 – Tab:Espectro harmônico inversor 12 pulsos -1000 CV. ALSTOM              | 106 |

# Lista de Abreviações e Acrônimos

| ABNT          | Associação Brasileira de Normas Técnicas                              |  |  |
|---------------|-----------------------------------------------------------------------|--|--|
| DHT           | Distorção Harmônica Total                                             |  |  |
| UFMG          | Universidade Federal de Minas Gerais                                  |  |  |
| DTHT          | Distorção harmônica Total de Tensão                                   |  |  |
| LG            | Lugar Geométrico                                                      |  |  |
| ONS           | Operador Nacional do Sistema                                          |  |  |
| MME           | Ministério de Minas e Energia                                         |  |  |
| ANEEL         | Agência Nacional de Energia Elétrica                                  |  |  |
| CEPEL         | Centro de Pesquisas em Engenharia Elétrica da Eletrobras              |  |  |
| QEE           | Qualidade de Energia Elétrica                                         |  |  |
| PTW           | Power Tools For Windows                                               |  |  |
| BC            | Banco de Capacitores                                                  |  |  |
| PCC           | Point of Common Coupling                                              |  |  |
| PRODIST       | Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico |  |  |
| SEP           | Sistema Elétrico de Potência                                          |  |  |
| ETAP          | Electrical Transient Analyzer Program                                 |  |  |
| IEEE          | Institute of Electrical and Electronics Engineers                     |  |  |
| $\mathrm{FH}$ | Filtro Harmônico                                                      |  |  |
| EPE           | Empresa de Pesquisa Energética                                        |  |  |
| PAC           | Ponto de Acoplamento Comum                                            |  |  |
| PWM           | Modulação por Largura de Pulso                                        |  |  |

| EPRI | The Electric Power Research Institute |
|------|---------------------------------------|
| v    | Tensão                                |
| Ι    | Corrente                              |
| Р    | Potência Ativa                        |
| Q    | Potência Reativa                      |
| S    | Potência Aparente                     |
| MVA  | Mega Volt Ampére                      |
| Mvar | Mega Volt Ampére Reativo              |
| RMS  | Root Mean Square                      |
| L    | Indutância                            |
| С    | Capacitância                          |
| Ζ    | Impedância                            |
| FP   | Fator de Potência                     |
| DTHI | Distorção Total Harmônica Indivudal   |

# Sumário

| 1 | Inti | roduçã  | 0                                                                    | 17        |
|---|------|---------|----------------------------------------------------------------------|-----------|
|   | 1.1  | Objet   | ivos                                                                 | 19        |
|   |      | 1.1.1   | Objetivo Geral                                                       | 19        |
|   | 1.2  | Objet   | ivo Específicos                                                      | 19        |
|   | 1.3  | Justifi | cativa e Motivação                                                   | 20        |
|   | 1.4  | Metoo   | lologia                                                              | 22        |
|   | 1.5  | Organ   | ização do Trabalho                                                   | 22        |
| 2 | Hai  | mônic   | os no Sistema Elétrico                                               | <b>24</b> |
|   | 2.1  | Teoria  | a da Potência Convencional                                           | 24        |
|   | 2.2  | Harm    | ônicos                                                               | 26        |
|   | 2.3  | Requi   | sitos mínimos de qualidade de energia elétrica para acesso integrado |           |
|   |      | a Red   | e Básica                                                             | 29        |
|   | 2.4  | Fluxo   | Harmônico em um Sistema Elétrico                                     | 30        |
|   | 2.5  | Espec   | tro Harmônico                                                        | 31        |
|   | 2.6  | Metoo   | lologia de Cálculo de Impedância Equivalente                         | 32        |
|   | 2.7  | Resso   | nâncias Séries e Paralelas                                           | 35        |
|   | 2.8  | Índice  | de distorção harmônica total                                         | 37        |
|   | 2.9  | Concl   | usão                                                                 | 39        |
| 3 | Mit  | igação  | dos Efeitos dos Harmônicos                                           | 40        |
|   | 3.1  | Soluçã  | ões para Mitigar os Efeitos dos Harmônicos                           | 40        |
|   |      | 3.1.1   | Filtro Ativo                                                         | 41        |
|   |      | 3.1.2   | Filtro Híbrido                                                       | 42        |
|   |      | 3.1.3   | Filtro Passivo                                                       | 43        |
|   |      | 3.1.4   | Tipologias de Filtros Passivos                                       | 44        |
|   | 3.2  | Concl   | usão                                                                 | 46        |
| 4 | Mo   | delage  | m de um Filtro Passivo                                               | <b>47</b> |
|   | 4.1  | Dimer   | nsionamento de Filtro Passivo                                        | 47        |
|   |      | 4.1.1   | Dimensionamento de Potência Reativa Filtro                           | 48        |
|   |      | 4.1.2   | Dimensionamento da Frequência de Ressonância                         | 48        |
|   |      | 4.1.3   | Dimensionamento do Fator de Qualidade                                | 49        |
|   |      | 4.1.4   | Dimensionamento do Grau de De-Sintonia                               | 49        |
|   |      | 4.1.5   | Dimensionamento da Impedância do Filtro Sintonizado                  | 50        |
|   | 4.2  | Concl   | usão                                                                 | 52        |
| 5 | Est  | udo de  | e Caso Real                                                          | 53        |
|   | 5.1  | Descri  | ição do Sistema Elétrico da Planta Analisada                         | 54        |
|   |      | 5.1.1   | Dados dos Componentes do Sistema                                     | 55        |

|   |                      | 5.1.2   | 2 Modelagem e Medições                                               |    |
|---|----------------------|---------|----------------------------------------------------------------------|----|
|   | 5.2 Estudos de Casos |         | os de Casos                                                          | 57 |
|   |                      | 5.2.1   | Estudo de Caso 01 - Operação Sem Filtros                             | 58 |
|   |                      | 5.2.2   | Estudo de Caso 02 - Operação Centralizada com FH de 6 Mvar na        |    |
|   |                      |         | Subestação Principal                                                 | 62 |
|   |                      | 5.2.3   | Estudo de Caso $03$ - Operação Centralizada com FH nas Barra A e     |    |
|   |                      |         | Barra B - Subestação Principal                                       | 65 |
|   |                      | 5.2.4   | Estudo de Caso 4- Filtros Harmônicos Existentes Aplicados de Forma   |    |
|   |                      |         | distribuída                                                          | 69 |
|   |                      | 5.2.5   | Estudo de caso 05 - Combinação de Solução Centralizada e Distribuída | 73 |
|   |                      | 5.2.6   | Conclusões                                                           | 77 |
| 6 | Cor                  | nclusão |                                                                      | 80 |
|   | 6.1                  | Contin  | uidade do Trabalho                                                   | 82 |
|   | 6.2                  | Public  | ações                                                                | 82 |
|   |                      | 6.2.1   | Publicações Relacionadas a Dissertação de Mestrado                   | 82 |
|   |                      | 6.2.2   | Outras Publicações Durante o Período de Mestrado                     | 83 |
|   |                      |         |                                                                      |    |

#### Referências

| Anexo A Relatório de Dados PTW                    | 87  |
|---------------------------------------------------|-----|
| Apêndice A Dados Elétricos do Sistema Modelado    | 98  |
| B Formas de Onda Resultantes Estudo de Caso n.º 5 | 107 |
| C Fotos do Sistema                                | 111 |

84

# Capítulo 1 Introdução

A operação dos sistemas industriais tem requisitado cada vez mais a otimização de processos, redução dos custos operacionais e confiabilidade do sistema elétrico. [1, 12, 13] Para alcançar estes parâmetros dentro das plantas industriais, os projetistas e engenheiros vem adotando a estratégia de implementar o controle refinado no processo, através da variação de velocidade dos motores assíncronos [3].

Esta variação de velocidade dos motores é obtida através dos acionamentos via conversores de frequência, que operam aplicando, na carga, tensão e corrente chaveadas controladas por semicondutores. [8,14,15].

Estas cargas, então passam a ser conhecidas como **não lineares**, por apresentarem uma distorção da forma de onda da corrente e ou tensão. O resultado negativo que esta distorção impõe ao sistema é o surgimento de problemas relacionados a qualidade de energia elétrica. [2, 6, 16].

Os problemas de qualidade de energia elétrica, podem ser classificados como: afundamento/elevação de tensão, ruídos, interrupção, harmônicos, excesso de reativos, entre outros. Estes termos expressam algum distúrbio de QEE, e assim sendo, o desenvolvimento de estudos para manter estes indicadores dentro dos limites aceitáveis e estabelecido na norma do ONS- Operador Nacional do Sistema no submódulo 2.8 [10], passam a ser um ponto de preocupação e interesse para os profissionais da área elétrica, pesquisadores ou não.

O não atendimento aos requisitos normativos relacionados aos indicadores de qualidade de energia [10], além de penalidades previstas em legislação [17], podem provocar paradas indesejadas em processos produtivos, [18] queimas de equipamentos e lucro cessante nas indústrias.

Uma pesquisa importante apresentada, por Fantoni, [3], foi desenvolvida pela empresa de pesquisa americana de energia elétrica (*Eletric Power Reserch Intitute – EPRI*), mostrou que os três distúrbios de QEE que mais afetam os consumidores nos

#### Estados Unidos, eram:

- Afundamentos de tensão, caracterizados como uma redução no valor eficaz da tensão, entre 0,1 e 0,9 pu na tensão nominal;
- Transitórios, caracterizados como eventos momentâneos e indesejáveis que possuem duração máxima na casa de milissegundos;
- Harmônicos, caracterizados como distorções nas formas de onda de tensão e corrente.

Os distúrbios de qualidade de energia podem provocar, segundo os autores Conrado e Lopez, [1,19], além das interrupções indesejadas no sistema elétrico de uma instalação, prejuízos na ordem de milhares de dólares em virtude do lucro cessante que alguns segmentos produtivos possuem pela sua característica operacional.

Segundo Gosbell [20], desligamentos indevidos, em equipamentos industrias tem sido relatados por equipes de manutenção. Em muitos casos, eles estão relacionados a circulação excessiva de harmônicos na rede o que gera interferência na rede de automação e de relés de proteção causando *trip* indevido.

Segundo Mertens [21], a solução mais aplicada neste caso é a instalação de filtros passivos centralizados, na subestação principal de uma unidade consumidora industrial. Em geral, o perfil de carga é *flat* e a contribuição harmônica é em uma frequência e ou faixa específica

Os autores Amaral e Diniz [5,22], apresentam a teoria com um estudo de caso para aplicação de impedância ativa série de forma distribuída em um sistema de baixa tensão, com o objetivo de mitigar problema de QEE mais próximo da fonte geradora.

Um exemplo pode ser ilustrado através da Figura 1, que representa o segmento da indústria mineral, que será tema deste trabalho. A perda média é de US\$ 70 mil, por minuto parado.

Diante do cenário apresentado, para reduzir os efeitos indesejados dos problemas relacionados a QEE, as indústrias recorrem a alguns equipamentos mitigadores disponíveis no mercado dentre eles: filtros passivos, filtros ativos e aquisição de equipamentos não lineares, em especial inversores de frequência com limites de distorção harmônicas dentro dos limites estipulados como o da referência, *nstitute of Electrical and Electronics Engineers* - IEEE Std 519 [11].

Problemas de DTHT em subestações de distribuição interna nas plantas, em geral, não são considerados nos estudos de QEE. A preocupação é sempre visando atender aos indicadores de nível de DTHT - distorção harmônica total de tensão e fator de potência na subestação localizada no Ponto de Acoplamento Comum (PAC), já que existe uma legislação que regulamenta esses parâmetros [17].



Figura 1 – Custo das perdas financeiras estimado para a parada de até um minuto. *Reproduzido de Bruna Conrado* [1]

Desta forma desenvolveu um estudo de caso com cenários para avaliar a melhor aplicação de filtros passivos em um indústria de mineração, de forma a reduzir os impactos de distúrbios de qualidade de energia na subestação do PAC e de distribuição interna da planta.

#### 1.1 Objetivos

#### 1.1.1 Objetivo Geral

Considerando o contexto exposto, perante as questões e desafios relacionados aos problemas de qualidade de energia elétrica enfrentado pelas indústrias e em especial a de mineração, o objetivo deste trabalho é apresentar um estudo de caso, com base em dados reais coletados a partir de uma planta industrial em operação, e simular alguns cenários com a aplicação de filtros de harmônicos passivos de forma descentralizada para mitigar o excesso de circulação de energia reativa e harmônicos.

#### 1.2 Objetivo Específicos

• Apresentar um modelagem detalhada do sistema elétrico real de um planta industrial, com a disponibilização da base de dados para estudos futuros;

- Apresentar a metodologia de cálculo, detalhada, para auxiliar no projeto um filtro harmônico passivo;
- Apresentar os resultados de algumas medições, para que possam servir como parâmetro de validação da modelagem do sistema elétrico da planta desenvolvido no *software* PTW;
- Apresentar os resultados das simulações, para que possam ser utilizados por empresas de mineração, consultorias, universidades ou concessionárias de energia;
- Apresentar as medições reais realizadas na planta, que validaram as simulações realizadas no estudo de caso 01 e 02. Elas tiveram como base as teorias e metodologias apresentadas pelas referências do IEEE std 1459, IEEE std 1531 e literatura do Dugan [23], [6], [24];
- Avaliar se a solução distribuída de filtros harmônicos é capaz de reduzir os impactos de QEE na rede interna da planta;
- Avaliar se a tecnologia de filtros passivos ainda se mostra adequada, tecnicamente, para o sistema elétrico simulado.

#### 1.3 Justificativa e Motivação

Atualmente são encontradas várias opções de tecnologia para mitigação de harmônicos, controle de fator de potência e variação de tensão. Soma-se a isto a possibilidade de integrar algumas soluções, conforme apresentado por Moccio [25], com o objetivo de mitigar um conjunto de distúrbios de QEE. No trabalho citado foi desenvolvido um estudo de caso para uma subestação da rede básica, considerando a solução de filtro híbrido em razão da contribuição da fonte harmônica apresentar uma gama variada de frequências.

Outra solução proposta, para problemas de QEE, neste caso, pelos autores, Diniz e Amaral [5,22], trata-se da aplicação de impedância séria ativa de forma distribuída em sistema de baixa tensão com o objetivo de mitigar os harmônicos diretamente na fonte geradora.

A solução desenvolvida por Moccio [25] apresenta um estudo de otimização de um filtro passivo, existente, em uma subestação de extra alta tensão. Esta otimização consistiu em substituir alguns elementos passivos do filtro, existente, por um componente ativo controlado por eletrônica de potência. A solução após implementada na subestação da concessionária, possibilitou a correção de um amplo espectro harmônico.

A solução desenvolvida por Diniz [5], e depois aplicada em um sistema comercial de baixa tensão por Amaral [22], consiste em um transformador com a indutância variável, controlada através de eletrônica de potência o qual é inserido no circuito de força que se deseja mitigar os efeitos de harmônicos. Com isso é possível mitigar os harmônicos mais próximo da fonte geradora.

Indústrias são obrigadas por legislação [17], a cumprir determinados valores de indicadores de QEE. O descumprimento destes valores, do ponto de vista de sistema elétrico, piora a QEE, o que força o Operador Nacional do Sistema, no caso da Transmissão a controlar o nível de tensão, DTHT e fator de potência operando linhas, injetando reativo na rede e ou acionando compensadores para eliminar o excesso de harmônicos na rede. Esse procedimento reduz a vida útil de equipamentos, como disjuntores, seccionadores entre outros, aumentando o custo de operação e manutenção do sistema.

Além da obrigação legal, de manter os níveis de QEE dentro limites estabelecidos em norma no PAC, outros problemas tem aparecido com o aumento de conversores de frequência para acionamento das cargas. Esses conversores geram um conteúdo harmônico que podem levar a falhas em rolamentos de motores, desligamentos de sistemas por ruídos em rede de automação e proteção, conforme apresenta Teixeira [26].

Desta forma, pretende-se com este trabalho fazer uma análise de mitigação dos efeitos de harmônicos no sistema elétrico de uma indústria, através de simulações computacionais com a aplicação de filtros passivos, aproveitando ativos já existentes na planta fazendo uma integração entre a solução distribuída e centralizada, avaliando os benefícios para toda a instalação.

A equipe de manutenção da planta industrial, com o foco em atender as necessidades de controle de processo, tem instalado novos conversores de frequência para realizar o acionamento dos motores. Esse processo provoca uma aumento de conteúdo harmônico em toda a instalação, gerando, entre outros problemas, desligamentos indevidos da proteção e sobreaquecimento de circuitos.

A planta possui dois filtros harmônicos na subestação principal, um de 6 Mvar e outro de 2,56 Mvar. O filtro de 2,56 Mvar não está operacional desde 2012, quando foi desligado em razão da sobretensão que provocava no sistema elétrico. A carga da planta era de 12 MW e não necessitava de 8.56 Mvar de potência reativa capacitiva.

O desafio da proposta é coletar os dados reais da planta, realizar medições de QEE com planta em operação e fazer a modelagem do sistema no *software* PTW, com os diversos cenários possíveis, apresentar uma comparação entre os valores das medições realizadas e os resultados das simulações com o objetivo de validar a modelagem elaborada no PTW.

A avaliação da solução será com base nos resultados das simulações, em comparação com os valores normativos, a fim de verificar os principais impactos no sistema elétrico nos diversos pontos da instalação relacionando à:

• Harmônicos;

- Variações de longa de duração, subtensão e sobretensão;
- Fator de Potência.

#### 1.4 Metodologia

A metodologia aplicada para desenvolvimento desse trabalho será com base em um estudo de caso de análise comparativa, entre aplicação de método de mitigação harmônica centralizada versus o método distribuído, perante as cargas mais relevantes do sistema do ponto de vista de contribuição harmônica, seguindo os passos a seguir:

- Levantamento e coleta de todos os dados e modelos dos principais conversores de frequência da planta industrial;
- Realização de medições de qualidade de energia e harmônicos com a utilização do equipamento da fabricante Fluke modelo 435;
- Elaboração de uma contextualização dos problemas de qualidade de energia e os principais motivos pelos quais eles ocorrem;
- Através dos dados coletados e contextualização serão feitas simulações em *softwares* de alta relevância no mercado para testar as possibilidades;
- Validação dos resultados e analise dos impactos no sistema elétrico da planta, no PAC e nas subestações de distribuição, com proposição de medidas para mitigação dos fenômenos de QEE.

#### 1.5 Organização do Trabalho

Este trabalho está estruturado em seis (06) capítulos, referência bibliográfica e apêndice, conforme estrutura a seguir:

O Capítulo 2 apresenta as características e definições de como se calcula os harmônicos no sistema elétrico de potência. Tem como objetivo apresentar os temas relacionados aos indicadores de qualidade de energia, faz-se uma pequena revisão sobre os conceitos de potência, espectro harmônico, ressonância série e paralela e cálculo de distorção harmônica total, com estas definições elucida-se a matemática de como se calcula os harmônicos no sistema elétrico.

O Capítulo 3 aborda o tema do ponto de vista das principais medidas mitigadoras para os problemas de QEE relacionados aos harmônicos. É apresentada a metodologia utilizada para realizar estudos QEE para conexão na rede básica, que é o método do lugar geométrico. Serão apresentadas as soluções existentes no mercado para mitigação de harmônicos, tais como: filtros ativos, compensadores estáticos e filtros passivos e como eles podem contribuir para reduzir os efeitos dos harmônicos. Como resultado secundário é mostrado como essas soluções poderão contribuir para melhorar o fator de potência da instalação e corrigir o perfil de tensão do sistema.

O Capítulo 4 apresenta uma metodologia para dimensionamento de um filtro passivo, com as expressões matemáticas e filosofia de cálculo, que embasará o estudo de caso. Com a fundamentação matemática obtida neste capítulo, a análise do estudo de caso será de mais fácil compreensão, onde poderá ser verificado com dados e simulações a serem apresentadas no capítulo 5.

O Capítulo 5 é dedicado a apresentação e análise de cinco estudos de casos reais, que exemplificando os fenômenos explicados nos capítulos anteriores, bem como os resultados das simulações. As medições feitas no estudo de caso 01 e 02 na planta validaram a modelagem do sistema elétrico desenvolvida no PTW.

Nessas simulações ficarão comprovadas, a eficácia da aplicação dos filtros harmônicos passivos de forma centralizada e o custo beneficio de aplicá-los de forma distribuída para mitigar os harmônicos mais próximo a fonte geradora.

Por fim neste trabalho temos o Capítulo 6 onde serão apresentadas as conclusões gerais, propostas para trabalhos futuros e as publicações decorrentes deste trabalho.

### Capítulo 2

### Harmônicos no Sistema Elétrico

Neste capítulo, serão apresentados alguns aspectos relacionados as características e definições sobre os harmônicos presentes no sistema elétrico de potência.

O principal objetivo é apresentar os temas relacionados aos indicadores de qualidade de energia fazendo uma pequena revisão sobre os conceitos de potência, espectro harmônico, ressonância série e paralela e cálculo de distorção harmônica total.

Com estas definições elucida-se como os harmônicos interagem no sistema elétrico e seus impactos. Maneiras de mitigá-los serão demonstradas nos capítulos seguintes.

#### 2.1 Teoria da Potência Convencional

A teoria apresentada por Watanabe em [27] demonstra que as potências instantânea, ativa e reativa podem ser calculadas através das decomposição escalar das tensões e correntes trifásicas nos eixos real e imaginário.

Decompondo a corrente e tensão trifásica é possível calcular as potências ativas e reativas instantâneas da rede elétrica. A análise é baseada na teoria de circuitos monofásicos e considera como trifásicos a simples soma algébrica de três circuitos, conforme Figura 2.



Figura 2 – Circuito de potência fonte senoidal. Adaptado de [2]

A descrição matemática abaixo, apresenta o modelo para cálculo da potência instantânea em um circuito monofásico alimentado por uma fonte senoidal.

$$V_t = \sqrt{2} \cdot V \cdot \sin\left(\omega \cdot t\right) \tag{2.1}$$

$$I_t = \sqrt{2} \cdot I \cdot \sin(\omega \cdot t - \phi) \tag{2.2}$$

$$p_t = 2 \cdot V \cdot I \cdot \sin(\omega \cdot t) \cdot \sin(\omega \cdot t - \phi)$$
(2.3)

$$p_t = V \cdot I \cdot \cos \cdot (\phi) \cdot [1 - \cos(2 \cdot \omega \cdot t)] - V \cdot I \cdot \sin \phi \cdot \sin(2 \cdot \omega \cdot t)$$
(2.4)

Esta expressão mostra que o primeiro termo em 2.4, possui um componente médio, representado por  $[VIcos(\phi)]$ , e uma componente que oscila com o dobro da frequência da rede elétrica, representando por  $[VIcos(\phi) cos(2\omega t)]$ . A expressão descreve o fluxo de potência unidirecional, ou seja, da fonte para a carga e nunca fica negativo.

O segundo termo da expressão, representada por  $[VIsin(\phi) sin(2\omega t)]$ , possui apenas uma componente oscilante com valor de pico representada, por (VI sin  $\phi$  t). Este valor varia com o dobro da frequência do sistema sin $(2\omega t)$ . Este termo tem valor médio igual a zero. Com isso descrevemos a potência ativa e reativa:

$$P = VI \cdot \cos(\phi) \tag{2.5}$$

$$Q = VI \cdot \sin(\phi) \tag{2.6}$$

Com isso descrevemos a potência instantânea do sistema como:

$$P(t) = P[1 - \cos(2\omega \cdot t)] - Q \cdot \sin(2\omega \cdot t)$$
(2.7)

Onde,

V(t) = Tensão em função do tempo em volts (V);

I(t) =Corrente em função do tempo em ampère (A);

p(t) = potência total em função do tempo (VA);

- $\omega =$  Velocidade angular (rad/s);
- P = Potência ativa (W);
- Q = Potência reativa (var);

No caso de sistema elétricos com presença de frequências diferentes da fundamental, com oscilação devido a conteúdo harmônico a solução apresentada por Watanabe em [27], não se mostra eficaz. Para situações como esta, surge o conceito apresentado por Akagi et. al, na Teoria de Potência Ativa e Reativa Instantâneas [28], a qual propõe-se a decomposição escalar das tensões e correntes trifásicas nos eixos real e imaginário. Decompondo a corrente e tensão trifásica é possível calcular as potências ativas e reativas instantâneas da rede elétrica, permitindo responder de uma forma eficaz e dinâmica, às situações de distorções e de desequilíbrio em sistemas elétricos.

Em 1927 Burdeanu [29], introduziu a definição de potência para circuitos não senoidais, baseado no domínio da frequência, em regime permanente, ou seja, para um dado circuito monofásico, com corrente e tensão periódicas, estas podem ser decompostas, utilizando a série de *Fourier* e, desta maneira o fasor correspondente a cada frequência é determinado.

Assim sendo, pode-se representar a tensão e a corrente instantânea, em um circuito não senoidal, com presença de componentes harmônicos, apenas decompondo as grandezas através série de Fourier, e o resultado é da seguinte forma:

$$v_{t}(t) = \sum_{h=1}^{\infty} Vh = \sum_{h=1}^{\infty} \sqrt{2} \cdot Vh \sin(h\omega t + \theta h)$$
(2.8)

$$i_{(t)} = \sum_{h=1}^{\infty} Ih = \sum_{h=1}^{\infty} \sqrt{2} \cdot Ih \cos(h\omega t + \delta h)$$
(2.9)

Em (2.8) e (2.9), os termos referem-se a tensão e corrente instantânea em um circuito não senoidal. As tensões e correntes eficazes (RMS) podem ser calculadas da seguinte maneira:

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T V^2 dt} = \sqrt{\sum_h^\infty V h^2}$$
(2.10)

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T I^2 dt} = \sqrt{\sum_h^\infty Ih^2}; \qquad (2.11)$$

#### 2.2 Harmônicos

Os harmônicos são correntes e ou tensões senoidais com frequências múltiplas da frequência natural do sistema elétrico projetado. No caso do Brasil, esta frequência é 60 Hz [6,8,26].

Possuem a característica de interagirem com a frequência fundamental e provocar uma distorção na forma de onda. Em geral, esta distorção é causada por equipamentos, com a característica de não apresentarem linearidade entre a corrente e a tensão aplicadas na carga. Os autores em [8,30] afirmam que os principais equipamentos causadores de harmônicos, nas instalações, são os inversores de frequência, lâmpadas compactas e transformadores operando a vazio.

Um exemplo de forma de onda com conteúdo harmônico é apresentado na Figura 3. Nesta Figura está representada uma forma de onda com distorção e conteúdo de  $3^{\circ}$  e  $5^{\circ}$  harmônico.



Figura 3 – Forma de Onda com conteúdo harmônico *Reproduzido de* [3]

Nas indústrias, cerca de 80% das cargas elétricas são compostas por motores elétricos [21, 26]. O acionamento destas cargas, em sua maioria é por partida direta, contudo a necessidade de otimização de processos industriais tem sido utilizado, cada vez mais, os conversores de frequência, nesses acionamentos em substituição a partida direta. Esses conversores representam uma das maiores fontes geradoras de conteúdo harmônicos em um ambiente industrial. E calcular o nível de harmônicos imposto ao sistema é fundamental para determinar medidas mitigatórias.

Os conversores geram harmônicos de tensão e corrente em ambos os lados AC e CC. Com base na teoria clássica, um conversor com número p de pulsos gera, sob condições ideais harmônicos de corrente de ordem, conforme abaixo:

(2.12) e (2.13) :  

$$h = k \cdot p \pm 1$$
 (2.12)

$$a = \frac{1}{p} \tag{2.13}$$

Onde,  $h = \acute{e}$  a ordem harmônica; k = são números inteiros 1, 2, 3, etc.; p = é o número de pulsos do conversor (6, 12, 18, 24 ou 36);

a = é a amplitude teórica da corrente harmônica injetada pelo equipamento em pu.

Os autores, [3,4,8,31] apresentam que os harmônicos são classificados quanto a sua ordem, frequência e sequência, conforme Tabela 1 abaixo:

| $\mathbf{Ordem}$ | Frequência (Hz) | Sequência |
|------------------|-----------------|-----------|
| 1                | 60              | +         |
| 2                | 120             | -         |
| 3                | 180             | 0         |
| 4                | 240             | +         |
| 5                | 300             | -         |
| 6                | 360             | 0         |
| n                | n*60            | ***       |

Tabela 1 – Ordem, Frequência e sequência das harmônicas [8].

Os harmônicos no sistema elétrico podem ser destacados de acordo com a Tabela 1, em dois tipos de ordem, as pares e ímpares, sendo as ímpares mais comumente encontradas nas instalações elétricas em geral e os pares encontradas em situações de assimetria do sinal, ocasionadas pela presença de sinais com parcela de componente contínua, como por exemplo, operação de fornos a arco e situações de transitórios.

A sequência pode ser positiva, negativa ou nula (zero). Para entender o impacto desta sequência gerada pelos harmônicos nos componentes do sistema elétrico, foram utilizadas as referências [4,8].

Os harmônicos de sequência positiva, geram fluxos que por característica se somam a fundamental e com isso provocam sobreaquecimento em motores. Os harmônicos de sequência negativa fazem eles girar em sentido contrário, provocando torque frenante. Já os harmônicos de sequência nula, zero, não provocam efeitos no sentido de rotação dos motores, porém se somam algebricamente no condutor neutro.

