
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Ĺıvia Almeida Barbosa

Assessing the Migration of Testing Frameworks in the Python Ecosystem

Belo Horizonte
2022



Ĺıvia Almeida Barbosa

Assessing the Migration of Testing Frameworks in the Python Ecosystem

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Andre Cavalcante Hora

Belo Horizonte
2022



© 2022, Líıvia Almeida Barbosa. 
.   Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Barbosa, Líıvia Almeida. 
 

B238a        Assessing the migration of testing frameworks in the python  
              ecosystem [manuscrito] / Líıvia Almeida Barbosa. —  2022. 
                  60 f. il.; 29 cm. 
 
                  Orientador: André Cavalcante Hora. 
                  Dissertação (mestrado) - Universidade Federal de Minas  
              Gerais – Departamento de Ciência da Computação 
                  Referências: f. 56-60. 
 
                  1. Computação – Teses. 2. Software – Testes – Teses. 3.      
              Mineração de dados (Computação) – Teses. 4. Engenharia  
              de Software – Teses. 5. Python (Linguagem de programação  
              de computador) – Teses. I. Hora, Andre Cavalcante. II. 
              Universidade Federal de Minas Gerais, Instituto de Ciências            
              Exatas, Departamento de Computação. III. Título. 

 
CDU 519.6*32 (043) 

Ficha Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende 
Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx 





Resumo

Atualmente, desenvolvedores Python podem utilizar dois frameworks de teste: unittest e

pytest. Devido aos benef́ıcios do pytest (tais como reuso de fixtures), muitos projetos rele-

vantes no ecossistema Python migraram do unittest para o pytest. Apesar de ser realizada

pela comunidade Python, ainda não temos informações suficientes sobre a migração de

unittest para pytest, nem sobre as razões da migração. Neste estudo, analizamos como e

por qual motivo desenvolvedores migram de unittest para pytest. Para isso, mineramos os

100 sistemas Python mais populares e analisamos seus status de migraçãos. Os resultados

mostram que 34% dos sistemas dependem de ambos frameworks de teste e que projetos

Python estão, de fato, realizando a migração para pytest. Enquanto alguns sistemas mi-

graram completamente, outros ainda estão migrando após um longo peŕıodo, sugerindo

que a migração não é sempre direta. Em geral, o código de teste migrado é menor que

o original. Além disso, desenvolvedores migram para pytest por diversas razões, como

sintaxe simplificada, interoperabilidade, manutenção facilitada e flexibilidade/reuso de

fixtures, entretanto, a mecânica impĺıcita do pytest e o fato de ser um pacote não nativo

são preocupações relevantes.

Palavras-chave: Teste de Software, Manutenção de Software, Mineração de Repositórios

de Software, engenharia de Software Emṕırica, Python, Pytest, Unittest.



Abstract

Nowadays, Python developers can rely on two major testing frameworks: unittest and

pytest. Due to the benefits of pytest (e.g. fixture reuse), several relevant projects in the

Python ecosystem have migrated from unittest to pytest. Despite being performed by the

Python community, we are not yet aware of how systems are migrated from unittest to

pytest nor the major reasons behind the migration. This study provides the first empirical

study to assess testing framework migration. We analyze how and why developers migrate

from unittest to pytest. We mine 100 popular Python systems and assess their migration

status. We find that 34% of the systems rely on both testing frameworks and that Python

projects are moving to pytest. While some systems have fully migrated, others are still

migrating after a long period, suggesting that the migration is not always straightforward.

Overall, the migrated test code is smaller than the original one. Furthermore, developers

migrate to pytest due to several reasons, such as the easier syntax, interoperability, easier

maintenance, and fixture flexibility/reuse, however, the implicit mechanics of pytest and

the fact that it is a separated package are concerns.

Keywords: Software Testing, Software Maintenance, Mining Software Repositories, Em-

pirical Software Engineering, Python, Pytest, Unittest.



List of Figures

2.1 Unittest examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Pytest examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Real migration examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overview of the migration stages. . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Testing frameworks adopted in the 100 studied Python systems. . . . . . . . . 41



List of Tables

3.1 Evaluation: method to detect framework usage. . . . . . . . . . . . . . . . . . 26

3.2 Evaluation: method to detect migration commits. . . . . . . . . . . . . . . . . 29

3.3 Summary of the duration metrics. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Summary of testing framework usage over time. . . . . . . . . . . . . . . . . . 34

4.2 Number of files with framework references in the last version. Between paren-

theses: the median per system. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Summary of the systems with migration commits. . . . . . . . . . . . . . . . . 35

4.4 Top-5 systems with most migration commits. . . . . . . . . . . . . . . . . . . 35

4.5 Summary of the migration duration and density. . . . . . . . . . . . . . . . . . 36

4.6 When the migration has started. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Frequency of transformations in migrated systems. . . . . . . . . . . . . . . . 38

4.8 Size of transformations in migrated systems. . . . . . . . . . . . . . . . . . . . 39

5.1 Migration advantages and disadvantages in the GitHub ecosystem. . . . . . . . 42

5.2 Advantages and disadvantages of pytest from a GLR. . . . . . . . . . . . . . . 44

5.3 Code examples and tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents

1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15

2.1 Unittest and Pytest in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Migrating from Unittest to Pytest . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Migration Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Study Design 23

3.1 The Python Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Quantitative Study: How Developers Migrate . . . . . . . . . . . . . . . . 24

3.3 Qualitative Study: Why Developers Migrate . . . . . . . . . . . . . . . . . 29

3.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 How Developers Migrate 33

4.1 RQ1 (extension): To what extent are unittest and pytest adopted in the

Python ecosystem over time? . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 RQ2 (frequency): How frequent is code migrated from unittest to pytest? . 35

4.3 RQ3 (duration): How long does it take to migrate from unittest to pytest? 36

4.4 RQ4 (transformations): What code is migrated from unittest to pytest? . . 38

4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Why Developers Migrate 41

5.1 RQ5 (reasons): Why is code migrated from unittest to pytest? . . . . . . . 42

5.2 RQ6 (guidelines): How common are guidelines to support the migration

and what are their content? . . . . . . . . . . . . . . . . . . . . . . . . . . 46



5.3 RQ7 (process): What is the migrator’s view on the process? . . . . . . . . 48

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Discussion and Implications 51

6.1 For Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 For Researchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusion 55

7.1 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57



10

Chapter 1

Introduction

1.1 Motivation

Software testing is a key practice in modern software development. Nowadays,

developers rely on a variety of testing frameworks to write test cases, catch regressions

and bugs, and support healthy software evolution. In Python, which is among the most

important programming languages in current days, developers can rely on two major

testing frameworks: unittest [40] and pytest [32]. Many projects rely on one or even

both frameworks. For example, F Prime,1 an open-source software framework created by

NASA for development and deployment of embedded systems and spaceflight applications,

currently depends on pytest. Django,2 a widely used web framework, relies on unittest.

Numpy,3 a popular scientific computing tool, uses both framework in its tests.

Unittest belongs to the Python standard library, whereas pytest is a third-party

testing framework. While unittest is the default solution for Python developers since it

is a native package, pytest has gained attention in the Python ecosystem. Indeed, pytest

provides features not available in unittest, such as flexibility to create and reuse testing

fixtures, simpler assertions and built-in parameterized tests [32]. Due to such benefits,

several projects have migrated from unittest to pytest. For example, in project Opsdroid4

(a popular chatbot framework), there is an explicit call for this migration:5

1https://github.com/nasa/fprime
2https://github.com/django/django
3https://github.com/numpy/numpy
4https://opsdroid.dev
5https://github.com/opsdroid/opsdroid/issues/1502

https://github.com/nasa/fprime
https://github.com/django/django
https://github.com/numpy/numpy
https://opsdroid.dev
https://github.com/opsdroid/opsdroid/issues/1502


1.1. Motivation 11

Migrate tests from unittest to pytest #1502

Our existing test suite has been written with the Python unittest framework. How-

ever, as the test suite has grown and Opsdroid has become more complex we are

running into issues with the tests. Mainly around setting up and tearing down

tests. The team has decided that we want to migrate all tests to be written with

the pytest framework instead so that we can make better use of fixtures. Fixtures

are more reusable and portable and should help reduce complexity all over.

While some projects have this call to initiate migration, others have invitations to

conclude it. For example, in projects owned by the Home Assistant organization,6 used

for home automation, there are some open issues asking to conclude the migration:7

Rewrite graphite unittest tests to pytest style test functions #40850

The Home Assistant core standard is to write tests as standalone pytest test func-

tions. We still have some old tests that are based on unittest.TestCase. We want

all these tests to be rewritten as pytest test functions.

In fact, this migration movement is somehow common: we assessed the top-100

most popular Python systems in GitHub and we find that over 1/4 migrated or is mi-

grating from unittest to pytest. To facilitate the migration, pytest can also run unittest

tests, that is, Python projects can have both testing frameworks at the same time. Thus,

the migration can happen incrementally over time, without the need for a single-shot

migration. However, there is also a downside: the migration process may be slow, taking

a long time to be concluded due to the complexity of the test suites. During this period

in which the migration is not complete, the test suite may become even more complex

as two testing frameworks are used interchangeably. For instance, projects like NumPy

and scikit-learn (a popular machine learning library) have started their migration but did

fully not conclude yet.

Despite being largely performed by the Python community, we are not yet aware

of how software projects are migrated from unittest to pytest nor the reasons behind the

migrations. This knowledge can be used to understand migration practices, supporting

the production of a more efficient migration process. For example, results can be used to

create migration guidelines, decrease the migration duration, and foment the creation of

novel migration tools. Moreover, Python has a rich software ecosystem, which is the basis

for a variety of — sometimes critical8 — applications. Thus, having proper automated

testing is fundamental to ensure quality and sustainable evolution [5, 14]. While API

6https://github.com/home-assistant
7https://github.com/home-assistant/core/issues/40850
8For example, NumPy was used to support Black Hole imaging and the detection of gravitational

waves [31].

https://github.com/home-assistant
https://github.com/home-assistant/core/issues/40850


1.2. Proposed Work 12

migration is a research topic broadly studied by prior literature (e.g., [25, 27, 18, 48, 8]),

to the best of our knowledge, the migration of testing frameworks have never been deeply

explored by the research community.

1.2 Proposed Work

This master dissertation provides an empirical study to assess testing framework

migration. We analyze how and why developers migrate Python tests from unittest to

pytest. First, we propose a quantitative study to understand how developers migrate. For

this purpose, we mine 100 popular Python projects and analyze their migration status.

We provide research questions to assess the migration extension, frequency, duration,

transformations, as follows:

• RQ1 (extension): To what extent are unittest and pytest adopted in the Python

ecosystem over time? Most systems (77 out of 100) rely on unittest (20%), pytest

(23%), or both (34%). Projects with unittest are moving to pytest: 66% of the ones

initially with unittest now rely on pytest.

• RQ2 (frequency): How frequent is code migrated from unittest to pytest? From the

39 systems that started with unittest and adopted pytest over time, 28% (11) have

fully migrated to pytest and 41% (16) are still migrating.

• RQ3 (duration): How long does it take to migrate from unittest to pytest? The

migration may be fast or take a long period to be concluded, from months to years.

Overall, projects that migrated successively kick-started it in different development

phases, but the majority tends to concentrate the migration commits.

• RQ4 (transformations): What code is migrated from unittest to pytest? Most mi-

gration commits (90%) include assert migrations. Developers also tend to migrate

fixtures (18%) and imports (13%). Overall, the migrated test code is 34% smaller

than the original one.

Second, we propose a qualitative study to explore why developers migrate. In

this analysis, we assess migration explanations in issues and pull requests from GitHub

and web resources from a Grey Literature Review (e.g., blog posts, Q&A forums, and

documentation) to understand migration rationales. We also perform a short survey with

developers to better understand their view of the migration process. We provide research

questions to assess the migration reasons, guidelines, and process, as follows:



1.3. Contributions 13

• RQ5 (reasons): Why is code migrated from unittest to pytest? Developers migrate

to pytest mostly due to the easier syntax, interoperability, and fixture flexibility and

reuse. In contrast, the implicit mechanics of pytest and being a separated package

are the main concerns.

• RQ6 (guidelines): How common are guidelines to support the migration and what is

their content? We find that 40% of resources have code examples and tips to help

perform the migration.

