
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Renato Luiz de Freitas Cunha

Markov decision processes for optimizing job scheduling with Reinforcement Learning

Belo Horizonte
2022

Renato Luiz de Freitas Cunha

Markov decision processes for optimizing job scheduling with Reinforcement Learning

Final Version

Dissertation presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial fulfill-
ment of the requirements for the degree of Doctor in Computer
Science.

Advisor: Luiz Chaimowicz

Belo Horizonte
2022

© 2022, Renato Luiz de Freitas Cunha.

 Todos os direitos reservados.

 Cunha, Renato Luiz de Freitas.

C972m Markov decision processes for optimizing job scheduling with
 reinforcement learning [manuscrito] / Renato Luiz de Freitas
 Cunha – 2022.
 103 f. il.

 Orientador: Luiz Chaimowicz.
 Tese (Doutorado) - Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Ciências da
 Computação.
 Referências: f. 95-104.
 .
 1. Computação – Teses. 2. Aprendizado por reforço– Teses.
 3. Computação de alto desempenho – Teses. 4. Aprendizado do
 computador – Teses. 5. Markov, Processos de – Teses. I.
 Chaimowicz, Luiz. II. Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Computação. III.
 Título.

CDU 519.6*82(043)

Ficha Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende

Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
PROGRAMA DE PÓS‐GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FOLHA DE APROVAÇÃO

Tese defendida e aprovada pela banca examinadora consƟtuída pelos Senhores(a):

Prof. Luiz Chaimowicz ‐ Orientador

Departamento de Ciência da Computação ‐ UFMG

Dra. Ana Paula Appel

Client Engineering ‐ IBM

Prof. Dorgival Olavo Guedes Neto

Departamento de Ciência da Computação ‐ UFMG

Profa. Jussara Marques de Almeida Gonçalves

Departamento de Ciência da Computação ‐ UFMG

Prof. Marcos Dias de Assunção

Department of SoŌware and IT Engineering ‐ École de technologie supérieure

Belo Horizonte, 19 de julho de 2022.

Documento assinado eletronicamente por Luiz Chaimowicz, Professor do Magistério Superior,
em 23/08/2022, às 17:47, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Jussara Marques de Almeida Goncalves, Professora do
Magistério Superior, em 24/08/2022, às 16:48, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Dorgival Olavo Guedes Neto, Professor do Magistério
Superior, em 24/08/2022, às 18:50, conforme horário oficial de Brasília, com fundamento no art.
5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Ana Paula Appel, Usuário Externo, em 14/09/2022, às
15:42, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de
13 de novembro de 2020.

Documento assinado eletronicamente por Marcos Dias de Assunção, Usuário Externo, em
15/09/2022, às 17:16, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

A autenƟcidade deste documento pode ser conferida no site hƩps://sei.ufmg.br
/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0,
informando o código verificador 1699724 e o código CRC F17F9FD4.

Referência: Processo nº 23072.250446/2022‐59 SEI nº 1699724

To my family.

Acknowledgments

As I finish authoring this dissertation, two points are clear to me. First, this contribution is a

small drop in the ocean of scientific knowledge, and secondly, there would be no dissertation

at all if not for the support of many people, of which I will name a few below. For the ones

that go unmentioned, my sincere apologies.

I still clearly remember how, while walking on the beach in early 2016, my wife Alice

encouraged me to apply for a PhD program. Between then and now, I had her utmost support,

love, and encouragement. Especially this last year, while I finished this dissertation, I was able

to doubly count on her support, as she had to take care of our pride and joy, our baby boy

Caio, while I was writing and performing experiments. Similarly, my mom Nati, my dad Luiz,

and my sister Lívia were always there for me, continually providing kind words when I hit the

inevitable roadblocks that are so present in research life.

Before there was any hint of a dissertation, I had to take my mandatory coursework,

and, since taking graduate-level classes remotely was anything but the norm in 2016, I was

able to count on the kindness of my dear friend, Rafael Barra, who welcomed me at his house

during my back-and-forth travels between São Paulo and Belo Horizonte.

I have much to thank my thesis advisor and friend, Luiz Chaimowicz, who is not only

a great researcher but also the coolest dude in the department. Luiz accepted me as a student

even though I was working full time and living in another state. Other professors would have

thought this PhDwas doomed to fail. Still, Luiz ensured this was a success by always providing

positive feedback, asking the right questions, and being open to new research ideas, while also

proposing alternatives when those ideas did not pan out.

Many thanks to the thesis committee, who provided invaluable feedback and helped

point this research in the right direction. In alphabetical order: Ana Paula Appel, Dorgival

Olavo Guedes Neto, Jussara Marques de Almeida Gonçalves, and Marcos Dias de Assunção;

my sincere thank you!

Finally, I would like to thank Marco Netto, who was my manager at the IBM Brazil

Research Lab and who supported me during most of my time as a PhD student. Likewise, my

colleagues in the ICT team, Bruno, Eduardo, and Lucas, I owe you a lot for helping me grow

as a researcher. I also would like to thank my colleagues at the VeRLab and J labs and the staff

at DCC and PPGCC at UFMG, who keep the department and the program running smoothly.

Thank you all!

“So do all who live to see such times.
But that is not for them to decide.

All we have to decide is
what to do with the time that is given us.”

(Gandalf, the Grey)

Resumo

À medida que nossos sistemas computacionais se tornam maiores e com interações mais com-

plexas, apresenta-se um potencial para o uso de técnicas de aprendizado que se adaptem a

variações nas condições de sistemas durante a evolução das cargas de trabalho. O arcabouço

de tomada de decisão sequencial fornecido por Aprendizado por Reforço (RL) se adapta bem a

problemas de gerenciamento de recursos. Ainda assim, quando consideramos o uso de Apren-

dizado Profundo para escalonamento de jobs de sistemas de Computação de Alto Desempenho

(HPC), vemos que trabalhos existentes ou focam em problemas menores, como a decisão de

escolha de heurísticas dentro de um conjunto, ou em instâncias simplificadas do problema.

Nesta tese, investigamosmodelos de Processos de Tomada deDecisão deMarkov (MDP)

para resolver o escalonamento de jobs HPC, apresentando uma abordagem para experimen-

tação mais rápida e reprodutível. Sobre essa fundação, investigamos como diferentes agentes

se comportam nesse arcabouço, ao mesmo tempo que identificamos deficiências tanto na rep-

resentação do problema quanto como o aprendizado se dá nesse cenário.

Dentre as contribuições deste trabalho, propomos um sistema de software para desen-

volvimento e experimentação com agentes de RL, bem como avaliamos algoritmos de estado-

da-arte nesse sistema, com desempenho equivalente ao de algoritmos específicos, porém com

menos esforço computacional. Nós também mapeamos o problema de escalonamento de jobs

HPC para o formalismo de SMDP e apresentamos uma solução online, baseada em aprendizado

por reforço profundo que usa uma modificação do algoritmo PPO para minimizar slowdown
de jobs com máscara de ações, adicionando suporte a grandes espaços de ações ao sistema.

Em nossos experimentos, nós avaliamos os efeitos de ruído nas estimativas de tempo de

execução em nosso modelo, observando como ele se comporta tanto em clusters pequenos (64

processadores) quando em clusters grandes (163840 processadores). Nós também mostramos

que nosso modelo é robusto a mudanças em carga de trabalho e nos tamanhos de clusters,

demonstrando que a transferência de agentes entre clusters funcionam com mudanças de

tamanho de cluster de até 10×, além de suportar mudanças de carga de trabalho sintético para

seguir a execução de traços de sistemas reais. A abordagem de modelagem proposta possui

melhor desempenho que outras da literatura, tornando-a viável para a criação de modelos de

escalonamento robustos, transferíveis e capazes de aprender.

Palavras-chave: aprendizado por reforço, computação de alto desempenho, escalonamento

em lote, aprendizado de máquina, processos de decisão de markov

Abstract

As our systems become larger and their interactions more complex, there is a potential for

learning techniques that adapt to varying system conditions as workloads evolve. The frame-

work for sequential decision making provided by Reinforcement Learning (RL) fits well with

resource management problems, as recent literature indicates. Yet, when we consider the use

of Deep Learning for the scheduling of batch jobs in High Performance Computing (HPC) sys-

tems, we see that work in the literature either focuses on smaller problems, such as deciding

which heuristic to use at a given time, or on simplified instances of the problem.

In this dissertation, we investigate Markov Decision Process (MDP) models to solve

the problem of scheduling batch HPC jobs, presenting an approach for faster and reproducible

experimentation. With this foundation, we investigate how different agents behave under this

framework, while identifying deficiencies both in the representation of the problem and how

learning proceeds in such a setting.

Among the contributions of this work, we propose a software system for developing

and experimenting with RL agents, and we evaluate different state-of-the-art algorithms from

the literature in this environment, achieving performance equivalent to that of purpose-built

algorithms, but with lower resource usage. We also map HPC batch job scheduling to the

SMDP formalism, and present an online, deep reinforcement learning-based solution that uses

a modification of the Proximal Policy Optimization algorithm for minimizing job slowdown

with action masking, supporting large action spaces.

In our experiments, we assess the effects of noise in run time estimates in our model,

evaluating how it behaves in small (64 processors) and large (163840 processors) clusters. We

also show our model is robust to changes in workload and in cluster sizes, showing transfer

works with changes of cluster size of up to 10×, and changes from synthetic workload gener-

ators to supercomputing workload traces. The proposed model outperforms learning models

from the literature and classic heuristics, making it a viable modeling approach for robust,

transferable, learning scheduling models.

Keywords: reinforcement learning, high-performance computing, batch job scheduling, ma-

chine learning, markov decision processes

List of Figures

1.1 Example of the type of system considered in this dissertation. 16

2.1 A possible schedule when tree jobs arrive in the system. 23

2.2 Expected scheduling behavior of FCFS and conservative backfilling. 24

2.3 Major types of jobs found in workloads . 26

2.4 Agent-Environment interaction loop. 29

2.5 Graphical representation of the Mao workload model. 30

2.6 Graphical representation of the Lublin workload model. 31

2.7 Entropy of a Bernoulli random variable as a function of 𝜃 37

2.8 Relationship between an MDP and a Semi-MDP 39

2.9 Example of the RL agent-environment loop and corresponding code. 41

4.1 Example of a test of the simulator . 52

4.2 Snapshot of three frames of the base environment. 54

4.3 Image-like state representation. 59

4.4 Difference in rewards in the various types of MDPs. 62

4.5 Compact state representation in the option-based Semi-MDP. 63

5.1 Schematic view of a three-layered neural network. 68

5.2 Learning curves of PG algorithms with an average cluster load of 70%. 69

5.3 Learning curves of the A2C and PPO agents with an average cluster load of 70%. . 71

5.4 Learning curves for various scenarios with 𝐻 = 20. 74

5.5 Average slowdown for the various scenarios considered. 75

5.6 Time needed to train agents for three million iterations. 75

5.7 Difference in episode length given reward computation method. 76

5.8 Performance comparison between transferred and specialized agents. 77

5.9 Performance with the Mao workload model when using different noise factors. . . 79

List of Tables

1.1 Summary of the notation used in this dissertation. 20

4.1 Job features in a compact state representation. 59

4.2 Job features in the state representation for the option-based Semi-MarkovDecision

Process (SMDP). 64

5.1 Hyperparameters for experiments comparing with the base PG algorithm. 72

5.2 List of hyper-parameters used when training PPO agents. 73

5.3 Key to the scenarios presented in Figure 5.5. 75

5.4 Environment and workload model parameters used in the Mao-Gaussian set of

experiments. 78

5.5 Environment, workload model, and learning parameters used in the experiments

that used the Lublin workload model. 81

5.6 Comparison of average bounded slowdown between the SMDPmodel and amodel

from the literature. 81

5.7 Comparison of average resource utilization between the SMDPmodel and a model

from the literature. 82

5.8 Workload traces used when evaluating our models. 82

5.9 Average bounded slowdown of models when using the Lublin and Tsafrir work-

load models. 84

5.10 Average bounded slowdown when scheduling according to trace files. 86

5.11 Cluster utilization for the trace files used in this section. 87

List of Acronyms

A2C Advantage Actor-Critic . 37

AI Artificial Intelligence . 48

ALE Arcade Learning Environment . 15

API Application Programming Interface . 18

CNN Convolutional Neural Network . 44

DL Deep Learning . 44

DeepRM Deep Resource Management . 43

DRAS Deep Reinforcement agent for Scheduling in HPC 43

EASY Extensible Argonne Scheduling sYstem 67

FCFS First-Come First-Serve . 24

FIFO First In First Out . 24

HPC High Performance Computing . 9

MDP Markov Decision Process . 9

ML Machine Learning . 15

MLP Multi-Layer Perceptron . 54

PG Policy Gradient . 36

POMDP Partially-Observable Markov Decision Process 88

PPO Proximal Policy Optimization . 38

PS Parameter Server . 44

QoS Quality-of-Service . 47

RL Reinforcement Learning . 9

SJF Shortest Job First . 25

SLA Service Level Agreement . 16

SMDP Semi-Markov Decision Process . 11

SWF Standard Workload Format . 52

TDD Test-Driven Development . 51

VM Virtual Machine . 46

*

Contents

1 Introduction 15
1.1 Motivation: HPC job scheduling . 16

1.2 Objectives . 17

1.3 Contributions . 18

1.4 Notation . 19

1.5 Document layout . 19

2 Background 21
2.1 Batch job scheduling . 21

2.2 Deep Reinforcement Learning and Job Scheduling 27

2.3 Workload models . 29

2.4 Uncertainty in job run time estimates . 32

2.5 Policies and approximators . 33

2.6 Options as a closer-to-reality model . 38

2.7 OpenAI Gym . 40

3 Related Work 42
3.1 Reinforcement Learning for Scheduling . 42

3.2 On predicting job features . 45

3.3 Reinforcement Learning in Resource Management 46

3.4 Resource allocation environments in OpenAI Gym 47

3.5 Summary . 48

4 HPC job scheduling with RL 49
4.1 Problem description . 49

4.2 On the need for simulators and frameworks 50

4.3 Job Scheduling Simulation . 51

4.4 The simulator as an OpenAI Gym environment 53

4.5 Policy network and learning procedure . 56

4.6 Alternative MDP formulations . 58

4.7 The options-based Semi-MDP formulation . 61

4.8 Summary . 66

5 Experiments 67

5.1 Learning performance in the base MDP . 67

5.2 Solving the alternative MDP formulations . 72

5.3 Performance in the option-based SMDP model 80

6 Conclusion 90
6.1 Overview . 90

6.2 Contributions . 91

6.3 Limitations and directions for future research 93

Bibliography 95

15

Chapter 1

Introduction

In recent years, we have seen significant progress in diverse areas due to the use of Machine

Learning (ML) techniques. Examples include healthcare [Beaty et al., 2016], network analy-

sis [Appel et al., 2018], resourcemanagement [Cunha et al., 2014, 2017, DeAssunção et al., 2016,

Mao et al., 2016], robotics [Glaubius et al., 2010], user-support tools [Rodrigues et al., 2016],

and, most notably, games, with progress mainly driven by Reinforcement Learning (RL). Both

board games, such as Backgammon [Tesauro, 1994], Chess [Silver et al., 2018], and Go [Silver

et al., 2018], as well as digital games, such as Atari games in the Arcade Learning Environ-

ment (ALE) [Bellemare et al., 2013, Hessel et al., 2018], have seen the development of agents

with super-human performance thanks to the application of ML techniques.

A common thread running through all the successful applications mentioned above is

that learning is enabled by the availability of extensive datasets, simulators capable of allowing

algorithms to learn at a rate much faster than real time, or both. Of these, computational

resource management is a candidate application area which has attracted interest in the past,

but that still has much room for improvement, both from a theoretical and from a practical

perspective. Learning algorithms for computational resource management might be a good

solution to deal with changing, heterogeneous workloads that try to optimize and adapt to

these workloads.

Despite there being a rich literature with strong analysis of classic resource manage-

ment algorithms, there is still room for algorithm discovery and the development of systems

that support learning for systems. Of these, we are interested in scheduling, and how to model

jobs for learning in ML systems. Questions that arise naturally, then, are related to whether

ML algorithms are capable of enabling learning agents to efficiently schedule resources when

subject to realistic workloads. Such problems can be seen as sequential decision problems,

since jobs arrive and exit sequentially, and can be solved with sequential learning models,

such as RL.

1.1. Motivation: HPC job scheduling 16

Submits

job

Scheduler

Worker nodes

Shared

Storage

Client

Scheduling Algorithms

Figure 1.1: Example of type of system considered in this dissertation. A user, via a client
computer interacts with the scheduling system, usually via a login node, to submit jobs. The
scheduling system implements scheduling algorithms and policies for job scheduling, and de-
cides where to run jobs.

1.1 Motivation: HPC job scheduling

Consider the case of scheduling jobs in a modern enterprise computing system. It

may comprise multiple machines over geographically disperse data-centers and, each time a

new job arrives, the scheduler must decide where to execute the job considering the resource

requirements, Service Level Agreements (SLAs), and current system utilization. The sheer

number of variables in such a situation prevents this problem from being solved exactly.

Figure 1.1 shows a high-level example of how a High Performance Computing (HPC)

scheduling system may be configured: clients submit jobs to the scheduling system that con-

trols a cluster of machines. The scheduler, then, has to choose, based on resource requirements,

resource availability and overall host usage where to run the user job. Since the system has

multiple users, it also has to guarantee some fairness, to enable all jobs to run, and so that no

single user takes over all the cluster’s resources.

In this setting, ML techniques may solve this problem in an adaptive way, enabling the

system to evolve and respond to changes in the workloads and underlying resource character-

istics.

For this reason, we make use of sequential decision-making formulations and apply

1.2. Objectives 17

Reinforcement Learning (RL) techniques to explore the impacts of learning algorithms in man-

aging resources in computational clusters. In doing so, we model real systems and use real

workload traces to evaluate the impacts of using these algorithms in such systems.

Due to the impossibility of disrupting users of real systems in testing such algorithms

live, we make heavy use of simulation to analyze the impact of learning algorithms in such

systems. While doing so, we propose a new tool to evaluate RL agents in such systems, and

investigate issues that arise when designing automated ways to learn the management of re-

sources.

1.2 Objectives

Our thesis is that, by carefully designing an environment that follows an RL formula-

tion, we are able to train algorithms capable of learning to efficiently schedule jobs in realistically-

sized HPC systems.

As will become clear later in this text, many applications of ML that attempt to solve

scheduling make assumptions about the problem that we consider too limiting. For example,

many learning approaches assume job run time estimates are accurate, while others fail to

capture the impacts of the sequential nature of the problem of scheduling HPC jobs, yet others

assume cluster configurations aren’t expected to change, and explicitly discourage transferring

agents between clusters.

Our main goal is to model scheduling HPC jobs for realistically sized clusters as a se-

quential decision-making problem, with a corresponding decision process and the design of

agents able to learn in such an environment. We also want to understand the effects of uncer-

tainty in job run time estimates, as that is a crucial factor in the quality of scheduling systems.

In our investigation, we will have to remove some simplifying assumptions commonly found

in the literature, while also providing a formulation of the problem closer to how such an agent

could potentially be used in production systems.

In our research, we adhere to the following guidelines:

(G1) An agentmust learnwithout relying on the characteristics of a single system: Wewant to be

able to train learning agents that support being transferred between systems. Granted,

these transferred agents might not be the best ones, needing retraining, but they should

be able to make decisions with changes to cluster configuration.

(G2) The approach must not depend on powerful systems for learning: It is common in ML to

have models that require hundreds of GPUs and thousands of processors for learning.

In practice, current scheduler systems must make their decisions quickly, and we would

1.3. Contributions 18

like to be able to allow the learning algorithm to tune itself online. For that reason, our

approach should work with less powerful hardware, ideally working on what a desktop

computer or a modest server can offer.

(G3) Our approach should work with existing algorithms: There are many clever learning al-

gorithms available in the literature. Our approach should be able to make use of those

algorithms for faster implementation, and convergence.