Desta maneira, essas correntes de terceira ordem são três vezes maior que a corrente que circula pelo condutor de fase [21,26].Com isso ocorrem aquecimentos excessivos do condutor neutro, destruição de bancos de capacitores e demais componentes. Para ilustrar esta explicação é apresentado a Figura 4.

Um outro problema que pode ser relacionado a presença de harmônicos em um sistema, são as sobretensões [3]. O valor da sobretensão em virtude de conteúdo harmônico pode ser explicado de forma bastante simples através da lei de Ohm, representada pelo termo 2.14.

$$V_h = Z_h \times I_h; \tag{2.14}$$



Figura 4 – Corrente no neutro 3 vezes maior que as correntes de fase. Adaptado de [4]

Onde,

 $V_h$  = Tensão na ordem harmônica "h" em Volts (V);

 $I_h = \text{Corrente na ordem harmônica "h" em Amperes.(A);}$ 

 $Z_h$  = impedância equivalente do sistema, obtida a partir da associação das reatâncias indutivas e capacitivas na ordem harmônica "h" em Ohms ( $\Omega$ ).

### 2.3 Requisitos mínimos de qualidade de energia elétrica para acesso integrado a Rede Básica

Os limites máximos a serem injetados no sistema de distribuição, ou seja, com tensão  $V \leq 230 \text{ kV}$ , Tabela 2, são regulamentados pela ANEEL [9]. Em sistemas da transmissão devem seguir a norma do ONS [10], Tabela 4.

| Tabela 2 – Limites | individuais para | os indicadores I | OTHI e DTHTS95% [ | 9 |
|--------------------|------------------|------------------|-------------------|---|
|                    | 1                |                  |                   |   |

| Indicador                | Tensão Nominal          |                                |                                                     |  |
|--------------------------|-------------------------|--------------------------------|-----------------------------------------------------|--|
| mulcauor                 | $Vn \le 1,0 \text{ kV}$ | 1,0 kV $< \mathrm{Vn} < 69$ kV | $69~\mathrm{kV} \leq \mathrm{Vn} < 230~\mathrm{kV}$ |  |
| DTT $95\%$               | $10,\!0\%$              | 8,0%                           | 5,0%                                                |  |
| $\mathrm{DTT}_P \ 95\%$  | $2{,}5\%$               | 2,0%                           | 1,0%                                                |  |
| $DTT_I 95\%$             | 7,5%                    | $6{,}0\%$                      | 4,0%                                                |  |
| $\mathrm{DTT}_3 \; 95\%$ | 6,5%                    | $5{,}0\%$                      | $3{,}0\%$                                           |  |

Os indicadores de distorções harmônicas são os seguintes:

| Tabela 3 – Indicadores de Distorção - Nomenclatura | 9 | 9 |
|----------------------------------------------------|---|---|
|----------------------------------------------------|---|---|

| Descrição                                                              |                    |  |  |  |
|------------------------------------------------------------------------|--------------------|--|--|--|
| Distorção harmônica total de tensão                                    | DTT                |  |  |  |
| Distorção harmônica individual de tensão de ordem h                    | $\mathrm{DIT}_h\%$ |  |  |  |
| Distorção harmônica total de tensão para as componentes                | DTT                |  |  |  |
| pares não múltiplas de 3                                               | $D 1 1_{p} / 0$    |  |  |  |
| Distorção harmônica total de tensão para as componentes                | DTT                |  |  |  |
| ímpares não múltiplas de 3                                             | $DII_i/0$          |  |  |  |
| Distorção harmônica total de tensão para as componentes múltiplas de 3 | $\mathrm{DTT}_3\%$ |  |  |  |

| 13,8 kV $\leq$ V ${<}69$ kV |              |             |              | $V \ge 69 \text{ kV}$        |              |             |              |
|-----------------------------|--------------|-------------|--------------|------------------------------|--------------|-------------|--------------|
| DTHI, h ímpar               |              | DTHI, h par |              | DTHI, h ímpar                |              | DTHI, h par |              |
| Ordem                       | Valor $(\%)$ | Ordem       | Valor $(\%)$ | Ordem                        | Valor $(\%)$ | Ordem       | Valor $(\%)$ |
| 3 a 25                      | 1,5%         |             |              | 3 a 25                       | 0,6%         |             |              |
|                             |              | todos       | $0,\!6\%$    |                              |              |             |              |
| $\leq 27$                   | 0,7%         |             |              | $\leq 27$                    | 0,4%         | todos       | $0,\!3\%$    |
| $\mathrm{DTHTS95\%}=3\%$    |              |             |              | $\mathrm{DTHTS95\%}=1{,}5\%$ |              |             |              |

Tabela 4 – Limites das distorções harmônicas totais (em % da tensão fundamental) [10].

#### 2.4 Fluxo Harmônico em um Sistema Elétrico

As componentes harmônicas de corrente geradas por uma carga não linear circulam pelas impedâncias do sistema, conforme apresentado na Figura 5. Em uma instalação industrial, a impedância do sistema é composta por cabos, transformadores, motores e bancos de capacitores, podendo existir outros caminhos para circulação das correntes harmônicas de uma carga não linear, sendo preferencial o que oferecer menor impedância total [3,5,8].

A Figura 5, representa um fluxo harmônico em um sistema elétrico de potência.



Figura 5 – Diagrama unifilar representativo de uma instalação comercial típica. Reproduzido de [5]

Em relação aos conversores mostrados na Figura 5, um dos possíveis caminhos do fluxo harmônico é em direção à rede de distribuição, conforme indicado pelas linhas pontilhadas na Figura 5.

Neste caso, a circulação das correntes harmônicas resulta em dissipação de calor adicional nas resistências dos cabos e transformadores com consequente sobreaquecimento indesejado. Além disso, são produzidas tensões harmônicas nos barramentos devido à circulação das correntes harmônicas pelas impedâncias destes elementos. [32]

Outro possível caminho para as correntes harmônicas da Figura 5 é pelo banco de capacitores de correção do fator de potência como indicam as linhas tracejadas, pois apresentam baixa impedância quando submetidos a altas frequências [15].

Neste caso, pode-se dar origem ao fenômeno conhecido como ressonância, que é relacionado basicamente à excitação de indutâncias e capacitâncias em frequências harmônicas, gerando altas tensões ou altas correntes perigosas para o sistema [5,6,21,33].

Desta forma é importante conhecer as fontes harmônicas, as impedâncias do sistema e nível de distorção harmônica a qual a instalação está submetida e avaliar se estão dentro de alguns parâmetros de normas e padrões dentre elas IEEE std.519, Prodist Módulo 8 e no caso da rede de transmissão deve atender ao procedimento ONS Submódulo 2.8.

#### 2.5 Espectro Harmônico

A teoria de *Fourier* afirma que qualquer sinal/ onda periódica pode ser decomposta por componentes harmônicos, cuja frequência é aquela múltipla da fundamental,conforme demonstrado por [3,33]. Como exemplo, é possível verificar através da Figura 6, retirada de [6], a demonstração gráfica da teoria de Fourier.

O espectro harmônico é a representação gráfica da decomposição das componentes harmônicas de um sinal onde cada barra representa uma ordem, frequência, e o seu valor eficaz. Assim temos a série de Fourier de um sinal medido. A Figura 7, refere-se a uma medição de espectro harmônico realizado na barra de 13,8 kV da subestação de distribuição da planta de mineração, que será tema do estudo de caso desta dissertação.

As correntes harmônicas têm sua origem devido as cargas não lineares, conforme mencionado no Capítulo 2. Então para saber sua composição, é importante realizar as medições com equipamentos de qualidade de energia, conforme apresentado no trabalho desenvolvido por Canova [14], ou solicitar aos fabricantes o espectro individual de cada componente de carga não linear, que irão gerar as correntes com conteúdo harmônico, obtendo o espectro harmônico. Na Figura 7, o valor RMS lido pela Analisador referente a corrente, deve ser multiplicado por 270 para encontrar o valor de corrente em ampères.



Figura 6 – Decomposição de uma onda periódica. *Reproduzido de* [6]



Figura 7 – Espectro Harmônico na barra 13,8 kV- Subestação Mina

#### 2.6 Metodologia de Cálculo de Impedância Equivalente

Os sistemas elétricos conectados à rede básica, com tensão  $V \ge 230 \text{kV}$ , devem seguir, conforme descrito em [7], a metodologia do lugar geométrico para calcular o desempenho harmônico de cargas frente a variação dos parâmetros da rede.

Esse método é recomendado pelo ONS- Operador Nacional do Sistema, para avaliar as distorções harmônicas de tensão, gerado pela conexão de cargas, significativamente não lineares, ao sistema de transmissão. Neste caso, a rede interna do acessante é modelada por uma única fonte de corrente harmônica e por sua impedância equivalente, ou seja, um equivalente de Nórton. Em paralelo, a rede externa é representada pelas admitâncias calculadas para cada ordem harmônica. Isto é feito desta maneira, pois a variação das cargas da vizinhança do ponto analisado pode interferir no conteúdo harmônico da carga. Então, se utiliza do método do Lugar Geométrico para avaliar um conjunto de conteúdo harmônico da rede e o impacto da carga.

Abaixo, na Figura 8, o paralelismo entre as redes pode ser verificado pelo circuito equivalente.



Figura 8 – Equivalente Norton com o LG da rede básica. Adaptado de [7]

A metodologia do lugar geométrico (LG), desenvolvida pelo CEPEL- Centro de Pesquisas em Engenharia Elétrica da Eletrobrás, para aplicação do programa *HarmZs* [34], o qual engloba todos os parâmetros das redes de transmissão, equipamentos e subestações existentes no SIN (Sistema Interligado Nacional), no plano complexo X versus R, que contém todas as impedâncias, convertido posteriormente para o plano de admitâncias.

O lugar geométrico é a representação única de cada harmônica, que pode ser visualizado através de um setor anular (circular), ou por um polígono de n-lados (polígono discreto), sendo esse último o mais utilizado pelos agentes, por condizer mais com a realidade.

A definição do polígono engloba todos os valores de impedâncias (pontos) da rede externa para os anos de análise, patamares de carga pesada, média e leve, bem como todas as contingências possíveis e faixa de frequência (h–0.5, h, h+0.5), com o passo de 0,1 (6Hz), onde h é a ordem.

Após a finalização do polígono, é possível calcular o pior caso de distorção de tensão para cada ordem harmônica vista do PAC, através da razão entre a corrente harmônica injetada pela rede interna do acessante (corrente de Nórton) e o valor mínimo de admitância equivalente.

O valor de admitância equivalente mínima - Yeq(min) representa a resultante da soma vetorial entre os vetores da rede externa e da rede interna.

$$DTHT_{Max} = \frac{I_h}{Yeq_{min(h)}} \times 100\%$$
(2.15)

Onde,  $DTHT_{Max}$  = distorção harmônica de tensão máxima no PAC em %;

 $Yeq_{min(h)} =$  Valor mínimo da admitância harmônica equivalente entre as admitâncias da rede interna e externa;

 $I_h =$ Corrente harmônica em Ampère;

Yeqmin(h) é calculado da seguinte forma:

$$Yeq_{min(h)} = Yext + Yi \tag{2.16}$$

Onde,

 $Yeq_{min}(h) =$  Valor mínimo da admitância harmônica equivalente entre as admitâncias da rede interna e externa;

Yext = Equivalente de admitância da rede externa;

Yi = Equivalente de admitância rede interna;

-Yi = Equivalente de admitância rede da rede externa pertencente ao contorno do polígono;

Para melhor ilustrar a metodologia do LG é apresentada a Figura 9, retirada de [7], onde é possível verificar o comportamento do campo harmônico da rede interna e externa de um sistema conectado à rede básica que pode variar de acordo com as admitâncias e cargas durante um período.



Figura 9 – Determinação LG. Reproduzido de [7]
## 2.7 Ressonâncias Séries e Paralelas

Segundo Moccio [25], em sistemas com filtro passivo instalados, que possuem capacitores de potência, o principal problema da aplicação dessa solução é a possibilidade de ocorrer ressonância no sistema elétrico. Por característica, a ressonância série amplifica as correntes do sistema e as ressonâncias paralelas amplificam as tensões do sistema, podendo causar sobrecarga e queima de equipamentos.

A maneira como as impedâncias equivalentes,  $Z_h$ , se interagem em função da forma como são associadas as indutâncias (XLh) e Capacitâncias (XCh), podem determinar se ocorrerá uma ressonância série ou paralela.

A impedância equivalente pode ser calculada da seguinte maneira:

$$Zh = R + jX_{Lh} - jX_{Ch}; (2.17)$$

As ressonâncias ocorrem quando os elementos (XLh) são iguais aos (XCh), ou seja:

$$X_{Lh} = X_C h \tag{2.18}$$

Sendo assim é possível calcular:

$$X_{Lh} = 2 \cdot \Phi \cdot f_1 \cdot h \cdot L; \tag{2.19}$$

$$X_{Ch} = \frac{1}{2 \cdot \Phi \cdot f_1 \cdot h \cdot C}; \qquad (2.20)$$

Onde,

 $F_h$  = Frequência na ordem harmônica "h" em Hz;

L = Indutância equivalente do sistema em mH;

 $C = \text{Capacitância equivalente do sistema em } \mu\text{F}$ 

No sistema onde ocorre a ressonância série, a fonte harmônica, o indutor e capacitor equivalentes estão em série, formando um caminho de **baixa impedância** para o harmônico da frequência de ressonância, o que pode resultar em sobreaquecimentos e sobretensões nos equipamentos.

A Figura 10, apresenta um circuito simplificado da ressonância série.

No sistema onde ocorre a ressonância paralela, a fonte harmônica, o indutor e capacitor equivalente estão em paralelo, formando um caminho de **alta impedância**,  $Z_h$ , para a corrente harmônica na frequência de ressonância, Ih.



Figura 10 – Circuito simplificado ressonância série. Adaptado de [3]

A operação nesta configuração, pode provocar graves problemas de qualidade de energia, mesmo se a corrente harmônica for pequena, pois haverá um aumento da tensão nesta frequência. A Figura11, apresenta um circuito simplificado da ressonância paralela.



Figura 11 – Circuito simplificado ressonância paralela. Adaptado de [3]

A importância de determinar a frequência de ressonância do circuito se faz necessária, pois em sistemas elétricos industriais de potência é muito comum a utilização de banco de capacitores em paralelo para correção do fator de potência para atendimento a legislação vigente da ANEEL [9].

A operação de bancos de capacitores nesta configuração pode provocar ressonância paralela em uma das frequências harmônicas presentes no sistema. Desta forma, em sistemas com presença de cargas não-lineares torna-se fundamental calcular a frequência de ressonância paralela. Para calcular a frequência de ressonância paralela, em instalações elétricas que possuem bancos de capacitores, pode-se utilizar (2.21), conforme apresentado por [3]:

$$f_r = \sqrt{\frac{S_{cc}}{Q_c}};\tag{2.21}$$

Onde,

 $F_h$  = Frequência harmônica em Hz;

 $S_{cc} = Potência de curto-circuito do sistema em MVA;$ 

 $Q_c =$  Potência do banco de capacitores em Mvar.

# 2.8 Índice de distorção harmônica total

O índice de distorção de harmônica total, *DTHT*, é o valor efetivo dos componentes harmônicos de uma onda distorcida. Este índice pode ser calculado pelos valores de tensão. Estes valores definem o quanto um sistema está "*poluído*" com conteúdo harmônico e para isto existem algumas normas e diretrizes para com o intuito de determinar os valores aceitáveis. No caso de sistemas conectados a rede de transmissão adotou-se o Procedimento de Rede, ONS Submódulo 2.8, [10], como referência, e para entender a terminologia da na norma é apresentada a Tabela 5.

Tabela 5 – Terminologia Procedimento de rede ONS 2.8 [10]

| Identificação da Grandeza                                                                     | Símbolo               |
|-----------------------------------------------------------------------------------------------|-----------------------|
| Distorção harmônica individual de tensão de ordem h                                           | $\text{DTHI}_h\%$     |
| Distorção harmônica total de tensão                                                           | DTHT%                 |
| Distorção harmônica total de tensão para as componentes pares não múltiplas de 3 $$           | DTHTP%                |
| Distorção harmônica total de tensão para as componentes ímpares não múltiplas de 3 $$         | $\mathrm{DTHT}_{i}\%$ |
| Distorção harmônica total de tensão para as componentes múltiplas de $3$                      | DTT3%                 |
| Tensão harmônica de ordem h                                                                   | $\mathbf{V}_h$        |
| Ordem harmônica                                                                               | $\mathbf{h}$          |
| Ordem harmônica máxima                                                                        | hmáx                  |
| Ordem harmônica mínima                                                                        | hmin                  |
| Tensão fundamental medida                                                                     | V1                    |
| Valor do indicador DTHT% que foi superado em apenas 5 $\%$ das 1008 leituras válidas          | DTHT95%               |
| Valor do indicador DTHTP% que foi superado em apenas 5 % das 1008 leituras válidas            | DTHTP95%              |
| Valor do indicador $\text{DTHT}_i$ % que foi superado em apenas 5 % das 1008 leituras válidas | $DTHT_i 95\%$         |
| Valor do indicador DTHT3% que foi superado em apenas 5 % das 1008 leituras válidas            | DTHT3 $95\%$          |

Em relação as subestações que estão no ponto de conexão da rede básica, ou seja, com tensão igual ou superior a 230 kV, deve-se obedecer aos requisitos técnicos apresentados no submódulo 2.8 – "Requisitos Mínimos para a Conexão à rede básica", item 9.5.3.4 [10], com o objetivo de determinar o indicadores de qualidade da energia no (PAC).

Entende-se por Distorção de Tensão Harmônica Individual –  $DTHI_I$ , o valor obtido da relação percentual entre a tensão harmônica de ordem h, Vh, e a tensão à frequência fundamental, V1, ambas medidas em volts, sendo expressa por:

$$DTHI_h = 100 \times \frac{V_h}{V_1}; \tag{2.22}$$

O indicador de limite de distorção harmônica de tensão DTHT – corresponde ao valor da raiz quadrada do somatório quadrático das DTI de ordens de  $2^{\underline{a}}$  a  $50^{\underline{a}}$ , sendo expressa por:

$$DTHT(\%) = \sqrt{\sum DTHT_h^2}$$
(2.23)

Os valores de DTHTI e DTHTS95%, obtidos nas simulações, deverão atender aos indicadores individuais e total de acordo com a Tabela 4.

Outra forma de checar o conteúdo harmônico é avaliando o TDD, que é a distorção total demandada. Segundo Conrado [1], afirma que este indicador é semelhante à DTHT<sub>i</sub>, exceto que a TDD é expressa como um percentual da máxima demanda da corrente de carga demandada entre 15 a 30 minutos.

Os limites propostos pela IEEE Std 519, [11] para a TDD levam em consideração a relação de curto-circuito  $(I_{SC}/I_L)$ , ou seja, a capacidade do sistema da concessionária em relação à potência da carga. Este índice não possui referência nas normas brasileiras, contudo no guia referência, *IEEE Std 519* [11], pode se obter o TDD da seguinte maneira:

$$TDD = \sqrt{\frac{\sum_{h=2}^{\infty} I_h^2}{I_L}}$$
(2.24)

Onde,

h é a ordem harmônica;

TDD é a Distorção Total Demandada, expressa em porcentagem da máxima corrente demandada do sistema;

 $I_L$  é a máxima corrente demandada do sistema em Amperes;

 ${\cal I}_h$  é a componente harmônica individual de corrente de ordem "h", em Amperes ;

As Tabelas 6 e Tabela 7 abaixo trazem os limites estabelecidos no guia IEEE Std 519 para os valores de TDD em sistemas conectados em rede de até 69 kV e sistemas conectados na rede básica com tensão superior a 161 kV.

Verifica-se, conforme apresentado por Bruna em [1] que para uma baixa relação de curto-circuito ( $I_{SC}/I_L$ ), conhecida como "rede fraca", o limite para a TDD é mais rigoroso para as distorções na forma de onda da corrente (5%), enquanto que uma elevada relação de curto-circuito, "rede forte", permite um limite menos rigoroso (20%) para distorção harmônica na corrente.

| $120 \text{ V} \le \text{V} \le 69 \text{ kV} [\%]$  |                                                                                        |                 |                  |                 |            |            |
|------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|------------------|-----------------|------------|------------|
| Ordem individual das harmônicas (harmônicas ímpares) |                                                                                        |                 |                  |                 |            |            |
| $I_{SC}/I_L$                                         | $I_{SC}/I_L$ h < 11 11 $\leq$ h < 17 17 $\leq$ h < 23 23 $\leq$ h < 35 35 $\leq$ h TDD |                 |                  |                 |            |            |
| <~20                                                 | $^{4,0}$                                                                               | 2,0             | $1,\!5$          | $0,\!6$         | $0,\!3$    | $^{5,0}$   |
| 20 < 50                                              | $^{7,0}$                                                                               | $^{3,5}$        | 2,5              | $1,\!0$         | $0,\!5$    | $^{8,0}$   |
| 50 < 100                                             | $10,\!0$                                                                               | $4,\!5$         | $4,\!0$          | $1,\!5$         | 0,7        | 12,0       |
| 100<1000                                             | $12,\!0$                                                                               | $5,\!5$         | $^{5,0}$         | 2,0             | $1,\!0$    | 15,0       |
| > 1000                                               | $15,\!0$                                                                               | 7,0             | 6,0              | 2,5             | $1,\!4$    | 20,0       |
| As harmônic                                          | cas pares s                                                                            | são limitadas e | m $25\%$ dos lin | nites das harmé | ònicas ímp | ares acima |

Tabela 6 – Limites de distorção de corrente para sistemas de distribuição geral [11].

Tabela 7 – Limites de distorção de corrente para sistemas de transmissão [11].

| $V \ge 161 \text{ kV} [\%]$                                                                 |                |                 |                   |                |             |          |
|---------------------------------------------------------------------------------------------|----------------|-----------------|-------------------|----------------|-------------|----------|
| Ordem individual das harmônicas (harmônicas ímpares)                                        |                |                 |                   |                |             |          |
| $I_{SC}/I_L$ $3 \le h < 11$ $11 \le h < 17$ $17 \le h < 23$ $23 \le h < 35$ $35 \le 50$ TDD |                |                 |                   |                |             |          |
| <~25                                                                                        | 1,0            | $0,\!5$         | $0,\!38$          | $0,\!15$       | $_{0,1}$    | $1,\!5$  |
| 25 < 50                                                                                     | $^{2,0}$       | $1,\!0$         | 0,75              | $0,\!3$        | $0,\!15$    | $^{2,5}$ |
| $\geq 50$ 3,0 1,5 1,15 0,45 0,22 3,75                                                       |                |                 |                   |                |             |          |
| As harmé                                                                                    | ônicas pares s | ão limitadas en | n $25\%$ dos limi | tes das harmôn | nicas ímpar | es acima |

# 2.9 Conclusão

Neste capítulo foi dado um enfoque maior no detalhamento na metodologia para determinar os harmônicos em um sistema elétrico, bem como foram apresentados os conceitos referentes ao tema. Para efeito de comparação foram apresentados os índices de referências nacionais, internacionais e a metodologia de cálculo da DTT.

Com essa metodologia de cálculo, pode-se determinar medidas mitigadoras adequadas para o sistema elétrico que serão apresentadas no Capítulo 3 a seguir.

# Capítulo 3

# Mitigação dos Efeitos dos Harmônicos

A modernização e as exigências de controle de processos mais automatizados dentro do conceito da quarta revolução industrial [35], eleva o nível de preocupação dos consumidores industriais e concessionárias de energia para manter os indicadores de QEE dentro dos valores estalecidos nas normas com o foco em mitigar os prejuízos econômicos.

Para se adequarem a essas normas e, consequentemente, mitigarem os efeitos dos distúrbios de QEE, as indústrias tem buscado por soluções e investindo cada vez mais em equipamentos compensadores, como por exemplo, banco de capacitores, filtro ativo, filtro passivo, compensador estático de reativos, entre outros, sendo possível realizar combinações entre eles.

Avaliar tecnicamente qual equipamento é mais adequado para a instalação não é uma tarefa simples. Diante disso, este Capítulo trata efetivamente da descrição das principais tecnologias utilizadas para mitigação de distúrbios de QEE, com enfoque na tecnologia de filtros sintonizados que será tema do estudo de caso deste trabalho. O objetivo é disponibilizar uma descrição das principais tecnologias utilizadas com suas vantagens e desvantagens com um olhar para o sistema que será simulado no Capítulo 5.

# 3.1 Soluções para Mitigar os Efeitos dos Harmônicos

Um processo produtivo com alto nível de automação, requer um nível de estabilidade e confiabilidade do sistema elétrico, e para atender a este requisito dependerá de uma fonte com alimentação elétrica livre de distorção harmônica. Em virtude da variedade de tecnologias disponíveis, a seleção técnica mais adequada para uma aplicação específica, nem sempre é um processo simples.

No intuito de reduzir e melhorar este processo, as várias alternativas foram classificadas em diferentes técnicas de mitigação, conforme descrito abaixo:

- Filtros passivos: podem ser sintonizados ou dessintonizados. Tradicionalmente usados para absorver correntes harmônicas, corrigir nível de tensão e também corrigir fator de potência da instalação por injetar reativos na rede, apresentam baixo custo e estrutura simples e robusta. Contudo trabalham com sinais fixos, ou seja, não há controle da corrente harmônica a ser injetada no sistema. Desta forma, são projetados para um determinado harmônico. Com uma grande desvantagem eles podem criar ressonância no sistema elétrico. Em instalações industriais é a solução mais usual, conforme citado por Mertens [21];
- Filtros ativos: fornecem várias funções, tais como redução de harmônicos, isolamento, amortecimento, balanceamento de carga, correção de fator de potência, regulação de tensão e custo elevado;
- Filtros híbridos: são mais atraentes em filtragem de harmônicas que os filtros ativos, possuem maior viabilidade do ponto de vista econômico especialmente para aplicações de alta potência;
- Compensador Série: são fontes de tensão controladas por eletrônica de potência, inseridas no sistema elétrico, que acoplam ao mesmo, através de um transformador, sem a necessidade de abertura do circuito para conexão. A flexibilidade inerente ao sistema permite a sua utilização na dessintonia (ou sintonia) de bancos de capacitores, compostos por vários estágios, como uma alternativa para a utilização de um indutor por fase ou a instalação de bancos de filtros paralelos [22].

#### 3.1.1 Filtro Ativo

Essa tecnologia é composta de elementos semicondutores [2]. Além de reduzir os índices de distorções harmônicas, melhora o desempenho do sistema. Entretanto, como necessita de controle robusto para os componentes eletrônicos há um incremento nos custos, o que ainda inviabiliza a aplicação em grande escala nas indústrias [21].

Seu princípio de funcionamento, conforme descrito em [22, 25] baseia-se na injeção de magnitudes de harmônicos de corrente ou tensão equivalentes a aquelas geradas pelas cargas não lineares defasadas em 180°, ou seja, atrasadas, de forma a cancelá-las. Os filtros ativos podem operar com êxito em face ao problema da ressonância. Já os filtros passivos em certas circunstâncias podem apresentar problemas devido a ressonância paralela [26].

Os filtros ativos podem tratar mais de uma ordem harmônica simultaneamente e outros problemas de qualidade de energia, tais como a flutuação de tensão, nível de tensão e reativo [5]. Classificam-se em três topologias, ativa série, ativa paralela e a combinação das duas anteriores ativa série-paralela.

- Filtro Ativo Série: Inversor opera como fonte de tensão em série, onde as tensões injetadas pelo filtro cancelam as tensões harmônicas presentes na tensão de alimentação;
- Filtro Ativo Paralelo: Inversor com controle de corrente de saída opera como fonte de corrente, onde elas são injetadas pelo filtro e cancelam as correntes harmônicas geradas pela carga não-linear. Desta forma, a filtragem pode ser total ou por meio da filtragem seletiva de harmônicos e, assim, permite a obtenção de corrente senoidal e com fator de potência unitário;
- Filtro Ativo Série/Paralelo: É uma combinação dos dois filtros citados anteriormente com objetivo de eliminar as fragilidades das duas soluções [36].



A Figura 12, ilustra a aplicação de um filtro ativo conectado a rede.

Figura 12 – Diagrama unifilar do sistema elétrico com o filtro ativo. Adaptado de [1]

## 3.1.2 Filtro Híbrido

A associação de um filtro passivo com um filtro ativo produz o filtro híbrido, cujo o objetivo é compensar as limitações de cada uma das tecnologias com um custo adequado. A associação das duas tecnologias promove a melhoria das características do sistema de mitigação harmônica dos filtros passivos [25], reduzindo a possibilidade de ocorrência de ressonância em face das variações das impedâncias da fonte, da carga ou de ambas. Esta tecnologia ainda permite uma redução do tamanho do conversor, pois necessita de menor potência do elemento ativo e assim reduz os custos de aquisição [22].

Os filtros híbridos podem ser classificados de acordo com associação dos elementos que o compõe, podendo destacá-los conforme abaixo:

• Filtros Híbridos Série-Shunt: Composto por um elemento filtro ativo série e outro filtro passivo shunt. O filtro passivo absorve as correntes harmônicas, já o filtro

ativo série "isola" os harmônicos da rede e da carga. A característica de compensação de harmônicos não é influenciada pela impedância da fonte.