• RQ7 (process): What is the migrator’s view on the process? We find that the size

of the codebase and manual effort are the main concerns.

In summary, we provide empirical evidence that test migration is common in the

Python ecosystem. We find that over 1/3 of the studied systems rely on both testing

frameworks. The migration delay suggests that performing it is not always trivial. Overall,

the migrated test code is smaller than the original one, meaning there is less test code

to be maintained. Furthermore, developers focus on discussing the advantages of the

migration, but some disadvantages are also highlighted.

1.3 Contributions

The contributions of this master dissertation are threefold: (i) it provides the

first empirical assess the migration of testing frameworks; (ii) it presents how code is

migrated and the reasons for the migration; and (iii) it proposes practical implications

for practitioners and researchers.

Based on findings, we propose implications for both practitioners and researchers.

First, (i) we reveal a set of practices and reasons in favor and against migration. We shed

light on (ii) the challenge of keeping track of migration and (iii) how migration issues

can be improved with migration guidelines. Finally, we discuss novel research directions,

including (iv) the investigation of the reasons why some projects start the migration but

do not conclude it, (v) the proposal of novel techniques to document and automate the

migration, and (vi) the developer experience and the project follow up during and after

the migration.



1.4. Publication 14

1.4 Publication

As a result this research, the following article has been published [3]. Therefore,

this dissertation contains material from this article:

• Ĺıvia Almeida, Andre Hora. How and Why Developers Migrate Python Tests. In

29th IEEE International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 1-11, 2022

1.5 Outline of the Dissertation

This master dissertation is organized as follows:

• Chapter 2 introduces the unittest and pytest testing frameworks and describes the

migration phenomenon in the Python ecosystem. It also presents the related work

on API evolution and software migration.

• Chapter 3 describes the study design to answer the proposed research questions

on how and why developers migrate Python tests.

• Chapter 4 presents the results of the quantitative study on how developers migrate

Python tests(RQs 1-4). It also presents threats to validity related to these questions.

• Chapter 5 presents the results of the qualitative study on on why developers mi-

grate Python tests (RQs 5-7). Its also discusses threats to validity.

• Chapter 6 discusses implications for practitioners and researchers.

• Chapter 7 concludes this dissertation, presenting an overview, contributions, and

suggestions for future work.



15

Chapter 2

Background

This chapter introduces both testing frameworks (Section 2.1), assesses how the migration

is performed (Section 2.2), explores how it is relevant in the Python ecosystem (Section

2.3), and presents related work on software evolution and migration (Section 2.4).

2.1 Unittest and Pytest in a Nutshell

Unittest [40] and pytest [32] are the most popular testing frameworks in Python.

Unittest belongs to the Python standard library, while pytest is a third-party testing

framework. Unittest was originally inspired by JUnit [19] and has a similar flavor as

major unit testing frameworks in other programming languages [40]. Pytest makes it

easy to write small tests and scales to support complex functional testing [32].

Figures 2.1 and 2.2 present examples of tests methods written with unittest and

pytest. Unittest examples in Figure 2.1 were taken from the official documentation and

Figure 2.2 has the pytest version of the same test cases. Unittest relies on inheritance to

create tests (i.e., the test needs to extend the unittest class TestCase), whereas pytest

tests can be regular functions, with the test prefix. As a consequence, pytest tests tend

to be less verbose than unittest ones. Another difference is the assertions: unittest pro-

vides self.assert* methods (e.g., assertTrue, assertEqual, etc.), while pytest allows

developers to use the regular Python assert for verifying expectations and values. There

are many other differences,1 for example, pytest facilitates the creation of parameterized

tests and the reuse of fixtures.

Overall, the community acknowledges some advantages of pytest. In project Ops-

droid, a core developer states: “Fixtures are more reusable and portable and should help

reduce complexity all over”. The pytest documentation [32] mentions that there is “No

need to remember self.assert* names”. Reddit has multiple posts comparing both testing

1Summary of the major differences: https://git.io/Jnc1m

https://git.io/Jnc1m


2.2. Migrating from Unittest to Pytest 16

(a) Simple unittest tests. (b) Unittest test with setup.

Figure 2.1: Unittest examples.

(a) Simple pytest tests. (b) Pytest test with fixtures.

Figure 2.2: Pytest examples.

frameworks,2 e.g., “Tests are shorter, easier to read, with more reusability and extensibil-

ity, and have better output”, “Parameterising allows you to run the same test in multiple

configurations”, and “One of the greatest strengths of pytest is that it makes much bet-

ter use of Python than unittest does: it very nicely leverages free functions, decorators,

context managers”.

2.2 Migrating from Unittest to Pytest

Despite unittest being a built-in Python package, the Python community seems

to be moving to pytest. The fact that pytest can run unittest tests may facilitate the

2https://bit.ly/3cMPit7, https://bit.ly/3zyEEzB, and https://bit.ly/2SIdYvL

https://bit.ly/3cMPit7
https://bit.ly/3zyEEzB
https://bit.ly/2SIdYvL


2.2. Migrating from Unittest to Pytest 17

migration. Migrating from unittest to pytest would involve at least the following steps: (1)

removing tests from class and moving to regular functions; (2) replacing assertions with

regular Python asserts; and (3) moving setup operations to fixtures. Figure 2.3a presents

a migration in project TermGraph,3 which performs steps (1) and (2). Notice that the

class CandleTests is removed, the test methods are moved to regular test functions, and

the assertions are replaced by regular asserts.

(a) Class and assertion migration (TermGraph, hash: d56652).

(b) Fixture migration (pyvim, hash: 7e1c7b).

Figure 2.3: Real migration examples.

However, the migration is not always that straightforward. For example, Fig-

ure 2.3b presents a migration in Pyvim,4 which performs steps (1), (2), and (3). In this

case, the setUp method in unittest (i.e., the fixture) is split into four fixture functions

3TermGraph migration commit: https://git.io/Jncy5
4pyvim migration commit: https://git.io/Jn8xh

https://git.io/Jncy5
https://git.io/Jn8xh


2.3. The Migration Movement 18

in pytest, which are annotated with @pytest.fixture. The test function test initial

is then adapted to receive the fixtures via parameters (i.e., window and tab page). In

practice, when pytest runs a test, it looks at the parameters in that test function’s sig-

nature and then searches for fixtures that have the same names as those parameters [32].

Once pytest finds them, it runs those fixtures, captures what they returned, and passes

those objects into the test function as arguments [32]. Feature reuse is considered one

advantage of pytest. However, it is worth noticing that, the larger and the more complex

are the fixtures in unittest, the more challenging is the migration to pytest.

Sometimes, to perform the fixture migration, one needs to have deep knowledge of

the context to properly migrate without loss of information. When the fixture is composed

of multiple environment states it is necessary to understand the semantics before migrating

the entire fixture or dividing it into smaller and reusable fixtures. On the other hand, the

other migrations (e.g., assert, skip, and expected failure) are syntactic, therefore, more

straightforward and easier to perform.

2.3 The Migration Movement

To better understand this phenomenon, we have inspected the migration status of

the top 100 most popular Python software systems hosted on GitHub. We find that 27 out

of 100 systems have fully migrated or are currently migrating to pytest (this data is further

explored in RQ0). Among those projects, we find worldwide ones, like Flask (55K stars,

one of the most popular web frameworks nowadays), Ansible (48K stars, automation

platform), scikit-learn (machine learning module), pandas (data analysis library), and

NumPy (scientific computing tool), to name a few. As those projects are the basis for a

variety of applications, automated testing is fundamental to ensure software quality with

sustainable evolution and maintenance [5, 14].

In addition to popular Python projects, we also inspected the overall GitHub

ecosystem. By using the GitHub Search API, we searched for issues with the terms

“unittest to pytest”,5 looking for issues that explicitly mention the migration. We find

around 12K issues (700 open and 11,300 closed), suggesting that the migration is somehow

common in Python. As an illustration, we present examples of recent issues:

• Shift from unittest to pytest: “Unittest is cool, but pytest is cooler. It packs more

features and as this continues to grow I can see myself leveraging them further for

automated testing” (DPY-Anti-Spam, issue #64).

5https://git.io/Jn8AL

https://github.com/Skelmis/DPY-Anti-Spam/issues/64
https://git.io/Jn8AL


2.4. Related Work 19

• from unittest to pytest: “Need to stop using unittest’s TestCase and use pytest

instead” (dvc, issue 1819).

• Switch from unittest to pytest: “I like this because of the simple usage of assert

with a condition following for testing rather than using assert* ” (gcam reader, issue

#19).

• Move completely from unittest to pytest: “The testing uses unittests in some tests

and pytest in others. Move completely to pytest” (df-wizard-chess, issue #5).

• unittest tests to pytest: “This project started using pytest to run tests in #55.

However, existing tests were left untouched, and still are written in unittest style”

(marshmallow dataclass, issue 56).

While the first three issues are initial calls for the migration, the last two are a

recall to conclude the migration.

To support the migration, some tools help the conversion from unittest test cases

to pytest ones. We can find tools developed by the community but are not popular, 6

7 with less than 10 stars. There is another one, unittest2pytest8 that can be considered

more popular (90 stars, 13 contributors), however with limited transformations available

(remove_class and self_assert, from the documentation).

The migration from unittest to pytest is widespread in the Python ecosystem. Bet-

ter understating this migration can reveal novel practices, advantages, and disadvan-

tages. This can support, for example, the production of novel migration guidelines

and warn about the existence of migration bottlenecks.

2.4 Related Work

There is a vast literature covering library and framework migration and evolution.

Migration is also studied at higher levels, for example, the migration between program-

ming languages and between programming language versions. The following sections

present relevant work related to test framework migration.

6https://github.com/dannysepler/pytestify
7https://github.com/hanswilw/codemod-unittest-to-pytest-asserts
8https://github.com/pytest-dev/unittest2pytest

https://git.io/Jc6b4
https://github.com/JGCRI/gcamreader/issues/19
https://github.com/nikochiko/df-wizard-chess/issues/5
https://git.io/Jc6NS
https://github.com/dannysepler/pytestify
https://github.com/hanswilw/codemod-unittest-to-pytest-asserts
https://github.com/pytest-dev/unittest2pytest


2.4. Related Work 20

2.4.1 API Evolution and Migration

Prior research investigates API migration/evolution in Java [2, 43, 1, 8, 9, 18,

21, 34, 6], Android [28, 24, 4, 23, 38, 16, 13], JavaScript [30, 12, 45, 11, 6, 44], and

Python [41, 47], to name a few. Alrubaye et al. [2] introduced an open source tool

that detects potential library migration code changes between Java third-party libraries.

The tool also collects library documentation of methods involved in the migration. Its

evaluation against manually validated migrations showed to be very effective.

There is also multiple studies regarding API evolution and deprecation. Hora et

al. [18] perform a large empirical study on the Pharo ecosystem. Pharo is a pure object-

oriented dynamically typed programming language. The authors wanted to understand

how client systems react to API changes, how many are affected, and how long it takes for

the changes to propagate. They analyzed 118 API changes and found that 53% impacted

other systems and API changes and deprecation present different characteristics.

Sawant et al. [34] extend studies on API changes in the Pharo Smalltalk ecosystem

by analyzing a dataset of more than 25,000 clients of five popular Java APIs and 60 clients

of the JDK API. Some of their goals are to know how fast Android API changes, how

dependent client code on Android APIs is, how long it takes to adopt new APIs, and

investigate API stability. Among the findings, they report that, for all the APIs, only a

minority of clients upgrade/change the API version they use and that “deletion” was the

most popular way to react to a deprecated entity.

McDonnell et al. [28] performed a case study of the co-evolution behavior of An-

droid API on GitHub projects. They detected that Android APIs are evolving fast, that

fast-evolving APIs are more used by clients, but clients do not follow the pace of API evo-

lution. They also found that the propagation time of newer versions is about 14 months,

which is slower than the average of 3 months for API release interval.

Nascimento et al. [30] surveyed 109 JavaScript developers and a mining study

on 320 popular JavaScript projects to investigate how developers deprecate APIs since

Javascript does not have a native deprecation mechanism. Results suggest that there is

no standard solution to deprecate JavaScript APIs and that developers resort to multiple

solutions to achieve this goal.

Zhang et al. [41] explore the evolution of Python framework APIs and the com-

patibility issues in client applications. They analyzed 288 releases of six popular Python

frameworks and 5,538 open-source projects that used them. Results showed that the

API evolution in Python systems considerably differs from those of Java framework APIs.

