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fazer minhas tarefas com empenho e dedicação. À minha irmã Nikolle, por ser exemplo
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Além disso, minha enorme gratidão às amizades que fiz durante todos esses anos

no DCC. Em especial ao Pedro Brum, por ser minha dupla desde o primeiro semestre da

graduação e por compartilhar grande parte da trajetória acadêmica. Agradeço também a
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Resumo

A música é uma das formas culturais mais importantes do mundo, como também uma

das mais dinâmicas. Essa natureza dinâmica pode influenciar diretamente a carreira de

artistas e refletir em seu sucesso. Neste trabalho, analisamos o sucesso musical através

da perspectiva de gêneros musicais. Especificamente, modelamos as linhas do tempo de

sucesso de artistas e gêneros para detectar e prever peŕıodos cont́ınuos de maior impacto,

i.e., hot streaks. À medida em que a colaboração entre artistas se torna uma das princi-

pais estratégias para promover novas músicas, nós constrúımos e caracterizamos redes de

colaboração de gêneros baseadas em sucesso para nove mercados em todo o mundo. A

partir de tais redes, detectamos perfis de colaboração diretamente relacionados ao sucesso

musical. Em seguida, exploramos comportamentos de gênero excepcionais nas redes onde

o sucesso se desvia do padrão. Os resultados mostram que o estudo da colaboração entre

gêneros é uma maneira poderosa de avaliar o sucesso musical, descrevendo comporta-

mentos semelhantes em músicas colaborativas de várias formas. Ademais, considerar os

mercados globais e regionais é fundamental, pois cada páıs possui sua dinâmica de sucesso

e preferências de gêneros. Complementando, a abordagem regional revela padrões locais

que moldam o ambiente global. De modo geral, nosso trabalho contribui tanto para a

academia quanto para a indústria musical, à medida que investigamos fatores impĺıcitos

da ciência por trás do sucesso musical.

Palavras-chave: hit song science, recuperação de informações musicais, gêneros musi-

cais, redes complexas, dados, mineração de dados.



Abstract

Music is one of the world’s most important cultural forms and one of the most dynamic.

Such a dynamic nature can directly influence artists’ careers and reflect their success. In

this work, we analyze musical success from a genre-oriented perspective. Specifically, we

model both artist and genre success timelines to detect and predict continuous periods

with higher impact, i.e., hot streaks. As artist collaboration becomes one of the main

strategies to promote new songs, we build and characterize success-based genre collabora-

tion networks for nine markets worldwide. From such networks, we detect collaboration

profiles directly related to musical success. Furthermore, we mine exceptional genre pat-

terns in the networks where the success deviates from the average. Our findings show

that studying genre collaboration is a powerful way to assess musical success by describ-

ing similar behaviors within collaborative songs from multiple perspectives. In addition,

considering both global and regional markets is fundamental, as each country has its suc-

cess dynamics and genre preferences. Such a regional approach also reveals local patterns

that shape the global environment. Overall, our work contributes to both the academy

and the music industry, as we shed light on the underlying factors of the science behind

musical success.

Keywords: hit song science, music information retrieval, musical genres, complex net-

works, data science, data mining
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Chapter 1

Introduction

Music is not only one of the world’s most important cultural industries, but also one of

the most dynamic. Over the last few decades, the world has seen a dramatic change

in the way people consume music, moving from physical records to streaming services.

Few years ago, songs and their videos needed to be played on the radio and TV to be

successful; but today, they can be easily accessed on digital platforms such as Spotify and

YouTube. Streaming services combined with social networks have become the main form

of disseminating the work of artists, bringing universal access to these contents alongside

brand new data about music itself and its social impact. Since 2017, such services have

become the main source of revenue within the global recorded music market, mainly due

to the fans’ engagement and adoption of these platforms. In fact, their revenues more

than doubled from then, reaching US$ 13.4 billion as of 2020.1

Indeed, the dynamic nature of the music industry can directly influence the be-

havior of artists’ careers. That is, an artist’s career can suffer ups and downs depending

on the current market moment. At a higher level of abstraction, the same fluctuating

behavior happens for musical genres. Figure 1.1 shows the weekly evolution of five pop-

ular genres in the United States, measured by the total number of songs featured on the

Billboard Hot 100.2 From the 1960s to the 1980s, soul and rock genres dominated the

music scene, with Stevie Wonder, Aretha Franklin, The Beatles, and Queen being some

of the greatest artists of this period. A substantial change in musical genre preferences

marked the 1990s, mainly due to technological advances, such as Internet popularization.

From then on, pop and rap conquered space on the charts and became protagonists at

the beginning of the 2000s. Britney Spears, Eminem, Beyoncé, and Drake are examples

of artists of such genres. Finally, country remained stable throughout the period but

increased its participation between 2000 and 2016.

As the music industry becomes more complex and competitive, artists are en-

couraged to reinvent strategies to maintain their presence in the market and reach new

audiences. Thus, artist collaboration has grown into one of the main tactics to promote

new songs. This widely adopted strategy is a strong force driving music nowadays, main-

1IFPI Global Music Report 2021: https://gmr.ifpi.org/
2The Billboard Hot 100 is the main weekly song chart within the United States. A song’s position in

the chart is calculated by considering sales, radio plays, and streaming count.

https://gmr.ifpi.org/
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Figure 1.1: Evolution of popular genres in the United States, measured by the total
number of songs featured on the weekly Billboard Hot 100 Chart (1958 - 2020).
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Figure 1.2: Historical frequency of collaborative hit songs for selected genres on Billboard
Hot 100 Chart (1958 - 2020).

taining artists’ relevance in the market. Such connections usually help artists bridge the

gap between styles and genres, overlapping new fan bases and consequently increasing

their numbers. In such a way, several studies approach the factors behind musical suc-

cess, creating an emerging field within computer science called Hit Song Science (HSS).

Collaboration-aware studies then become promising, as successful artists are more likely

to have a high degree of collaboration in success-based networks [100]. In fact, there is

strong evidence that factors leading to an ideal musical partnership can be understood

by exploring collaboration patterns that directly impact its success [21].

The genre perspective is very important when analyzing the impact of collabora-

tions in musical success, as each genre has a distinct audience that behaves in its own way.

Figure 1.2 shows this phenomenon and highlights the growing trend in the number of col-

laborations within Billboard Hot 100 Charts. Although the general curve increases over

time, genres such as pop and R&B present a collaboration rate higher than others (e.g.,

rock). This contrast can be explained by the intrinsic nature of each music genre. For
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instance, pop and R&B artists frequently collaborate with the rap community, mainly as

featured artists. Also, partnerships involving pop music may take place not only through

intra-genre collaborations but also through inter-genres, bringing an additional dimension

to their songs.

For example, in April 2019, the collaboration between the American pop singer

Halsey and the k-pop group BTS in the song Boy With Luv became the most viewed

YouTube music video in 24 hours and reached #8 on Billboard Hot 100 Chart. This and

other collaborations with other American artists increased BTS’ popularity in the United

States and paved the way for the South Korean group to win their first #1 on Hot 100

with the single Dynamite in August 2020. The success achieved by BTS also shed light on

other k-pop acts that became widely popular in the US and other Western countries. In

2020, the girl group Blackpink appeared on the Hot 100 with four different singles, being

two collaborations (Sour Candy with Lady Gaga and Ice Cream with Selena Gomez) and

two solos (How You Like That and Lovesick Girls).

The k-pop popularization is only an example of the power of regional genres in

the music industry. In the past few years, the collaborations between pop and reggaeton

artists have become more frequent and successful, mostly due to the stardom of the hit

Despacito by Luis Fonsi and Daddy Yankee in 2017. This song gained a remix with

the Canadian pop singer Justin Bieber, reaching the #1 position in the Hot 100 for 16

consecutive weeks. Therefore, record companies are now working to develop local music

ecosystems to promote regional cultures across the world. The advance of the Internet and

the continuous dissemination of streaming services provide a global platform for artists to

engage with their fans. Thus, local genres that were once popular in specific contexts are

now globally consumed. Moreover, research on musical success must be aware that local

engagement shapes the global music environment, expanding the analysis for markets

other than the United States, which is the biggest music market in the world, but not the

only one. Hence, as this creative industry changes, it becomes more unpredictable; and

doing both predictive and diagnostic analyses in such a context remains challenging.

1.1 Research Goals

Remaining an industry of creative growth, it is only natural for music (i.e., all

musical scene members) adapting to new conditions and redefining its layout. Not sur-

prisingly, the Grammy3 categories were tightened (from 109 to 78, in 2012) as a result of

music’s dynamic nature. Categories and genres are constantly changing, but they remain

3Grammy Awards: https://en.wikipedia.org/wiki/Grammy_Award

https://en.wikipedia.org/wiki/Grammy_Award
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Figure 1.3: Analyses conducted in this work, according to the Research Goals (RGs).

relevant to comprehend the music context. In addition, as the collaboration phenomenon

becomes stronger over the years, it is necessary to explore all factors that make it so rel-

evant nowadays. Therefore, this work aims to analyze artist collaboration under a genre

perspective to better understand how the genre connections impact musical success. We do

so by exploring the musical genre ecosystem in temporal and collaboration perspectives

(Figure 1.3). Therefore, we assess such an objective through three Research Goals (RGs):

RG1. Understand the temporal evolution of both artist and genre careers, by identifying

and predicting periods of high impact in such careers (i.e., hot streaks);

RG2. Analyze the dynamics of cross-genre connections by detecting collaboration pro-

files in success-based networks (i.e., connections formed by genres of artists who

cooperate and create hit songs);

RG3. Mine frequent genre patterns within hit songs in recent years, i.e., investigating

the relationship between combining different music genres and musical success.

1.2 Main Contributions

Overall, the main contributions of this work on the relation between musical genres

and success are described as follows. The topics are organized according to the Research

Goal (RG) they are related to.

RG1. Hot Streaks in Musical Careers (Chapter 4).

1. Based on data from the Billboard Hot 100, we model the time series for both artists

and successful genres. From these series, we found that the most successful weeks

are grouped in time;
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2. We detect hot streaks in musical careers using Piecewise Aggregate Approximation

(PAA), which is a method for reducing the dimensionality of time series;

3. Through characterization analysis, we reveal general and specific patterns of hot

streaks for artists of different genres. We evaluated characteristics such as quantity,

duration, and appearance of the first hot streak periods;

4. We find that artists have more songs on the charts during periods of hot streaks

and that the career peaks for artists appear and disappear gradually over time;

5. We assess the hot streak prediction problem as a binary classification task, and our

findings reveal that our model was successful in anticipating successful periods for

popular music genres;

6. We detect that factors including the number of songs present in the charts and the

artists’ career time are relevant to increase the predictive power of our model, as

well as acoustic features such as time signature and energy.

RG2. Collaboration Profiles in Genre Networks (Chapter 5).

1. We collect and build a unique dataset on musical success in global and regional mar-

kets. We focus on genre collaboration, but we also provide meaningful information

about charts, songs, and artists;

2. We also build a success-based genre collaboration network for each considered mar-

ket, by connecting genres from artists who team up to make hit songs;

3. We find that individually analyzing regional markets is fundamental, as local genres

play a key role on determining hit songs and popular artists;

4. In general, our results reveal that genre collaborations are increasing, with emerging

local genres hitting global success – despite the differences in the evolution of regional

markets;

5. Our network-based analysis on genre collaborations describe three significant fac-

tors (Attractiveness, Affinity and Influence) that uncover four collaboration profiles

(Solid, Regular, Bridge and Emerging) directly related to musical success.

RG3. Exceptional Genre Patterns on Hit Songs (Chapter 6).

1. We use data mining techniques to reveal frequent genre patterns in songs that made

to the charts in each market;
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2. We confirm that there are significant differences in the behavior of each market,

with regional genres playing an important role in patterns;

3. We find that each regional market has specific patterns of genre connections in which

success is above average;

4. Our experiments reveal that association rules can be an important tool to identify

and recommend promising musical genres collaborations.

1.3 Text Organization

The rest of this work is organized as follows. We present and discuss the related

work in Chapter 2. Then, Chapter 3 contains the background and fundamental concepts

required to understand this work. In Chapter 4, we analyze the temporal evolution of

musical careers to detect and predict hot streak periods. Next, in Chapter 5 we build

success-based genre networks and identify collaboration profiles within it. Chapter 6

presents a data mining approach to mine exceptional genre collaboration patterns using

such networks and profiles. Finally, in Chapter 7 we present our concluding remarks and

discuss future work on this subject.
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Chapter 2

Related Work

Besides helping society to evolve, Computer Science has also directly influenced the devel-

opment of most sciences and industries. One clear example is Entertainment, which has

evolved from films and music on tapes and long players to digital media [20, 36]. Specifi-

cally, when it comes to music content, Music Information Retrieval (MIR) emerges as an

interdisciplinary research field based on musicology, psychology, and computer science to

extract meaningful information from musical content [63, 72].

In this chapter, we provide an overview of the main research topics within MIR

and other subjects that are related to this work. Specifically, we divide such related work

into five sections. First, we outline the main data sources used in music-related studies

(Section 2.1). In Section 2.2, we describe Hit Song Science, which aims to predict the

success of a song before its release. Then, we briefly review studies regarding the use

of the genre information in MIR (Section 2.3) and hot streaks in professional careers

(Section 2.4). Next, we discuss research regarding collaboration and its relation with

success (Section 2.5). Finally, we present our final considerations by emphasizing the

relevance of this study in face of such related work (Section 2.6).

2.1 Music Data Sources

The first step of most music-oriented studies is to gather data regarding song

characteristics. However, such features can be seen by many facets, as the definitions

are open to different visions. For instance, data about a given song can be acoustic

and/or lyric-based, while its popularity may be measured considering its position within

a chart or its sales revenue. Besides, information concerning consumers’ behavior may be

aggregated to the analyses to enhance the results. Therefore, using data from multiple

sources is necessary and useful to build better models for analyzing and predicting musical

success. In this section, we describe and classify the main and most commonly used data

sources in four categories according to their purpose: popularity; acoustic characteristics;
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lyrics; and social behavior.

Regarding song popularity, research studies usually consider information such as

position in charts to determine the level of success. The US-based magazine Billboard1 is

the most consolidated data source, providing many different types of rankings since the

1940s. The Hot 100 is the most commonly used, as it is a weekly list of the 100 most

popular songs (regardless of music genre or style) in the US, considering data from radio

airplay, sales, and streaming activity [18, 9, 100, 89, 107]. Billboard also aggregates the

weekly rankings in a Year-End Hot 100 Chart, which is used in some music-related studies

[102, 103]. However, there are several studies considering other specific Billboard charts

in their analyses. For example, Chon et al. [25] focus on one specific genre by using the

Top Jazz Chart, based only on the albums’ sales. Also, Lee and Lee [60] obtain data from

The Rock Songs Chart, a weekly list of the 50 most popular rock songs. Such authors

believe that this choice may produce cleaner results and better insights when focusing on

specific genres.

As the world becomes more connected, and the globalization process reaches most

of the countries, local engagement shapes the global music environment. In such a way,

some studies consider charts from outside the US in their analyses and predictions. The

United Kingdom is the second most considered market, having its charts published by the

Official Charts Company2 (OCC) [75, 53]. Besides using British charts, Fan and Casey

[34] also collect Chinese hit songs for comparison purposes. Moreover, there are studies

considering other European countries (e.g., France, Belgium and Germany) [22, 49] and

Asian markets such as South Korea [97] and Indonesia [35]. Other popularity approaches

use YouTube views and likes [24] and sales data provided by platforms such as Amazon

[1] and Nielsen SoundScan [9].

Now, changing the subject to features, acoustic characteristics of a song are

important tools for describing its structure. Besides being better discussed in Section

2.2, it is important to note that they have been largely used since early music-oriented

research studies, such as Dhanaraj and Logan [31], which use in-house databases as their

data source. With the evolution of the Music Information Retrieval (MIR) field, new

sources take place, as the EchoNest API, with more than a trillion data points on over 34

million songs in its database [50]. Several studies use this API for extracting features such

as tempo, time signature, song duration, and loudness [75, 103, 49]. Nonetheless, with

the expansion of music streaming services and the acquisition of EchoNest by Spotify in

2014, its Developer API3 is now the main source of acoustic features, thus being used by

most recent studies [68, 4, 69, 89]. Nonetheless, there are still other sources used, such as

1Billboard Charts: http://www.billboard.com/charts
2Official Charts Company: http://www.officialcharts.com/charts
3Spotify Developer API: http://developer.spotify.com/documentation/web-api

http://www.billboard.com/charts
http://www.officialcharts.com/charts
http://developer.spotify.com/documentation/web-api
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the Million Song Dataset4 (MSD) [116] and AcousticBrainz5 [53].

Data frequently used within music-related research also include song lyrics, mainly

for generating features related to rhyme and text. From the early years of HSS, there

is no consensus on the best and most reliable source for song lyrics, and each study

considers a different lyric source. For example, websites such as Astraweb Lyric Search

[31], MetroLyrics [103], MusicSongLyrics [92], and LyricsMania [24] are used as lyrics

sources by several authors. However, more recent studies, such as Mart́ın-Gutiérrez et al.

[68], use Genius, which has an exclusive API for developers to collect data in a simple

and fast way, with no need to use web crawlers or HTML pages.

Finally, a different kind of data source has recently emerged: social media, which

is changing the way people share their opinions and impacting several areas, including the

music industry. Therefore, the consumers’ behavior plays a key role in musical success

analysis, and online platforms such as Last.fm6 are largely used to collect listener-based

data and features [18, 49, 91]. Moreover, blogging platforms are also important sources of

information about people’s feelings on a given song, album, or artist. For example, Abel

et al. [1] use Spinn3r7 to collect more than 100 million blog posts in the music domain.

More recent studies collect data from social networks such as Twitter, Instagram, and

Facebook to analyze users’ behavior related to a new musical release [7, 27, 107].

2.2 Hit Song Science

Hit Song Science (HSS) is an emerging field within MIR that tackles the problem

of predicting the popularity of a given song. It involves acquiring and analyzing musical

data from distinct data sources to study the relation between the intrinsic features of

songs and their success. Reinforcing its multidisciplinary characteristic, studies in HSS

combine Machine Learning and Data Mining techniques with musicology and psychology

concepts to verify whether popular songs share similar feature patterns. Besides, the

dynamic and volatile nature of the musical scenario converts HSS into a strategic research

area, as predicting the popularity of songs and artists provides benefits for all involved

parties in the global music industry. In fact, HSS has become a trending research topic in

academia. An evidence for such a claim is the increasing volume in publications8 about

it, as illustrated in Figure 2.1.

4Million Song Dataset: http://millionsongdataset.com/
5AcousticBrainz: http://acousticbrainz.org/
6Last.fm API: http://www.last.fm/api/
7Spinn3r: http://docs.spinn3r.com/
8The considered HSS publications are further listed in Table 2.2.

http://millionsongdataset.com/
http://acousticbrainz.org/
http://www.last.fm/api/
http://docs.spinn3r.com/


2.2. Hit Song Science 26

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

10

20

30

40

Cu
m

ul
at

iv
e 

pu
bl

ic
at

io
ns

1 3 3 4 6 8 9 10 11
16

20 22
28

33

40

47

Figure 2.1: Hit Song Science publications (cumulative), 2005 – 2020.

The concept of Hit Song Science was first introduced in 2003 by Polyphonic HMI,9

an artificial intelligence company focused on using mathematics and computer science to

solve problems in the music industry. Such a company developed a commercial tool to

predict, on a scale from 1 to 10, the success of a song in the current market based on

its chart position. Such an achievement motivated researchers in the MIR community to

develop the first scientific studies regarding hit song prediction. For instance, Dhanaraj

and Logan [31] use acoustic and lyric-based features in a classification model to provide

the first evidence that there is indeed a pattern connecting hit songs, as their model

performs slightly better than random.

Following such a study, early works in HSS used mostly song-related features to

predict popularity with distinct approaches. For instance, Chon et al. [25] analyze data

at an album scale and find that the higher the starting position of an album is, the longer

it is likely to stay on musical charts. However, Pachet and Roy [84] point out that the

features commonly used at the time might not be enough to reveal relevant information

about musical success. Their study considers audio and human-generated features and

defines hit song prediction as a classification task, but it did not achieve significant results.

The advance of machine learning algorithms and the discovery of possible new

features helped to overcome such obstacles. The emergence of blogs and online social

networks in the early 2000s paved the way for improving prediction models. In HSS,

Salganik et al. [94] are the first to study the impact of social influence on determining

song popularity, revealing that its presence increases both inequality and unpredictabil-

ity of success. In contrast, Abel et al. [1] use blogging behavior to predict music sales

performance. In recent years, features extracted from social platforms such as Twitter,

Facebook, and Instagram are also considered in prediction models [7, 27, 107].

Nonetheless, acoustic features are still used in most studies in HSS, as they act as

descriptors of the core elements of a song, which include: pitch (melody and harmony),

rhythm, dynamics, and the qualities of timbre and texture. However, the main sources

of such features have changed over time from the early in-house datasets [31, 84] to data

9Polyphonic HMI, Hit Song Science: http://bit.ly/polyphonic-hmi

http://bit.ly/polyphonic-hmi
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Table 2.1: Main acoustic features obtained from Spotify.

Feature Description Type Value Range

acousticness The probability of a song to be acoustic or not Float [0, 1]

danceability Informs whether a song is suitable for dancing or not in terms
of probability

Float [0, 1]

duration ms The duration of a song in milliseconds Integer [0, inf)

energy The intensity and activity of a song considering information
such as dynamic range, perceived loudness, timbre, onset rate,
and general entropy

Float [0, 1]

instrumentalness The probability of a song to be instrumental, i.e., without
vocals

Float [0, 1]

key The estimated overall key of a song, mapped as an integer
number (e.g., C = 0, C# = 1, and so on)

Integer [0, 11]

liveness The probability of a song being performed live, i.e., the pres-
ence of an audience in a song

Float [0, 1]

loudness The general loudness measured in decibels (dB) Float Typically [−60, 0]

mode The general modality of a song (i.e., major= 1 or minor= 0) Integer [0, 1]

speechiness The probability of a given song to have spoken words in it Float [0, 1]

tempo The speed of the song, measured in beats per minute (BPM) Float N/A

time signature The amount of beats in each bar (measure) Integer N/A

valence The positiveness of a song, in which high valence values rep-
resent happier songs, whereas low values means the opposite

Float [0, 1]

Data Acquisition Success Measure

Top-Charts

Economy

Engagement

Musical Features

Internal

External

Learning Methods

Classification

Regression

Others

Figure 2.2: Generic workflow for the Hit Song Prediction problem.

extracted from digital streaming [27, 69]. In the latter category, Spotify10 was founded

in 2008, and today it is the world’s most popular audio streaming service, with over

70 million songs (as of May 2021). Its Web API11 provides detailed information about

the tracks, including specific audio features detailed in Table 2.1. The ease in the data

collection process and the availability of data from several markets make Spotify one of

the popular sources for acoustic features [27, 68, 4, 69].

Overall, most of the studies in Hit Song Science follow a common sequence of steps,

from data collection to model selection. Therefore, we generalize such steps into a generic

workflow for the Hit Song Prediction problem, as shown in Figure 2.2. Here, we provide

a brief description of each phase, as detailed next.

10Spotify: https://www.spotify.com/
11Spotify for Developers: https://developer.spotify.com/documentation/web-api/

https://www.spotify.com/
https://developer.spotify.com/documentation/web-api/
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Data Acquisition. Songs are complex and dynamic objects that can be analyzed

in different ways, and Hit Song Science (HSS) emerges as a field where studies try to

use many of these facets in their models. Therefore, a convenient approach is to collect

information about songs through multiple sources to complement audio-based musical

success prediction, as previously shown in Section 2.1.

Success Measure. Musical success is usually associated with fame and power. However,

in science, defining and measuring success remains a topic of great interest not only for the

music industry but also for the MIR community. There are different measures of musical

success in the HSS literature, but we can generalize them into three distinct classes: Top-

charts, in which success is defined based on the song position in musical charts; Economy,

relating success to economic indicators, including sales revenue; and Engagement, which

includes the social interactions with musical content.

Musical Features. The success of a given song may be associated with a set of

characteristics from the musical scenario. Such features are used to describe songs in

several aspects, serving as input for learning models. In HSS, there are two main groups of

features: Internal, which are directly extracted from the audio (i.e., acoustic fingerprints,

lyrics, and metadata); and External, obtained from agents or objects that may influence

the musical success (i.e., artist popularity, album sales, and streams).

Learning Methods. One of the main goals of Hit Song Science is to discover the

set of predictors that contribute to the success of a song. In general, most works use

machine learning on such a task. Thus, we list the main learning approaches used within

HSS studies: Classification, in which the goal is to predict labels for a set of instances;

Regression, in which the prediction output is a continuous value; and Other methods,

such as clustering and statistical analysis.