In handling the challenges of scheduling jobs while adhering to these guidelines, this

dissertation presents a solution that follows software engineering best practices, such as reuse,

by proposing formulations that follow an Application Programming Interface (API) specifica-

tion for RL environments, satisfying (G1) and (G3). We exploit the structure of event-based

systems and construct a set of features for learning with relatively small neural networks, sat-

isfying (G2). We do so incrementally, and show that, at each of these changes, we reduce the

amount of computation needed for learning.

1.3 Contributions

Current approaches that attempt to solve HPC job scheduling with RL seem to use

simplified environments [Mao et al., 2016], or to pre-process real workload traces by sorting,

filtering, and selecting subsets to enable agents to learn [Zhang et al., 2019]. Moreover, such

approaches tend to use custom-built simulation environments, which make it difficult to (I)

reproduce previous work and (II) build upon previous work by applying novel techniques

from the RL community.

Our approach reduces the need for computational resources for learning, while also

removing the need for preprocessing workload traces, while being competitive with state-of-

the-art algorithms. We are able to do so by proposing reduced reward functions, reduced state

representations which capture the essence of cluster state, and using event-driven systems.

Our contributions are summarized as follows:

• The formulation of new MDPs to model job scheduling as a learning problem;

• An analysis of the impact on learning performance of MDP design decisions;

• A better understanding of the impact of uncertainty in job run time estimates for learn-

ing agents;

• Strong scheduling performance without preprocessing on workload traces while deliv-

ering scheduling performance on par with custom algorithms from the literature

1.4. Notation 19

• Software contributions, including a downloadable OpenAI Gym environment and work-

load generation wrappers for the Python language;

The following publications are a direct result of this dissertation:

• de Freitas Cunha and Chaimowicz [2020], where we present our ideas for designing our

environment, and show algorithms from the literature can learn in our environment

faster than our own implementations of different algorithms;

• de Freitas Cunha and Chaimowicz [2021], where we present multiple Markov Decision

Process (MDP) formulations and observe the impact these formulations have in learning

and computing performance; and

• de Freitas Cunha and Chaimowicz [2022], where we further improved our formulation,

allowing our agents to solve learning for clusters with hundreds of thousands of proces-

sors while showing reduced need for computational resources.

1.4 Notation

We strive to use consistent notation throughout this document. In this dissertation,

we will use capital letters to represent random variables, while we reserve lower case letters

to represent scalars, functions, and samples from random variables. Table 1.1 summarizes the

notation we use with the meaning for most common symbols. In general, we represent sets

with a calligraphic style. So, for example, the set E of all even prime numbers is defined as

E = {2}.

1.5 Document layout

This rest of this document is structured as follows: In Chapter 2 we introduce the

background needed to completely understand this dissertation. In Chapter 3 we position this

dissertation within the broader literature. In Chapter 4 we describe the simulation framework

and how it was tested. In Chapter 5 we present experiments, and in Chapter 6 we conclude

this dissertation and present next steps.

1.5. Document layout 20

Table 1.1: Summary of the notation used in this dissertation.

Symbol Description

𝑗𝑖 The 𝑖-th job in the system
𝑡𝑓 (𝑗) The finish time of job 𝑗
𝑡𝑠(𝑗) The submission time of job 𝑗
𝑡𝑒(𝑗) The execution time of job 𝑗
𝑡𝑤 (𝑗) The wait time of job 𝑗
𝑡′𝑒 (𝑗) Online approximation of 𝑡𝑒(𝑗)
𝑡′𝑤 (𝑗) Online approximation of 𝑡𝑗(𝑗)
𝑡𝑟 (𝑗) The requested time of job 𝑗
𝑞(𝑗) The queue size in front of job 𝑗
𝑞𝑤 (𝑗) The work in the queue in front of job 𝑗
𝑝𝑓 (𝑗) The number of free processors at 𝑗’s submission
S The set of states in an MDP
A The set of actions in an MDP
R The reward function in an MDP
T The transition function in an MDP
𝜌 The set of initial states in an MDP
𝛾 Discount factor in an MDP
𝜏𝑖 A trajectory 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … in episode 𝑖
𝑆𝑡 The state seen by an agent at time-step 𝑡
𝐴𝑡 The action taken by an agent at time-step 𝑡
𝑅𝑡 The reward received by an agent at time-step 𝑡
𝜃 The parameters of an approximation function
𝜋𝜃 A policy with parameters 𝜃

𝜙𝜃 (𝜏) The probability of following 𝜏 with policy 𝜋𝜃
𝜎(z)𝑖 The 𝑖-th element of the softmax of vector z
𝑣𝜋 (𝑠) Value function for state 𝑠 under policy 𝜋
𝑞𝜋 (𝑠, 𝑎)

State-action value function for state
𝑠 and action 𝑎 under policy 𝜋

𝑞𝜋 (𝑠, 𝜔)
State-option value function for state 𝑠

and option 𝜔 under policy 𝜋

21

Chapter 2

Background

Before diving into the main material, in this chapter we introduce the key techniques used in

this dissertation. We begin by discussing concepts from batch job scheduling, such as metrics,

basic algorithms, and job types (§ 2.1). Then, we present the RL formalism, while mapping a

batch job scheduling example to the RL formalism for better understanding (§ 2.2). After this

scenario is presented, we present the job generation process from workload models (§ 2.3),

and discuss uncertainty models for batch job scheduling problems (§ 2.4). Then, we return to

the RL formalism, now focusing on an algorithm for solving it (§ 2.5), and extending the RL

problem for temporal abstraction (§ 2.6). Finally, we briefly introduce a high-level library used

for implementing solutions to RL problems (§ 2.7).

2.1 Batch job scheduling

Job schedulers are used to manage the job queue and coordinate execution of jobs in

supercomputers and HPC clusters. Their primary goal is to enable successful execution of

computing jobs on parallel machines, with the main problem being that of matching jobs to

resources in an efficient way. They guarantee jobs execute when requested resources are

available and, usually, guarantee there won’t be oversubscription of resources1. Given this

main goal, there are many secondary goals schedulers may want to achieve, depending on

whether the institution that owns the cluster prefers to satisfy the needs of individuals, or of

the whole group of users of the system. Therefore, when centered on the user, schedulers may

want to optimize response time, whereas when centered on the system, or on the whole group

of users, they may want to optimize for utilization, or throughput [Feitelson and Rudolph,

1996].

When optimization of response time is a subgoal, it is usually modeled as the mini-

mization of the average response time, with response time used as a synonym to turnaround
1Some schedulers allow for oversubscription of memory resources in their default configuration. The point

being that jobs don’t necessarily use peak memory during their complete lifetimes. In this document, though,
we will consider memory cannot be oversubscribed, and will also assume jobs use all requested memory.

2.1. Batch job scheduling 22

time: the difference between the time a job was submitted to the time it completed execution.

A metric commonly used to evaluate this is the slowdown of a job, which, for job 𝑗 is defined

as

slowdown(𝑗) = (𝑡𝑓 (𝑗) − 𝑡𝑠(𝑗))
𝑡𝑒(𝑗)

= 𝑡𝑤 (𝑗) + 𝑡𝑒(𝑗)
𝑡𝑒(𝑗)

≈ 1
𝑡′𝑒 (𝑗)

(
𝑡′𝑤 (𝑗)
∑
𝑖=1

1 +
𝑡′𝑒 (𝑗)
∑
𝑖=1

1) ,

(2.1)

where 𝑡𝑠(𝑗) is the time job 𝑗 was submitted, 𝑡𝑒(𝑗) is the time it took to execute job 𝑗, and 𝑡𝑓 (𝑗) is
the finish time of job 𝑗. The equality in the middle holds because the wait time, 𝑡𝑤 , of a job 𝑗
is defined as 𝑡𝑤 (𝑗) = 𝑡𝑓 (𝑗) − (𝑡𝑒(𝑗) + 𝑡𝑠(𝑗)). The form of slowdown presented in equation (2.1) is

useful in our context because we can compute an approximation of slowdown online, as the

job is still in the system. As soon as the job finishes execution, equation (2.1) converges to the

actual slowdown.

In order to maximize return on investment, institutions may want to maximize utiliza-

tion (the number of resources in use divided by the number of available resources) of their

clusters, since the more usage the cluster sees, the less resources are “wasted”. Unfortunately,

though, as system utilization increases, the load on the system also increases, potentially in-

creasing response time as well. Additionally, solely optimizing for utilization may cause star-

vation when there are many jobs that use a large number of processors, but few jobs that use

few processors. In such a case, the small jobs may wait indefinitely to run.

A metric similar to utilization, in the sense that it depends on the load of the system, is

throughput, defined as the number of jobs completed per unit of time. Contrary to utilization,

maximizing throughput will have the effect of prioritizing small jobs, and may starve bigger

jobs.

Sometimes it is useful to compute the total execution time of the schedule, its makespan.

Makespan is defined as the maximum finish time for all jobs in the system:

makespan = max𝑗∈J 𝑡𝑓 (𝑗), (2.2)

where J is the set of all jobs that completed execution at a given time, and 𝑡𝑓 (𝑗) is the finish

time of job 𝑗. When there are no completed jobs in the system, we define makespan to ∞.

From the above discussion, we see that although simple metrics are useful, they may

have side effects of starving certain job classes, or attributing greater effect to relatively small

differences. As mentioned, maximizing utilization may not schedule jobs that cause fragmen-

tation, while maximizing throughput may not schedule large jobs, and minimizing response

time may give larger emphasis on small differences between jobs, especially in smaller ones.

For this reason, designing scheduling algorithms for systems with heterogeneous workloads

is a challenge which may be solved with learning algorithms.

2.1. Batch job scheduling 23

An issue with using slowdown is that the metric is sensitive to small jobs: since small

jobs will have smaller 𝑡𝑒(𝑗), any delays in scheduling them will increase their slowdown. Hu-

mans don’t tend to notice small delays in small jobs, and thus, an alternative metric that is not

so sensitive to small jobs is the bounded slowdown, defined as

bsld(𝑗) = max (1,
𝑡𝑓 (𝑗) − 𝑡𝑠(𝑗)
max(𝜖, 𝑡𝑒(𝑗))

), (2.3)

where 𝜖 is a configurable parameter, set to the smallest time to consider when computing

(bounded) slowdown. In practice, and in this dissertation, 𝜖 is usually set to 10. For a study of

how different values influence bounded slowdown, we direct the reader to Feitelson [2001].

2.1.1 Scheduling decisions and their impacts

1

2

3P
r
o
c
e
s
s
o
r
s

Time

0 1 2 3 4 5 6

0
1

2

7

Figure 2.1: A possible schedule when three jobs arrive in a scheduling system at discrete time
step 1 and no more jobs are submitted to the system at least until time step 7, the last one
shown in the figure.

Consider the case of three batch jobs, 𝑗1 = , 𝑗2 = , and 𝑗3 = , submitted to

a scheduling system with two processors, and that the three jobs were submitted “between”

time step 0 and 1, such that, when transitioning from the first time step to the second, now

there are three jobs waiting. Also consider that, for these jobs, the generated schedule is the

one displayed in Figure 2.1. As shown in the figure, the jobs execute for two, three and four

time steps respectively, and all of them use a single processor.

In this dissertation, we will focus our discussion on what happens when a scheduling

system based on RL tries to minimize the average slowdown. The reader should observe that

different schedules can yield substantially different values of average slowdown (with average

slowdown defined as the average of the slowdown for all jobs in the system). For example,

the schedule shown in Figure 2.1 has an average slowdown equal to 1/3∑3
𝑖=1 slowdown(𝑗𝑖) =

1/3(1 + 1 + 3/2) = 7/6, whereas, if we swapped 𝑗3 with 𝑗1, and started 𝑗1 soon after 𝑗2 finished,

the slowdown would be 1/3(3+22 + 1 + 1) = 9/6 = 3/2, a ≈ 29% increase. Therefore, a scheduler

should choose job sequences wisely, otherwise its performance can be degraded.

2.1. Batch job scheduling 24

2.1.2 Base scheduling algorithms

Themost basic scheduling algorithm in use is First-Come First-Serve (FCFS), also known

as First In First Out (FIFO). In this algorithm, jobs are kept in a queue sorted by order of arrival.

Whenever the first job in the queue fits in the system, it is allocated the resources it needs. The

problem with this approach is that whenever a large job is at the head of the queue, smaller

jobs are delayed, since scheduling them would violate the FCFS nature of the queue. Due

to that, backfilling algorithms were implemented extensively. Figure 2.2 shows a distinction

between FCFS and a backfilling algorithm. In the figure, basic FCFS would schedule job 7 at

time unit 9, while a conservative backfilling algorithm would schedule it at time unit 2. Also

seen in Figure 2.2 are the slowdowns computed for all jobs in the system. As shown in the

figure, backfilling can have great impact on the slowdown of smaller jobs. The makespan of

the scheduling shown in Fig. 2.2 is 9 when using backfilling, and 10 when using FCFS.

Pr
oc

es
so

rs

Time

1

2

3

7
4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

≠

Job Submission time Duration Processors
Slowdown

FCFS Backfilling

1 0 2 2 1 1
2 1 2 1 1 1
3 1 3 1 1.3 1.3
4 1 4 2 1.5 1.5
5 1 4 1 2 2
6 1 2 2 4 4
7 2 1 1 8 1

Figure 2.2: Expected scheduling behavior of FCFS and conservative backfilling algorithms for
a set of seven jobs submitted to a system with three processors. Job 7 appears twice to indicate
the difference between the two algorithms. In this context, time is discrete. Therefore, jobs
can only run for integral time as well. In a pure FCFS algorithm, job 7 would be scheduled at
time unit 9, since it was the last submitted job to the system. In a Backfilling algorithm, job 7
would be scheduled at time 2, since its scheduling would not delay any other jobs. The bottom
part of the figure shows statistics about the jobs, with slowdown computed after completion
of all jobs.

Backfilling algorithms tend to come in at least two flavors: EASY (from the Extensible

Argonne Scheduling sYstem) and conservative backfilling [Tsafrir and Feitelson, 2006]. The

key idea of backfilling algorithms is that, whenever there is a new event that triggers a change

2.1. Batch job scheduling 25

in the state of the system (such as new jobs arriving or finishing execution, for example),

the system scans the queue in the base underlying algorithm order (FCFS in this section),

scheduling jobs as the algorithmwould, as long as the jobs fit in the system. Upon reaching the

first job that cannot be scheduled, the systemmakes a reservation for that job. This reservation

is an upper bound on the time the job would start: if all preceding jobs run to completion, this

new job will start running at the reserved time. If earlier jobs fail or finish early, this job may

start earlier. After this reservation is made, the scheduler keeps scanning the queue. All jobs

that fit the system and that would finish prior to the reservation can be scheduled without

delaying the reserved job. EASY backfilling makes a reservation for the first “big” job only,

while conservative backfilling makes reservations for all skipped jobs.

Another classical algorithm that also has backfilling variants is the Shortest Job First

(SJF) algorithm [Srinivasan et al., 2002], in which the job queue is kept sorted by requested job

time, with smaller jobs first in the queue.

For the backfilling procedure to work, algorithms need an estimate of how long a job

will execute. Therefore, backfilling systems tend to ask users for run time estimates of their

jobs. If users over-estimate job run times, execution of later jobs advance, but if users under-

estimate job run times, the system tends to kill such jobs, otherwise reservation times would

be violated. Therefore, users tend to over estimate their job run times to avoid having their

jobs terminated. There is work in the literature that analyses user estimates and their correct-

ness [Lee et al., 2004]. Other systems tend to use a prediction in the absence (or despite) of

runtime estimates, which is the case of the EASY++ algorithm [Tsafrir et al., 2007].

2.1.3 Job types in workloads

The most basic type of job that may be submitted to a scheduling system are rigid jobs,

which are submitted with a fixed number of required processors set by the user. This is not

the only type of job we may encounter, though, and a summary of job types that may be found

in workloads is shown in Figure 2.3. In the following paragraphs we describe the other types

of jobs for completeness.

Rigid A rigid job is a job for a program that is written to execute on a specific number of

processors and, even if more processors are available, they cannot take advantage of those

processors. Similarly, if fewer processors are available, the job will fail to run.

Moldable Amoldable job is a job that allows for flexibility in the number of required proces-

sors. But, once the number of required processors is set, the job runs from start to finish with

2.1. Batch job scheduling 26

Rigid

 t
im

e

 t
im

e

 processors

 p1 t 1

 p2 t 2

 p3 t 3

 processors

Moldable

(a) (b) (c)

Figure 2.3: Major types of jobs found in workloads: (a) shows rigid jobs, which define a fixed
rectangle in processor × space, (b) shows moldable jobs (jobs in which the scheduler may
choose the number of processors from a set of possibilities), and (c) shows evolving and mal-
leable jobs (jobs which may change their number of processors as time passes.)

the same number of processors. The number of processors used by moldable jobs is defined

at job submission time.

Evolving Evolving jobs are jobs of applications that may change their resource requirements

during execution, with such a change being initiated by the application itself. These changes in

resource requirements are a consequence of many applications having different phases, such

as having waves of data input and output, followed by parallel computation.

Malleable In contrast to evolving jobs, malleable jobs (or jobs that support dynamic par-

titioning) adapt to changes in the number of processors during execution (with the change

initiated by the system). This is the most flexible type of jobs that can be submitted to a sys-

tem, but with this flexibility comes complexity, since jobs must be robust to the removal of

processors that may hold shared data other processors may depend on.

In this dissertation, we will center our discussion on rigid and moldable jobs: in both

cases, the number of processors required by a job is determined before a job enters the queue.

Therefore, the number of processors required by the jobs we consider here will not change at

run time. Hence, considering the number of processors required by a job in one axis, and the

amount of time required by a job in another axis, the jobs considered here define a rectangle in

the time × processors space, as exemplified by Figure 2.3. To the area of the time × processors

rectangle we give the name of work. For example, a job that requests 3 processors for 2 time

steps is expected to take 6 units of work. In this dissertation, the actual amount of work

taken by a job is only known after if finishes. Before that happens, our methods only used

the requested amount of work, which serves as an upper bound for actual work: in our model,

schedulers never give more time, nor more processors than those requested by a job.

2.2. Deep Reinforcement Learning and Job Scheduling 27

2.2 Deep Reinforcement Learning and Job Scheduling

In a Reinforcement Learning (RL) problem, an agent interacts with an unknown en-

vironment in which it attempts to optimize a reward signal by sequentially observing the

environment’s state and taking actions according to its perception. For each action, the agent

receives a reward. Thus, in the end, we want to find the sequence of actions that maximizes

the total reward, as we will detail in the next paragraphs.

RL formalizes the problem as a Markov Decision Process (MDP) represented by a tuple

M = ⟨S,A,R,T , 𝜌, 𝛾 ⟩2. At each discrete time step 𝑡 the agent is in state 𝑆𝑡 ∈ S. From 𝑆𝑡 ,
the agent takes an action 𝐴𝑡 ∈ A, receives reward 𝑅𝑡+1 from R ∶ S × A → ℝ and ends

up in state 𝑆𝑡+1 ∈ S. Therefore, when we assume the first time step is 0, the interaction

between agent and environment creates a sequence 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … of states, actions

and rewards. To a specific sequence 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … of states, actions, and rewards we

give the name of trajectory, and will denote such sequences by 𝜏 . The transition from state 𝑆𝑡
to 𝑆𝑡+1 follows the probability distribution defined by T ∶ S × A → S or, in an equivalent

way, T gives the probability of reaching any new state 𝑠′ when taking action 𝑎 when in state

𝑠: 𝑝(𝑠′|𝑠, 𝑎) = 𝑝(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎). 𝜌 is a distribution of initial states, and 𝛾 is a

parameter 0 ≤ 𝛾 ≤ 1, called the discount rate. The discount rate models the present value

of future rewards. For example, a reward received 𝑘 steps in the future is worth only 𝛾 𝑘 now.

This discount factor is added due to the uncertainty in receiving rewards and is useful for

modeling stochastic environments. In such cases, there is no guarantee an anticipated reward

will actually be received and the discount rate models this uncertainty.