- Filtros Híbridos Série É composto pela conexão série de um filtro ativo e passivo, conectado em paralelo ao sistema elétrico e à carga não-linear. Potência do filtro é reduzida, uma vez que ele só manipula corrente harmônica na frequência do filtro passivo. A tensão injetada pelo filtro é pequena e a isolação dos componentes é necessariamente baixa, uma vez que o filtro pode ser instalado no potencial de terra.
- Filtros Híbridos Paralelo Um filtro ativo é conectado em paralelo ao sistema de filtragem passiva, à carga não-linear e ao sistema elétrico. Não há problema de ressonância e as harmônicas geradas em outros pontos do sistema não serão compensadas pelo filtro, eliminando o problema de sobrecarga e sobre-dimensionamento, contudo as aplicações restritas

A Figura 13, exemplifica a aplicação de um filtro hibrido conectado a rede.



Figura 13 – Diagrama unifilar do sistema elétrico com o filtro Híbrido. Adaptado de [2]

### 3.1.3 Filtro Passivo

Os filtros de corrente harmônica são ditos passivos, conforme descrito em [24,25], quando não se pode controlar diretamente a corrente que está sendo drenada na frequência de sintonia.

O principal objetivo do é reduzir a amplitude de tensões e correntes de uma ou mais frequências harmônicas Filtro é uma estrutura projetada para permitir a passagem de certas faixas de frequência e bloqueio ou atenuação para outras [15].

Como o filtro proporciona um caminho de baixa impedância para determinadas frequências, correntes harmônicas de circuitos vizinhos, podem ser capturados e, assim, gerar uma sobrecarga no sistema. Por isso o filtro deve ser projetado para ter seu sistema de proteção adequado para não ficar exposto a sobrecarga [12,21,33].

Eles são projetados e construídos para atender a uma faixa, banda ou frequência específica e sua construção é basicamente composta por elementos capacitivos, reativos e indutivos. Os filtros passivos são largamente utilizados nas indústrias pelo seu efetivo resultado em reduzir o conteúdo harmônico específico, corrigir o fator de potência e melhorar o perfil de tensão da barra, a qual foi conectado. As referências [24,25], apresentam um ponto importante para a aplicação desta solução a respeito da alta sensibilidade dos componentes L e C em relação a perda de sintonia.

A perda de sintonia pode ocasionar o risco de sobrecarga, uma vez que, as correntes harmônicas ao excederem o que foi previsto no dimensionamento do projeto do filtro, conforme descrito em [15], pode levar a ocorrência de ressonância série, com a característica de amplificar as correntes em frequências específicas, e ou ressonância paralela, com característica de causar sobretensões harmônicas.



A Figura 14 ilustra a instalação de filtro passivo em um sistema elétrico.

Figura 14 – Diagrama unifilar do sistema elétrico com filtro passivo. Adaptado de [1]

### 3.1.4 Tipologias de Filtros Passivos

Os filtros passivos são uma combinação série paralelo de elementos resistivos, capacitivos e indutivos. A forma como se agrupa estes elementos pode se obter uma resposta para um determinado grupo de frequências harmônicas. Desta maneira é importante conhecer as tipologias de configuração desta solução.

Vários autores [3, 15, 24, 25] afirmam que os filtros podem ser do tipo sintonizados ou dessintonizados, em relação a frequência de maior valor, gerada pelas cargas não lineares. Os filtros sintonizados possuem uma impedância praticamente nula para correntes harmônicas na frequência de sintonia do sistema, e com isso drenam estas correntes.

A dessintonia do filtro tem por característica apresentar uma elevada impedância para as correntes harmônicas, variando assim a impedância equivalente,  $Z_h$  do sistema, reduzindo os níveis de distorção harmônica totais, mas não drenam as correntes geradas pelas cargas não lineares, assim podem sobrecarregar o sistema elétrico. A Figura 15 apresenta as tipologias de filtros passivos. [3]



Figura 15 – Tipologias de filtros passivos. Adaptado de [3]

Na referência [24] são descritas algumas diretrizes e recomendações para dimensionamento do filtro passivo. O principal risco desta tecnologia é a possibilidade de ocorrência de ressonância. Então para o correto dimensionamento é extremamente importante evitar que o filtro sintonize com a frequência da fonte, onde podem existir harmônicos significativos.

Em virtude desses pontos, é importante determinar alguns parâmetros do filtro, sendo eles:

- Fonte de harmônicos (em seus diversos pontos de operação);
- Admitância do filtro;
- Admitância do sistema de energia;
- Fator de qualidade (FQ), que está associado a seletividade do filtro;
- Sintonia de frequência para qual o filtro foi dimensionado para filtrar;
- Potência em Mvar que está associada a correção de harmônicos e também a frequência de ressonância do sistema;
- Grau de de-sintonia, relacionado as Variações nos parâmetros dos componentes, causadas por envelhecimento e/ou variação de temperatura, com isso, pode alterar a frequência de sintonia;
- A indutância é determinada para a sintonia necessária;
- A resistência é calculada para se obter o fator de qualidade desejado.

As principais características destas tipologias são citadas abaixo:

Filtros Sintonizado 1<sup>ª</sup> ordem (passa banda):

- Alternativa simples e econômica;
- Eficaz na frequência de sintonia, devido a baixa impedância;
- Apresenta baixa influência para harmônicas distantes da sintonia.

## Filtros Amortecido simples $2^{\underline{a}} e 3^{\underline{a}}$ ordem (passa alta):

- Apresenta boa eficiência na frequência de sintonia e frequências harmônica superiores;
- Tipicamente utilizado em frequências mais elevadas (a partir da 7<sup>ª</sup> ordem);
- Apresenta elevadas perdas no resistor (à frequência fundamental).

#### Filtros Amortecido Tipo C (passa alta):

- Alternativa simples e econômica;
- Eficaz na frequência de sintonia, devido a baixa impedância;
- Apresenta baixa influência para harmônicas distantes da sintonia.

# 3.2 Conclusão

A grande variedade de aplicações possíveis para soluções de mitigação de problemas de QEE, frente aos estudos e literatura conhecidos apresenta um campo de análise em relação a aplicação de filtro passivo interessante, que será abordada neste estudo, uma vez, que na maioria das indústrias a solução para mitigação de harmônicos ainda são os filtros passivos.

O motivo desta solução ainda ser aplicável é que se consegue eliminar o efeito dos harmônicos e como consequência, ainda pode obter uma melhora do perfil de tensão do do fator de potência da instalação.

Apesar do risco de ressonância do sistema, o custo benefício com o avanço dos sistemas de proteção e controle conforme citado por [12], a continuidade e avanços de estudos nesta área se tornam interessantes.

No próximo Capítulo, será abordado o tema da modelagem matemática para calcular e dimensionar o filtro passivo.

# Capítulo 4

# Dimensionamento de um Filtro Passivo

Neste capítulo, será abordado a teoria com a modelagem matemática para dimensionamento e cálculo de um filtro passivo.

Em indústrias de mineração, como a que será a referência do estudo de caso, as maiores fontes de cargas não lineares são os inversores de frequência com tecnologia PWM de 6 ou 12 pulsos, que geram harmônicas específicas [32], conforme visto no Capítulo 2. Assim, a tecnologia de filtro passivo ainda pode ser explorada como solução de mitigação de harmônicos nas indústrias.

Uma etapa importe é conhecer os limites dos equipamentos instalados em plantas industriais e verificar através de simulações computacionais e modelagem matemática quais são os limites que este sistema poderá suportar sem infringir os requisitos técnicos operacionais de cada elemento que o compõe [20].

# 4.1 Dimensionamento de Filtro Passivo

Nesta primeira parte, é importante entender os conceitos e a função dos elementos passivos que compreende o filtro. A capacitância do filtro é determinada para a compensação de reativos da instalação, a indutância é determinada para a sintonia necessária para o filtro e a resistência é calculada para se obter o fator de qualidade desejado.

A seguir, as informações que devem ser coletadas para dimensionamento do filtro:

- Levantamento detalhado do sistema alimentador no PAC;
- Medição das distorções harmônicas produzidas pelas cargas não lineares;
- Medição das distorção harmônica na tensão de alimentação;
- Potência reativa a ser compensada.

As premissas básicas para se modelar um filtro são [15]:

- Na frequência fundamental o sistema deve ser capacitivo para corrigir o fator de potência indutivo do sistema, de acordo com a legislação [17];
- O filtro deve ser ressonante para ordem harmônica hr.

#### 4.1.1 Dimensionamento de Potência Reativa Filtro

O primeiro passo é determinar a potência reativa líquida inicial necessária para corrigir o fator de potência que pode ser calculada pela seguinte expressão:

$$Q_i = Q_a - Q_d \tag{4.1}$$

Onde:

 $Q_a = \text{Potência reativa indutiva da carga;}$ 

 $Q_i =$ Potência reativa final na frequência fundamental;

 $Q_d =$ Potência reativa capacitiva injetada pelo filtro;

De forma gráfica, conforme figura 16 podemos demonstrar, de forma gráfica, o resultado de (4.1):



4.1.2 Dimensionamento da Frequência de Ressonância

O dimensionamento da frequência de ressonância é um parâmetro importante para os filtros sintonizados, pois irá determinar a frequência na qual o sistema pode entrar em ressonância série e ou paralela.

Sendo elas perigosas, tendo em vista que, a ressonância paralela que pode amplificar as correntes harmônicas em frequências específicas e as ressonância série com a fonte podem



levar amplificação das tensões harmônicas e isto pode gerar queima de equipamentos do sistema.

Então, conhecer este parâmetro é importante para saber os limites de variações aceitáveis para os componentes do filtro. A frequência de ressonância pode ser calculada de acordo com o termo abaixo:

$$h_r = \sqrt{\frac{P_{cc}}{Q_c}};\tag{4.2}$$

Onde,

 $h_r$  = Frequência ressonância em Hz; Pcc = Potência de curto-circuito do sistema em MVA;  $Q_c$  = Potência do banco de capacitores em Mvar;

### 4.1.3 Dimensionamento do Fator de Qualidade

O fator de qualidade (FQ) do filtro está relacionado a seletividade, ou seja, este parâmetro indica a máxima quantidade de energia que é armazenada em comparação com a máxima energia dissipada em um intervalo de tempo.

Sendo assim, o elemento que determina o fator de qualidade é o Resistor do filtro. E para calcular, pode se utilizar o termo abaixo:

$$F_Q = \frac{X_0}{R};\tag{4.3}$$

Onde,

 $F_Q$  = Fator de qualidade;  $X_0$  = Reatância do indutor ou capacitor na frequência de ressonância; R = Resistência do filtro;

Filtros sintonizados em harmônicos individuais possuem elevados valores de  $F_Q = (30 \le F_Q \le 60);$ 

Filtros sintonizados em uma faixa de frequências possuem baixos valores de  $F_Q = (0,5)$  $\leq F_Q \leq 5$ ;

### 4.1.4 Dimensionamento do Grau de De-Sintonia

O grau de De-Sintonia, diz respeito ao valor de corrente harmônica que o filtro pode suportar fora da frequência de sintonia sem gerar sobrecarga [15], uma vez que, os parâmetros da rede, suas impedâncias e admitâncias podem variar como visto no Capítulo 3. Outros pontos podem causar esta de-sintonia, tal como:

- Variações na frequência fundamental do sistema;
- Variações nos parâmetros dos componentes, causadas por envelhecimento e/ou variação de temperatura;
- Tolerância dos valores admissíveis na fabricação dos componentes.

Esse fator pode ser calculado da seguinte maneira:

$$\delta = \frac{\Delta f}{f_n} + \frac{1}{2} \left( \frac{\Delta L}{L_n} + \frac{\Delta C}{C_n} \right); \tag{4.4}$$

Onde,

- $\delta$  = Grau de de-sintonia;
- $\Delta_f = \text{Variação de frequência};$
- $f_n =$  Frequência fundamental;
- $\Delta_L =$ Variação da indutância;
- $L_n =$  Indutância na frequência fundamental;
- $\Delta_C =$ Variação de capacitância;
- $C_n$  = Capacitância na frequência fundamental;

A nota técnica, ONSNT0009 [7], estabelece que instalações elétricas conectadas a rede de transmissão podem admitir um fator de de-sintonia de  $\pm 2\%$  para a determinação de Y<sub>i</sub>h (admitância interna). Este fator deve ser considerado, em virtude do explicado acima, pois pode ocorrer a variação de capacitância por temperatura, falha de elementos internos de unidades capacitivas até o nível de *trip*, desajustes por passo de tapes de reatores para ajuste de sintonia, desvio de frequência, etc.

## 4.1.5 Dimensionamento da Impedância do Filtro Sintonizado

Para determinar a impedância do filtro, pode-se, utilizar a formulação matemática abaixo:

$$Z_f = R + j(\omega L + \frac{1}{\omega C}); \tag{4.5}$$

Onde:

 $Z_f =$ Impedância; R =Resistência;

- $\omega=$  Frequência em radianos;
- L =Indutância;
- C = Capacitância;

Para realizar o cálculo dos elementos do filtro sintonizado pode-se utilizar a seguinte dedução, onde a frequência de ressonância,  $\omega_n$  em radianos é dado por:

$$\omega_n = \frac{1}{\sqrt{LC}};\tag{4.6}$$

A Reatância do capacitor ou indutor na frequência de ressonância,  $X_0$  é dado por:

$$X_0 = \frac{1}{\omega_n C} = \omega_n L; \tag{4.7}$$

Por fim, a capacitância e indutância podem ser calculadas pela seguinte dedução do termo (4.3), e assim temos que :

$$F_Q = \left(\frac{X0}{R}\right);\tag{4.8}$$

Com isto, podemos deduzir:

$$C = \frac{1}{\omega_n X_0} = \frac{1}{\omega_n R F_Q} \tag{4.9}$$

$$L = \frac{X_0}{\omega_n} = \frac{RF_Q}{\omega_n} \tag{4.10}$$

Convertendo os termos (4.9, 4.10) e reescrevendo-os em forma de admitância (Y), susceptância (B) e condutância (G), da forma como se calcula os componentes harmônicos, conforme descrito em [7, 10], temos os seguintes termos:

$$Y_f = \frac{1}{R + (j2\delta FQ)} = G_f + jB_f = \frac{FQ}{X_0(1 + 4\delta^2 FQ^2)} + j\frac{2\delta(FQ)^2}{X_0 + (1 + 4\delta^2(FQ)^2)}$$
(4.11)

Desta forma, é determinada a distorção de tensão no ponto de acoplamento do filtro:

$$V = \frac{I_n}{Y_{fn} + Y_{sn}} = \frac{I_n}{Y_n} \tag{4.12}$$

Onde:

V = Tensão harmônica no ponto de conexão do filtro;

- $I_n =$ Corrente harmônica injetada;
- $Y_n$  = Admitância equivalente no ponto de acoplamento do filtro;

# 4.2 Conclusão

A modelagem matemática do filtro passivo sintonizado é uma atividade complexa em razão das implicações que este dispositivo pode ocasionar no sistema elétrico se dimensionado de maneira incorreta, por isso neste capítulo foi feito uma abordagem de revisão bibliográfica da metodologia de cálculo e dimensionamento de filtro passivo sintonizado, como fonte de embasamento teórico para o estudo de caso que será desenvolvido no Capítulo 5.

No Capítulo 5, será apresentado o estudo de caso, contendo os resultados obtidos através das simulações computacionais

# Capítulo 5

# Estudo de Caso Real

Neste capítulo, serão apresentados cinco estudos de caso com intuito de comparar a solução de mitigação de QEE de forma distribuída *versus* a centralizada em uma planta de mineração.

O principal problema de QEE identificado através das medições realizadas, é o elevado nível de distorção harmônica de tensão (DTHT) e este fenômeno tem provocado outros problemas no sistema elétrico da planta, tais como:

- Baixo fator de potencia em desconformidade com a legislação [10];
- Variação de tensão de longa duração [9];
- Desligamentos indevidos por ruídos na rede de automação e de proteção;
- Queima excessiva de motores elétricos, por falha em rolamentos.

A planta possui um filtro de harmônicos com 02 estágios, de 6 Mvar e 2,56 Mvar, sendo que este último está desativado. A proposição é verificar, com base na teoria descrita nos capítulos anteriores, se esses filtros podem ser utilizados na forma centralizada na subestação do PAC e ou distribuída para reduzir o nível de DTHT e assim atender aos procedimentos de rede do ONS [10] e reduzir o nível de DTHT na rede interna da planta.

Neste sentido, serão avaliados aspectos técnicos, como distorção total harmônica de tensão (DTHT), fator de potência ( $\lambda$ ), variação de tensão em relação a fundamental. Os dados das tensões de alimentação, impedância equivalente da rede e os parâmetros do transformador, foram obtidos junto a uma indústria de mineração localizada na região central de Minas Gerais.

A unidade consumidora está conectada a rede básica em tensão de 230 kV e opera 24 horas, 7 dias por semana e está submetida aos requisitos da norma ONS submódulo 2.8 [10]. A demanda contratada é 24 MW. Essa mineradora processa minério para obtenção de ouro e seu processo de lavra é subterrâneo o que demanda um controle de poeira, temperatura e oxigenação. As escavações estão há 1800 metros de profundidade em relação a superfície.

As principais cargas são os ventiladores, bombas, exaustores, moinhos e elevadores. Essas cargas são acionadas por conversores de frequência, pois há necessidade de variação de velocidades para atendimento ao processo produtivo.

Os dados dos componentes da planta foram coletados em campo e para realizar a modelagem, os valores considerados são apresentados no apêndice A. A simulação foi feita utilizado a ferramenta de modelagem computacional PTW (*Power Tools for Windows*) [37].

O trabalho apresentará cinco estudos de caso, a fim de analisar o desempenho das medidas de mitigação de harmônicos diante de diferentes cenários de distúrbios de QEE, sendo:

- Estudo de caso 01 Operação sem sistema de filtros;
- Estudo de caso 02 Operação Centralizada com Filtro Passivo de 6 Mvar na Subestação Principal;
- Estudo de caso 03 -Operação Centralizada com Filtros Passivos de 6 Mvar e 2,56 Mvar nas Barra A e Barra B Subestação Principal;
- Estudo de caso 04 Filtros Harmônicos Existentes Aplicados de Forma distribuída;
- Estudo de caso 05 Combinação de solução centralizada e distribuída.

## 5.1 Descrição do Sistema Elétrico da Planta Analisada

A planta industrial é alimentada por uma subestação 230 kV conectada à rede Básica, onde faz o rebaixamento da tensão para 13,8 kV, através de dois (02) transformadores de 20/25 MVA, para alimentar as cargas instaladas na Barra A e Barra B, que operam com o disjuntor de interligação de barras aberto e, desta maneira, há um desequilíbrio de carregamento entre os transformadores TF01 e TF02, resultando aproximadamente, em 65% de carga no TF01 e 40% da carga no TF02, conforme Tabela 8.

| Distribuição de Cargas (13,8 kV) |          |              |          |  |  |  |
|----------------------------------|----------|--------------|----------|--|--|--|
| Barra A                          | MW       | Barra B      | MW       |  |  |  |
| SV2_SV4                          | 2,8      | Mina 2       | 2,0      |  |  |  |
| TSA2                             | 0,065    | Mina 1       | $1,\!2$  |  |  |  |
| FH 6Mvar                         | $_{0,2}$ | Mina 3       | $_{3,8}$ |  |  |  |
| Metalurgia                       | $^{5,8}$ | Guincho 2    | 0,7      |  |  |  |
| Barragem                         | $0,\!38$ | Compressores | $^{1,5}$ |  |  |  |
| Refrigeração                     | $1,\!9$  | TSA 2        | 0,065    |  |  |  |
| Guinho 1                         | 1,7      | ADM          | 0,3      |  |  |  |
| SV3                              | $^{2,5}$ | Reserva      | 0        |  |  |  |
| Total                            | $15,\!4$ | Total        | $9,\!5$  |  |  |  |

Tabela 8 – Distribuição das Cargas nas Barras de 13,8 kV na Subestação Principal

#### 5.1.1 Dados dos Componentes do Sistema

#### Fonte de Alimentação:

Foi modelado a fonte de energia, considerando os níveis de curto-circuito trifásicos da concessionária CEMIG, apresentados na Tabela 28.

#### Cabos de Força:

Foram modelados conforme dados apresentados na Tabela30.

#### **Transformador:**

Foram modelados conforme dados apresentados na Tabela29.

#### Motores e Drives:

Na Tabela 31, são apresentados os motores existentes acionados por drives instalados na Planta. Dentre eles estão todos os motores acionados por inversores / conversores de frequência. No caso específico dos motores reservas, estes foram desconsiderados na modelagem. Os demais motores foram todos considerados em serviço com carga plena, independente do processo, a fim de representar o cenário mais conservador quanto à injeção de harmônicas de corrente no sistema.

A planta possui instalados as seguintes cargas não lineares, conforme apresentado Tabela 9 – Quantidade de Conversores na Planta

| Descrição           | Potência - kW | Quantidade |
|---------------------|---------------|------------|
| Conversor 6 pulsos  | 15 - 400      | 300        |
| Conversor 12 pulsos | 1400          | 6          |
| Retificador $CA/CC$ | 2400          | 1          |

#### Filtro de Harmônicos Existentes:

Na Tabela 32, são apresentados os dados do sistema de compensação de reativos através de dois filtros harmônicos de 5<sup>a</sup> ordem amortecidos (High pass), sendo um de 6 Mvar e o outro de 2,56 Mvar. Porém, o filtro de potência de 2,56 Mvar, está inoperante, em razão de decisão operacional da equipe de manutenção.

#### Espectro Harmônico dos Inversores:

No apêndice A são apresentados os dados dos espectros harmônicos das carga acionadas por drives na planta.

### 5.1.2 Modelagem e Medições

Neste trabalho serão utilizados para modelagem computacional os *softwares* PTW (*Power Tools for Windows*) e o ETAP (*Easy Power Tools*), utilizando o módulo de análise harmônica para verificar e validar as proposições deste estudo. [37,38]. Os cálculos para avaliação dos indicadores de qualidade energia terão como base a metodologia apresentada no Capítulo 4.

Para validar o modelo simulado, foram feitas medições de QEE na planta, com base na metodologia descrita por Canova em [14]. A modelagem referente aos estudos de casos 01 e 02 serão comparadas com os resultados das medições de QEE coletadas na planta com o objetivo de validá-la como base para estudos futuros.

As medições foram feitas na subestação principal, na barra de 13,8 kV e 230 kV, pontos de interesse desta dissertação. Para realizar estas medições foi utilizado o aparelho analisador de qualidade de energia, modelo Fluke 435, da fabricante de mesmo nome 17. A condição de operação da planta foi: sem filtro e com o filtro de 6 Mvar conectado a barra A da subestação principal.



Figura 17 – Medidor de qualidade de Energia Fluke 435.

Na barra de conexão com a concessionária, ponto de interesse deste estudo, serão detalhados os harmônicos individuais até a 50<sup>ª</sup> ordem, conforme recomendação da norma [7].

## 5.2 Estudos de Casos

Os estudos de casos, terão como base o sistema elétrico do apêndice A, que alimenta uma carga balanceada, com várias fontes harmônicas, em virtude da natureza dos acionamentos elétricos via conversores de frequência, excesso de lâmpada fluorescente, lâmpada a LED e conversores 12 pulsos.

A partir dos resultados coletados das medições, constatou-se que há violação dos limites de DTHT nas barras internas das subestações e em especial na barra de 230 kV, ponto de conexão com a concessionária, descumprindo as regras do ONS.

Essa transgressão provoca entre outros problemas, uma redução no fator de potência e variação da tensão de longa duração. Do ponto vista financeiro, a empresa pode ser penalizada pelo agente regulador por descumprimento dos índices de qualidade de energia [17].

Outros problemas relacionados a presença de harmônicos elevados no sistema informados pela equipe de manutenção, são os desligamentos de equipamentos indevidos, em virtude de ruídos na rede de automação, e queima de motores por falha em rolamentos. Um exemplo de rolamento com falha por circulação de corrente harmônica, pode ser visto na Figura 18. Conforme cita o autor Teixeira [26], elevados níveis de DTHT presente no sistema elétrico, estão relacionados aos problemas citados anteriormente.



Figura 18 – Rolamento com falha passagem de corrente elétrica

Os estudos de caso 01 e 02 representam as condições atuais de operação da planta. Então, estes cenários servirão como base para validar a modelagem realizada no *software* PTW, uma vez que, é possível coletar as medições reais da planta operando nas configurações citadas e assim comparar com os resultados da modelagem. O estudo de caso 03 tem como objetivo avaliar se o filtro de 2,56 Mvar, existente, aplicado de forma centralizada na subestação principal é suficiente para corrigir o problema de QEE de maneira satisfatória para toda instalação. Uma análise de custo para reforma do filtro será apresentada nesse cenário. A partir desse cenário, os resultados serão os apresentados pela simulação gerada no *software* PTW.

O estudo de caso 04 tem como objetivo fazer uma comparação da aplicação dos filtros simulados no cenário 03, porém de maneira distribuída, instalados próximos as cargas identificadas como maiores geradoras de harmônicos e consumidoras de potência reativa.

O estudo de caso 05 tem como objetivo fazer uma análise comparativa de qual será o impacto no indicador de QEE, fazendo uma integração entre a solução proposta no estudo de caso 03 e 04. Entretanto, serão calculados novos filtros para serem aplicados de forma distribuída e de forma centralizada serão modelados os filtros existentes. Esses filtros serão calculados para mitigar os harmônicos gerados pelas maiores cargas não lineares da planta.

Em todos os cenários analisados o foco de verificação será sempre a barra de conexão com a concessionária, ou seja, a barra do PAC em 230 kV, onde há regulamentação conforme descrito em [10, 17]. Os indicadores de QEE neste ponto devem ser obrigatoriamente atendidos, pois o descumprimento pode ser penalisado por meio de multas e até interrupções no fornecimento.

A análise secundária agora será com foco na melhoria dos indicadores de QEE nas subestações de distribuição interna da planta, com o objetivo de reduzir o DTHT, atendendo a demanda da equipe de manutenção da indústria.

#### 5.2.1 Estudo de Caso 01 - Operação Sem Filtros

Este cenário foi proposto para coletar as medições de QEE, na subestação principal de 230 kV e, para realizar a medição, foi retirado de operação o filtro harmônico de 6 Mvar. Desta forma, é possível obter os valores de DTHT, variação de tensão e Fator de potência na barras da subestação e comparar os resultados obtidos através da modelagem do sistema elétrico da planta feito no *software* PTW.

Os únicos componentes considerados para atenuar para os efeitos do distúrbio de DTHT são as impedâncias própria do sistema.Um diagrama básico que representa a operação deste sistema sem qualquer metodologia empregada para mitigação de harmônicos é mostrado na Figura 19.

Além do problema de harmônicos na rede, as cargas não lineares provocam redução no fator de potência e variação da tensão no sistema. Na barra de conexão com a concessionária, ponto de interesse deste estudo, foram detalhados os harmônicos individuais até a 50<sup>ª</sup> ordem, conforme recomendação do ONS [7].

Com o propósito de avaliar os impactos da DTHT nas subestações internas da planta, serão utilizados os dados da medição QEE, coletados na barra de 13,8 kV da Subestação Mina, apresentados na Figura 7. Estes dados serão comparados com os resultados da simulação.



Figura 19 – Diagrama Unifilar Básico Sem Filtros.