Table 2.2 summarizes the existing research in Hit Song Science according to the

predefined phases of our workflow: data sources, success perspective, considered features,

and machine learning tasks. Its last line is a contribution of this dissertation, as presented

in Chapter 5.

Table 2.2: Research works in Hit Song Science, with corresponding data sources, success

perspectives, considered features, and the machine learning task.

Year Reference Data Sources Success Features ML Task

2005 Dhanaraj and Logan [31] Oz Net Music Chart,

In-house database, As-

traweb Lyrics

Top-Charts Internal Classification

2006 Chon et al. [25] Billboard Top-Charts External Other

2006 Salganik et al. [94] purevolume Engagement External Other

2008 Pachet and Roy [84] HiFind Database Top-Charts Internal, External Classification

2009 Bischoff et al. [18] Last.fm, Billboard Top-Charts Internal, External Classification

Continued on next page
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Table 2.2: (continued from previous page)

Year Reference Data Sources Success Features ML Task

2009 Koenigstein et al. [58] Gnutella, Billboard Top-Charts External Classification,

Regression

2010 Abel et al. [1] Spinn3r, Amazon Economy Internal, External Classification,

Regression

2010 Yoo and Kim [113] N/A Top-Charts External Other

2011 Ni et al. [75] OCC, EchoNest Top-Charts Internal Classification

2012 Berns and Moore [17] MySpace, Nielsen Sound-

Scan

Economy External Other

2013 Fan and Casey [34] OCC, ZhongGuo-

GeQuPaiHangBang

(China), EchoNest

Top-Charts Internal Regression

2014 Dewan and Ramaprasad [30] Nielsen SoundScan,

Google Blog Search,

Last.fm, Amazon, All-

music.com

Economy,

Engagement

External Other

2014 Herremans et al. [50] OCC, Billboard, EchoN-

est

Top-Charts Internal, External Classification

2014 Kim et al. [56] Twitter, Billboard Top-Charts External Classification,

Regression

2014 Nunes and Ordanini [76] Billboard Top-Charts Internal Classification

2014 Singhi and Brown [102] Billboard Top-Charts Internal Classification

2015 Buda and Jarynowski [22] European Music Papers,

radio, TV, Internet

Top-Charts External Other

2015 Frieler et al. [37] Earwormery Database,

Polyhex UK, Geerdes

Database

Top-Charts Internal Classification

2015 Lee and Lee [60] Billboard Top-Charts Internal, External Classification

2015 Singhi and Brown [103] EchoNest, Billboard,

Metro Lyrics

Top-Charts Internal Classification

2016 Ren et al. [92] Last.fm, Wikipedia, 7dig-

ital, Google Lyrics, Mu-

sicSong Lyrics

Engagement Internal, External Classification

2016 Shulman et al. [98] Last.fm Engagement External Classification

2017 Araujo et al. [7] Twitter, Spotify, Bill-

board

Economy,

Engagement

External Regression

2017 Askin and Mauskapf [9] Billboard, Discogs, Echo

Nest, SoundScan

Top-Charts Internal, External Regression

2017 Chiru and Popescu [24] YouTube Engagement Internal Regression

2017 Herremans and Bergmans

[49]

The Ultrapop 50,

Last.fm, EchoNest

Top-Charts Internal, External Classification

2017 Ren and Kauffman [91] Last.fm Top-Charts Internal, External Classification,

Regression

2017 Yang et al. [112] KKBOX Engagement External Regression

2018 Febirautami et al. [35] Spotify Engagement Internal Classification

2018 Interiano et al. [53] OCC, MusicBrainz, In-

ternalBrainz

Top-Charts Internal Classification

2018 Lee and Lee [61] Billboard Internal Classification

2018 Rajyashree et al. [88] Million Song Dataset Engagement Internal Classification

2018 Shin and Park [97] Gaon Music Charts Top-Charts Internal, External Other

2019 Araujo et al. [5] Spotify Top-Charts Internal Classification

2019 Cosimato et al. [27] Billboard, iTunes, Spo-

tify, Twitter, Instagram,

Facebook, YouTube,

Newspapers

Top-Charts External Classification

2019 Middlebrook and Sheik [70] Spotify, Billboard Top-Charts Internal, External Classification

Continued on next page
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Table 2.2: (continued from previous page)

Year Reference Data Sources Success Features ML Task

2019 Silva and Moro [99] MusicOSet Top-Charts External Other

2019 Silva et al. [100] MusicOSet Engagement External Other

2019 Yu et al. [114] N/A Engagement Internal, External Regression

2019 Zangerle et al. [116] Million Song Dataset,

Billboard

Top-Charts Internal Regression

2020 Al-Beitawi et al. [4] Spotify Top-Charts Internal Other

2020 Araujo et al. [6] Spotify Top-Charts Internal Classification

2020 Mart́ın-Gutiérrez et al. [68] SpotGenTrack Engagement Internal, External Classification,

Regression

2020 Matsumoto et al. [69] Spotify Engagement Internal, External Classification,

Regression

2020 Raza and Nanath [89] Billboard Top-Charts Internal Classification

2020 Tsiara and Tjortjis [107] Twitter, Billboard Top-Charts External Classification,

Regression

2020 Oliveira et al. [79] Spotify Top-Charts External Other

2.3 Genres in Music Information Retrieval

The musical genre is one of the most prominent high-level music descriptors, and

it is fundamental within the musical scenario by aggregating songs that share common

characteristics. Hence, they are frequently used in MIR to extract relevant information

from music content as several tasks are genre-dependent or directly related to them. For

instance, classification is regularly the first step in many MIR applications, thus being

one of the core tasks in such a field. Indeed, the genre classification task (i.e., categorizing

songs into different genres) has become widely studied in recent years [8, 109, 106]. Going

further, Oramas et al. [83] use three distinct modalities (audio, text, and images) to

categorize musical items into multiple labels, and Ghosal and Sarkar [40] apply deep

learning techniques to enhance classification models, achieving an accuracy of 95.4%.

Although genre provides one of the most convenient categorizations of music and is

widely used in music science, it does not necessarily mean that genre is easily categorized

or recognized. In this sense, Prockup et al. [85] provide evidence that music genres can be

modeled through a combination of several musical attributes. Nonetheless, there are also

genre-aware studies assessing other MIR tasks, such as music source separation [59], genre

preferences [13], disambiguation/translation [48, 32], new datasets [19] and ontologies [95].

Network science, one of the core topics of our methodology, has also been used to model

genres into influence networks [21] and song communities [26].

Understanding musical aspects can be genre-dependent, and this also reflects in

the musical success. Therefore, several studies in Hit Song Science (see Section 2.2) use
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genre information in their models. For example, Shin and Park [97] consider genres to

understand the life trajectory of songs in Gaon Chart,12 one of the main Korean music

rankings. Regarding prediction models, Ren and Kauffman [91] aggregate genres in a

musical construct vector (MCV) to summarize the acoustic content of a song. Such

MCVs are used as features in a regression model to estimate and predict the popularity

duration of a track from a top-charts perspective.

Furthermore, predictive models also use genre as a high-level feature to complement

the song description with abstract concepts. Interiano et al. [53] aggregate genres into

more general classes (i.e., clusters) to assess success dynamics in UK charts. Besides,

Zangerle et al. [116] combine such information with low-level features to produce a more

holistic description of songs. Overall, there is strong evidence that music genre may

influence musical success, and such information leads to improving the performance of

success prediction models [1, 9].

2.4 Hot Streaks

Evaluating the impact of human performance is a common practice in many dis-

ciplines, and the term hot streak emerges to refer to a specific period within professional

careers when success is significantly higher than the average. Such a phenomenon is noted

by regular people and widely studied, mainly in the sports field [41, 14, 86]. For example,

one may call a hot streak when a team wins several tournaments in a row or even when

a specific player performs much better than expected. Although there is a discussion on

the empirical nature of such phases in sports [10], the idea of hot streaks is present in

studies in other fields, such as gambling [11, 87, 104] and financial markets [47].

Research assessing the impact on individual and creative careers is much more re-

cent. Sinatra et al. [101] aim to uncover temporal patterns in scientific careers, concluding

that the most impactful work is randomly distributed over scientists’ body of work. They

also propose a stochastic model (Q-model) to describe success based on productivity, indi-

vidual effort, and luck. Following such findings, Liu et al. [65] consider large-scale careers

of artists, film directors, and scientists to demonstrate that hot streaks are remarkably

universal across diverse domains, yet usually unique across different careers. They also

find that impactful works show a high degree of temporal regularity, which can indeed be

described by a hot streak model.

Such a result is also demonstrated in the social media domain, which has become

extremely popular with the advance of the Internet across the world. In this sense,

12Gaon Chart: http://gaonchart.co.kr/

http://gaonchart.co.kr/
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Garimella and West [38] use data from Twitter, one of the most popular online social

networks,13 and define users’ impact as the reach of their content. Specifically, they

consider several specific success metrics, such as the number of views, likes, retweets, and

shares. Their findings point the existence of hot streaks within success phases. Besides,

they demonstrate that such phases are driven by new retweeters who suddenly start

following and retweeting a user, thus leading to an increase in the follower count.

Janosov et al. [54] also consider luck as a crucial ingredient to achieve impact in

creative domains. Therefore, they analyze data from science, art, movie, and music fields

to apply the aforementioned Q-model to quantify luck in such contexts. Regarding music,

they model the historical artist timelines based on the release year of songs and measure

success by the total play counts obtained from Last.fm. Besides showing luck is generally

more relevant to the impact of a song, some genres are less influenced by randomness

than others. Nonetheless, such a study does not investigate the clustered effect of a set

of songs on musical careers (i.e., hot streaks), and thus further investigation is required

for such a domain.

2.5 Collaboration and Success

As the world becomes more interconnected with the Internet and other technologi-

cal advances, people are frequently in touch with their peers, thus reducing the previously

existing distance and communication barriers. Therefore, general content production has

become increasingly collaborative. Following the popular saying “Many hands make light

work”, the impact of collaboration on content popularity has become a hot research topic.

For instance, content created by social platform users is the subject of studies that ap-

ply several techniques ranging from network science [111] to deep learning with neural

networks [74].

In general, collaboration occurs when two or more actors participate in the cre-

ation, execution, and/or production of the same object. Figure 2.3 presents a generic

example where four individuals A1, A2, A3 and A4 participate in the production of three

distinct contents C1, C2 and C3. Such a scenario can be modeled using graph theory and

network science, primarily as a bipartite graph (left), with edges connecting actors to the

objects they produce. Thus, it is possible to visualize which individuals participate in the

production of each content. However, as the bipartite graph does not allow easy analy-

sis of the collaboration between actors, it is necessary to project it into a new network

13About Twitter: https://about.twitter.com/

https://about.twitter.com/
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Figure 2.3: Collaboration between distinct actors on content creation.

(right) connecting actors who collaborate at least once. Such a modeling is used in diverse

domains, including article editing [29], movie production [110], and social coding [16].

Regarding music content, Bischoff et al. [18] predict the potential of tracks for be-

coming hits by analyzing the relationships between tracks, artists, and albums. Moreover,

Silva et al. [100] address collaboration as a key factor in success, using topological prop-

erties to detect relevant profiles in artist networks. In a later study, the causality between

collaboration and success is addressed [99], reinforcing the relevance of the collaboration

phenomenon in the musical scenario. In fact, such an approach is novel and promising

in HSS, but it is restricted to the artist and song levels. In addition, these and most of

the aforementioned studies regarding musical success only consider data from American

charts, mainly Billboard Hot 100. This may be due to the ease of obtaining data but it

may not reflect the whole global scenario, as each country has its own distinct behavior

when consuming music, which includes preferred artists and genres.

2.6 Overall Considerations

As the music industry becomes more complex and competitive, developing strate-

gies to maximize the expected musical success becomes increasingly relevant. Therefore,

one of the contributions of this work is to introduce a model to describe artists’ and genres’

success timelines based on music charts. For each musical career, we focus on identifying

and characterizing periods with success above the average (i.e., hot streaks). Our model

is customized for each timeline since success remains a relative concept. Hence, we can

distinguish success between independent artists and music superstars and also between

different music genres. The genre-aware model may help the understand the underlying
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factors that lead to success, as well as guide artists and record labels to better plan and

manage their future single and album releases.

In addition, studying collaboration from a genre perspective may reveal important

information on how artists from different communities team up to make a new hit song. To

the best of our knowledge, we are the first to build a success-based genre network, inves-

tigating collaboration profiles over time and mining exceptional patterns within it, going

deeper into the potential intrinsic factors that make up a successful collaboration. Like-

wise, our approach considering several regional markets makes this work more realistic,

as local engagement shapes the global environment. We combine a precise heterogeneous

data collection with proper modeling to enhance further data analysis by scientists and

record labels CEOs.

Moreover, this work follows the Hit Song Science (HSS) workflow from Section 2.2.

In short, we use data collected from Billboard and Spotify and measure success from a

Top-chart perspective. In our analyses, we consider both internal and external features,

including song, artist, and genre characteristics. We then use such features as the input

of classification (Chapter 4), profiling (Chapter 5), and data mining (Chapter 6) tasks.

Therefore, we shed light on the science behind the collaboration phenomenon, providing

new knowledge to both the academic community and the music industry.
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Chapter 3

Background and Fundamental

Concepts

This chapter provides the fundamental concepts necessary to understand the challenges

and solutions addressed in this work. First, Section 3.1 summarizes key concepts of basic

statistics and machine learning used throughout this work. Then, Section 3.2 overviews

concepts from Network Science, which uses networks (commonly modeled as graphs)

to represent complex systems, such as telecommunication systems, biological structures,

and social connections. Finally, Section 3.3 describes a brief background on Data Mining,

which aims to extract meaningful knowledge from data. Here, we focus on the main

concepts necessary to understand the next chapters and recommend specific references

for more advanced ones [15, 73, 96, 115].

3.1 Statistics and Machine Learning

Statistics and learning techniques are important tools within any data science or

data-driven research framework. In fact, machine learning may be defined as a subfield

of Computer Science that aims to detect patterns in data based on statistical models,

using such findings to predict future information [71]. In this section, we present an

overview of the main concepts and methods used in this work. We focus on correlation

analysis (Section 3.1.1), classification algorithms (Section 3.1.2), and model performance

assessment (Section 3.1.3).
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Figure 3.1: Examples of correlation between variables: perfect linear correlation (left),
perfect monotonic correlation (center), and no linear and monotonic correlation (right).

3.1.1 Correlation Analysis

In statistics, correlation is a metric that reports the degree to which two or more

variables are related. It can be represented by a numeric coefficient, whose value varies

between -1 and 1. A correlation is perfectly positive when the coefficient is equal to

1, and perfectly negative when equal to -1 [52]. Coefficients equal to zero indicate no

explicit correlation between the variables considered. There are several ways to calculate

correlation coefficients, but we list the two main ones.

Pearson Coefficient (r). It measures the linear relationship (first-order) between

variables. A relationship is linear when a variation in one variable is associated with a

proportional variation in the other variable. Thus, if two variables are linearly correlated,

one can be used to predict the other.

Spearman Coefficient (ρ). It measures the monotonic correlation between variables,

i.e., uses the order of the data (rank) instead of the values themselves. Thus, if two

variables are monotonically correlated, they tend to vary together, but not necessarily at

a constant rate.

Figure 3.1 shows examples of correlation between variables. The left plot presents

a perfect positive linear correlation between two variables (r = 1). Note that when

there is a total linear correlation, there is also a total monotonic correlation (ρ = 1). In

contrast, the center plot contains a perfect monotonic correlation (ρ = 1). However, the

linear correlation is not perfect (r = 0.78), as there is no constant rate in the increase of

the variables. Finally, the right plot is a case in which there is no linear nor monotonic

correlation (r = 0 and ρ = 0). This fact does not mean that the variables are not

correlated. Indeed, there is a quadratic relation between them, which is not captured by

such coefficients.
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Figure 3.2: A generic workflow for a classification approach.

3.1.2 Classification Algorithms

Classification is a machine learning task whose goal is to automatically assign (i.e.,

predict) labels to a set of unlabeled instances by considering each instance’s features. Such

an assignment is made based on a previously known set of instances and a mathematical

model. Figure 3.2 presents a generic workflow for classification, which is commonly divided

into two phases: training and testing. In the former, the classifier receives a set of instances

previously labeled (i.e., training set), representing the actual knowledge about the classes.

In the latter, the classifier is tested with a set of unlabeled instances that represent unseen

data. Then, it must assign a label for such test instances based on the knowledge from

the training phase.

There are several algorithms used in classification tasks. In this section, we present

four methods used in this work: Linear Regression, Support Vector Machines (SVM),

Perceptron, and Stochastic Gradient Descent (SGD). For formal definitions and other

classification algorithms, we refer to further references [71, 96].

Linear Regression. Despite having “regression” in its name, Logistic Regression is a

classification learning algorithm. It is mainly used for binary classification tasks, in which

there are only two options (classes) for the target to be assigned. Such an algorithm is

based in the standard logistic function (also known as sigmoid) to assign probabilities for

instances to belong to each class.

Support Vector Machines. The goal of this class of algorithms is to separate the

training data points with the larger gap possible in the space with the so-called support

vectors. In the testing phase, the new instances are put in the same space, and the

predicted labels are defined based on which side of the gap they are.
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Perceptron. It is a simple neural network model and works on a single node (neuron)

that receives the input data to predict a class label. The prediction is made based on the

weighted sum of the inputs (i.e., activation). Such a result is compared to a threshold,

which determines the output label for the given instance.

Stochastic Gradient Descent. It is a simple approach to fit linear classifiers (e.g.,

Logistic Regression and Support Vector Machines) into convex loss functions. Therefore,

it is not precisely a classification algorithm but an optimization method.

3.1.3 Performance Assessment

Once the classification model is set and ready to be run on the problem instances, it

is necessary to evaluate its performance. Nonetheless, performance metrics are essential

for comparing classifiers (and other machine learning algorithms). Due to the specific

nature of each problem, there are distinct metrics for the classification task. Here, we list

the most widely used of such metrics. Except for the confusion matrix, all metric values

are in a range from 0 to 1, in which the higher the value, the better the classifier.

Confusion Matrix. It is a table that compares the predicted with the real target

values. For binary classification problems, it is composed of four values: True Positives

(TP), False Positives (FP), False Negatives (FN), and True Negatives (TN).

Accuracy. It is the ratio of values correctly predicted and the total of predictions. This

metric is useful when prediction errors for all classes are equally important (i.e., false

positives and false negatives). Its value is given by Equation 3.1.

Accuracy =
TP + TN

TP + FP + FN + TN
(3.1)

Precision. It is the ratio of correct positive predictions and the total of positive

predictions (including TP and FP), as given by Equation 3.2.

Precision =
TP

TP + FP
(3.2)

Recall. It is the ratio of the correct positive predictions and the real positive values

(i.e., TP and FN), as given by Equation 3.3.

Recall =
TP

TP + FN
(3.3)
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F1-Score. It is the harmonic mean of Precision and Recall, and its value is given by

Equation 3.4.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(3.4)

Area under the ROC curve (AUC). The Receiver Operation Characteristic (ROC)

curve is another method used to assess classification performance. It is built based on

the True Positive Rate (TPR, Equation 3.5) and the False Positive Rate (FPR, Equation

3.6). Therefore, the area under the ROC curve (AUC) is frequently used to summarize

such a curve in a numeric value.

TPR =
TP

TP + FN
(3.5)

TPR =
FP

FP + TN
(3.6)

3.2 Network Science

Network Science is a knowledge field defined by its study object and its method-

ology to model interconnected systems. Such a field offers a common language in which

scientists from the most diverse research areas may analyze and get relevant information

about their complex systems [15]. As many aspects in the real world are connected,

Network Science emerges as an interdisciplinary field that provides simple yet powerful

tools to model protein interactions, power grid transmission lines, and human social in-

teractions. For instance, early works on social networks reveal the importance of human

connections (i.e., networking) to get a job [42]. Indeed, Social Network Analysis has

become a widely studied area, primarily due to the advances in technology and online

platforms. Therefore, in this section, we briefly define some fundamental concepts from

the network theory used throughout our work.

Formally, a social network is modeled as a graph G = (V , E), in which V is the

set of vertices (nodes) that represent individuals (e.g., friends, artists), and E is the set

of non-directed edges that connect vertices of individuals who share a relationship. To

qualify such relationships, there are metrics for the weight of the edges (also known as

strength and tie strength), which can be topological (given by the network structure)

or semantic (given by the relation meaning). Research on Music Information Retrieval

also benefits from the Network Science framework. For example, modeling collabora-
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Figure 3.3: A generic network with shortest paths between nodes.

tion between artists who team up in songs allows understanding several aspects of such

relationships, such as artist popularity [69] and success-based collaboration profiles [100].

Connectivity is a key concept for studying social networks since it allows to uncover

how information flows throughout the network. In this work, we are interested in modeling

genre connections to study how they affect success, and therefore we use well-established

Network Science metrics to analyze musical collaboration. Such metrics consider the

network topological features, i.e., they relate to the network structure (nodes and edges)

as follows.1 Let u and v be nodes in a network. For a given node u, let ku be its degree

(see definition ahead) and N (u) be its set of neighbors.

Degree and Weighted Degree. These metrics refer to the connectivity of each node

in the network. The degree of a node is its amount of incident edges, and the weighted

degree is the sum of the edges’ weight. For example, in the network of Figure 3.3, the

node A has a degree equal to 3, as there are edges connecting A to nodes B, C, and D.

The edges in such a network are not weighted, and therefore the weighted degree values

are equal to the degree (i.e., the edges’ weight is 1).

Clustering Coefficient (CC). Measures the tendency of neighbors of a node to be

connected themselves. The higher its value, the more interconnected the node neighbor-

hood. Considering L(v) as the number of links between the neighbors of v, the clustering

coefficient of v is given by Equation 3.7:

CC(v) =
2L(v)

kv(kv − 1)
(3.7)

Calculating the CC value for node A in Figure 3.3 requires the number of links (L)

between the neighbors of A (i.e., B, C, and D). Since there is only one edge between C

and D, L(A) = 1. In addition, the degree of A is 3 (i.e., the number of neighbors of A).

Therefore, CC(A) = 2×1
3×2

= 1
3
≈ 0.333.

Common Neighbors (CN). The number of neighbors that a given pair of nodes have

in common in a network, i.e., the intersection of their neighbor set, as formalized by

Equation 3.8.

1For more information on such connectivity metrics, see references [64, 73, 66]
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CN(u, v) = |N (u) ∩N (v)| (3.8)

In the example from Figure 3.3, the only node that is neighbor of both A and D

is the node C, and therefore CN(A,D) = |{C}| = 1.

Neighborhood Overlap (NO). The ratio between the common neighbors of a given

pair of nodes and the union set of their neighbors. Edges with low NO reveal local

bridges in the network, i.e., nodes traveling in “social circles”, having almost no common

connection. Furthermore, the removal of such an edge may completely disconnect the

graph (if NO = 0) or difficult the access to other network components (NO > 0). Its

value is given by Equation 3.9.

NO(u, v) =
|N (u) ∩N (v)|

|N (u) ∪N (v)− {u, v}|
(3.9)

For example, in Figure 3.3, the edge connecting A and B is a bridge, since removing

it would disconnect the network. Therefore, NO(A,B) = |∅|
|{C,D,E}| = 0.

Preferential Attachment (PA). The probability of a given pair of nodes connecting

in the future. The intuition behind this index is that, if a node has a high degree, it

attracts more neighbors. Thus, when analyzing two nodes, the more neighbors they have,

the more likely they are to connect in the future. Its value is given by Equation 3.10.

PA(u, v) = |N (u)||N (v)| (3.10)

In Figure 3.3, the Preferential Attachment value for the edge connecting A and C

is PA = |{B,C,D}||{A,D}| = 3× 2 = 6.

Edge Betweenness (EB). The fraction of shortest paths that go through an edge in

the network. Edges with a high score represent a bridge-like connector between two parts

of the network, and their removal may affect the communication between others due to

the lost common shortest paths. The betweenness centrality cB of an edge e = (u, v) is

given by Equation 3.11.

cB(e) =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

(3.11)

For example, getting the EB value for the edge {A,B} in Figure 3.3 requires count-

ing the number of shortest paths passing through such an edge. From all ten paths, only

six contain the edge (A,B). Therefore, cB(A,B) = 6
10

= 0.6.

Resource Allocation (RA). For a pair (u, v) of nodes, it represents the fraction

of a resource (e.g., information) that a node can send to another through its common

neighbors, as given by Equation 3.12. If both nodes have a large number of common
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neighbors, their RA Index tends to be high. Such an index is even higher if their neighbors

have a low degree, as the resource is more likely to travel from u to v.