They also implemented a tool, PYCOMPAT, that effectively detects compatibility issues

caused by the misuse of evolved framework APIs in Python applications.

Zerouali and Mens [46] analyzed the usage of eight testing-related libraries in 4,532



2.4. Related Work 21

open-source Java projects hosted on GitHub. They analyzed specific pairs of libraries

and identified if and when there was a replacement in a project’s lifecycle. The authors

observed that many projects tend to use multiple libraries together and even though some

libraries are more popular, other libraries increase their popularity over time. Also, they

noticed permanent and temporary migrations between competing libraries. There are key

differences between Zerouali’s and Mens’ work and this master dissertation. Their testing-

related libraries include mock libraries, they do not study in a fine-grained analysis the

code transformation in the migration and they do not perform a qualitative investigation.

2.4.2 Programming Language Migration

Malloy and Power [25] investigated to which degree Python 2 systems had migrated

to Python 3, as there is no native backward compatibility. They developed a compliance

analyzer and ran it in a previously studied dataset of Python applications. Results indi-

cated that developers are not exploiting the new features and advantages of Python 3 and

confining themselves to a language subset, an intersection of the two versions, to preserve

backward compatibility.

In a related research line, Martinez and Mateus [27] studied the migration phe-

nomenon from Java to Kotlin in Android applications. Kotlin is interoperable with Java,

thus, developers can choose to migrate gradually. The authors used a history-based tool

to detect commits that had migrated code in open-source Android projects. Aiming for a

qualitative approach, they emailed and interviewed 98 developers that did the migration

to assess the reasons why they migrated. Overall, the authors found that the migration

occurred to access features only available in Kotlin and to obtain a safer code.

Despite the various studies on different types of migrations and ecosystems, there is

a lack of research addressing the migration of testing frameworks in Python appli-

cations. Therefore, this work contributes to the literature on library and framework

migration with a novel study on testing framework migration, particularly in the

Python ecosystem.



2.5. Final Remarks 22

2.5 Final Remarks

This chapter presented an overview of unittest and pytest, which are the most

popular testing frameworks in Python. We also explored how the migration from unittest

to pytest can be performed. Finally, we presented the related work in the context of

software evolution and migration.



23

Chapter 3

Study Design

In this chapter, we describe the study design to answer the proposed research questions.

First, we provide an overview of the importance of the Python ecosystem (Section 3.1). We

describe the design to answer research questions 1 to 4 (quantitative study) in Section 3.2

and to answer research questions 5 to 7 (qualitative study) in Section 3.3. We detail

the research questions and their rationales in Section 3.4 and present final remarks in

Section 3.5.

3.1 The Python Ecosystem

In this study, we assess test migration in the Python ecosystem. We select Python

due to several reasons. First, Python is among the most important programming lan-

guages nowadays according to both GitHub1 and TIOBE2 rankings. Second, Python has

a rich software ecosystem with worldwide adopted projects, including web frameworks,

machine learning libraries, data analysis libraries, and scientific computing tools, for in-

stance, which are highly well-tested. Third, the testing landscape in Python is dominated

by unittest [40] and pytest [32]; this does not happen in other popular programming

languages like Java and JavaScript, in which a single or multiple testing frameworks are

available. Lastly, the migration movement from unittest to pytest makes a relevant case to

be investigated: not only the Python community itself can benefit from this assessment,

but also any other software community experiencing similar migration.

1GitHub ranking: https://git.io/JnOlr
2TIOBE ranking: https://www.tiobe.com/tiobe-index

https://git.io/JnOlr
https://www.tiobe.com/tiobe-index


3.2. Quantitative Study: How Developers Migrate 24

3.2 Quantitative Study: How Developers Migrate

3.2.1 Case Studies

We aim to study real-world and relevant software systems. Therefore, we collect

the top-100 most popular Python software systems hosted on GitHub according to the

number of stars, which is a metric largely adopted in the software mining literature as a

proxy of popularity [7, 35]. In this process, we took special care to filter out non-software

projects, such as tutorials, examples, and samples, among others. The dataset under

study includes broadly adopted systems, such as Django, Pandas, and Scikit-learn, to

name a few. On the median, they have 1,800 commits, 165 authors, and 2,355 days since

the first commit, showing that they are active and relevant projects.

3.2.2 Detecting Testing Frameworks Over Time

To explore how software systems migrate from unittest to pytest, first, we need to

discover the testing frameworks used over time. For this purpose, we analyze both the

present and the past versions of the software system. Specifically, we look for references

to the APIs provided by the testing frameworks unittest [40] and pytest [32] and classify

the system as follows (the notation “past → present” represents the testing frameworks

used in past and present versions):

1. unittest → pytest : the present version of the system references pytest only, but its

past versions referenced unittest only.

2. unittest → unittest & pytest : the present version of the system references both

unittest and pytest, but its past versions referenced unittest only.

3. unittest → unittest : the present and past versions reference unittest only.

4. pytest → pytest : the current and past versions reference pytest only.

5. pytest → unittest : the present version of the system references unittest only, but its

past versions referenced pytest only.



3.2. Quantitative Study: How Developers Migrate 25

6. pytest → unittest & pytest : the present version of the system references both unittest

and pytest, but its past versions referenced pytest only.

7. other : the current and/or past versions of the system reference neither unittest nor

pytest. For example, when a system does not use one of these test frameworks or

does not have tests at all.

We start by assessing the present version and then we assess its past versions in

descending order until we find the proper classification. It is worth mentioning that the

opposite change may happen: a system may start with pytest and change to unittest; we

also keep track of those cases. No “reverse migration” was found, but a few projects (7

out of 100) that started with pytest, currently have indications of using both frameworks.

However, it is important to reassure readers that the main focus of this work is not to

investigate this case.

In unittest, we search for occurrences of the term unittest in source code, which may

happen, for example, in test cases (i.e., unittest.TestCase), importing (e.g., import

unittest), test skip (e.g., @unittest.skip), and expected failure (e.g.,@unittest.ex-

pectedFailure). Moreover, the search extends to unittest fixtures (e.g., setUp, setUpClass,

tearDown, tearDownClass, etc.) as well as assert usage (e.g., self.assert*).

In pytest, we search for occurrences of the term pytest in source code, which may

happen in pytest fixtures (e.g., @pytest.fixture), test skip (e.g., @pytest.mark.skip),

and expected failure (e.g., @pytest.mark.xfail). In addition, a pytest test suite may

have no direct reference to the term pytest. For example, the migration commit presented

in Figure 2.3a changes the test from unittest to pytest, but the new source code (right-

side) has no explicit reference to the term pytest.3 Indeed, this is one of the advantages

of pytest in which developers can build test suites by simply creating test functions with

the assert keyword.

To overcome this issue in which the source code does not clearly indicate that

the system relies on pytest, files provided by CI/CD tools are also mined. Specifically,

we consider the configuration file formats of the most popular CI/CD tools (i.e., Travis,

CircleCI, and GitHub Actions) are considered, as well as references to pytest in their

configuration files (e.g.,.travis.yml, config.yml and other configuration and script files).

For example, considering the aforementioned case of Figure 2.3a, we can detect that

pytest is being adopted by verifying its .travis.yml file as it has pytest in the pipeline,

i.e., poetry run pytest.4

Evaluation 1. We evaluate the precision of the proposed method to correctly detect the

testing frameworks. First, we selected 10 Python systems and manually classified them

according to the usage of the testing frameworks. These 10 systems are not part of the top

3Code just after the migration: https://git.io/JcSQn
4CI/CD file with pytest: https://git.io/JcS7E

https://git.io/JcSQn
https://git.io/JcS7E


3.2. Quantitative Study: How Developers Migrate 26

100 systems mined in this study. The 10 systems are also presented in the dataset. For this

purpose, we manually inspected their source code, commits, issues, and documentation.

Next, we run our method on those 10 systems and contrast the automated classification

with the manual one. As summarized in Table 3.1, our method correctly detected the

testing frameworks in past and presents versions, achieving a precision of 100%.

Table 3.1: Evaluation: method to detect framework usage.

Migration Classification
Precision

Category Manual Automated

unittest → unittest 4 4 100%
unittest → unittest & pytest 3 3 100%
unittest → pytest 3 3 100%

All 10 10 100%

3.2.3 Assessing Testing Framework Migration

In the previous section, we presented a method to detect the testing frameworks

used by a software system over time. It is the first step towards better understanding the

usage of the testing frameworks, however, it is not enough to infer that the migration is

happening. That is, the fact a system relies on both unittest and pytest in the present

version does not necessarily mean that the system is migrating. It may represent, for

example, a system that purposely relies on both testing frameworks (since this is a pytest

feature [32]). Thus, for more precise migration analysis, we propose a method to detect

systems that are migrating or are migrated from unittest to pytest. For this purpose, we

need to analyze their commits and look for explicit migration evidence.

We consider that a system migrated (or is migrating) when it has at least one

migration commit. We define a migration commit as a commit that explicitly migrates

code from unittest to pytest. Examples of migration commits are presented in Figures 2.3a

and 2.3b. In those commits, developers are deliberately changing code from unittest to

pytest. Thus, migration commits allow us to discover the current migration stage of the

system: not migrated, ongoing migration, or migrated.

Figure 3.1 illustrates the three migration stages and how they relate to the migra-

tion commits. The orange circles represent migration commits, whereas the black ones

represent normal commits (i.e., not migration commits). A migration starts when we

detect the first migration commit (commit m1 ) and it ends when we detect the last mi-



3.2. Quantitative Study: How Developers Migrate 27

gration commit (commit mn) and the system does not rely anymore on unittest. Recalling

our definitions:

• If a project has never started a migration, it is not migrated ;

• If a project has started the migration but never ended, it is ongoing ;

• If project has started and ended the migration, it is migrated.

As pytest allows incremental migration [32], several migration commits may exist

in a software system between the first and the last migration commits (e.g., commits m2

and m3 ), but not all commits in the ongoing stage are necessarily migration commits,

i.e., they can be normal commits (e.g., commit x ).

Not Migrated Ongoing Migrated

time

First migration commit

(migration starts)

Last migration commit

(migration ends)

Normal

commit

Migration

commit

m3 xm2m1 mn

Figure 3.1: Overview of the migration stages.

Providing more examples, if a system had unittest references in the past, has only

pytest references in the present, and does not have migration commits, it is not considered

a migrated system by our definitions.

To detect migration commits from unittest to pytest, we assess the version history

of the software systems. We rely on the PyDriller [36] mining tool to perform the historical

analysis. Specifically, for each system, we iterate on its commits and verify the removed

and added lines of code per commit. Based on the unittest and pytest API references [40,

32], we derive the following transformations to detect a migration commit. A commit is a

migration commit if at least one of the following transformation rules hold and a normal

commit otherwise:

1. Assert migration: the commit removes unittest self.assert* and adds assert

keyword.

2. Fixture migration: the commit removes unittest fixtures (i.e., setUp, setUp-

Class, setUpModule, tearDown, tearDownClass, and tearDownModule) and adds

pytest fixtures (i.e., @pytest.fixture and @pytest.mark.usefixtures).

3. Import migration: the commit removes import unittest and adds import pytest.



3.2. Quantitative Study: How Developers Migrate 28

4. Skip migration: the commit removes unittest test skips (i.e., @unittest.skip,

@unittest.skipIf, and @unittest.skipUnless) and adds pytest test skips (i.e.,.

@pytest.mark.skip and @pytest.mark.skipif).

5. Expected failure migration: the commit removes unittest expected failure (i.e.,

@unitest.expectedFailure) and adds pytest expected failure (i.e., @pytest.-

mark.xfail).

One or more transformations may happen in a single migration commit. Fig-

ure 2.3a presents an example with assert migrations, while Figure 2.3b has assert and

fixture migrations. Project Gaphor, for example, has a migration commit5 with three

transformations: assert, fixture, and import migrations.

Our transformation rules are strict in the sense that a commit that has only refac-

toring evidence is not considered a migration commit. That is, to be considered a mi-

gration commit, it must have removal of a unittest statement and addition of the pytest

equivalent. Although strict, this strategy led to less noise to identify systems that were

migrating from those that only relied on both testing frameworks.