To map our presentation of RL into our problem of job scheduling, we consider 𝜌() =
1 (the only possible initial state is the empty cluster), with the first state consisting of the empty

cluster, with no jobs in the system, 𝑆0 = ⟨ ⟩ and 𝐴0 = ∅, since there is no job to schedule. We

also consider an episodic setting, with an episode consisting of the submission and scheduling

of a set of jobs. For example, if we consider 256 jobs in an episode, the episode starts with the

empty cluster, has 256 jobs submitted according to a workload model, and finishes once the

256-th job is scheduled. Every time an episode finishes, the state of the system is reverted to

the empty cluster state.

In this dissertation, we allow the agent to choose the next job, and so the agent is

learning a scheduling policy. In our example, one can obtain a reward function by using

the sequential version of slowdown, shown in the rightmost equality of (2.1), such that the

reward at each time step is given by the sum of the current slowdown for all jobs in the

system: R = −∑𝑗∈J 1/𝑡𝑒(𝑗). When the reward function is such that it computes the online

version of slowdown for all jobs in the system, if 𝐴1 = ∅, 𝑅2 = 1/2 + 1/3 + 1/4. Moreover, if
2Some authors leave the 𝛾 component out of the definition of the MDP. Leaving it in the definition yields a

more general formulation, since it allows us to model continuous (non-episodic) learning settings.

2.2. Deep Reinforcement Learning and Job Scheduling 28

jobs 𝑗1, 𝑗2, and 𝑗3 are chosen in sequence, the next state, shown in Fig. 2.1, will be given by

sequentially applying the transition function T as T (,)T (,)T (,). If the

episode finished immediately after the state shown in Fig. 2.1, the trajectory 𝜏1 would be given

by 𝜏1 = ⟨𝑆0 = ,𝐴0 = , 𝑅1 = 0, 𝑆1 = ,𝐴1 = , 𝑅2 = 0, 𝑆2 = ,…⟩3.
The reward signal encodes all of the agent’s goals and purposes, and the agent’s sole

objective is to find a policy 𝜋𝜃 parameterized by 𝜃 that maximizes the expected return

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾 𝑇−1𝑅𝑇

=
𝑇−1
∑
𝑡=0

𝛾 𝑡𝑅(𝑆𝑡 , 𝐴𝑡 ∼ 𝜋𝜃 (𝑆𝑡)),
(2.4)

which is the sum of discounted rewards encountered by the agent. Note that for this sum-

mation to converge, either 𝑇 < ∞, or 𝛾 < 1. In this dissertation, we will use time-bounded

episodes, such that 𝑇 < ∞. 𝜋𝜃 (𝑆𝑡) is a function that, given a state, returns an action for the

agent to take. As a shorthand notation, we also define 𝐺(𝜏) = 𝐺0, meaning that the expected

return of a trajectory is the expected return of all rewards in that trajectory, starting from

state 𝑆0. In our example, a deterministic policy that implemented the SJF algorithm would

choose the shortest job 𝜋𝜃 (⟨ , , , ⟩) = , while a stochastic policy would assign a

probability to each job, and either choose the one with highest probability or sample from the

jobs according to that distribution. In our example, for each job 𝑗𝑖 in time step 1, 𝜋 would give

the probabilities of choosing each job given an empty cluster: such that, by total probability,

𝜋(|)+𝜋(|)+𝜋(|) = 1. In practice, when neural networks are used for approx-

imation, the last layer of the neural network is usually a softmax, or soft-argmax, function,

defined as

𝜎(z)𝑖 = 𝑒𝑧𝑖
∑𝐾

𝑗=1 𝑒𝑧𝑗
, (2.5)

for 1 ≤ 𝑖 ≤ 𝐾 , and z = (𝑧1, … , 𝑧𝐾) ∈ ℝ𝐾 , where z is the output vector of the neural network,

and 𝐾 is the number of classes to choose from (for example, when choosing jobs, 𝐾 may

represent the size of the vector with jobs to choose from). Since the softmax is normalized

by the sum of the exponential of all individual components, the sum of the elements of 𝜎(z)
equals 1, with each individual element 0 ≤ 𝜎(z)𝑖 ≤ 1. This allows us to interpret the softmax

as a probability mass function, and when 𝐾 equals the number of actions available to an agent,

each element of the softmax 𝜎(z)𝑖 can be interpreted as the probability of taking the 𝑖-th action

available. Apart from neural networks [Silver et al., 2018, Tesauro, 1994], another popular

type of function approximation are linear [Liang et al., 2016] or polynomial combinations [see

Sutton and Barto, 2018a, Chapter 9] of features.

In Figure 2.4, we show the agent-environment interaction loop. As represented by

the thickness of the arrows between agent and environment, the agent communicates a scalar
3The value shown for 𝑅2 might contradict the previous discussion, but the MDP is set in a way that, when

jobs are scheduled successfully, 𝑅𝑡+1 = 0.

2.3. Workload models 29

Agent Environment

Figure 2.4: Agent-Environment interaction loop.

action𝐴𝑡 (represented by a thin line) and, in turn, receives a state (whichmay be a scalar, vector,

matrix, or, more generally, a tensor), and a scalar reward signal, both represented by a thick

line. The figure also shows a component present in modern agents: a function approximator

that implements policy 𝜋𝜃 , in which the state is processed and yields a probability distribution

for the set of actions it should take at a given time step.

In the following two sections, we describe models of job arrival in the system and then

we describe the formalism to solve the RL problem described in this section.

2.3 Workload models

So far, we’ve discussed the state transition function T , but we still haven’t mentioned

how jobs arrive in the system. This is the role fulfilled by workload models. These types of

models not only determine the “shape” of jobs (how many resources they need, and how long

they take to run), but also the time at which they arrive in the system. Here we consider

two synthetic workload models: the Mao model [Mao et al., 2016] (§ 2.3.1), and the Lublin

model [Lublin and Feitelson, 2003] (§ 2.3.2).

2.3.1 The Mao model

In the Mao model, adapted from the model proposed by Mao et al. [2016], job length,

job arrival times and job sizes are sampled independently. The Mao model assumes that, for

each simulation time step, a job has probability 𝑝 of arriving in the system. If a job arrives, to

determine its length, the workload model decides with probability 𝑙 whether 𝑗 is a long job or

2.3. Workload models 30

Job arrival model
At every time step Job length model Job size model

Job
arrives

p

No job
arrives

1-p

𝒰(l₁, l₂)

l

𝒰(s₁, s₂)

1-l

𝒰(r₁, r₂)

Figure 2.5: Graphical representation of the workload model based on the one proposed byMao
et al. [2016]. Job sizes, job arrivals, and job durations are sampled independently.

a short job. Long jobs are sampled from U(𝑙1, 𝑙2) and small jobs are sampled from U(𝑠1, 𝑠2),
where U(𝑎, 𝑏) is the discrete uniform distribution between 𝑎 and 𝑏, with 𝑙1 > 𝑠1 and 𝑙2 > 𝑠2.
The job’s size is sampled from U(𝑟1, 𝑟2). Figure 2.5 shows a graphical representation of this

model.

Although this model is useful for testing smaller problems and for verifying whether

an agent is learning, this is an unrealistic model which relies on time-based simulations due

to the probability 𝑝 of sampling a job depending on the current time step. A consequence of

using this model is that it becomes very hard to tune, generating either too many jobs, or too

few jobs, once the number of time steps in a simulation increases.

2.3.2 The Lublin model

The Lublin model is a statistical model that attempts to replicate the workloads of real

supercomputers. It was fitted to traces of large supercomputing sites, and has three major

components: a model of job sizes, a model of job run times, and a model of job arrival times.

In the Lublin model, job arrivals are sampled from two Gamma distributions, with one being

used for the peak inter arrival times, and another for the daily inter arrival times. Once a job

is determined to arrive, modeling of the job itself follows the algorithm depicted in Figure 2.6.

The Lublin model is hierarchical, and selects job sizes from a two-stage uniform distribution

with four parameters: the minimum and maximum job sizes desired, and the fractions of serial

(𝑝1 in the figure) and power-of-two (𝑝2 in the figure) jobs4. After a job size is selected, job run

times are sampled from a hyper-Gamma distribution (“Run time selection” in the figure) which

depends on the job size sampled previously. Lublin and Feitelson [2003] published the original

workload model implementation as a C++ source file, and we use a Python wrapper for the C

code from the parallelworkloads library5.
4Jobs with sizes that are a power of two are explicitly modeled because such powers are common in real

clusters, even in clusters whose network topology does not require power-of-two sizes.
5https://github.com/renatolfc/parallelworkloads, DOI: 10.5281/zenodo.7068617.

https://github.com/renatolfc/parallelworkloads
https://doi.org/10.5281/zenodo.7068617

2.3. Workload models 31

Job size selection

Run time selection

Serial job
size = 1

Job
size

Parallel job
 size ~ ζ

Power of two

p2

size = 2logsize

1-p2

Constant parameters

Runtime distribution

Compute params
based on size

Job
Duration

start

p11-p1

Figure 2.6: Graphical representation of the workload model proposed by Lublin and Feitelson
[2003]. Job sizes are sampled from a distribution and then are fed to another distribution to
sample job length. Outputs are the job size and job duration. These job characteristics are
then combined with the arrival model to determine the job start time.

2.4. Uncertainty in job run time estimates 32

2.4 Uncertainty in job run time estimates

In our discussion so far, we assumed the run time of jobs are known by the scheduler.

Various models in the literature [Domeniconi et al., 2019, Mao et al., 2016, Zhang et al., 2020]

assume the availability of run time estimates, yet, real-world average job run time estimates,

even when available, are inaccurate [Lee et al., 2004]. For this reason, even though some

scheduling algorithms designed with accurate run time estimates in mind may perform well

with noisy job run time estimates [Mu’alem and Feitelson, 2001, Zotkin and Keleher, 1999],

others will suffer significant performance degradation [Chiang et al., 2002]. Additionally, some

systems use ML techniques to infer job resource and time requirements [Cunha et al., 2017,

Rodrigues et al., 2016], and those predictions will not be perfect either. In this section, we

present two models that can be used to generate noisy run time estimates from jobs sampled

by the workload models discussed in the previous section.

2.4.1 The Gaussian model

In the Gaussianmodel, job run time estimates are sampled from a Gaussian distribution

centered at the actual job run time, with a configurable standard deviation scaling parameter.

The model supports three variations: one-sided overestimation, one-sided underestimation,

and two-sided Gaussian. Usually, it doesn’t make sense to generate consistently underesti-

mated times, as jobs that exceed their run times are usually terminated by schedulers. Still,

we wanted to observe the impact of such changes on learning algorithms, and left that option

in the model. Formally, in this model, the estimate for job 𝑗 is its actual execution time, 𝑡𝑒(𝑗)
plus a difference, sampled from

diff(𝑗) =
⎧⎪
⎨⎪
⎩

−|N (0, 𝛽(𝑗))|, if underestimated

|N (0, 𝛽(𝑗))|, if overestimated

N (0, 𝛽(𝑗)), otherwise,

(2.6)

where N is the Gaussian distribution and 𝛽(𝑗) = 𝜈𝑡𝑒(𝑗) is a scaling parameter, controlled by

parameter 𝜈 and the actual execution time of the model. For cases in which the run time

estimate is smaller than 1 second, we set them to 1.

2.5. Policies and approximators 33

2.4.2 The Tsafrir model

User run time estimates tend to be modal due to users preferring to repeat time esti-

mates. Amore appropriate run time estimate model might be the one proposed by Tsafrir et al.

[2005], which was built with the modal nature of job run time estimates in mind, and which

uses a histogram of the twenty most popular estimate values, as these tend to account for

90% of job run time estimates in production machines. In this dissertation, we used a Python

wrapper from the parallelworkloads library, which wraps the original C++ code available

from the parallel workloads archive.

2.5 Policies and approximators

Now that we know how jobs arrive in the system and how they can be selected for

scheduling, we turn to the formalism to solve the problem in an RL setting. Given that agents

have partial control over received rewards by being able to choose an action and ending up in

a new state, it is natural that agents will choose actions that maximize 𝐺𝑡 (2.4).
In practical problems, which tend to have large state spaces, it is hard to learn a direct

mapping from states to actions. Because of this, we turn to parameterized functions that allow

us to approximate 𝜋(𝑎|𝑠) by a function 𝜋𝜃 (𝑎|𝑠) with tunable parameters 𝜃 . Approximation not

only allows us to represent large spaces with a relatively small number of parameters, but it

also enables generalization of models, at the cost of using a sub-optimal objective function.

Popular function approximators include linear combinations of features [Liang et al., 2016]

and neural networks [Silver et al., 2018, Tesauro, 1994].

If we have a policy 𝜋 , we are able to determine its value by letting the agent follow it

or, more formally, for MDPs:

𝑞𝜋 (𝑠, 𝑎) = 𝔼𝜋 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝔼𝜋 [
𝑇
∑
𝑘=0

𝛾 𝑘𝑅𝑡+𝑘+1 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ,

where 𝔼𝜋 [] denotes the expected value given that the agent starts by taking action 𝑎 while

in state 𝑠 and subsequently following policy 𝜋 , starting at time 𝑡 . Methods that try to learn

and optimize 𝑞𝜋 (𝑠, 𝑎) are called value-based methods, while methods that only use the policy

𝜋 directly are called policy-based methods.

From 𝑞𝜋 (𝑠, 𝑎), we can also define the value of a state as the weighted average of taking

each action 𝑎 when in state 𝑠. Since the probability of taking action 𝑎 is given by 𝜋(𝑎|𝑠), we

2.5. Policies and approximators 34

have

𝑣𝜋 (𝑠) = ∑
𝑎
𝜋(𝑎|𝑠)𝑞𝜋 (𝑠, 𝑎), (2.7)

the value function of state 𝑠.

2.5.1 Policy gradients

In this section we present the main optimization method we use to find policies: policy

gradients. As implied by the name, we compute gradients of policy approximations, and use

them to find better parameters for those functions.

Formally, we generalize policies to define distributions over trajectories with

𝜙𝜃 (𝜏) = 𝜌(𝑆0)∏
𝑡
𝜋𝜃 (𝐴𝑡 |𝑆𝑡)T (𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Environment

, (2.8)

in which 𝜋𝜃 is being optimized by the agent, and 𝜌 and T are provided by the environment.

What (2.8) says is that we can assign probabilities to any trajectory, since we know the distri-

bution of initial states 𝜌, and we know that the policy will assign probabilities to actions given

states, and that, when such actions are taken, the environment will sample a new state for the

agent. Clearly, we need a model of the environment T to be able to evaluate (2.8). Assuming

we have it, we can build a performance function

𝐽 (𝜃) = 𝔼 [𝑣𝜋 (𝑠0), 𝑠0 ∼ 𝜌(𝑆0)] = ∫𝜏 𝐺(𝜏)𝜙𝜃 (𝜏)𝑑𝜏

that gives the value of using parameterization 𝜃 over all trajectories. Unfortunately, even if

we did have access to the model T , the integral in 𝐽 (𝜃) would be intractable. Still, we can

approximate 𝐽 (𝜃) with Monte Carlo estimation, such that

𝔼 [𝐽 (𝜃)] ≈ 𝐽 (𝜃) = 1
𝑁

𝑁
∑
𝑖=1

𝐺(𝜏𝑖)𝜙𝜃 (𝜏𝑖).

Therefore, if 𝜋𝜃 is differentiable, 𝜙𝜃 is differentiable, and we can find the optimal set of parame-

ters 𝜃 iteratively with gradient ascent, such that 𝜃𝑗+1 ← 𝜃𝑗 +𝛼∇𝐽(𝜃), with 𝛼 > 0, 𝑗 representing
the iteration number, and 𝜃0 being a random initialization of parameters 𝜃 .

When using a neural network, we can use an automatic differentiation system [Baydin

et al., 2018] to perform this approximation by sampling trajectories from an environment in

which we use the neural network for decision-making, and perform back propagation from

the returns of episodes (Section 4.5). From the Policy Gradient theorem [Sutton et al., 2000],

2.5. Policies and approximators 35

the gradient of 𝐽 (𝜃) is

∇𝜃𝐽 (𝜃) = 𝔼𝜋 [∑
𝑎
𝑞𝜋 (𝑆𝑡 , 𝑎)∇𝜃𝜋𝜃 (𝑎|𝑆𝑡)] (2.9)

= 𝔼𝜋 [𝑞𝜋 (𝑆𝑡 , 𝐴𝑡)∇𝜃 ln 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)] (2.10)

= 𝔼𝜋 [
𝑇
∑
𝑘=0

𝛾 𝑘𝑅𝑡+𝑘+1∇𝜃 ln 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)] . (2.11)

Combining this with the previous gradient ascent update, we get the reinforce update:

𝜃𝑗+1 = 𝜃𝑗 + 𝛼𝐺𝑡∇𝜃 ln 𝜋𝜃 (𝐴𝑗 |𝑆𝑗), (2.12)

with 𝐺𝑡 as defined in equation (2.4). An issue with Monte-Carlo methods in general, and

with the update (2.12) in particular, is that they tend to have high variance, and require a

large number of samples for an accurate estimate of ∇𝜃𝐽 (𝜃)6. One way to reduce the variance

without drawing multiple samples is to introduce a state-dependent baseline function7 𝑏(𝑆𝑡).
This baseline function can be any function, as long as it does not depend on the action 𝐴𝑡 8.

With a baseline, we can change the update 2.12 to

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝐺𝑡 − 𝑏(𝑆𝑡))∇𝜃 ln 𝜋𝜃 (𝐴𝑡 |𝑆𝑡). (2.13)

Although we’ve added a new term to the update (2.12), this new term doesn’t affect its ex-

pected value. To see why, let us expand (2.9) by including the baseline component: ∇𝜃𝐽 (𝜃) =
𝔼𝑎∼𝜋 [(𝑞𝜋 (𝑆𝑡 , 𝑎) − 𝑏(𝑆𝑡)) ∇𝜃𝜋𝜃 (𝑎|𝑆𝑡)]. Then, by focusing on the component that contains the

baseline, we have the expansion:

𝔼𝑎∼𝜋 [𝑏(𝑆𝑡)∇𝜃 ln 𝜋𝜃 (𝑎|𝑆𝑡)] = 𝑏(𝑆𝑡)𝔼𝑎∼𝜋 [∇𝜃 ln 𝜋𝜃 (𝑎|𝑆𝑡)]
= 𝑏(𝑆𝑡)∑

𝑎
𝜋𝜃 (𝑎|𝑆𝑡)∇𝜃 ln 𝜋𝜃 (𝑎|𝑆𝑡)

= 𝑏(𝑆𝑡)∑
𝑎

����𝜋𝜃 (𝑎|𝑆𝑡)
∇𝜃𝜋𝜃 (𝑎|𝑆𝑡)
����𝜋𝜃 (𝑎|𝑆𝑡)

= 𝑏(𝑆𝑡)∑
𝑎
∇𝜃𝜋𝜃 (𝑎|𝑆𝑡)

= 𝑏(𝑆𝑡)∇𝜃 ∑
𝑎
𝜋𝜃 (𝑎|𝑆𝑡)

= 𝑏(𝑆𝑡)∇𝜃1 = 0
6Due to the Central Limit Theorem, the standard deviation converges to zero at a rate of 1/√𝑛.
7This seems to be related to the Common Random Numbers technique from the Monte-Carlo litera-

ture [Glasserman and Yao, 1992], which states that, when computing the expected value of the difference of
the function of two random variables (𝔼 [𝑓 (𝑋) − 𝑓 (𝑌)]), the variance of the difference is 𝕍[𝑓 (𝑋) − 𝑓 (𝑌)] =
𝕍[𝑓 (𝑋)]+𝕍[𝑓 (𝑌)]−2Cov[𝑓 (𝑋), 𝑓 (𝑌)]. In this specific case, 𝔼 [𝑓 (𝑌)] = 0 is the baseline function, and we expect
2Cov[𝑓 (𝑋), 𝑓 (𝑌)] > 𝕍[𝑓 (𝑌)], which reduces variance.

8Some authors [Thomas and Brunskill, 2017] argue that, even with action-dependent baselines, under certain
conditions, such functions will be unbiased.