RA(u, v) =
∑

w∈N (u)∩N (v)

1

|N (w)|
(3.12)

For example, calculating RA for A and D in Figure 3.3 requires to consider the

common neighbors of both nodes (in this case, only the node C). Therefore, the RA value

is given by RA(A,D) = 1
|N (C)| =

1
|{A,D}| =

1
2
= 0.5.

3.3 Data Mining

As a novel and dynamic environment, the musical scenario brings high volumes

of data about songs, their characteristics, and the social interactions about them. The

popularization of digital platforms allows people worldwide to access and interact with

content in real-time [44], increasing the cultural connection between distinct parts of the

globe, while each market maintains its unique characteristics. From this context, Data

Mining emerges as a research field aiming to discover relevant insights and patterns, as

well as to build models to describe and understand such data. In this section, we present

the main Data Mining concepts used in this work, following the definitions of Zaki and

Meira Jr. [115]: Frequent Itemsets (Section 3.3.1), Association Rules (Section 3.3.2), and

Subgroup Discovery (Section 3.3.3).

3.3.1 Frequent Itemset Mining

Frequent Itemset Mining (FIM) is a Data Mining approach to find groups of items

that co-occur in the same transaction. Such a model is also known by the term market

basket analysis, given that one of its classic applications is the analysis of customers’

shopping patterns in supermarkets. The total set of items I = {x1, · · · , xm} can describe

all the items sold at the supermarket. A subset X ⊆ I is called an itemset. In the

supermarket example, a transaction may represent a set of items bought by a specific

customer, i.e., the shopping list. Formally, a transaction is a tuple (t,X), in which t is an

unique identifier (i.e., tid), t ∈ T (T is the set of all tids, T = {t1, · · · tn}).
A database D = I × T is a binary relation between the sets of items and tids,
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and a tid t ∈ T contains an item x ∈ I if and only if (t, x) ∈ D. In addition, let τ(X)

be a function that returns all the transactions t ∈ T that contains the itemset X. From

all these definitions, the sets of items frequently purchased by the same customer are

analyzed, i.e., items that occur in the same basket. Note that the supermarket example

facilitates the understanding, but these definitions can be generalized to any other domain.

For example, as detailed in Chapter 6, we can model songs as transactions in which the

items are the music genres of the artists who interpret them.

However, in FIM, the simple co-occurrence of these items in a single transaction

may not be enough. In most cases, such co-occurrence must happen with a minimum

frequency. For supermarkets, discovering items that are frequently bought together helps

develop marketing strategies to increase their revenues. In contrast, for the music industry,

discovering genre patterns may help record labels direct their promotion strategies. There

are several algorithms for mining frequent itemsets (e.g., Apriori, Eclat, and FP-Growth),

but here we focus only on the metrics used by all such methods to define the itemsets’

frequency.

Support. This metric informs how many transactions contain a given itemset in

absolute terms. Equation 3.13 presents the formula for calculating the itemset support.

sup(X,D) = |τ(X)| (3.13)

Relative Support. Similarly, the relative support (rsup) informs the frequency in

which an itemset appears on the transactions in a scale from 0 to 1. Then, rsup = 1

means that an itemset occurs in all transactions. Its value is given by Equation 3.14.

rsup(X,D) =
sup(X,D)

|D|
(3.14)

3.3.2 Association Rules

Once mined, frequent itemsets can be used to generate Association Rules (AR).

An AR is represented by the expression X → Y and is composed of an antecedent X and

a consequent Y , two disjoint itemsets. It is important to highlight that an AR should

not be interpreted as a sign of causality but of co-occurrence between items. Indeed,

association rules allow to discover how itemsets are related, and there are several metrics

to assess rule quality, as those described next.

Confidence. The rule confidence informs the probability of a consequent Y occurring in

a transaction given the occurrence of an antecedent X. In other words, it is the frequency
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in which Y occurs in transactions containing X, as given by Equation 3.15.

conf(X → Y ) =
sup(XY )

sup(X)
(3.15)

Lift. It is defined as the ratio between the joint probability of X and Y co-occurring

and the probability of these sets being independent, as shown by Equation 3.16. It may

be used as a measure of surprise within a rule. Therefore, lift shows how much more

frequently the consequent Y becomes after the occurrence of the antecedent X. Such a

metric is symmetric, and values below 1 mean that the rule occurs less than expected,

whereas values above 1 indicate the opposite.

lift(X → Y ) =
rsup(XY )

rsup(X) · rsup(Y )
=

conf(X → Y )

rsup(Y )
(3.16)

3.3.3 Subgroup Discovery

Alongside Frequent Itemsets and Association Rules, we also use Subgroup Discov-

ery (SD) in our work, a widely used technique in data mining to identify relevant patterns

(subgroups) that deviate from the standard [57]. Here, let a dataset D be a collection

of instances x = (a1, · · · , am, t1, · · · , tl), in which ai is an attribute (from a set A) and ti

is a target variable. Formally, a subgroup is induced by a p pattern, which is a function

p : A → {0.1}. Thus, a subgroup Sp is defined as the set of instances covered by p,

i.e., Sp = {x ∈ D | p(a1, · · · am) = 1}. Subgroups are then described according to their

attributes, and they are relevant if the distribution of their target variable is very deviant

from that observed in the whole dataset. The evaluation of the relevance of the subgroups

is done with predefined quality metrics.

There are several search strategies to find relevant subgroups within a dataset, such

as Beam, Exhaustive, and Evolutionary [46]. Subgroups are specified by a description

language defined by domain experts and analysts. According to Rebelo de Sá et al.

[90], such languages are frequently composed of conjunctions of attribute conditions. For

example, consider a dataset in which the instances represent the movie preferences of

streaming users. For each user, the attribute set comprises demographic information

including age, country, and marital status. Besides, the target variable is defined as the

user’s favorite movie genre (e.g., action, drama, or sci-fi). Thus, in a scenario where the

overall favorite genre is drama, a possible subgroup found by an SD algorithm is:

Age ≥ 40 ∧ Country = “Brazil” ⇒ Genre = “Action”
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This subgroup means that the people over 40 who live in Brazil have a distinct genre

preference when compared to the whole dataset. That is, Brazilians over 40 prefer action

movies, while people in general are more into drama. Therefore, using SD in descriptive

analyses helps to reveal hidden groups with exceptional preferences that deviate from the

average. In this work, we use an SD algorithm to find relevant subgroups within the genre

collaboration network, as described in Chapter 6.
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Chapter 4

Identifying and Predicting Hot

Streaks in Musical Careers

Professional careers tend to have phases of high productivity, reaching the career peak.

Hot streaks (HS) is the term commonly used for continuous periods of success above

normal. Previous work reveals that hot streaks can arise at any time in a professional

career [101, 65, 38]. In addition, such phases can occur in different ways in different areas.

For instance, scientists can reach their peak when their publications achieve high citations.

For athletes, such success may be based on rewards or victories in renowned competitions.

We highlight Michael Phelps’ career, the most decorated person of the Olympic Games

history who has conquered 28 medals.1 His career peaked at the 2008 Summer Olympics,

winning gold in all eight competitions he disputed. However, this success did not come

suddenly, as Phelps needed two editions to achieve such a milestone.

Such productivity peaks can also happen in creative careers, including cinema,

art and music [54]. The latter is one of the most volatile industries, being considerably

sensitive to external factors. According to IFPI Global Music Report 2021,2 until 2016,

physical media were the main form to consume music. After that, streaming platforms

came to dominate the music market, moving around US$ 13.4 billion in 2020. This

dynamic nature of the music industry can directly influence the behavior of artists’ careers.

That is, an artist’s career can suffer ups and downs depending on the current market

moment. For example, the singer Cher holds the record for the longest break between

#1 hits on the Billboard Hot 100,3 totaling almost 25 years between singles Dark Lady

(March 23, 1974) and Believe (March 13, 1999).

Overall, the music industry is as dynamic as it is a crucial part of the entertainment

world. Within so much uncertainty, a clear fact is: when an artist is on a hot streak, such

an artist is also at the most profitable moment of a career. One hit wonders have just

one peak and that is it, they are done (ergo the expression “one hit wonder”). Now, the

real stars in the business are able to achieve many peaks and produce millions of dollars

per week. Therefore, identifying hot streaks is one way of investing in the right artist at

1International Olympic Committee: https://www.olympic.org/athletes
2IFPI Global Music Report 2021: https://gmr.ifpi.org/
3Billboard Magazine: https://bit.ly/3hfzMJ0

https://www.olympic.org/athletes
https://gmr.ifpi.org/
https://bit.ly/3hfzMJ0
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the most relevant moments. Such identification is also useful for planning, adjusting, and

even completely changing a marketing direction, for example.

In such a context, we identify and characterize hot streaks in the music scene,

defined by high-impact bursts occurring in sequence within artist careers. Specifically, we

aim to answer the following research questions (RQs):

RQ1. How do the most impactful weeks in musical careers are distributed over time?

RQ2. Does this behavior generalizes into continuous periods of high impact (i.e., hot

streaks)?

RQ3. Are there specific hot streak patterns for distinct musical genres?

RQ4. What happens before, during, and after a hot streak period?

RQ5. Is it possible to predict whether a week belongs to a hot streak period?

RQ6. What are the factors that influence hot streak periods?

By answering all such questions, we uncover relevant insights on the temporal

evolution of musical careers. Furthermore, we propose a model for predicting the most

successful phases on the musical genres scale by grouping artists belonging to the same

genre. The remainder of this chapter is organized as follows. First, in Section 4.1, we

introduce the methodology to answer all research questions. Next, Section 4.2 presents

and discusses the results and experimental evaluation for each RQ. Finally, we conclude

this chapter with our overall considerations on the work in Section 4.3.

4.1 Methodology

To answer all research questions regarding hot streaks in musical careers, we pro-

pose a four-step methodology. We start by collecting data from Billboard and Spotify

to build a success-based dataset (Section 4.1.1). From such data, we build chart-based

success timelines for both artists and music genres and characterize them (RQ1, Section

4.1.2). Then, in Section 4.1.3, we identify hot streak periods in all such time series and

perform exploratory analyses in order to answer RQ2, RQ3 and RQ4. Finally, in Section

4.1.4, we model the hot streak prediction as a binary classification task (RQ5 ), and we

use such a model to uncover the factors behind their occurrence (RQ6 ).
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4.1.1 Data Collection

Billboard is an American-based music specialized magazine, which also operates

in Canada, Brazil, Greece, Japan, South Korea, and Russia. Billboard is widely known

for its exclusive charts on trends across all musical genres. According to IFPI,4 the

United States is the biggest music market in the world, and the Hot 100 5 is the main

all-genre song ranking in the country. It is weekly published by Billboard since 1958, and

is currently built by considering songs’ sales, airplay, and streaming data. Thus, to model

artist success over time, we collect all Hot 100 charts from August 11, 1958 to August 22,

2020 (data collection time) using the Python package billboard.py.6 Each chart contains

100 entries, ranked from the most popular to the least popular song on that week.

However, Billboard charts do not offer all information necessary to answer our

research questions, as chart entries are composed only of the song name and its artists.

Therefore, we enrich our dataset by collecting data from Spotify, the world’s most popular

audio streaming service with more than 356 million users in 178 markets (as of March

2021). Using its API,7 we are able to get extra information on artists and songs. Specif-

ically, we obtain artist genres and debut date, as well as acoustic features for each song,

such as key, mode, and energy. Our final dataset8 is composed of 3,238 weekly charts

containing 24,540 distinct songs from 6,248 artists belonging to 998 music genres. Such

enriched and curated data allow us to build success-based time series to investigate the

presence of hot streak periods in artist and genre careers. Figures 4.1 and 4.2 characterize

our dataset by presenting the top 25 genres in the United States based on the number of

artists and songs, respectively.

4.1.2 Time Series Modeling

Success in the music industry has a temporal structure, as the audience’s tastes

change over time. The dynamics of media platforms, the emergence of new music styles,

and the artists’ releases are some factors that shape what listeners consume. In this work,

we use the Hot 100 charts as our basis to model success over time. For each artist, we

build their time series from the debut date (i.e., the date of the first release obtained from

4IFPI Global Music Report: https://gmr.ifpi.org/
5Billboard Hot 100 Chart: https://www.billboard.com/charts/hot-100
6billboard.py: https://github.com/guoguo12/billboard-charts
7Spotify Developer API: https://developer.spotify.com/
8The dataset is publicly available on http://bit.ly/proj-bade

https://gmr.ifpi.org/
https://www.billboard.com/charts/hot-100
https://github.com/guoguo12/billboard-charts
https://developer.spotify.com/
http://bit.ly/proj-bade
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Figure 4.1: Top 25 music genres in the United States, sorted by the number of artists.
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Figure 4.2: Top 25 music genres in the United States, sorted by the number of songs.

Spotify) to the last chart collected. Thus, each point in the time series represents the

success of such an artist in a given week, according to the Hot 100 chart.

We measure the success of an artist by calculating the rank scores for all of their

songs that appear on the week chart. The rank score of a song i is rank score(i) =

max rank − rank(i) + 1, where max rank is the lowest possible rank (in our case, 100)

and rank(i) is the position of the song on the chart. We then aggregate the rank scores

of an artist using Discounted Cumulative Gain (DCG) [2], as this metric emphasizes the

most relevant records (i.e., the highest ranked songs on the chart) and penalizes by a

logarithmic factor songs that appear lower. The DCG value for an artist is given by

Equation 4.1.

DCG =
n∑

i=1

rank score(i)

log2(i+ 1)
(4.1)

Using such a metric is better than just summing the rank scores of the songs
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Figure 4.3: Rihanna’s success time series (2005-2020). The success is measured on the
rank score DCG obtained from weekly Hot 100 charts.
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Figure 4.4: Rap success time series (1967-2020). The success is measured on the rank
score DCG obtained from weekly Hot 100 charts.

because, in our case, it is preferable for an artist to have the #1 song than two songs

in the middle of the chart (e.g., on positions #49 and #50). Therefore, DCG is more

appropriate to measure success on the charts, and such metric is defined as the artist’s

success measure for each week. For example, Figure 4.3 shows Rihanna’s success time

series from her debut in 2005 to 2020. The highest success peak is observed by the end

of 2011, when she released her sixth studio album Talk That Talk, which had We Found

Love (in collaboration with Calvin Harris) as the lead single. The song stayed on the top

of the Hot 100 for ten non-consecutive weeks, becoming the longest-running number-one

single for both artists.

Analyzing genres’ success over time is also one of the goals of this work, and we

can build genre success time series based on data obtained from Spotify. First, we assign

artists’ genres to their songs, as the songs themselves do not have such information. Then,

for each week, we aggregate all songs from artists belonging to a given genre that appear

on that week’s chart using DCG. Note that a song may be accounted for several time

series, as artists often have more than one genre. For example, Michael Jackson’s genre

list includes pop, r&b, and soul, and thus his songs are included in all three time series.

Considering genres as collections of artists allows a high-level view of their success,

as it becomes easier to identify and analyze genre popularity trends over time. Figure

4.4 presents the success time series for rap from 1967 to 2020. Artists from this genre
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have been consolidating their presence on the charts since the late 1980s, but the first

great success wave happened during the 2000s. Such an impactful era was mainly led

by artists such as Jay-Z, Eminem, and Missy Elliott, who led the charts with successful

solo hits and collaborations with pop and r&b artists, which became extremely popular

in this period. In the late 2010s, rap achieved the highest popularity peak, with a new

generation of rappers in the mainstream, such as Cardi B, Drake, and Kanye West.

4.1.3 Hot Streak Detection

After modeling success in musical careers and with the evidence that the most

successful weeks tend to happen close to each other (see the previous section), we now

assess RQ2 by investigating if such a behavior generalizes into periods of higher impact

(i.e., hot streaks), following recent research on this subject [38, 65]. First, we use a

technique to reduce the dimensionality of the time series to delimiter periods within

careers (Section 4.1.3.1). Then, we define a hot streak as the periods in which the success

is above a certain threshold, obtained from the artist/genre career itself (Section 4.1.3.2).

4.1.3.1 Piecewise Aggregate Approximation

In this section, we present Piecewise Aggregate Approximation (from now on, PAA), a

method to reduce the dimensionality of a time series proposed by Keogh and Pazzani

[55]. Given a time series X = x1, x2, · · · , xn of length n, PAA reduces it into a new series

X = x1, x2, · · · , xN with N dimensions, 1 ≤ N ≤ n. The intuition behind this method is

that the division of the original time series into N equal-sized segments would produce N

new points. Their values are calculated by the average of the points within such frames,

as given by Equation 4.2. Therefore, the approximation of each point on the original time

series is made by simply assigning the PAA value of its corresponding segment.

xi =
n

N

n
N
i∑

j= n
N
(i−1)+1

xj (4.2)

We use such a method because highly impactful periods within artists’ careers may

contain weeks with low values for the success metric. Therefore, PAA is a helpful tool

to smooth such differences and delimit periods in careers. In this work, we use the PAA

implementation of tslearn9 [105], a Python package for time series analysis. Running

it requires defining the number of segments in which the series will be split, as this is

9tslearn: https://github.com/tslearn-team/tslearn/

https://github.com/tslearn-team/tslearn/
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the only parameter of the method. This is made individually for each time series, as

artists’ careers have different sizes. For example, Elvis Presley’s time series begins in

1958, whereas Adele’s starts in 2007. Thus, the number of segments for PAA differs

according to the time series length. To allow comparison between different careers, we

define a unique size of 52 weeks (i.e., one year) for each segment. Hence, the number of

segments is calculated by dividing the time series length by this predefined size.

4.1.3.2 Defining Hot Streaks

The next step in our methodology is to define what makes a hot streak in artists’ careers.

Recalling the definition of hot streaks, such periods must present a success rate above

the usual. Therefore, we identify hot streaks as the periods in which the success metric

(approximated by PAA) is higher than a predefined threshold. Similar to the number of

segments from PAA, we define this threshold individually for each artist’s career. We base

such a threshold on the artist’s activity rate (AR) on Hot 100, which is the ratio between

the number of weeks in which the artist appears on the chart and the total number of

weeks of the time series. Hence, we define the hot streak threshold for each artist, as

follows:

• AR ≥ 20%: threshold is the 80th percentile of the success metric;

• 15% ≤ AR < 20%: threshold is the 85th percentile of the success metric;

• 10% ≤ AR < 15%: threshold is the 90th percentile of the success metric;

• AR < 10%: threshold is the 95th percentile of the success metric.

4.1.4 Definition and Metrics for Hot Streak Prediction

To predict the occurrence of hot streaks, we model such a problem as a binary

classification task from a specific set of features (Section 4.1.4.1). Using such a definition,

we build our experimental analysis through a preprocessing phase and selected learning

methods evaluated by proper metrics (Section 4.1.4.2).

4.1.4.1 Problem Definition

We model the hot streak prediction as a binary classification task in which, for a given

week, an algorithm predicts whether it belongs to a hot streak period in a time series or

not. Formally, let X denote a set of weeks temporally sorted, and Y = {0, 1} be the label

space (i.e., 1 if a week is part of a hot streak and 0 otherwise). Thus, binary classification
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Figure 4.5: Music-oriented Hot Streak Binary Classification from genre time series.

aims to learn a function f : X → Y from the training set {(xi, yi) | 1 ≤ i ≤ m}, where xi ∈
X is an instance characterizing the features of a week, yi ∈ Y is the corresponding target

value, and m is the number of instances. Then, the algorithm performs the predictions

over a test set {(xi, yi) | 1 ≤ i ≤ n} of n instances unseen by the model so far, representing

real-world data.

Here, we consider genre time series for the prediction because artists’ careers are

very distinct from each other, and the majority of them have only one hot streak (see Sec-

tion 4.2.3.1), which may affect the training process. In addition, previous works provide

evidence that a luck component plays an important role within success in individual ca-

reers [54, 101]. On the other hand, genre careers are more stable and have well-established

hot streak periods, providing examples of both hot streak and non-hot streak periods for

the learning algorithms. Besides, it may be more useful for the music community (i.e.,

record label CEOs, producers, and artists themselves) to know hot streak periods for

genres, as it sheds light on next investment targets and future partnerships.

Figure 4.5 illustrates our classification model, called MHSBC – Music-oriented

Hot Streak Binary Classification. First, for each week in the genres’ time series, MHSBC

calculates a set of features (detailed ahead) describing all songs from one genre which are

in the week’s chart. It then runs PAA (see Section 4.1.3) to get the information about

whether such a week is part of a hot streak period or not. Then, it combines genres’ time

series to get a unique set of instances for our model, which aims to be genre-aware. Thus,

the genre information becomes a categorical feature in this final set. Note that we must

respect the chronological order of the weeks, as it is extremely relevant in the train-test

split phase (i.e., we can not make predictions knowing the “future”). Hence, in MHSBC
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model, each instance describes the set of songs from a given genre that entered the Hot

100 chart in that week.

Feature list. To describe genre performance in a given week, we use a set of features

obtained from the genre’s songs within the charts in that week. We obtain such fea-

tures from Spotify and divide them into three main groups: (i) genre-related – number of

genre songs, number of genre distinct artists; (ii) artist-related – median artists per song,

median career time, median genres per artist; and (iii) song-related – number of collabo-

rative songs, number of explicit songs, median danceability, median energy, median key,

mode key, median loudness, median mode, median speechiness, median acousticness, me-

dian instrumentalness, median liveness, median valence, median time signature, median

duration. The description of each feature is given in Appendix A.

4.1.4.2 Setup and Metrics

As mentioned in the previous section, our proposed classification model (MHSBC) uses

genre success time series. From the 998 genres of our dataset, we select only the genres

with 50 or more artists. We do so to reduce noise in the data, as genres with few artists

may be overspecialized (e.g., Texas Latin rap, NYC rap, and Nashville indie). Hence,

our final set is composed of 87 genres, which time series are aggregated to become the

model input. The train-test split is made chronologically, to keep the notion of training

the model with observed data and testing it with the future. For that same reason, we

do not perform cross-validation in our model. We split data in a 70-30% proportion for

training and test sets, and the split date is defined as January 5, 2002.

Regarding the target label distribution, there is a disproportion in the number of

hot streak and non-hot streak instances, which correspond to 20.7% and 79.3% of the

total, respectively. In this case, the natural solution would be to resample the training set

to obtain a 50-50% distribution. However, we are not able to perform such a technique in

our data, otherwise, we lose the temporal information (i.e., order of weeks). This is the

core of our modeling, and thus it can not be unconsidered.

Data Preprocessing. We also handle different ranges for both numeric and categorical

features to correctly process data in our model. For each type of feature, we perform an

appropriate transformation: (i) for each numeric attribute, values are normalized into a

[0, 1] range; (ii) as the genre is the only categorical attribute, it is binarized through the

One-hot Encoding technique [39] to adjust it to the input format of most classifiers. No

feature presented missing values; therefore, they do not impact our experiments.

Learning Methods and Metrics. The hot streak classification aims to predict if a

week is part of a hot streak period for a given genre. Thus, we select four well-established

and widely used classifiers: Logistic Regression (LR), Support Vector Classification with

linear kernel (LinearSVC), Perceptron, and Stochastic Gradient Descent (SGD). We also
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consider a dummy classifier as a baseline performance, which simply predicts the ma-

jority class. The best hyperparameter values for each classifier are obtained from Grid

Search (see Appendix A), and all classifiers are evaluated using standard learning metrics

for classification: accuracy, precision, recall, F1-Score, and the area under the Receiver

Operating Characteristic curve (AUC).

4.2 Results and Evaluation

In this section, we present an experimental evaluation on hot streaks, following the

methodology from the previous section. First, we verify if the weeks with higher success

levels cluster over time (Section 4.2.1 answers RQ1 ). Next, we generalize the continuous

success bursts into hot streak periods (Section 4.2.2 answers RQ2 ). We then perform a

characterization analysis over them (Section 4.2.3 answers RQ3 and RQ4 ). Finally, we

present the evaluation of the hot streak prediction problem, as well as a study on the

underlying factors behind them (Section 4.2.4 answers RQ5 and RQ6 ).

4.2.1 Clustering Success Over Time

In order to answer RQ1, we follow the methodology used by Garimella and West

[38] to investigate whether the most successful weeks occur close to each other in artists’

careers. In this section, we present the results for artists grouped by genres to investigate

cross-genre behavior differences. We define an artist’s career as their success time series

from their debut to the last date of our collection (August 22, 2020), as modeled in Section

4.1.2. Therefore, we set the position P (wi) of a week wi within a time series as its index i.

The k most successful weeks (i.e., with the highest Rank Score DCG values) are denoted

by W1,W2, · · · ,Wk.