Evaluation 2. To evaluate the proposed method in detecting migration commits, we

compute its precision and recall. We rely on the same 10 Python systems used in Eval-

uation 1, that are not part of the top-100 set. We then run the proposed method and

manually analyze their migration commits. Specifically, for each detected migration com-

mit, the authors of this work carefully manually inspected all code changes and verified

whether it was a real migration commit from unittest to pytest.

Next, we compute the precision of the method in correctly detecting migration

commits, looking for true positives (TP) and false positives (FP); precision =TP/(TP+FP).

Computing the recall is more challenging because we need to assess all commits of a sys-

tem to verify whether the proposed method is possibly missing any real migration commit,

i.e., the false negatives (FN). Thus, to strengthen this evaluation, we performed two re-

call analyses. In the first recall analysis, we randomly selected and manually inspected

a sample of 366 out of all 7,758 commits (95% confidence level, 5% confidence interval).

In the second recall analysis, we selected three systems, one in each migration stage, and

manually assessed their 728 commits. In both cases, we assessed true positives (TP) and

false negatives (FN); recall = TP/(TP+FN).

Table 3.2 summarizes this evaluation. We inspected 19 migration commits, leading

to a precision of 100%. For recall, we inspected 366 commits in the first analysis and 728

commits in the second one, both achieving a recall of 100%.

5Gaphor migration commit: https://git.io/JcMX6

https://git.io/JcMX6


3.3. Qualitative Study: Why Developers Migrate 29

Table 3.2: Evaluation: method to detect migration commits.

Evaluation Commits TP FP FN Value

Precision 19 19 0 - 100%
Recall (Analysis 1) 366 1 - 0 100%
Recall (Analysis 2) 728 4 - 0 100%

3.3 Qualitative Study: Why Developers Migrate

3.3.1 Assessing Reasons for the Migration

To answer and explore the migration reasons (RQ5) and guidelines (RQ6), we

perform a qualitative analysis of: (1) GitHub issues/pull requests and (2) web resources

from a Grey Literature Review, such as blog posts, Q&A forums, and documentation.

Issues and pull requests from GitHub. First, we assess GitHub issues and pull re-

quests to investigate why developers migrate. We first tried to find explanations in the

migration commits of the studied projects, however, we only found a limited amount.

To overcome this limitation, we rely on the GitHub Search API to find other candidate

sources. Specifically, we queried for the term “unittest to pytest” on issues and pull

requests and manually inspected the first 100 results. Next, to filter out false positive

results, we only selected the issues/PRs whose titles had some indication of migration.

Moreover, we only kept the issues/PRs that mentioned some advantages and/or disad-

vantages, for example, the Jinja issue #424 (“Consider Switching to Pytest”). Finally,

after this filtering step, we selected 61 issues/PRs.

Web Resources from Grey Literature Review. Second, to evaluate other web

resources in the wild, we follow the guidelines proposed by Garousi et. al. [15] to perform

a Grey Literature Review (GLR) following the steps:

1. Search process : We employ only one general web search engine, Google Ad-

vanced Search Engine, considering that it includes results from multiple outlet types. We

searched the query migrate OR move OR convert OR change OR switch unittest to

pytest, filtering by date and English language, which returned approximately 723 results.

2. Web resource selection: For the inclusion criteria, we considered: (a) is the

producer reputable or has expertise in the area? (b) does the source mention advantages

or disadvantages, compare both frameworks, or show tips to perform the migration? (c)

is it an article published between 1/1/2018 and 1/1/2022 and written in English?, and

(d) is it among the top-100 results? We assess the authority of the producer, date, and

https://github.com/pallets/jinja/issues/424


3.3. Qualitative Study: Why Developers Migrate 30

methodology and we include a result if it fits all criteria from (a) to (d). For exclusion

criteria, we filtered out the result if: (e) the material is not text-based or (f) the result is

a copy of another resource. From the top-100 results, we find that 32 met all criteria; the

majority was excluded due to criterion (b).

3. Data Extraction: The first author of this study carefully read all the material

and organized in a tabular visualization to ease the thematic analysis process. We ex-

tracted sections that mentioned information related to the frameworks or the migration.

After that, we identified the main topics of each result, based on explicit and implicit

descriptions. Here, we also kept track of migration guidelines and code examples.

4. Data Validation: First, we identified 27 common topics in the selected resources.

Both authors of this study reviewed the topics, then merged and renamed them, resulting

in 17 topics. Whenever possible, we adopted the same topics defined while analyzing

GitHub issues/PRs to keep consistency and ease the comparison process.

We adopted thematic analysis to classify the explanations of the issues/PRs and

the web resources, with the following steps [10]: (1) initial reading of the issues/PRs, (2)

generating a first code for each explanation, (3) searching for themes among the proposed

codes, (4) reviewing the themes to find opportunities for merging, and (5) defining and

naming the final themes. The first three steps were done by the author of this dissertation,

while steps 4 and 5 were done together with the advisor until consensus was achieved.

3.3.2 Exploring the Migration Process

In this final analysis, we perform a survey with developers who performed the

migration from unittest to pytest. Here, we aim to better understand their perspective on

the migration process. To address the last research question (RQ7), we collected the list

of migration commit authors from the 27 ongoing and migrated projects. We contacted

those developers by sending the following email:

1. Why has this project migrated from unittest to pytest?

2. How hard is the migration from unittest to pytest? What are the migration bottle-

necks, if any?

3. (migrated systems) Do you have any advice for those projects starting the migration

to pytest?

3. (ongoing systems) Why has this project started but not fully concluded the migra-

tion yet?



3.4. Research Questions 31

We collected 53 valid emails and sent them to developers, receiving 5 responses

(i.e., close to 10% of response rate). Those answers are then used to assess our final RQ.

3.4 Research Questions

RQ1 (extension). In this motivational research question, we assess the usage of unittest

and pytest over time. For this purpose, we detect the testing frameworks used in past

and present versions, as detailed in Section 3.2.2. Rationale: We aim to provide the

first empirical evidence that the investigated phenomenon is somehow frequent in the

Python ecosystem. We explore whether systems are likely to mix and exchange unittest

and pytest over time.

RQ2 (frequency). Next, we assess the migration frequency. For this purpose, we

analyze all commits of the selected projects looking for migration commits and assessing

the migration stages, as detailed in Section 3.2.3. Rationale: We aim to explore whether

the studied systems have fully migrated or are still migrating. This may shed light on the

facility or difficulty to perform the migration.

RQ3 (duration). In this RQ, we analyze the migration duration. We only focus on

the systems that have already completed the migration (i.e., the migrated systems) and

assess their migration starting and ending date. Specifically, we report the migration

duration in number of days as well as the migration density, as described in Table 3.3.

We classify the migration duration according to its speed (slow and fast) and the migration

density according to its scattering (dense and sparse). Rationale: It is not clear whether

developers tend to perform the migration on a single shot or over a long period. A short

duration may suggest that the migration is somehow manageable, thus, this can encourage

other projects facing the migration dilemma. In contrast, a longer duration may warn

that the community is struggling to migrate, thus, projects considering the migration

should be aware of the effort.

Table 3.3: Summary of the duration metrics.

Metric Short Description

Migration duration
Number of days between the first and last
migration commits (i.e., m1 and mn in Fig-
ure 3.1)

Migration density
Ratio of migration commits during the mi-
gration (i.e., migration commits / total com-
mits during the migration duration)



3.5. Final Remarks 32

RQ4 (transformations). We assess the five transformations that happen in the mi-

gration commits, i.e., assert, fixture, import, skip, and failure (see Section 3.2.3). We

also capture the size of the transformations in the number of deleted and added lines.

Rationale: Our goal is to discover what are the most common transformations and the

changing size, so we can gauge the maintainability of the changed code.

RQ5 (reasons). We focus on finding advantages and disadvantages that motivate de-

velopers on the migration. This assessment is done by searching on the GitHub API

(to collect issues and pull requests) and Google Advanced Search Engine (to collect web

resources). For this purpose, we follow the methodology described in Section 3.3.1. Ra-

tionale: We aim to understand the reasons developers take into account to perform the

migration. We also aim to reveal possible points against the migration. Both advantages

and disadvantages may support other developers who plan to migrate their projects.

RQ6 (guidelines). We analyze the web resources selected with Google Advanced Search

to verify whether there are code examples, tips, or a step-by-step guides to aid developers

to perform the migration, also following the design described in Section 3.3.1. Rationale:

The goal is to understand if there is support from the community, in which form this

support is given, and to have a taste of how hard it can be to migrate.

RQ7 (process). We conducted a survey, as detailed in Section 3.3.2, with migration

commit authors to understand what are their opinions on how hard is migrating and what

bottlenecks one can encounter while migrating. Rationale: By surveying developers who

are actually performing (or performed) the migration, we can verify if their point of view is

the same or is supported by the empirical data collected in the previous research questions.

The dataset contaning the 100 systems under study, the 10 projects used in the

recall and precision analysis for the quantitative study, and the GitHub issues, pull re-

quests, and websites selected for the qualitative research is publicly available at https:

//doi.org/10.5281/zenodo.6737376.

3.5 Final Remarks

This chapter described the study design of this master dissertation. First, we

introduced the Python ecosystem and the selected projects. Then, we detailed the method

for the quantitative and qualitative studies. Finally, we listed and presented rationales

for the investigated research question.

https://doi.org/10.5281/zenodo.6737376
https://doi.org/10.5281/zenodo.6737376


33

Chapter 4

How Developers Migrate

In this chapter, we present the quantitative results on how developers migrate from

unittest to pytest. We answer research questions about the extension (Section 4.1),

frequency (Section 4.2), duration (Section 4.3), and code transformation (Section 4.4).

Then, we present the threats to validity (Section 4.5) and a summary of the findings as

final remarks (Section 4.6).

4.1 RQ1 (extension): To what extent are unittest

and pytest adopted in the Python ecosystem

over time?

We selected the 100 most popular Python projects using the number of stars as

a proxy for popularity. We can see some of them are maintained by big organizations

e.g., Google, Facebook, Microsoft, Apache, and NVIDIA, and some well-known machine

learning tools e.g., pandas, scikit-learn, pytorch geometric and pytorch lightning, and

frameworks e.g., Django and Flask.

Table 4.1 summarizes the testing frameworks used by the 100 systems in present

and past versions. In the present version, 20 systems rely on unittest, 23 on pytest, and 34

rely on both unittest and pytest. It is also possible to observe how systems exchanged the

testing frameworks over time. For example, 59 systems relied on unittest in the past, but

in the present there are only 20, which represents a large reduction in usage. Interestingly,

considering the 59 systems that relied on unittest in the past, 27 have now both unittest

and pytest and 12 rely on pytest. This shows that over 66% (39 out of 59) of the systems

initially with unittest now rely on pytest. In contrast, from the 18 systems that relied on

pytest in the past, 7 now rely on both frameworks and none on unittest.



4.1. RQ1 (extension): To what extent are unittest and pytest adopted in the Python
ecosystem over time? 34

Table 4.1: Summary of testing framework usage over time.

Present
unittest pytest both Total

P
a
st unittest 20 12 27 59

pytest 0 11 7 18
Total 20 23 34 77

Notice that 31 out of 100 systems have not changed the testing frameworks over

time (20 kept unittest and 11 kept pytest). Finally, 23 (i.e., 100 – 77) systems do not fall

in any category because they do not rely on unittest nor pytest.

Next, Table 4.2 details the number of files in the present version of the 39 (12+27)

systems that started with unittest and adopted pytest. Overall, those systems have 1,771

files with unittest references and 3,410 files with pytest references; among those, there

are 493 files referencing both frameworks. This means that 27% (i.e., 493/1,171) of the

present unittest files mix both unittest and pytest code. When considering the category

unittest → pytest, on the median, each system has 36 pytest files. In the category unittest

→ unittest & pytest, on the median, each system has 36 unittest files, 17 pytest files, and

1 file with both testing frameworks.

Table 4.2: Number of files with framework references in the last version. Between paren-
theses: the median per system.

#Files in the Present
Testing Framework unittest pytest both

unittest → pytest 0 1,530 (36) 0
unittest → unittest & pytest 1,771 (36) 1,880 (17) 493 (1)

Total 1,771 3,410 493

RQ1 Conclusion. Most systems (77 out of 100) rely on unittest (20%), pytest

(23%), or both (34%). Moreover, projects with unittest are moving to pytest: 66%

(39 out of 59) of the systems initially with unittest now rely on pytest and 27% of

the unittest test files have references to pytest code.