Neste cenário, na subestação principal, foi possível instalar o medidor de qualidade de energia (Figura17) e capturar algumas medições com base na metodologia apresentada por Jairo [14]. Os resultados das medições são apresentados na Figura 20. Os resultados da modelagem feitas no *software* PTW são apresentadas na Tabela 11 e Tabela 10.

| CASO 1 – OPERAÇÃO SEM OS FILTROS |          |                         |                 |  |  |
|----------------------------------|----------|-------------------------|-----------------|--|--|
| Frequência (Hz)                  | Ordem    | = 5.005 %<br>Limite ONS | DTHI Máx(%)     |  |  |
|                                  | Oruein   | Linite Orto             | D I I I Max(70) |  |  |
| 120                              | 2        | 0.3                     | 0               |  |  |
| 180                              | 3        | 0,6                     | 0.01734         |  |  |
| 240                              | 4        | 0,3                     | 0               |  |  |
| 300                              | 5        | 0,6                     | 0.51195         |  |  |
| 360                              | 6        | 0,3                     | 0               |  |  |
| 420                              | 7        | $0,\!6$                 | 0.72523         |  |  |
| 480                              | 8        | $0,\!3$                 | 0               |  |  |
| 540                              | 9        | $0,\!6$                 | 0               |  |  |
| 600                              | 10       | $0,\!3$                 | 0               |  |  |
| 660                              | 11       | $0,\!6$                 | 1.54466         |  |  |
| 720                              | 12       | $_{0,3}$                | 0               |  |  |
| 780                              | 13       | $0,\!6$                 | 1.84672         |  |  |
| 840                              | 14       | $_{0,3}$                | 0               |  |  |
| 900                              | 15       | $0,\!6$                 | 0               |  |  |
| 960                              | 16       | $0,\!3$                 | 0               |  |  |
| 1020                             | 17       | $0,\!6$                 | 1.2673          |  |  |
| 1080                             | 18       | $_{0,3}$                | 0               |  |  |
| 1140                             | 19       | $0,\!6$                 | 0.78522         |  |  |
| 1200                             | 20       | $_{0,3}$                | 0               |  |  |
| 1260                             | 21       | $0,\!6$                 | 0               |  |  |
| 1320                             | 22       | $_{0,3}$                | 0               |  |  |
| 1380                             | 23       | $0,\!6$                 | $0,\!39114$     |  |  |
| 1440                             | 24       | 0,3                     | 0               |  |  |
| 1500                             | 25       | $_{0,6}$                | 0,23282         |  |  |
| 1560                             | 26       | $_{0,3}$                | 0               |  |  |
| 1620                             | 27       | $^{0,4}$                | 0,01238         |  |  |
| 1680                             | 28       | $_{0,3}$                | 0               |  |  |
| 1740                             | 29       | $_{0,4}$                | 0,023           |  |  |
| 1800                             | 30       | $_{0,3}$                | 0               |  |  |
| 1860                             | 31       | 0,4                     | 0,01551         |  |  |
| 1920                             | 32       | 0,3                     | 0               |  |  |
| 1980                             | 33       | 0,4                     | 0               |  |  |
| 2040                             | 34       | 0.3                     | 0               |  |  |
| 2100                             | 35       | 0,4                     | 0,02749         |  |  |
| 2160                             | 36       | 0,3                     | 0               |  |  |
| 2220                             | 37       | 0,4                     | 0,027           |  |  |
| 2280                             | 38       | 0,3                     | 0               |  |  |
| 2340                             | 39       | 0,4                     | 0               |  |  |
| 2400                             | 40       | 0,3                     | 0               |  |  |
| 2460                             | 41       | 0,4                     | U               |  |  |
| 2020                             | 42       | 0,3                     | U               |  |  |
| 2080                             | 43       | 0,4                     | U               |  |  |
| 2040<br>2700                     | 44<br>45 | 0,3                     | 0               |  |  |
| 2100<br>2760                     | 40<br>46 | 0,4                     | 0               |  |  |
| 210U<br>2820                     | 40<br>47 | 0,3                     | U<br>0.09661    |  |  |
| 2020                             | 41       | 0,4                     | 0,02001         |  |  |
| 2000<br>2040                     | 40<br>40 | 0,5                     | U<br>0.01974    |  |  |
| 2940<br>3000                     | 49<br>50 | 0,4                     | 0,01374         |  |  |
| Distorção total tor              | เรลิก    | 15                      | 3 003           |  |  |
| *violação de limite              |          | ±,0                     | 0,000           |  |  |

Tabela 10 – Resultado Harmônicas Individuais sem Filtros

| BARRA               | TENSÃO-kV | MVA      | DTHT        | Icc-kA   | $\mathbf{FP}$ |
|---------------------|-----------|----------|-------------|----------|---------------|
| Principal           | 228       | 26       | $3{,}003\%$ | $12,\!6$ | 0,83          |
| Principal Barra A   | $13,\!4$  | 16       | 4,8%        | 11,4     | $0,\!80$      |
| Principal Barra B   | 13,8  kV  | 10       | 17.1%       | $^{8,5}$ | $0,\!86$      |
| QD_Planta           | $13,\!45$ | 6        | 4,7%        | 10,7     | 0,79          |
| $\mathrm{SV2/SV4}$  | $13,\!43$ | 5        | 4,8%        | 10,9     | $0,\!81$      |
| SV3                 | $13,\!43$ | $^{2,5}$ | $6,\!2\%$   | $^{7,6}$ | $0,\!80$      |
| Mina                | $13,\!6$  | 8        | 17.3%       | $5,\!9$  | $0,\!88$      |
| Refrigeração        | $13,\!4$  | 2        | 4,8%        | 11.2     | 0.79          |
| Guincho             | $13,\!45$ | $^{2,4}$ | 4,8%        | 11       | $0,\!80$      |
| Barragem            | $13,\!45$ | 0,7      | $5{,}5\%$   | 7,9      | 0,86          |
| *violação de limite |           |          |             |          |               |

Tabela 11 – Resultados- Operação sem Filtros- Modelagem PTW



C) Medição Tensão



As medições realizadas, bem como a modelagem, confirmam que que os valores DTHT, nas barras B, Barra 230 kV e barra da subestação Mina estão superando os valores da normas do ONS e procedimento, IEEE std 519, [10, 11], conforme visto no Capítulo 2.

Verificou-se, através das medições efetuadas, a validação da modelagem do sistema elétrico proposto no **software** PTW. Desta maneira será possível testar outras hipóteses nos capítulos seguintes e avaliar os resultados.

# 5.2.2 Estudo de Caso 02 - Operação Centralizada com FH de 6 Mvar na Subestação Principal

Este cenário foi proposto para coletar as medições de QEE, na subestação principal de 230 kV e representa a condição normal de operação da instalação. A Planta possui em sua subestação principal um FH de 6 Mvar, para manter os níveis dos indicadores de QEE dentro dos parâmetros estabelecidos pelo ONS. Os dados técnicos deste filtro podem ser verificados na Tabela 32.

Os parâmetros foram modelados no *software* PTW, considerando a metodologia apresentada no capítulo 4. Para comprovar sua eficácia serão comparados os resultados obtidos na simulação com os dados de medições de QEE coletados na na subestação, conforme apresentado na Figura 23. Para um melhor entendimento deste solução, é apresentado um diagrama unifilar básico do local de instalação do Filtro.



Figura 21 – Diagrama Unifilar Básico com Filtro 6 Mvar.

Pode-se observar que neste caso simulado, na Tabela 12 há violação nas harmônicas individuais de  $7^{a}$  e  $11^{a}$  ordem, o que resulta em não atendimento ao nível total de DTHT, em acordo com o estabelecido na norma ONS [10].

|                        | DTUT   | - 1 9 / 07 | CASO 1 – OPERAÇÃO FILTRO 6 Mvar                |  |  |  |  |  |  |
|------------------------|--------|------------|------------------------------------------------|--|--|--|--|--|--|
| Frequência (Uz)        | Ordom  | -1,04 /0   |                                                |  |  |  |  |  |  |
| <u>Frequencia (nz)</u> | Ordem  |            | $\frac{\text{DTHI} \operatorname{Max}(76)}{0}$ |  |  |  |  |  |  |
| 120                    | 2      | 0,5        | 0 0275                                         |  |  |  |  |  |  |
| 160                    | ა<br>4 | 0,0        | 0,0275                                         |  |  |  |  |  |  |
| 240                    | 4      | 0,5        | 0 4522                                         |  |  |  |  |  |  |
| 300<br>260             | 0<br>6 | 0,0        | 0.4052                                         |  |  |  |  |  |  |
| 300                    | 0 7    | 0,3        | 0 00700                                        |  |  |  |  |  |  |
| 420                    | (      | 0,0        | 0,09723                                        |  |  |  |  |  |  |
| 480                    | 8      | 0,3        | 0                                              |  |  |  |  |  |  |
| 540<br>600             | 9      | 0,6        | 0                                              |  |  |  |  |  |  |
| 000                    | 10     | 0,3        | 0 0000                                         |  |  |  |  |  |  |
| 000<br>700             | 10     | 0,6        | 0,6239                                         |  |  |  |  |  |  |
| 720                    | 12     | 0,3        | 0                                              |  |  |  |  |  |  |
| 780                    | 13     | 0,6        | 0,5985                                         |  |  |  |  |  |  |
| 840                    | 14     | 0,3        | 0                                              |  |  |  |  |  |  |
| 900                    | 15     | 0,6        | 0                                              |  |  |  |  |  |  |
| 960                    | 16     | 0,3        | 0                                              |  |  |  |  |  |  |
| 1020                   | 17     | $0,\!6$    | 0,3753                                         |  |  |  |  |  |  |
| 1080                   | 18     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 1140                   | 19     | $_{0,6}$   | 0,2621                                         |  |  |  |  |  |  |
| 1200                   | 20     | 0.3        | 0                                              |  |  |  |  |  |  |
| 1260                   | 21     | $_{0,6}$   | 0                                              |  |  |  |  |  |  |
| 1320                   | 22     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 1380                   | 23     | 0.6        | 0,1736                                         |  |  |  |  |  |  |
| 1440                   | 24     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 1500                   | 25     | $_{0,6}$   | 0,1221                                         |  |  |  |  |  |  |
| 1560                   | 26     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 1620                   | 27     | $^{0,4}$   | 0.00445                                        |  |  |  |  |  |  |
| 1680                   | 28     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 1740                   | 29     | $^{0,4}$   | 0.0093                                         |  |  |  |  |  |  |
| 1800                   | 30     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 1860                   | 31     | $^{0,4}$   | 0,00765                                        |  |  |  |  |  |  |
| 1920                   | 32     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 1980                   | 33     | $^{0,4}$   | 0                                              |  |  |  |  |  |  |
| 2040                   | 34     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 2100                   | 35     | $^{0,4}$   | 0,01254                                        |  |  |  |  |  |  |
| 2160                   | 36     | $_{0,3}$   | 0                                              |  |  |  |  |  |  |
| 2220                   | 37     | $^{0,4}$   | 0,0126                                         |  |  |  |  |  |  |
| 2280                   | 38     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 2340                   | 39     | $^{0,4}$   | 0                                              |  |  |  |  |  |  |
| 2400                   | 40     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 2460                   | 41     | $0,\!4$    | 0                                              |  |  |  |  |  |  |
| 2520                   | 42     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 2580                   | 43     | $0,\!4$    | 0                                              |  |  |  |  |  |  |
| 2640                   | 44     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 2700                   | 45     | $0,\!4$    | 0                                              |  |  |  |  |  |  |
| 2760                   | 46     | $0,\!3$    | 0                                              |  |  |  |  |  |  |
| 2820                   | 47     | 0,4        | 0,0098                                         |  |  |  |  |  |  |
| 2880                   | 48     | 0,3        | 0                                              |  |  |  |  |  |  |
| 2940                   | 49     | 0,4        | 0.0056                                         |  |  |  |  |  |  |
| 3000                   | 50     | 0,3        | 0                                              |  |  |  |  |  |  |
| Distorção total tensão | )      | 1.5        | 1.84                                           |  |  |  |  |  |  |

Tabela 12 – Espectro Harmônico - Planta interna modelada com filtro de 6 Mvar.

\*violação de limite

Na Tabela13, os resultados da simulação mostram que há uma melhora nos indicadores em relação ao fator de potência e DTHT, porém ainda não foi suficiente para atender aos requisitos da norma [10], conforme a teoria apresentada no Capítulo 4.

Percebe-se, contudo, que as cargas ligadas em outras barras não apresentaram melhora em seus indicadores de QEE. Por característica operacional o sistema opera com disjuntor de interligação de barras na subestação principal aberto. Sendo assim, o filtro instalado na barra A, não contribui efetivamente para reduzir o nível de DTHT na barra B, bem como elevar o fator de potência nesta barra, por não ter caminho para de baixa impedância para capturar as harmônicas da barra que não possui FH, a forma de onda da Barra A e Barra B geradas através da simulação é apresentado na Figura 22. Verifica-se que a barra B está com elevado nível de DTHT, em razão das cargas da mina possuírem vários inversores de 6 pulsos operando sem nenhuma medida mitigadora. Os resultados da simulação são apresentados na Tabela 13.

| BARRA               | TENSÃO- kV | MVA      | DTHT       | Icc-kA   | $\mathbf{FP}$ |
|---------------------|------------|----------|------------|----------|---------------|
| Principal           | 228        | 24,5     | 1,84%      | $12,\!6$ | 0,91          |
| Principal Barra A   | $14,\!045$ | $14,\!5$ | 2,5%       | $11,\!4$ | $0,\!97$      |
| Principal Barra B   | 13,8  kV   | 10       | $15,\!3\%$ | $^{8,5}$ | 0,86          |
| QD_Planta           | 14,026     | 6        | 2,5%       | 10,7     | 0,79          |
| $\mathrm{SV2/SV4}$  | 14,02      | 5        | $2,\!6\%$  | 10,9     | 0,81          |
| SV3                 | $13,\!43$  | $^{2,5}$ | $6,\!2\%$  | $^{7,6}$ | $0,\!80$      |
| Mina                | $13,\!6$   | 8        | 17,9%      | 5,9      | 0,88          |
| Refrigeração        | 14,02      | 2        | 25%        | 11,2     | 0,81          |
| Guincho             | 14,01      | $^{2,4}$ | 2,5%       | 11       | $0,\!80$      |
| Barragem            | $13,\!45$  | 0,7      | 5,7%       | 7,9      | 0,86          |
| *violação de limite |            |          |            |          |               |

Tabela 13 – Resultados- Operação com 01 Filtro 6 Mvar- PTW



b) Espectro Harmônico Barra A & B 13,8 kV

Plot1 - Distortion Spectrur

Figura 22 – Estudo de Caso 2- Forma Onda e Espectro Resultante Simulação.



C) Medição Tensão

Figura 23 – Caso 2- Medições de QEE Na Subestação Principal com filtro 6 Mvar na Barra A.

Pode-se comprovar com as medições efetuadas, e apresentadas na Figura 23 que, a simulação reflete a condição real de operação com o filtro de 6 Mvar instalado, validando a modelagem para o cenário com o filtro instalado de forma centralizada. Contudo a aplicação ainda não é suficiente para atender a legislação e proporcionar melhora efetiva em toda a instalação, reduzindo a possibilidade de desligamentos indevidos por elevado nível de DTHT.

# 5.2.3 Estudo de Caso 03 - Operação Centralizada com FH nas Barra A e Barra B - Subestação Principal

A planta de mineração, atualmente, possui na subestação principal 01 filtro de 6 Mvar, que está operacional e outro de 2,56 Mvar, que está inoperante. A equipe de manutenção, desligou este filtro em 2012, pois a demanda da mina era de 12 MW e não necessitava de uma potência de 8,56 Mvar, para correção do fator de potência. Esse excesso de reativo capacitivo estava provocando desligamentos do sistema pela atuação da proteção de sobretensão.

A partir de 2012, ocorreram ampliações e mudanças nos processos produtivos que resultaram em alterações nas instalações da Mina. Atualmente, a mina possui instalados 300 conversores de frequência de 6 e 12 pulsos, com potência entre 100 e 1400 HP, conforme apresentado na Tabela 31.

Após um estudo de análise de falha feito pela equipe de manutenção, chegou-se a conclusão que a queima ocorria pela falha nos rolamentos, por excesso de vibração entre a frequência de  $5^{\circ}$  e  $7^{\circ}$  harmônicos. Esta falha, conforme visto no capítulo 2, pode estar relacionada com excesso de conteúdo harmônico, gerados em virtude dos inversores não possuírem filtro senoidal nas saída para alimentar os motores.

A proposta neste cenário é avaliar, através da modelagem já elaborada no PTW, se a inclusão do filtro de 2,56 Mvar seria capaz de melhorar os indicadores de DTHT e fator de potência, na subestação principal e nas subestações de distribuição.

O custo de reparo, informado pelo time de manutenção para retornar com o filtro em condições de operação é detalhado conforme Tabela 14.

| Descrição                               | Quantidade | Valor (R\$)     |
|-----------------------------------------|------------|-----------------|
| Capacitor de potencia $16,5 \text{ kV}$ | 24         | R\$ 76.800,00   |
| Isoladores Porcelana 20 kV              | 10         | R $$4.525,20$   |
| Testes e Comissionamento                | 1          | R\$ 20.000,00   |
| Total                                   |            | R $$101.325,00$ |

Tabela 14 – Estudo de Caso 03- Custo de Reparo FH 2,56 Mvar

A simulação será realizada considerando a instalação, centralizada, do FH de 6 Mvar na Barra A e o de 2,56 Mvar na Barra B da subestação principal. As características deles estão descritas na Tabela 32. O diagrama unifilar básico é apresentado através da Figura 24, para ilustrar a solução.

Os resultados da simulação serão avaliados considerando a legislação [10] para indicadores de QEE no ponto de acoplamento com concessionária. Outra análise será feita considerando se foi possível reduzir o nível de distorção harmônica de tensão nas subestações internas da planta, para mitigar o problema de ruído na rede de automação gerado pelo alto índice de DTHT na rede.

A partir deste cenário, não é possível comparar os resultados das simulações com as medições, em virtude da configuração simulada não poder ser colocada em operação na planta. Os resultados da simulação poderão ser vistos e comparados através da Tabela15.

O fator de distorção harmônica total- DTHT em relação as harmônicas individuais de tensão, atendeu aos requesitos da norma [10, 11], no ponto de acoplamento com a concessionária. Na Tabela 16 são apresentados os resultados dos outros indicadores de QEE resultantes das subestações da distribuição interna da planta.

Os resultados apresentados na Tabela 16, demonstram que o perfil de tensão em 13,8 kV na planta atinge os valores estabelecidos na norma ANEEL Prodist [9], em todas as subestações da planta. O nível de DTHT e fator de potência na subestação



Figura 24 – Diagrama Unifilar Básico- Caso 3

principal, no barramento de 230 kV atingem os limites estabelecidos em norma [10]. Pode-se constatar que na barra B e subestação Mina, ainda há violação dos limites de DTHT, em desconformidade com os valores da norma IEEE std 519. Então, desta forma comprova-se que a solução centralizada não é eficiente para todas as aplicações, apesar da redução do nível de DTHT.

Nas outras subestações de distribuição interna da planta, percebe-se que não há um atendimento aos valores estabelecidos em norma [9], referente a fator de potência e DTHT, o que pode provocar sobrecarga, aquecimento e queima de motores. Desta maneira será analisada uma solução de redistribuir estes filtros existentes, nas barras internas da planta, com base na metodologia de solução distribuída, apresentada dor Diniz [22].

A forma de onda e espectro harmônico resultantes na barra de 230 kV obtidos através da simulação no PTW, são apresentados na Figura 25.

| Frequência (Hz)         Ordem         Limite ONS         DTHI Máx(%)           120         2         0,3         0           180         3         0,6         0,0264           240         4         0,3         0           300         5         0,6         0,3455           360         6         0,3         0           420         7         0,6         0,3971           480         8         0,3         0           600         10         0,3         0           660         11         0,6         0,561           720         12         0,3         0           660         11         0,6         0,4904           840         14         0.3         0           900         15         0,6         0           9100         17         0,6         0,384           1080         18         0,3         0           1200         20         0,3         0           1200         20         0,3         0           1380         23         0,6         0,1495           1440         24         0,3 | CASO 3 -               | CASO 3 – OPERAÇÃO COM 2 FITROS |              |             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|--------------|-------------|--|--|--|--|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequência (Hz)        | Ordem                          | Limite ONS   | DTHI Máx(%) |  |  |  |  |
| 180         3 $0,6$ $0,0264$ 240         4 $0,3$ $0$ 300         5 $0,6$ $0,3455$ 360         6 $0,3$ $0$ 420         7 $0,6$ $0,3971$ 480         8 $0,3$ $0$ 600         10 $0,3$ $0$ 660         11 $0,6$ $0,561$ 720         12 $0,3$ $0$ 780         13 $0,6$ $0,4904$ 840         14 $0,3$ $0$ 900         15 $0,6$ $0$ 960         16 $0,3$ $0$ 900         15 $0,6$ $0,2591$ 1200         20 $0,3$ $0$ 1320         22 $0,3$ $0$ 1380         23 $0,6$ $0,1495$ 1440         24 $0,3$ $0$ 1500         25 $0,6$ $0,0995$ 1560 <td>120</td> <td>2</td> <td>0,3</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120                    | 2                              | 0,3          | 0           |  |  |  |  |
| 240       4 $0,3$ 0         300       5 $0,6$ $0,3455$ 360       6 $0,3$ 0         420       7 $0,6$ $0,3971$ 480       8 $0,3$ 0         540       9 $0,6$ 0         660       11 $0,6$ 0,561         720       12 $0,3$ 0         780       13 $0,6$ 0,4904         840       14 $0,3$ 0         900       15 $0,6$ 0         900       15 $0,6$ 0         900       16 $0,3$ 0         1020       17 $0,6$ $0,2591$ 1200       20 $0,3$ 0         1260       21 $0,6$ 0         1380       23 $0,6$ $0,1495$ 1440       24 $0,3$ 0         1500       25 $0,6$ $0,0995$ 1560       26 $0,3$ 0         1680       28 $0,3$ 0                                                                                                                                                                                                                                                                                                                                                                                          | 180                    | 3                              | 0,6          | 0,0264      |  |  |  |  |
| 300       5 $0,6$ $0,3455$ $360$ 6 $0,3$ $0$ $420$ 7 $0,6$ $0,3971$ $480$ 8 $0,3$ $0$ $540$ 9 $0,6$ $0$ $600$ $10$ $0,3$ $0$ $660$ $11$ $0,6$ $0,561$ $720$ $12$ $0,3$ $0$ $840$ $14$ $0,3$ $0$ $900$ $15$ $0,6$ $0$ $900$ $15$ $0,6$ $0$ $900$ $15$ $0,6$ $0,384$ $1020$ $17$ $0,6$ $0,2591$ $1200$ $20$ $0,3$ $0$ $1260$ $21$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1500$ $25$ $0,6$ $0,9995$ $1560$ $26$ $0,3$ $0$ $1500$ $27$ $0,4$ $0$ $1500$ $27$ $0,4$ $0$ <tr< td=""><td>240</td><td>4</td><td>0,3</td><td>0</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240                    | 4                              | 0,3          | 0           |  |  |  |  |
| 360       6 $0,3$ $0$ $420$ 7 $0,6$ $0,3971$ $480$ 8 $0,3$ $0$ $540$ 9 $0,6$ $0$ $600$ $10$ $0,3$ $0$ $600$ $11$ $0,6$ $0,561$ $720$ $12$ $0.3$ $0$ $780$ $13$ $0,6$ $0,4904$ $840$ $14$ $0.3$ $0$ $900$ $15$ $0,6$ $0$ $960$ $16$ $0,3$ $0$ $1020$ $17$ $0,6$ $0,2591$ $1200$ $20$ $0,3$ $0$ $1260$ $21$ $0,6$ $0,2591$ $1200$ $22$ $0,3$ $0$ $1380$ $23$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1500$ $26$ $0,3$ $0$ $1500$ $26$ $0,3$ $0$ $1500$ $33$ $0,4$ $0$ <tr< td=""><td>300</td><td>5</td><td>0,6</td><td>0,3455</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                    | 5                              | 0,6          | 0,3455      |  |  |  |  |
| 420       7       0,6       0,3971 $480$ 8       0,3       0 $540$ 9       0,6       0 $600$ 10       0,3       0 $660$ 11       0,6       0,561 $720$ 12       0,3       0 $780$ 13       0,6       0,4904 $840$ 14       0,3       0         900       15       0,6       0         900       15       0,6       0         900       15       0,6       0         900       15       0,6       0         900       16       0,3       0         1020       17       0,6       0,2591         1200       20       0,3       0         1320       22       0,3       0         1380       23       0,6       0,1495         1440       24       0,3       0         1500       26       0,3       0         1500       26       0,3       0         1500       28       0,6       0,0995         1560       26                                                                                                                                                                                                          | 360                    | 6                              | 0,3          | 0           |  |  |  |  |
| 480       8 $0,3$ 0         540       9 $0,6$ 0         600       10 $0,3$ 0         660       11 $0,6$ $0,561$ 720       12 $0,3$ 0         780       13 $0,6$ $0,4904$ 840       14 $0,3$ 0         900       15 $0,6$ 0         960       16 $0,3$ 0         1020       17 $0,6$ $0,384$ 1080       18 $0,3$ 0         1140       19 $0,6$ $0,2591$ 1200       20 $0,3$ 0         1380       23 $0,6$ $0,1495$ 1440       24 $0,3$ 0         1500       25 $0,6$ $0,0995$ 1560       26 $0,3$ 0         1620       27 $0,4$ 0         1800       30 $0,3$ 0         1920       32 $0,3$ 0         1980       33 $0,4$ 0                                                                                                                                                                                                                                                                                                                                                                                              | 420                    | 7                              | 0,6          | 0,3971      |  |  |  |  |
| 540       9 $0,6$ 0 $600$ 10 $0,3$ 0 $720$ 12 $0,3$ 0 $780$ 13 $0,6$ $0,4904$ $840$ 14 $0,3$ 0 $900$ 15 $0,6$ 0 $960$ 16 $0,3$ 0 $1020$ 17 $0,6$ $0,2591$ $1200$ 20 $0,3$ 0 $1140$ 19 $0,6$ $0,2591$ $1200$ 22 $0,3$ 0 $1260$ 21 $0,6$ $0,1495$ $1440$ 24 $0,3$ 0 $1380$ 23 $0,6$ $0,1495$ $1440$ 24 $0,3$ 0 $1500$ 25 $0,6$ $0,9995$ $1560$ 26 $0,3$ 0 $1680$ 28 $0,3$ 0 $1800$ 30 $0,3$ 0 $1920$ 32 $0,3$ 0 $1920$ 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480                    | 8                              | 0,3          | 0           |  |  |  |  |
| 600         10 $0,3$ $0$ $720$ 12 $0.3$ $0$ $780$ 13 $0.6$ $0,4904$ $840$ 14 $0.3$ $0$ $900$ 15 $0.6$ $0$ $900$ 16 $0,3$ $0$ $1020$ $17$ $0.6$ $0,384$ $1080$ $18$ $0.3$ $0$ $1140$ $19$ $0,6$ $0,2591$ $1200$ $20$ $0,3$ $0$ $1320$ $22$ $0,3$ $0$ $1320$ $22$ $0,3$ $0$ $1380$ $23$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1560$ $26$ $0,3$ $0$ $1560$ $27$ $0,4$ $0$ $1620$ $27$ $0,4$ $0$ $1800$ $30$ $0,3$ $0$ $1800$ $31$ $0,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 540                    | 9                              | $0,\!6$      | 0           |  |  |  |  |
| 660         11 $0,6$ $0,561$ 720         12 $0.3$ $0$ 780         13 $0,6$ $0,4904$ 840         14 $0.3$ $0$ 900         15 $0,6$ $0$ 960         16 $0,3$ $0$ 1020         17 $0,6$ $0,384$ 1080         18 $0.3$ $0$ 1140         19 $0,6$ $0,2591$ 1200         20 $0,3$ $0$ 1320         22 $0,3$ $0$ 1380         23 $0,6$ $0,1495$ 1440         24 $0,3$ $0$ 1500         25 $0,6$ $0,0995$ 1560         26 $0,3$ $0$ 1620         27 $0,4$ $0$ 1880         31 $0,4$ $0$ 1920         32 $0,3$ $0$ 1860         31 $0,4$ $0$ 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600                    | 10                             | 0,3          | 0           |  |  |  |  |
| 720       12 $0.3$ 0         780       13 $0.6$ $0.4904$ 840       14 $0.3$ 0         900       15 $0.6$ 0         960       16 $0.3$ 0         1020       17 $0.6$ $0.384$ 1080       18 $0.3$ 0         1140       19 $0.6$ $0.2591$ 1200       20 $0.3$ 0         1260       21 $0.6$ $0.1495$ 1440       24 $0.3$ 0         1380       23 $0.6$ $0.1495$ 1440       24 $0.3$ 0         1500       25 $0.6$ $0.0995$ 1560       26 $0.3$ 0         1680       28 $0.3$ 0         1740       29 $0.4$ 0         1860       31 $0.4$ 0         1920       32 $0.3$ 0         2140       34 $0.3$ 0         2220       37 $0.4$ 0                                                                                                                                                                                                                                                                                                                                                                                       | 660                    | 11                             | $0,\!6$      | 0,561       |  |  |  |  |
| 780       13 $0,6$ $0,4904$ 840       14 $0.3$ $0$ 960       15 $0,6$ $0$ 1020       17 $0,6$ $0,384$ 1080       18 $0.3$ $0$ 1140       19 $0,6$ $0,2591$ 1200       20 $0,3$ $0$ 1320       22 $0,3$ $0$ 1380       23 $0,6$ $0,1495$ 1440       24 $0,3$ $0$ 1500       26 $0,3$ $0$ 1500       25 $0,6$ $0,0995$ 1560       26 $0,3$ $0$ 1680       28 $0,3$ $0$ 1740       29 $0,4$ $0$ 1800       30 $0,3$ $0$ 1980       33 $0,4$ $0$ 2100       35 $0,4$ $0$ 2240       34 $0,3$ $0$ 2240       36 $0,3$ $0$ 2460       41 $0,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 720                    | 12                             | 0.3          | 0           |  |  |  |  |
| 840       14 $0.3$ $0$ $900$ 15 $0.6$ $0$ $960$ 16 $0.3$ $0$ $1020$ 17 $0.6$ $0.384$ $1080$ 18 $0.3$ $0$ $1140$ 19 $0.6$ $0.2591$ $1200$ $20$ $0.3$ $0$ $1260$ $21$ $0.6$ $0$ $1320$ $22$ $0.3$ $0$ $1380$ $23$ $0.6$ $0.1495$ $1440$ $24$ $0.3$ $0$ $1500$ $25$ $0.6$ $0.0995$ $1560$ $26$ $0.3$ $0$ $1620$ $27$ $0.4$ $0$ $1680$ $28$ $0.3$ $0$ $1800$ $30$ $0.3$ $0$ $1800$ $30$ $0.3$ $0$ $1980$ $33$ $0.4$ $0$ $2100$ $35$ $0.4$ $0$ $2280$ $38$ $0.3$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 780                    | 13                             | $0,\!6$      | 0,4904      |  |  |  |  |
| 90015 $0,6$ $0$ $960$ 16 $0,3$ $0$ $1020$ 17 $0,6$ $0,384$ $1080$ 18 $0,3$ $0$ $1140$ 19 $0,6$ $0,2591$ $1200$ 20 $0,3$ $0$ $1260$ 21 $0,6$ $0$ $1320$ 22 $0,3$ $0$ $1380$ 23 $0,6$ $0,1495$ $1440$ 24 $0,3$ $0$ $1500$ 25 $0,6$ $0,0995$ $1560$ 26 $0,3$ $0$ $1680$ 28 $0,3$ $0$ $1680$ 31 $0,4$ $0$ $1800$ 30 $0,3$ $0$ $1860$ 31 $0,4$ $0$ $2100$ 35 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $2460$ 41 $0,4$ $0$ $250$ 42 $0,3$ $0$ $250$ 43 $0,4$ $0$ $260$ 47 $0,4$ $0$ $280$ 48 $0,3$ $0$ $2940$ 49 $0,4$ $0$ $280$ 48 $0,3$ $0$ $2940$ 49 $0,4$ $0$ $2940$ <                                                                                                                                                                                                                                                                                                                           | 840                    | 14                             | 0.3          | 0           |  |  |  |  |
| 96016 $0,3$ $0$ $1020$ 17 $0,6$ $0,384$ $1080$ 18 $0.3$ $0$ $1140$ 19 $0,6$ $0,2591$ $1200$ 20 $0,3$ $0$ $1260$ 21 $0,6$ $0$ $1320$ 22 $0,3$ $0$ $1380$ 23 $0,6$ $0,1495$ $1440$ 24 $0,3$ $0$ $1500$ 25 $0,6$ $0,0995$ $1560$ 26 $0,3$ $0$ $1620$ 27 $0,4$ $0$ $1680$ 28 $0,3$ $0$ $1800$ 30 $0,3$ $0$ $1860$ 31 $0,4$ $0$ $1920$ 32 $0,3$ $0$ $2160$ 35 $0,4$ $0$ $220$ 37 $0,4$ $0$ $220$ 37 $0,4$ $0$ $2280$ 38 $0,3$ $0$ $2340$ 39 $0,4$ $0$ $2460$ 41 $0,4$ $0$ $2520$ 42 $0,3$ $0$ $2580$ 43 $0,4$ $0$ $2640$ 44 $0,3$ $0$ $2760$ 46 $0==,3$ $0$ $2880$ 48 $0,3$ $0$ $2940$ 49 $0,4$ $0$ $2940$ 49 $0,4$ $0$ $2940$ 49 $0,4$ $0$                                                                                                                                                                                                                                                                                                                                                                                  | 900                    | 15                             | $0,\!6$      | 0           |  |  |  |  |
| 102017 $0,6$ $0,384$ $1080$ 18 $0.3$ $0$ $1140$ 19 $0,6$ $0,2591$ $1200$ $20$ $0,3$ $0$ $1260$ $21$ $0,6$ $0$ $1320$ $22$ $0,3$ $0$ $1380$ $23$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1500$ $25$ $0,6$ $0,0995$ $1560$ $26$ $0,3$ $0$ $1620$ $27$ $0,4$ $0$ $1680$ $28$ $0,3$ $0$ $1740$ $29$ $0,4$ $0$ $1800$ $30$ $0,3$ $0$ $1980$ $33$ $0,4$ $0$ $2240$ $37$ $0,4$ $0$ $2160$ $36$ $0,3$ $0$ $2160$ $36$ $0,3$ $0$ $2240$ $37$ $0,4$ $0$ $2280$ $38$ $0,3$ $0$ $2400$ $40$ $0,3$ $0$ $2460$ $41$ $0,4$ $0$ $2520$ $42$ $0,3$ $0$ $2580$ $43$ $0,4$ $0$ $2760$ $46$ $0==,3$ $0$ $2760$ $46$ $0==,3$ $0$ $2880$ $48$ $0,3$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$                                                                                                                                                                                                                                                                                                 | 960                    | 16                             | $0,\!3$      | 0           |  |  |  |  |
| 1080         18 $0.3$ $0$ 1140         19 $0.6$ $0.2591$ 1200         20 $0.3$ $0$ 1260         21 $0.6$ $0$ 1320         22 $0.3$ $0$ 1380         23 $0.6$ $0.1495$ 1440         24 $0.3$ $0$ 1500         25 $0.6$ $0.0995$ 1560         26 $0.3$ $0$ 1620         27 $0.4$ $0$ 1680         28 $0.3$ $0$ 1740         29 $0.4$ $0$ 1800         30 $0.3$ $0$ 1920         32 $0.3$ $0$ 1980         33 $0.4$ $0$ 2100         35 $0.4$ $0$ 2280         38 $0.3$ $0$ 2240         37 $0.4$ $0$ 2400         40 $0.3$ $0$ 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1020                   | 17                             | $0,\!6$      | $0,\!384$   |  |  |  |  |
| 114019 $0,6$ $0,2591$ $1200$ $20$ $0,3$ $0$ $1260$ $21$ $0,6$ $0$ $1320$ $22$ $0,3$ $0$ $1380$ $23$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1500$ $25$ $0,6$ $0,0995$ $1560$ $26$ $0,3$ $0$ $1620$ $27$ $0,4$ $0$ $1680$ $28$ $0,3$ $0$ $1740$ $29$ $0,4$ $0$ $1800$ $30$ $0,3$ $0$ $1860$ $31$ $0,4$ $0$ $1920$ $32$ $0,3$ $0$ $1980$ $33$ $0,4$ $0$ $2100$ $35$ $0,4$ $0$ $2160$ $36$ $0,3$ $0$ $2280$ $38$ $0,3$ $0$ $2340$ $39$ $0,4$ $0$ $2460$ $41$ $0,4$ $0$ $2580$ $43$ $0,4$ $0$ $2580$ $43$ $0,4$ $0$ $2580$ $43$ $0,4$ $0$ $2640$ $44$ $0,3$ $0$ $2700$ $45$ $0,4$ $0$ $2700$ $45$ $0,4$ $0$ $2880$ $48$ $0,3$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$                                                                                                                                                                                                                                                                                                                           | 1080                   | 18                             | 0.3          | 0           |  |  |  |  |
| 1200         20 $0,3$ 0           1260         21 $0,6$ 0           1320         22 $0,3$ 0           1380         23 $0,6$ $0,1495$ 1440         24 $0,3$ 0           1500         25 $0,6$ $0,0995$ 1560         26 $0,3$ 0           1620         27 $0,4$ 0           1680         28 $0,3$ 0           1740         29 $0,4$ 0           1860         31 $0,4$ 0           1920         32 $0,3$ 0           1980         33 $0,4$ 0           2040         34 $0,3$ 0           2160         36 $0,3$ 0           2280         38 $0,3$ 0           2340         39 $0,4$ 0           2460         41 $0,4$ 0           2580         43 $0,4$ 0           2580         43 $0,4$ <td>1140</td> <td>19</td> <td><math>0,\!6</math></td> <td>0,2591</td>                                                                                                                                                                                                                                                             | 1140                   | 19                             | $0,\!6$      | 0,2591      |  |  |  |  |
| 1260 $21$ $0,6$ $0$ $1320$ $22$ $0,3$ $0$ $1380$ $23$ $0,6$ $0,1495$ $1440$ $24$ $0,3$ $0$ $1500$ $25$ $0,6$ $0,0995$ $1560$ $26$ $0,3$ $0$ $1620$ $27$ $0,4$ $0$ $1680$ $28$ $0,3$ $0$ $1740$ $29$ $0,4$ $0$ $1800$ $30$ $0,3$ $0$ $1920$ $32$ $0,3$ $0$ $1980$ $33$ $0,4$ $0$ $2040$ $34$ $0,3$ $0$ $2100$ $35$ $0,4$ $0$ $2220$ $37$ $0,4$ $0$ $2280$ $38$ $0,3$ $0$ $2460$ $41$ $0,4$ $0$ $2580$ $43$ $0,4$ $0$ $2580$ $43$ $0,4$ $0$ $2640$ $44$ $0,3$ $0$ $2700$ $45$ $0,4$ $0$ $2880$ $48$ $0,3$ $0$ $2940$ $49$ $0,4$ $0$ $2940$ $49$ $0,4$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1200                   | 20                             | $0,\!3$      | 0           |  |  |  |  |
| 132022 $0,3$ 0138023 $0,6$ $0,1495$ 144024 $0,3$ 0150025 $0,6$ $0,0995$ 156026 $0,3$ 0162027 $0,4$ 0168028 $0,3$ 0174029 $0,4$ 0180030 $0,3$ 0192032 $0,3$ 0198033 $0,4$ 0204034 $0,3$ 0210035 $0,4$ 0228038 $0,3$ 0234039 $0,4$ 0246041 $0,4$ 025042 $0,3$ 025043 $0,4$ 025045 $0,4$ 0258043 $0,4$ 0258043 $0,4$ 0258043 $0,4$ 0258043 $0,4$ 0264044 $0,3$ 0270045 $0,4$ 0288048 $0,3$ 0294049 $0,4$ 0294049 $0,4$ 0294049 $0,4$ 0200050 $0,3$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1260                   | 21                             | $0,\!6$      | 0           |  |  |  |  |
| 1380         23         0,6         0,1495           1440         24         0,3         0           1500         25         0,6         0,0995           1560         26         0,3         0           1620         27         0,4         0           1680         28         0,3         0           1740         29         0,4         0           1800         30         0,3         0           1800         30         0,3         0           1920         32         0,3         0           1980         33         0,4         0           2040         34         0,3         0           2100         35         0,4         0           2200         37         0,4         0           2340         39         0,4         0           2460         41         0,4         0           2520         42         0,3         0           2580         43         0,4         0           2580         43         0,4         0           2640         44         0,3         0                         | 1320                   | 22                             | $0,\!3$      | 0           |  |  |  |  |
| 1440 $24$ $0,3$ $0$ $1500$ $25$ $0,6$ $0,0995$ $1560$ $26$ $0,3$ $0$ $1620$ $27$ $0,4$ $0$ $1680$ $28$ $0,3$ $0$ $1740$ $29$ $0,4$ $0$ $1800$ $30$ $0,3$ $0$ $1800$ $31$ $0,4$ $0$ $1920$ $32$ $0,3$ $0$ $1980$ $33$ $0,4$ $0$ $2040$ $34$ $0,3$ $0$ $2100$ $35$ $0,4$ $0$ $2160$ $36$ $0,3$ $0$ $2220$ $37$ $0,4$ $0$ $2340$ $39$ $0,4$ $0$ $2460$ $41$ $0,4$ $0$ $2520$ $42$ $0,3$ $0$ $2580$ $43$ $0,4$ $0$ $2640$ $44$ $0,3$ $0$ $2700$ $45$ $0,4$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1380                   | 23                             | $0,\!6$      | $0,\!1495$  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1440                   | 24                             | $0,\!3$      | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                   | 25                             | $0,\!6$      | 0,0995      |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1560                   | 26                             | $0,\!3$      | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1620                   | 27                             | $0,\!4$      | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1680                   | 28                             | $0,\!3$      | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1740                   | 29                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1800                   | 30                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1860                   | 31                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1920                   | 32                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1980                   | 33                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2040                   | 34                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2100                   | 35                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2160                   | 36                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2220                   | 37                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2280                   | 38                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2340                   | 39                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2400                   | 40                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2400                   | 41                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2520                   | 42                             | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2580                   | 43                             | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2040                   | 44<br>15                       | 0,3          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2700                   | 40                             | 0,4<br>0 - 2 | 0           |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2700                   | 40<br>47                       | 0.=,3        | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2020                   | 41<br>18                       | 0,4          | 0           |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000                   | 40<br>/0                       | 0,0          | 0           |  |  |  |  |
| $\frac{15}{10707}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3000                   | 50                             | 0.3          | 0           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Distorção total tensão | 00                             | 1.5          | 1.07%       |  |  |  |  |