Here, our analyses are focused on two main points. First, we investigate the timing

of the most successful weeks of an artist’s career. Then, we look at the distribution of the

difference between the positions of the two most successful weeks in artists’ careers. Such

analyses are all made in comparison with shuffled careers to check the robustness of our

findings, that is, if the observed effects still happen.

Timing of most successful weeks. As a first step, we analyze the positions of the five
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Figure 4.6: Scatter plots with Pearson correlation (r) of the position of the most successful
week in artist careers (W1) with W2, W3, W4, and W5, respectively. Each point represents
an artist. All correlation values are statistically significant (p < 0.05).

most successful weeks within artists’ careers. Figure 4.6 presents scatter plots of P (W1)

versus P (Wi) for i ∈ [2, 5], as well as the Pearson correlation coefficient (r) for each plot.

We consider all artists from our dataset. The results show a strong linear correlation

for all considered genres, and also that the Pearson coefficient is higher when comparing

the first and second most popular weeks. In the comparison with the third, fourth, and

fifth weeks, the correlation decreases, even though its value remains high. Such a finding

reinforces the hypothesis that the most impactful weeks within an artist’s career are more

likely to happen close to each other.

We then expand the investigation on the correlation values to compare the positions

of W1 to Wi for i ∈ [2, 100]. Figure 4.7(a) shows that there is indeed a decrease in the

correlation in all considered genres, but this pattern is not observed in shuffled careers, in

which the correlation is always between 0.3 and 0.4. Therefore, there is a general trend

of clustering within the most successful weeks in artist careers, as such weeks tend to

happen close to each other in the success time series.

Difference of the positions of the most successful weeks. We calculate the

difference of the positions of the top two most successful weeks for artists (P (W1) and

P (W2), respectively). We normalize such a difference by the number N of weeks of the

artist time series. Figure 4.7(b) shows that for all considered genres, the distribution has a

peak around zero, suggesting that these two weeks are close to each other on the timeline.

Such a result agrees with the findings of the previous analysis. Further, when we shuffle

artists’ careers, the distribution of these differences is much different from the original,

demonstrating that this behavior of musical careers is not random. Hence, there is strong

evidence that artists may experience periods of outstanding success, or hot streaks, which

we investigate in the next section.



4.2. Results and Evaluation 57

0 20 40 60 80 100
Wi

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
rr

el
at

io
n 

be
tw

ee
n 

W
1 

an
d 

W
i

Original
Shuffled

(a)

1.0 0.5 0.0 0.5 1.0
(P(W1) - P(W2)) / N

0

1000

2000

3000

4000

5000

6000

N
um

be
r 

of
 a

rt
is

ts

Original
Shuffled

(b)

Figure 4.7: Correlation between the first and i-th most successful weeks (a) and the
normalized difference between the positions of the first and second most successful weeks
within artists’ careers (b).

4.2.2 Identifying Hot Streaks

In the previous section, we found that successful weeks tend to cluster into bursts of

high success occurring in sequence in musical careers. Now, we generalize such continuous

above-average success into hot streak periods, answering RQ2. We do so by applying

Piecewise Aggregate Approximation (PAA, Section 4.1.3) to identify such periods in artist

and genre time series based on their performances on weekly charts.

We continue to use Rihanna’s time series (see Section 4.1.2) to demonstrate how

our method works. Figure 4.8 shows her time series after applying PAA. The threshold

is set as the 80th percentile, as she has an AR of 73%. We observe two distinct hot

streak periods. The first one from April 2008 to April 2009, when she released Disturbia

and Take a Bow, two smash hits that reached the #1 position on Hot 100. The second

hot streak lasted from May 2010 to May 2012, when she released the album Loud, which

contains the also #1 hits What’s My Name and Only Girl (In the World). This period

also includes the release of the aforementioned single We Found Love in collaboration

with Calvin Harris.

Hot streaks are also possible for genres, as musical tastes change over time, defining

which genres are popular or not. Thus, we also run PAA and set a threshold for genres’

time series. Figure 4.9 shows the results for rap. Considering genres as sets of artists,

we may interpret such a time series as the success of all rap artists. We identify three

hot streaks: the first going from September 2002 to September 2008, the second from

September 2009 to September 2010, and the last starting in September 2015 and still

ongoing at data collection time (August 2020). In the period between 2010 and 2015 (i.e.,
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Figure 4.8: Piecewise Aggregate Approximation (PAA) applied to Rihanna’s success time
series (2005–2020). Periods above the threshold are considered hot streaks.
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Figure 4.9: Piecewise Aggregate Approximation (PAA) applied to Rap success time series
(1967–2020). Periods above the threshold are considered hot streaks.

the last two hot streaks), we highlight the rising of other music genres such as tropical

house and electropop, which may have affected the performance of rap artists on charts.

Nonetheless, finding such hot streaks reinforces the analyses of Section 4.1.2, as these

periods are widely known for the appearance of great names of the rap music scene, such

as 50 Cent and Kendrick Lamar.

4.2.3 Characterizing Hot Streaks

Here, we deepen the analyses on hot streaks by uncovering several patterns found

within musical careers (RQ3, Section 4.2.3.1). Furthermore, we perform a comparative

analysis on the periods before, during, and after a hot streak to investigate possible trends

and effects on musical success (RQ4, Section 4.2.3.2).

4.2.3.1 Hot Streak Patterns

In this section, we assess RQ3 to find if there are specific patterns within artists’ careers.

We do so by characterizing the hot streak periods considering relevant features such as
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Figure 4.10: Characterization of artists’ hot streaks: number of hot streaks (left) and
cumulative distribution function of the duration of the longest one in weeks (right).

the number of hot streaks, duration, and position of such a period within the artist’s

career. Music genres may directly impact artist careers, as different audiences receive

and interact with new releases differently. Thus, we perform our analyses by comparing

artists from five popular genres in the United States: pop, rock, country, rap, and soul

(see Section 4.1.1). We also compare these music genres with the aggregate of artists from

all genres (i.e., the whole artist set) to provide a general overview in the analysis. Artists

are grouped considering their Spotify genre list.

We first investigate the number of hot streaks per artist. Figure 4.10 (left) shows

that, in general, the majority of artists (about 70% to 90%) have between one and two

hot streak periods in their careers. Such a pattern happens in all considered genres, but

there are genres with a higher percentage of artists with two or more hot streaks, such

as soul and rock. This phenomenon may happen because these genres have been popular

since the early times of Hot 100, dominating the charts between the 1960s and the 1980s

(see Figure 1.1). Consequently, artists belonging to these genres have a longer and more

established career, increasing the probability of hot streaks. In contrast, as pop and rap

emerged later in the 1980s, artists have shorter timelines to be considered in our model,

reducing the occurrence of such periods.

Next, we analyze the duration of hot streaks (HS). As artists may experience more

than one HS, we consider only the longest one for each artist. In Figure 4.10 (right),

we examine this information through a Cumulative Distribution Function (CDF), which

informs, for a given number of weeks (x-axis), the proportion of artists who have the

longest HS with duration up to that value. For instance, almost 50% of soul artists have

their longest hot streak with at most 104 weeks (two years), while for pop this proportion

rises to nearly 80%. Therefore, we can conclude that in general, pop artists have shorter

hot streaks than soul ones.

Table 4.1 illustrates our findings, showing the top five artists with the most HS

periods, as well as the duration of the longest one. All artists are widely known by
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Table 4.1: Top 5 artists with more hot streak periods (HS), considering all music genres.
Artists are sorted by the number of HS and the duration of the longest one.

Artist Genres HS Longest HS Period of the Longest HS

Bruce Springsteen classic rock, heartland rock, mel-
low gold, permanent wave, rock,
singer-songwriter

8 260 weeks 1983-10-22 to 1988-10-15

Michael Jackson pop, r&b, soul 8 260 weeks 1991-10-12 to 1996-10-05

Mariah Carey dance pop, pop, r&b, urban con-
temporary

7 624 weeks 1989-10-14 to 2001-09-29

The Manhattans classic soul, disco, funk, motown,
philly soul, quiet storm, soul,
southern soul, urban contempo-
rary

7 312 weeks 1972-11-04 to 1978-10-28

The Rolling Stones album rock, british invasion,
classic rock, rock

7 260 weeks 1964-11-14 to 1969-11-08
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Figure 4.11: Cumulative Distribution Function (CDF) of the location of the first hot streak
within artist careers, grouped by genre. Artist timelines are described in percentages, in
which 0% represent the debut week and 100% is the last week collected in our dataset.

the audience and recognized by the critic through nominations and wins at the Grammy

Awards,10 the music industry’s highest honor. Also, four of them (except for The Manhat-

tans) are in the Billboard’s Greatest Artists of All Time list.11 Michael Jackson, known

as the king of pop, has eight hot streaks, and the longest one lasts from October 1991 to

October 1996. In this period, he released some of their most famous hits, such as Black

or White and You Are Not Alone, which topped the charts. His albums Dangerous and

HIStory: Past, Present and Future, Book I also reached the #1 position of Billboard 200,

the magazine’s album parade.

The last aspect analyzed is the position of hot streak periods within artist careers.

Previous studies on other domains show that such periods are temporally localized and

happen at any point of an individual’s sequence of works [65, 101]. Moreover, as we detect

10Recording Academy Grammy Awards: https://www.grammy.com/
11Greatest of All Time: https://www.billboard.com/charts/greatest-of-all-time-artists

https://www.grammy.com/
https://www.billboard.com/charts/greatest-of-all-time-artists
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more than one hot streak for several artists, we choose to focus only on the first one. Thus,

we can investigate at which point of their careers artists experience their first stardom.

Figure 4.11 shows the cumulative distribution of the location of the first hot streak for

artists from selected genres. In general, almost 80% of the artists have their first burst

of success early in their careers (i.e., in the first 20% of their timelines). Nonetheless,

this percentage is higher for soul and rock artists, reaching 90% and 85% of the artists,

respectively.

Finally, it is important to note that artists may have careers of different sizes de-

pending on their debut date, as the last date in the time series is always the same (i.e., the

collection date). However, as music genres are in constant evolution, new artists emerge

in all of them and coexist with the most experienced ones, and thus we believe that our

cross-genre comparison is still valid. Overall, the characterization of hot streaks and the

genre-aware analysis indicate that music genres are indeed a relevant feature to under-

stand artist careers. Hence, we answer our third research question (RQ3 ) by providing

evidence that there are specific patterns for hot streaks when considering different music

genres.

4.2.3.2 Impact Around Hot Streaks

After detecting hot streak patterns within artists’ careers, we move on to the following

research question (RQ4 ), which aims to investigate what happens around a hot streak.

That is, we look at the periods before and after the hot streak itself. Once more, as artists

may experience more than one hot streak in their careers, we now choose only the longest

one. Following the methodology of Garimella and West [38], we consider periods of equal

length before and after each hot streak in our analysis. In other words, for a given artist

with a hot streak of n weeks, we consider the n weeks before and after such a period. We

continue to look at the five music genres from the previous section, but our results can

be easily extended to the other genres from our dataset.

We first analyze the number of songs around hot streaks for each genre. As every

hot streak is composed of several weeks, we aggregate the number of songs in the charts

using the mean value. We do the same for the periods before and after a hot streak.

Figure 4.12 presents the average number of songs for artists before, during, and after a

hot streak. In all cases, artists from all genres seem to have more songs on the charts

during a hot streak, as expected. Such a metric is directly related to success because

the more songs an artist has on the Hot 100, the higher the probability of achieving real

success. Moreover, pop and rock artists manage to have more songs on the chart during

a hot streak when compared to other genres.

Although the 95% confidence interval (CI) provides a certain level of robustness

to our results, we perform statistical tests to ensure them. First, we execute ANOVA

(Analysis of Variance) [45] to compare the averages of the three groups (i.e., before,
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Figure 4.12: Average number of songs before, during and after the longest hot streak of
artists from selected genres. Notches represent the 95% confidence interval (CI) around
the median (orange line). The orange triangle is the mean value.

Table 4.2: Pairwise comparison of the average number of songs for selected genres around
a hot streak (before, during, and after) using Tukey’s HSD test. Cross-marked values
indicate the difference is not statistically significant (p ≥ 0.05).

before vs. after before vs. during during vs. after

All higher lower higher
Pop lower lower higher
Rock higher lower higher
Country × lower higher
Rap × lower higher
Soul higher lower higher

during, and after) by testing a null hypothesis that all means are equal. In our case, it is

rejected for all music genres with p < 0.05, meaning the differences are indeed significant.

Nonetheless, ANOVA does not tell which periods are significantly different from each

other, and thus the next step is to perform a pairwise evaluation to verify the statistical

significance of each one. We do so by conducting Tukey’s honestly significantly differenced

(HSD) test [108] as a post-hoc comparison.

Table 4.2 summarizes the results for the Tukey’s HSD test, and except for the

comparison between before and after for country and rap, all pairwise comparisons indicate

statistically significant differences (p < 0.05). Therefore, we can now affirm that the

average number of songs during a hot streak is statistically higher when compared with

the periods before and after. Furthermore, considering all artists and also for rock and soul

artists, the average number of songs is higher before a hot streak than after, indicating

that there may be a growing success trend in artists’ careers before the stardom. However,
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Figure 4.13: Success around the five most impactful weeks (W1-W5) for artists from
selected genres, measured by Rank Score DCG. Note: the y-axis varies according to the
genre.

we observe the opposite for pop artists, as they have more songs after a hot streak than

before it. This may be a piece of evidence that artists from such a specific genre behave in

a different way and manage to maintain success for longer periods, confirming the findings

from Section 4.2.3.1.

Impact around the most successful weeks. We also look at the impact around

specific weeks to understand the success dynamics of a specific point of an artist’s career.

Here, we analyze the ten weeks before and after the five most impactful weeks (i.e., with

the highest Rank Score DCG), denoted by W1, · · · ,W5. Figure 4.13 shows the curves

for the selected genres, and in all of them, we observe a growing success trend before

the considered week, as pointed out in the previous analysis. Similarly, the success after

such a week does not disappear immediately, reinforcing an effect observed in the charts

in which a song continually loses positions in the charts over the weeks. Hence, the set

of analyses provided in this section shed light on what happens around a hot streak,

answering properly RQ4.
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Table 4.3: Classification evaluation results. Metric values are presented with a 95%
confidence interval (CI) and bold values indicate that a classifier is statistically better for
that metric.

LR LinearSVC Perceptron SGD

Accuracy 0.90993 ± 0.00001 0.90791 ± 0.00005 0.88236 ± 0.01954 0.90505 ± 0.00190
Precision 0.73536 ± 0.00004 0.72764 ± 0.00015 0.67466 ± 0.07060 0.73035 ± 0.00508
Recall 0.78935 ± 0.00004 0.78977 ± 0.00030 0.77301 ± 0.09725 0.75886 ± 0.01923
F1 Score 0.76140 ± 0.00002 0.75743 ± 0.00015 0.70383 ± 0.03769 0.74405 ± 0.00828
F1 Weighted 0.91116 ± 0.00001 0.90935 ± 0.00005 0.88551 ± 0.01623 0.90572 ± 0.00229

4.2.4 Hot Streak Prediction

After identifying and characterizing hot streaks, the next step is to verify whether

such periods are predictable for genres or not. We do so by using Music-oriented Hot

Streak Binary Classification (MHSBC) from Section 4.1.4. The experimental evaluation

of our model is presented in Section 4.2.4.1, whereas Section 4.2.4.2 contains the factor

analysis behind predictions.

4.2.4.1 Experimental Evaluation

From the problem definition and the experimental setup defined in Section 4.1.4, we now

evaluate the MHSBC results to answer RQ5. For a fair comparison, we run the chosen

classifiers separately. We also execute each algorithm ten times, varying the random state

parameter to govern the method’s random choices. Thus, we can get a confidence interval

for the evaluation metrics. As mentioned in the previous section, the train-test split

follows a chronological order, meaning that we test the classifiers using unseen data (i.e.,

whether a week in 2003 is part of a hot streak period for a given genre based on data up

until 2002).

Table 4.3 presents the results for all classifiers considered in this study. All of them

outperform the baseline classifier, which predicts the most frequent class (accuracy =

0.850). Thus, our model reveals to be better than simply guessing, as all classifiers have

higher accuracy values. The baseline does not provide F1-score, as it does not make

predictions (i.e., it simply returns the majority class for every instance). Considering the

four selected classifiers, Linear Regression (LR) is the one with the best results, with an

average accuracy of 0.910 and an average F1-score of 0.761, which are significantly higher

(95% CI) than the other algorithms. Hence, we choose such a classifier as the best one

for MHSBC.

To strengthen our results, we also evaluate the four classifiers using the area under

the Receiver Operating Characteristic (ROC) curve, which is also a widely used perfor-



4.2. Results and Evaluation 65

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

LR (AUC = 0.957)
LinearSVC (AUC = 0.946)
Perceptron (AUC = 0.943)
SGD (AUC = 0.943)

Figure 4.14: ROC curves for selected classifiers with their area under the curve (AUC)
values. The black dashed line represents a random classifier.

mance measure for classification problems. ROC is a probability curve based on the False

Positive Rate (x-axis) against the True Positive Rate (y-axis), and the area under this

curve (AUC) tells how good the classifier is at distinguishing between classes. In our

case, the higher the AUC, the better the classifier is at predicting hot streak and non-hot

streak weeks correctly. The AUC values for our classifiers are presented in Figure 4.14.

In this evaluation, Logistic Regression is also the best classifier, outperforming the other

methods with AUC = 0.957.

Therefore, we are now able to answer RQ5 as it is indeed possible to predict, for

a given week, if it belongs to a hot streak period for music genres. Such a result is highly

relevant for both record labels and artists, as it may guide them in the definition of future

partnerships and collaborations. Choosing featured artists from genres within a hot streak

period may attract a bunch of new listeners and therefore increase sales and streaming

numbers. Next, we investigate which factors are the most important in the hot streak

prediction.

4.2.4.2 Feature Importance

As seen in the previous section, using machine learning methods for hot streak prediction

produces results with high accuracy. However, understanding why and how a model

makes a certain prediction can be as crucial as the outcome itself, shedding light on

the “black box” within the learning algorithms. In this section, we use SHAP (SHapley

Additive exPlanations) [67] in our classification model to allow its interpretability. In

short, SHAP is a game-theoretic approach to explain the output of a machine learning

model, assigning for each feature an importance value for a particular prediction. From

a global perspective, the importance values can be aggregated to show how much each
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Figure 4.15: Features with the highest absolute mean SHAP values.

predictor contributes to the target variable, either positively or negatively.

First, we analyze the features with the highest absolute mean SHAP values. Figure

4.15 is a summary plot with the top 10 features with the highest impact on hot streak

prediction. The result shows features such as the number of songs, median time signa-

ture, median career time, and the number of distinct artists are the most significant to

our model, thus having high predictive power. The descriptive genre features obtained

from the binarization conducted in Section 4.1.4.2 (e.g., genre pop and genre rap) also

appear in the ranking, but their average SHAP values are close to zero, requiring further

investigation.

Next, we examine the positive and negative relationships of the predictors with

the target variable. Figure 4.16 goes further in the summary plot, using SHAP values

to show the distribution of the impact of each feature in the model output. Features

are ranked by their mean absolute SHAP value and each point on the x-axis tells if the

effect of that value is associated with a higher or lower prediction. The color scale informs

whether the feature value is high (red) or low (teal) for that instance. For example, higher

amounts of songs and artists impact positively on the prediction, that is, they are related

to the presence of hot streaks. Such a relation is reasonable since the more artists and

songs from a genre are present in a weekly chart, the higher the probability of the week

belonging to a hot streak.

The median time signature (an acoustic feature obtained from Spotify which spec-

ifies how many beats are in each bar) has also a positive impact on hot streak weeks.

Thus, high loads for such a metric can raise hot streak prediction. On the other hand,

high values for median career time impact negatively the prediction, i.e., the higher the

median career for artists, the lower the probability for a week to be within a hot streak.

Overall, the aforementioned features have a significant impact on the prediction, and

therefore they are the main factors driving hot streak periods. Such results answer our
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Figure 4.16: SHAP values. Features are sorted by the sum of SHAP value magnitudes
over all samples. The color represents the feature values (red high, teal low).

last research question (RQ6 ), as we are able to detect factors that do influence (either

positively or negatively) hot streaks.

4.3 Overall Considerations

In this chapter, we used data from music charts to analyze musical careers (i.e.,

artists and genres). Based on data from Billboard Hot 100, the main song ranking in the

United States, we built time series that represent success on weekly charts. We measured

success by aggregating the artists’ song positions in each chart. Therefore, our goal

was to investigate hot streaks in such careers, which correspond to continuous periods

with success above the average observed until then. We point out our contributions by

answering our six research questions (RQs) as follows.

RQ1. How do the most impactful weeks in musical careers are distributed

over time? From the success time series for artists and musical genres, we found that

the most successful weeks are clustered in time (Section 4.2.1).

RQ2. Does this behavior generalizes into continuous periods of high impact

(i.e., hot streaks)? Yes. We detected hot streaks in musical careers by using the Piece-

wise Aggregate Approximation (PAA), which is a method for reducing the dimensionality

of time series (Section 4.2.2).

RQ3. Are there specific hot streak patterns for distinct musical genres? Yes.

Our characterization analysis revealed general and specific patterns of hot streaks for
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artists of different genres. We evaluated characteristics such as quantity, duration and

appearance of the first hot streaks (Section 4.2.3.1).

RQ4. What happens before, during and after a hot streak period? Overall, we

found that artists have more songs on the charts during periods of hot streaks. Besides,

the career peaks appear and disappear gradually over time (Section 4.2.3.2).

RQ5. Is it possible to predict whether a week belongs to a hot streak period?

Yes. We proposed the Music-oriented Hot Streak Binary Classification (MHSBC) as a

model to assess the hot streak prediction task. Our findings revealed that our model was

successful with an F1-score of 0.761. (Section 4.2.4.1).

RQ6. What are the factors that influence hot streak periods? We used SHAP

values to detect features that increase the predictive power of our model. We identified

that factors such as the number of songs present in the charts and the artists’ career time

are relevant to the classifier, as well as the time signature and energy acoustic features

(Section 4.2.4.2).

Overall, our findings represent a step further in the science behind musical success,

as we observe the temporal evolution of artists’ careers and their success. Being able to

understand the dynamics around hot streak periods and also predict their occurrence

is relevant not only to the scientific community but to the music industry as a whole.

For the first, it may contribute to the development of more complex models, while for

the latter it helps to describe the listeners’ behavior and success trends over artists and

genres. Therefore, both musicians and record labels may orientate their future releases to

achieve or maintain their success levels. In short, the real value of identifying hot streaks

is in revealing the fundamental patterns that govern individual careers.

Limitations. Our study has some limitations that can affect the coverage of our

results. First, as we built our time series based on Billboard Hot 100, we consider only

data from the American market. Therefore, our results may not be generalized to other

markets, as they have specific regional factors that shape musical success. Also, the

artists’ musical genres obtained from Spotify do not follow specific patterns, and thus we

deal with overspecialized genres (e.g., Texas hip hop) that may blur our results. Finally,

as we split data temporally in the classification task, the algorithm may not perform well

for genres with few hot streak instances in the training set.
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Chapter 5

Detecting Collaboration Profiles in

Success-based Music Genre

Networks

In the previous chapter, we assessed musical careers by analyzing hot streaks of individual

artists and bands. Such periods correspond to phases in which the individual success is

above-normal. Genre appeared as a relevant feature, as there are different patterns of

hot streaks according to the genre. In this chapter, we go up one level of abstraction and

focus on music genres and their relation to success. Specifically, we add a new dimension

to our analyses by considering the collaborations that connect different genres. Therefore,

our hypothesis is that success is not only related to the performance on charts, but also

to the genre connections that make hit songs.

Indeed, musicians teaming up is nothing new but has risen far beyond the norm.

Remaining an industry of creative growth, it is only natural for music (i.e., all musical

scene members) adapting to new conditions and redefining its layout. Through cross-genre

collaboration, artists are naturally venturing into new domains and working outside of the

category to which they had originally been ascribed to. Such a collaboration phenomenon

may be reshaping music global environment, by challenging segments of certain genres to

come up with something entirely new [100]. Moreover, this gradual evolution is becoming

a driving force in creating a more collaborative scenario, making music one of the most

innovative art forms.

As this creative market changes, it becomes more unpredictable; and doing both

predictive and diagnostic analyses in such a context remains challenging. Still, we believe

factors leading to an ideal musical partnership can be understood by exploring collabora-

tion patterns that directly impact its success [100, 21, 12]. Hence, in this chapter, we aim

to unveil the dynamics of cross-genre connections and collaboration profiles in success-

based networks (i.e., connections formed by genres of artists who cooperate and create hit

songs). We include other music markets in our analyses, as only considering data from

the United States may not represent the global music scenario (as seen in Chapter 4).