4.2. RQ2 (frequency): How frequent is code migrated from unittest to pytest? 35

4.2 RQ2 (frequency): How frequent is code

migrated from unittest to pytest?

We further explore the 39 systems that started with unittest and adopted pytest

over time. We recall that a system is migrated (or is migrating) only when it has at least

one migration commit, that is, a commit that explicitly migrates code from unittest to

pytest. From those 39 systems, 27 have at least one migration commit, while 12 have no

migration commit. Regarding the 12 systems without migration commit, despite having

unittest references in the past and pytest references in the present, they are not performing

a migration; they are simply using both.

Table 4.3 details the 27 systems with migration commits. They have a total of

330 migration commits; on the median, each system has 4 migration commits. Also, 11

systems are migrated, while 16 are still migrating.

Table 4.3: Summary of the systems with migration commits.

Migration Stage #Systems
Migration Commits

# median max min σ

Migrated 11 102 2 53 1 15
Ongoing 16 228 4 88 1 22

All 27 330 4 - - 19

The top-5 systems with the most migration commits are presented in Table 4.4.

Aiohttp is the top-1, with 88 migration commits; notice that its migration is ongoing.

Next, we have the projects Cookiecutter (53 migration commits), Apache Airflow (36),

Ansible (33), and Pandas (23). Together, the top-5 have 232 migration commits, which

represents 70% of the total.

Table 4.4: Top-5 systems with most migration commits.

Pos System
Migration Migration

Examples
Commits Stage

1 Aiohttp 88 Ongoing 7698ee
2 Cookiecutter 53 Migrated 2e7ea5
3 Apache Airflow 36 Ongoing 58c354
4 Ansible 33 Ongoing aa7bd8
5 Pandas 23 Migrated e303e2

https://git.io/JKPK1
https://git.io/JKP69
https://git.io/JKPiQ
https://git.io/JKPMn
https://git.io/JKPDU


4.3. RQ3 (duration): How long does it take to migrate from unittest to pytest? 36

RQ2 Conclusion. From the 39 systems that started with unittest and adopted

pytest over time, 28% (11) have fully migrated to pytest, 41% (16) are still migrat-

ing, and 31% (12) did not migrate.

4.3 RQ3 (duration): How long does it take to

migrate from unittest to pytest?

In this RQ, we focus on understanding the migrated systems. First, we explore

the migration duration, that is, the period between the first and last migration commit

(Table 4.5). For simplicity, we flag as fast a migration concluded in up to one week and

as slow a migration longer than one week. We find 6 out of 11 migrated systems with a

fast migration; 4 systems have only one migration commit, while 2 systems have 6 and

3 migration commits, migrating in 3 and 5 days, respectively. Also, 5 out of migrated

11 systems have a slow migration. In this case, Pandas holds the longest migration: 23

migration commits during 2,326 days. Cookiecutter, which has the largest number of

migration commits (53), took 132 days to migrate.

Table 4.5: Summary of the migration duration and density.

System
Migration Duration Density (Mig. Commits /
Commits (in days) Commits in Mig. Duration)

Celery 1 fast (1) dense (100%)
Python-tel. 1 fast (1) dense (100%)
Pytorch Geo. 1 fast (1) dense (100%)
Routersploit 1 fast (1) dense (100%)
Redis-py 6 fast (3) dense (50%)
Flask 3 fast (5) dense (11.11%)
Cookiecutter 53 slow (132) dense (20.54%)
Saleor 2 slow (186) dense (16.67%)
Allennlp 2 slow (514) sparse (0.24%)
Requests 9 slow (1,553) sparse (0.36%)
Pandas 23 slow (2,326) sparse (0.15%)

In addition, table 4.5 also presents the migration density, that is, the ratio between

the number of migration commits and the total number of commits during migration

duration. We flag as dense the ratios greater than 1/10 (10%) and as sparse otherwise.

We find 8 dense and 3 sparse migrations. For example, Cookiecutter has 53 migration

commits and a total of 258 commits during the migration, leading to a dense migration of



4.3. RQ3 (duration): How long does it take to migrate from unittest to pytest? 37

20.54%, i.e., 1/5 of the commits during the migration are migration commits. In contrast,

Pandas has 23 migration commits and a total of 15,108 commits during the migration,

leading to sparse migration of 0.15%. Overall, the migration may be fast or take a long

period to be concluded, but most of the systems tend to concentrate it.

The threshold to determine whether the system is fast or slow was defined based

on the gap present in the data. When looking at the duration in days, there is a well-

defined jump from 5 to 132 days. The same reasoning is applied to the dense and sparse

labels, where there is an interval between 0.24% and 16.67%.

Next, we assess when the migration has started in each system (Table 4.6). For

example, in Celery, the first migration commit happened in commit number 8,880 out

of 10,737 (82.7%), that is, the migration has started late in this project. In contrast, in

Saleor, the first migration commit happened in commit number 992 out of 15,370 (6.4%),

meaning that the migration has started early in this project. Overall, we observe that the

migration may start in distinct development stages, from early periods (when the project

is in initial steps) to late ones (when the project is possibly more mature).

Table 4.6: When the migration has started.

System
1st Migration Total Ratio (1st Migration

Commit Commits Commit / Total Commits)

Celery 8,880 10,737 82.7%
Routersploit 571 699 81.7%
Python-tel. 1,418 1,983 71.5%
Allennlp 1,793 2,577 69.6%
Flask 1,577 3,170 49.7%
Pandas 8,818 24,505 36.0%
Redis-py 455 1,324 34.4%
Cookiecutter 556 2,198 25.3%
Pytorch Geo. 923 4519 20.4%
Requests 381 4542 8.4%
Saleor 992 15,370 6.4%

These results are relevant to understand how the migration can impact the project

development. However, these starting points can be influenced by pytest release date.

Pytest has a long history, and it might be hard to pinpoint the exact date of its creation

given it evolved from other initiatives, but we will consider September 2004 as its debut.

Among the migrated systems, all have their first commit after this date — the oldest are

from 2009.



4.4. RQ4 (transformations): What code is migrated from unittest to pytest? 38

RQ3 Conclusion. The migration may be fast (up to one week) or take a long

period to be concluded, from months to years. Most migrated systems (8 out of

11) tend to concentrate the migration commits, while only 3 perform the migration

more sparsely. Systems start the migration in distinct development stages, from

early to late ones.

4.4 RQ4 (transformations): What code is migrated

from unittest to pytest?

We now explore the five transformations (i.e., assert, fixture, import, skip, and

failure migration) that happen in the migrated systems. We only focus on migrated

systems because their results will be stable and final, while ongoing projects could still

significantly change their migration patterns until the end of the process. Recall that

the 11 migrated systems have a total of 102 migration commits and that one migration

commit can have one or more transformations. Table 4.7 summarizes the frequency of

the transformations. We observe that assert migrations are the most common, happening

in 92 out of 102 migration commits (90%). Other common transformations are fixture

(19 commits) and import (14 commits) migrations. Lastly, skip and failure migrations

seem to be rarely performed. Overall, the prevalence of assert migrations is somehow

expected because test cases should have at least one assert statement but not necessarily

it will be skipped or failed. Moreover, the flexibility of the pytest fixtures is one of its

advantages when compared to unittest [32], thus it may explain its high frequency of

fixture migrations.

Table 4.7: Frequency of transformations in migrated systems.

Migration # % Examples

Assert 92 90 60a926, 6a69aa, 2edda2
Fixture 19 18 1c6507, 34c6bd, 6a69aa
Import 14 13 be42d5, 533bc4, 6a69aa
Skip 2 2 2cfa8d, 61a243
Failure 0 0 -

Next, we present the size of the transformations measured in lines of code (LOC),

as summarized in Table 4.8. We present the absolute value of line additions and deletions,

their difference (represented by the delta column), and the percentage of the difference

https://git.io/JKP9d
https://git.io/JKPHJ
https://git.io/JKPHZ
https://git.io/JKPjb
https://git.io/JKXeu
https://git.io/JKPHJ
https://git.io/JKXJU
https://git.io/JKXJ0
https://git.io/JKPHJ
https://git.io/JKXUO
https://git.io/JKXUD


4.5. Threats to Validity 39

compared to the original amount of lines of code (delta difference / unittest deletions).

Overall, the migrated test code tends to decrease after the migration: we find 7,965

unittest deletions and 5,252 pytest additions, a reduction of 34% after the migration.

In the case of the assert migration, there are 7,344 unittest self.assert* deletions

and 4,714 native assert additions (a delta of -36%). Interestingly, in this case, we

do not see a one-to-one transformation. The negative difference might mean that the

developers also performed some kind of refactoring along with the migration, leading to

fewer assert commands. The same negative difference happens to the fixture (-40%) and

skip (-26%) migrations. Regarding the fixture size reduction, one possible explanation is

that fixtures can be reused in pytest, which avoids duplication and produces less code.

Finally, the import migration has a positive delta. We inspected the commits that applied

this migration and noticed they mostly included new test files that added import pytest.

These new files are created due to refactoring or remodularization of existing tests. The

overall conclusion is that test code decreases after migration.

Table 4.8: Size of transformations in migrated systems.

Migration
Size

Unittest Deletions Pytest Additions ∆ %∆

Assert 7,344 4,714 -2,630 -36
Fixture 341 204 -137 -40
Import 97 202 +105 +108
Skip 188 138 -50 -26
Failure 0 0 0 0

Total 7,970 5,258 -2,712 -34

RQ4 Conclusion. The majority (90%) of the migration commits include assert

migrations. Developers also tend to migrate fixtures (18%) and imports (13%).

Overall, the migrated test code is 34% smaller than the original one, meaning fewer

test code to be maintained.

4.5 Threats to Validity

Construct Validity. Framework usage and migration commits. The method to detect

the testing framework usage in past and present versions were manually evaluated, leading

to a precision of 100% (see Section 3.2.2). Similarly, the method to detect migration

commits was also manually evaluated (see Section 3.2.3), achieving precision and recall



4.6. Final Remarks 40

of 100%. Moreover, to avoid being subjected to refactoring operations and noisy changes,

we only considered a migration commit if it strictly has a unittest removal and a pytest

addition. Thus, the high precision and high recall reduce the chance of false positives and

false negatives in our results.

Mocking libraries. In our experiments, we do not take into account the mocking libraries of

unittest (unittest.mock) and pytest (pytest-mock) because they can be seen as “external”

projects and are not the core of a testing framework. Thus, the presence or absence of

mocking libraries do not affect the detection of testing frameworks nor migration commits.

External Validity. Generalization of the results. In this study, we mine 100 real-world

Python systems. Those systems are among the most popular in Python, thus, they are

relevant projects. Despite these observations, our findings — as usual in empirical software

engineering studies — cannot be directly generalized to other Python systems, projects

implemented in other programming languages, or closed-source systems. Further studies

should be performed on other software ecosystems.

4.6 Final Remarks

In this chapter, we presented the quantitative results to assess how developers

migrate from unittest to pytest. We mined the history of the top 100 most popular Python

systems to answer research questions regarding the extension, frequency, duration, and

code transformations of the migration. We highlight the following findings:

• Extension: We found that found that 20% of the studied systems rely on unittest,

23% on pytest and 34% on both frameworks. From those that started with unittest,

66% now rely on pytest.

• Frequency : We detected that 59 systems started with unittest and now 39 rely on

pytest or both frameworks. From those, 11 (28%) have fully migrated to pytest and

16 (41%) are still migrating.

• Duration: There is not a common pattern on migration duration. Some projects

migrated up to one week while others took years to conclude. It was also observed

that systems start the migration in different development phases, but most tend to

concentrate the migration effort.

• Transformations : As expected, the code that was most migrated were assertion

statements (90%), followed by fixtures (18%) and imports (13%). In general, the

migrated test code is 34% smaller than the original one.



41

Chapter 5

Why Developers Migrate

In the previous chapter, we explored the quantitative aspects of the migration from

unittest to pytest. Figure 5.1 helps us recall the current distribution of studied sys-

tems that use unittest and pytest: 20% rely on unittest, 23% on pytest and 34% on both

frameworks. We also provide empirical evidence that test migration is common in the

Python ecosystem. However, it is not clear the motivations behind the migration.

Figure 5.1: Testing frameworks adopted in the 100 studied Python systems.

In this chapter, we assess the results of the qualitative study. Specifically, we

explore migration reasons (Section 5.1), guidelines (Section 5.2), and process (Section

5.3). We conclude the chapter presenting the threats to validity (Section 5.4) and final

remarks (Section 5.5).