Tabela 15 – Espectro Harmônico - Planta interna modelada com filtro de 6<br/> Mvar+ 2,56  $\rm Mvar$ 

\* Valores dentro do Limite

| BARRA               | TENSÃO- kV | MVA      | DTHT       | Icc - kA | $\mathbf{FP}$ |
|---------------------|------------|----------|------------|----------|---------------|
| Principal           | 228        | 23,8     | 1,079%     | 12,6     | 0,96          |
| Principal Barra A   | $14,\!045$ | 15,2     | $2,\!2\%$  | 11,4     | $0,\!97$      |
| Principal Barra B   | $13,\!9$   | $^{8,6}$ | $11,\!2\%$ | $^{8,5}$ | $0,\!95$      |
| QD_Planta           | $14,\!026$ | 6        | 2,5%       | 10,7     | 0,79          |
| $\mathrm{SV2/SV4}$  | $14,\!02$  | 5        | $2{,}6\%$  | 10,9     | 0,81          |
| SV3                 | $13,\!84$  | $^{2,5}$ | 6,2%       | $^{7,6}$ | $0,\!80$      |
| Mina                | $13,\!78$  | 8        | 15.95%     | $5,\!9$  | 0,88          |
| Refrigeração        | $14,\!02$  | 2        | 2,5%       | 11.2     | 0,81          |
| Guincho             | $14,\!01$  | $^{2,4}$ | 2,5%       | 11       | $0,\!80$      |
| Barragem            | $13,\!78$  | 0,7      | 5,7%       | 7,9      | 0,86          |
| *violação de limite |            |          |            |          |               |







a) Forma de onda Barra 230 kV Figura 25 – Estudo de Caso 3-Forma Onda Resultante da Simulação

# 5.2.4 Estudo de Caso 4- Filtros Harmônicos Existentes Aplicados de Forma distribuída

Neste estudo de caso, será feita uma simulação para avaliar a aplicação dos FH, já existentes na instalação, de forma distribuída, conforme metodologia apresentada por Diniz [22]. Esta análise tem o objetivo de avaliar uma solução de baixo custo, e se tecnicamente, com a aplicação de filtros próximo a fonte geradora, pode reduzir o nível de DTHT e aumentar o fator de potência de em toda instalação, com base nas metodologias discutidas nos Capítulos 3 e 4, dessa dissertação.

Neste cenário com a modelagem da planta no PTW já validada, a comparação dos resultados será feita com base nos valores recomendados pelo IEEE std.519 e procedimentos do ONS [10, 11].

Os filtro de 2,56 Mvar será simulado conectado a barra da Subestação Mina e o filtro de 6 Mvar será simulado conectado a Subestação Planta Metalúrgica. Estas cargas, conforme visto no Estudo de Caso 1, são as maiores contribuintes para o baixo desempenho de QEE da unidade industrial. Os dados técnicos dos filtros podem ser consultados na Tabela 32. O diagrama unifilar básico que ilustra a modelagem feita no PTW, é apresentada na Figura 26

Os resultados do espectro harmônico individual e distorção harmônica total, obtidos



Figura 26 – Diagrama Unifilar Básico Caso 4.

através da modelagem no PTW [37], são apresentados na Tabela 17. Esses dados são referentes ao conteúdo harmônico individual e distorção harmônica total, na barra de 230 kV, conforme recomenda o ONS através da Nota Técnica NT09 [7].

Os valores encontrados, referente a DTHT, ficaram abaixo dos limites recomendados pela norma ONS [10], no PAC, confirmando que neste quesito a solução distribuída foi eficiente para atendimento do indicador de QEE na barra de 230 kV. Percebe-se uma melhora no indicador, DTHT, referente as cargas conectadas na Barra B da subestação principal, contudo ainda não atingem aos valores recomendados pela norma IEEE std.519.

Os resultados da simulação, referente as outras subestações da planta, são apresentados na Tabela 19. Desta forma é possível fazer uma análise dos valores obtidos e apresentar algumas conclusões com base neste cenário estudado.

A primeira análise é sob o ponto de vista de fator de potência e DTHT alcançados nas subestações internas da planta. Percebe-se que foi possível obter uma melhora nestes indicadores de QEE, contudo, não há um atendimento pleno aos valores estabelecidos na IEEE std. 519. A mitigação descentralizada atenua o problema de QEE, aqui estudado,
| CASO 4 – OPERAÇÃO COM 2 FILTROS DISTRIBUÍDOS |                   |            |             |  |  |  |  |  |
|----------------------------------------------|-------------------|------------|-------------|--|--|--|--|--|
|                                              | $\mathbf{DTHT} =$ | 0,8 %      |             |  |  |  |  |  |
| Frequência (Hz)                              | $\mathbf{Ordem}$  | Limite ONS | DTHI Máx(%) |  |  |  |  |  |
| 120                                          | 2                 | $0,\!3$    | 0           |  |  |  |  |  |
| 180                                          | 3                 | $0,\!6$    | 0,0264      |  |  |  |  |  |
| 240                                          | 4                 | $0,\!3$    | 0           |  |  |  |  |  |
| 300                                          | 5                 | $0,\!6$    | 0,0123      |  |  |  |  |  |
| 360                                          | 6                 | $_{0,3}$   | 0           |  |  |  |  |  |
| 420                                          | 7                 | $0,\!6$    | 0,0012      |  |  |  |  |  |
| 480                                          | 8                 | $_{0,3}$   | 0           |  |  |  |  |  |
| 540                                          | 9                 | $0,\!6$    | 0           |  |  |  |  |  |
| 600                                          | 10                | $_{0,3}$   | 0           |  |  |  |  |  |
| 660                                          | 11                | $_{0,6}$   | 0,022       |  |  |  |  |  |
| 720                                          | 12                | $_{0,3}$   | 0           |  |  |  |  |  |
| 780                                          | 13                | $_{0,6}$   | 0,012       |  |  |  |  |  |
| 840                                          | 14                | $_{0,3}$   | 0           |  |  |  |  |  |
| 900                                          | 15                | $_{0,6}$   | 0           |  |  |  |  |  |
| 960                                          | 16                | $_{0,3}$   | 0           |  |  |  |  |  |
| 1020                                         | 17                | $_{0,6}$   | 0           |  |  |  |  |  |
| 1080                                         | 18                | $_{0,3}$   | 0           |  |  |  |  |  |
| 1140                                         | 19                | $_{0,6}$   | 0           |  |  |  |  |  |
| 1200                                         | 20                | $0,\!3$    | 0           |  |  |  |  |  |
| 1260                                         | 21                | $_{0,6}$   | 0           |  |  |  |  |  |
| 1320                                         | 22                | 0,3        | 0           |  |  |  |  |  |
| 1380                                         | 23                | $0,\!6$    | 0,001       |  |  |  |  |  |
| 1440                                         | 24                | 0,3        | 0           |  |  |  |  |  |
| 1500                                         | 25                | $0,\!6$    | 0,0013      |  |  |  |  |  |
| 1560                                         | 26                | 0,3        | 0           |  |  |  |  |  |
| 1620                                         | 27                | 0,4        | 0           |  |  |  |  |  |
| 1680                                         | 28                | 0,3        | 0           |  |  |  |  |  |
| 1740                                         | 29                | 0,4        | 0           |  |  |  |  |  |
| 1800                                         | 30                | 0,3        | 0           |  |  |  |  |  |
| 1860                                         | 31                | 0,4        | 0           |  |  |  |  |  |
| 1920                                         | 32                | 0,3        | 0           |  |  |  |  |  |
| 1980                                         | 33                | 0,4        | 0           |  |  |  |  |  |
| 2040                                         | 34                | 0,3        | 0           |  |  |  |  |  |
| 2100                                         | 35                | 0,4        | 0           |  |  |  |  |  |
| 2160                                         | 36                | 0,3        | 0           |  |  |  |  |  |
| 2220                                         | 37                | 0,4        | 0           |  |  |  |  |  |
| 2280                                         | 38                | 0,3        | 0           |  |  |  |  |  |
| 2340                                         | 39                | 0,4        | 0           |  |  |  |  |  |
| 2400                                         | 40                | 0,3        | 0           |  |  |  |  |  |
| 2460                                         | 41                | 0,4        | 0           |  |  |  |  |  |
| 2520                                         | 42                | 0,3        | 0           |  |  |  |  |  |
| 2580                                         | 43                | 0,4        | 0           |  |  |  |  |  |
| 2040<br>2700                                 | 44                | 0,3        | U           |  |  |  |  |  |
| 2700                                         | 45                | 0,4        | U           |  |  |  |  |  |
| 2700                                         | 40                | 0,3        | U           |  |  |  |  |  |
| 2820                                         | 41                | 0,4        | U           |  |  |  |  |  |
| 2880                                         | 48                | 0,3        | U           |  |  |  |  |  |
| 2940                                         | 49<br>F0          | 0,4        | U           |  |  |  |  |  |
| <u> </u>                                     | ÐŪ                | 0,3        | 0.607       |  |  |  |  |  |
| Distorção total                              |                   | 1,0        | 0,8%        |  |  |  |  |  |

Tabela 17 – Aplicação dos Filtros Existentes nas Cargas da Mina e Planta

contudo, o sistema elétrico da planta analisado é um sistema radial com várias ramificações, o que aumenta a distribuição de cargas não lineares e várias destas cargas não foram cobertas pela solução descentralizada.

Os resultados mostram que o valor de tensão em todas as subestações estão dentro dos limites, comprovando que neste ponto a solução foi eficaz. Já em relação ao fator de potência, na barra A percebe-se uma redução, em razão da correção próximo a carga e com isso há uma maior penetração de reativo indutivo de outras cargas na barra, sem a devida correção.

A forma de onda e espectro harmônico resultantes na barra de 230 kV obtidos através da simulação no PTW, são apresentada na Figura 27. Não há uma variação em relação ao caso anterior.

O custo estimado para implantar essa solução é apresentado na Tabela 18. Esse custo foi informado pela equipe de manutenção da planta e considera os valores para reformar o FH de 2,56 Mvar e reposiciona-los nas subestações definidas na simulação.

| Tabela | 18 - | Estudo | $\mathrm{de}$ | Caso | 04- | Custo | de | Reposicionamento | $\operatorname{dos}$ | Filtros |
|--------|------|--------|---------------|------|-----|-------|----|------------------|----------------------|---------|
|        |      |        |               |      |     |       |    |                  |                      |         |

| Descrição                            | Quantidade | Valor Total (R\$)               |
|--------------------------------------|------------|---------------------------------|
| Reforma do FH de 2,56 M<br>var kV $$ | 1          | R\$ 101.325,00                  |
| Obras de montagem dos Bancos         | 2          | R\$ 42.000,00                   |
| Testes e Comissionamento             | 1          | R\$ 25.000,00                   |
| Total                                |            | R\$ 185.352,00                  |
| Testes e Comissionamento<br>Total    | 1          | R\$ 25.000,00<br>R\$ 185.352,00 |

Neste cenário, apenas a descentralização dos filtros existentes não é suficiente para eliminar o problema de QEE das cargas internas da planta. Então é necessário desenvolver um outro cenário, avaliando uma solução que agregue a mitigação centralizada e descentralizada e quais os impactos para o sistema.

O próximo estudo de caso apresentará a solução integrada através da mitigação centralizada com FH na subestação principal e FH menores distribuídos, para mitigar os efeitos dos harmônicos internos na planta.

| BARRA               | TENSÃO- kV | MVA       | DTHT         | Icc - kA | $\mathbf{FP}$ |
|---------------------|------------|-----------|--------------|----------|---------------|
| Principal           | 228        | $25,\!93$ | 0,8%         | 12,6     | 0,95          |
| Principal Barra A   | 14.071     | $16,\!80$ | 3.7%         | 11,4     | 0.88          |
| Principal Barra B   | $14,\!304$ | $9,\!13$  | $8{,}1\%$    | $^{8,5}$ | $0,\!99$      |
| QD_Planta           | $14,\!026$ | $5,\!96$  | 3,7%         | 10,7     | $0,\!97$      |
| $\mathrm{SV2/SV4}$  | $14,\!02$  | 5         | $3{,}8\%$    | 10,9     | 0,81          |
| SV3                 | $13,\!84$  | $^{2,5}$  | 3,5%         | $^{7,6}$ | $0,\!80$      |
| Mina                | $14,\!71$  | 7,73      | 8,7%         | $5,\!9$  | 0,91          |
| Refrigeração        | 13,7       | 2         | 2,5%         | 11,2     | 0,79          |
| Guincho             | 13,7       | $^{2,4}$  | $3{,}8\%$    | 11       | 0,80          |
| Barragem            | $14,\! 6$  | 0,7       | <b>3,</b> 2% | 7,9      | 0,86          |
| *violação de limite |            |           |              |          |               |

Tabela 19 – Resultado Estudo de Caso 4



Figura 27 – Estudo de Caso 4- Forma de Onda e Espectro Resultante da Simulação.

## 5.2.5 Estudo de caso 05 - Combinação de Solução Centralizada e Distribuída

Este estudo de caso, visa aplicar uma combinação de mitigação de harmônicos para solucionar os problemas discutidos nos casos anteriores e que não foram possíveis de serem resolvidos. O principal foco será implementar a combinação entre a metodologia de mitigação através de filtragem passiva centralizada com a distribuída, aproveitando algum recurso já existente na planta.

A filosofia de mitigação distribuída, ou seja, mais próximo do agente causador do distúrbio, é uma tendência, conforme descreve Diniz [22], pois reduz o tamanho do filtro e disponibiliza mais potência interna no sistema como um todo e não apenas na barra de conexão com o PAC.

Nesta instalação, problemas em decorrência da baixa QEE, tem afetado a performance do sistema elétrico, já que falhas como queima de motores, desligamentos do sistema de proteção indevidos, ruídos na rede de automação, foram relatados pela equipe de manutenção durante a fase de coleta de dados deste trabalho.

Seguindo a metodologia será possível determinar a potência reativa capacitiva necessária para elevar o fator de potência para 0,95 pu nas barras de 13,8 kV das subestações internas da planta, atendendo assim os requisitos, conforme determina a norma [10]. O valor financeiro, estimado para implementar essa solução também será tema deste estudo de caso. Para um melhor entendimento da solução proposta é apresentado um diagrama unifilar básico através da Figura 28.

Os dados da Tabela 21, detalham as cargas que demandarão intervenção, de acordo com seu tamanho e impacto para o sistema, do ponto de vista de energia reativa e conteúdo harmônico. Com base nestes dados e seguindo a teoria apresentada no Capítulo 4 determina-se a necessidade de reativos para o sistema e o passo seguinte é utilizar a



Figura 28 – Diagrama Unifilar Básico Estudo Caso 5.

metodologia apresentada no mesmo capítulo e dimensionar o filtro passivo para mitigar harmônicos.

As barra em 13,8 kV escolhidas para serem implementados os sistemas de mitigação de harmônicos com correção de fator potência, através da injeção de reativo são: Mina, QD Planta, Barra A, Barra B e SV2/SV4. Elas representam 80% da demanda total da planta, sendo que do ponto de vista de DTHT, a subestação que alimenta a carga da Mina, apresenta os limites acima do estabelecido na norma IEEE std 519 [11], em torno de 17%.

O valor de DTHT de 17% simulado nas barras de 13,8 kV pode ser comprovados pela medição de espectro harmônico efetuado na subestação da Mina, conforme apresentado na Figura 7. Segundo a metodologia apresentada no Capítulo 4 e dados de medições realizadas, os filtros dimensionados para mitigar os efeitos dos harmônicos na planta são apresentados conforme dados da Tabela 22.

A partir do dimensionamento destes filtros, implementou-se a simulação no *software* PTW, tendo como resultado os dados apresentados conforme Tabela 24 e Tabela 23, comprovando a teoria apresentada no Capítulo 3.

A avaliação de custo para esta solução será de grande importância, pois ela poderá determinar se o investimento na solução é viável ou se a equipe de manutenção poderá conviver com o problema de QEE do ponto de vista de interferências internas na planta, uma vez que a solução de reestabelecer o FH de 2,56 Mvar, atende a obrigatoriedade imposta pela legislação para a subestação do PAC, conforme visto no estudo de caso 3.

O custo estimado para implantar essa solução é apresentado na Tabela 18. Esse custo foi informado pela equipe de manutenção da planta e considera os valores para reformar o FH de 2,56 Mvar e reposicioná-los nas subestações definidas na simulação, além da aquisição de novos filtros.