2.5. Policies and approximators 36

Due to their variance-reduction effects, recent Policy Gradient (PG) methods incorpo-

rate the concept of the baseline, which tends to be learned together with the parameters 𝜃 but,

as we shall see in Chapter 4, this is not required, and there are successful algorithms in the

literature that use simpler baselines.

When the baseline function is learned and used to approximate ̂𝑣𝜋,𝜁 (𝑠) ≈ 𝑣𝜋 (𝑠) the

value of state 𝑠 with parameters 𝜁 , it is possible to replace the full return 𝐺𝑡 of the reinforce

algorithm with the approximation ̂𝑣𝜋,𝜁 . From (2.13), approximating 𝐺𝑡 by the one-step return

𝑅𝑡+1 + 𝛾 ̂𝑣𝜋,𝜁 (𝑆𝑡) and assuming 𝑏(𝑆𝑡) = ̂𝑣𝜋,𝜁 (𝑠), we get the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝑅𝑡+1 + 𝛾 ̂𝑣𝜋,𝜁 (𝑆𝑡) − ̂𝑣𝜋,𝜁 (𝑆𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Advantage function

)∇𝜃𝜋𝜃 (𝐴𝑡 |𝑆𝑡). (2.14)

When this is done, this update gives rise to Advantage Actor-Critic Algorithms, with the name

deriving from usage of the advantage function, highlighted in (2.14).

2.5.2 Policy entropy as regularization

With the updates (2.13, 2.14), the agent may be encouraged to exploit knowledge too

early in the learning process, overfitting to early positive returns. Aswith otherML techniques,

one solution to reduce overfitting is by means of regularization. Since policy 𝜋𝜃 (⋅) encodes a

probability density function, one way to implement regularization in this case is to use the

entropy of the distribution, which, for random variable 𝑋 is defined as

ℎ(𝑋) = − ∑
𝑥∈𝑋

𝑝(𝑥) ln 𝑝(𝑥). (2.15)

To get an intuition of why introducing entropy helps in this case, let us consider the

case of a Bernoulli random variable. In this case, 𝑋 ∈ {0, 1} and we can write 𝑝(𝑋 = 1) =
𝜃 and 𝑝(𝑋 = 0) = 1 − 𝜃 to represent the probabilities of successes and failures, respec-

tively9. The entropy of this random variable, called the binary entropy function, is ℎ(𝑋) =
− [𝜃 ln 𝜃 + (1 − 𝜃) ln(1 − 𝜃)], which, when plotted, gives us Figure 2.7. Now, observe that we

get maximum entropy when 𝜃 = 0.5, which corresponds to the uniform distribution (flipping

a fair coin). Since we are adding the entropy to our gradient ascent objective, when consid-

ering two policies that yield the same performance, the optimization algorithm will prefer

the one with higher entropy and, therefore, distributions that tend to be “more diverse”, not

concentrating density over a small range of values.

When entropy regularization is used, a deeper effect is observed as well. According

to Williams and Peng [1991], with entropy regularization, agents tend to perform better in
9This arises from the definition of the Bernoulli distribution as Ber(𝑋 = 𝑥|𝜃) = 𝜃𝑥(1 − 𝜃)(1−𝑥).

2.5. Policies and approximators 37

𝑝(𝑋 = 1)

ℎ(𝑋)

0 1/2 1

ln(1/2)

Figure 2.7: Entropy of a Bernoulli random variable as a function of parameter 𝜃 . As shown,
the maximum is found when 𝜃 = 1/2, which corresponds to the probability of flipping a fair
coin.

tasks that have hierarchical characteristics. The reason being that, when sampled points yield

high rewards, the network will tend to capture regularities in such points, biasing the policy to

search for points that share features with the ones found, potentially increasing performance.

When adding a regularization term, it is important to add a hyper parameter to govern the

influence of the regularization term on the final update function. Combining equations (2.15)

and (2.13) and adding hyper parameter 𝛽 to govern regularization strength, we have the update

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝐺𝑡 − 𝑏(𝑆𝑡))∇𝜃 ln 𝜋𝜃 (𝐴𝑡 |𝑆𝑡) + 𝛽∇𝜃ℎ(𝜋𝜃 (𝐴𝑡 |𝑆𝑡)). (2.16)

Similarly, the update (2.14) can be extended to regularize based on the entropy of the

policy. In such a case, we have the Advantage Actor-Critic (A2C) algorithm’s [Mnih et al.,

2016] update rule:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 [𝑅𝑡+1 + 𝛾 ̂𝑣𝜋,𝜁 (𝑆𝑡) − ̂𝑣𝜋,𝜁 (𝑆𝑡)] ∇𝜃 ln 𝜋𝜃 (𝐴𝑡 |𝑆𝑡) + 𝛽∇𝜃ℎ(𝜋𝜃 (𝐴𝑡 |𝑆𝑡)). (2.17)

In both equations (2.16, 2.17), we have the expansion of the gradient of the entropy as

∇𝜃ℎ(𝜋𝜃 (𝐴𝑡 |𝑆𝑡)) = ∇𝜃 [− ∑
𝑎∈A𝑡

𝜋𝜃 (𝑎|𝑆𝑡) ln 𝜋𝜃 (𝑎|𝑆𝑡)]

= − ∑
𝑎∈A𝑡

[
�
�
�
��>

1
𝜋𝜃 (𝑎|𝑆𝑡)
𝜋𝜃 (𝑎|𝑆𝑡)

∇𝜃𝜋𝜃 (𝑎|𝑆𝑡) + ln(𝜋𝜃 (𝑎|𝑆𝑡))∇𝜃𝜋𝜃 (𝑎|𝑆𝑡)]

= − ∑
𝑎∈A𝑡

[1 + ln 𝜋𝜃 (𝑎|𝑆𝑡)] ∇𝜃𝜋𝜃 (𝑎|𝑆𝑡).

As an example, when A = {0, 1}, and we make 𝜋𝜃 (𝐴𝑡 |𝑆𝑡) = Ber(𝐴 = 𝑎|𝜃) equal to zero

to find the maximum, ∇𝜃ℎ(𝜋𝜃 (𝐴𝑡 |𝑆𝑡)) = −{[1+ ln(𝜃)] ⋅1+[1+ ln(1−𝜃)] ⋅−1} = ln(1−𝜃)− ln(𝜃) =
0 → ln(𝜃) = ln(1 − 𝜃) → 𝜃 = 1/2, the same maximum we found graphically in Figure 2.7.

As with any regularization method, the 𝛽 parameter requires tuning, as setting it too

low would disable the regularization, and setting it too high would hinder learning.

2.6. Options as a closer-to-reality model 38

2.5.3 Maskable PPO

Optimizing the policy gradient objective (2.12) is the main method we use for learning,

but some improvements to (2.12) have been proposed over the years. One such improved

method is the Proximal Policy Optimization (PPO) algorithm, whose main ideas are (I) limiting

the updates of the policy to within a region near the current parameters, (II) using multiple

agents for collecting trajectories, and (III) estimating the advantage function of each state to be

used as a baseline for variance reduction 4.5. For this last idea, PPO uses two networks: a policy
network, for predicting the next action, and a value network, for estimating the advantage of

a state.

Especially in early parts of training, the learned policy will generate actions that are

“invalid”. The definition of what is or is not a valid action might vary, but as an example, when

using a multi-layer perceptron, the neural network requires a representation of fixed size. In

such a case, if jobs were chosen from a window over the waiting queue, and the queue was

smaller than the window, there would be a non-zero probability of the agent choosing the po-

sition in the fixed representation corresponding to a job that does not exist. An approach for

solving this problem is masking out invalid actions (jobs that do not exist), and sampling from

the set of valid actions. This becomes especially useful as the number of actions available in-

crease, speeding up learning by not letting the agent waste time sampling useless actions. For

this reason, instead of using PPO directly, we use a maskable PPO implementation, which ap-

plies a state-dependent differentiable function during calculation of action probabilities [Huang

and Ontañón, 2022].

2.6 Options as a closer-to-reality model

Both in state-driven simulations, and in actual job schedulers, job scheduling decisions

don’t necessarily take place at, say, every second or other fixed time intervals. Rather, schedul-

ing decisions are made when external events happen, such as the arrival of a new job, the

finishing of a running job, or a request from a user of the scheduler, such as changing the

priority of a job, or requesting its termination, or when a timer expires.

In Section 2.2, we presented a way to model job scheduling as an MDP, but, when we

consider the fact that decisions need only occur when events happen, the actions available

to the agent are, in fact, options: temporal abstractions over actions. This means that, once a

decision is made, the next state seen by the scheduler might not necessarily be of the next time

2.6. Options as a closer-to-reality model 39

Figure 2.8: Relationship between an MDP and a Semi-MDP, and how an MDP is tied to a time-
driven simulation, whereas an event-driven simulation is closer to an SMDP. The illustration
shows an empty cluster where the agent chooses a job in the first state. In the MDP,
the agent sees all time steps in which the job is processed, while in the SMDP, the agent
only sees the job to select, the event for the job starting, and the event for the job finishing. In
both cases, state 𝑆1 shows the state of the cluster immediately after the job starts running.
Also, in both cases, no other job arrives after . Notice how the SMDP allows temporal
abstraction over the underlying MDP.

step, allowing the agent to see the next event. Moreover, any MDPwith a decision process that

only selects options over that MDP is an SMDP [see Sutton et al., 1999, Theorem 1]. Figure 2.8

gives an intuition of the differences between an MDP and an SMDP. In the example in the

figure, one agent sees five states (MDP), while the other only sees three (SMDP). With real-life

examples, this temporal abstraction makes for even greater differences.

Formally, an option 𝜔 = ⟨𝜋, 𝛾𝜔⟩, where 𝜋 is a policy and 𝛾𝜔 is a state-dependent termi-

nation function, is a generalization of actions, and can take more than one time-step to execute.

To execute option 𝜔 at time 𝑡 , an agent chooses the action 𝐴𝑡 ∼ 𝜋(𝜔|𝑆𝑡), with 𝜔 terminating at

time 𝑡 + 1 with probability 1 − 𝛾𝜔(𝑆𝑡+1), at 𝑡 + 2 with probability 1 − 𝛾𝜔(𝑆𝑡+2), and so on, until

termination (of the option.)

In our event-driven context, then, the probability 𝛾𝜔(𝑆𝑡+𝑘) is 1 for all time steps 𝑘 be-

tween choosing a job for execution, and the time at which the first event happens after time

step 𝑡 . In other words, let 𝑢 be the time step of the first event that happens after choosing

action 𝐴𝑡 . Then, 𝛾𝜔(𝑆𝑢) = 0 and the option terminates with probability 1 at time step 𝑢 and

𝛾𝜔(𝑆𝑤) = 1 for all 𝑡 ≠ 𝑢. As exemplified by Figure 2.8, in our model, when an option takes more

than one time step to execute, intra-option actions are set to ∅. Since there are no decisions

to be made, doing nothing is the only decision that makes sense. The advantage of using this

model as opposed to an MDP is that the reinforcement signal needs only flow through actions

that make a difference in agent performance, skipping “unneeded” actions, as in the bottom

part of Figure 2.8.

2.7. OpenAI Gym 40

The reward when using an option model is given by

𝑟(𝑠, 𝜔) = 𝔼 [
𝜅−1
∑
𝑖=0

𝛾 𝑖𝑅𝑖+1 ∣ 𝑆𝑡 = 𝑠, 𝐴 ∼ 𝜋, 𝜅 ∼ 𝛾𝜔] . (2.18)

In other words, the reward of an option is the sum of discounted rewards for all rewards

received at intermediate time steps while the option was being executed. It is important to

note that 𝛾𝜔 affects option termination, while 𝛾 is used for discounting.

Similarly, the value of state 𝑠, 𝑣(𝑠), needs to take into account the multiple time-steps

an option can take, and is defined as

𝑣𝜋 (𝑠) = ∑
𝜔∈Ω(𝑠)

𝜋(𝜔|𝑠) [𝑟(𝑠, 𝜔) +∑
𝑠′
T (𝑠′|𝑠, 𝜔)𝑣𝜋 (𝑠′)] , (2.19)

where T (𝑠′|𝑠, 𝜔) = ∑∞
𝑡=1 𝛾 𝑡𝑝(𝑆𝑖 = 𝑠′, 𝜅 = 𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴 ∼ 𝜋, 𝜅 ∼ 𝛾𝜔) is a discounted weighting of

state, option pairs from (𝑠, 𝜔), and Ω(𝑠) is the set of options available at state 𝑠. The value of

executing option 𝜔 at state 𝑠 is given by

𝑞𝜋 (𝑠, 𝜔) = 𝑟(𝑠, 𝜔) +∑
𝑠′
T (𝑠′|𝑠, 𝜔)𝑣𝜋 (𝑠′). (2.20)

Both value functions give the value of scheduling a job until the next event happens. The

advantage function can also be defined with options, and becomes 𝑎𝜋 (𝑠, 𝜔) = 𝑞𝜋 (𝑠, 𝜔) − 𝑣𝜋 (𝑠).
In practice, what changes in the implementation from an action-based agent to an

option-based agent is how the discount factor is handled. While in the state value and in

the state-action value functions the 𝛾 term appears explicitly, when using options, discounts

are made implicitly, within 𝑟(𝑠, 𝜔).

2.7 OpenAI Gym

Traditionally, prior to the mid-2010s, there was a shortage of open-source libraries

that decoupled the development of RL environments from the development of agents that

solved such environments. This was unfortunate, as experimentation with RL algorithms was

accessible to few people.

With the objective of providing a software package that was convenient and accessible

to RL researchers to access benchmark problems and to create new environments, the OpenAI

Gym software package (also referred simply as Gym in this text) was proposed [Brockman

et al., 2016] in 2016. In the years after its introduction, OpenAI Gym became a standard envi-

ronment for both the introduction of new episodic RL environments, and for testing general

RL algorithms.

2.7. OpenAI Gym 41

Agent Environment

done = False
state = env.reset()
while not done:

action = agent.select_action(state)
state, reward, done, info = env.step(action)

Figure 2.9: Example of the RL agent-environment interaction loop and corresponding Python
code. With discrete time, scalar actions taken at time 𝑡 are processed by the environment and,
at time 𝑡 + 1, the environment returns an observation vector of and a scalar that corresponds
to the reward for taking action 𝑎𝑡 . States given as input to the agent are passed into a param-
eterized function 𝜋𝜃 (𝑎|𝑠) that outputs probabilities of taking various actions when in 𝑠. The
reward signal is used to adjust the values of parameters 𝜃 . In the bottom part, code that shows
how agent interacts with the environment is displayed. Interaction proceeds until a terminal
state is reached.

OpenAI Gym makes it easy to map an RL implementation to the RL problem, as exem-

plified in Figure 2.9 with an equivalent block of code that implements that loop. As can be seen

in the figure, the agent chooses an action given the current state of the environment, while

the environment is responsible for updating the state of the world, computing the reward of

the last action taken, determining whether a terminal state was encountered, and providing

any additional information to the agent, usually in the form of statistics of the episode. These

responsibilities are represented, respectively, by the variables state, reward, done, and

info in the bottom part of the figure.

42

Chapter 3

Related Work

In this chapter, we position our work within the broader literature. Our work intersects the

areas of deep reinforcement learning, scheduling, and workload models, and its inspiration

comes from our previous research on job placement in hybrid clouds [Cunha et al., 2017], in

which we used Machine Learning (ML) to predict wait times and run times of High Perfor-

mance Computing (HPC) jobs and, based on those predictions, decide whether to submit jobs

to a local cluster, causing jobs to wait for the cluster to free up resources to run them, or

to submit them to a cloud cluster, which would have no wait time1. Migrating a job to the

cloud would incur additional costs, and would impact the performance of networked applica-

tions, due to network interconnects of cloud providers tending to be slower and have higher

latency than their supercomputing center counterparts [Jackson et al., 2010, Marathe et al.,

2013, Sadooghi et al., 2015, Xavier et al., 2013].

From the initial work on cluster selection, we’ve decided to take a step back from the

multi-cluster setting, and investigate how well learning agents can deal with scheduling job

realistically-sized clusters with realistic user run time estimates. In the following sections, we

will discuss papers that share at least one characteristic with ours, but while they all share some

idea with us, none of them model job scheduling as an RL problem with temporal abstraction

and function approximation, nor do they consider the impacts of uncertainty in job run time

estimates or study how learned algorithms behave under such settings. Additionally, none of

the papers studied also provide an OpenAI Gym environment that is general enough to be used

to solve scheduling problems without knowledge of the inner workings of the environment.

3.1 Reinforcement Learning for Scheduling

Webegin our exploration by surveying papers that use RL in job scheduling. RL applied

to scheduling problems has a somewhat long story, but early solutions tended to be applied on

small problems, andwith tabular (exact) methods, without state or time abstraction [Aydin and
1Due to the illusion of infinite resources in the cloud [Armbrust et al., 2010].

3.1. Reinforcement Learning for Scheduling 43

Öztemel, 2000, Zhang and Dietterich, 1995]. For example, Aydin and Öztemel [2000] deal with

scheduling jobs by training an agent that selects scheduling rules. Although they formulate

the problem as an RL problem, the structure of the reward function used implies a classifier

could have good performance, since the reward is a function of the selected rule, the size of

the queue, and the mean slack time of the queue2. Still, this was an early example that showed

agents were able to learn to select dispatching rules. Another work also shows that, when jobs

are sampled from a fixed set of tasks, and task information is passed down to the scheduler,

tabular RL solves these problems [Tong et al., 2014].

In the recent wave of attempts to solve scheduling with RL, the Deep Resource Man-

agement (DeepRM) [Mao et al., 2016] algorithm was an influential one. DeepRM uses the

Reinforce [Williams, 1992] policy gradient algorithm with state baselines to schedule jobs

based on their time, CPU, and memory requirements. DeepRM’s state representation uses ma-

trices to treat jobs as images, and using those images as input to choose which job to schedule

next. DeepRM mainly optimizes for job slowdown, but both it and other methods are able to

optimize for other metrics [Fan et al., 2021, Huang and Ontañón, 2022]. DeepRM also influ-

enced our work, as our initial experiments reproduced Mao et al. [2016] results both with a

Reinforce implementation, and with state-of-the-art RL agents that use the techniques dis-

cussed in the previous chapter.

Continuing with the papers influenced by DeepRM, Domeniconi et al. [2019] proposed

CuSH, a system that built on DeepRM to schedule for CPUs and GPUs, but using a hierarchical

agent. The agent works in two phases: in the first, it chooses the next job to send to the second

phase, a policy network that chooses the scheduling policy to use to determine when the job

will run. It is important to highlight a major difference between DeepRM and CuSH: whereas

DeepRM learns the scheduling policy itself, CuSH is essentially a classifier, which chooses

between two existing policies. This means that, even without training, CuSH’s behavior is

expected to be more stable than that of DeepRM, since DeepRM-style schedulers might get

stuck in local minima 5.1.2.

Another agent that has been proposed recently, and that learns the scheduling policy

itself, is rlscheduler [Zhang et al., 2020]. rlscheduler is a PPO-based agent with a kernel-

based design that looks at job features for scoring them. rlscheduler scores jobs in a window

of up to 128 jobs over the queue. The major innovation in RLscheduler is in the training

setting, in which the authors combine synthetic workload traces with real workload traces to

present the agent with ever more difficult settings, similar to learning a curriculum of tasks.

A potential deficiency with rlscheduler is that it only uses local job information for making

decisions, without considering the cluster’s occupancy state.

Similarly to CuSH, other agents that use a classification approach have been proposed.

A recent one is the Deep Reinforcement agent for Scheduling in HPC (DRAS) [Fan et al., 2021],

which classifies jobs in three categories: ready, reserved, and backfilled. After this classifica-
2the amount of time a job can be delayed without causing another job to be delayed.

3.1. Reinforcement Learning for Scheduling 44

tion step, the cluster scheduler takes the output of this classification and allocates jobs accord-

ingly (for example, by reserving slots in the future for reserved jobs, scheduling immediately

ready jobs, and finding “holes” in the schedule for backfilled jobs). DRAS uses a five-layer

Convolutional Neural Network (CNN) that works in two levels, with the first level selecting

jobs for immediate and reserved execution, and the second layer for backfilled execution.