Therefore, we organize our study with the following research questions (RQs).
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Figure 5.1: Proposed methodology to uncover collaboration profiles in genre networks.

RQ1. Does the regional aspect impact on popular genres and their hit songs?

RQ2. How has genre collaboration evolved over the past few years?

RQ3. Which are the potentially intrinsic factors and indicators that influence the col-

laboration success?

We answer such research questions through the remainder of this chapter, which

is organized as follows. Section 5.1 details our methodology to build the genre networks

and to find the collaboration profiles. Then, Section 5.2 presents and discusses the results

of experiments over genre collaboration profiles and their relation to musical success.

Finally, we address overall considerations in Section 5.3.

5.1 Methodology

This section presents the methodology proposed to answering our three research

questions. First, we build a novel dataset with enhanced genre information using data

from Spotify (Section 5.1.1). Then, from such data, we model genre collaboration networks

for both regional and global music markets (Section 5.1.2). Finally, we use network

metrics to uncover collaboration profiles within the genre networks (Section 5.1.3). The

methodology steps are summarized in Figure 5.1.

5.1.1 Music Genre Dataset

Over recent years, the world has seen a dramatic change in the way people consume

music, moving from physical records to streaming services. Since 2017, such services have

become the main source of revenue within the global recorded music market. Thus, as in
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Figure 5.2: Spotify presence worldwide at the time of data collection (May 2020).

Chapter 4, we build our dataset by using data from Spotify. It provides a weekly chart

of the 200 most streamed songs for each country and territory it is present, as well as an

aggregated global chart.

Considering that countries behave differently when it comes to musical tastes, we

collect global and regional charts from January 2017 to December 2019, considering eight

of the top 10 music markets according to IFPI: United States (1st), Japan1 (2nd), United

Kingdom (3rd), Germany (4th), France (5th), Canada (8th), Australia (9th), and Brazil

(10th). Data from South Korea (6th) and China (7th) were not available in Spotify as of

May 2020 (collection date).2 Figure 5.2 illustrates the presence of Spotify worldwide and

the selected markets. We also use Spotify API3 to gather information about the hit songs

and artists present in the charts, such as all collaborating artists within a song (since the

charts only provide the main ones) and their respective genres, which is the core of this

work. Our final dataset contains 1,370 charts from 156 weeks, comprising 13,880 hit songs

and 3,612 artists from 896 different music genres.

Then, we perform a processing phase on the artists’ genres, because Spotify assigns

a list of very specific genres to each artist. In most cases, artists’ genres present a high

degree of detail, which may overcomplicate our analyses. For example, Jay-Z (one of

the most popular rappers in the United States) is assigned to both east coast hip hop

and hip hop genres, which may be described only by hip hop. To simplify our modeling

and further analyses, we choose to map all specific genres to more embracing and well-

established super-genres. Note that the regional aspects are not lost in such a mapping,

because our analyses are made separately for each considered market. Hence, the 896

existing genres are now mapped into 162 super-genres. The dataset is publicly available

1The first Japanese weekly chart is from August 31, 2017.
2Due to the COVID-19 pandemic (which started to be globally acknowledged in February 2020), we

have decided not to update such a dataset to 2021. We prefer to keep most of it without the potential
changes and bias introduced into streaming consumption due to the altered pandemic routine.

3Spotify API: https://developer.spotify.com/

https://developer.spotify.com/
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Figure 5.3: Reduction from the tripartite (a) to the one-mode Genre Collaboration Net-
work (c). The intermediate step is an Artist Network with genre information (b). Artists
and genres are linked when hit songs involve both nodes.

on our project page4 and exploratory analyses on it provide relevant information about

hit songs in music markets, answering then RQ1.

5.1.2 Genre Collaboration Network

To answer RQ2, we model genre collaboration using the Network Science frame-

work.5 A Collaboration Network is usually modeled as a graph formed by nodes (vertices)

that may be connected through edges. For example, nodes represent artists and are con-

nected by an edge if the respective pair of artists has collaborated in a song. Now, to

analyze the interactions between genres, we model music collaboration as a tripartite

graph, in which nodes are divided into three sets: genres, artists, and hit songs; i.e., the

minimum elements to evaluate success. The building process of the genre network from

the tripartite model is illustrated in Figure 5.3(a). Collaborative hit songs are sung by

two or more artists, regardless of their participation (e.g., a typical feat. or a duet6). We

also equally consider all genres linked to an artist because they shape how such an artist

is seen by fans and the music industry.

The analyses and characterization of multipartite graphs is often a complex task,

as most of connectivity metrics and algorithms are not properly defined for this type of

graph. Thus, for directly analyzing the interaction between musical genres, we reduce the

tripartite model into a one-mode network in which nodes are exclusively genres. However,

such a reduction is only possible by executing an intermediate step: building the artist

collaboration network, which is presented in Figure 5.3(b). In such a network, two artists

4Project Bàde: https://bit.ly/proj-Bade
5For formal definitions and more details on Network Science, see Chapter 3.
6The main types of collaboration include featuring (two artists collaborating on the same song), and

(artists who share equal rights), vs. (DJ contest), and with (duet).

https://bit.ly/proj-Bade
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are connected when both collaborate in one or more hit songs. The genre information is

not lost, as it is linked directly to the artists.

We may now build the final one-mode genre network by connecting the genres of

artists who collaborate in the artist network. The edges are undirected and weighted by

the number of hit songs involving artists from both genres, as illustrated by Figure 5.3(c).

In addition, self-loop edges are allowed in our modeling, as there are several hit songs

from artists of the same genre (intra-genre collaboration). For example, the song Old

Town Road7 by Lil Nas X and Billy Ray Cyrus generates an edge between these artists

in the intermediate network; and each of Lil Nas X’s genres (pop rap, country pop and

hip hop) is linked to Cyrus’ only genre (country) with weight 1.

5.1.3 Collaboration Profiling

This section presents our approach to uncover significant factors that compose

a successful music genre collaboration. Inspired by Silva et al. [100], we first extract

information from the success-based networks by evaluating six edge-dependent metrics.

We perform an Exploratory Factor Analysis on such metrics to define factors, and then

perform a cluster analysis to uncover collaboration profiles to investigate the key driving

factors on successful collaborations and then answer RQ3.

Exploratory Factor Analysis (EFA). EFA is a statistical method designed to un-

derline patterns of correlations among observed variables and extract latent factors [28].

Generally, EFA identifies the number of common factors and the pattern of factor loadings

(correlations). It assumes and asserts that manifest (observed) variables are expressed as

a linear combination of factors and measurement errors. Each factor explains a particular

variance in the variables and may find hidden data patterns. Besides, EFA is largely used

by data scientists to better interpret the results, as it reduces the number of analyzed vari-

ables. In our model, we run EFA to evaluate the following network edge metrics: Weight,

Common Neighbors, Neighborhood Overlap, Preferential Attachment, Edge Betweenness,

and Resource Allocation.8

There are two main issues when executing an EFA: (i) determining the number of

factors to retain for analysis, and (ii) selecting the final structure for how the measured

variables relate to the factors. For the former, we use the Parallel Analysis criteria [51],

which is based on random data simulation. The suggested number of factors to extract is

7#1 Song of 2019 according to Billboard Year-End Hot 100 Chart: https://billboard.com/charts/
year-end/2019/hot-100-songs

8See Chapter 3 for definitions

https://billboard.com/charts/year-end/2019/hot-100-songs
https://billboard.com/charts/year-end/2019/hot-100-songs
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then provided and based on examining the scree plot [23] of factors of the observed data

with that of a random data matrix of the same size as the original. Finally, the EFA is

performed using the well known Ordinary Least Squares (OLS) factoring method and an

oblique rotation, allowing factors to correlate with each other.

Cluster Analysis. The second step of our approach is to perform a cluster analysis

to group similar music genre connections based on the aforementioned factors. We use

DBSCAN [33] as a clustering algorithm, which assigns data points to the same cluster

if they are density-reachable from each other. We choose such an algorithm since it

supports outlier detection and does not require a predefined number of clusters. Thus,

two parameters are required to run DBSCAN: ϵ defines the radius of neighborhood around

a point x; and MinPts (minimum points) is the minimum number of neighbors within

the ϵ radius.

To choose the optimal ϵ value, we use a method based on k -nearest neighbor

distances, which calculates the average of the distances of every data point to its k nearest

neighbors. In general, the value of k is specified by the user and corresponds to the

MinPts parameter. As a general rule, the MinPts can be derived from the number of

dimensions D in the dataset as MinPts ≥ D+1. Since there are six topological metrics,

we set MinPts = 7. Therefore, we set the ϵ value as the k value in which there is a sharp

change in the curve of the k-distances.

5.2 Results and Evaluation

Following the steps of our methodology presented in the previous section, we now

perform an experimental evaluation to answer the proposed research questions. First,

we examine Spotify charts from our dataset for each market and year to detect popular

genres (RQ1, Section 5.2.1). Then, we characterize the genre collaboration network to

understand the evolution of each market (RQ2, Section 5.2.2). Finally, to answer RQ3,

we perform a two-step approach to find intrinsic elements behind collaboration success:

factor analysis (Section 5.2.3) and collaboration profile detection (Section 5.2.4).
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Figure 5.4: Number of distinct genres from Spotify charts for each market (2017-2019).

Table 5.1: Most popular music genres in each considered market from 2017 to 2019.

Genre Songs Arts. Genre Songs Arts. Genre Songs Arts.

Global

pop 1,715 424

Canada

pop 1,790 402

UK

pop 1,772 371
hip hop 1,192 281 rap 1,762 209 hip hop 1,138 232
rap 1,184 195 hip hop 1,511 232 rap 974 167
pop rap 845 130 pop rap 1,355 149 dance pop 922 178
dance pop 832 165 trap 1,139 154 pop rap 660 120

Australia

pop 1,646 411

Germany

hip hop 2,604 352

Japan

j-pop 797 163
rap 873 165 pop 1,665 479 pop 705 210
dance pop 822 171 rap 1,223 205 dance pop 438 103
hip hop 792 191 dance pop 650 159 j-rock 312 72
pop rap 657 133 pop rap 462 109 r&b 276 82

Brazil

pop 1,072 256

France

pop 3,138 470

USA

rap 2,057 231
sertanejo 565 82 hip hop 2,660 285 hip hop 1,719 241
brazilian funk 559 156 rap 2,526 245 pop 1,704 340
dance pop 415 101 francoton 1,097 82 pop rap 1,518 139
electro 307 93 dance pop 391 119 trap 1,370 172

5.2.1 Musical Genres Overview

To answer RQ1, we perform an exploratory analysis of the charts from nine markets

(global and eight countries) over three years. We first take an overview of the diversity

of genres from each market. Figure 5.4 illustrates the number of distinct music genres

extracted from the artists who perform the hit songs. Including the global scenario, most

of the markets (six out of nine) present an increasing number of genres, suggesting that

listeners from such markets are becoming more open to new music styles. Regarding

global charts, they present the highest number of distinct genres (98 in 2019), which is

expected since they aggregate data from all markets covered by Spotify. However, Brazil,

Germany, and Japan present a lower number of distinct genres than their peak in 2018,

indicating a behavior different from the rest. They are not English-speaking countries,

which may contribute to the development of specific regional music ecosystems.

Next, we focus on music preferences by investigating the most popular genres in
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Table 5.2: Network characterization for global and three regional markets, representing
the groups of countries with similar network evolution. Underlined values are the highest
metric value for a specific market throughout the considered period.

Metric
Global USA (Group 1) Brazil (Group 2) UK (Group 3)

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

Genres (nodes) 72 79 89 76 73 83 58 63 61 74 76 79
Collaborations (edges) 564 583 709 542 522 670 453 524 392 610 605 627
Avg. degree 15.7 14.8 15.9 14.3 14.3 16.1 15.6 16.6 12.9 16.5 15.9 15.9
Avg. weighted degree 256.9 247.4 236.7 324.6 287.9 241.4 136.1 133.0 95.3 216.5 203.6 159.5
Density 0.221 0.189 0.181 0.190 0.199 0.197 0.274 0.268 0.214 0.226 0.212 0.204
Avg. Clustering Coef. 0.743 0.757 0.754 0.762 0.760 0.726 0.770 0.758 0.677 0.724 0.754 0.738
Self-loops 24 21 28 25 22 27 24 29 27 28 25 30

each market. Table 5.1 presents the five most popular genres in terms of hits songs.

Indeed, each country has its own musical inclinations, although the predominant genres

are mostly pop/pop rap, hip-hop, and rap. Such preference may be due to the increasing

number of collaboration songs among artists from different musical genres, as revealed in

Figure 1.2: growing collaborations of pop, rap, hip-hop, and r&b in recent years. Also,

except for r&b, they are the main genres at the top-5 genre lists on most markets; i.e.,

such genres are among both the most collaborative ones and the most listened on the

globe. Moreover, there are three markets with local genres on their top-5 list: Brazil

with sertanejo and brazilian funk ; France with francoton; and Japan with j-pop and j-

rock. Although local, such genres are potentially good choices for record companies to

encourage musical collaborations. Note local engagement shapes the global environment,

ensuring that music culture within such countries can develop and progress. In fact, some

local genres are crossing such a frontier and becoming extremely popular worldwide, as

hip hop in the 1990s and reggaeton more recently.

5.2.2 Network Characterization

After analyzing the charts, we build the genre collaboration network for each mar-

ket and year to find out how genres connect to answer RQ2. With nine markets (global

and eight countries) during three years, we analyze 27 networks.9 For each network, we

calculate basic statistics on its nodes and edges, as well as structural metrics (Chapter

3). Such statistics are useful to describe the dynamics of the networks (i.e., genre connec-

tions) and may produce insights about the state of each music market. Table 5.2 shows

the network characterization for selected markets.

First, the global genre networks reveal the world is more open to new successful

9All networks can be visualized in https://bit.ly/proj-Bade

https://bit.ly/proj-Bade
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genres (number of nodes/genres growth). Also, the number of genre connections (edges)

increased considerably, meaning more collaborative hit songs are coming from artists

whose genres are not linked in prior networks, opening up new opportunities for those

genres to acquire new listeners. The networks average degree remains stable, while its

weighted value decreases over the years. This could reveal a growth in the number of

collaborations of well-established genres with emerging ones, represented by edges with

low weight values (few hit songs). Still, such low-degree emerging genres may become

popular shortly, expanding their collaborations to other unexplored genres. For instance,

k-pop connections double as it spreads worldwide, approaching genres such as reggaeton

(e.g., the collaboration between J-Hope from BTS and Becky G in the song Chicken

Noodle Soup, September 2019).

For regional markets, we classify the countries into three groups, according to the

similarities in networks’ evolution: (i) USA and Canada; (ii) Brazil, France, Germany and

Japan; (iii) UK and Australia. As the global network, countries in the first group have an

increasing average degree and a decreasing average clustering coefficient, thus indicating

a stronger tendency to diversify the inter-genre collaborations. Then, the second group

includes non-English speaking countries with decreasing connectivity metrics in 2019,

after a peak in 2018. The last group has countries in which more genres are becoming

successful, while the connections are not increasing in the same proportion. Such country

groups reinforce the insights from Section 5.2.1, in which some countries presented similar

behavior regarding popular music genres.

Overall, considering regional markets individually becomes important for producers

and record labels, as they are delivering more global hits over time. Their distinct behavior

emphasizes the strength of cultural aspects on determining how music is consumed and the

success of a given genre or artist. The similarities in genre networks revealed three distinct

groups of countries, which share a cultural and/or geographical proximity. Therefore, in

each market, genre connections may reveal distinct profiles, which are an important tool

for analyzing successful genre collaborations.

5.2.3 Factors Behind Collaborations

In this section, we address the first step of the methodology to uncover collabora-

tion profiles in the genre networks (RQ3, Section 5.1.3). Here, we use Exploratory Factor

Analysis (EFA) to identify the common factors and the relationships among the edge-

dependent metrics of all 27 success-based networks: Weight (W), Neighborhood Over-

lap (NO), Common Neighbors (CN), Preferential Attachment (PA), Resource Allocation
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Figure 5.5: Factor Analysis diagram. Solid and red dashed lines represent positive and
negative correlations, respectively. Dark and lighter lines represent strong [0.6− 1.0] and
weak [< 0.6] correlations, respectively.

(RA), and Edge Betweenness (EB). Overall, the analysis results suggest a three-factor

structure within those six metrics, which helps to analyze the profiles in the next section.

A graphical representation of the emerging structure is in Figure 5.5, and the details on

the Factor Analysis are in Appendix B. As the three factors are conceptually coherent,

we labeled them as follows.

Attractiveness (F1). Factor 1 has high loads for both PA and CN metrics, with

a positive correlation between them. Specifically, values close to zero indicate that two

nodes are not close and attracted, while higher values indicate closer nodes. Therefore,

this factor corresponds to the predisposition of two nodes to connect in the future.

Affinity (F2). Factor 2 has high loads for both RA and W metrics, with a positive

correlation between them. High values indicate strong social ties, and lower ones indicate

weak ties. Hence, this factor measures both the frequency of collaboration between two

nodes and the social strength.

Influence (F3). Factor 3 has high loads for both NO and EB metrics, with a negative

correlation between them. Edges with low NO and high EB certainly consist of local

bridges in the network. That is, they represent a bridge-like connector between two

“social circles”. Therefore, this factor corresponds to the importance level of an edge

with access to different regions in the network.

5.2.4 Genre Collaboration Profiles

Following the methodology proposed to uncover genre collaboration profiles (RQ3 ),

we perform a cluster analysis on the network edges using the DBSCAN algorithm. The
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Figure 5.7: Collaboration profiles for all markets (2017-2019).

detailed steps and intermediary results are in Appendix B. Overall, four distinct clusters

were detected in at least one of the 27 collaboration networks. As an example including

all clusters, Figure 5.6 shows the result of the US network in 2019, where Cluster 0 groups

the outliers identified by DBSCAN (data points in low-density regions, i.e., not associated

with any proper cluster). Clusters 1 and 2 are slightly overlapping, but each covers groups

of high-density data points, which is successful information in this analysis. We can also

certainly conclude Cluster 3 is separate from the others. Next, we describe each cluster.

Now that we have detected a set of predominant clusters on all modeled networks,
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Figure 5.8: Density ridgeline plots of streams in millions for each cluster (log scale).
Clusters are sorted by their median stream values (darker vertical lines).

Table 5.3: Total number of intra- and inter-genre collaborations in each profile.

Collab
Solid Regular

2017 2018 2019 2017 2018 2019

Inter-genre 140 (49%) 125 (42%) 103 (51%) 1,828 (99%) 1,916 (98%) 2,165 (94%)
Intra-genre 145 (51%) 174 (58%) 99 (49%) 23 (1%) 34 (2%) 128 (6%)

Collab
Bridge Emerging

2017 2018 2019 2017 2018 2019

Inter-genre 10 (100%) 7 (100%) 16 (100%) 3 (7%) 1 (17%) 0 (0%)
Intra-genre 0 (0%) 0 (0%) 0 (0%) 40 (93%) 5 (83%) 7 (100%)

the next step is to look at their characteristics for profiling them and defining proper

identities. First, for each network, we calculate the mean of the normalized metrics

values grouped by each cluster id. Then, for each year, we plot radar charts for each

profile with the mean values of each market present in that profile. Figure 5.7 shows such

radar charts, where each cluster is represented by a polygon that exhibits its identity. To

compare the metric values’ magnitude of each cluster, we adopt the following scale: low

is the bottom 30th percentile; medium is between 30th and 80th percentile; and high is the

top 20th percentile. Such scale is based on the annual general values, i.e., considering the

grouped normalized features of all markets by year.

The differences among the three plots represent minimal changes over the years.

However, the distinct shapes show each cluster is high or low in certain features. Partic-

ularly, Cluster 0 presents collaborations with high values for Attractiveness and Affinity

factors, but medium values for Influence. With a similar shape, Cluster 1 presents medium

values for all four factors. On the other hand, Cluster 2 presents high values only for In-

fluence, with low Attractiveness and Affinity. Finally, Cluster 3 is the group with major

differences over the years: in general, its collaborations have medium Attractiveness and

Affinity, and low Influence. Overall, each curve depicts a distinct collaboration profile,

acting as a class descriptor of a cluster.

With the collaboration profiles settled, we can now answer RQ3. First, we analyze

the distributions of success rate, and then the number of intra- and inter-genre collab-

orations for each profile. Here, we define success rate as the average of total streams of

songs belonging to the music genres that compose the collaboration (edge) in that year.
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Figure 5.8 shows the success density ridgeline plots for each profile, indicating that Pro-

files 0 and 1 are composed of the most successful music genre collaborations, on average.

With results from Table 5.3, in general, the most successful profiles are those composed of

more inter-genre collaborations. Such a result may indicate a strong correlation between

musical success and inter-genre collaborations. Indeed, by teaming up with one (or more)

person of a different musical style in a song, both artists may draw from one another’s fan

bases; i.e., they may promote themselves to new public who could increase their fan base

and audiences. To summarize the characteristics of the collaboration profiles, we name

each as follows.

• Profile 0 is Solid Collaboration (Solid), composed of well-established collab-

orations between most popular genres (super-genres), which have been going on

for decades. Examples include: rap and hip-hop, whose collaborative albums are

hugely popular; and hip-hop and pop, whose separating line (between both genres)

has become completely blurred in the last decade, mainly in the USA;

• Profile 1 is Regular Collaboration (Regular), composed of the most com-

mon collaborations in all markets, which are very similar to solid collaborations

but not as engaged. For instance, collaborations between hip-hop/rap/pop and

jazz/blues/soul, which can be typical in many markets, but not as consolidated

when compared to Solid ones;

• Profile 2 isBridge Collaboration (Bridge), composed of collaborations with high

influence, representing bridge-like connectors between two areas of a network (mostly

between divergent music styles). Such collaborations may be possible sources of

investment to increase connectivity and strengthen ties among different audiences.

One example is collaborations between gospel and other genres, such as rap and

MPB (Brazilian Popular Music); and

• Profile 3 is Emerging Collaboration (Emerging), formed mainly of collabora-

tions between regional genres. Such partnerships generally occur within the same

genre; possibly between one (or more) unknown artist and one (or more) established

artist; or maybe in order to easily reach that genre audience. We propose the term

emerging because such a profile can be seen as a transition phase for beginners,

until they establish their fan bases. Examples of regional genres here include k-

pop (popular music from South Korea), moombahton (fusion genre of house music

and reggaeton (from Washington, D.C.), and forró (a popular musical genre from

Brazilian Northeastern Region).
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5.3 Overall Considerations

In this chapter, we analyzed and identified collaboration profiles in success-based

music genre networks. We built such networks based on chart data obtained from Spotify

regarding global and eight regional markets from 2017 to 2019. The temporal aspect is

also considered, since there is an individual network for each year in order to analyze the

temporal evolution in musical markets. We then assessed our goal by answering three

research questions (RQs).

RQ1. Does the regional aspect impact on popular genres and their hit songs?

Yes. Our results suggested that analyzing regional markets individually is fundamental

to properly understand such scenarios, as local genres play a key role in determining hit

songs and popular artists (Section 5.2.1).

RQ2. How has genre collaboration evolved over the past few years? Besides the

differences in the evolution of regional markets, genre collaborations are also increasing,

with emerging local genres achieving global success. Through network characterization, we

found a similarity between three groups of countries (USA & Canada, UK & Australia,

and non-English speaking countries), which present specific patterns in their evolution

(Section 5.2.2).

RQ3. Which are the potentially intrinsic factors and indicators that influence

the collaboration success? The networks’ structures reveal three main factors that

describe a genre collaboration: Attractiveness, Affinity and Influence (Section 5.2.3). Such

factors uncover four different collaboration profiles: Solid, Regular, Bridge and Emerging,

which act as class descriptors of successful partnerships (Section 5.2.4).

Overall, detecting genre collaboration profiles is a powerful way to assess musical

success by describing similar behaviors within collaborative songs from multiple angles.

Our findings may act as base material for further research tasks, e.g., prediction and

recommendation. The former enables predicting the success of a given song/artist/album,

while the latter can be used to point out potentially successful genre/artist collaborations.

This not only benefits the MIR community, but also the music industry as a whole.

In fact, music industry CEOs may maximize expected success by properly investing in

potential collaborations. Finally, artists may also profit by identifying the most suitable

partnerships to lead the album to early stardom. In conclusion, this work sheds light

on the science behind the collaboration phenomenon, providing potential impact to the

music industry.

Limitations. One limitation of this work is that we consider a short period in our

analyses (2017 to 2019) since Spotify started to provide chart data at the end of 2016.