Tabela 20 – Estudo de Caso 05- Custo da Solução Com FH

| Descrição                       | Quantidade | Valor Total (R\$) |
|---------------------------------|------------|-------------------|
| Reforma do Banco de 2,56 Mvar   | 1          | R\$ 101.325,00    |
| Aquisição do FH de 2,82 Mvar    | 1          | R\$ 564.000,00    |
| Aquisição do FH de 2,2 M<br>var | 1          | R\$ 440.000,00    |
| Aquisição do FH de 1,87 Mvar    | 1          | R\$ 374.000,00    |
| Obras de montagem dos Filtros   | 1          | R\$ 185.000,00    |
| Testes e Comissionamento        | 1          | R\$ 85.000,00     |
| Total                           |            | R\$ 1.749.325,00  |

Tabela 21 – Subestações escolhidas e potência reativa necessária para corrigir o fator de potência do sistema

| BARRA                       | V<br>kV   | MW        | Mvar     | DTHT<br>1º Caso | Icc<br>k A | FP<br>Atual | Mvar<br>FP– 95 | FR<br>Ord Harm |
|-----------------------------|-----------|-----------|----------|-----------------|------------|-------------|----------------|----------------|
| Principal                   | 228       | 24,96     | 7,28     | 3,003%          | 12,6       | 0,96        | 1150           | 26,36          |
| Barra A                     | 14        | $15,\!52$ | 3,89     | 4,8%            | 11,4       | $0,\!97$    | 6,0            | 8,44           |
| Barra B                     | 13,9      | 9,5       | 3,12     | $17,\!1\%$      | 8,5        | $0,\!95$    | 2.56           | 8,09           |
| QD_Planta                   | 14        | 4,74      | 3,68     | 4,7%            | 10,7       | 0,79        | $2,\!19$       | 8,42           |
| $\mathbf{SV2}/\mathbf{SV4}$ | 14,02     | $4,\!05$  | 2,93     | 4,8%            | 10,9       | 0,81        | 1,87           | 9,50           |
| SV3                         | 13,84     | 2         | 1,50     | 6,2%            | $^{7,6}$   | 0,8         |                | 11,01          |
| Mina                        | 13,78     | $^{6,4}$  | 4,80     | $17,\!3\%$      | $5,\!9$    | 0,8         | $2,\!82$       | 5,41           |
| Refrigeração                | 14,02     | $1,\!58$  | 1,23     | 4,8%            | 11,2       | 0,79        |                | 14,88          |
| Guincho                     | 14,01     | 1,92      | 1,44     | 4,8%            | 11         | 0,8         |                | 13,61          |
| Barragem                    | $13,\!78$ | 0,602     | $0,\!35$ | $5{,}5\%$       | $7,\!9$    | 0,86        |                | 22,96          |

Tabela 22 – Dados técnicos dos filtros para mitigação distribuída

| Filtros Harmônicos - Operação Normal |                     |           |          |              |           |            |                 |      |    |
|--------------------------------------|---------------------|-----------|----------|--------------|-----------|------------|-----------------|------|----|
|                                      |                     |           |          |              | R.        | Indutância |                 |      |    |
| Barra                                | $\mathbf{Ordem}$    | Sintonia  | Р.       | $\mathbf{V}$ | paralela  | muutaneia  | С.              | Tino | FO |
| Darra                                | Harm.               | Sintoma   | (Mvar)   | (kV)         | (ohms)    | (mH)       | $(\mathbf{uF})$ | Tipo | гų |
| Mina                                 | $5^{\underline{a}}$ | $4,7^{a}$ | 2,82     | $16,\!5$     | 40,51     | $0,\!051$  | 0,024           |      |    |
| QD_PLANTA                            | $5^{\underline{a}}$ | $4,7^{a}$ | 2,19     | $16,\!5$     | $17,\!31$ | 0,022      | 36,77           | High |    |
| $\mathrm{SV2/SV4}$                   | $5^{\underline{a}}$ | $4,7^{a}$ | $1,\!87$ | $16,\!5$     | 20,37     | 0,0259     | $31,\!26$       | Pass | 2  |
| Barra A                              | $5^{\underline{a}}$ | $4,7^{a}$ | 6,0      | 16,5         | 45        | 12,8       | 100,3           | (HP) |    |
| Barra B                              | $5^{\underline{a}}$ | $4,7^{a}$ | 2,56     | 16,5         | 20,17     | $5,\!69$   | $35,\!65$       |      |    |

| CASO 5 – OPERAÇÃO COM FH Centralizado e Distribuídos |        |         |                                |  |  |  |  |
|------------------------------------------------------|--------|---------|--------------------------------|--|--|--|--|
| Encauência (Uz)                                      | DIHI = | U,UZ %  |                                |  |  |  |  |
|                                                      | ordeni |         | $\frac{\text{DTH Max}(70)}{0}$ |  |  |  |  |
| 120                                                  | 2      | 0,5     | 0 00264                        |  |  |  |  |
| 240                                                  | 3<br>4 | 0,0     | 0,00204                        |  |  |  |  |
| 240                                                  | 4      | 0,5     | 0 0031                         |  |  |  |  |
| 360                                                  | 5      | 0,0     | 0,0031                         |  |  |  |  |
| 420                                                  | 0 7    | 0,5     | 0 0020                         |  |  |  |  |
| 420                                                  | 1      | 0,0     | 0,0029                         |  |  |  |  |
| 480                                                  | 0      | 0,5     | 0                              |  |  |  |  |
| 540                                                  | 9      | 0,0     | 0                              |  |  |  |  |
| 660                                                  | 10     | 0,5     | 0 0255                         |  |  |  |  |
| 000<br>720                                           | 11     | 0,0     | 0,0255                         |  |  |  |  |
| 720                                                  | 12     | 0,3     | 0                              |  |  |  |  |
| 780                                                  | 13     | 0,6     | 0,045                          |  |  |  |  |
| 840                                                  | 14     | 0,3     | 0                              |  |  |  |  |
| 900                                                  | 15     | 0,6     | 0                              |  |  |  |  |
| 960                                                  | 16     | 0,3     | 0                              |  |  |  |  |
| 1020                                                 | 17     | 0,6     | 0,0286                         |  |  |  |  |
| 1080                                                 | 18     | 0,3     | 0                              |  |  |  |  |
| 1140                                                 | 19     | 0,6     | 0,022                          |  |  |  |  |
| 1200                                                 | 20     | $0,\!3$ | 0                              |  |  |  |  |
| 1260                                                 | 21     | $0,\!6$ | 0                              |  |  |  |  |
| 1320                                                 | 22     | $0,\!3$ | 0                              |  |  |  |  |
| 1380                                                 | 23     | $0,\!6$ | 0,121                          |  |  |  |  |
| 1440                                                 | 24     | $0,\!3$ | 0                              |  |  |  |  |
| 1500                                                 | 25     | $0,\!6$ | 0,078                          |  |  |  |  |
| 1560                                                 | 26     | $0,\!3$ | 0                              |  |  |  |  |
| 1620                                                 | 27     | $0,\!4$ | 0                              |  |  |  |  |
| 1680                                                 | 28     | $0,\!3$ | 0                              |  |  |  |  |
| 1740                                                 | 29     | $0,\!4$ | 0                              |  |  |  |  |
| 1800                                                 | 30     | $0,\!3$ | 0                              |  |  |  |  |
| 1860                                                 | 31     | $0,\!4$ | 0                              |  |  |  |  |
| 1920                                                 | 32     | $0,\!3$ | 0                              |  |  |  |  |
| 1980                                                 | 33     | $0,\!4$ | 0                              |  |  |  |  |
| 2040                                                 | 34     | $0,\!3$ | 0                              |  |  |  |  |
| 2100                                                 | 35     | $0,\!4$ | 0                              |  |  |  |  |
| 2160                                                 | 36     | 0,3     | 0                              |  |  |  |  |
| 2220                                                 | 37     | 0,4     | 0                              |  |  |  |  |
| 2280                                                 | 38     | 0,3     | 0                              |  |  |  |  |
| 2340                                                 | 39     | 0,4     | 0                              |  |  |  |  |
| 2400                                                 | 40     | 0,3     | 0                              |  |  |  |  |
| 2460                                                 | 41     | $0,\!4$ | 0                              |  |  |  |  |
| 2520                                                 | 42     | 0,3     | 0                              |  |  |  |  |
| 2580                                                 | 43     | $0,\!4$ | 0                              |  |  |  |  |
| 2640                                                 | 44     | 0,3     | 0                              |  |  |  |  |
| 2700                                                 | 45     | 0,4     | 0                              |  |  |  |  |
| 2760                                                 | 46     | $0,\!3$ | 0                              |  |  |  |  |
| 2820                                                 | 47     | 0,4     | 0                              |  |  |  |  |
| 2880                                                 | 48     | 0,3     | 0                              |  |  |  |  |
| 2940                                                 | 49     | 0,4     | 0                              |  |  |  |  |
| 3000                                                 | 50     | 0,3     | 0                              |  |  |  |  |
| Distorção total tensão                               |        | 1,5     | 0,02%                          |  |  |  |  |
| * Valence dentre de Limite                           |        |         |                                |  |  |  |  |

Tabela 23 – Espectro Harmônico na Barra 230 kV- Estudo Cas<br/>o5

\* Valores dentro do Limite

| BARRA             | TENSÃO-kV  | MW       | DTHT       | Icc - kA | FP       |
|-------------------|------------|----------|------------|----------|----------|
| Principal         | $228,\!8$  | $23,\!5$ | 0,02%      | 12,6     | 0,99     |
| Principal Barra A | $14,\!045$ | $13,\!4$ | $1,\!40\%$ | $11,\!4$ | 0,99     |
| Principal Barra B | 13,9       | 10,1     | $3,\!40\%$ | 8,5      | 0,95     |
| QD_Planta         | 14,026     | 5,2      | $1,\!40\%$ | 10,7     | 0,97     |
| SV2/SV4           | 14,02      | $^{3,2}$ | $1,\!40\%$ | 10,9     | 1        |
| SV3               | $14,\!35$  | $^{2,3}$ | $3,\!40\%$ | 7,6      | 0,80     |
| Mina              | $14,\!37$  | 7,89     | $3,\!40\%$ | $5,\!9$  | $0,\!95$ |
| Refrigeração      | 14,02      | 2        | $1,\!40\%$ | 11,2     | $0,\!79$ |
| Guincho           | 14,01      | $^{2,4}$ | $1,\!40\%$ | 11       | 0,80     |
| Barragem          | 14,39      | $0,\!7$  | 2,70%      | 7,9      | 0,86     |

Tabela 24 – Resultados Estudo de Caso 5

\* Valores dentro do Limite

A solução proposta através da integração de solução através da mitigação centralizada e distribuída, apresentou o melhor resultado entre os 5 cenários simulados. Os resultados apresentados comprovam que foi possível a melhoraria do perfil de tensão, redução da DTHT e aumento do fator de potência em todas as barras da instalação, atendendo assim, aos requisitos das normas ONS, IEEE e ANEEL [9–11], comprovando a teoria apresentada nesta dissertação.

As formas de onda e espectro das harmônicas simuladas, bem como o diagrama unifilar completo da simulação contendo as subestações onde foram inseridos os filtros estão detalhados no apêndice B e Tabela 23. Na Figura 37, apresentada no apêndice B, são detalhadas as ordens de frequência harmônica *versus* impedância, demonstrando o ponto onde ocorre a frequência de ressonância, calculadas de acordo com a metodologia apresentada no Capítulo 4.

### 5.2.6 Conclusões

Mediante os resultados obtidos nas simulações e apresentados neste Capítulo, concluise que a combinação entre a solução centralizada e descentralizada, para mitigação dos problemas de qualidade de energia elétrica em plantas industriais, com a otimização de recursos já existentes na instalação, apresentam viabilidade técnica.

A implantação de medidas mitigadoras descentralizadas através de filtros passivos

nas subestações de distribuição, podem reduzir os efeitos dos harmônicos e propiciar a otimização de recursos existentes, além de reduzir o custo de implantação de novas medidas de controle, que poderiam ser, por exemplo a instalação de filtro ativo.

A partir das simulações realizadas, foi possível comprovar a redução do nível de DTHT nas barras de 13,8 kV, das subestações internas da planta, bem como evidenciar a elevação do fator de potência e melhorara do nível de tensão do sistema, atendendo aos parâmetros estabelecidos nas normas, ONS e ANEEL Prodist e padrão IEEE std 519 [9–11].

O atendimento aos indicadores de QEE, com base nos valores de norma, [9], pode ser comprovado em todas as subestações internas da planta, não apenas na subestação principal, que faz fronteira com a concessionária, através dos resultados apresentados nas Tabelas 25, 26, 27, demonstrando que a solução proposta tem viabilidade técnica para aplicação em um caso real.

|              | ESTUDO CASO |            |             |            |            |  |  |  |
|--------------|-------------|------------|-------------|------------|------------|--|--|--|
| BARRA        | 1           | 2          | 3           | 4          | 5          |  |  |  |
|              | DTHT        | DTHT       | DTHT        | DTHT       | DTHT       |  |  |  |
| Principal    | $3{,}00\%$  | $1,\!84\%$ | 1,08%       | $0,\!80\%$ | 0,02%      |  |  |  |
| Barra A      | $4,\!80\%$  | 2,5%       | $2,\!20\%$  | 3,7%       | $1,\!40\%$ |  |  |  |
| Barra B      | $17,\!10\%$ | 15,3%      | 11,2%       | $8,\!1\%$  | $3,\!40\%$ |  |  |  |
| QD_Planta    | 4,70%       | 2,5%       | 2,5%        | 3,7%       | $1,\!40\%$ |  |  |  |
| SV2/SV4      | $4,\!80\%$  | 2,6%       | 2,6%        | 3,8%       | $1,\!40\%$ |  |  |  |
| SV3          | $6{,}00\%$  | 6,2%       | $6{,}20\%$  | $3{,}5\%$  | 3,40%      |  |  |  |
| Mina         | $17,\!30\%$ | 17,9%      | $15{,}95\%$ | 8,7%       | 3,40%      |  |  |  |
| Refrigeração | $4,\!80\%$  | 2,5%       | 2,5%        | 2,5%       | $1,\!40\%$ |  |  |  |
| Guincho      | 4,80%       | 2,5%       | 2,5%        | 4%         | $1,\!40\%$ |  |  |  |
| Barragem     | $5{,}50\%$  | 5,7%       | 5,7%        | 3%         | 2,70%      |  |  |  |

Tabela 25 – Comparativo de Resultado de casos Simulados- Distorção Harmônica Total de Tensão

|              | ESTUDO CASO   |               |               |               |               |  |  |
|--------------|---------------|---------------|---------------|---------------|---------------|--|--|
| BARRA        | 1             | 2             | 3             | 4             | 5             |  |  |
|              | $\mathbf{FP}$ | $\mathbf{FP}$ | $\mathbf{FP}$ | $\mathbf{FP}$ | $\mathbf{FP}$ |  |  |
| Principal    | 0,83          | 0,91          | 0,96          | $0,\!95$      | 0,99          |  |  |
| Barra A      | 0,8           | $0,\!97$      | $0,\!97$      | 0,88          | 0,99          |  |  |
| Barra B      | 0,86          | 0,86          | $0,\!95$      | 0,99          | $0,\!95$      |  |  |
| QD_Planta    | 0,79          | 0,79          | 0,79          | $0,\!97$      | 0,97          |  |  |
| SV2/SV4      | 0,81          | 0,81          | 0,81          | 0,81          | 1             |  |  |
| SV3          | 0,8           | 0,80          | 0,80          | 0,80          | 0,80          |  |  |
| Mina         | 0,8           | 0,88          | 0,88          | 0,91          | $0,\!95$      |  |  |
| Refrigeração | 0,79          | 0,81          | 0,81          | 0,79          | 0,79          |  |  |
| Guincho      | 0,8           | 0,80          | 0,80          | 0,80          | 0,80          |  |  |
| Barragem     | 0,86          | 0,86          | 0,86          | 0,86          | 0,86          |  |  |

Tabela 26 – Comparativo de resultado de casos Simulados - Fator de Potência

Tabela 27 – Comparativo de Resultado de casos Simulados- Variação de Tensão

|              | ESTUDO CASO |        |        |           |           |  |  |  |  |
|--------------|-------------|--------|--------|-----------|-----------|--|--|--|--|
| BARRA        | 1           | 2      | 3      | 4         | 5         |  |  |  |  |
|              | kV          | kV     | kV     | kV        | kV        |  |  |  |  |
| Principal    | 228         | 228,00 | 228,00 | 228,00    | $228,\!8$ |  |  |  |  |
| Barra A      | $13,\!4$    | 14,04  | 14,04  | $14,\!07$ | 14,045    |  |  |  |  |
| Barra B      | 13,8        | 13,80  | 13,90  | 14,30     | $13,\!9$  |  |  |  |  |
| QD_Planta    | $13,\!45$   | 14,03  | 14,03  | $14,\!03$ | 14,03     |  |  |  |  |
| SV2/SV4      | $13,\!43$   | 14,02  | 14,02  | 14,02     | 14,02     |  |  |  |  |
| SV3          | 13,43       | 13,43  | 13,84  | 13,84     | $14,\!35$ |  |  |  |  |
| Mina         | $13,\!6$    | 13,60  | 13,78  | 14,71     | $14,\!37$ |  |  |  |  |
| Refrigeração | $13,\!4$    | 14,02  | 14,02  | 13,70     | 14,02     |  |  |  |  |
| Guincho      | $13,\!45$   | 14,01  | 14,01  | 13,70     | 14,01     |  |  |  |  |
| Barragem     | $13,\!45$   | 13,45  | 13,78  | 14,60     | 14,39     |  |  |  |  |

## Capítulo 6

## Conclusão

O mercado globalizado tem forçado as empresas a se tornarem cada vez mais competitivas. Nesta vertente as plantas industriais precisam ter um processo produtivo automatizado com controle de velocidade para adequar as necessidades de demanda do mercado. O mau funcionamento dos equipamentos e interrupção no processo tornam-se cada vez mais onerosos e, desta forma, as empresas têm buscado soluções para mitigar estes problemas que estão relacionados a qualidade de energia elétrica (QEE) [35].

Este trabalho apresentou um estudo de caso, com base em dados reais, coletados de uma planta industrial de mineração para análises de distúrbios de qualidade de energia elétrica. O principal distúrbio analisado foi o harmônico, que é observado em plantas com presença significativa de cargas não lineares, contudo foi feita uma abordagem sobre outros dois temas correlatos sendo eles:

- Fator de potência, relacionado a cargas indutivas e capacitivas na instalação;
- Variações de longa duração, relacionada a subtensão e sobretensão sustentada;

De forma a exemplificar, na prática, cada um dos problemas relacionados acima, foram apresentados cinco estudos de casos, analisando suas principais características, causas, impactos e até mesmo a eficácia de adoção de algumas medidas mitigatórias propostas.

No **primeiro estudo de caso**, constatou-se que sem sistema de mitigação para filtragem de harmônicos, o sistema elétrico, está submetido a taxas elevadas de distorção total harmônica de tensão, DTHT, no caso **3,03%**, sendo este valor, o dobro do permitido pela norma do Operador Nacional do Sistema [10]. Sendo obrigatório a adoção de alguma medida para reduzir esse valor.

As tensões na barra de 13,8 kV,embora estejam dentro dos valores de referência [10], a regra operacional da planta é operar com a tensão na barra em 1.04 pu. Dessa forma, percebe-se que no ponto mais distante da instalação a queda de tensão é superior a 5%, não atendendo a característica de operação dessa planta. O Fator de Potência medido foi de **0,83 indutivo**, não atendendo aos parâmetros da norma do ONS [9,10].

No **segundo estudo de caso**, com a instalação de um filtro sintonizado de 6 Mvar, na Barra A de 13,8 kV da subestação principal, foi possível constatar uma melhora no perfil de tensão e no fator de potência da instalação, contudo não foi suficiente para atender aos requisitos da norma [10], em relação ao fator de potência, já que o valor obtido foi de **0,91i** e o recomendado pela norma é de **0,95i**.

O espectro harmônico simulado e medido, comprovou que a metodologia apresentada no Capítulo 2, e a simulação apresentada no Capitulo 5, estão coerentes, pois os valores encontrados nas 02 situações mostram que apesar de ocorrer uma redução do DTHT, em relação caso 1, os valores medido e simulado de 1,8%, não atendem ao recomendado pela norma [10], que estabelece um valor de distorção harmônica total de 1,5%.

No **terceiro estudo de caso**, foi simulado a implementação de um filtro passivo, de forma centralizada em cada barra de 13,8 kV da subestação principal. Comprovou através deste cenário que as metodologias apresentadas nos Capítulos 2 e 3, estão coerentes com as simulações realizadas, uma vez que, os resultados obtidos na barra do PAC, 230 kV, mostram que foram atingidos os valores recomendados pela norma, para o fator de potência e DTHT.

Cabe ressaltar que, nas subestações de distribuição interna da planta, foi constatada uma melhora significativa nestes indicadores, porém na Barra B de 13,8 kV da subestação principal, mesmo com o filtro instalado o nível de DTHT ainda supera os valores estabelecidos na norma IEEE std 519 [11].

No **quarto estudo de caso**, foi proposta uma descentralização dos filtros existentes, instalando-os nas cargas (subestação da planta e subestação mina), uma vez que, elas são as que mais contribuem para o alto valor de DTHT e baixo fator de potência.

Percebe-se uma melhora no DTHT do sistema, visto na barra do PAC, 230 kV, isto ocorre em razão da compensação harmônica ocorrer próximo a fonte geradora. Observa-se, que há uma ligeira redução no fator de potência, em função da correção de reativos está concentrada mais próximo a carga, portanto o reativo indutivo das outras cargas são injetados na Barra de 230 kV sem correção. A tensão se mantém estável dentro dos limites. Os resultados podem ser vistos na Tabela 26.

No **quinto estudo de caso**, foi proposto uma análise integrando a compensação centralizada na subestação principal e uma descentralizada compensando os distúrbios de qualidade de energia mais próximo das fontes geradoras. Diante disso foi feita uma modelagem com base na teoria apresentada no Capítulo 4, com o objetivo de dimensionar os filtros e seus elementos, bem como verificar o seu impacto no sistema elétrico, segundo teoria apresentada no Capítulo 2.

Os resultados apresentados nas tabelas: Tabela 27, Tabela 25, Tabela 26, demonstra que este cenário, com a adição dos filtros sintonizados, dimensionados e calculados com base na teoria discutida no Capítulo 4, pode ser aplicado nas indústrias, pois atendem aos requisitos das normas das concessionárias no PAC e potencializam o benefício de mitigar os problemas de QEE, nos circuitos internos da planta.

Diante do exposto acima, o trabalho atingiu o objetivo de auxiliar profissionais da área elétrica, sejam eles do mundo acadêmico ou não, fornecendo subsídios para entender e classificar os problemas de qualidade de energia elétrica em sistemas industriais, apresentando dados reais de uma planta de mineração.

## 6.1 Continuidade do Trabalho

Sugere-se como proposta de continuidade para este trabalho avaliar, com dados coletados, até qual percentual de penetração harmônicos os filtros existentes podem suportar, em virtude da explanação feita por Silva [35],o qual trata da quarta revolução industrial, uma vez que os processos produtivos serão cada vez mais sensíveis a distúrbios de qualidade de energia.

- Propõe-se analisar outros fenômenos de qualidade de energia, não contemplados neste trabalho, utilizando os dados reais coletados em campo.
- Propõe-se fazer uma análise comparativa utilizando a solução de filtro hibrido para aplicação em planta de mineração;
- Propõe-se fazer uma análise comparativa entre utilizar a tecnologia de filtros passivos versus filtros ativos distribuídos nas cargas em baixa tensão.
- Propõe-se fazer uma análise de aplicação de inversores com outras tipologias que reduzem a distorção harmônica gerada.

## 6.2 Publicações

### 6.2.1 Publicações Relacionadas a Dissertação de Mestrado

 W. N. Silva, I. A. Pirez. D., S. M. Silva, D. Estudo de Mitigação de Harmônicos com a Otimização de Filtros Passivos Existentes - Estudo de Caso, *IX Simpósio Brasileiro de* Sistemas Elétricos (SBSE), 2022.

## 6.2.2 Outras Publicações Durante o Período de Mestrado

[1] W. N. Silva. Sobretensões causadas por falhas no TC de Neutro em Filtros de Harmônicos sintonizados Dupla Estrela isolado e aplicação de medidas mitigatórias através de instalação de Filtro de Bloqueio de Terceiro Harmônico, *Disponível em: .https://www.arandanet.* com. br/revista/em/artigos\_academicos/, ,.

## Referências

- B. R. P. Conrado. Análise técnico-econômica entre soluções de distúrbios de qualidade de energia elétrica. Master's thesis, Universidade Federal de Minas Gerais, 2020.
- [2] Igor.A. Pirez. Slides da disciplina eee876– aplicações de eletrônica de potência em sistemas elétricos de potência do programa de pós-graduação em engenharia elétrica. Technical report, UFMG, 2020.
- [3] Henrique F. Primo. Qualidade da energia em sistemas eltricos industriais estudos de caso. Master's thesis, Universidade Federal de Minas Gerais, 2019.
- [4] Prado L. G B. Aqualidade da energia eletrica no brasil e os crescentes problemas causados por harmônicos. Master's thesis, Universidade Estadual de Campinas, 2007.
- [5] Fernando Venâncio do Amaral. Estudo e projeto de um compensador para inserção de impedâncias ativas em sistemas elétricos de baixa tensão. Master's thesis, Universidade Federal de Minas Gerais, 2016.
- [6] R. C. Dugan. *Electrical Power Systems Quality*, volume 3. USA: McGraw-Hill, 2012.
- [7] ONS. Instrução para realização de estudos e medições de que relacionados aos acessos à rede básica ou nos barramentos de fronteira com a rede básica para parques eólicos, solares, consumidores livres e distribuidoras. Technical report, ONS, 2016.
- [8] I. A. Pires. Caracterização de harmônicos causados por equipamentos eletro-eletrônicos residenciais e comerciais no sistema de distribuição de energia elétrica. Master's thesis, Universidade Federal de Minas Gerais, 2006.
- [9] ANEEL. Procedimentos de distribuição de energia elétrica no sistema elétrico nacional
   prodist módulo 8. Technical report, ANEEL, 2020.
- [10] ONS. Gerenciamento dos indicadores de qualidade da energia elétrica da rede básica - submódulo 2.8. Technical report, ONS, 2011.
- [11] Ieee recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pages 1-29, 2014.

- [12] Proteção e Seletividade em Sistemas Elétricos industriais, volume 1. Editora Atitude, 2012.
- [13] EPE. Balanço energético nacional 2020. Technical report, Empresa de Pesquisa Energética, 2021.
- [14] Jairo L. Canova. Proposta de procedimentos para a medição da qualidade de energia elétrica em um barramento de 230 kv do sistema interligado nacional. Master's thesis, Pontifícia Universidade Católica do Rio Grande do Sul, 2019.
- [15] Capacitores de Potência e Filtros de Harmônicos, volume 1. Editora Ciência Moderna, 2008.
- [16] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cutsem, and V. Vittal. Definition and classification of power system stability ieee/cigre joint task force on stability terms and definitions. *IEEE Transactions on Power Systems*, 19(3):1387–1401, 2004.
- [17] ANEEL. Resolução normativa n° 414 de 9 de setembro de 2010. Technical report, ANEEL, 2010.
- [18] M. J. Sullivan, T. Vardell, and M. Johnson. Power interruption costs to industrial and commercial consumers of electricity. *IEEE Transactions on Industry Applications*, 33(6):1448–1458, 1997.
- [19] Ricardo Aldabó Lopez. Qualidade na Energia Elétrica, volume 2. Editora Artliber, 2023.
- [20] R. A. Barr and V. J. Gosbell. Power system harmonic voltage limits for the future. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), pages 483–487, 2014.
- [21] S. M. Deckmann, J. A. Pomilio, E. A. Mertens, and L. F. S. Dias. Uso de filtros passivos em redes de distribuição com cargas não lineares. XV Congresso Brasileiro de Automática (CBA), 2004.
- [22] Rogério a. Diniz. Compensação distribuída série na mitigação harmônica em instalações comerciais. Master's thesis, Universidade Federal de Minas Gerais, 2014.
- [23] IEEE. Standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced and unbalanced conditions. Std 1459-2010 (Revision of IEEE Std 1459-2000), pages 1–50, 2010.
- [24] Ieee guide for the application and specification of harmonic filters redline. IEEE Std 1531-2020 (Revision of IEEE Std 1531-2003) - Redline, pages 1–127, 2021.

- [25] Arthur do Carmo Mouco. Um filtro híbrido de potência para conexão em redes elétricas. Master's thesis, Universidade Federal do Rio de Janeiro, 2011.
- [26] Douglas A. Teixeira. Análise das distorções harmônicas estudo de caso de um sistema industrial. Master's thesis, Universidade Federal de Minas Gerais, 2009.
- [27] M. Aredes E. H. Watanabe. Teoria de potência ativa e reativa instantânea e aplicações - filtros ativos e facts. CBA '98 - XII BRAZILIAN AUTOMATIC CONTROL CONFERENCE, 1:81–122, 1998.
- [28] E. H. Watanabe, H. Akagi, and M. Aredes. Instantaneous p-q power theory for compensating nonsinusoidal systems. *Przegląd Elektrotechniczny*, (6):28–37, 2008.
- [29] C. I. Budeanu. The different options and conceptions regarding active power in nonsinusoidal systems. *Instytut Romain de l'Energie*, (4), 1927.
- [30] J. M. Filho. Instalações Elétricas Industriais, volume 9. LTC Livros Técnicos e Científicos Editora Ltda, 2017.
- [31] H.G. Sarmiento and E. Estrada. A voltage sag study in an industry with adjustable speed drives. *IEEE Industry Applications Magazine*, 2(1):16–19, 1996.
- [32] W. G. da Silva, M. A. A. de Freitas, and I. Kopcak. Correntes harmônicas causadas pelo motor de indução alimentado por inversor de frequência no contexto das recomendações da norma ieee standard 519-92. XI CEEL Conferência de Estudos em Engenharia Elétrica, 2013.
- [33] Cogo. João, H. Arnago, and J. S. Sá. Análise e medições de harmônicos de tensão e correntes em sistemas elétricos industriais. IV Congresso Chileno de Ingeniería Eléctrica, pages 308–314, Novembro 1985.
- [34] CEPEL. Comportamento Harmônico e Análise Modal- DRE, 2019. Disponível em: https://www.dre.cepel.br/Programa/.
- [35] Araújo F. J. C. A Silva E. C. C., Filho W. A. C. C. A qualidade da energia elétrica no contexto da quarta revolução industrial. *Indústria 4.0. XXXVII ENCONTRO* NACIONAL DE ENGENHARIA DE PRODUCAO, 2017.
- [36] Revista O Setor Elétrico. Medidas de mitigação de harmônicos, 2011.
- [37] SKM. Power tools for Windowns Version 7.0.4, 2019. Disponível em: https://www. skm.com/.
- [38] ETAP. Etap Power Version 21.0.0, 2021. Disponível em: https://www.etap.com/.