5.1. RQ5 (reasons): Why is code migrated from unittest to pytest? 42

5.1 RQ5 (reasons): Why is code migrated from

unittest to pytest?

5.1.1 Issues and Pull Requests from GitHub

To better understand the rationales behind the migration, we now assess the ex-

planations provided by the developers themselves, first analyzing GitHub Issues and Pull

Requests. Table 5.1 presents the reasons in favor and against the migration according

to the 61 analyzed issues and pull requests. In summary, we find 9 advantages and 4

disadvantages in the GitHub ecosystem.

Table 5.1: Migration advantages and disadvantages in the GitHub ecosystem.

Advantages # Disadvantages #

Easier syntax 12 Implicit mechanics 3
Interoperability 11 New tool to learn 2
Easier maintenance 8 Multiple test styles 2
Fixture flexibility/reuse 8 Migration duration 2
Built-in features 7 Other 5
Popularity 7
Cleaner reports 6
Parameterized tests 6
Plugin integration 6
Other 16

Advantages. According to the GitHub ecosystem, the most common advantage is easier

syntax (12), meaning that the pytest syntax is easier than the unittest one. In PyCap,

the developer states: “[...] the pytest syntax is nicer, and allows us to take advantage of

things like fixtures”.1 In project Treon, the developer comments: “[...] this would be a

nice addition and removes a lot of boilerplate one needs for the unittest framework; syntax

is easier to learn”.2

The second most frequent advantage is interoperability (11). Here, developers

mention the fact that pytest also runs unittest as a strength. In Compliance Checker, the

developer declares as a positive aspect: “we can run the legacy unittests”.3

Next, we have the categories easier maintenance and fixture flexibility/reuse, both

with 8 occurrences. In project Metron, the developer mentions regarding maintainabil-

1https://git.io/JKiPm
2https://git.io/JKiXV
3https://git.io/JiZt7

https://git.io/JKiPm
https://git.io/JKiXV
https://git.io/JiZt7


5.1. RQ5 (reasons): Why is code migrated from unittest to pytest? 43

ity: “It would be nice to migrate the test over to pytest-django to get rid of most of the

boilerplate code”.4 In Cookiecutter, it is highlighted the fixture advantages: “There is a

powerful fixtures system to support cleaner setup/teardown code, which supports per-test,

per-class, per-module and global fixtures”.5

Developers also present many other reasons to migrate to pytest, including built-

in features, popularity, cleaner reports, parameterized tests, and plugin integration. For

instance, in Cookiecutter, the developer also highlights the better reporting system: “The

reporting of test results is (IMO) cleaner than unittest, with a better summary, colour-

coded output, and more detailed reporting of failures”. In Jinja, the developer mentions

the plugins: “[pytest] has over 100 plugins for easy integration with many frameworks,

editors and CI servers”.6

Disadvantages. When discussing the migration, developers sometimes list possible dis-

advantages. The most common disadvantage is implicit mechanics (3), that is, the fact

that pytest may perform the functionalities implicitly. In this context, the term “magic”

is used twice in the analyzed issues. For example, in Cookiecutter, the developer says:

“There’s a lot of ’magic’ involved in the internals, which can be confusing”. Similarly,

in project FermiLib, the developer mentions: “Be careful with the ’magic’: in particular,

fixtures can sometimes be overused in ways that make test code hard to follow because too

much is happening behind the scenes”.7

Finally, other disadvantages are new tool to learn, multiple test styles, and migra-

tion duration. For instance, one developer lists some negative aspects: “Another tool to

learn for contributors [...] Either we end up with multiple styles of test or there’s a lot of

work in rewriting existing tests”.

5.1.2 Web Resources from Grey Literature Review

To complement the prior analysis on GitHub, we expand our search to have a more

complete understanding on the reasons of the migrating process. Given that there are

no extensive academic studies discussing the migration of testing frameworks in Python

systems, a Grey Literature Review (GLR) is suited for this case since practitioners’ pro-

ductions can help us gain insights into the process [20]. For instance, in a website the

author states: “In order to increase readability and reduce repetition, I favor pytest over

4https://git.io/JKid1
5https://git.io/JK6rv
6https://git.io/JKi7L
7https://git.io/JKiEc

https://git.io/JKid1
https://git.io/JK6rv
https://git.io/JKi7L
https://git.io/JKiEc


5.1. RQ5 (reasons): Why is code migrated from unittest to pytest? 44

unittest. PyTest offers some nice features to make writing tests faster and cleaner”.8

To better understand the Python community view, we investigate its productions and

perceptions via a GLR considering distinct web resources.

To understand why developers may propose or undergo the migration, we also as-

sess the advantages and disadvantages of web resources in the wild. From the 32 analyzed

websites, most are personal blog posts (16), institutional websites (6), or Q&A forums

(4). Table 5.2 presents the summary of the 14 advantages and 5 disadvantages detected.

Advantages # Disadvantages #

Fixture flexibility 22 Separated package 14
Interoperability 17 Difficult to learn 9
Popularity 15 Implicit mechanics 2
Plugin ecosystem 12 Migration duration 2
Easier syntax 12 Other 2
Less boilerplate 12
Parameterized tests 12
Cleaner reports 11
E2E tests 9
Categorized tests 7
Productivity 7
Functional paradigm 5
Python independence 3
Other 6

Table 5.2: Advantages and disadvantages of pytest from a GLR.

Advantages. According to the selected web resources, fixture flexibility (22) is the main

advantage of pytest. It replaces unittest setUp* and tearDown* methods, creating the

necessary state to execute a test case. Its modularity and reusability are frequently

emphasized by developers: “Fixtures are more reusable and portable and should help

reduce complexity all over”,9 “it leads you toward explicit dependency declarations that

are still reusable”,10 and “you can compose them together to create the required state”,11

they say.

Pytest is a framework and a test runner compatible with unittest, which means

that it is possible to run unittest tests using pytest without changing one line of code.

This interoperability (17) is frequently mentioned and can be of significant importance for

systems starting the migration process, given that developers can first only change the

test runner and then slowly add pytest features to the codebase.

8https://www.jitsejan.com/moving-from-unittest-to-pytest
9https://github.com/opsdroid/opsdroid/issues/1502

10https://realpython.com/pytest-python-testing/
11https://testdriven.io/blog/flask-pytest/

https://www.jitsejan.com/moving-from-unittest-to-pytest
https://github.com/opsdroid/opsdroid/issues/1502
https://realpython.com/pytest-python-testing/
https://testdriven.io/blog/flask-pytest/


5.1. RQ5 (reasons): Why is code migrated from unittest to pytest? 45

Next, we have popularity (15): in several web articles, 12,13,14 the authors start

describing pytest as “one of the most popular” testing frameworks nowadays “due to

pytest’s wide adoption”. That also reflects in the large number of mentions of its plugin

ecosystem (12). Commonly cited plugins are pytest-django for testing Django applica-

tions, pytest-xdist, which runs the test suite in parallel, pytest-cov, and pytest-html,

which produces a coverage report and generates HTML report results, respectively.

Easier syntax (12) and less boilerplate (12) code are also associated to pytest

because it is considered to be less verbose than unittest, without the need of remembering

a list of assert methods or creating tests based on inheritance. For instance, authors say

pytest “makes it easy to test (...) with its intuitive syntax”15 and “requires less boilerplate

code so your test suites will be more readable” .

The Python community also notices built-ind features, which is the case of pytest

markers, represented by decorators in the form @pytest.mark.*. There are predefined

markers but developers can also create their own custom markers and use them to

run a subset of tests, for example, mark slow tests or the ones that interact with the

database, creating the possibility to have categorized tests (7). When using the prede-

fined @pytest.mark.parametrize decorator, the same test function runs with different

parameters as arguments, creating parameterized tests (12) in the test suite.

Developers highlight other important advantages, including cleaner error reports

(11), end-to-end tests (9) due to the integration with other frameworks, as Selenium, and

productivity (7) increase. Some authors mention that the functional paradigm (5) makes

tests simpler and the Python independence (3) lets it evolve faster than the language.

Disadvantages. On the other hand, being a separated package (14) is a downside fre-

quently noted since “Unittest is a part of Python itself, so it has the advantage that no

install is necessary”.16 Authors also mention that pytest is more difficult to learn (9) be-

cause it requires more of Python knowledge and other advanced concepts, like decorators

and dependency injection, that makes “its learning curve is a bit steeper” because “some

artifacts seem a bit odd at the beginning”.17 The implicit mechanics (2) is characterized

by the lack of clarity due to parameterization or fixture composition, as some patterns

can be a pain in large test suites, making it difficult to debug and maintain.

It is interesting to notice how the same fact can have different interpretations.

Pytest being a third-party library weighs down the balance, still, this independence en-

ables it to evolve faster. Moreover, fixtures are the main advantage of pytest, however,

its poor management due to its flexibility can be a cause of problems.

12https://blog.methodsconsultants.com/posts/pytesting-your-python-package/
13https://www.wisdomgeek.com/development/web-development/python/

testing-python-applications-using-pytest/
14https://www.linode.com/docs/guides/python-testing-frameworks-for-software-unit-testing/
15https://www.browserstack.com/guide/unit-testing-frameworks-in-selenium
16https://www.codemag.com/article/1709091/Improving-Code-Quality-with-Unit-Tests
17https://medium.com/worldsensing-techblog/tips-and-tricks-for-unit-tests-b35af5ba79b1

https://blog.methodsconsultants.com/posts/pytesting-your-python-package/
https://www.wisdomgeek.com/development/web-development/python/testing-python-applications-using-pytest/
https://www.wisdomgeek.com/development/web-development/python/testing-python-applications-using-pytest/
https://www.linode.com/docs/guides/python-testing-frameworks-for-software-unit-testing/
https://www.browserstack.com/guide/unit-testing-frameworks-in-selenium
https://www.codemag.com/article/1709091/Improving-Code-Quality-with-Unit-Tests
https://medium.com/worldsensing-techblog/tips-and-tricks-for-unit-tests-b35af5ba79b1


5.2. RQ6 (guidelines): How common are guidelines to support the migration and what
are their content? 46

When comparing the reasons detected in the GLR and GitHub, we see that 7 ad-

vantages and 2 disadvantages in common. Even though they appear in different positions,

this intersection means they are relevant. We only find a few disadvantages in the two ap-

proaches, suggesting that developers do not see many downsides when using pytest. The

results from both GitHub and GLR complement each other, providing a larger perceptive

of migration advantages.

RQ5 Conclusion. Developers migrate from unittest to pytest mostly due to the

easier syntax, interoperability, easier maintenance, and fixture flexibility/reuse. Dis-

advantages are less discussed, but the main concerns are the fact pytest is a sepa-

rated package and the implicit mechanics.

5.2 RQ6 (guidelines): How common are guidelines

to support the migration and what are their

content?

When performing our analysis in the GitHub ecosystem, we noticed that some

issues/PRs were tagged as good first issue to support newcomer contributors but few

actually explained how to kick-start or perform the migration. Therefore, in our GLR, we

assessed how common are guidelines to support the migration and what are their content.

Next, we discuss the main findings.

Tool support. Two (6%) out of 32 GLR resources cite a tool that helps the migration

process: unittest2pytest.18 This tool, part of the pytest ecosystem, helps developers

rewrite unittest test cases into pytest test cases. Available transformations are removal of

unittest class and migrating self.assert statements. It also handles one-line tests and

uses context-handlers where appropriate but, on a note for the latter, it mentions that the

semantics are different and the output requires manual adjustment. Using unittest2pytest

to migrate a single file, for instance, the same example as presented in Figure 2.1b, the

result will be as shown in Figure 5.2b. The tool also prints to the standard output a log

of the changes made. We can see that it only migrated assert statements.

Migration tips and examples. We also find that 13 (40%) out of 32 GLR resources

have at least some tips, code examples, or a step-by-step on how to migrate a system. To

understand what is the state of the support for the migration, we manually assessed the

18https://github.com/pytest-dev/unittest2pytest

https://github.com/pytest-dev/unittest2pytest


5.2. RQ6 (guidelines): How common are guidelines to support the migration and what
are their content? 47

(a) Initial unittest test with setup. (b) Test migrated with unittest2pytest.

resource content. From those, 8 have code examples, 6 have tips, and 2 mentioned steps

to perform the migration. Table 5.3 details this analysis.