Thus, we cannot make long-term conclusions on the market dynamics. Besides, we do
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not analyze data from South Korea and China (sixth and seventh biggest music markets,

respectively) due to the unavailability of data from such countries, which are extremely

important to the global music scenario. Regarding the profiling approach, EFA and

DBSCAN results may be affected by their parameters and the data dimensionality.
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Chapter 6

Mining Exceptional Collaboration

Patterns on Hit Songs

The genre perspective is fundamental when analyzing the impact of collaborations on

musical success since each genre has a distinct audience that behaves in its own way. In

the previous chapter, we built success-based genre networks and uncovered collaboration

profiles that bring an additional dimension to hit songs. For example, Lady Gaga’s

Grammy-nominated album Chromatica1 has collaboration as one of its biggest strengths.

The collaborations with Ariana Grande (pop), Elton John (rock), and Blackpink (k-pop)

contributed to maintain her among the most prominent pop names nowadays, as well

as introducing her to new audiences. In fact, the partnership with Grande in the song

Rain on Me won the Grammy for Best Pop Duo/Group Performance in 2021. Such an

intra-genre collaboration (they both are pop artists) has a Solid profile, which comprises

well-established connections between popular genres.

Indeed, the rise of collaborations in the music market highlights its dynamic and

unpredictable nature. Given the diversity of collaborations between artists from several

genres, it becomes challenging to conduct predictive and descriptive analyses in such a

context. For example, it may be relevant to record labels to uncover frequent genre

collaborations which achieve a higher level of success to plan future song releases. Thus,

in this chapter, we go further in the study of genre collaborations by using the genre

networks and collaboration profiles to mine exceptional patterns of musical genres in

songs that have been successful in recent years, i.e., to verify if there is a relationship

between the combination of different musical genres and success. Specifically, we aim to

achieve this goal through the following research questions (RQs):

RQ1. Compared to the global scenario, do regional markets present distinct patterns of

frequent genre combinations in hit songs?

RQ2. In collaborative hit songs (i.e., with more than one artist), are there connection

patterns between genres that achieve above-normal success?

1Chromatica was nominated to Best Pop Vocal Album in the 63rd Grammy Awards (2021).
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RQ3. Is it possible to identify and recommend combinations of music genres that are

promising and relevant to each market?

The remainder of this chapter is organized to answer all such questions. First,

we introduce our methodology based on data mining techniques in Section 6.1. Then,

Section 6.2 details the experimental evaluation and presents the results. Finally, we make

our overall considerations on the findings in Section 6.3.

6.1 Methodology

This section presents the methodology used to find both frequent and exceptional

patterns in hit songs. We use two data mining techniques in our experiments: Frequent

Itemset Mining (FIM) and Subgroup Discovery (SD), whose definition and fundamental

concepts are detailed in Chapter 3. Regarding the research questions (RQs), to answer

RQ1 and RQ3, we model hit songs as transactions to find frequent itemsets and association

rules (Section 6.1.1). On the other hand, RQ2 requires to perform an SD algorithm on

the genre collaboration network from Chapter 5 (Section 6.1.2).

6.1.1 Modeling Hit Songs as Transactions

In data mining, discovering frequent itemsets and association rules requires a trans-

actional dataset. In such modeling, the dataset instances (i.e., transactions) are composed

of a list of items.2 Here, we use the Music Genre Dataset (MGD) presented in Chapter 5

to obtain Spotify success data of nine music markets worldwide (global and eight coun-

tries) from 2017 to 2019. MGD provides the list of songs that entered in weekly Top 200

charts for each market and year, as well as acoustic features that describe such songs. In

addition, it provides relevant information on the artists who interpret the songs, such as

the genre list of each one.

We model an individual transactional dataset for each market and year to find the

most frequent genre combinations and association rules. We define each hit song as a

single transaction in which the items are the musical genres of the artists who sing it. If

a song has more than one artist and they all share a common genre, this genre appears

2See Chapter 3 for formal definitions.
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Features Genre 1 Features Genre 2 Pro�le Average
Streams

Attributes Target

Solid, Regular,
Bridge, Emerging

Figure 6.1: Representing the edges of Genre Collaboration Networks as instances of the
Subgroup Discovery (SD) problem.

only once in the transaction. Therefore, we are not interested in the number of repeated

genres in a song, but in the diversity of different genres that compose it.

For example, consider the remix version of Despacito by Luis Fonsi, Daddy Yankee,

and Justin Bieber, which spent 16 consecutive weeks in the #1 position on Billboard Hot

100 in 2017. The transaction correspondent to this song would then comprise the genres

of all three artists: latin, tropical, pop, reggaeton, and hip hop. Besides the fact that latin

and tropical are shared by Fonsi and Yankee and pop is shared by Fonsi and Bieber, each

genre is counted once. Thus, the final transaction for Despacito is represented by the

tuple (hip hop, latin, tropical, pop, reggaeton).3

6.1.2 Network Subgroup Discovery

In order to properly answer RQ2, i.e., to find genre connections with above-normal

success, we use the genre collaboration networks from the previous chapter as the input

of a Subgroup Discovery (SD) task. We consider each market and year separately to

preserve the temporal and regional aspects in our analyses. Recalling the definition of

the SD problem from Chapter 3, its input is a dataset composed of a set of attributes

describing the instances and a target variable, used to distinguish the behavior of the

subgroups from the whole dataset. Thus, a subgroup is said to be exceptional if the

distribution of the target in its instances deviates from the dataset.

In our approach (summarized in Figure 6.1), for each market and year, we consider

the network edges as the instances of the SD model, representing the collaboration between

musical genres. Therefore, it is necessary to select attributes that describe the nodes

individually and also characteristics already known from the collaboration. Hence, the

attribute set for each instance is composed of features from the two genres of the respective

edge, as well as the collaboration profile (Solid, Regular, Bridge and Emerging) for such

3Sorted by alphabetical order.
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an edge. To describe each genre, we select the following acoustic features4 from Spotify:

acousticness, danceability, duration ms, energy, liveness, loudness, speechiness, tempo, and

valence.

As such features are provided for individual songs, we assign each genre the median

values of all songs from artists belonging to such a genre. These values are then discretized

based on the quartiles for each variable. That is, values in the first quartile (below the

25th percentile) are classified as low, whereas values in the second and third quartiles

(between the 25th and 75th percentile) are medium. Values above the 75th percentile are

then classified as high. Finally, we set the average number of streams of each edge as our

target variable, as it is a success metric provided by Spotify.

6.2 Results and Applications

This section presents the results and discussions for each analysis carried out to

answer our the research questions: frequent pattern mining (RQ1, Section 6.2.1), network

subgroup discovery (RQ2, Section 6.2.2), and association rules (RQ3, Section 6.2.3).

6.2.1 Genre Frequent Patterns

Discovering changes in genre preferences shows the dynamic nature of the music

market. As an important cultural artifact, the way music is consumed in different coun-

tries may be influenced by language, demographics, and other social aspects. In addition,

musicians are naturally venturing into new domains and working outside of the style they

had initially emerged from, resulting in a massive variety of new songs and musical tastes.

Therefore, in this section, we answer RQ1 by investigating whether genre combination

varies at a country level. That is, we analyze if the association of distinct musical genres

in hit songs has specific patterns in global and regional markets.

We focus on finding the most frequent genre associations by applying a Frequent

Itemset Mining (FIM) method from the set of hit songs in each musical market from

the Music Genre Dataset (MGD). We do so by running the Python implementation of

Apriori,5 one of the most used state-of-the-art FIM algorithms [3]. Here, we perform a

4The definitions of the acoustic features are given in Chapter 2.
5PyFIM: https://borgelt.net/pyfim.html

https://borgelt.net/pyfim.html
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Table 6.1: Top 5 most frequent patterns in global and English-speaking markets (2019).

Market Pattern Support Market Pattern Support

Global

(’dance pop’, ’pop’) 0.271

Australia

(’dance pop’, ’pop’) 0.294
(’latin’, ’reggaeton’) 0.173 (’rap’, ’hip hop’) 0.162
(’hip hop’, ’trap’) 0.172 (’electropop’, ’pop’) 0.145
(’rap’, ’hip hop’) 0.168 (’rap’, ’pop rap’) 0.145
(’rap’, ’trap’) 0.151 (’pop rap’, ’hip hop’) 0.131

UK

(’dance pop’, ’pop’) 0.285

USA

(’hip hop’, ’rap’) 0.305
(’rap’, ’hip hop’) 0.159 (’trap’, ’rap’) 0.289
(’tropical house’, ’pop’) 0.133 (’pop rap’, ’rap’) 0.261
(’tropical house’, ’dance pop’) 0.127 (’trap’, ’hip hop’) 0.246
(’tropical house’, ’dance pop’, ’pop’) 0.125 (’pop rap’, ’hip hop’) 0.230

temporal and regional analysis, running the algorithm separately for each market and year

(2017 to 2019). Following the methodology of Section 6.1.1, we define the transactions

of our FIM task as hit songs, whose items are the musical genres of each artist who sing

them. As our goal is not to evaluate the period in which each song remained on the charts,

they are included only once in the dataset. The frequent genre patterns are evaluated

using relative support, which is the proportion of transactions that contain such a pattern.

Overall, as language is crucial for listening to music, we divide our eight regional

markets into two distinct groups: English and non-English speaking countries. The former

includes Australia, Canada, the United Kingdom, and the United States, while the latter

comprises Brazil, France, Germany, and Japan. We then perform our analyses comparing

the countries with each other and the patterns found in the global charts, which is an

aggregation of all territories in which Spotify is available. Here, we present the results

for selected markets and years for readability purposes. The complete data with frequent

patterns for all markets over time are shown in Appendix C.

Table 6.1 presents the five most frequent genre patterns in hit songs for global and

English-speaking markets in 2019. Itemsets are sorted by their relative support value, i.e.,

their frequency. Regarding the global scenario, there is a strong presence of mainstream

genres such as pop, hip hop, and rap. These genres include regional versions of themselves

(e.g., Chicago rap is included in rap), which may contribute for their high support values.

Besides, the combination of the regional genres latin and reggaeton appear in 17.3% of

all global hit songs, showing their popularization across the world. The Latin music

expansion has its roots in the early 2000s with names such as Shakira and Ricky Martin.

In the late 2010s, it has achieved a higher level of popularity led by artists such as Bad

Bunny, J Balvin, and Karol G.

Analyzing the English-speaking countries individually, we note a high similarity

in the popular genre combinations. For instance, the union of hip hop and rap, which is

present in 30.5% of hit songs in the United States, is also relevant in Australia (16.2%),
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Table 6.2: Top 5 frequent patterns in global and non-English speaking markets (2019).

Market Pattern Support Market Pattern Support

Global

(’dance pop’, ’pop’) 0.271

Brazil

(’brazilian funk’, ’pop’) 0.177
(’latin’, ’reggaeton’) 0.173 (’electro’, ’brazilian funk’) 0.102
(’hip hop’, ’trap’) 0.172 (’sertanejo’, ’brazilian funk’) 0.097
(’rap’, ’hip hop’) 0.168 (’electro’, ’pop’) 0.080
(’rap’, ’trap’) 0.151 (’trap’, ’hip hop’) 0.064

France

(’hip hop’, ’pop’) 0.584

Japan

(’j-rock’, ’j-pop’) 0.283
(’rap’, ’hip hop’) 0.449 (’other’, ’j-pop’) 0.140
(’rap’, ’pop’) 0.423 (’anime’, ’j-pop’) 0.138
(’rap’, ’hip hop’, ’pop’) 0.393 (’dance pop’, ’pop’) 0.133
(’francoton’, ’pop’) 0.174 (’r&b’, ’j-pop’) 0.108

Canada6 (27.2%) and the United Kingdom (15.9%). All such countries present a strong

similarity to the global market, as they share several cultural aspects, including language.

In fact, English is the most widely spoken language worldwide in terms of countries where

it is official, accounting for 59 countries in all continents.7

On the other hand, the analysis of frequent genre patterns for non-English speaking

countries reveals a strong regional component in most countries. Table 6.2 presents the

five most frequent genre associations in 2019 for three countries:8 Brazil, France, and

Japan. All such countries have patterns with regional rhythms, such as francoton in

France, and brazilian funk and sertanejo in Brazil. However, Japan stands out in this

regard, as all five patterns have regional styles. The main genres in such a market market

include j-pop, j-rock and anime. Besides, our results reveal the absence of genres such as

hip hop and rap in Japan, which are present in all other markets. In all four countries,

the presence of local genres increased over time, revealing a tendency of the population

to value their own culture and consequently promote it globally.

t

6.2.2 Exceptional Genre Collaborations

In this section, we answer RQ2 by finding exceptional genre collaboration patterns

from hit songs, i.e., collaborations in which the success is above the average in the whole

dataset. Therefore, we perform a subgroup discovery (SD) analysis in our genre collab-

oration networks. We maintain the notion of temporality in our analyses as we build,

6We do not show data for Canada in Table 6.1 since its ranking is very similar to the USA.
7World Atlas (Access on May 3, 2021): https://bit.ly/3ePt7CK
8Germany is not shown in Table 6.2 as its ranking is similar to Global.

https://bit.ly/3ePt7CK
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for each market, a collaboration network from hit songs of each year (2017, 2018, and

2019). Hence, we analyze 27 distinct collaboration networks (three annual networks for

nine music markets). Following the methodology presented in Section 6.1.2, we consider

the network edges as the instances of our SD problem, described by acoustic features of

the genres and the collaboration profile between them. We also set the average number

of streams as the target value.

Here, we use the Beam Search algorithm from the pysubgroup Python library9 [62].

This algorithm finds the relevant subgroups according to a predefined target variable

(here, the average number of streams), evaluated by a quality metric. In this work,

we use the function StandardQFNumeric from the same library, which handles numeric

target variables. For a given subgroup SG and a parameter α, this function is defined by

Equation 6.1. NSG is the number of instances in the subgroup, N is the total number of

instances in the dataset, µSG is the average of the target variable within the subgroup, and

µ is the average of the target variable in the dataset. In our experiments, we empirically

choose α = 0.5, as we want to emphasize the difference in the target variable rather than

the subgroup size.

q(SG, α) =
(
NSG

N

)α

(µSG − µ) (6.1)

Table 6.3 shows the exceptional subgroups found by BeamSearch in the networks

for nine global and regional markets from 2017 to 2019. Regarding the global network,

there are no exceptional subgroups in 2017 and 2018, which may indicate a homogeneous

behavior in the collaborations during this period. Following the popularization of stream-

ing services, there is a change in 2019, when a specific subgroup with an average stream

count four times higher than expected emerges in the network. Such a subgroup includes

edges in which the first genre has low acousticness, medium danceability, high degree (i.e.,

connectivity), medium duration, and high energy. In contrast, the second one has medium

values for energy, loudness, and tempo. In addition, the edges composing the subgroup

share the Regular collaboration profile. An example is the collaboration between electro

house and pop, which happens in the song Happier by Marshmello and Bastille. The song

was released in August 2018, but its popularity grew until 2019, as it spent 27 weeks in

the top 10 of the Billboard Hot 100.

In a lower-level analysis, all regional markets have subgroups with attributes and

target distributions different from each other. However, when analyzing each subgroup

individually, we note some connections that repeat in some countries. For instance, in

2018, the edge between dubstep and pop belongs to exceptional subgroups in five markets:

Australia, Canada, Germany, United Kingdom, and the United States. Except for Ger-

many, all countries are English-speaking and share several cultural aspects. Besides, the

Internet and social media advance provides a global platform where users can share and

9pysubgroup: https://github.com/flemmerich/pysubgroup

https://github.com/flemmerich/pysubgroup
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Table 6.3: Exceptional subgroups in networks from selected markets (2017-19).

Market Year Subgroup N E SSG SD Q

Global
2017 no exceptional subgroups found
2018 no exceptional subgroups found
2019 acousticness=’low’ ∧ danceability=’medium’ ∧ degree=’high’ ∧ duration ms=’medium’ ∧ energy=’high’ ⇒

energy=’medium’ ∧ loudness=’medium’ ∧ tempo=’medium’ [profile=’regular’]
15 20 185.95 45.14 70.79

Australia
2017 danceability=’high’ ∧ liveness=’low’ ⇒ liveness=’low’ ∧ valence=’high’ 5 9 19.55 3.11 3.59
2018 acousticness=’low’ ∧ danceability=’medium’ ∧ valence=’low’ ⇒ speechiness=’medium’ 12 11 20.39 3.87 5.37
2019 acousticness=’low’ ∧ danceability=’medium’ ∧ degree=’high’ ⇒ energy=’medium’ ∧ loudness=’medium’ ∧

speechiness=’medium’ [profile=’regular’]
14 19 11.05 2.41 3.97

Brazil
2017 danceability=’medium’ ⇒ acousticness=’high’ ∧ degree=’medium’ ∧ duration ms=’low’ ∧ energy=’high’ 14 19 18.69 6.13 5.14
2018 speechiness=’high’ ⇒ acousticness=’high’ ∧ danceability=’high’ ∧ duration ms=’low’ 3 2 96.95 4.82 12.79
2019 acousticness=’medium’ ∧ liveness=’high’ ∧ speechiness=’high’ ⇒ danceability=’high’ ∧ valence=’high’ 4 3 67.08 4.41 8.33

Canada
2017 liveness=’low’ ⇒ acousticness=’medium’ ∧ danceability=’high’ ∧ degree=’medium’ ∧ speechiness=’medium’ 6 8 14.26 2.17 3.18
2018 danceability=’medium’ ∧ energy=’high’ ∧ valence=’low’ ⇒ speechiness=’medium’ 12 11 20.36 2.36 4.78
2019 acousticness=’low’ ∧ danceability=’medium’ ∧ degree=’high’ ∧ speechiness=’medium’ ⇒ danceabil-

ity=’medium’ ∧ loudness=’medium’ ∧ tempo=’medium’ [profile=’regular’]
12 16 10.95 1.79 3.33

France
2017 acousticness=’medium’ ∧ degree=’medium’ ∧ tempo=’low’ ⇒ duration ms=’medium’ 12 25 8.28 2.74 2.45
2018 danceability=’medium’ ∧ duration ms=’medium’ ∧ liveness=’high’ ∧ loudness=’high’ ⇒ tempo=’medium’ 14 19 8.50 2.91 2.54
2019 danceability=’high’ ∧ liveness=’medium’ ∧ valence=’high’ ⇒ acousticness=’medium’ 3 2 27.93 4.16 3.24

Germany
2017 liveness=’low’ ⇒ acousticness=’medium’ ∧ degree=’medium’ ∧ energy=’high’ ∧ speechiness=’medium’ 6 8 35.92 3.65 7.79
2018 acousticness=’low’ ∧ loudness=’high’ ∧ tempo=’high’ ∧ valence=’low’ ⇒ tempo=’medium’ 12 11 23.84 4.45 6.87
2019 energy=’high’ ⇒ liveness=’low’ ∧ tempo=’low’ 9 22 20.03 3.87 5.36

Japan
2017 danceability=’medium’ ∧ liveness=’medium’ ⇒ danceability=’medium’ ∧ duration ms=’medium’ ∧ loud-

ness=’medium’ ∧ tempo=’low’ ∧ [profile=’regular’]
11 16 0.76 0.27 0.19

2018 loudness=’high’ ⇒ danceability=’low’ [profile=’solid’] 2 2 8.36 0.35 1.11
2019 acousticness=’low’ ∧ danceability=’low’ ∧ speechiness=’low’ ⇒ valence=’low’ 3 2 12.30 0.42 1.62

UK
2017 liveness=’low’ ⇒ acousticness=’medium’ ∧ degree=’medium’ ∧ duration ms=’medium’ ∧ tempo=’low’ 11 17 27.23 4.19 7.73
2018 acousticness=’low’ ∧ energy=’high’ ∧ valence=’low’ ⇒ speechiness=’medium’ ∧ tempo=’medium’ 11 10 37.80 6.61 8.72
2019 acousticness=’low’ ∧ danceability=’medium’ ∧ degree=’high’ ∧ liveness=’medium’ ⇒ danceability=’medium’

∧ loudness=’medium’ ∧ tempo=’medium’ [profile=’regular’]
13 19 15.78 3.44 5.46

USA
2017 loudness=’medium’ ∧ tempo=’low’ ⇒ duration ms=’medium’ ∧ speechiness=’medium’ ∧ tempo=’low’ 6 4 94.58 13.38 17.58
2018 acousticness=’low’ ∧ degree=’medium’ ∧ energy=’high’ ∧ valence=’low’ ⇒ speechiness=’medium’ 13 12 85.66 14.20 22.03
2019 acousticness=’low’ ∧ danceability=’medium’ ∧ degree=’high’ ⇒ energy=’medium’ ∧ loudness=’medium’ ∧

speechiness=’medium’ [profile=’regular’]
13 18 58.60 6.65 14.67

N: number of nodes E: number of edges SSG: average streams in subgroup (106). SD: average streams in network (106). Q: quality metric value (107).
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promote their musical tastes. The American DJ Marshmello appears again in two of the

most popular songs involving dubstep (one of his musical genres) and pop: Wolves with

Selena Gomez and Friends, in partnership with Anne-Marie.

We also highlight two regional markets with a strong presence of local genres in

exceptional subgroups, revealing the popularity of such genres in their countries. Popular

subgroups in Japan involves connections of the anime genre with itself (i.e., intra-genre

collaboration) and j-pixie in 2018 and 2019, respectively. Besides, Brazilian regional

genres appear in subgroups from all considered years. Specifically, in 2019, the subgroup

that comprises the edge between afrofuturism and pagode baiano has an average number

of streams more than ten times bigger than the whole network. Such a huge success is

boosted by songs such as Bola Rebola by Anitta, Tropkillaz, J Balvin, and MC Zaac, which

debuted in #1 in Brazil’s daily chart in Spotify10 with more than 1.2 million streams.

Therefore, as the second and tenth biggest music markets in the world,11 such countries

reinforce the importance of considering regional markets individually, as their engagement

shapes the global environment.

6.2.3 Recommending Promising Genre Associations

Using the data mining framework offers a wide range of possibilities to perform

descriptive analyses in datasets. For instance, the frequent genre patterns mined in Section

6.2.1 can be used to uncover association rules, which inform how items (i.e., music genres)

are associated with each other. Recalling the definition from Chapter 3, association rules

are represented with expressions from the type A → B, representing the occurrence of an

itemset B (i.e., consequent) given that A (i.e., antecedent) also happens. There are several

metrics to evaluate such rules on different perspectives, including likelihood (confidence)

and surprise (lift value). In this section, we answer RQ3 by using such rules to detect

and recommend outstanding genre associations.

We define promising rules according to their lift value, which measures their level of

surprise. The intuition behind lift is that it is the ratio between the joint probability of the

antecedent and the consequent, and their probability of being statistically independent.

Therefore, values above 1 mean that the consequent is much more likely to happen than

expected, given the occurrence of the antecedent. In contrast, values below 1 represent

the opposite. As we aim to find the most promising genre associations, we look for rules

with high lift values. Here, we still perform an individual analysis for each music market

10Spotify Chart, 2019/02/22: https://spotifycharts.com/regional/br/daily/2019-02-22
11IFPI Global Music Report 2019: https://gmr.ifpi.org

https://spotifycharts.com/regional/br/daily/2019-02-22
https://gmr.ifpi.org
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Table 6.4: Association rules in global and regional markets sorted by lift value (2019).

Market Rule Lift Confidence

Global
(’latin’, ’reggaeton’) → tropical 7.922 0.468
(’latin’) → tropical 7.821 0.462
(’reggaeton’) → tropical 7.722 0.456

Australia
(’tropical house’) → house 7.655 0.342
(’tropical house’, ’pop’) → house 7.173 0.321
(’tropical house’, ’pop’) → electro 7.111 0.670

Brazil
(’hip hop’) → trap 6.187 0.434
(’brazilian funk’, ’pop’) → pagode baiano 5.473 0.425
(’hip hop’) → pop rap 5.235 0.303

Canada
(’r&b’) → soul 7.485 0.226
(’dance pop’) → tropical house 3.214 0.243
(’dance pop’, ’pop’) → tropical house 3.160 0.239

France
(’rap’, ’pop’) → hip hop 1.301 0.900
(’rap’, ’pop’) → francoton 1.263 0.325
(’hip hop’, ’pop’) → rap 1.259 0.796

Germany
(’dance pop’) → tropical house 5.909 0.400
(’dance pop’) → electro 5.908 0.338
(’dance pop’, ’pop’) → tropical house 5.824 0.394

Japan
(’r&b’) → j-rap 8.067 0.228
(’dance pop’) → electro 4.348 0.283
(’dance pop’, ’pop’) → electro 4.284 0.279

UK
(’rock’) → indie rock 8.370 0.364
(’rock’) → indie 6.216 0.231
(’pop rap’, ’hip hop’) → trap 5.682 0.660

USA
(’pop rap’, ’pop’, ’rap’) → r&b 2.990 0.291
(’pop’, ’rap’) → r&b 2.888 0.281
(’hip hop’, ’pop’) → r&b 2.878 0.280

and year, using the Apriori algorithm to find the relevant rules.