## Anexo A

## Relatório de Dados PTW

## Input Report (English)

#### Utilities

| Contribution Bus |            | In/Out Nominal |         |             | Contribution D            | ata          | PU (100 MVA Base                     |                |  |
|------------------|------------|----------------|---------|-------------|---------------------------|--------------|--------------------------------------|----------------|--|
| From Name        | Name       | Service        | Voltage |             | DutyUnits                 | X/R          | R PU                                 | X PU           |  |
| CEMIG-SESAB3     | B_SE_230KV | In             | 230,000 | 3P:<br>SLG: | 11,426 Amps<br>8,350 Amps | 0,14<br>0,19 | <b>Pos:</b> 0.022 <b>Zero:</b> 0.045 | 0.003<br>0.011 |  |

#### Non-Motor Loads

| Name   | Phase | In/Out<br>Service | Bus Name | L-L Volts | Rated<br>size | Units | PF   | Туре |
|--------|-------|-------------------|----------|-----------|---------------|-------|------|------|
| MINA 3 | ABC   | In                | B_MINA 3 | 13,800    | 4,50          | MW    | 0,88 | Lag  |
| MINA 2 | ABC   | In                | B_MINA2  | 13,800    | 1.800,00      | kW    | 0,88 | Lag  |
| MINA 1 | ABC   | In                | B_MINA 1 | 13,800    | 1.200,00      | kW    | 0,88 | Lag  |

#### Induction Motors

| Name           | # of   | Bus Name   | In/Out  |           | Status  | # of  | Contri   | bution Dat | a    |
|----------------|--------|------------|---------|-----------|---------|-------|----------|------------|------|
| Phases         | Motors | Connection | Service | L-L VOIIS | Status  | Poles | Base kVA | Xd"        | X/R  |
| BA-BAR1        | 1      | BUS-0048   | In      | 460       | Running | 4     | 396,55   | 0.159      | 18.5 |
| ABC            |        | Wye        |         |           |         |       |          |            |      |
| M_496-BP-001A  | 1      | BUS-0011   | In      | 460       | Running | 4     | 223,77   | 0.159      | 14.2 |
| ABC            |        | Wye        |         |           |         |       |          |            |      |
| M_496-BP-001A0 | 1      | BUS-0016   | In      | 460       | Running | 4     | 91,46    | 0.158      | 8.6  |
| ABC            |        | Wye        |         |           |         |       |          |            |      |
| M_496-BP-001A1 | 1      | BUS-0021   | In      | 460       | Running | 6     | 188,43   | 0.158      | 12.7 |
| ABC            |        | Wye        |         |           |         |       |          |            |      |
| M_496-BP-001A2 | 1      | BUS-0023   | In      | 460       | Running | 4     | 180,05   | 0.158      | 12.7 |
| ABC            |        | Wye        |         |           |         |       |          |            |      |

| Phases         Motors         Connection         Service         L. Vords         Status         Poles         Base K/A         Xar         Xar           M 496-BP-REC         1         BUS-0018         In         460         Running         4         440.61         0.159         19.3           ABC         Wye           396.55         0.159         18.5           ABC         Wye           396.55         0.159         18.5           ABC         Wye           4         2.419.35         0.169         10.0           ABC         Wye           4         180.05         0.158         12.7           ABC         Wye           1805.0030         In         460         Running         4         1.80.05         0.158         12.7           ABC         Wye            1.150.00         0.169         10.0           ABC         Wye            1.150.00         0.169         10.0           ABC         Wye           4         700.00         0.169         10.0     <                                                                                                                                                                                                                                                        | Name          | # of   | Bus Name   | In/Out  |           | 01-1    | # of  | Contri   | bution Data | a    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|------------|---------|-----------|---------|-------|----------|-------------|------|
| M. 496-BP.REC         1         BUS-0018         In         460         Running         4         440,61         0.159         19.3           ABC         Wye <th>Phases</th> <th>Motors</th> <th>Connection</th> <th>Service</th> <th>L-L Volts</th> <th>Status</th> <th>Poles</th> <th>Base kVA</th> <th>Xd"</th> <th>X/R</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phases        | Motors | Connection | Service | L-L Volts | Status  | Poles | Base kVA | Xd"         | X/R  |
| ABC         Wye           M_496-BP.REC0         1         BUS-0046         In         400         Running         4         396,55         0.159         18.5           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M_496-BP-REC  | 1      | BUS-0018   | In      | 460       | Running | 4     | 440,61   | 0.159       | 19.3 |
| M 496-BP.REC0     1     BUS-0046     In     460     Running     4     396,55     0,159     18,5       ABC     Wye       MA1.2.3     1     BUS-0051     In     4,160     Running     4     2,419,35     0,169     10.0       ABC     Wye        18,000     0,158     12,7       ABC     Wye        18,000     0,169     10,0       ABC     Wye        11,000     0,169     10,0       ABC     Wye        11,000     0,169     10,0       ABC     Wye        11,000     0,169     10,0       ABC     Wye        7,00,00     0,169     10,0       ABC     Wye        1,00     0,169     10,0       ABC     Wye        5,76,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MA1.2.3         1         BUS-0051         In         4,160         Running         4         2.419,35         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M_496-BP-REC0 | 1      | BUS-0046   | In      | 460       | Running | 4     | 396,55   | 0.159       | 18.5 |
| MA1.2.3         I         BUS-0051         In         4,160         Running         4         2.419,35         0.169         10.0           ABC         Wye         Numing         4         180,05         0.158         12.7           ABC         Wye         Numing         4         180,05         0.158         12.7           ABC         Wye         Numing         6         188,43         0.158         12.7           ABC         Wye         Numing         6         188,43         0.158         12.7           ABC         Wye         Numing         4         1.150,00         0.169         10.0           ABC         Wye         Numing         4         1.150,00         0.169         10.0           ABC         Wye         Numing         4         1.150,00         0.169         10.0           ABC         Wye         Numing         4         700,00         0.169         10.0           ABC         Wye         Numing         4         700,00         0.169         10.0           ABC         Wye         Numing         4         700,00         0.169         10.0           ABC         Wye <t< td=""><td>ABC</td><td></td><td>Wye</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           M-BA-BAR2         1         BUS-0036         In         460         Running         4         180.05         0.158         12.7           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MA1.2.3       | 1      | BUS-0051   | In      | 4,160     | Running | 4     | 2.419,35 | 0.169       | 10.0 |
| MBA-BAR2     1     BUS-0036     In     460     Running     4     180,05     0.158     12.7       ABC     Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wyc           MBAR3         1         BUS-0030         In         460         Running         6         188,43         0.158         12,7           ABC         Wyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M-BA-BAR2     | 1      | BUS-0036   | In      | 460       | Running | 4     | 180,05   | 0.158       | 12.7 |
| MBAR3         I         BUS-0030         In         460         Running         6         18.8.43         0.158         12.7           ABC         Wye         MGPI         I         BUS-0067         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye         MGP2         I         BUS-0068         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye         MGP2         I         BUS-0068         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye           700,00         0.169         10.0           ABC         Wye           700,00         0.169         10.0           ABC         Wye           700,00         0.169         10.0           ABC         Wye           5.376,34         0.169         10.0           ABC         Wye           5.376,34         0.169         10.0           ABC         Wye           5.376,34                                                                                                                                                                                                            | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MGP1         1         BUS-0067         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MBAR3         | 1      | BUS-0030   | In      | 460       | Running | 6     | 188,43   | 0.158       | 12.7 |
| MGP1         1         BUS-0067         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye         MGP2         1         BUS-0068         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye           MGP4         1         BUS-0070         In         460         Running         4         700,00         0.169         10.0           ABC         Wye           460         Running         4         700,00         0.169         10.0           ABC         Wye            700,00         0.169         10.0           ABC         Wye             700,00         0.169         10.0           ABC         Wye             5.376,34         0.169         10.0           ABC         Wye              750,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                  | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MGP2         1         BUS-0068         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MGP1          | 1      | BUS-0067   | In      | 460       | Running | 4     | 1.150,00 | 0.169       | 10.0 |
| MGP2         1         BUS-0068         In         460         Running         4         1.150,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MGP4         1         BUS-0070         In         460         Running         4         700,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MGP2          | 1      | BUS-0068   | In      | 460       | Running | 4     | 1.150,00 | 0.169       | 10.0 |
| MGP4         1         BUS-0070         In         460         Running         4         700,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MGS         1         BUS-0069         In         460         Running         4         700,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MGP4          | 1      | BUS-0070   | In      | 460       | Running | 4     | 700,00   | 0.169       | 10.0 |
| MGS         1         BUS-0069         In         460         Running         4         700,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           MO01         1         BUS-0015         In         4,160         Running         4         5.376,34         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MGS           | 1      | BUS-0069   | In      | 460       | Running | 4     | 700,00   | 0.169       | 10.0 |
| MO01         1         BUS-0015         In         4,160         Running         4         5.376,34         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC       Wye         SV2.1       1       SV2       In       460       Running       4       750,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MO01          | 1      | BUS-0015   | In      | 4,160     | Running | 4     | 5.376,34 | 0.169       | 10.0 |
| SV2.1       1       SV2       In       460       Running       4       750,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC       Wye         SV2.2       1       SV2.16       In       460       Running       4       750,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SV2.1         | 1      | SV2        | In      | 460       | Running | 4     | 750,00   | 0.169       | 10.0 |
| SV2.2       1       SV2.16       In       460       Running       4       750,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC       Wye         SV3.3       1       SV3       In       460       Running       4       1.150,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SV2.2         | 1      | SV2.16     | In      | 460       | Running | 4     | 750,00   | 0.169       | 10.0 |
| SV3.3       1       SV3       In       460       Running       4       1.150,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC       Wye         SV3.4       1       SV3.2       In       460       Running       4       1.150,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV3.3         | 1      | SV3        | In      | 460       | Running | 4     | 1.150,00 | 0.169       | 10.0 |
| SV3.4       1       SV3.2       In       460       Running       4       1.150,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC       Wye         SV4.1       1       SE SV4       In       460       Running       4       800,00       0.169       10.0         ABC       Wye       Vye         SV4.2       1       SE SV4.2       In       460       Running       4       800,00       0.169       10.0         ABC       Wye       View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SV3.4         | 1      | SV3.2      | In      | 460       | Running | 4     | 1.150,00 | 0.169       | 10.0 |
| SV4.1       1       SE SV4       In       460       Running       4       800,00       0.169       10.0         ABC       Wye              10.0         SV4.2       1       SE SV4.2       In       460       Running       4       800,00       0.169       10.0         ABC       Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC         Wye           SV4.2         1         SE SV4.2         In         460         Running         4         800,00         0.169         10.0           ABC         Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SV4.1         | 1      | SE SV4     | In      | 460       | Running | 4     | 800,00   | 0.169       | 10.0 |
| SV4.2     1     SE SV4.2     In     460     Running     4     800,00     0.169     10.0       ABC     Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ABC           |        | Wye        |         |           |         |       |          |             |      |
| ABC Wye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SV4.2         | 1      | SE SV4.2   | In      | 460       | Running | 4     | 800,00   | 0.169       | 10.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ABC           |        | Wye        |         |           |         |       |          |             |      |

#### Cables

| Name   | From Bus | In/Out  | Qty | Length |      | Cable Desc | ription   |       | Ohms/ 1000 fee | et |
|--------|----------|---------|-----|--------|------|------------|-----------|-------|----------------|----|
| Phases | To Bus   | Service | /Ph | Feet   | Size | Cond. Type | Duct Type | Insul | R              | jХ |

| Name                | In/Out                         | Qty     | Length |       | Cable De | escription |           | o     | hms/ 100      | 0 feet         |                |
|---------------------|--------------------------------|---------|--------|-------|----------|------------|-----------|-------|---------------|----------------|----------------|
| Phases              | To Bus                         | Service | /Ph    | Feet  | Size     | Cond. Type | Duct Type | Insul |               | R              | jХ             |
| C_496_BP<br>ABC     | BUS-0010<br>BUS-0011           | In      | 2      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_496_BP0<br>ABC    | INV BRITAGEM<br>BUS-0016       | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035          |
| C_496_BP1<br>ABC    | BUS-0012<br>BUS-0018           | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_496_BP2<br>ABC    | BUS-0020<br>BUS-0021           | In      | 2      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_496_BP3<br>ABC    | INV BRITAGEM0<br>BUS-0023      | In      | 1      | 492   | 500      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.030<br>0.168 | 0.034<br>0.094 |
| C_496_BP4<br>ABC    | BUS-0044<br>BUS-0046           | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035          |
| C_496_BP5<br>ABC    | BUS-0027<br>BUS-0030           | In      | 2      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035          |
| C_496_BP6<br>ABC    | INV BRITAGEM1<br>BUS-0036      | In      | 1      | 492   | 500      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.030<br>0.168 | 0.034<br>0.094 |
| C_496_BP7<br>ABC    | BUS-0045<br>BUS-0048           | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_BARRAGEM<br>ABC   | Barra B_ 13,8 kV<br>B_Barragem | In      | 1      | 1,148 | 1        | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.160<br>0.489 | 0.047<br>0.134 |
| C_Entrada_C3<br>ABC | BUS-0003<br>Barra B_ 13,8 kV   | In      | 3      | 98    | 500      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.030<br>0.178 | 0.038<br>0.105 |
| C_Entrada_C4<br>ABC | BUS-0002<br>Barra A- 13,8 KV   | In      | 3      | 98    | 500      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.030<br>0.178 | 0.038<br>0.105 |
| C_GP<br>ABC         | Barra A- 13,8 KV<br>GPROD.     | In      | 1      | 492   | 1        | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.160<br>0.489 | 0.047<br>0.134 |
| C_Gs<br>ABC         | Barra A- 13,8 KV<br>GPE        | In      | 1      | 492   | 1        | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.160<br>0.489 | 0.047<br>0.134 |
| C_INV496<br>ABC     | B_460_MC01<br>BUS-0013         | In      | 2      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035          |
| C_INV497<br>ABC     | B_460_MC01<br>BUS-0017         | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_INV498<br>ABC     | B_460_MC01<br>BUS-0019         | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_INV499<br>ABC     | B_460_MC02<br>BUS-0022         | In      | 2      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035<br>0.100 |
| C_INV500<br>ABC     | B_460_MC02<br>BUS-0025         | In      | 1      | 492   | 500      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.030<br>0.168 | 0.034<br>0.094 |
| C_INV501<br>ABC     | B_460_MC02<br>BUS-0047         | In      | 4      | 492   | 300      | Copper     | Magnetic  | XLPE  | Pos:<br>Zero: | 0.050<br>0.202 | 0.035          |
|                     |                                |         |        |       |          |            |           |       |               |                |                |

| Name           | From Bus         | In/Out  | Qty | Length |      | Cable De   | escription      | Ohms/ 1000 feet |       |
|----------------|------------------|---------|-----|--------|------|------------|-----------------|-----------------|-------|
| Phases         | To Bus           | Service | /Ph | Feet   | Size | Cond. Type | Duct Type Insul | R               | jХ    |
| C_INV502       | B_460_BARRAGE    | N In    | 2   | 492    | 300  | Copper     | Magnetic XLPE   | Pos: 0.050      | 0.035 |
| ABC            | BUS-0031         |         |     |        |      |            |                 | Zero: 0.202     | 0.100 |
| C_INVBAR1      | B_460_BARRAGE    | N In    | 4   | 492    | 300  | Copper     | Magnetic XLPE   | Pos: 0.050      | 0.035 |
| ABC            | BUS-0050         |         |     |        |      |            |                 | Zero: 0.202     | 0.100 |
| C_INVBAR2      | B_460_BARRAGE    | N In    | 1   | 492    | 500  | Copper     | Magnetic XLPE   | Pos: 0.030      | 0.034 |
| ABC            | BUS-0038         |         |     |        |      |            |                 | Zero: 0.168     | 0.094 |
| C_MET-1        | Barra A- 13,8 KV | In      | 1   | 1,969  | 500  | Copper     | Magnetic XLPE   | Pos: 0.030      | 0.036 |
| ABC            | QD_PLANTA        |         |     |        |      |            |                 | Zero: 0.178     | 0.099 |
| C_MINA1        | Barra B_ 13,8 kV | In      | 1   | 1,804  | 1    | Copper     | Magnetic XLPE   | Pos: 0.160      | 0.047 |
| ABC            | B_MINA 1         |         |     | ,<br>, |      |            |                 | Zero: 0.489     | 0.134 |
| C_MINA2        | Barra B_ 13,8 kV | In      | 1   | 2,625  | 1    | Copper     | - XLPE          | Pos: 0.160      | 0.101 |
| ABC            | B_MINA2          |         |     |        |      |            |                 | Zero: 0.484     | 0.288 |
| C_MINA3        | Barra B_ 13,8 kV | In      | 1   | 6,562  | 500  | Copper     | - XLPE          | Pos: 0.030      | 0.080 |
| ABC            | B_MINA 3         |         |     |        |      |            |                 | Zero: 0.152     | 0.223 |
| C_MOINHO       | QD_PLANTA        | In      | 1   | 131    | 500  | Copper     | Magnetic XLPE   | Pos: 0.030      | 0.036 |
| ABC            | BUS-0014         |         |     |        |      |            |                 | Zero: 0.178     | 0.099 |
| C_Refrigeração | Barra A- 13,8 KV | In      | 1   | 131    | 500  | Copper     | Magnetic XLPE   | Pos: 0.030      | 0.036 |
| ABC            | B_Refrig_entrada |         |     |        |      |            |                 | Zero: 0.178     | 0.099 |
| C_SV2/SV4      | Barra A- 13,8 KV | In      | 1   | 1,148  | 500  | Copper     | Magnetic XLPE   | Pos: 0.030      | 0.036 |
| ABC            | B_SAIDA SE       |         |     | ,      |      |            |                 | Zero: 0.178     | 0.099 |
| C_SV3          | Barra B_ 13,8 kV | In      | 1   | 1,148  | 1    | Copper     | Magnetic XLPE   | Pos: 0.160      | 0.047 |
| ABC            | SV3_Entrada      |         |     | ·      |      |            |                 | Zero: 0.489     | 0.134 |
| C-GP           | Barra A- 13,8 KV | In      | 1   | 492    | 4/0  | Copper     | Magnetic XLPE   | Pos: 0.070      | 0.044 |
| ABC            | BUS-0024         |         |     |        |      |            |                 | Zero: 0.250     | 0.124 |

## 2-Winding Transformers

| Name         | In/Out |        | Primary & SecondaryPrimary & |       |         | Nominal |          | Percent Z in % |      |       |
|--------------|--------|--------|------------------------------|-------|---------|---------|----------|----------------|------|-------|
| 1 / 3Phase   |        | Phases | Bus                          | Conn. | Volts   | FLA     | kVA      |                | R    | jХ    |
| TF- BARRAGEM | l In   | ABC    | B_Barragem                   | D     | 13,800  | 105     | 2,500.0  | Pos:           | 0,48 | 4,98  |
| 3Phase       |        |        | B_460_BARRA                  | GENWG | 460     | 3,138   |          | Zero:          | 0,48 | 4,98  |
| TF01         | In     | ABC    | B_SE_230KV                   | D     | 230,000 | 63      | 20,000.0 | Pos:           | 0,54 | 11,95 |
| 3Phase       |        |        | BUS-0002                     | WG    | 13,800  | 1,046   |          | Zero:          | 0,54 | 11,95 |
| TF01-PLANTA  | In     | ABC    | QD_PLANTA                    | D     | 13,800  | 105     | 2,500.0  | Pos:           | 0,48 | 4,98  |
| 3Phase       |        |        | B_460_MC01                   | WG    | 460     | 3,138   |          | Zero:          | 0,48 | 4,98  |
| TF01-VIANA   | In     | ABC    | B_SAIDA SE                   | D     | 13,800  | 105     | 2,500.0  | Pos:           | 0,48 | 4,98  |
| 3Phase       |        |        | B_460_MC02                   | WG    | 460     | 3,138   |          | Zero:          | 0,48 | 4,98  |
| TF2          | In     | ABC    | B_SE_230KV                   | D     | 230,000 | 63      | 20,000.0 | Pos:           | 0,54 | 11,95 |
| 3Phase       |        |        | BUS-0003                     | WG    | 13,800  | 1,046   |          | Zero:          | 0,54 | 11,95 |
| TF-MO01      | In     | ABC    | BUS-0014                     | D     | 13,800  | 209     | 5,000.0  | Pos:           | 0,38 | 4,74  |
| 3Phase       |        |        | BUS-0015                     | WG    | 4,600   | 628     |          | Zero:          | 0,38 | 4,74  |

| Name In/Out     |    | Primary | & Secon          | dary  |        | Nominal |         | Percent Z |      |      |
|-----------------|----|---------|------------------|-------|--------|---------|---------|-----------|------|------|
| 1 / 3Phase      |    | Phases  | Bus              | Conn. | Volts  | FLA     | kVA     |           | R    | jХ   |
| TF-Refrigeração | In | ABC     | B_Refrig_entrada | D     | 13,800 | 209     | 5,000.0 | Pos:      | 0,38 | 4,74 |
| 3Phase          |    |         | BUS-0051         | WG    | 4,600  | 628     |         | Zero:     | 0,38 | 4,74 |

Pi Impedances

| Name    | In/Out  | Amps  | From             | То               | Per U | nit (100 N | IVA Base) | Per U | nit (100 M | VA Base) |
|---------|---------|-------|------------------|------------------|-------|------------|-----------|-------|------------|----------|
| Phases  | Service |       | Bus              | Bus              |       | G/2 pu     | B/2 pu    |       | R pu       | jX pu    |
| DJ_ TIE | Out     | 1,250 | Barra A- 13,8 KV | Barra B_ 13,8 kV | Pos   | 0.0000     | 0.000000  | Pos   | 0.0100     | 0.0100   |
| ABC     |         |       |                  |                  | Zero  | 0.0000     | 0.000000  | Zero  | 0.0100     | 0.0100   |

### **3-Winding Transformers**

| Component Name | In/Out  |      | Connected Rus | Voltage | Nominal kVA |    | kVA Base | Impedand | e in % |
|----------------|---------|------|---------------|---------|-------------|----|----------|----------|--------|
|                | Service |      | Connected Bus |         |             |    |          | % R      | % X    |
| TF-GP1         | In      | Pri. | GPROD.        | 13.800  | 2,400       | PS | 1,200    | 0,00     | 0,00   |
|                |         | Sec. | BUS-0033      | 460     | 1,200       | PT | 1,200    | 0,00     | 0,00   |
|                |         | Ter. | BUS-0034      | 460     | 1,200       | ST | 1,200    | 0,00     | 0,00   |
| TF-GPs         | In      | Pri. | GPE           | 13.800  | 1,400       | PS | 1,200    | 0,00     | 0,00   |
|                |         | Sec. | BUS-0035      | 460     | 700         | PT | 1,200    | 0,00     | 0,00   |
|                |         | Ter. | BUS-0037      | 460     | 700         | ST | 1,200    | 0,00     | 0,00   |
| TF-SV4         | In      | Pri. | B SAIDA SE    | 13,800  | 2,400       | PS | 1,200    | 0,02     | 0,10   |
|                |         | Sec. | SE SV4        | 460     | 1,200       | РТ | 1,200    | 0,02     | 0,10   |
|                |         | Ter. | SE SV4.2      | 460     | 1,200       | ST | 1,200    | 0,02     | 0,10   |
| TF-SV2         | In      | Pri. | B SAIDA SE    | 13 800  | 2,400       | PS | 1,200    | 0,00     | 0,00   |
|                |         | Sec. | sv2           | 460     | 1,200       | PT | 1,200    | 0,00     | 0,00   |
|                |         | Ter. | SV2.16        | 460     | 1,200       | ST | 1,200    | 0,00     | 0,00   |
| TF-SV3         | In      | Pri. | SV3 Entrada   | 13 800  | 2.400       | PS | 1.200    | 0.00     | 0.00   |
|                |         | Sec. | SV3           | 460     | 1,200       | PT | 1,200    | 0,00     | 0,00   |
|                |         | Ter. | SV3.2         | 460     | 1,200       | ST | 1,200    | 0,00     | 0,00   |

## ANSI Summary Fault Report Long

### A\_FAULT Settings

| Fault Type        | 3 Phase+Unbalanced | LV Duty    | Yes      | Int Duty        | Yes          |
|-------------------|--------------------|------------|----------|-----------------|--------------|
| Faulted Bus       | All Buses          | LV Report  | Complete | Int Report      | Complete     |
| Include Tap       | No                 | Mom Duty   | Yes      | Solution Method | E/Z          |
| Pre-fault Voltage | 1.0000             | Mom Report | Complete | NACD Option     | Interpolated |

## Low Voltage Summary

| Fault Location<br>Bus Name | Bus<br>Voltage | 3 Phase<br>Amps | X/R<br>3 Ph | SLG<br>Amps | X/R<br>SLG |
|----------------------------|----------------|-----------------|-------------|-------------|------------|
| B_460_BARRAGEM             | 460            | 53,640          | 7.52        | 56,378      | 8,21       |
| B_460_MC01                 | 460            | 57,026          | 9.29        | 58,817      | 9,63       |
| B_460_MC02                 | 460            | 57,247          | 9.54        | 58,973      | 9,81       |
| BUS-0010                   | 460            | 15,938          | 1.56        | 8,874       | 0,81       |
| BUS-0011                   | 460            | 9,463           | 2.63        | 4,777       | 0,80       |
| BUS-0012                   | 460            | 26,512          | 2.13        | 16,235      | 1,00       |
| BUS-0013                   | 460            | 15,938          | 1.56        | 8,874       | 0,81       |
| BUS-0016                   | 460            | 15,176          | 1.35        | 8,691       | 0,79       |
| BUS-0017                   | 460            | 24,573          | 1.56        | 15,658      | 0,93       |
| BUS-0018                   | 460            | 17,296          | 3.86        | 9,195       | 0,93       |
| BUS-0019                   | 460            | 26,512          | 2.13        | 16,235      | 1,00       |
| BUS-0020                   | 460            | 15,753          | 1.50        | 8,830       | 0,81       |
| BUS-0021                   | 460            | 9,254           | 2.22        | 4,735       | 0,79       |

## Low Voltage Summary

| Fault Location<br>Bus Name | Bus<br>Voltage | 3 Phase<br>Amps | X/R<br>3 Ph | SLG<br>Amps | X/R<br>SLG |
|----------------------------|----------------|-----------------|-------------|-------------|------------|
| BUS-0022                   | 460            | 15,753          | 1.50        | 8,830       | 0,81       |
| BUS-0023                   | 460            | 6,666           | 3.19        | 3,002       | 0,86       |
| BUS-0025                   | 460            | 11,214          | 1.90        | 5,628       | 0,86       |
| BUS-0027                   | 460            | 15,487          | 1.52        | 8,779       | 0,81       |
| BUS-0030                   | 460            | 9,176           | 2.24        | 4,723       | 0,79       |
| BUS-0031                   | 460            | 15,487          | 1.52        | 8,779       | 0,81       |
| BUS-0033                   | 460            | 308,650         | 5.60        | 0           | 1,00       |
| BUS-0034                   | 460            | 308,650         | 5.60        | 0           | 1,00       |
| BUS-0035                   | 460            | 307,528         | 5.45        | 0           | 1,00       |
| BUS-0036                   | 460            | 6,628           | 3.21        | 2,998       | 0,86       |
| BUS-0037                   | 460            | 307,528         | 5.45        | 0           | 1,00       |
| BUS-0038                   | 460            | 11,083          | 1.91        | 5,608       | 0,87       |
| BUS-0044                   | 460            | 26,316          | 2.10        | 16,178      | 1,00       |
| BUS-0045                   | 460            | 25,562          | 2.13        | 15,999      | 1,01       |
| BUS-0046                   | 460            | 17,037          | 3.50        | 9,136       | 0,92       |
| BUS-0047                   | 460            | 26,316          | 2.10        | 16,178      | 1,00       |
| BUS-0048                   | 460            | 16,764          | 3.56        | 9,091       | 0,93       |
| BUS-0050                   | 460            | 25,563          | 2.13        | 15,999      | 1,01       |
| BUS-0067                   | 460            | 308,644         | 5.60        | 0           | 1,00       |
| BUS-0068                   | 460            | 308,644         | 5.60        | 0           | 1,00       |
| BUS-0069                   | 460            | 307,517         | 5.45        | 0           | 1,00       |

## Low Voltage Summary

| Fault Location<br>Bus Name | Bus<br>Voltage | 3 Phase<br>Amps | X/R<br>3 Ph | SLG<br>Amps | X/R<br>SLG |
|----------------------------|----------------|-----------------|-------------|-------------|------------|
| BUS-0070                   | 460            | 307,517         | 5.45        | 0           | 1,00       |
| INV BRITAGEM               | 460            | 24,573          | 1.56        | 15,658      | 0,93       |
| INV BRITAGEM0              | 460            | 11,214          | 1.90        | 5,628       | 0,86       |
| INV BRITAGEM1              | 460            | 11,083          | 1.91        | 5,608       | 0,87       |
| SE SV4                     | 460            | 256,524         | 7.36        | 0           | 1,00       |
| SE SV4.2                   | 460            | 256,524         | 7.36        | 0           | 1,00       |
| SV2                        | 460            | 306,106         | 7.81        | 0           | 1,00       |
| SV2.16                     | 460            | 306,106         | 7.81        | 0           | 1,00       |
| SV3                        | 460            | 214,888         | 4.66        | 0           | 1,00       |
| SV3.2                      | 460            | 214,888         | 4.66        | 0           | 1,00       |