Code Migration Examples # Migration Tips #

Replace assert 7 Incremental Migration 3
Remove unittest subclass 6 Search unittest subclasses 2
Replace fixture 5 Create common fixtures 2
Replace import 3 Use pytest runner 1
Replace raise 2 Use pytest fixtures 1

Table 5.3: Code examples and tips.

Regarding the migration examples, most show how one can transform test asser-

tions from self.assert* unittest methods to the plain built-in assert statement and

how to write functional tests without relying on the inheritance of the TestCase class.

Then, a more complex example is the migration from setup and teardown methods to

the @pytest.fixture decorator to create the state needed to run tests, like presented

in Figure 2.3. Less frequently, we have examples showing when one needs to replace

the import unittest or similar statement by the import pytest one, which is only

needed when calling a decorator or a specific function, for instance @pytest.fixture or

pytest.raises when asserting exceptions.

Regarding the migration tips, performing incremental migration is the most com-

mon recommendation. Trying to do all at once, especially in large test codebases, is

simply unfeasible, so migrating small portions is the way to go. To check where to start,

developers can search unittest subclasses and map files and methods that can be migrated.

They can also analyze test cases to seek patterns in predefined states before the test is run

and then create common fixtures, increasing reusability, readability, and maintainability.

Authors suggested to add these common fixtures to conftest.py files, which are per

package files that provide fixtures and other hooks for an entire directory. Using pytest

runner and fixtures to power unittest test are other options to slowly start the migration

and leverage its features.



5.3. RQ7 (process): What is the migrator’s view on the process? 48

Finally, two resources presented a tutorial to perform the migration. We extracted

the non project-specific steps and they say to:

1. Setup pytest. Mandatory since pytest is not part of the standard library. However,

it can be easily added by the package installer for Python (pip).19

2. Rewrite assertions. One of the most straightforward transformations to do because

there is no need to go through the semantics of the test and just make a syntactic

replacement.

3. Move tests out of classes. Adopt the functional paradigm proposed by pytest and

stop inheriting from unittest.TestCase.

4. Move setup operations to fixtures and benefit from one of pytest’s greatest advantage.

RQ6 Conclusion. A significant part of the resources (40%) have some guidance to

help practitioners on the migration, including tools and guidelines. We find mainly

code migration examples, suggesting the migration of asserts, subclasses, and fix-

tures. We also find migration tips and detailed steps to support the migration.

5.3 RQ7 (process): What is the migrator’s view on

the process?

In this final research question, we perform a survey with developers who performed

the migration. We contacted 53 developers and received 5 responses. Overall, based on

developer perspectives, several factors can influence the migration, such as the size of the

codebase, the experience of the team with either framework or with a migration process,

and how motivated and confident the team is to undergo the migration. Next, we present

a summary of the survey answers:

• Why performing the migration. The main reasons are to use pytest features, as

fixtures and parameterized tests (2), cleaner syntax (2), popularity (1), extensibility

(1), and better performance (1). We recall that many of those advantages are

detected in our thematic analysis on GitHub and web resources.

• How hard is the migration and what are the bottlenecks. Three developers

found the migration to be hard and two considered it easy. From their experience,

19https://pypi.org/project/pip/

https://pypi.org/project/pip/


5.4. Threats to Validity 49

the main challenges are the size of the test suite (3), manual effort (3), flaky tests

(1), and the embracing phase (1) to adopt pytest style.

• Why the migration is not complete. They shared various reasons that delays

the process: the team only migrated when needed (1) similar to the “Boy Scout

Rule” approach [26], the never ending embracing phase where people organically

decide to apply pytest style (1), the lack of compatibility with build tools (1), the

disagreement among the team if pytest is indeed the best choice for that moment (1),

and the lack of people to contribute to the migration (1). Despite being considered

ongoing systems by our approach, two developers stated that the migration was

completed, but only one could provide proof of an announcement saying it was

complete. This could demonstrate that the way the team tracks the migration is

not explicit or that developers are still not used to the pytest style and continue to

inadvertently add unittest structures in tests.

Lastly, two developers mentioned they took advantage of the migration to refactor

test code and one shared an interesting problem: the projects they worked on had custom

implementation for testing structures, hence “unittest class methods and pytest fixture

methods are not quite the same” and “nearly all the test assertions need to be rewritten”.

RQ7 Conclusion. According to developers who performed the migration, the

main reasons to migrate are pytest features and the easier syntax. On the other

hand, the size of the codebase and manual effort are predominant bottlenecks.

5.4 Threats to Validity

Construct Validity. Query construct. The first threat that can impact the most in the

repeatability of the Grey Literature Review is the term queried in the search engine in the

first place. The way the query was constructed and the inclusion criteria defined might

exclude important results, for instance, those that were published out of the specified date

range or those that used other words to describe the process. Following the same logic, it

can include unwanted results, for example, those that use the term “unittest” to refer to

the unit testing practice and not to the framework. However, the authors performed an

initial search to check which words were more common and they tested with both more

restrictive and more comprehensive terms, but the results seemed to be less accurate.



5.5. Final Remarks 50

Internal Validity. Manual classification of issues/PRs and web resources. In RQ5, we

manually classify the explanations found in issues/PRs and other resources about the

migration advantages and disadvantages. In this case, we rely on thematic analysis [10]

to reduce the subjectiveness.

Conclusion Validity. Survey sample size. The low number of respondents of the survey

impact the perspective gained for the process. Although they provided great explained

answers, having more is definitely wanted to achieve a more precise conclusion.

5.5 Final Remarks

In this chapter, we analyzed issues and pull requests from GitHub and web re-

sources from a Grey Literature Review, including blog posts, Q&A forums, and docu-

mentation. Overall, the analyzed resources highlight as advantages pytest fixtures, in-

teroperability with unittest, easier maintenance, and popularity, but they also mention

implicit mechanics and separated package as concerns. Code examples, tips, or tutorials

are present in 40% of resources outside GitHub to support the migration process. Finally,

in our survey, we also find migration bottlenecks, including the size of the test suite and

the manual effort.



51

Chapter 6

Discussion and Implications

Based on our findings, we present implications for both practitioners (Section 6.1) and

researchers (Section 6.2), how the migration can impact on their work, and suggestions

of unexplored themes that arise from these discussions.

6.1 For Practitioners

Migration practices, advantages, and disadvantages. We provide empirical evi-

dence that the migration from unittest to pytest is common in the Python ecosystem.

First, we find that 34% of the studied projects rely on both testing frameworks (RQ1).

While some systems have fully migrated (11), others are still migrating (16), suggesting

that the migration is not always straightforward (RQ2). Most projects (8 out of 11) that

fully migrated concentrate the migration commits and start the migration in distinct de-

velopment phases (RQ3). Overall, the migrated test code is 34% smaller than the original

one, suggesting that there is less test code to be maintained (RQ4). Moreover, developers

focus on discussing the advantages of the migration, like easier syntax and fixture flex-

ibility/reuse, however, some disadvantages are highlighted, like implicit mechanics and

multiple test styles (RQ5). This way, we reveal a set of practices and reasons in favor

and against migration in the wild. Practitioners in charge of the migration should be

aware that: (i) the migration may be complex and take time to conclude; (ii) projects

that migrated successively kick-started it in different development phases, but tended to

concentrate the migration commits; (iii) the migration may lead to less code to maintain;

and (iv) the community is more in favor of migration, however, the points against are

not negligible.

Keep track of the migration. Our results show that 16% of the 100 studied systems

have started the migration but not concluded it (RQ2). This may suggest that those

projects are somehow stuck, for example, due to the migration complexity or the lack of

contributors. Indeed, as presented in RQ3, the migration may be distributed in dozens



6.1. For Practitioners 52

of migration commits, taking months or years to be concluded. We hypothesize that due

to the size and complexity of some projects, it is easy to get lost during the migration.

For example, when performing RQ5, we found almost no information in commit messages

regarding the migration. This raises the following question: how are developers keeping

track of the migration? As a first step, we looked for issues related to migration commits,

but we found only three linked issues. The possible explanation is that teams track

migrations with external management tools and communication platforms, or they are

simply not tracked. Thus, we shed light on this migration challenge that is likely to

happen in open-source projects. One simple solution to overcome this problem is to keep

track of the migration tasks, for example, managing the migration via issues (e.g., tagged

with migration-related labels) and linking them to commits.

Improve migration guidelines. The lack of contributors may justify the delay to

complete the migration. A common way to attract newcomers is via good first issues [37].

In the dataset of RQ5, for example, 12 issues are marked with the label “help wanted” and

5 as “good first issue”, suggesting they are ideal for novel contributors. However, out of the

61 studied issues in RQ4, only 22 mentioned concrete steps to perform the migration. In

Pandas, the issue #15990 presents basic steps to migrate, including functions that should

be removed and replaced. The same happens in the issue #1502 of Opsdroid, which

depicts migration steps like “change assertions to use regular assert or pytest assertions”.

Thus, to attract contributors, we recommend that migration issues should be created with

detailed migration guidelines, like the ones of Pandas and Opsdroid.

After assessing multiple resources, tips, and tutorials, we may question: is there a

best way to do the migration? As mentioned by various authors, it depends on the project

characteristics, but it is possible to indicate some steps that can guide the work:

1. Setup pytest and use its runner. Pytest’s interoperability with unittest is one of its

main advantages, so developers can start adding pytest to the codebase by using its

runner, without modifying any test. Some modifications in internal guides and in

CI/CD tools may be needed in this step.

2. Perform the syntactic migration. In this step, one can rewrite assertions, search

unittest subclasses, and remove them. Empirically, assert migration is the most

performed and both are the two most exemplified. Developers can use their preferred

text editor or the unittest2pytest tool to replace self.assert*methods by the plain

assert statement. Similarly, they can use the same approach to remove TestCase

subclasses and only have test functions.

3. Migrate context-dependent structures. Transforming setup methods in fixtures or

migrating other context-dependent structures is probably one of the most time con-

suming steps of the migration, depending on how many context managers and setup

https://github.com/pandas-dev/pandas/issues/15990
https://github.com/opsdroid/opsdroid/issues/1502


6.2. For Researchers 53

operations are already in place and the size of the codebase. While migrating,

developers can also observe and identify common fixtures and add them to the

conftest.py file.

4. Clean-up and finishing phase. Lastly, there could be some unnecessary import

statements remaining in test files, for example. At this point, there could be an

announcement to inform developers the migration ended and the adoption of linting

rules to reinforce new practices.

Why developers migrate. We investigated multiple resources to understand the rea-

sons behind the migration. Common topics in the top 5 advantages are Fixture flexibility,

Interoperability, and Easier syntax, which strengthens the importance of these features

and their impact in motivating developers to start the migration. Survey answers also

corroborate this finding, making fixtures and the syntax the main reasons highlighted in

pytest. We see that being a separated package and requiring advanced Python knowledge

to learn pytest is frequent concern, but the implicit mechanics and migration duration is

also significant for developers.

When reviewing GLR resources, we found several elaborated articles mentioning

advantages, disadvantages, and many showing code examples or tips to perform the mi-

gration. Regarding the count of all themes per resource, it is possible to compare the

discussion in each group of resources. While in GitHub issues and pull requests have a

ratio of 1.6 theme per resource, in the GLR websites the ratio is 5.6 themes per resource,

3.5 times higher than the former. This result leads us to conclude that developers make

a deeper analysis of the framework outside the GitHub ecosystem.

6.2 For Researchers

Why the migration is not concluded. We found that dozens of popular systems

started but did not conclude the migration (RQ2). During the period in which the migra-

tion is ongoing, the test suite may become even more complex as two testing frameworks

are used interchangeably. Indeed, we detected that even the same test file may mix both

unittest and pytest (RQ1). This raises the following question that can be addressed by

further research: why are some migrations started but not completed? In RQ5, we provide

some initial insights on this direction, for example, developers mention that the migration

requires a new tool to learn and they complain about the migration duration and the pos-

sibility to have multiple test styles in the test suite, which may discourage, delay, or even



6.3. Final Remarks 54

suspend the migration. However, further studies should be performed with practitioners

to better understand why some migration are not concluded, even after years.

Tools and techniques to document and automate the migration. While assessing

the articles, only 2 quickly mention a tool, unittest2pytest, that could aid the migration.