Table 6.4 present the three most promising rules for each market in 201912. We

sort the rules by their lift values, but we also present the confidence value to enrich our

analyses. The results for the global market reveal the strong association of regional genres

such as latin, reggaeton, and tropical. Analyzing the lift value for the first rule, we can

affirm that the occurrence of the genre tropical when latin and reggaeton co-occur in a hit

song is almost eight times than the expected. Such a result indicates that adding tropical

in songs containing latin and reggaeton may increase in up to 7.922 times the chances of

reaching the Top 200 chart. Besides, the rule confidence informs that tropical is present in

46.8% of the transactions (i.e., hit songs) that contain latin and reggaeton. Indeed, Latin

musical genres had a boom in 2019, following the continuous growing trend observed in

the late 2010s. Despite not achieving the #1 position as Luis Fonsi and Daddy Yankee

12For readability purposes, the complete results for 2017 and 2018 are in Appendix C.
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did in 2017 with Despacito, artists such as Karol G, Bad Bunny, Ozuna, and J Balvin

demonstrated the power of such genres, as they managed to put two or more songs in the

charts.

We also note the presence of local genres in outstanding association rules, mainly in

non-English speaking countries. For instance, francoton is associated with rap and pop in

France, whereas the probability of j-rap occurring is eight times higher given the presence

of r&b in Japanese hit songs. In Brazil, the genre pagode baiano (consequent) appears

on 42.5% of the songs containing brazilian funk and pop (antecedent). In addition, the

occurrence of the antecedent of such a rule increases more than five times the chances of the

consequent in Brazilian hit songs. Thus, combining such genres increases considerably the

chances of a song to reach Brazilian charts. The singer-songwriter Anitta is an example

of such an effect, as her music style list includes all three genres aforementioned. She

is one of the most popular artists in the country, and her singles Onda Diferente (with

Ludmilla) and Combatchy (with Lexa, Lúısa Sonza, and MC Rebecca) contributed to the

high relevance of associating such music genres.

Overall, association rules are a powerful tool to understand musical success, as they

reveal the level of combination between musical genres in global and regional markets.

Similar to the previous sections, local genres play a fundamental role in regional markets,

reinforcing their distinct cultural identities. Besides, using lift values to evaluate rules

allows recommending promising genre combinations based on their high association level.

Such an approach provides considerable benefits to artists, as they can plan their subse-

quent releases by choosing artists from genres with a high level of association with their

own to collaborate. In addition, record labels may use our findings to diversify their set of

artists and promote collaborations with high potential of success between them. Indeed,

music is a dynamic and unpredictable industry, but this strategy may help guide artists

and record labels to develop approaches to achieve success and increase their numbers.

6.3 Overall Considerations

In this chapter, we investigate the relation between the combination of different

musical genres and success under a data mining perspective. Using data from the Music

Genre Dataset, which contains Spotify chart information from several markets, we perform

descriptive analyses to identify frequent genre combinations and exceptional subgroups

in genre collaboration networks. We conducted temporal analyses for both global and

regional markets, i.e., we run the data mining algorithms individually for each market

and year (2017 to 2019). Such an approach is helpful to reveal the evolution of musical
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tastes over time and show how cultural aspects shape local music markets. We address

such an objective by answering three research questions (RQs).

RQ1. Compared to the global scenario, do regional markets present distinct

patterns of frequent genre combinations in hit songs? Yes. We modeled hit songs

as transactions in which the items are their musical genres to run a Frequent Itemset

Mining algorithm. We found that there is indeed a difference in popular genre patterns

in regional markets, mainly in non-English speaking countries (Section 6.2.1).

RQ2. In collaborative hit songs (i.e., with more than one artist), are there

connection patterns between genres that achieve above-normal success? Yes.

We use a Subgroup Discovery technique in genre collaboration networks to detect genre

connections in which the success metric (i.e., the average number of streams) deviates

from the whole network. We identified exceptional subgroups in all markets, and each

one presented distinct results that show the importance of considering the local component

in success analyses (Section 6.2.2).

RQ3. Is it possible to identify and recommend combinations of music genres

that are promising and relevant to each market? Yes. We mined association rules

to recommend promising genre combinations based on their level of surprise. Again, we

found that local genres play a fundamental role in regional markets as they are included

in most of the relevant associations (Section 6.2.3).

In conclusion, performing diagnostic analyses is crucial in music, as it allows the

understanding of some relevant aspects behind success. Following the findings from pre-

vious chapters, our results reinforce the importance of analyzing regional markets, as they

behave differently compared to the global scenario or even to the United States (i.e., the

biggest music market in the world). For example, in the past few years, the world has

seen local genres such as reggaeton and k-pop becoming extremely popular worldwide.

Therefore, our findings provide benefits to artists and record labels, as they serve as a

first step in developing strategies to promote their work across the world.

Limitations. One limitation of this work is that we do not consider how many times

a hit song appears in Spotify charts each year when building our transactional database.

Such a strategy would emphasize the genre frequency, by counting the song several times;

but, on the other hand, the distinctness of hit songs would be lost. In addition, we do

not use the position in the charts in our analyses. Thus, songs that reached the Top 10

are treated equally to songs from the bottom of the charts. Further experiments must

evaluate the impact of such information in genre popularity compared to the analyses

already performed here.
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Chapter 7

Concluding Remarks

In the past few years, music has been transformed by digital technologies and analytics.

The popularization of streaming services facilitates the analyses on this subject, as they

provide a wealth of data about how music is discovered and consumed. One example is the

study of music genres, which are fundamental in the musical scenario by aggregating songs

with common characteristics. Popular genres are constantly changing, and the notion

of genres themselves is blurred as never before. Acting as one of the most prominent

high-level music descriptors, analyzing the music ecosystem from a genre perspective is

highly relevant to understanding its dynamics. Therefore, in this work, we analyzed

artist collaboration from a genre perspective to better understand how genre connections

impact musical success. Here, we presented our contributions according to the three

specific research goals (RGs) that guide this work.

RG1. Understand the temporal evolution of both artist and genre careers,

by identifying and predicting periods of high impact in such careers (i.e., hot

streaks). We investigated the temporal evolution of musical success to identify and

predict periods of high impact in such careers. We modeled success in the music industry

by building time series for artists and genres based on weekly chart positions. Using such

series, we proposed a method to detect the continuous periods in which success is above

average, i.e., hot streaks. The characterization of such hot streaks demonstrated that

music genres have specific behavior patterns that must be observed. As genre is a crucial

factor in musical success, we presented a genre-based model to predict hot streak periods.

Our results showed that our model can successfully predict whether a week belongs to a

hot streak period. Moreover, we found that the occurrence of such periods depends not

only on the songs present in the charts but also on information obtained from the genres

and artists, such as collaboration.
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RG2. Analyze the dynamics of cross-genre connections by detecting collabo-

ration profiles in success-based networks (i.e., connections formed by genres of

artists who cooperate and create hit songs) Indeed, artist collaboration is a strong

force driving music nowadays. It is deeply related to music genres, as such connections

usually help artists bridge the gap between styles and genres and approach new audiences.

Therefore, our next research goal (RG2 ) is to analyze the dynamics of cross-genre connec-

tions based on artists who cooperate and create hit songs. We built genre collaboration

networks using data from global and regional markets. Our results showed that analyzing

distinct markets worldwide is fundamental, as local genres play a key role in determining

popular songs and artists. Furthermore, the networks’ structure (i.e., connectivity met-

rics) revealed three distinct factors to describe genre connections: Attractiveness, Affinity,

and Influence. From such factors, we performed a cluster analysis to uncover four dif-

ferent collaboration profiles: Solid, Regular, Bridge, and Emerging. Such profiles are an

important tool to assess musical success, as they act as class descriptors of successful

partnerships.

RG3. Mine frequent genre patterns within hit songs in recent years, i.e.,

investigating the relationship between combining different music genres and

musical success In order to deepen the knowledge regarding the impact of genre collab-

oration in musical success, we investigate the combination of different music genres in hit

songs by mining both frequent and exceptional genre patterns (RG3 ). We modeled hit

songs as transactions for each regional market and found frequent genre combinations by

running a Frequent Itemset Mining algorithm. Next, we applied a Subgroup Discovery

technique in the collaboration networks to reveal unusual genre connections that achieve

a high level of success. All such analyses revealed a difference in popular genre patterns in

regional markets, mainly in non-English speaking countries. In such markets, local genres

play a crucial role in musical success, producing a high impact in the global scenario.

Finally, we used association rules to recommend promising genre combinations. Again,

regional genres are included in the most relevant associations, reinforcing the fact that

local engagement shapes the global environment.

Overall, this work provides an extensive diagnosis and relevant insights on how gen-

res relate to musical success. We contribute to the Hit Song Science field by advancing the

knowledge on musical genres and collaborations as features in success-based models and

making available a novel dataset with regional and temporal information. Such findings

benefit not only scientists but also the music industry. In fact, in the past few years,

several music actors have been using data insights to perform diagnostic analyses on the

market and support business decisions. For instance, Instrumental is a data-driven British

service that aims to use artificial intelligence and machine learning techniques to discover

high potential talents and offer the most promising partnerships for independent artists.1

1About Instrumental: https://www.weareinstrumental.com/about

https://www.weareinstrumental.com/about
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From such a perspective, our work may contribute to music companies by enhancing such

predictive and recommendation models with genre information. Therefore, both artists

and record labels benefit from our findings, as they shed light on the science behind mu-

sical success and contribute to developing strategies to promote musical content across

the world.

7.1 Research Outcomes

In addition to this master thesis, our research generated other products, such as

four scientific publications and two publicly available datasets with enhanced musical

genre information, as follows.

• Oliveira et al. [77]: Musical Genre Analysis Over Dynamic Success-based Net-

works. Publication at the Workshop of Theses and Dissertations in Databases

(WTDBD) of the 35th Brazilian Symposium on Databases (SBBD 2020);

• Oliveira et al. [78]: Music Genre Dataset (MGD), a dataset on musical success

over time in global and regional markets with enhanced artist and genre collabora-

tion information;

• Oliveira et al. [79]: Detecting Collaboration Profiles in Success-based Music Genre

Networks. Research paper in the Proceedings of the 21st International Society for

Music Information Retrieval Conference (ISMIR 2020). This paper received the

Best Poster Presentation Award;

• Oliveira et al. [80]: Music-oriented Hot Streak Information Collection (MUHSIC),

a dataset on musical careers with artist and genre hot streak data;

• Oliveira et al. [81]: MUHSIC: An Open Dataset with Temporal Musical Success

Information. Publication at the Dataset Showcase Workshop (DSW) of the 36th

Brazilian Symposium on Databases (SBBD 2021);

• Oliveira et al. [82]: Musical Success in the United States and Brazil: Novel

Datasets and Temporal Analyses. Research article in the Journal of Information

and Data Management (JIDM);
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7.2 Future Work

Based on our work on genre collaboration and music success, we identify and

discuss new research directions that require further investigation. These topics are not

the only open research problems within Hit Song Science (HSS) and Music Information

Retrieval (MIR), but they are key factors that may contribute to advancing such fields.

Dealing with multiple sources. Data integration is one of the main issues in many

Computer Science research fields. In Hit Song Science, this topic is becoming more rele-

vant and necessary, as there is no unique data source for all necessary features and data.

For instance, to the best of our knowledge, there is no data source that provides both

acoustic and lyrics-based features. Furthermore, the lack of a unique and universal iden-

tifier for each music makes an integration involving several data sources very challenging.

Besides, information such as the musical genre(s) of a given song is not standardized in

all data sources, mainly due to the blurred line existent between music styles that are

close to each other.

Regional markets’ diversity. Most studies on Hit Song Science use data from the

American market (e.g., Billboard Hot 100 Chart). This may be because the United

States is the biggest music market in the world, which may facilitate the acquisition and

use of such data. Research studies that consider music markets other than the USA

focus mainly on European countries, such as the United Kingdom. However, there are

many other relevant markets with distinct characteristics and behavior, which require an

individual analysis of success. For example, South Korea, China and Brazil are among

the top 10 music markets in the world,2 with a vibrant music scene and popular regional

genres. Such genres have become popular in the global scenario as they connect with

other well-established music genres (e.g., collaborations involving pop, k-pop, and Latin

genres such as reggaeton). Therefore, as local engagement shapes the global environment,

future work must consider the regional aspect, thus ensuring that music culture within

such countries are accounted for.

Lack of standardized success metrics. Defining the popularity of a song is still a

challenge, and each study in HSS uses specific success metrics. For instance, in this work

we used chart-based metrics (Chapter 4) and the number of streams (Chapters 5 and 6).

Therefore, as there is no standard, researchers are unable to perform a fair comparison

between their work and the existent literature on the subject. Hence, finding a way to

properly generalize success would support future work on HSS to more accurately capture

popularity definitions. Moreover, it would enable transposing their findings to a commonly

2IFPI Global Music Report: http://gmr.ifpi.org/

http://gmr.ifpi.org/
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understood metric, which then allows a complete evaluation by comparing performance

with current work (as the one presented here).

Importance of social aspects. The ever-growing popularization of social networks in

the last two decades has deeply changed the music industry. The propagation of songs

in such platforms is fundamental in their success, as the viral phenomenon of songs in

social media may lead a newly released one to stardom or even lead back a great hit

from the past to the top of the charts. Since marketing has great impact on the future

success of songs, it is increasingly important to consider the latest social platforms and

features, which could as well give strong indications of a song’s hit potential. Although

such features have been used in previous research, novel approaches on HSS need to

combine both audio and social data to enhance model efficiency.
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Appendix A

Hot Streak Prediction

In this appendix, we present the details of the Hot Streak Prediction model from Chapter

4. We first describe the features considered in our model (Section A.1) and then detail

our experimental setup (Section A.2).

A.1 Feature Description

In this section, we provide a brief description on the features used in our prediction

model. In our model, each instance represent a week in Hot 100 for a given music genre

(i.e., the set of songs from artists belonging to that genres). The instances are described

by a feature set, which is divided into three main categories: genre-related, artist-related,

and song-related. All features are obtained from Spotify through its API1. Here, we made

an effort in keeping the definitions at simple as possible, as formally presenting them is

beyond the scope of this work.

1. Genre-related features

• genre: the genre name, as provided by Spotify;

• num genre songs: number of songs from artists belonging to the given genre;

• num distinct artists: number of distinct artists belonging to the genre;

2. Artist-related features

• median artists per song: median number of artists per song;

• median career time: median career time of artists, from their debut to the

week in subject (in days);

• median genres per artist: the median number of distinct genres per artist,

as an artist may belong to more than one genre;

1Spotify for Developers: https://developer.spotify.com/

https://developer.spotify.com/
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3. Song-related features

• num collab songs: number of songs that are collaborations (i.e., interpreted

by two or more artists);

• num explicit songs: number of songs marked with the Explicit tag from

Spotify;

• Acoustic features: related to the audio content, median values for all songs

belonging to a genre.

– danceability: informs whether a song is suitable for dancing or not in

terms of probability;

– energy: the intensity and activity of a song considering information such

as dynamic range, perceived loudness, timbre, onset rate, and entropy;

– key: the estimated overall key of a song, mapped as an integer number

(e.g. C = 0, C# = 1);

– loudness: the general loudness measured in decibels (dB);

– mode: the general modality of a song (i.e., major= 1 or minor= 0);

– speechiness: the probability of a given song to have spoken words in it;

– acousticness: the probability of a song to be acoustic or not;

– instrumentalness: the probability of a song to be instrumental, i.e., not

contain vocals;

– liveness: the probability of a song being performed live, i.e., the presence

of an audience in a song;

– valence: the positiveness within a song, in which high valence values

represent happier songs, whereas low values means the opposite;

– tempo: the speed of the song, measured in beats per minute (BPM);

– time signature: the amount of beats in each bar (measure);

– duration ms: the duration of songs in milliseconds.
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A.2 Experimental Setup Details

Here, we give further information on our experimental evaluation by focusing on

the parameters of the classifiers used in our model. We developed all experiments using

the Python package Scikit-Learn2. In our modeling, we run a grid search for finding the

best hyperparameters for each model. We do not perform cross-validation on this search,

as our data need to be split in chronological order. Table A.1 presents the parameters

tuned for each classifier as well as the considered search space.

Table A.1: Parameter grid for tuning the hyperparameters for each considered classifier,
with the best values underlined (evaluated by F1-Score).

Classifier Hyperparameter Search space

LR

penalty [’l1’, ’l2’]
tol [1e-6, 1e-4, 1e-2]
C [0.01, 0.1, 1.0]
solver [’lbfgs’, ’liblinear’, ’saga’]

LinearSVC

penalty [’l1’, ’l2’]
tol [1e-06, 1e-04, 1e-02]
C [0.01, 0.1, 1.0]
loss [’hinge’, ’squared hinge’]

Perceptron
penalty [’l1’, ’l2’]
tol [1e-5, 1e-3, 1e-1]
alpha [1e-6, 1e-4, 1e-2]

SGD

penalty [’l1’, ’l2’]
tol [1e-5, 1e-3, 1e-1]
alpha [1e-6, 1e-4, 1e-2]
loss [’hinge’, ’squared hinge’, ’log’, ’modified huber’]

2Scikit-Learn: https://scikit-learn.org/.

https://scikit-learn.org/
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Appendix B

Genre Profiling Process

Here, we detail the genre profiling process from Chapter 5. We first describe data and

network characterization (Section B.1) and then explain the Exploratory Factor Analysis

(Section B.2). Finally, we detail the cluster analysis step (Section B.3).

B.1 Data Processing and Network Characterization

When processing Spotify chart data, we make some decisions regarding the defini-

tion of success of a genre collaboration and the genre reduction through our mapping:

• In our chart analyses, we consider the number of streams as the success measure for

a hit song. Therefore, in our temporal and regional analyses, we define the success

of a genre collaboration (i.e. the edge weight) as the average value of total streams

of all songs involving those genres within the considered market and period.

• In the mapping proccess from the Spotify-assigned genres to our super-genres, we

detect 76 out of 896 genres which do not fit into any category. For example, talent

show, in which artists may belong to other well-established genres (e.g. pop, country

or hip hop). Thus, these genres are categorized as other. As Spotify artists can be

assigned to more than one genre, this categorization do not prejudice our further

analyses.

The complete global and regional chart overview and the full characterization of

the networks are presented by Tables B.1 and B.2, respectively. To compute the network

metrics, we use NetworkX 1, a network analysis Python package.

1NetworkX: https://networkx.github.io/

https://networkx.github.io/
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Table B.1: Most popular music genres in each considered market in the years 2017, 2018
and 2019.

2017 2018 2019

Genre Songs Arts. Genre Songs Arts. Genre Songs Arts.

pop 635 252 pop 701 257 pop 678 256
hip hop 362 101 rap 587 134 hip hop 432 180
dance pop 346 121 hip hop 546 181 rap 412 123
rap 344 86 pop rap 398 93 trap 319 103

Global

pop rap 286 81 trap 354 96 dance pop 288 94

pop 635 266 pop 718 262 pop 684 262
dance pop 360 138 rap 427 106 rap 325 111
hip hop 300 101 dance pop 358 116 dance pop 295 102
rap 280 85 hip hop 358 113 hip hop 275 121

Australia

pop rap 236 84 pop rap 300 86 pop rap 233 87

pop 447 158 pop 468 166 pop 358 129
dance pop 212 76 sertanejo 283 63 brazilian funk 280 114
sertanejo 178 40 brazilian funk 276 111 sertanejo 265 66
brazilian funk 170 67 dance pop 149 66 dance pop 103 39

Brazil

electro 142 54 electro 140 66 electro 101 41

pop 703 254 rap 850 151 pop 667 239
rap 559 113 hip hop 732 152 rap 584 141
hip hop 510 115 pop 715 245 hip hop 455 139
pop rap 468 95 pop rap 628 111 pop rap 413 107

Canada

trap 372 83 trap 534 107 trap 370 101

pop 1,000 271 pop 1,299 287 pop 1,176 276
hip hop 770 135 hip hop 1,180 191 hip hop 984 177
rap 728 125 rap 1,120 166 rap 899 153
francoton 414 52 francoton 434 59 francoton 366 56

France

dance pop 174 86 dance pop 162 73 dance pop 119 61

hip hop 796 171 hip hop 971 216 hip hop 1,048 238
pop 621 290 pop 687 293 pop 635 281
rap 372 105 rap 536 129 rap 429 134
dance pop 299 126 dance pop 282 114 dance pop 210 86

Germany

pop rap 177 72 pop rap 214 74 trap 166 71

pop 197 119 pop 417 152 j-pop 489 108
j-pop 138 65 j-pop 387 125 pop 287 125
dance pop 131 72 dance pop 259 80 j-rock 183 42
r&b 89 43 r&b 165 63 dance pop 173 57

Japan

rap 63 36 j-rock 164 55 other 125 43

pop 682 246 pop 763 243 pop 665 234
dance pop 383 131 hip hop 490 161 hip hop 441 152
hip hop 355 109 rap 480 122 rap 360 105
rap 276 83 dance pop 424 137 dance pop 296 107

UK

pop rap 224 78 pop rap 319 90 pop rap 209 72

rap 673 122 rap 939 159 rap 715 165
pop 650 210 hip hop 783 159 pop 635 203
hip hop 594 124 pop rap 653 107 hip hop 548 156
pop rap 540 93 pop 642 201 pop rap 492 110

USA

trap 444 91 trap 611 116 trap 488 121
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Table B.2: Network characterization for all global and regional markets, grouped according to their similar network evolution. Underlined
values are the highest metric value for a specific market throughout the considered period.

Metric
Global

Group 1: USA & Canada Group 3: Other English-speaking markets
USA Canada UK Australia

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

G 72 79 89 76 73 83 70 71 82 74 76 79 65 71 79
C 564 583 709 542 522 670 540 558 680 610 605 627 512 514 577
AD 15.7 14.8 15.9 14.3 14.3 16.1 15.4 15.7 16.6 16.5 15.9 15.9 15.8 14.5 14.6
AWD 256.9 247.4 236.7 324.6 287.9 241.4 366.3 307.6 212.4 216.5 203.6 159.5 220.6 170.8 140.0
D 0.221 0.189 0.181 0.190 0.199 0.197 0.224 0.225 0.205 0.226 0.212 0.204 0.246 0.200 0.200
ACC 0.743 0.757 0.754 0.762 0.760 0.726 0.739 0.749 0.762 0.724 0.754 0.738 0.718 0.700 0.700
SL 24 21 28 25 22 27 22 23 31 28 25 30 22 23 25
IntraG 4.26% 3.60% 3.95% 4.61% 4.21% 4.03% 4.07% 4.12% 4.56% 4.59% 4.13% 4.78% 4.30% 4.47% 4.33%
InterG 95.74% 96.40% 96.05% 95.39% 95.79% 95.97% 95.93% 95.88% 95.44% 95.41% 95.87% 95.22% 95.70% 95.53% 95.67%

Metric
Global

Group 2: Non-English speaking markets
Brazil France Germany Japan

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017* 2018 2019

G 72 79 89 58 63 61 63 63 66 69 75 73 56 71 63
C 564 583 709 453 524 392 465 464 434 555 590 523 350 491 418
AD 15.7 14.8 15.9 15.6 16.6 12.9 14.8 14.7 13.2 16.1 15.7 14.3 12.5 13.8 13.3
AWD 256.9 247.4 236.7 136.1 133.0 95.3 185.1 213.2 153.2 213.8 196.6 152.2 84.3 121.7 68.3
D 0.221 0.189 0.181 0.274 0.268 0.214 0.238 0.238 0.202 0.237 0.200 0.200 0.227 0.198 0.214
ACC 0.743 0.757 0.754 0.770 0.758 0.677 0.778 0.772 0.773 0.759 0.800 0.700 0.748 0.765 0.697
SL 24 21 28 24 29 27 20 22 24 23 24 23 20 24 19
IntraG 4.26% 3.60% 3.95% 5.30% 5.53% 6.89% 4.30% 4.74% 5.53% 4.14% 4.07% 4.40% 5.71% 4.89% 4.55%
InterG 95.74% 96.40% 96.05% 94.70% 94.47% 93.11% 95.70% 95.26% 94.47% 95.86% 95.93% 95.60% 94.29% 95.11% 95.45%

G: number of genres (nodes). C: number of genre collaborations (edges). AD: average node degree. AWD: average node degree (weighted). D: network density.
ACC: average clustering coefficient. SL: number of self-loops. IntraG: fraction of intra-genre collaborations. InterG: fraction of inter-genre collaborations.