### Momentary Duty Summary

| Fault Location<br>Bus Name | Bus<br>Voltage | 3 Phase<br>Amps | X/R<br>3 Ph | SLG<br>Amps | X/R<br>SLG |
|----------------------------|----------------|-----------------|-------------|-------------|------------|
| B_Barragem                 | 13,800         | 8,504           | 4,15        | 50          | 0,01       |
| B_MINA 1                   | 13,800         | 7,478           | 2,98        | 50          | 0,01       |
| B_MINA 3                   | 13,800         | 6,525           | 5,94        | 50          | 0,01       |
| B_MINA2                    | 13,800         | 6,161           | 2,58        | 50          | 0,01       |
| B_Refrig_entrada           | 13,800         | 15,183          | 10,83       | 50          | 0,01       |
| B_SAIDA SE                 | 13,800         | 13,837          | 8,07        | 50          | 0,01       |
| B_SE_230KV                 | 230,000        | 11,468          | 0,16        | 8,362       | 0,20       |
| Barra A- 13,8 KV           | 13,800         | 15,386          | 11,38       | 50          | 0,01       |
| Barra B_ 13,8 kV           | 13,800         | 11,356          | 12,51       | 50          | 0,01       |
| BUS-0002                   | 13,800         | 15,409          | 11,45       | 50          | 0,01       |
| BUS-0003                   | 13,800         | 11,383          | 12,64       | 50          | 0,01       |
| BUS-0014                   | 13,800         | 13,116          | 7,10        | 50          | 0,01       |
| BUS-0015                   | 4,160          | 17,577          | 9,77        | 37          | 0,00       |
| BUS-0024                   | 13,800         | 13,972          | 7,79        | 50          | 0,01       |
| BUS-0051                   | 4,160          | 15,034          | 11,61       | 37          | 0,00       |
| GPE                        | 13,800         | 12,895          | 5,53        | 50          | 0,01       |
| GPROD.                     | 13,800         | 13,033          | 5,74        | 50          | 0,01       |
| QD_PLANTA                  | 13,800         | 13,232          | 7,24        | 50          | 0,01       |
| SV3_Entrada                | 13,800         | 8,839           | 4,72        | 50          | 0,01       |

## Interrupting Duty Summary

| Fault Location<br>Bus Name | Bus<br>Voltage | 3 Phase<br>Amps | X/R<br>3 Ph | SLG<br>Amps | X/R<br>SLG |  |
|----------------------------|----------------|-----------------|-------------|-------------|------------|--|
| B_Barragem                 | 13,800         | 6,853           | 4,21        | 50          | 0,01       |  |
| B_MINA 1                   | 13,800         | 6,512           | 3,05        | 50          | 0,01       |  |
| B_MINA 3                   | 13,800         | 4,897           | 6,02        | 50          | 0,01       |  |
| B_MINA2                    | 13,800         | 5,546           | 2,64        | 50          | 0,01       |  |
| B_Refrig_entrada           | 13,800         | 9,054           | 11,20       | 50          | 0,01       |  |
| B_SAIDA SE                 | 13,800         | 8,690           | 8,37        | 50          | 0,01       |  |
| B_SE_230KV                 | 230,000        | 11,455          | 0,15        | 8,358       | 0,20       |  |
| Barra A- 13,8 KV           | 13,800         | 9,101           | 11,73       | 50          | 0,01       |  |
| Barra B_13,8 kV            | 13,800         | 7,374           | 12,51       | 50          | 0,01       |  |
| BUS-0002                   | 13,800         | 9,109           | 11,82       | 50          | 0,01       |  |
| BUS-0003                   | 13,800         | 7,382           | 12,64       | 50          | 0,01       |  |
| BUS-0014                   | 13,800         | 8,472           | 7,39        | 50          | 0,01       |  |
| BUS-0015                   | 4,160          | 10,497          | 9,84        | 37          | 0,00       |  |
| BUS-0024                   | 13,800         | 8,851           | 8,29        | 50          | 0,01       |  |
| BUS-0051                   | 4,160          | 9,224           | 11,80       | 37          | 0,00       |  |
| GPE                        | 13,800         | 8,776           | 5,89        | 50          | 0,01       |  |
| GPROD.                     | 13,800         | 8,795           | 6,11        | 50          | 0,01       |  |
| QD_PLANTA                  | 13,800         | 8,510           | 7,54        | 50          | 0,01       |  |
| SV3 Entrada                | 13,800         | 6,898           | 4,60        | 50          | 0,01       |  |

## Apêndice A

## Dados Elétricos do Sistema Modelado

| Fonte         | Tipo       | Valor           | $\mathbf{X}/\mathbf{R}$ |
|---------------|------------|-----------------|-------------------------|
| Fonte 230 kV  | Trifásico  | 11,26  kA       | $^{8,19}$               |
| Fonte 230 kV  | Monofásico | $8,35 \ kA$     | $13,\!36$               |
| Fonte 13,8 kV | Trifásico  | 12,97  kA       | 5,76                    |
| Fonte 13,8 kV | Monofásico | $0,05 \ \rm kA$ | 0,7                     |

Tabela 29 – Dados do Transformador de força

| Transformador TF 01       |                       |             |  |  |  |  |  |  |
|---------------------------|-----------------------|-------------|--|--|--|--|--|--|
| Potência Aparente Nominal | 20/25                 | MVA         |  |  |  |  |  |  |
| Tensão e Corrente         |                       |             |  |  |  |  |  |  |
| Primário                  | 230  kV               | 50 A        |  |  |  |  |  |  |
| Secundário                | 13,8 kV               | 836,7 A     |  |  |  |  |  |  |
| Defasamento Angular       | DYn1                  |             |  |  |  |  |  |  |
| Impedância                |                       |             |  |  |  |  |  |  |
|                           | 230/13,8kV            | $11,\!94\%$ |  |  |  |  |  |  |
|                           | $228/13,8\mathrm{kV}$ | 12%         |  |  |  |  |  |  |
| Tape                      | +-2,5%                |             |  |  |  |  |  |  |

| CABOS | DE      | PARA                    | Formação e Bitola                              | Comprimento (m)   |
|-------|---------|-------------------------|------------------------------------------------|-------------------|
| C01   | TF01    | Barra A 13.8 kV         | $1X2C#240mm^2$ por fase                        | $50 \mathrm{m}$   |
| C02   | TF02    | Barra B 13.8 kV         | $1X2C#240mm^2$ por fase                        | $50\mathrm{m}$    |
| C03   | Barra A | FH 6 MVAr 13.8 kV $$    | $1X1C # 120 \text{ mm}^2 \text{ por fase}$     | $15 \mathrm{m}$   |
| C03.1 | Barra B | FH 2.56 MVAr 13.8 kV $$ | $1 \mathrm{X1C} \# 70 \mathrm{~mm^2}$ por fase | $15 \mathrm{m}$   |
| C04   | Barra A | Barra B 13.8 kV         | $4X1C # 300 \text{ mm}^2 \text{ por fase}$     | 15m               |
| C05   | Barra B | Mina                    | $1X1C # 185 \text{ mm}^2 \text{ por fase}$     | $1200 \mathrm{m}$ |
| C06   | Barra A | QD Planta               | 2X1C# 185 mm <sup>2</sup> por fase             | $600 \mathrm{m}$  |
| C07   | Barra A | Refrigeração            | $2X1C \# 120 \text{ mm}^2 \text{ por fase}$    | $300\mathrm{m}$   |
| C08   | Barra A | Elevador                | $1 \mathrm{X1C} \# 70 \mathrm{~mm^2}$ por fase | $600 \mathrm{m}$  |
| C09   | Barra B | Compressores            | $1 \mathrm{X1C} \# 70 \mathrm{~mm^2}$ por fase | $600 \mathrm{m}$  |
| C10   | Barra B | SV3                     | $1X1C # 120 \text{ mm}^2 \text{ por fase}$     | $400 \mathrm{m}$  |
| C11   | Barra A | $\mathrm{SV2}_SV4$      | $1 \mathrm{X1C} \# 70 \mathrm{~mm^2}$ por fase | 800m              |

| Painel     | Tensão (kV) | Potê | ncia | Modelo           | Fabricante          | Espectro Harmônico |
|------------|-------------|------|------|------------------|---------------------|--------------------|
| BN01       | 0.46        | 250  | CV   | ACS800           | ABB                 | 6 pulsos           |
| BN01       | 0.46        | 250  | CV   | ACS800           | ABB                 | 6 pulsos           |
| MC-E482-01 | 0.44        | 60   | CV   | CFW 88A WEG      | WEG                 | 6 pulsos           |
| MC-E482-01 | 0.44        | 60   | CV   | CFW 88A WEG      | WEG                 | 6 pulsos           |
| 0497-SE-01 | 0.46        | 200  | CV   | ACS800-04        | ABB                 | 6 pulsos           |
| 0497-SE-01 | 0.46        | 200  | CV   | ACS800-04        | ABB                 | 6 pulsos           |
| 0497-SE-01 | 0.46        | 400  | CV   | ACS800-04        | ABB                 | 6 pulsos           |
| 0497-SE-01 | 0.46        | 400  | CV   | ACS800-04        | ABB                 | 6 pulsos           |
| M21        | 0.44        | 300  | CV   | aquadrive FC 202 | DANFOSS             | 6 pulsos           |
| M22        | 0.44        | 300  | CV   | aquadrive FC 202 | DANFOSS             | 6 pulsos           |
| M23        | 0.44        | 300  | CV   | aquadrive FC 202 | DANFOSS             | 6 pulsos           |
| M31        | 0.44        | 350  | CV   | MICROMASTER      | SIEMENS             | 6 pulsos           |
| M32        | 0.44        | 350  | CV   | MICROMASTER      | SIEMENS             | 6 pulsos           |
| M41        | 0.44        | 125  | CV   | MICROMASTER      | SIEMENS             | 6 pulsos           |
| M42        | 0.44        | 125  | CV   | MICROMASTER      | SIEMENS             | 6 pulsos           |
| 452-QF-01  | 0.69        | 1600 | CV   | G150             | SIEMENS             | 12 pulsos          |
| 452-QF-01  | 0.69        | 1600 | CV   | G150             | SIEMENS             | 12 pulsos          |
| 452-QF-01  | 0.69        | 1600 | CV   | G150             | SIEMENS             | 12 pulsos          |
| GP 01      | 0.69        | 1400 | kW   | P80 pec          | $\operatorname{GE}$ | 12 puslos          |
| 452-QF-05  | 0.69        | 1200 | kW   | CFW11            | WEG                 | 12 pulsos          |
| 452-QF-05  | 0.69        | 1200 | kW   | CFW11            | WEG                 | 12 pulsos          |
| GS 01      | 0.69        | 746  | kW   | P80-pec          | $\operatorname{GE}$ | 12 puslos          |
| 451-QD-001 | 0.69        | 1000 | CV   | MV3000           | ALSTOM              | 12 pulsos          |
| 451-QD-001 | 0.69        | 1000 | CV   | MV3000           | ALSTOM              | 12 pulsos          |
| 451-QD-001 | 0.69        | 1000 | CV   | MV3000           | ALSTOM              | 12 pulsos          |

Tabela 31 – Dados dos Inversores e Motores da Planta

Tabela 32 – Dados técnicos dos filtros Existentes

| Filtros Harmônicos - Operação Normal |                     |                       |       |              |           |            |                 |        |    |
|--------------------------------------|---------------------|-----------------------|-------|--------------|-----------|------------|-----------------|--------|----|
|                                      |                     |                       |       |              | R.        | Indutância |                 |        |    |
| Danna                                | Ordem               | Sintania              | Р.    | $\mathbf{V}$ | paralela  | Indutancia | С.              | Time   | FO |
| Barra                                | Harm.               | Sintoma               | MVAr) | Ar) (kV)     | (ohms)    | (mH)       | $(\mathbf{uF})$ | Tibo L | гQ |
| Barra A                              | $5^{\underline{a}}$ | 4,7 <sup>a</sup>      | 6,0   | 16,5         | 45        | 12,8       | 100,3           | High   | 0  |
| Barra B                              | $5^{\underline{a}}$ | $4,7^{\underline{a}}$ | 2,56  | 16,5         | $20,\!17$ | $5,\!69$   | $35,\!65$       | Pass   | Δ  |

Tabela 33 – Espectro harmônico inversor 6 pulsos - 250 CV.

|                 | Inversor 250 CV      |                      |  |  |
|-----------------|----------------------|----------------------|--|--|
| Sbase (drive)   | 0,19                 | MVA                  |  |  |
| Sbase (sistema) | 100                  | MVA                  |  |  |
| CONTRIBU        | JIÇÃO HARMÔNICA DO   | S INVERSORES         |  |  |
|                 | Ordem harmônica (pu) | Ordem harmônica (pu) |  |  |
| Ordem harmônica |                      |                      |  |  |
|                 | Potência Drive       | Potência Sistema     |  |  |
| 1               | 1,0000               | 0,0019355            |  |  |
| 5               | 0,0200               | 0,0000387            |  |  |
| 7               | 0,0180               | 0,0000348            |  |  |
| 11              | 0,0170               | 0,0000329            |  |  |
| 13              | 0,0150               | 0,0000290            |  |  |
| 17              | 0,0170               | 0,0000329            |  |  |
| 19              | 0,0190               | 0,0000368            |  |  |
| 23              | 0,0100               | 0,0000194            |  |  |
| 25              | 0,0090               | 0,0000174            |  |  |
| 29              | 0,0050               | 0,000097             |  |  |
| 31              | 0,0030               | 0,0000058            |  |  |
| 35              | 0,0030               | 0,0000058            |  |  |



Figura 29 – Espectro harmônico inversor 6 pulsos 250 CV ACS ABB).

| Inversor 6 pulsos 2 x 60 CV |                      |                      |  |  |
|-----------------------------|----------------------|----------------------|--|--|
| Sbase (drive)               | 0,09                 | MVA                  |  |  |
| Sbase (sistema)             | 100                  | MVA                  |  |  |
| CONTRIBU                    | JIÇÃO HARMÔNICA DC   | S INVERSORES         |  |  |
|                             | Ordem harmônica (pu) | Ordem harmônica (pu) |  |  |
| Ordem harmônica             |                      |                      |  |  |
|                             | Potência Drive       | Potência Sistema     |  |  |
| 1                           | 1,0000               | 0,0009291            |  |  |
| 5                           | 0,3100               | 0,0002880            |  |  |
| 7                           | 0,1200               | 0,0001115            |  |  |
| 11                          | 0,0800               | 0,0000743            |  |  |
| 13                          | 0,0500               | 0,0000465            |  |  |
| 17                          | 0,0400               | 0,0000372            |  |  |
| 19                          | 0,0300               | 0,0000279            |  |  |
| 23                          | 0,0300               | 0,0000279            |  |  |
| 25                          | 0,0200               | 0,0000186            |  |  |
| 29                          | 0,0200               | 0,0000186            |  |  |
| 31                          | 0,0100               | 0,0000093            |  |  |

Tabela 34 – Espectro harmônico inversor<br/> WEG - 6 pulsos - 60 CV.



Figura 30 – Espectro harmônico inversor 6 pulsos CFW 11 WEG

### Tabela 35 – Espectro harmônico inversor 6 pulsos - 200 CV- ABB ACS 800

#### Inversor 6 pulsos 1 x 200 CV

| CONTRIBUIÇÃO NA BARRA |                      |                      |  |
|-----------------------|----------------------|----------------------|--|
| Sbase (drive)         | 0,15                 | MVA                  |  |
| Sbase (sistema)       | 100                  | MVA                  |  |
| CONTRIBU              | VIÇÃO HARMÔNICA DC   | S INVERSORES         |  |
|                       | Ordem harmônica (pu) | Ordem harmônica (pu) |  |
| Ordem harmônica       |                      |                      |  |
|                       | Potência Drive       | Potência Sistema     |  |
| 1                     | 1,0000               | 0,0015484            |  |
| 5                     | 0,0200               | 0,0000310            |  |
| 7                     | 0,0180               | 0,0000279            |  |
| 11                    | 0,0170               | 0,0000263            |  |
| 13                    | 0,0150               | 0,0000232            |  |
| 17                    | 0,0170               | 0,0000263            |  |
| 19                    | 0,0190               | 0,0000294            |  |
| 23                    | 0,0100               | 0,0000155            |  |
| 25                    | 0,0090               | 0,0000139            |  |
| 29                    | 0,0050               | 0,0000077            |  |
| 31                    | 0,0030               | 0,000046             |  |



Figura 31 – Espectro harmônico inversor 6 pulsos 200 CV ACS ABB).

| Tabela | 36 - | Espectro | harmônico  | inversor 6  | 6 r | oulsos - | 400 | CV.                | ABB | ACS  | 800 |
|--------|------|----------|------------|-------------|-----|----------|-----|--------------------|-----|------|-----|
| Tabola | 00   | Lopoouro | marmonitoo | 111,01001 ( | ~ 1 | Juibob   | 100 | $\sim \cdot \cdot$ | 100 | 1100 | 000 |

| Inversor 6 pulsos 1 x 400 CV |                       |                      |  |  |
|------------------------------|-----------------------|----------------------|--|--|
| CO                           | CONTRIBUIÇÃO NA BARRA |                      |  |  |
| Sbase (drive)                | 0.31                  | MVA                  |  |  |
| Sbase (sistema)              | 100                   | MVA                  |  |  |
| CONTRIBU                     | JIÇÃO HARMÔNICA DO    | OS INVERSORES        |  |  |
|                              | Ordem harmônica (pu)  | Ordem harmônica (pu) |  |  |
| Ordem harmônica              |                       |                      |  |  |
|                              | Potência Drive        | Potência Sistema     |  |  |
| 1                            | 1,0000                | 0,0030968            |  |  |
| 5                            | 0,0200                | 0,0000619            |  |  |
| 7                            | 0,0180                | 0,0000557            |  |  |
| 11                           | 0,0170                | 0,0000526            |  |  |
| 13                           | 0,0150                | 0,0000465            |  |  |
| 17                           | 0,0170                | 0,0000526            |  |  |
| 19                           | 0,0190                | 0,0000588            |  |  |
| 23                           | 0,0100                | 0,0000310            |  |  |
| 25                           | 0,0090                | 0,0000279            |  |  |
| 27                           | 0,0050                | 0,0000155            |  |  |
| 29                           | 0,0030                | 0,0000093            |  |  |
| 31                           | 0,0030                | 0,0000093            |  |  |

| CC              | ONTRIBUIÇÃO NA B     | BARRA                |
|-----------------|----------------------|----------------------|
| Sbase (drive)   | 0.54                 | MVA                  |
| Sbase (sistema) | 100                  | MVA                  |
| CONTRIBU        | IÇÃO HARMÔNICA DO    | S INVERSORES         |
|                 | Ordem harmônica (pu) | Ordem harmônica (pu) |
| Ordem harmônica |                      |                      |
|                 | Potência Drive       | Potência Sistema     |
| 1               | 1,0000               | 0,0054195            |
| 5               | $0,\!2240$           | 0,0012140            |
| 7               | 0,0700               | 0,0003794            |
| 11              | 0,0310               | 0,0001680            |
| 13              | 0,0250               | 0,0001355            |
| 17              | 0,0130               | 0,0000705            |
| 19              | 0,0100               | 0,0000542            |
| 23              | 0,0080               | 0,0000434            |
| 25              | 0,0070               | 0,0000379            |

# Tabela 37 – Espectro harmônico inversor 6 pulsos - 350 CV. Micromaster Siemens Inversor 6 pulsos 2 x 350 CV

Tabela 38 – Espectro harmônico inversor 6 pulsos - 125 CV. Danfoss Aquadrive

| Inversor 6 pulsos $2 \ge 125$ CV |                                           |                  |  |  |  |
|----------------------------------|-------------------------------------------|------------------|--|--|--|
| CO                               | CONTRIBUIÇÃO NA BARRA                     |                  |  |  |  |
| Sbase (drive)                    | 0.19                                      | MVA              |  |  |  |
| Sbase (sistema)                  | 100                                       | MVA              |  |  |  |
| CONTRIBUI                        | ÇÃO HARMÔNICA DO                          | S INVERSORES     |  |  |  |
|                                  | Ordem harmônica (pu) Ordem harmônica (pu) |                  |  |  |  |
| Ordem harmônica                  |                                           |                  |  |  |  |
|                                  | Potência Drive                            | Potência Sistema |  |  |  |
| 1                                | 1,0000                                    | 0,0019355        |  |  |  |
| 5                                | 0,2240                                    | 0,0004336        |  |  |  |
| 7                                | 0,0700                                    | 0,0001355        |  |  |  |
| 11                               | 0,0310                                    | 0,0000600        |  |  |  |
| 13                               | 0,0250                                    | 0,0000484        |  |  |  |
| 17                               | 0,0130                                    | 0,0000252        |  |  |  |
| 19                               | 0,0100                                    | 0,0000194        |  |  |  |
| 23                               | 0,0080                                    | 0,0000155        |  |  |  |
| 25                               | 0,0070                                    | 0,0000135        |  |  |  |

103

| CONTRIBUIÇÃO NA BARRA |                      |                      |  |
|-----------------------|----------------------|----------------------|--|
| Sbase (drive)         | 1,47                 | MVA                  |  |
| Sbase (sistema)       | 100                  | MVA                  |  |
| CONTRIBU              | 'IÇÃO HARMÔNICA DC   | S INVERSORES         |  |
|                       | Ordem harmônica (pu) | Ordem harmônica (pu) |  |
| Ordem harmônica       |                      |                      |  |
|                       | Potência Drive       | Potência Sistema     |  |
| 1                     | 1,0000               | 0,0147368            |  |
| 5                     | 0,0100               | 0,0001474            |  |
| 7                     | 0,0080               | 0,0001179            |  |
| 11                    | 0,0900               | 0,0013263            |  |
| 13                    | 0,0600               | 0,0008842            |  |
| 17                    | 0,0000               | 0,000000             |  |
| 19                    | 0,0000               | 0,000000             |  |
| 23                    | 0,0200               | 0,0002947            |  |
| 25                    | 0,0180               | 0,0002653            |  |
| 35                    | 0,0100               | 0,0001474            |  |
| 37                    | 0,0080               | 0,0001179            |  |
| 47                    | 0,003                | 0,0000442            |  |
| 49                    | 0,002                | 0,0000295            |  |

## Tabela 39 – Espectro harmônico inversor 12 pulsos - 1400 CV. GE PEC80

Inversor 12 pulsos 1x 1400 CV  $\,$ 

Tabela 40 – Espectro harmônico inversor 12 pulsos - 750 CV. GE PEC80

| Inversor 12 pulsos 1x 746 UV |                       |                      |  |  |  |
|------------------------------|-----------------------|----------------------|--|--|--|
| CO                           | CONTRIBUIÇÃO NA BARRA |                      |  |  |  |
| Sbase (drive)                | 0,79                  | MVA                  |  |  |  |
| Sbase (sistema)              | 100                   | MVA                  |  |  |  |
| CONTRIBU                     | JIÇÃO HARMÔNICA DO    | S INVERSORES         |  |  |  |
|                              | Ordem harmônica (pu)  | Ordem harmônica (pu) |  |  |  |
| Ordem harmônica              |                       |                      |  |  |  |
|                              | Potência Drive        | Potência Sistema     |  |  |  |
| 1                            | 1,0000                | 0,0078526            |  |  |  |
| 5                            | 0,0100                | 0,0000785            |  |  |  |
| 7                            | 0,0080                | 0,0000628            |  |  |  |
| 11                           | 0,0900                | 0,0007067            |  |  |  |
| 13                           | 0,0600                | 0,0004712            |  |  |  |
| 17                           | 0,0000                | 0,0000000            |  |  |  |
| 19                           | 0,0000                | 0,000000             |  |  |  |
| 23                           | 0,0200                | 0,0001571            |  |  |  |
| 25                           | 0,0180                | 0,0001413            |  |  |  |
| 35                           | 0,0100                | 0,0000785            |  |  |  |
| 37                           | 0,0080                | 0,0000628            |  |  |  |
| 47                           | 0,003                 | 0,0000236            |  |  |  |
| 49                           | 0,002                 | 0,0000157            |  |  |  |

| CONTRIBUIÇÃO NA BARRA |                      |                      |  |  |
|-----------------------|----------------------|----------------------|--|--|
| Sbase (drive)         | 3,72                 | MVA                  |  |  |
| Sbase (sistema)       | 100                  | MVA                  |  |  |
| CONTRIBU              | 'IÇÃO HARMÔNICA DO   | S INVERSORES         |  |  |
|                       | Ordem harmônica (pu) | Ordem harmônica (pu) |  |  |
| Ordem harmônica       |                      |                      |  |  |
|                       | Potência Drive       | Potência Sistema     |  |  |
| 1                     | 1,0000               | 0,0371621            |  |  |
| 5                     | 0,0260               | 0,0009662            |  |  |
| 7                     | 0,0160               | 0,0005946            |  |  |
| 11                    | 0,0450               | 0,0016723            |  |  |
| 13                    | 0,0290               | 0,0010777            |  |  |
| 17                    | 0,0020               | 0,0000743            |  |  |
| 19                    | 0,0010               | 0,0000372            |  |  |
| 23                    | 0,0090               | 0,0003345            |  |  |
| 25                    | 0,008                | 0,0002973            |  |  |

#### Tabela 41 – Espectro harmônico inversor 12 pulsos -1600 CV. SIEMENS GA<br/>150 $\,$

Inversor 12 pulsos 3 x 1600 CV

Tabela 42 – Espectro harmônico inversor 12 pulsos -1250 CV. CFW 11-WEG

| CONTRIBUIÇÃO NA BARRA |                      |                      |  |  |
|-----------------------|----------------------|----------------------|--|--|
| Sbase (drive)         | 2,53                 | MVA                  |  |  |
| Sbase (sistema)       | 100                  | MVA                  |  |  |
| CONTRIBU              | IÇÃO HARMÔNICA DO    | S INVERSORES         |  |  |
|                       | Ordem harmônica (pu) | Ordem harmônica (pu) |  |  |
| Ordem harmônica       |                      |                      |  |  |
|                       | Potência Drive       | Potência Sistema     |  |  |
| 1                     | 1,0000               | 0,0252632            |  |  |
| 5                     | 0,0260               | 0,0006568            |  |  |
| 7                     | 0,0160               | 0,0004042            |  |  |
| 11                    | 0,0450               | 0,0011368            |  |  |
| 13                    | 0,0290               | 0,0007326            |  |  |
| 17                    | 0,0020               | 0,0000505            |  |  |
| 19                    | 0,0010               | 0,0000253            |  |  |
| 23                    | 0,0090               | 0,0002274            |  |  |
| 25                    | 0,008                | 0,0002021            |  |  |

### Inversor 12 pulsos 2 x 1250 CV

Tabela 43 – Tab:Espectro harmônico inversor 12 pulsos -1000 CV. ALSTOM

| CONTRIBUIÇÃO NA BARRA |                      |                      |  |
|-----------------------|----------------------|----------------------|--|
| Sbase (drive)         | 2,32                 | MVA                  |  |
| Sbase (sistema)       | 100                  | MVA                  |  |
| CONTRIBU              | JIÇÃO HARMÔNICA DO   | S INVERSORES         |  |
|                       | Ordem harmônica (pu) | Ordem harmônica (pu) |  |
| Ordem harmônica       |                      |                      |  |
|                       | Potência Drive       | Potência Sistema     |  |
| 1                     | 1,0000               | 0,0232263            |  |
| 5                     | 0,0260               | 0,0009662            |  |
| 7                     | 0,0160               | 0,0005946            |  |
| 11                    | 0,0450               | 0,0016723            |  |
| 13                    | 0,0290               | 0,0010777            |  |
| 17                    | 0,0020               | 0,0000743            |  |
| 19                    | 0,0010               | 0,0000372            |  |
| 23                    | 0,0090               | 0,0003345            |  |
| 25                    | 0,008                | 0,0002973            |  |

## Inversor 12 pulsos 3 x 1000 CV
## Apêndice B

## Formas de Onda Resultantes Estudo de Caso n.º 5



Figura 32 – Estudo caso 5- Forma de onda e Espectro harmônico da Barra Mina



a) Forma de onda

b) Espectro harmônico

Figura 33 – Estudo caso 5- Forma de onda e Espectro harmônico da Barra Planta



Figura 34 – Estudo caso 5- Forma de onda e Espectro harmônico da Barra A e Barra B-SE Principal



Figura 35 – Estudo caso 5- Forma de onda e Espectro harmônico da Barra SV2SV4





a) Forma de onda

b) Espectro harmônico

Figura 36 – Estudo caso 5- Forma de onda e Espectro harmônico da Barra 230 kV



Figura 37 – Estudo de Caso 5-Impedância em Ohms frequência de sintonia do filtro



Figura 38 – Diagrama Elétrico da Planta Completo Modelado no PTW

## Apêndice C

Fotos do Sistema



Figura 39 – Filtro Passivo 2,56 $\mathrm{MVA}_r$  desativado.



Figura 40 – Filtro Passivo 6 $\mathrm{MVA}_r$ em operação



Figura 41 – Medições de QEE Realizadas.



Figura 42 – Foto do Inversor WEG 12 pulsos.



Figura 43 – Diagrama Funcional Inversor WEG 12 Pulsos.