This tool, which is also referred in pytest documentation, does the assert migration and

the removal of unittest.TestCase subclasses, but requires manual adjustments if there

are tests using context managers. That is, the tool only guarantees syntactic migrations.

To migrate context-dependent structures, for instance with self.assertRaises and fix-

tures, one would need a tool that accounts for the syntax and the semantics, however,

that would be more difficult to develop and the result would need to be reviewed anyway.

That lead us to the question: are tools not relevant for the migration? Some hypothesis

that can be investigated in future work are (i) developers do not see value in them, given

that syntactic migration could be easily done with the help of text editors and context-

dependent structures will need their review; (ii) the tools are not well promoted; (iii) their

efficacy do not meet developers’ expectations.

To alleviate migration delay, novel tools can be proposed to detect and document

unittest code that is not migrated yet (in a similar way to project-specific lint rules [33, 17,

39]). In this case, the candidate code to be migrated can be, for example, automatically

monitored and logged via CI/CD workflows. Moreover, in our analysis, we detected

hundreds of migration commits from unittest to pytest (RQ2). That is, on the one side,

there is a need to complete the migration, while, on the other side, there are migration

examples (i.e., the migration commits) to learn from. From this data, migration rules can

be inferred in a similar way to migration updates [48, 42, 29, 22, 38, 16, 13]. Therefore,

we envision that novel tools and techniques can be proposed by researchers to automate

the migration and reduce the migration delay.

6.3 Final Remarks

In this chapter, we detailed implications for practitioners and researchers. For

practitioners, we discussed the migration advantages and disadvantages, the challenges of

keeping track of the migration, and what kind of guidelines they can expect from resources.

Finally, for researchers, we proposed new questions to be investigated, to understand why

the migration is not concluded, and insights to automate the migration.



55

Chapter 7

Conclusion

This chapter concludes this master dissertation. We provide an overview of our the

empirical study in Section 7.1 and we propose future work in Section 7.2.

7.1 Overview and Contributions

We presented an empirical study to assess how and why developers migrate from

unittest to pytest. In our quantitative study to explore how developers migrate, we de-

tected that 34% of the systems rely on both testing frameworks and that Python projects

are moving to pytest. The migration may be fast or take a long period to be concluded

and the migrated test code is smaller. Next, we provided a qualitative study to assess

why developers migrate. Despite being a separate package and requiring advanced Python

knowledge, we find several pytest advantages, including its built-in features as fixtures, in-

teroperability, and the easy syntax. Resources from the Grey Literature Review provided

further insights about pytest pros and cons and code examples to migrate. Nevertheless,

they both lack a set of best practices empirically tested. Most migration authors share

that the size of the codebase and manual effort are the main bottlenecks they experienced.

The contributions of this master dissertation can be summarized as follows:

• It provides the first empirical study to assess the migration of testing frameworks

in the Python ecosystem.

• It explored how code is migrated and the reasons for the migration.

• It proposes practical implications for practitioners, by discussing practices, guide-

lines, and reasons, and for researchers, by suggesting other paths worth exploring.



7.2. Future Work 56

7.2 Future Work

We explored the migration major reasons and the content of the migration content

We also assessed the migrator’s view of the process. Still, there are more questions worthy

of further investigation. For instance, we do not have a clear idea of how developers track

the migration and whether the Python community has a set of good practices to migrate.

In our survey, one developer talked about the embracing phase, which leads to other

questions: how do teams enforce and keep the style after migrating? Does it demand effort

from maintainers, or does it happen naturally? Do they use any metrics or benchmarks

to understand how the system changed? Do the migration influence the increase in the

test coverage? How do they follow up the migration? These questions can be further

investigated, to characterize, from the point of view of developers, what happens during

and after the migration.



57

Bibliography

[1] Hussein Alrubaye, Deema Alshoaibi, Eman Alomar, Mohamed Wiem Mkaouer, and

Ali Ouni. How does library migration impact software quality and comprehension?

an empirical study. In Sihem Ben Sassi, Stéphane Ducasse, and Hafedh Mili, edi-

tors, Reuse in Emerging Software Engineering Practices, pages 245–260, Cham, 2020.

Springer International Publishing.

[2] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migrationminer: An

automated detection tool of third-party java library migration at the method level.

In International Conference on Software Maintenance and Evolution (ICSME), pages

414–417, 2019.

[3] Ĺıvia Barbosa and Andre Hora. How and why developers migrate python tests.

In International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 1–11, 2022.

[4] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-

similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact of API

change-and fault-proneness on the user ratings of Android apps. IEEE Transactions

on Software Engineering, 41(4):384–407, 2014.

[5] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,

2003.

[6] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to

break an api: cost negotiation and community values in three software ecosystems.

In International Symposium on Foundations of Software Engineering (FSE), pages

109–120, 2016.

[7] Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors

that impact the popularity of GitHub repositories. In International Conference on

Software Maintenance and Evolution (ICSME), pages 334–344, 2016.

[8] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. You broke my

code: Understanding the motivations for breaking changes in APIs. Empirical Soft-

ware Engineering, 25:1458–1492, 2020.



Bibliography 58

[9] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why and how Java

developers break APIs. In International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 255–265, 2018.

[10] Daniela S Cruzes and Tore Dyba. Recommended steps for thematic synthesis in

software engineering. In International Symposium on Empirical Software Engineering

and Measurement, pages 275–284, 2011.

[11] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of technical

lag in the npm package dependency network. In International Conference on Software

Maintenance and Evolution (ICSME), pages 404–414, 2018.

[12] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security

vulnerabilities in the npm package dependency network. In International Conference

on Mining Software Repositories (MSR), pages 181–191, 2018.

[13] Mattia Fazzini, Qi Xin, and Alessandro Orso. Automated API-usage update for

Android apps. In International Symposium on Software Testing and Analysis, pages

204–215, 2019.

[14] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall Professional,

2004.

[15] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. Guidelines for including

grey literature and conducting multivocal literature reviews in software engineering.

Information and Software Technology, 106:101–121, 2019.

[16] Stefanus A Haryono, Ferdian Thung, Hong Jin Kang, Lucas Serrano, Gilles Muller,

Julia Lawall, David Lo, and Lingxiao Jiang. Automatic Android deprecated-API

usage update by learning from single updated example. In International Conference

on Program Comprehension, pages 401–405, 2020.

[17] Andre Hora, Nicolas Anquetil, Stéphane Ducasse, and Simon Allier. Domain specific

warnings: Are they any better? In International Conference on Software Mainte-

nance (ICSM), pages 441–450, 2012.

[18] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,

and Stephane Ducasse. How do developers react to API evolution? a large-scale

empirical study. Software Quality Journal, 26(1):161–191, 2018.

[19] JUunit. https://junit.org/junit5, September, 2021.

[20] Fernando Kamei, Igor Wiese, Crescencio Lima, Ivanilton Polato, Vilmar Nepomu-

ceno, Waldemar Ferreira, Márcio Ribeiro, Carolline Pena, Bruno Cartaxo, Gustavo



Bibliography 59

Pinto, and Sérgio Soares. Grey literature in software engineering: A critical review.

Information and Software Technology, 138:106609, 2021.

[21] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro

Inoue. Do developers update their library dependencies? Empirical Software Engi-

neering, 23(1):384–417, 2018.

[22] Maxime Lamothe and Weiyi Shang. Exploring the use of automated api migrating

techniques in practice: an experience report on android. In International Conference

on Mining Software Repositories (MSR), pages 503–514, 2018.

[23] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. Cid: Automating

the detection of api-related compatibility issues in android apps. In International

Symposium on Software Testing and Analysis, pages 153–163, 2018.

[24] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. Char-

acterising deprecated android apis. In International Conference on Mining Software

Repositories (MSR), pages 254–264, 2018.

[25] B.A. Malloy and J.F Power. An empirical analysis of the transition from Python 2 to

Python 3. In Empirical Software Engineering, page 751–778. Springer International

Publishing, 2019.

[26] Robert C. Martin and James O. Coplien. Clean code: a handbook of agile software

craftsmanship. Prentice Hall, Upper Saddle River, NJ [etc.], 2009.

[27] Matias Martinez and Bruno Gois Mateus. How and Why did developers migrate

Android Applications from Java to Kotlin? A study based on code analysis and

interviews with developers. arXiv preprint arXiv:2003.12730, 2020.

[28] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API

stability and adoption in the Android ecosystem. In International Conference on

Software Maintenance, pages 70–79, 2013.

[29] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based matching

approach to identification of framework evolution. In International Conference on

Software Engineering (ICSE), pages 353–363, 2012.

[30] Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. JavaScript API Depre-

cation Landscape: A Survey and Mining Study. IEEE Software, 2021.

[31] NumPy. https://numpy.org, September, 2021.

[32] Pytest. https://docs.pytest.org, September, 2021.



Bibliography 60

[33] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Domain-

specific program checking. In International Conference on Modelling Techniques and

Tools for Computer Performance Evaluation, pages 213–232. Springer, 2010.

[34] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to

deprecation of clients of 4+ 1 popular java apis and the jdk. Empirical Software

Engineering, 23(4):2158–2197, 2018.

[35] Hudson Silva and Marco Tulio Valente. What’s in a GitHub star? understanding

repository starring practices in a social coding platform. Journal of Systems and

Software, 146:112–129, 2018.

[36] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. Pydriller: Python frame-

work for mining software repositories. In Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering,

pages 908–911, 2018.

[37] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good first issues on GitHub.

In Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 398–409, 2020.

[38] Ferdian Thung, Stefanus A Haryono, Lucas Serrano, Gilles Muller, Julia Lawall,

David Lo, and Lingxiao Jiang. Automated Deprecated-API Usage Update for An-

droid Apps: How Far Are We? In International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 602–611, 2020.

[39] Krist́ın Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The adoption

of JavaScript linters in practice: A case study on ESLint. IEEE Transactions on

Software Engineering, 46(8):863–891, 2018.

[40] Unittest. https://docs.python.org/3/library/unittest.html, September, 2021.

[41] Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. Exploring how deprecated Python

library APIs are (not) handled. In Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, pages 233–

244, 2020.

[42] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura: a

hybrid approach to identify framework evolution. In International Conference on

Software Engineering (ICSE), pages 325–334, 2010.

[43] Shengzhe Xu, Ziqi Dong, and Na Meng. Meditor: Inference and application of api

migration edits. In International Conference on Program Comprehension (ICPC),

pages 335–346, 2019.



Bibliography 61

[44] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,

Kenichi Matsumoto, and Akinori Ihara. Towards smoother library migrations: A look

at vulnerable dependency migrations at function level for npm JavaScript packages.

In International Conference on Software Maintenance and Evolution (ICSME), pages

559–563, 2018.

[45] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús

González-Barahona. An empirical analysis of technical lag in npm package depen-

dencies. In International Conference on Software Reuse, pages 95–110. Springer,

2018.

[46] Ahmed Zerouali and Tom Mens. Analyzing the evolution of testing library usage

in open source Java projects. In International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 417–421, 2017.

[47] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei

Xiong. How do python framework apis evolve? an exploratory study. In International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 81–

92, 2020.

[48] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. Min-

ing api mapping for language migration. In International Conference on Software

Engineering, pages 195–204, 2010.


	Introduction
	Motivation
	Proposed Work
	Contributions
	Publication
	Outline of the Dissertation

	Background
	Unittest and Pytest in a Nutshell
	Migrating from Unittest to Pytest
	The Migration Movement
	Related Work
	Final Remarks

	Study Design
	The Python Ecosystem
	Quantitative Study: How Developers Migrate
	Qualitative Study: Why Developers Migrate
	Research Questions
	Final Remarks

	How Developers Migrate
	RQ1 (extension): To what extent are unittest and pytest adopted in the Python ecosystem over time?
	RQ2 (frequency): How frequent is code migrated from unittest to pytest?
	RQ3 (duration): How long does it take to migrate from unittest to pytest?
	RQ4 (transformations): What code is migrated from unittest to pytest?
	Threats to Validity
	Final Remarks

	Why Developers Migrate
	RQ5 (reasons): Why is code migrated from unittest to pytest?
	RQ6 (guidelines): How common are guidelines to support the migration and what are their content?
	RQ7 (process): What is the migrator’s view on the process?
	Threats to Validity
	Final Remarks

	Discussion and Implications
	For Practitioners
	For Researchers
	Final Remarks

	Conclusion
	Overview and Contributions
	Future Work

	Bibliography