* As Spotify provides Japanese weekly charts only after 08/31/2017, we build Japan’s 2017 genre network with data from then.
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B.2 Exploratory Factor Analysis in R

To perform an exploratory factor analysis (EFA), we use the psych R package [93]

with the fa() function. Our data consist of 27 music genre networks (i.e., nine music

markets), containing six different topological metrics, described in Chapter 3: Weight

(W), Common Neighbors (CN), Neighborhood Overlap (NO), Preferential Attachment

(PA), Edge Betweenness (EB), and Resource Allocation (RA).

B.2.1 Choosing the Number of Factors

Before conducting the EFA, we must determine an acceptable number of factors.

The psych package offers a few ways in which the number of factors can be decided. Here,

we use the fa.parallel() function to obtain the suggested number of factors via the

Parallel Analysis [51] criteria. The output gives us the textual output of the suggested

number of factors and a scree plot [23] of the successive eigenvalues. Figures B.1, B.2 and

B.3 show the resulting scree plot for each network.

In the scree plots generated, blue and red lines show eigenvalues of actual and

simulated/resampled data (placed on top of each other), respectively. The number of

factors is determined by looking at the large drops in the actual data and spot the point

where it levels off to the right. Moreover, we must identify the inflection point where

the gap between simulated and actual data tends to be minimum. Analyzing all 27 scree

plots, we see that the vast majority suggest a number of factors equal to 3.

B.2.2 Factor Analysis

Once the number of suggested factors is determined using fa.parallel(), EFA

can be performed using the fa() function. In order to enable reproducibility, we provide

the model parameters settings, as summarized in Table B.3. Specifically, we use the

well known Ordinary Least Squares (OLS) factoring method and an oblique rotation,

allowing factors to correlate with each other. We can visualize the EFA results using the

fa.diagram() function, where it takes a fa() result object and creates a path diagram

showing actor loadings, ordered from strongest to weakest. Factor loadings represent the
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Figure B.1: Scree plots resulting from the Parallel Analysis for each genre network in 2017.
Blue and red lines show eigenvalues of actual and simulated/resampled data, respectively.
The suggested number of factors can be found in the X-axis position right before the
“elbow” in the actual data curve.

correlation between each metric and the underlying factor, and they can range from −1

to 1. Figures B.4, B.5 and B.6 show the resulting factor loadings graph for each network.

Table B.3: Parameter Settings for Exploratory Factor Analysis

Parameters Description Value

nfactors Number of factors to extract 3
rotate Type of rotation oblimin
fm Factoring method ols
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Figure B.2: Scree plots resulting from the Parallel Analysis for each genre network in 2018.
Blue and red lines show eigenvalues of actual and simulated/resampled data, respectively.
The suggested number of factors can be found in the X-axis position right before the
“elbow” in the actual data curve.

B.3 Cluster Analysis - DBSCAN

We use the DBSCAN algorithm [33], which is a classical density-based clustering

procedure. DBSCAN clusters the data points by separating areas of high density from

areas of low density. It can be used not only to identify clusters of any shape, but also

detect noise and outliers in the dataset. Two important parameters are required for

DBSCAN:
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Figure B.3: Scree plots resulting from the Parallel Analysis for each genre network in 2019.
Blue and red lines show eigenvalues of actual and simulated/resampled data, respectively.
The suggested number of factors can be found in the X-axis position right before the
“elbow” in the actual data curve.

1. ϵ: It defines the radius of neighborhood around a data point x. It is called as

ϵ-neighborhood of x. Such parameter is crucial to choose appropriately. If the ϵ

value is chosen too small then large part of the data will be considered as outliers.

Otherwise, the clusters will merge and majority of the data points will be in the

same clusters.

2. MinPts: Minimum number of neighbors (data points) required to form a dense

cluster, within ϵ radius. As a general rule, the MinPts can be derived from the

number of dimensions D in the dataset as MinPts ≥ D + 1. Also, the minimum
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Figure B.4: Exploratory Factor Analysis diagram for each genre network in 2017. Solid
and dashed lines represent positive and negative correlations, respectively.

value of MinPts is at least 3.

Here, we use the dbscan R package [43] with the dbscan() function. As our dataset

has six distinct dimensions (i.e. metrics), we setMinPts = 7. Then, to choose the optimal

ϵ value, dbscan relies on a space-partitioning data structure called a k-d trees. This data

structure allows us to identify the kNN or all neighbors within a fixed radius ϵ. We now
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Figure B.5: Exploratory Factor Analysis diagram for each genre network in 2018. Solid
and dashed lines represent positive and negative correlations, respectively.

execute the function kNNdistplot() with k = 7 (must be equal to MinPts) to plot the

k-distances, which are the average distance of a point to its k-nearest neighbors. Finally,

we set ϵ as the k value where where a sharp change take place in the curve. Figures B.7,

B.8 and B.9 present such plots for all markets in 2017, 2018 and 2019, respectively. In all

markets and years, we observe that this threshold occurs close to k = 1, thus being chosen
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Figure B.6: Exploratory Factor Analysis diagram for each genre network in 2019. Solid
and dashed lines represent positive and negative correlations, respectively.

as our ϵ value. The resulting clusters for each market throughout the years are shown by

Figures B.10, B.11 and B.12, while the resulting collaboration profiles are presented by

Figure B.13.
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Figure B.7: 7-NN distance plot for each genre network in 2017. Dashed lines represent
the threshold where a major change occurs in the curve, chosen as the ϵ parameter of
DBSCAN.
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Figure B.8: 7-NN distance plot for each genre network in 2018. Dashed lines represent
the threshold where a major change occurs in the curve, chosen as the ϵ parameter of
DBSCAN.
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Figure B.9: 7-NN distance plot for each genre network in 2019. Dashed lines represent
the threshold where a major change occurs in the curve, chosen as the ϵ parameter of
DBSCAN.
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Figure B.10: Clustering of genre collaboration profiles in 2017. The results are generated
with DBSCAN algorithm with MinPts = 7 and ϵ = 1.0. The clustering is based on the
topological metrics. Black points correspond to outliers.



B.3. Cluster Analysis - DBSCAN 130

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (Global) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (Australia) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (Brazil) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (Canada) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (France) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)
cluster

● 1

2

DBSCAN Plot (Germany) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (Japan) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (UK) − 2018

● ● ●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●

● ●●●●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●
●●●●

●●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●

● ●●
●●

●

●●●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●
●●

●

● ●●

●
●●

●

●
●

●

●
●●●

●

●
●

●

●

●●
●

●●

●●●

●

●

●

●●

●●

●●
●

●

●●

●
● ●●

●

●

●

● ●●

●

●

●

●
●

●
●●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●

●●● ●

●

●

●●

●

●

● ●●
●● ●●

●
●●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●● ●

●

●

●

●●●●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●
●●

●
●●●●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.0

2.5

5.0

−8 −4 0 4
Dim1 (67.2%)

D
im

2 
(1

9.
1%

)

cluster

● 1

2

DBSCAN Plot (USA) − 2018

Figure B.11: Clustering of genre collaboration profiles in 2018. The results are generated
with DBSCAN algorithm with MinPts = 7 and ϵ = 1.0. The clustering is based on the
topological metrics. Black points correspond to outliers.
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Figure B.12: Clustering of genre collaboration profiles in 2019. The results are generated
with DBSCAN algorithm with MinPts = 7 and ϵ = 1.0. The clustering is based on the
topological metrics. Black points correspond to outliers.
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Figure B.13: Radar Plots of each genre collaboration profile, divided by year.
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Appendix C

Genre Pattern and Association Rule

Mining

Here, we present the details of the algorithm used to detect frequent genre patterns and

the association rules in Chapter 6. As mentioned in such chapter, we use the Apriori

algorithm [3], which is a classical method for Frequent Itemset Mining (FIM). We run

the implementation of the pyFIM Python library by Christian Borgelt.1 As frequent

patterns and association rules are defined under the same data mining framework, we

use the apriori() function for both tasks. Table C.1 presents the parameters used to

get our results and their defined values. In the target parameter, we use ‘c’ for closed

itemsets and ‘r’ for association rules. In addition, we define the output metrics in the

report parameter, setting ‘s’ for relative support and ‘cl’ for a tuple containing the rule

confidence and lift value.

Table C.1: Parameters of Apriori to get frequent genre itemsets and association rules.

Frequent Itemsets Association Rules
Parameter Definition Value Parameter Definition Value

target type of frequent itemsets ’c’ target type of frequent itemsets ’r’
supp minimum support 6 conf minimum confidence 20
zmin minimum number of items 2 zmin minimum number of items 2
report values to report ’s’ report values to report ’cl’

We also present the complete results obtained from such an algorithm per market

and year. Therefore, Tables C.2, C.3, and C.4 contain the frequent genre patterns for

each market in 2017, 2018, and 2019, respectively. Besides, the association rules for all

markets in the same years are presented in Tables C.5, C.6, and C.7.

1PyFIM - Frequent Item Set Mining for Python: https://borgelt.net/pyfim.html

https://borgelt.net/pyfim.html
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Table C.2: Top 5 most frequent patterns in global and regional markets (2017).

Market Pattern Support Market Pattern Support Market Pattern Support

Global

(’dance pop’, ’pop’) 0.393

Australia

(’dance pop’, ’pop’) 0.418

Brazil

(’dance pop’, ’pop’) 0.243
(’rap’, ’hip hop’) 0.250 (’rap’, ’hip hop’) 0.232 (’electro’, ’pop’) 0.180
(’pop rap’, ’hip hop’) 0.217 (’tropical house’, ’pop’) 0.210 (’brazilian funk’, ’pop’) 0.138
(’rap’, ’pop rap’) 0.213 (’electro’, ’pop’) 0.210 (’tropical house’, ’pop’) 0.102
(’rap’, ’pop rap’, ’hip hop’) 0.194 (’electropop’, ’pop’) 0.202 (’sertanejo’, ’pop’) 0.100

Canada

(’hip hop’, ’rap’) 0.397

France

(’hip hop’, ’pop’) 0.538

Germany

(’dance pop’, ’pop’) 0.311
(’rap’, ’pop rap’) 0.356 (’rap’, ’hip hop’) 0.450 (’rap’, ’hip hop’) 0.196
(’hip hop’, ’pop rap’) 0.343 (’rap’, ’pop’) 0.425 (’tropical house’, ’pop’) 0.196
(’dance pop’, ’pop’) 0.332 (’rap’, ’hip hop’, ’pop’) 0.393 (’electro’, ’pop’) 0.182
(’hip hop’, ’rap’, ’pop rap’) 0.328 (’francoton’, ’pop’) 0.251 (’electro’, ’tropical house’) 0.174

Japan

(’dance pop’, ’pop’) 0.336

UK

(’dance pop’, ’pop’) 0.392

USA

(’hip hop’, ’rap’) 0.456
(’r&b’, ’j-pop’) 0.173 (’rap’, ’hip hop’) 0.209 (’pop rap’, ’rap’) 0.417
(’tropical house’, ’pop’) 0.137 (’tropical house’, ’pop’) 0.201 (’hip hop’, ’pop rap’) 0.386
(’pop rap’, ’pop’) 0.134 (’pop rap’, ’pop’) 0.193 (’hip hop’, ’pop rap’, ’rap’) 0.376
(’electro’, ’pop’) 0.130 (’tropical house’, ’dance pop’) 0.182 (’trap’, ’rap’) 0.341
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Table C.3: Top 5 most frequent patterns in global and regional markets (2018).

Market Pattern Support Market Pattern Support Market Pattern Support

Global

(’dance pop’, ’pop’) 0.295

Australia

(’dance pop’, ’pop’) 0.331

Brazil

(’brazilian funk’, ’pop’) 0.188
(’rap’, ’hip hop’) 0.286 (’hip hop’, ’rap’) 0.263 (’sertanejo’, ’brazilian funk’) 0.110
(’pop rap’, ’rap’) 0.226 (’pop rap’, ’rap’) 0.213 (’electro’, ’pop’) 0.106
(’trap’, ’hip hop’) 0.203 (’pop rap’, ’pop’) 0.186 (’dance pop’, ’pop’) 0.104
(’pop rap’, ’hip hop’) 0.199 (’hip hop’, ’pop rap’) 0.183 (’sertanejo’, ’pop’) 0.076

Canada

(’hip hop’, ’rap’) 0.418

France

(’hip hop’, ’pop’) 0.578

Germany

(’rap’, ’hip hop’) 0.244
(’pop rap’, ’rap’) 0.351 (’rap’, ’hip hop’) 0.522 (’dance pop’, ’pop’) 0.231
(’pop rap’, ’hip hop’) 0.317 (’rap’, ’pop’) 0.461 (’tropical house’, ’pop’) 0.157
(’pop rap’, ’hip hop’, ’rap’) 0.308 (’rap’, ’hip hop’, ’pop’) 0.428 (’hip hop’, ’pop’) 0.148
(’trap’, ’rap’) 0.297 (’francoton’, ’pop’) 0.240 (’electro’, ’pop’) 0.143

Japan

(’dance pop’, ’pop’) 0.245

UK

(’dance pop’, ’pop’) 0.343

USA

(’hip hop’, ’rap’) 0.450
(’j-rock’, ’j-pop’) 0.191 (’rap’, ’hip hop’) 0.262 (’pop rap’, ’rap’) 0.375
(’r&b’, ’j-pop’) 0.146 (’tropical house’, ’pop’) 0.183 (’trap’, ’rap’) 0.344
(’tropical house’, ’pop’) 0.128 (’pop rap’, ’rap’) 0.175 (’pop rap’, ’hip hop’) 0.328
(’tropical house’, ’dance pop’) 0.116 (’pop rap’, ’pop’) 0.169 (’pop rap’, ’hip hop’, ’rap’) 0.321
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Table C.4: Top 5 most frequent patterns in global and regional markets (2019).

Market Pattern Support Market Pattern Support Market Pattern Support

Global

(’dance pop’, ’pop’) 0.271

Australia

(’dance pop’, ’pop’) 0.294

Brazil

(’brazilian funk’, ’pop’) 0.177
(’latin’, ’reggaeton’) 0.173 (’rap’, ’hip hop’) 0.162 (’electro’, ’brazilian funk’) 0.102
(’hip hop’, ’trap’) 0.172 (’electropop’, ’pop’) 0.145 (’sertanejo’, ’brazilian funk’) 0.097
(’rap’, ’hip hop’) 0.168 (’rap’, ’pop rap’) 0.145 (’electro’, ’pop’) 0.080
(’rap’, ’trap’) 0.151 (’pop rap’, ’hip hop’) 0.131 (’trap’, ’hip hop’) 0.064

Canada

(’hip hop’, ’rap’) 0.273

France

(’hip hop’, ’pop’) 0.584

Germany

(’dance pop’, ’pop’) 0.162
(’trap’, ’rap’) 0.255 (’rap’, ’hip hop’) 0.449 (’rap’, ’hip hop’) 0.158
(’dance pop’, ’pop’) 0.253 (’rap’, ’pop’) 0.423 (’hip hop’, ’pop’) 0.130
(’pop rap’, ’rap’) 0.252 (’rap’, ’hip hop’, ’pop’) 0.393 (’tropical house’, ’pop’) 0.105
(’hip hop’, ’pop rap’) 0.225 (’francoton’, ’pop’) 0.174 (’tropical house’, ’dance pop’) 0.087

Japan

(’j-rock’, ’j-pop’) 0.283

UK

(’dance pop’, ’pop’) 0.285

USA

(’hip hop’, ’rap’) 0.305
(’other’, ’j-pop’) 0.140 (’rap’, ’hip hop’) 0.159 (’trap’, ’rap’) 0.289
(’anime’, ’j-pop’) 0.138 (’tropical house’, ’pop’) 0.133 (’pop rap’, ’rap’) 0.261
(’dance pop’, ’pop’) 0.133 (’tropical house’, ’dance pop’) 0.127 (’trap’, ’hip hop’) 0.246
(’r&b’, ’j-pop’) 0.108 (’tropical house’, ’dance pop’, ’pop’) 0.125 (’pop rap’, ’hip hop’) 0.230
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Table C.5: Association rules in global and regional markets sorted by lift value (2017).

Market Rule Lift Confidence

Global

(’tropical house’, ’electro’, ’dance pop’) → house 7.720 0.532
(’tropical house’, ’electro’, ’dance pop’, ’pop’) → house 7.527 0.519
(’tropical house’, ’electro’) → house 7.504 0.517
(’tropical house’, ’electro’, ’pop’) → house 7.319 0.505
(’tropical house’, ’electro’, ’dance pop’) → electro house 7.253 0.560

Australia

(’tropical house’, ’electro’, ’dance pop’) → electro house 6.870 0.548
(’tropical house’, ’electro’, ’dance pop’, ’pop’)→ electro house 6.759 0.539
(’tropical house’, ’electro’) → electro house 6.597 0.526
(’tropical house’, ’electro’, ’pop’) → electro house 6.555 0.523
(’hip hop’, ’dance pop’) → urban contemporary 6.380 0.370

Brazil

(’tropical house’) → house 7.667 0.367
(’brazilian funk’, ’pop’) → pagode baiano 7.615 0.271
(’tropical house’, ’pop’) → house 7.519 0.360
(’rap’, ’hip hop’) → trap 7.278 0.597
(’rap’) → trap 6.880 0.565

Canada

(’electro’, ’pop’) → house 7.825 0.460
(’electro’) → house 7.503 0.441
(’tropical house’) → house 7.480 0.440
(’electro’) → electro house 7.425 0.524
(’electro’, ’pop’) → electro house 7.421 0.524

France

(’dance pop’, ’pop’) → electropop 5.754 0.283
(’dance pop’) → electropop 5.721 0.282
(’dance pop’, ’pop’) → electro house 5.526 0.231
(’dance pop’) → electro house 5.495 0.230
(’dance pop’, ’pop’) → tropical house 5.005 0.439

Germany

(’electro’, ’tropical house’) → house 8.210 0.536
(’electro’, ’tropical house’) → electro house 8.137 0.543
(’electro’, ’pop’) → electro house 7.757 0.517
(’electro’, ’pop’) → house 7.717 0.503
(’electro’) → electro house 7.267 0.485

Japan

(’tropical house’, ’dance pop’) → house 9.907 0.465
(’electro’, ’dance pop’) → house 9.682 0.455
(’electro’, ’dance pop’, ’pop’) → house 9.412 0.442
(’electro’, ’tropical house’) → house 9.261 0.435
(’electro’, ’tropical house’, ’pop’) → house 9.198 0.432

UK

(’electro’, ’tropical house’, ’dance pop’) → electro house 8.321 0.517
(’electro’, ’tropical house’, ’dance pop’, ’pop’)→ electro house 8.253 0.513
(’electro’, ’tropical house’) → electro house 7.979 0.496
(’electro’, ’tropical house’, ’pop’) → electro house 7.976 0.496
(’electro’, ’dance pop’) → electro house 7.784 0.484

USA

(’electropop’, ’pop’) → indie pop 8.232 0.291
(’electropop’) → indie pop 7.981 0.282
(’r&b’) → soul 6.696 0.254
(’r&b’, ’pop’) → soul 6.603 0.250
(’r&b’, ’pop’) → urban contemporary 6.282 0.331
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Table C.6: Association rules in global and regional markets sorted by lift value (2018).

Market Rule Lift Confidence

Global

(’electro’) → house 9.518 0.431
(’latin’) → tropical 9.208 0.542
(’latin’) → reggaeton 9.142 0.951
(’reggaeton’) → latin 9.142 0.993
(’reggaeton’, ’latin’) → tropical 9.058 0.533

Australia

(’electro’, ’pop’) → house 7.528 0.395
(’electro’) → house 7.513 0.394
(’electro’, ’pop’) → dance 6.700 0.274
(’electro’, ’pop’) → tropical house 6.493 0.815
(’electro’) → dance 6.367 0.261

Brazil

(’electro’, ’pop’) → house 7.266 0.267
(’electro’, ’pop’) → tropical house 6.774 0.446
(’electro’, ’pop’) → electro house 6.757 0.347
(’electro’) → house 6.213 0.229
(’hip hop’) → trap 6.183 0.496

Canada

(’dance pop’) → electro 3.369 0.272
(’dance pop’, ’pop’) → electro 3.244 0.262
(’dance pop’) → tropical house 3.094 0.292
(’dance pop’, ’pop’) → tropical house 3.022 0.285
(’pop’, ’rap’) → r&b 2.793 0.256

France

(’rap’, ’pop’) → hip hop 1.305 0.912
(’hip hop’) → rap 1.261 0.836
(’rap’) → hip hop 1.261 0.881
(’hip hop’, ’pop’) → rap 1.241 0.824
(’hip hop’, ’pop’) → francoton 1.236 0.318

Germany

(’electro’) → house 9.286 0.450
(’electro’) → dance 8.556 0.350
(’tropical house’) → house 8.208 0.398
(’tropical house’, ’pop’) → house 8.107 0.393
(’tropical house’, ’pop’) → dance 8.003 0.327

Japan

(’electro’, ’tropical house’, ’dance pop’) → house 8.567 0.435
(’electro’, ’tropical house’, ’dance pop’, ’pop’) → dance 8.566 0.282
(’electro’, ’tropical house’) → house 8.437 0.429
(’electro’, ’dance pop’) → house 8.336 0.423
(’electro’, ’dance pop’, ’pop’) → dance 8.324 0.274

UK

(’electro’, ’tropical house’) → dance 8.456 0.338
(’electro’) → dance 7.931 0.317
(’electro’, ’tropical house’) → house 7.864 0.449
(’electro’, ’tropical house’) → electro house 7.603 0.265
(’electro’) → house 7.497 0.428

USA

(’dance pop’) → electro 3.995 0.226
(’dance pop’) → tropical house 3.770 0.246
(’dance pop’, ’pop’) → electro 3.754 0.212
(’dance pop’, ’pop’) → tropical house 3.624 0.236
(’pop’, ’hip hop’) → r&b 2.960 0.276
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Table C.7: Association rules in global and regional markets sorted by lift value (2019).

Market Rule Lift Confidence

Global

(’latin’, ’reggaeton’) → tropical 7.922 0.468
(’latin’) → tropical 7.821 0.462
(’reggaeton’) → tropical 7.722 0.456
(’reggaeton’) → latin 7.623 0.975
(’latin’) → reggaeton 7.623 0.987

Australia

(’tropical house’) → house 7.655 0.342
(’tropical house’, ’pop’) → house 7.173 0.321
(’tropical house’, ’pop’) → electro 7.111 0.670
(’tropical house’) → electro 7.077 0.667
(’tropical house’) → electro house 7.041 0.261

Brazil

(’hip hop’) → trap 6.187 0.434
(’brazilian funk’, ’pop’) → pagode baiano 5.473 0.425
(’hip hop’) → pop rap 5.235 0.303
(’hip hop’) → r&b 4.443 0.263
(’hip hop’) → rap 4.034 0.303

Canada

(’r&b’) → soul 7.485 0.226
(’dance pop’) → tropical house 3.214 0.243
(’dance pop’, ’pop’) → tropical house 3.160 0.239
(’rap’, ’pop’) → pop rap 2.677 0.880
(’pop rap’, ’hip hop’, ’rap’) → trap 2.638 0.777

France

(’rap’, ’pop’) → hip hop 1.301 0.900
(’rap’, ’pop’) → francoton 1.263 0.325
(’hip hop’, ’pop’) → rap 1.259 0.796
(’hip hop’) → rap 1.234 0.779
(’rap’) → hip hop 1.234 0.853

Germany

(’dance pop’) → tropical house 5.909 0.400
(’dance pop’) → electro 5.908 0.338
(’dance pop’, ’pop’) → tropical house 5.824 0.394
(’dance pop’, ’pop’) → electro 5.796 0.332
(’trap’) → pop rap 5.002 0.422

Japan

(’r&b’) → j-rap 8.067 0.228
(’dance pop’) → electro 4.348 0.283
(’dance pop’, ’pop’) → electro 4.284 0.279
(’dance pop’) → tropical house 4.273 0.353
(’dance pop’, ’pop’) → tropical house 4.227 0.349

UK

(’rock’) → indie rock 8.370 0.364
(’rock’) → indie 6.216 0.231
(’pop rap’, ’hip hop’) → trap 5.682 0.660
(’grime’, ’hip hop’) → dancehall 5.642 0.209
(’pop rap’, ’rap’) → trap 5.595 0.650

USA

(’pop rap’, ’pop’, ’rap’) → r&b 2.990 0.291
(’pop’, ’rap’) → r&b 2.888 0.281
(’hip hop’, ’pop’) → r&b 2.878 0.280
(’pop rap’, ’pop’) → r&b 2.618 0.255
(’pop’, ’rap’) → pop rap 2.527 0.904
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