The papers discussed above are the closest to the work we describe here, with the most

notable differences being in the type of learning (whether a reinforcement learned algorithm

selector, or a learner that chooses jobs directly), whether a single or multiple resource require-

ments were handled, in the sizes of the clusters considered, and whether the learned agents

are transferrable between clusters of different sizes. As is usual with algorithms with multiple

parameters, some works have investigated the performance of different policy-gradient algo-

rithms, while others have taken the approach of investigating the impact of different network

architectures on agents that use a single optimization algorithm [Liang et al., 2019].

Peng et al. [2019] propose 𝐷𝐿2, a Deep Learning (DL)-based scheduler for DL clusters.

They do so by first training a classifier on offline data, which is then used to train an RL agent

online. Since they focus on DL workloads, their jobs use a Parameter Server (PS) architecture,

in which training of a neural network is split between a group of Parameter Server (PS) (which

hold and serve copies of the neural network parameters), and workers, which sample data

and compute gradient updates for those networks. In this domain, their joint offline-online

training model outperforms other learning agents and state-of-the-art heuristic systems.

Apart from HPC jobs, there have been approaches for scheduling workflows with rein-

forcement learning [Baheri and Guan, 2020, Kintsakis et al., 2019, Mao et al., 2019b, Tong et al.,

2020, Wang et al., 2019], using machine learning for deriving static scheduling policies for job

scheduling [Carastan-Santos and De Camargo, 2017], and optimization techniques [Fan and

Lan, 2019] for doing so. Outside of reinforcement learning, many ML techniques have been

used to aid in the scheduling of jobs, such as predicting resource and time requirements [Cunha

et al., 2017, Fan et al., 2017, Rodrigues et al., 2016, Smith et al., 1999, 2004, Xu et al., 2022]. Ad-

ditionally, with the rise in popularity of DL as a whole, learning schedulers for DL have also

been proposed lately [Peng et al., 2019].

From our point of view, few, if any, papers have recently reported the effects of deci-

sions in modeling the scheduling HPC jobs for solving with RL while considering the impacts

of uncertainty in job runtime estimates. Nor do any of the papers related to job scheduling

model the problem as an SMDP, both topics discussed in this work.

3.2. On predicting job features 45

3.2 On predicting job features

It is interesting to contrast end-to-end RL approaches, such as the one taken in this

dissertation, with approaches that try to predict job characteristics or features to aid in re-

source management. For example, Kumar and Vadhiyar [2013] developed a technique that

defines which jobs can be classified as quick starters. These are jobs with short waiting times

compared to the other jobs waiting for resources. Their technique considers both job char-

acteristics such as request size and estimated runtime, and the state of the system, including

queue and processor occupancy states. With Kumar and Vadhiyar’s work, one could perform

a classification of quick starters to, for example, aid in backfilling decisions. In RL systems,

such a classification step may not be needed, as deep RL can learn to leave room for smaller

clusters automatically [Mao et al., 2016].

Even in the work we mentioned at the beginning of this chapter, an RL approach could

bring benefits. For example, there we estimated the variance of the predictions and used a cut-

off function to determinewhether predictions should be trusted or not. The parameters of such

cut-off function encoded the propensity to risk of the system operator. Still, this function was

modelled manually, and could be improved to support fully automatic decisions. One option

to stop using the cut-off function and migrating to a fully automated approach would be to use

RL, which naturally solves these kinds of sequential problems. In the following paragraphs, we

quickly survey techniques that can be used to augment data in classical schedulers to improve

performance.

Related to job characteristics other than CPU usage, research that focuses on memory

usage predictions tends to be based on benchmarking [Marin andMellor-Crummey, 2004, Mat-

sunaga and Fortes, 2010, Nudd et al., 2000, Snavely et al., 2002, Wood et al., 2008, Yang et al.,

2005]. For example, Matsunaga and Fortes [2010] assessed various machine learning tech-

niques for predicting spatio-temporal utilization of resources by user applications; memory is

one of the resources investigated. Their experiments focused on two bioinformatics applica-

tions and involved the execution of the applications with different parameter configurations.

Another example is from Wood et al. [2008], who designed an approach for estimating the

resource requirements of user applications motivated by the need to move such applications

to virtualized environments. Their approach relies on a set of microbenchmarks to profile the

different types of virtualization overhead on a given platform and a regression-based model

to map the native system usage profile into a virtualized one.

Other researchers predict different metrics using, instead of a single model, an ensem-

ble of models, both for memory [Rodrigues et al., 2016] and for run time [Chen et al., 2020].

Similar tomemory, some researchers built systems and proposed techniques thatmined

scheduler logs to make predictions [Hariharan et al., 2020, Smith, 2007, Tsafrir et al., 2007,

Yang et al., 2005], while others used benchmarks [Yang et al., 2005], and others used Instance-

3.3. Reinforcement Learning in Resource Management 46

Based Learning techniques to predict not only memory and run time, but also wait time and

data transfer times [Smith, 2007, Smith et al., 2004]. Yang et al. [2005] proposed a technique

to predict the execution time of jobs in multiple platforms. Their method is based on data

collected from short executions of a job and the relative performance of each platform.

The techniques above might be helpful for building a comprehensive system that aug-

ments job information before making scheduling decisions, but as presented, they are outside

the scope of this work. Still, with the above presentation we hope to have given the reader a

perspective of how different research groups approach the problem of predicting different job

features.

3.3 Reinforcement Learning in Resource Management

In the wider context of resource management in general, some papers provide inter-

esting conclusions and guidance for us. For example, in some contexts, it has been shown

that some environments already enforce an appropriate level of exploration, indicating that

agents that prefer to exploit learned informationmight perform better than agents that include

explicit exploration [Glaubius et al., 2010]. In our context, we see that is not the case, and in-

cluding an explicit exploration component in agents improves performance. In other contexts,

it has been shown that it is possible to choose resources in a multi-objective setting [Zhang

et al., 2017].

Kumar et al. [2019] surveyed the literature of scheduling techniques in cloud comput-

ing. Related to learning techniques, their findings indicate it is difficult to predict upcoming

workloads in clouds, with more powerful learning techniques needed, with machine learning

techniques also having potential for failure prediction. In the body of work they identified

related to resource scheduling, few pieces of work are related to scheduling tasks with learn-

ing, adaptive algorithms. Although some use RL techniques that are able to successfully make

accurate predictions [Wang and Gelenbe, 2015], others focus on resource provisioning, with

the potential of reducing costs in hybrid clouds [Kumar and Ravichandran, 2013], Virtual Ma-

chine (VM) placement with online monitoring to minimize performance degradation [Sotiri-

adis et al., 2018], which resources to lend from public clouds to extend private clouds [Bitten-

court and Madeira, 2011] in order to reduce operating costs while maintaining desired execu-

tion times.

Luong et al. [2019] surveyed the area of applications of deep RL in communications

and networking. Of special interest to us is the literature review on resource sharing and

scheduling. Of these, they identify DeepRM [Mao et al., 2016], which we mentioned above,

as an example of learned scheduler. Also included in the survey is a model-free actor-critic

3.4. Resource allocation environments in OpenAI Gym 47

method for scheduling in distributed data stream processing systems [Li et al., 2018], in which

the authors write an agent to assign workloads to workers, and which, when compared to a

default algorithm, can reduce average processing time by up to 33.5%.
Other areas which have seen successful application of both tabular and deep RL for

resource management are in allocation of resources for Internet-of-Things systems [Gai and

Qiu, 2018], Quality-of-Service (QoS)-aware scheduling for cloud service providers [Wei et al.,

2018], and in the reconfiguration of Data Stream Processing applications [da Silva Veith et al.,

2019].

3.4 Resource allocation environments in OpenAI Gym

To finish this chapter, given the practical approach we take in simulating and evalu-

ating our agents, it might be useful to perform a brief exploration of resource management

environments based on OpenAI Gym, or similar systems. In general resource management,

there have been environments proposed for fields as diverse as the optimization of network-

ing systems [Gawłowicz and Zubow, 2019], the optimization of demand response for electric-

ity [Vázquez-Canteli et al., 2019], and internet congestion control algorithms [Jay et al., 2019].

Still, few studies in resource management use RL frameworks for performing research.

Mao et al. [2019a] propose a set of environments (Park) for studying computational resource

management issues, but they do so by proposing a new framework with similar, but not iden-

tical, APIs of existing RL frameworks. Due to that, it becomes harder to adapt agents and

algorithms designed for these standard frameworks. Also, algorithms written for Park will

only be able to be evaluated in Park as well, which might reduce its appeal for researchers out-

side the group that proposed the Park framework. Similarly to Park, DRAS [Fan et al., 2021]

uses its own environment on top of the CQSim simulator.

There are groups that use OpenAI Gym as a framework, such as RLscheduler [Zhang

et al., 2020], but often there is not a clear separation between the code for the environment,

and the code for the agents that solve the environment, which differs from the approach taken

in this work. Here, we set to share an environment that might be solved with any algorithm

and, in fact, we use standard algorithm implementations to solve our environments with our

parameterization.

3.5. Summary 48

3.5 Summary

In this chapter, we have seen that although ML techniques have been studied and ap-

plied extensively in resource management and scheduling, most are applied to the goal of mak-

ing predictions of a single aspect of resource managers. When RL is used to learn schedulers,

it usually uses a small, fixed set of actions in the action space. Moreover, even applications

based on deep learning tend to be applied to a limited set of configurations, breaking when

applied to models that resemble more realistic systems.

From our review of the literature, we identify the need for learning algorithms that are

able to adapt to large-scale, realistic clusters, while also being able to properly select jobs and

allocate them without arbitrary limitations in their action spaces. In a recent survey paper,

leading researchers in the area of cloud computing stress the need for novel resource manage-

ment and scheduling methods for hybrid clouds and federated clouds, while acknowledging

that current ML and Artificial Intelligence (AI) methods can be brittle [Buyya et al., 2018].

Part of this dissertation uses an approach that is conceptually similar to that of Mao

et al. [2016], but we show that a simpler design based on standardized components allow for

faster convergence of learning algorithms. Our proposal also differs from theirs by modelling

the problem in a scalable way, allowing us to study problems at the scale of actual, existing

clusters. Additionally, we test our approach with real-world workload traces, while evaluating

the generalization capabilities of the learned agents.

49

Chapter 4

HPC job scheduling with RL

Now that we have reviewed the theoretical underpinnings of deep RL and the problem of HPC

job scheduling, we present our methods and models. We begin by describing the problem we

are set to solve, followed by a description of how such a problem might be simulated to solve

it. Then, we present a series of incremental MDP formulations, culminating in one definition

that allows us to solve it in an elegant and efficient way.

4.1 Problem description

In the past, HPC clusters were dominated by bag-of-tasks applications and tightly-

coupled message-passing applications. In recent years, we have seen this scenario changing,

as AI applications gain popularity in HPC centers. Evidence of this comes from the increas-

ing number of clusters in the top-500 list with specialized accelerators (most notably GPUs)

for processing AI workloads. Increasingly, HPC clusters are now handling high-throughput,

data-intensive, stream-processing applications [Rodrigo et al., 2018], in addition to traditional

applications.

Being based on a new simulator, we focus on rigid and moldable jobs, which are easier

to implement, that run in parallel machines, leaving improvements to the simulation model

for future work. These types of jobs represent a hyperrectangle in the space of the number

of types of resources being scheduled and time. For example, if we only consider processor

usage, the job is represented as a rectangle of processors × time. If memory and processors are

considered, the job is a rectangular cuboid of processors ×memory × time and so on 1. Consid-

ering these types of jobs allows us to validate our approach with similar approaches from the

literature. Also, such models allow us to study execution environments for scientific comput-

ing applications, and neural network training procedures that use distributed neural network

training frameworks, such as Horovod [Sergeev and Del Balso, 2018] or the Distributed Deep

Learning (DDL) [Cho et al., 2017] library.
1In these cases, we consider peak memory consumption to represent the memory dimension.

4.2. On the need for simulators and frameworks 50

Given the above definition, the problem we set to solve is that of learning, by rein-

forcement, an efficient scheduler for rigid jobs that supports machines of realistic sizes, of up

to hundreds of thousands of processors, and that also supports transfer of learned schedulers

between machines, such that a scheduler learned on one machine could be used in another

without the need for retraining.

4.2 On the need for simulators and frameworks

Besides algorithmic breakthroughs [Mnih et al., 2015, 2016, Schulman et al., 2017], the

availability of environments in which agents can observe the consequences of their decisions,

such as simulators, is of crucial importance for deep RL. Not coincidentally, the vast majority

of success stories with deep RL comes from gaming. Although there are plenty of environ-

ments for gaming agents and, to some extent, for agents focused on specific aspects of robotics

problems, there is still a lack of environments that could benefit systems research [Mao et al.,

2019a], which tend to be sequential in nature. An implementer could set up agents that learn

directly from the systems they were to optimize, but that would be costly in number of sam-

ples, and inefficient, particularly as algorithms choose exploratory actions in search for better

policies. A cheaper and more efficient way of learning, then, is to simulate these problems.

Clearly, real-world performance of a policy learned through simulation will only be

as good as the simulation process and the workload data fed into the simulator. In this dis-

sertation, we make the assumption that communication (data loading, networking, etc.) costs

between processors are negligible, an assumption shared by work we compare ours with, mak-

ing our results at least comparable with those in the literature. As for the workload fed into

the simulator, we go all the way from simplistic models (§ 2.3.1) to simulating with real work-

load traces, with simulating realistic workload models (§ 2.3.2) in-between, even considering

uncertainty in run time estimates, both simplistic (§ 2.4.1) and realistic (§ 2.4.2).

To connect an environment, simulated or otherwise, to a (deep reinforcement) learn-

ing agent, we need to somehow present the environment to the agent as an MDP. From a

high-level perspective, one might argue why use a toolkit for RL research, when the agent-

environment interface (exemplified in Figure 2.9 and formally defined in Chapter 2) is simple.

This is a valid concern, but although the interface itself might be simple, environments them-

selves are not, making it easy to introduce bugs that hinder learning. Moreover, deep RL has

faced reproducibility issues in the past, in part due to the high variance of learning methods,

and in part due to the different metrics used for reporting results by different researchers [Hen-

derson et al., 2018, Machado et al., 2018]. Additionally, by using an existing toolkit, researchers

get helper functionality for free. For example, OpenAI Gym has functionality for representing

4.3. Job Scheduling Simulation 51

state and action spaces, functionality for modifying inputs (state and rewards) and outputs

(actions), recording trajectories both for imitation learning and for human consumption, and

libraries of peer-reviewed baseline algorithm implementations that help speed up research.

For the reasons above, instead of creating our own interface, we decided to connect

our simulation environments to the agent while following the OpenAI Gym interface. We also

made the simulation and environment code publicly available on the Internet, encouraging the

reproducibility of the work presented here. As a consequence of this decision, after reading

this chapter, the reader should be capable of understanding how we implemented a simulator

and connected it to theOpenAI Gym environment, while also being able to evaluate scheduling

policies for HPC clusters in that environment.

4.3 Job Scheduling Simulation

We started by implementing a discrete-event simulator for simulating job submission

and execution. We could have started from an existing simulator used in previous research [Cunha

et al., 2017], but after careful analysis, we came to the conclusion that the amount of work

needed to refactor a simulator to interface with an RL framework would be better spent writ-

ing a new one from scratch with extensibility in mind, while ensuring it works well with the

new environment. The key point to consider is that, to represent state, the RL environment

needs access to data structures internal to the simulator, while also requiring fine control of

the simulation process, which becomes easier when the simulator is already written with in-

spection and control from external applications in mind.

The design and development of the core components of the simulator followed a Test-

Driven Development (TDD) approach, in which the design of the components followed from

the specification of tests of how the components should and should not behave. This approach

enabled us to have confidence about the behavior of the simulation system. One example of

test of correctness is shown in Figure 4.1. In the top left part of the figure, we show the expected

schedule when seven jobs are submitted to two different scheduling systems. In the bottom

left part of the figure, we show the sequence of jobs that generated such schedules. And in the

right part of the figure we show how we encoded the sequence of job submissions and their

characteristics (number of requested processors and duration for this example) and specified

the start, wait, and finish times of each job. In the right part of the figure we show code that

implements this test. Ensuring tests such as this passed gave us confidence the implementation

was sound. Since tests alone cannot prove correctness, we also inserted assertions to ensure

invariants of algorithms were maintained. The TDD approach we followed allowed us to

achieve an overall line-based test coverage of 95.8%, suggesting the code has lower chance of

4.3. Job Scheduling Simulation 52

Pr
oc

es
so

rs

Time

1

2

3

7
4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

≠

Job Submission time Duration Processors

1 0 2 2
2 1 2 1
3 1 3 1
4 1 4 2
5 1 4 1
6 1 2 2
7 2 1 1

s = scheduler.BackfillingScheduler(3)
s.submit(make_job(0, 2, 2))
s.schedule() # schedules all jobs
s.step() # forwards time in simulator

s.submit(make_job(1, 2, 1))
s.submit(make_job(1, 3, 1))
s.submit(make_job(1, 4, 2))
s.submit(make_job(1, 4, 1))
s.submit(make_job(1, 2, 2))
s.schedule() # schedules all jobs
s.step() # forwards time in simulator

s.submit(make_job(2, 1, 1))
s.schedule() # schedules all jobs

assert 0 == j1.start_time
assert 1 == j2.start_time
assert 2 == j3.start_time
assert 3 == j4.start_time
assert 5 == j5.start_time
assert 7 == j6.start_time
assert 2 == j7.start_time

Figure 4.1: Example of a test of the simulator. On the top left, we see a graphical representation
of two possible schedules, one for a backfilling algorithm, and another for a FIFO scheduling
algorithm. On the bottom left, we see, for each job, its submission time, its duration, and
number of requested processors. On the right, we see a code excerpt for testing a backfilling
scheduler in our simulator. The code begins by creating a scheduler with three processors,
submitting a job, scheduling it and advancing time. Then, five jobs are submitted and all are
scheduled at the same time. Finally, a seventh job is submitted and scheduled, and the test
proceeds to assert that job start times equal those shown in the top-left figure.

containing undetected software bugs.

The jobs that end up being submitted to the system and scheduled are generated by a

Workload Generator (described in Section 2.3). We added two main methods for simulating job

submission. Jobs can be sampled from distributions, or they can be generated from workload

traces. Traces are supported in our simulator by using the Standard Workload Format (SWF).

SWF files are text files that contain, on each line, characteristics of jobs, such as submission

time, wait time, requested execution time, processors requested, memory requested, actual

run time, and so on2. The set of features present in the SWF, or features that can be computed

from those present in the SWF, limit the set of features we use in this dissertation. The Par-

allel Workloads Archive [Feitelson et al., 2012] contains workload files from supercomputers

recorded over a period of almost three decades and we use some of those files to simulate the

loads of real supercomputers.
2Although there are many fields defined in the SWF format, most traces only contain information about the

various job times, their ids, groups, queues, and numbers of processors (both requested and allocated).

4.4. The simulator as an OpenAI Gym environment 53

4.4 The simulator as an OpenAI Gym environment

With a working simulator, we now have to define an environment that would work

with the OpenAI Gym framework. Recall from Chapter 2 that we need an MDP definition to

solve with RL, so in this section we describe a base MDP and howwe linked it to OpenAI Gym.

The MDP comprises the tupleM = ⟨S,A,R,T , 𝜌, 𝛾 ⟩. In this context, the combination

of aworkload generationmodelwith the simulator is used to implement the transition function

T . Notice that, at the MDP level, time is discrete3, and always proceeds from one time-step to

the next, so even with an event-driven simulator, all intermediate states between two events

need to be presented to the agent, a restriction we will relax shortly in Section 4.7. For this

reason, in a software implementation, the RL framework needs to have the ability to control

the simulator, and define when time advances for the interactive RL loop to work.

To interface with OpenAI Gym, environments are required to inherit from the gym.Env

Python class and implement the following five methods: __init__, for initialization; step,

for implementing the MDP itself via the T (𝑠, 𝑎) function, the set of states S, the set of actions

A and the reward signal from R; reset, for resetting the environment state; render, for

rendering the environment (both for human visualization or consumption by other programs);

and close for closing the environment and freeing any resources.

Once an environment is registered with OpenAI Gym, it can be instantiated with a call

to the gym.make function with the environment name passed as string. This will instantiate a

new environment and call the __init__ method of our environment. This function takes an

optional argument that is passed to the initializer. We use this function to be able to configure
the environment. One such configuration option is how the workload is going to be generated,

which uses the workload generation models described in Section 2.3.

Continuing with the description of the MDP, in this work, we consider an episodic set-

ting which always begins with an empty cluster, meaning that the reset function implements

𝜌 = { }, the empty cluster. Since we don’t know beforehand how long an episode will be, we

assume 𝛾 = 0.99, meaning that, for each state, there is a 1% chance of the episode ending after

that state. To complete our description of the MDP, we now need to define the functions A,

R, and S, which are intrinsically linked to how we simulate a system, and present its state to

the learning agent.

For job scheduling, the set of statesSmay represent the set of all possible combinations

of resource usage in the cluster, which may be represented as a set of images (Figure 4.2), or

by a set of tabular features. Depending on the type of function approximation method in use,

it may only support inputs of a fixed size and, therefore, the state representation may have to

be padded or truncated to fit the requirements of the function approximator. For example: al-
3SMDPs allow modeling continuous-time transitions [Sutton et al., 1999].

4.4. The simulator as an OpenAI Gym environment 54

st

Slo t s
1 2Cluster

Processors

S
lo

ts

Backlog Slo t s
1 2Cluster

Processors

S
lo

ts

Backlog Slo t s
1 2Cluster

Processors

S
lo

ts

Backlog

st+1 st+2
at = 1 at+1= ∅at-1 at+2

Figure 4.2: Snapshot of three frames of the baseMDP implemented in this workwhen rendered
via the OpenAI Gym rendering function, along with annotations to aid in understanding. At
𝑆𝑡 , a job is in the cluster, running for two timesteps, while there are two jobs in the queue
and one in the backlog. The agent selects the job in slot 1 to run, and transitions to state 𝑆𝑡+1.
The job that was running will still run from two more timesteps, because wall clock simulation
time doesn’t pass when correct scheduling decisions are made, to allow the algorithm to make
as many valid schedules as possible in one time step. From 𝑆𝑡+1 to 𝑆𝑡+2, the agent selects the
empty action, transitions to state 𝑆𝑡+2 and wall clock simulation time proceeds, making the
original job in the cluster run for one time step.

though the waiting queue is unbounded, approximators such as Multi-Layer Perceptron (MLP)

neural networks require inputs of a fixed size. Hence, one might have to truncate the queue

representation should it grow larger than the maximum number of supported inputs in the

neural network.

Jobs that enter the system will either be added to the waiting queue, or, when it is full,

will be added to a backlog. Jobs in the backlog have their characteristics concealed. All the

agent knows is that such position is occupied in the backlog. In our base MDP, we consider

state representation S to be like an image with three major components: (1) a cluster state,

(2) a window 𝑊 of observation into the queue state, and (3) the backlog, jobs in the queue

that do not fit the window of observation. The backlog serves only as a representation of

“overflowing” jobs, but the components 1 and 2 are repeated for each resource type represented

in the cluster and which is used for scheduling. These three components define the width of

the image representation, whereas the height is defined by a horizon into the future, meaning

that, given the current schedule in the cluster, if no other decisions are made, what will be

cluster state in 𝐻 time-steps in the future. As an example, consider the three states for three

different time-steps shown in Figure 4.2. There, we consider a single resource type: processors,

of which there are three, and we consider a future horizon of 5 time steps. In the first state,

𝑆𝑡 , there are two cluster processors being used for the next two time steps. In the transition

from 𝑆𝑡 to 𝑆𝑡+1, the agent scheduled a job that was in one of the two job slots (which offer the

view into the job queue), and that job was added to the current cluster state and, since a job

slot was made free, a job that was in the backlog got moved into the view of the queue. If we

were scheduling another resource such as memory, instead of two slots, we would have four:

two for the processors, and two for the memory (which could have a different width, as the

cluster could have any amount of memory units). Similarly, we would also have a view of the

cluster processors, and another for the memory currently in use.

4.4. The simulator as an OpenAI Gym environment 55

Above, we said the agent selected a job for scheduling. In the base MDP, the cardinality

of the set of actionsA available at any given state is determined by the window𝑊 and, conse-

quently, each potential action inA corresponds to the index of the job in the job slots, with an

additional action, ∅, which corresponds to not choosing any job, and stepping the simulator.

Similarly, we built the MDP in a way that, if an action corresponds to a position that doesn’t

contain a job (for example, when the window𝑊 is larger than the size of the waiting queue), it

corresponds to choosing the empty action ∅. With this description, now we can fully describe

the transition function T (𝑆𝑡 , 𝐴𝑡): when 𝑎 corresponds to an index in the window into the job

queue that has a job that fits the cluster, the transition from 𝑠 to the next state 𝑆′ updates the
state representation, but does not increase wall clock simulation time (as the agent may be

able to make more than one decision in a single simulation time step), whereas if 𝑎 = ∅, or
𝑎 selects a job that does not fit the cluster, then simulation time is increased (and the state

representation for 𝑆′ is updated accordingly).

Defining a useful reward signal R in an MDP is a challenging aspect of RL, especially

when the environment and the task to be performed are complex [Sutton and Barto, 2018b], in

which simplistic reward signals may lead agents to optimize for goals different from those of

the environment’s designer. In the context of job scheduling, one might think that the agent

could optimize for the performance metric, such as slowdown, used to evaluate the system.

In many cases, this is not possible, though. Recall that the reward signal must be updated

after each action performed by the agent and since performance metrics usually depend on

knowing the finish time of jobs, using performance metrics would make reward signals more

sparse, complicating credit assignment for actions taken.

In the case of slowdown, we have already devised a suitable, online version of the

metric in eq. (2.1), with the key insight being that, the longer it takes for a job to start running,

the larger its slowdown will be, and, once the job finishes execution, its slowdown will be

completely determined. Therefore, the only component of slowdown that is somewhat under

the control of the scheduler is the job’s wait time. Now, to convert slowdown to an online

metric, notice that the 𝑡𝑤 (𝑗) component is exactly the sum of all the time steps in which 𝑗
was not running. Similarly, 𝑡𝑒(𝑗) is exactly the sum of all timesteps in which the job was

running. Therefore, an equivalent online definition of slowdown would assign 1/𝑡𝑒(𝑗) to job 𝑗
for all time steps between submission and end of execution of job 𝑗. To make a proper reward

signal, recall that we want to minimize slowdown but are using a gradient ascent update rule.

Hence, a correct reward signal that minimizes slowdown for job 𝑗 in this setting is −1/𝑡𝑒(𝑗).
The same reasoning applies to bounded slowdown and, following the same process, we arrive

at optimizing for makespan being equivalent to a −1 reward for each time step a job hasn’t

finished executing.

We now know how to compute the reward considering a single job 𝑗, but we still have

to define which jobs to use to compute the reward for the agent. For now, following the MDP

proposed by [Mao et al., 2016], we will use all jobs in the system to compute the reward for an

4.5. Policy network and learning procedure 56

action, leaving the discussion of the consequences of doing so to a later section. To encourage

the agent to schedule jobs, we add a conditional term giving reward 0 (the maximum possible

reward in our MDP) when a job is scheduled successfully by an action. Hence, for now, we

define the reward signal as

R(𝑠, 𝑎) = {0, if a job is scheduled successfully, and

−∑𝑗∈J
1

𝑡𝑒(𝑗) otherwise,
(4.1)

where J is the set of all jobs in the system.

4.5 Policy network and learning procedure

With the MDP properly defined, we can now solve it, which we are interested in do-

ing with Monte Carlo methods, and the first method we used is the reinforce algorithm.

Reinforce works in two phases: a sampling phase that collects trajectories and a learning

phase that updates the weights based on the collected trajectories. In the sampling phase, the

agents use fixed weights to interact with the environment, obtaining trajectories, sequences

{𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, … , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 } of states, actions and rewards, where 𝑇 is the maximum

length of an episode, configured at environment creation time (§ 4.4). Algorithm 1 considers

multiple workers are used to optimize 𝜃 and shows one iteration of the learning procedure.

The algorithm takes as input a step size 𝛼 > 0, a number of workers 𝑁 to be executed in paral-

lel, a number of episodes 𝐸 to be sampled by each worker, and a maximum length of episodes

𝑇 .
Since adjustment of weights only occurs in a specific phase, it is possible to perform

data collection in parallel. We’ve implemented two distinct strategies: (i) each worker com-

puted weight updates locally and propagated them to all other workers (in Hogwild! [Recht

et al., 2011] style) and (ii) a worker received trajectories from all other workers, performed

learning locally and broadcast new weights to all other workers (in a synchronous Parameter

Server style). As shown in the algorithm, baselines are computed as the average reward at each

timestep. In variant (i) of the algorithm, baselines are computed locally and are not shared,

while in variant (ii), baselines are shared between all episodes, since they are computed by a

central worker. Algorithm 1 computes baselines locally, implementing variant (i) above. As

we shall see, there seems to be no significant differences in algorithm performance between

both methods of computing baselines.

As required by Algorithm 1, 𝜋𝜃 needs to be differentiable. In this work we use a MLP,

a fully-connected feed-forward neural network as differentiable function approximator. This

neural networkworks as a classifier, and uses a softmax layer to normalize its outputs, with size

4.5. Policy network and learning procedure 57

𝑊 +1, and selects an index in the window over the waiting queue. In the example of Figure 4.2,

there are three classes, corresponding to the first waiting job, the second, or selecting no job,

as discussed earlier.

Also in Algorithm 1, we compute baselines for variance reduction by using the average

return over all trajectories at time step 𝑡 (where memake 𝑏𝑡 ← 1/𝐸∑𝐸−1
𝑖=0 𝐺 𝑖𝑡). This approach has

two problems: (1) it defines an implicit synchronization barrier, as learning can only happen

after all agents have collected a trajectory, and (2), a bigger problem which requires that all

trajectories are made of the same size, either via padding trajectories to match the longest

one, or via truncation to the length of the shortest one. Both cases of (2) are undesirable, as

they either throw data away, or require choosing a value for padding, which may skew the

averages. A better approach would be to learn the baseline function, as performed by actor-

critic algorithms such as A2C [Mnih et al., 2016] and PPO [Schulman et al., 2017], as discussed

in Section 2.5.1, and highlighted in eq. (2.14).

A natural question to ask is whether these alternative implementations, which perform

bootstrapping and learn both the policy, and the value function together, are any better than

the simple baseline of Algorithm 1, and whether they have any advantages. The main advan-

tage of the baseline of Algorithm 1 is that it is simple to compute. The main disadvantage is

that it forces us to keep all trajectories in memory for a given set of weights 𝜃 , and to either pad

or truncate the trajectories so that they all have the same length. A learned baseline, although

harder to compute, especially in the first episodes of training, is more scalable, in the sense

that its size is not coupled to the number of workers used in learning.

We compared the performance of both approaches and, for the learned baselines, we

used a set of publicly available, reviewed implementations [Dhariwal et al., 2017] of the A2C

and PPO algorithms to optimize our MDP.

Algorithm 1: reinforce with average baselines
Result: Learned weights 𝜃 for policy 𝜋𝜃 ≈ 𝜋∗
Input :Differentiable policy 𝜋𝜃 (𝑎|𝑠)
Input :Parameters 𝛼 > 0, 𝐸, 𝑇 , 𝑁
for each worker 𝑤 ← 0 to 𝑁 − 1 do

Δ𝜃𝑤 ← 0
for each episode 𝑖 ← 0 to 𝐸 − 1 // Sampling phase
do

𝑒𝑖 ← {𝑆 𝑖0, 𝐴𝑖0, 𝑅𝑖1, … , 𝑆 𝑖𝑇−1, 𝐴𝑖𝑇−1, 𝑟 𝑖𝑇 } ∼ 𝜋𝜃 (⋅|⋅)
foreach {𝑡 ∣ 0 ≤ 𝑡 < 𝑇 } do 𝐺 𝑖𝑡 ← ∑𝑇

𝑘=𝑡 𝛾 𝑘−𝑡−1𝑅𝑖
𝑘

end
for each time step 𝑡 ← 0 to 𝑇 − 1 // Learning phase
do

𝑏𝑡 ← 1/𝐸∑𝐸−1
𝑖=0 𝐺 𝑖𝑡

foreach {𝑖 ∣ 0 ≤ 𝑖 < 𝐸} do Δ𝜃𝑤 ← Δ𝜃𝑤 + 𝛼∇ log 𝜋𝜃 (𝐴𝑖𝑡 |𝑆 𝑖𝑡) (𝐺𝑡 − 𝑏𝑡)
end

end
foreach Δ𝜃𝑤 do 𝜃 ← 𝜃 + Δ𝜃𝑤

4.6. Alternative MDP formulations 58

4.6 Alternative MDP formulations

Although the model we’ve discussed so far is useful for understanding the behavior

of learning agents in simple job scheduling settings, it has serious limitations. For example,

the MDP we’ve presented uses jobs that have perfectly accurate runtime estimates, which, as

we’ve discussed in Chapter 3, is not a characteristic of actual clusters. Moreover, when we

consider the base MDP requires unit time step increments, we come to the conclusion that

this is not a practical model, as it makes simulations much longer than needed, and is noisy

for training, as the agent is forced to act even when there are no jobs to schedule. Also, as we

deal with longer episodes and larger numbers of workers, we start to face a storage problem.

The MLP neural network described in the previous section have too large memory

requirements when evaluated on clusters with realistic sizes. Recall from the description of

the state representation that, for each resource type we represent, there is a cell in a matrix

for each unit of that resource. On top of the current utilization, each job slot also takes one

cell to represent a resource used by the job it represents, with an additional column vector

representing each job in the backlog. These requirements are multiplied by the number of

time steps we have to represent in the time horizon.

We can formalize the problem as follows: let 𝑁 be the number of workers, 𝐸 be the

number of trajectories collected by each worker, 𝐻 be the number of time steps in the time

horizon, 𝐽 be the number of job slots in the state representation, 𝑃 be the number of processors

in the cluster, 𝐿 be the average maximum length of an episode4, and 𝐵 be the backlog size such

that 𝐵/𝐻 = 𝑘 ∈ ℕ1. In this case, the number of cells to store in memory for the learning phase

of Algorithm 1 when considering a single resource type is given by 𝑁 ⋅𝐸 ⋅𝐿 ⋅𝐻 ⋅ (𝐽 +1) ⋅ 𝑃 ⋅ 𝑘. To
put it in practical terms, 6 workers collecting 10 trajectories with an average size of 100 steps,

with a time horizon of 20 time steps with 10 job slots and 32 processors in the cluster and 60

entries in the backlog would require approximately 483 MiB of memory when using 4 bytes

to represent a matrix cell. A rather high use of resources for such a modest configuration.

Due to the issues above, we propose a series of incremental changes to the base MDP:

(i) compact state representations for reduced memory usage, (ii) sparse state transitions, (iii)

limiting the set of jobs used for reward computation, and (iv) an option semi-MDP model.

4Assume smaller episodes are padded for the learning procedure.

4.6. Alternative MDP formulations 59

Table 4.1: Job features in a compact state representation.

Feature Description

Submission time Time at which the job was submitted
Requested time Amount of time requested to execute the job
Requested processors Number of processors requested at the submission time
Queue size Number of jobs in the wait queue at job submission time
Queued work Amount of work that was in the queue at job submission time
Free processors Amount of free processors when the job was submitted
Remaining work Amount of work remaining to be executed at job submission time
Backlog The number of jobs waiting outside window 𝑊
Can start now Whether job 𝑗 fits the cluster to start at current time

4.6.1 Compact state representation

Slots
1 2Cluster

Processors

Backlog

Slots

Figure 4.3: Image-like state representation. In

the figure, there is one job in execution (with

two processors for the next two time steps),

three waiting jobs in total, two of them within

window 𝑊 = 2, one using one CPU for at least

five time steps, and another using three CPUs

for four time steps. Details for the third job, in

the backlog, are omitted.

Particularlywhenworkingwith larger

clusters, or with a larger number of jobs in

the agent’s window of attention, the state

representation of the base MDP is waste-

ful, and it may be the case that trajectories

take too much space in memory, reducing

the computational performance of learning

agents. Due to that, we devised a set of fea-

tures that can represent states in a compact

way. In our new state representation, jobs

in the queue are represented by the features

shown in Table 4.1, where “work” is com-

puted by multiplying the number of proces-

sors a job requires by the time it is expected

to run, and cluster features are a pair that in-

dicates the number of processors in use, and

the number of free processors. The features related to the cluster state still use a time horizon

𝐻 but instead of using a matrix, we used a pair of integers representing how many resource

units are in use, and how many resource units are free in a given time-step. As an example,

consider the state shown in Figure 4.3, which represents scheduling for jobs only considering

processor usage. Assuming the job in the cluster was submitted at time step 1, the job in slot 1

was submitted at time 2, and the job in slot 2 was submitted in time 3, that state could be fully

described by the concatenation of vectors with cluster state ⟨(2, 1), (2, 1), (0, 3), (0, 3), (0, 3)⟩,
jobs in window 𝑊 ⟨(1, 5, 1, 0, 0, 1, 6, 0, 1), (2, 4, 3, 1, 5, 1, 4, 0, 0)⟩ and backlog ⟨1⟩5. The features

in the jobs slots are presented in the same order as the ones shown in Table 4.1. To understand
5Parentheses group elements. In the first vector, there are five parenthesized pairs to indicate the time

horizon of 5, and two parenthesized elements to represent jobs shown in window 𝑊 .

4.6. Alternative MDP formulations 60

the relationship between the tuples and the figure used in this example, notice that there are

three processors in the cluster (the width of the “Cluster Processors” and “Slots” rectangles),

and that the time horizon used is of five time steps (the height of the rectangles in the figure).

The green square in the “Cluster Processors” rectangle represents the fact that a job is using

two processors for two time steps, meaning that there is still a single processor free in these

two time steps. Hence, for each these two time steps we get the tuple (2, 1). When that job

is finished using the cluster, all cluster processors are free, giving the tuple (3, 0) for each of

the remaining time steps of the time horizon of the figure. Combining these two components

gives us the first vector ⟨(2, 1), (2, 1), (0, 3), (0, 3), (0, 3)⟩. The second vector, which represents

jobs in the job slots, will have a tuple for each entry in the job slots, with the tuple entries

themselves representing the features listed in Table 4.1. For example, the job in Slot 1 was sub-

mitted at time 1, requested 5 time steps for 1 processor. When it was submitted, there were

0 jobs in the queue, with 0 work queued, and 1 free processor. Of the jobs still in the cluster,

there were 6 units of work to be done when the job in Slot 1 was submitted and 0 jobs in the

backlog. Concatenating all these numbers yields the tuple (1, 5, 1, 0, 0, 1, 6, 0, 1) shown earlier,

with the last entry representing the fact that the job in slot 1 can be scheduled now.

A side effect of using this new compact state representation is that, when 𝐻 and 𝑊
are fixed between different cluster configurations, learned features are directly transferable

between clusters even when using function approximation methods that depend on a fixed

number of features.

4.6.2 Sparse State Transitions

Another deficiency we’ve identified in the base MDP is that the agent sees all time-

steps in the simulation, but this causes the agent to have to take an action even when there

is no good action to take. Consider, for example, the case in which all resources are in use

(there are no free resources). In cases such as this, any action the agent takes will lead to

the same outcome: increasing the simulation clock, receiving negative rewards related to the

slowdown of the jobs, and having no new jobs scheduled. This will be repeated for all time

steps between the start of the last job that exhausted resources until the finish of the first job

that frees them, causing non-negative rewards to be more sparse, making the reinforcement

signal noisier and, therefore, harder to learn. The opposite is also true: if there are no jobs

waiting to be scheduled, no matter what the agent chooses, the outcome will be the same: no

jobs will be scheduled.

Due to that, we updated the environment to only call the agent and, therefore, to only

add states, actions and rewards to a trajectory, when it was possible for the agent to take an

4.7. The options-based Semi-MDP formulation 61

action that could result in a job being scheduled. In short, we change the transition function

T (𝑆𝑡+1 ∣ 𝑆𝑡 , 𝐴𝑡) so that all state transitions from 𝑆𝑡 to 𝑆𝑡+1 will always have at least one job

that may be scheduled by the agent in state 𝑆𝑡+1. We did not change the initial state, though,

so 𝜌 = { } still holds. The reader will notice this changes the MDP, as intermediate states,

which would have non-zero rewards now have zero rewards. We fix this by introducing the

options-based semi-MDP formulation later.

4.6.3 Reducing the noise of the reward signal

Based on the idea of only showing the agent what it can use to learn and act, we

noticed that the reward signal could be further improved by, instead of computing the online

slowdown of all jobs in the system J , considering only the jobs that are in the waiting queue,

and within the job slots window 𝑊 : the jobs that can be directly influenced by the agent’s

actions. Therefore, we defined the setW that contains the subset of jobs from J that are

within the window 𝑊 , and the reward function became R = −∑𝑗∈W
1

𝑡𝑒(𝑗𝑖) when the action

taken doesn’t schedule a job, and zero otherwise.

4.7 The options-based Semi-MDP formulation

Up to this point, we were operating at the MDP level, but it turns out we can use a semi-

MDP formulation that works with the job scheduling problem and that is particularly useful

to event-based systems (and simulations). The astute reader will notice that the sparse state

transition model of Section 4.6.2 also supports event-based systems, so we have to discuss

the difference between that model and the SMDP. The main difference between the MDP

presented there and the semi-MDP presented here is that, there, the MDP dynamics had to be

changed between the base, time-based MDP and the sparse transitions model, whereas, with

the semi-MDP, we use the same underlying MDP we had used in the time-based case.

To aid in understanding, we now revisit Figure 2.8, redrawn in Figure 4.4, by showing

what the rewards of intermediate states would be should a single job 𝑗 with duration 𝑡𝑒(𝑗) =
3 be scheduled in the base MDP, in the sparse transitions MDP and in the semi-MDP. As

shown in the figure, the total reward for both the Semi-MDP and base MDP formulations is

−1, whereas in the sparse transitions MDP, it is 0. These different rewards change the sparse

transitions MDP into an MDP with a distinct objective than that of the base MDP, while the

4.7. The options-based Semi-MDP formulation 62

Figure 4.4: Difference in rewards in the base MDP, the sparse transitions MDP, and the semi-
MDP.

Semi-MDP formulation still maintains that objective. This difference stems from eq. (4.1), in

which R(𝑠, 𝑎) = 0 when a job is scheduled, which zeroes all intermediate rewards between

two states in the sparse transitions MDP.

Now that we’ve made clear the distinction between the SMDP and the sparse transi-

tions MDP, we make a complete description of the SMDP implementation in this dissertation,

elaborating on the state representation mentioned in Section 4.6.1, summarized in Figure 4.5

(drawn considering a window of attention 𝑊 of 2 jobs and a horizon of events 𝐻 of 4 events),

and that has three components:

The current allocation state of the cluster with the amount of processors allocated and amount

of processors free. This component also includes, up to a horizon size 𝐻 6, the time off-

set of the next 𝐻 events, with the allocation state of the cluster immediately after those

events happen.

Description of jobs in the waiting queue up to a number of jobs in a window of attention of

size 𝑊 . The features used in this component are shown in Table 4.1.
6With the change from time-based to event-based systems underlying the MDP, we now call this the event

horizon, as opposed to the time horizon, or simply the horizon.

4.7. The options-based Semi-MDP formulation 63

0
1

2
3

0 1 2 3 4 5 6

4

2

1

3

86

5

7

Figure 4.5: Example of state representation construction from the current schedule in the
simulator at time step 𝑡 = 3. As shown in the figure, there are no new events after time
offset 3 (𝑡 = 6). Since the event horizon 𝐻 = 4 is larger than the number of events the
agent expects to see, the remaining events are filled by copying the last state the agent ex-
pects to see, with the time updated. The representation the agent sees is the concatena-
tion of all values in the bottom row of the figure (Agent observation at 𝑡 = 3), namely:
⟨8, 2, 1, 2, 2, 4, 0, 0, 3, 2, 1, 2, 3, 3, 0, 4, 3, 0⏟⏟⏟

Cluster state features

, 3, 4, 1, 0, 0, 0, 0, 3, 2, 2, 1, 4, 0, 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Features of jobs in attention window

⟩.

Summary statistics containing: the remaining work for running jobs, the next time at which

there will be free processors in the cluster, with allocation state, the size of the backlog

(number of jobs in thewaiting queue outside of thewindow of attention), and the current

size of the waiting queue.

For the cluster state, the first point to consider is that, since the agent is the sched-

uler, it has access to the events it expects to happen. For example, if at time step 𝑡 the agent

schedules a job that requests execution for 10 time-steps, assuming the job starts executing

immediately, then the agent expects that, at time-step 𝑡 +10, the resources used by that job will

be freed. Hence, we are able to compute not only instantaneous features for the cluster, but

also features of future states as expected by the agent. Even though the expected event times

are not guaranteed to occur at the expected time (a job that requests 10 time steps can run for

5, for example), they help the agent in planning for the future. For each event in the horizon

of size 𝐻 , we represent the amount of processors in use, and the amount of free processors in

the cluster. Additionally, we also represent the current size of the queue and the remaining

work7 in the cluster.
7The summation of the remaining execution time times the number of processors requested by each job

4.7. The options-based Semi-MDP formulation 64

Table 4.2: Job features in the state representation for the option-based SMDP.

Feature Symbol Description

Submission time 𝑡𝑠(𝑗) Time at which the job was submitted
Requested time 𝑡𝑟 (𝑗) Amount of time requested to execute the job
Requested processors 𝑟𝑝(𝑗) Number of processors requested at job submission time
Queue size 𝑞𝑠(𝑗) Number of jobs in the wait queue at job submission time
Queued work 𝑞𝑤 (𝑗) Amount of work that was in the queue at job submission time
Free processors 𝑓𝑝(𝑗) Amount of free processors when the job was submitted
Can start now 𝑐(𝑗) Whether job 𝑗 fits the cluster to start at current time

For the job features, we compute them considering the state of the cluster when the
job was submitted. So, for example, the queue size feature for a particular job is not updated

when jobs enter or leave the system. The set of features we use is similar to the compact

representation MDP, and are presented in Table 4.2. The “symbol” column in the table enables

us to map the feature descriptions to their representations in Figure 4.5.

4.7.1 State transition function

In this section, we discuss how we defined the state transition function T (𝑆𝑡+1|𝑆𝑡 , 𝜔).
Recall from our discussion of SMDPs (§ 2.6) that we are using an event-driven simulation as

our environment. In the discussion below, when we say time proceeds, we mean that the sim-

ulation proceeds normally, updating any queues and statistics without necessarily presenting

intermediate states to the agent. The relevant state transitions are:

A new job arrives in a cluster with empty queues In this case, when transitioning from

state 𝑠 to 𝑆𝑡+1, time advances from the current time 𝑡 to the submission time of 𝑡𝑠(𝑗) of job 𝑗.
Since queues were empty before the arrival of 𝑗, 𝑆𝑡+1 is now the representation of an empty

cluster with a single job in queue.

The last running job finishes execution If new jobs arrive, the next state 𝑆𝑡+1 is determined

as in the previous case. Otherwise, if no more jobs arrive, this means the workload model has

done generating jobs, and this is the end of the episode.

All cluster processors are in use If there are jobs in the queue, time will proceed until the

number of free processors in the cluster is such that at least one job 𝑗 in the queue fits in the

cluster, at which point the agent may decide to schedule 𝑗, or to schedule no jobs (this will

happen, for example, if the agent decides to leave room in the cluster for short jobs, and there

running in the cluster.

4.7. The options-based Semi-MDP formulation 65

are no short jobs in the queue right now.) If there are no jobs in the queue, time will proceed

until a new job arrives and at least one job in the queue fits in the cluster.

Some job in the queue fits the cluster If the agent decides to schedule a job that doesn’t fit

the cluster, or if it chooses to not schedule any jobs, time proceeds by one time step, with the

state updated accordingly. If this time coincides with the arrival of a new set of jobs, those

jobs enter the queue before the generation of the new state 𝑆𝑡+1.

Jobs arrive in the system following either one of the workloadmodels present in sched-

rl-gym, or following a trace of an existing machine.

4.7.2 Reward function

As discussed in Section 4.6.3, we use the negative we use the online slowdown of jobs

in the window of attention to compute rewards. Notice that, when the selected job fills the

cluster or is the only job in the queue, if such an action was taken at time step 𝑡 , the next time

step seen by the agent will not be 𝑡 + 1 (§ 4.7.2). In such case, the reward for the action will be

computed after termination of the option, with proper discounts for intermediate time steps,

following eq. (2.18).

4.7.3 Learning algorithms and implementation

At first sight, the main difficulty with using an SMDP model as we do here is that there

is a shortage of open-source learning algorithms and environments designed to work with

SMDPs. In this work, we adapted the sched-rl-gym OpenAI Gym environment to support an

SMDP formulation by implementing equation (2.18) as reward function. As for the learning

agent, we used the Maskable PPO [Huang and Ontañón, 2022, Schulman et al., 2017] imple-

mentation of Stable Baselines 3 [Raffin et al., 2021], but to prevent “double” discounting in

the policy gradient, we have to set the PPO 𝛾 parameter to 1, while leaving equation (2.18)’s

𝛾 set to 0.99 to perform discounting. The reason for such a change is that the value function

for state 𝑠, 𝑣𝜋 (𝑠), in equation (2.19) does not have an explicit discount factor 𝛾 , whereas in the

definition of the value function for state 𝑆𝑡+1 in an MDP there is an explicit discount factor.

Ppo is an actor-critic algorithm (§ 2.5.1) that, as the name implies, has two compo-

4.8. Summary 66

nents: an actor, which implements policy 𝐴𝑡 ∼ 𝜋𝜃 , and a critic, which estimates the advantage

function of taking action 𝐴𝑡 at state 𝑆𝑡 .
The variables represented in the state of our environment have different ranges and

orders of magnitude. To reduce the likelihood of our policy network having too large weights,

it might help to normalize the inputs to the neural network. We normalize features by dividing

them by their maximum possible value. For time-related features and for features that depend

on time (such as work), we log-transform the data prior to normalization, a practice common

in workload modeling [Lublin and Feitelson, 2003].

To support Maskable PPO, we’ve extended the OpenAI Gym environment to return,

for each state, a boolean mask indicating which actions are valid for that state.

4.7.4 Workload models

The sched-rl-gym environment supports three different types of workloads: jobs gen-

erated by the Mao model (§ 2.3.1), jobs generated by the Lublin model (§ 2.3.2), and jobs loaded

fromworkload traces in the StandardWorkload Format (SWF). The environment also supports

generating uncertain estimates with both the Gaussian (§ 2.4.1) and Tsafrir (§ 2.4.2) models.

The workload to use in a given instance of the environment is passed as an argument to Ope-

nAI Gym’s environment construction function.

For the Lublin model, sched-rl-gymwill generate parallel jobs with sizes ranging from

2 processors to up to the size of the cluster following a two-stage uniform distribution, and

the run time of jobs depend on the number of nodes in the cluster, with that number feeding

a parameter of the hyper-Gamma distribution from which job durations are sampled.

4.8 Summary

In this chapter we described a simulator for HPC job scheduling, then we described

how it could be connected to an RL training and evaluation library, and described how to

model such an environment as an MDP. Then, we described possible algorithms that can

learn to optimize scheduling in this environment. Later, we described some limitations of

the current model and presented an alternative representation for more efficient storage and

learning, along with extensions to the model that may allow us to investigate other aspects,

such as how generalizable are agents that learn in these environments.

67

Chapter 5

Experiments

Having presented the methods we used, we now evaluate the performance of our agents in the

various MDP formulations. We will follow the same outline of the previous chapter. First, by

evaluating the simulator’s performance according to actual job traces and, then, by evaluating

agent performance in each of the proposed MDPs.

5.1 Learning performance in the base MDP

We designed our first set of experiments to evaluate whether we were able to: (i) re-

produce results from the literature [Mao et al., 2016], and to (ii) verify how state-of-the-art

policy gradients algorithms would fare in the base MDP. In this section, we describe these

experiments and discuss their results.

5.1.1 Performance of Policy Gradients methods and heuristics

We begin with an experiment to assess whether there is any difference in performance

in how we updated the weights of the multiple workers of a policy gradient algorithm, and

to contrast that performance with that of the classical algorithms SJF, FIFO, and Extensible

Argonne Scheduling sYstem (EASY) backfilling. To do so, we instantiated an environment

with the following configuration: episodes lasted for 50 simulation time steps, the agent’s

time horizon was set to 20, the cluster was configured to have two different resource types

(processors and units of memory), and the agent had a window of attention of 10 job slots

over the waiting queue, with a further backlog of 60 entries. For this set of experiments, we

used the Mao workload model (Section 2.3.1), with new job probability set to 0.3, with jobs

having long durations 𝑙 20% of the time. The duration of long jobs was sampled uniformly

5.1. Learning performance in the base MDP 68

Figure 5.1: Schematic view of a three-layered neural network with 10 input nodes, a hidden
layer of 7 neurons, and a single output layer. In this section, our neural network had 4480
input nodes, 20 hidden neurons, and a single output node.

from 𝑙1 = 10, 𝑙2 = 15, while the duration for short jobs was set to 𝑠1 = 1, 𝑠2 = 3. Jobs are CPU-

dominant 50% of the time, and memory-dominant the other 50% of the time, with dominant

resource usage was set to 𝑑1 = 5, 𝑑2 = 10, and non-dominant resource usage set to 𝑛1 = 1, 𝑛2 =
2.

We implemented the policy network as a PyTorch [Paszke et al., 2019] neural network

module. Neural networks in PyTorch are defined by inheriting from the torch.nn.Module

class and implementing the forward method. The forward method corresponds to the for-

ward pass of the neural network and once it is performed, the automatic differentiation engine

of PyTorch keeps track of operations to allow gradients to flow in the backward pass. For this

experiment, we used a neural network with a single hidden layer of 20 neurons. A schematic

representation of this type of fully-connected neural network (a multi-layer perceptron) is

shown in Figure 5.1.

Optimizationwas performed using the RMSProp [Tieleman andHinton, 2012] gradient-

descent optimizer with learning-rate 𝛼 = 0.001, discount factor 𝛾 = 0.99, with 10 workers, each

collecting 200 trajectories per “epoch” 1 prior to learning. Since we are using parallel workers,

we implemented both weight update strategies mentioned in Section 2.5.1, naming the central-

ized weight update strategy “PG”, and the distributed weight updates “PG-worker”, with both

implementations following the overall structure of Algorithm 1 using a fork-join model: the
1The term epoch comes from the supervised learning literature, and means doing a full pass over the training

data to train a neural network. In this context, what we mean is that we perform a training cycle every time our
agents collect 200 trajectories. After the weights are updated, this collected data is discarded.

5.1. Learning performance in the base MDP 69

Random PG FCFS SJF PG-worker EASY

Learning Iteration

A
ve

ra
ge

 S
lo

w
do

w
n

(a)

Learning Iteration

To
ta

l R
ew

ar
d

(b)

Figure 5.2: Learning curves of PG algorithms with an average cluster load of 70%. To reduce
noise in the plot, signals were smoothed with a moving window of size 10. Curves were
averaged over 60 independent trials. Shading represents one standard deviation around the
average. (a) shows that both PG implementations (PG & PG-worker) outperform SJF at around
200 iterations, while (b) shows the total reward learning curve. The PG algorithm keeps im-
proving until it plateaus at around -25 average total reward.

main process kept the canonical copy of the parameters in memory and spawned child pro-

cesses which would sample trajectories. Once sampling was done, updates to the parameters

were performed in a shared-memory copy of the parameters. PyTorch facilitates this style of

programming by providing a multiprocessing module, responsible for spawning workers, and

automatic shared memory of parameters. In the centralized version, we centralized trajecto-

ries in the main process before computing gradients. In the decentralized version, each worker

computed their own baselines and only propagated gradients to the main process. Each itera-

tion of this version is faster than the centralized one because there is no need synchronize all

workers to apply updates.

Figure 5.2 shows the learning curves of the various agents. To reduce noise, the curves

were smoothed with a moving average with window size 10. In the figure, PG is the version of

the agent with centralized baseline calculation, while PG-worker uses Hogwild!-style learn-

ing. We can see that both PG implementations start outperforming SJF at arount iteration 200.

From the behavior shown in Figure 5.2a, we see that learning performance for both update

schedules for the Policy Gradient are very similar (in the orange and purple curves), converg-

ing at roughly the same rate, and to the same average slowdown value of around 2.5. The

straight lines in Figure 5.2a represent the average performance of classical algorithms, and

are straight because that graph shows performance as a function of learning iteration and, to

5.1. Learning performance in the base MDP 70

which these classical algorithms are independent.

We also evaluated slowdown learning curves, which exhibited similar behavior to those

of previous research. This complete integration test gives us confidence that the environment

is sound, and enabled us to replicate results from the literature [Mao et al., 2016]. The fact

that we were able to reproduce results from the literature should be emphasized. Reproducing

existing work and judging their improvements is vital to sustaining progress not only in RL

as an area, but in areas that can make use of it. As Henderson et al. [2018] have shown, the

dynamics of environments help determine what algorithms are more successful. Therefore,

if we are to apply RL to resource management and be able to translate research progress to

practical situations, we need stable, sound, and representative environments.

5.1.2 State-of-the-art algorithms in the base MDP

We’re now set to evaluate other algorithms in the same environment. Of note is the

ease of use of the environment with packages that target the OpenAI Gym toolkit. While our

implementation of the PG algorithm plus support code for training and persistence took 212

lines of code disregarding comments and empty lines, our implementation of A2C and PPO,

with support code, took 44 lines, a reduction since the core of the algorithm came from the

Stable Baselines [Raffin et al., 2021] implementation. Being actor-critic algorithms that learn
the state-dependent baseline value, both A2C and PPO have, in addition to the policy network,

a value network, used for approximating a state’s value. Both the value and policy networks

used in this experiment had identical topology of the neural network of the basic PG algorithm.

To keep agents comparable, we configured the agents to execute the same number of

steps for learning as a PG worker would have used. Recall that, in our experiments, we had

10 agents collecting 200 trajectories for 50 timesteps. Here, we had a single agent interacting
with the environment for 200 × 50 = 10, 000 time steps. Therefore, the A2C and PPO agents

performed roughly 10× less interactions per learning epoch with the environment than the

base PG implementation.

Figure 5.3 shows the learning curves of A2C and PPO. As can be seen from the figure

(5.3a), average slowdown performance from PPO and A2C is more stable than PG, learning

rapidly at the beginning, crossing the 2.5 average slowdown value, and decreasing slowly

from there. Upon inspection of the behavior of the agents in our environment, we noticed

the agents learned quickly to output a fixed action corresponding to the first positions of

the waiting queue, which was fixed by configuring an entropy bonus hyperparameter. This

made slowdown performance better on average than PG, and PG-worker, which exhibited

closer to random behavior in early iterations. Even though average performance was better

5.1. Learning performance in the base MDP 71

0 500 1000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0
Av

er
ag

e S
lo

wd
ow

n
PPO
A2C

(a)

0 500 1000
Iteration

120

100

80

60

40

20

To
tal

 re
wa

rd

PPO
A2C

(b)

Figure 5.3: Learning curves of the A2C and PPO agents with an average cluster load of 70%.
(a) shows average slowdown learning curves, whereas (b) shows total rewards learning curves.
The figures show the A2C agent converges fast to its final performance.

in early iterations, those iterations had higher variance than later ones, which exhibited more

purposeful behavior.

Both A2C and PPO have a regularization term that improves exploration by discourag-

ing premature convergence to suboptimal deterministic policies. This regularization term is

a function of the entropy of policy 𝜋𝜃 [Williams and Peng, 1991], and we noticed that when

it was zero, the algorithms did get stuck in local minima of deterministic policies. Both the

A2C and PPO implementations from stable baselines that we used come with this parameter

set to 0.01. Apart from this hyperparameter, we did not tune any other parameters, leaving

them at their default values, which are summarized in Table 5.1. Entries with “—” indicate the

algorithm does not have that parameter, so it was not set.

Figure 5.3b shows that total reward follows the same trend of Figure 5.2b and indicates

learning is improving. Deeper inspection shows that themaximum total reward of PG is≈ 20%
better than that of A2C, but mean total reward is only ≈ 10% better, indicating A2C converges

faster than PG. With regards to slowdown (Figs. 5.2a, 5.3a), A2C’s minimum slowdown was

≈ 9% better than PG’s, with A2C’s mean slowdown over all training iterations ≈ 19% better

than PG’s.

In short, from these experiments we can see that, although not outperformed easily,

algorithms from the literature that have no knowledge of the inner workings of the environ-

ment were able to achieve performance comparable to that of PG’s. We see the benefits of

following the OpenAI Gym interface by being able to solve our environment with standard

implementations of algorithms, which facilitates the exploration of new environment ideas.

5.2. Solving the alternative MDP formulations 72

Table 5.1: Hyperparameters for experiments comparing with the base PG algorithm.

Hyperparameter
Value

A2C PPO

Discount factor (𝛾) 0.99 0.99
Learning rate 1 × 10−3 1 × 10−3
𝑛 steps 5 50
Entropy coefficient 10−1 10−2
gae 𝜆 1.0 0.95
Value coefficient 0.5 0.5
Clipping 𝜖 — 0.2
Surrogate epochs — 10
Surrogate Batch size — 64
Rmsprop 𝜖 1 × 10−5 —
Rmsprop 𝛼 0.99 —

5.1.3 Section Summary

In this section, we’ve shown that our proposed OpenAI Gym environment and our

PG algorithm implementations reproduce results from the literature, giving additional confi-

dence that our algorithms can be used for research of HPC job scheduling algorithms and be

comparable with other approaches.

We’ve also shown that our decision to follow the OpenAI Gym interface enabled us

to implement additional agents and assess their performance in our environment with ease.

We’ve also shown that, in doing so, we were able to optimize for the proposed environment

using 10× less interactions (and, hence, computation) with the environment. Additionally to

these smaller amounts of interactions, we have also shown that the A2C and PPO algorithms

achieve the same performance in the environment of that of the PG algorithms quite early in

the learning process.

5.2 Solving the alternative MDP formulations

In this Section, we evaluate a single algorithm (PPO) in different MDP formulations

with the objective of observing how its performance is affected under each different for-

mulation. For these experiments, we decided to use the PPO implementation of stable-

baselines3. We also fixed the neural network architecture used for function approximation,

5.2. Solving the alternative MDP formulations 73

consisting of a two-layer neural network with 64 units in each layer, and with parameter shar-

ing between policy and value networks. The fixed number of units implies the image-like

representation will use more parameters, as it contains more data than the compact represen-

tation. The hyper-parameters used for training the agent are summarized in Table 5.2. Apart

from slight tuning the learning rate and entropy bonus coefficient for better learning in the

base MDP, we performed no hyper-parameter optimization, and used values found in the lit-

erature when training the image-like agent. For a full description of PPO, we direct the reader

to Schulman et al. [Schulman et al., 2017].

Table 5.2: List of hyper-

parameters usedwhen train-

ing PPO agents.

Hyper-parameter Value

Learning rate 10−4
𝑛 steps 50
batch size 64
Entropy coefficient 10−2
gae 𝜆 0.95
Clipping 𝜖 0.2
Surrogate epochs 10
𝛾 0.99
Value coefficient 0.5

We also maintained the environment specification fixed

for all agent evaluations and used𝑊 = 10 job slots, with simula-

tions of length 𝑇 = 100 time-steps and time horizon𝐻 ∈ {20, 60}.
These two horizon values enable us to contrast cases in which

agents can see when jobs will complete, or not. For this case,

we also used the Mao workload model, which submitted a new

job with 30% chance on each time step. Of these, a job had 80%
chance of being a “small” job, and “large” otherwise. The num-

ber of processors 𝑛𝑝 was chosen in the set {10, 32, 64}, while the

maximum job length (duration) 𝑑 varied from {15, 33, 48} and

the size of the largest job (number of processors) 𝑗𝑠 came from

the set {10, 32, 64}. In the workload generator, the length of

small jobs was sampled uniformly from [1, 𝑑/5], and the length

of large jobs was sampled uniformly from [2𝑑/3, 𝑑]. The number

of processors used by any job was sampled from [𝑛𝑝/2, 𝑛𝑝].
All agents were trained for three million time-steps as perceived by the agent. This

means that all agents will see the same number of states, and will take the same number of

actions, but the number of time steps in the underlying simulation will vary, due to the event-

based case becoming a semi-MDP. We evaluated agents with a thousand independent trials,

reporting average values.

In Figure 5.4 we show a sampling of learning curves comparing the learning perfor-

mance of agents that were trained using the image-like representation and the compact repre-

sentation with rewards computed from all jobs. The compact representation converges faster

than the image-like representation, probably due to its smaller number of parameters. We

also notice that although convergence is faster, the compact representation is not necessar-

ily better (Figure 5.4c, 5.4d). There doesn’t seem to be a general rule, but we noticed that

when jobs are shorter (the 𝑑 parameter is smaller), the compact representation dominates

(Figure 5.4a, 5.4b). When 𝑑 increases and most jobs use few processors (𝑗𝑠 ≪ 𝑛𝑝), the compact

representation tends to have comparable performance with the image-like representation (Fig-

ure 5.4c), whereas when jobs use many processors and have a longer duration, agents using

the image-like representation learn the environment better (Figure 5.4d). For this set of exper-

5.2. Solving the alternative MDP formulations 74

0 1 2 3
×106

−4

−3
A

vg
.

T
ot

al
R

ew
ar

d ×102 Compact

0 1 2 3
×106

Image-like

(a) 𝑛𝑝 = 10, 𝑑 = 15, 𝑗𝑠 = 10

0 1 2 3
×106

−4

−3

A
vg

.
T

ot
al

R
ew

ar
d ×102 Compact

0 1 2 3
×106

Image-like

(b) 𝑛𝑝 = 38, 𝑑 = 15, 𝑗𝑠 = 32

0 1 2 3
×106

−1.25

−1.00

−0.75

−0.50

A
vg

.
T

ot
al

R
ew

ar
d ×102 Compact

0 1 2 3
×106

Image-like

(c) 𝑛𝑝 = 38, 𝑑 = 48, 𝑗𝑠 = 10

0 1 2 3
×106

−2

−1

A
vg

.
T

ot
al

R
ew

ar
d ×102 Compact

0 1 2 3
×106

Image-like

(d) 𝑛𝑝 = 64, 𝑑 = 33, 𝑗𝑠 = 32
Figure 5.4: Learning curves for various scenarios with 𝐻 = 20 contrasting learning using
a compact representation with learning with an image-like representation. Curves are an
average of six agents, with shaded areas representing one standard deviation, and show a
moving average of total rewards received by the agents during training.

iments, the size of the time horizon (𝐻) doesn’t impact the learning performance, as curves

obtained with 𝐻 = 60 (not shown) are indistinguishable from visual inspection to the ones

obtained with 𝐻 = 20. When evaluating agents, we performed t-tests to check whether there

was a difference in agent performance when using these different 𝐻 values. In other words,

the null hypothesis was that performance was equal, and the alternative hypothesis was that

agent performance varied. In this setting, the null hypothesis was rejected only 36.6% of the

time when considering p-values ≤ 1%.
When evaluating agents after one million iterations, scheduling performance was simi-

lar between agents when the maximum number of processors used by jobs was smaller (which

implies less parallelism). Given job submission rates in all environments was the same, clusters

were less busy in these situations: as long as jobs are scheduled, there shouldn’t be significant

differences in average slowdown, due to smaller queues.

In Figure 5.5, with key to scenarios shown in Table 5.3, we show average slowdown

of the agents for the scenarios in which there was some variability in performance between

agents. From the figure, we see that, apart from scenarios 2 and 6, agent performance in the

“Compact + Sparse + Reduced” MDP is not worse than that of the image-like MDP. Of these

two, only the difference for scenario 6 is statistically significant, with p-value ≤ 5% when

performing a t-test with alternative hypothesis of different distributions. For the cases where

“Compact + Sparse + Reduced” agents are better, the results are statistically significant (p-

value ≤ 5%) in scenarios 3, 4, 5, 7, and 9. Scenarios 2 and 6 are interesting, since they were

5.2. Solving the alternative MDP formulations 75

1 2 3 4 5 6 7 8 9 10

Scenario

0

5

10

A
ve

ra
ge

S
lo

w
do

w
n Image-like

Compact

Compact + Sparse

Compact + Sparse + Reduced

Figure 5.5: Average slowdown for the various
scenarios considered. Each bar represents a dif-
ferent instantiation of the (semi-)MDPs. Aver-
age slowdowns were computed by averaging
the slowdown of a thousand independent tri-
als for each agent in each scenario. All agents
were evaluated with same workload and ran-
dom seed. In the legend, image-like corre-
sponds to the base MDP, compact to the com-
pact representation, sparse to the sparse state
transitions, and reduced to the reduced set of
jobs to compute rewards.

Table 5.3: Key to the scenarios presented in
Figure 5.5. Procs. refers to the number of pro-
cessors in the cluster, Max Length refers to
the maximum job length, andMax Size refers
to the maximum number of processors used
by jobs.

Scenario Procs. Max Length Max Size

1 10 15 10
2 10 48 10
3 38 15 32
4 38 33 32
5 38 48 32
6 64 15 64
7 64 33 32
8 64 33 64
9 64 48 32
10 64 48 64

10 20 30 40 50 60
Number of processors in cluster

2000

3000

4000

5000

Ti
m

e
(s

)

Image-like (H= 60)
Compact (H= 60)

Image-like (H= 20)
Compact (H= 20)

Figure 5.6: Time needed to train agents for threemillion iterations. The shaded area represents
one standard deviation. Increasing the time horizon hardly affects the training time of compact
agents, while causing the training times of agents that use an image-like representation to scale
linearly with time horizon.

configured to have shorter jobs of at most 15 time-steps, with scenario 1 having 10 processors,

and scenario 6 having 64, both with jobs with the potential of using all cluster resources.

In Figure 5.6 we contrast the training times for the various agents. As can be seen, train-

ing times for agents based on the base MDP are highly variable, due to the fact that different

MDP configurations result in different sizes of state representations, which impacts training

performance. As an example, the image-like agent requires 301068, 1089548, and 1821708 pa-

rameters for the scenarios with 10, 38, and 64 processors, while all compact agents require

a fixed number of parameters: 24332. Times were measured in a Linux 5.10.42 desktop with

an NVIDIA GTX 1070 GPU and an i7–8700K processor using the performance CPU frequency-

scaling governor.

5.2. Solving the alternative MDP formulations 76

0.0 0.2 0.4 0.6 0.8 1.0
Optimization iteration ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
A

ve
ra

ge
ep

is
od

e
le

ng
th

(ti
m

e
st

ep
s)

×105

Reward function with
all jobs in system

0.0 0.2 0.4 0.6 0.8 1.0
Optimization iteration ×107

Reward function with
only jobs in attention window

Impact of different reward functions on episode length

Figure 5.7: Difference in episode length given reward computationmethod, with all parameters
being equal (lower is better). On the left, we see the average episode length when using all
jobs in the system to compute reward, whereas, on the right, we only consider jobs which the
agent can affect. The curves were computed using the average of six parallel agents, with the
shaded area representing one standard deviation. Both agents were trained in clusters with
128 processors andwith the Lublin [Lublin and Feitelson, 2003] workload generator generating
512 jobs per episode.

The experiments described previously did not highlight the impact of using a reduced

set of jobs for computing the agent’s reward. After analysis of the results, we concluded

that the event-based simulations using the Mao model were too short to show any meaning-

ful difference between reward computation methods. In Figure 5.7, we show the difference

in mean episode length when using all jobs in the system to compute rewards, versus using

only the jobs upon which the agent can act, when using longer simulations with the Lublin

workload model, which generated workloads corresponding to weeks of work, as opposed to

seconds. As can be seen in the figure, computing rewards using all jobs makes learning un-

stable, whereas using a reduced set of jobs constrains learning to a region in which it trades

off performance in the task, with entropy in its action distribution. Moreover, the worst train-

ing “performance”2 achieved by our agent is better than the best performance of the method

found in the literature [Mao et al., 2016]. To generate the figure, we used the same hyperpa-

rameters for the learning algorithm as used in the other experiments in this subsection. For

the Lublin workload generator, we considered clusters with 128 processors, sampling 512 jobs

per episode.

The compact MDPs proposed in this work all have the characteristic of having a state
2Episode length is usually not a performance measure but, in this environment, it acts as a proxy for the

quality of the generated schedules: worse agents will tend to see more states, increasing episode length. This is
due to the nature of the environment, as the agent will see a new state whenever there is a new event, or as long
as there are still jobs in the queue that fits the cluster.

5.2. Solving the alternative MDP formulations 77

1 2 3 4 5 6 7 8 9 10

Scenario

0

5

10

A
ve

ra
ge

S
lo

w
do

w
n Image-like

Compact

Compact + Sparse

Compact + Sparse + Reduced

Transfer

Figure 5.8: Bar chart contrasting the performance of a transferred agent to agents trained
specifically in their environments.

representation with a fixed size, which allows for transfer of learned weights between clusters.

Here, we consider as transfer the ability to change cluster configuration without the need

for retraining an agent from scratch, which is simply not possible when using the image-like

representation. In Figure 5.8, for example, we show the performance of an agent trained in

the bounded reward, event-based, compact MDP with 64 processors and with jobs of length 33

(the best agent in Figure 5.5, corresponding to scenario 9) evaluated in a compact environment

without event-based updates.

The results displayed in Figure 5.8 show that, with a single agent, we were able to

evaluate performance in all different scenarios without the need for retraining. We see that,

for the most part, slowdown is kept low, and not only that: this agent outperformed other

agents in 80% of scenarios (differences are statistically significant, with p-value ≤ 1%, except
for scenario 9, since this is the same agent, and scenario 5, where the test has low power to

reject the null hypothesis). This highlights the advantage of using a representation that allows

for easy transfer between agents, enabling good performance in a variety of cluster settings.

With this experiment, we see the full set of modifications proposed to the base MDP yield an

agent more capable of dealing with different scenarios, and we kept these modifications for

other experiments.

5.2.1 Mao workload model with Gaussian uncertainty

Before performing more complex simulations, it may be worth evaluating how our

agents fare with Gaussian noise in the job runtime estimates of the Mao workload model. In

this set of experiments, we also considered two different environments, “long” and “short”, but

their hyperparameters are different from the ones used previously, so their configuration is

displayed on Table 5.4. In this model, it’s hard to find a set of parameters that don’t deliver an

overly full, or an empty, cluster. Moreover, the reader will notice that times in the long envi-

ronment are 10× larger than those of the short environment, with probability 𝑝 of sampling

5.2. Solving the alternative MDP formulations 78

Table 5.4: Environment and workload model parameters used in the Mao-Gaussian set of
experiments.

Value

Parameter Short Long

Time limit 100 1000
Job rate (𝑝) 0.3 0.03
Long job lower bound (𝑙1) 32 320
Long job upper bound (𝑙2) 48 480
Short job lower bound (𝑠1) 1 1
Short job upper bound (𝑠2) 9 90
Smallest job size (𝑟1) 16
Largest job size (𝑟2) 32
Backlog size (𝐵) 60
Window of attention (𝑊) 10
Time horizon (𝐻) 20
Long job chance (𝑙) 0.2

jobs 10× smaller.

For both environments, we varied the 𝜈 factor of the Gaussian model (§ 2.3.2) from 0
(perfect estimates) to 2 (two standard deviations for noise), with both the overestimated and

underestimated Gaussian noise models.

Although unrealistic in practice, for this experiment, we decided to evaluate the impact

on the schedule if under-estimated jobs weren’t terminated by the scheduler: run time esti-

mates were merely used as “hints” to guide scheduling decisions. So, for each environment, we

compared the performance of a baseline model, trained with accurate estimates, with models

that used the overestimated and underestimated run time estimates.

The results are presented in Figure 5.9. In the figure, we see that, as expected, as

the noise factor 𝜈 increases, scheduling performance decreases (average slowdown increases).

Also as expected, the models trained with noisy estimates (red and purple bars) tend to outper-

form the baseline model (blue bars). The models trained with underestimated noisy estimates

outperform others in the short environment, whereas, in the long environment, we don’t see

any strong trends.

In the overestimated environments, there will be more “holes” in the schedule, due to

the excess time between actual and estimated run times. This should make these scenarios

easier than the underestimated scenarios without job termination when time was exceeded,

due to the more “packed” nature of the schedule, giving less room for error for optimization of

the learning algorithm. We believe this is the main reason for better performance in the short

environment. In the long environment, due to the lower probability of arrivals, the cluster

tends to be more free, reducing the impact of bad decisions and, hence, the smaller difference

between algorithm performance there.

5.2. Solving the alternative MDP formulations 79

Figure 5.9: Performancewith theMaoworkloadmodel when using different noise factors with
the Gaussian uncertainty model. At the top, we show performance when evaluating agents in
the “short” environment, while at the bottom we show the performance of the agents when
evaluated in the “long” environment. The different bar colors show the situation under which
the models were trained, whereas each graph shows the environment on which the agent
was evaluated. “Overestimated” means the Gaussian overestimated model was used, while
“underestimated” means the Gaussian underestimated model was used.

5.2.2 Section Summary

In this section, we analyzed the effects learning performance given different MDP

design decisions. In particular, we experimented with resource management agents for job

scheduling in computing clusters, discussing cases in which a compact representation outper-

forms an image-like one, and vice-versa. We saw that the compact, feature-based environ-

ments support transferring the weights of learned agents between different cluster settings,

while also keeping agent memory consumption constant, and processing requirements stable.

We also saw that agents that use these compact representations perform no worse than image-

like ones, and, thus, might be preferable to those agents, especially when constant memory

usage is a requirement. Moreover, our results indicate that transferred agents may outperform

specialized agents in 80% of the tested scenarios without the need for retraining.

A remarkable result on performance during learningwas obtainedwhenwe considered

the length of the learning rollouts given the function used to select jobs to compute agent

reward. By limiting reward computation to only jobs that are under the agent’s control, we

5.3. Performance in the option-based SMDP model 80

saw rollouts became shorter, indicating learning performance was better, given the dynamics

of the event-based MDP on which the evaluation was done.

We also started investigating the effects of Gaussian noise in job runtime estimates.

Our results indicate that, if schedulers didn’t terminate jobs that underestimated their run

times, agents trained with noisy estimates would perform much better than models that relied

on accurate estimates. Apart from that result, a Gaussian uncertainty model with the Mao

workload model does not allow us to extract more insights from those experiments.

5.3 Performance in the option-based SMDP model

For implementing the experiments described in this section, we used the smdp branch

of the sched-rl-gym package, with the CompactRM-v0 OpenAI Gym environment. We per-

formed three sets of experiments in increasing order of complexity, described in the next sec-

tions. Except where explicitly mentioned, we measured final model performance using the

average slowdown (2.1) of the simulation.

5.3.1 Comparison with models from the literature

Here, we want to assess how an agent that learns in the option-based SMDP model

proposed in this work compares with another from the literature. To answer that question,

we trained a model using the Lublin workload generator for a 256 processor cluster. We then

evaluated that model using the same methodology proposed by Zhang et al. [2020]: 10 inde-

pendent evaluations of random samples of job traces with 1024 jobs in each dataset. To ensure

fairness in the comparison, we downloaded and replicated the sampling code of rlscheduler,

abbreviated to rls in the following discussion, by Zhang et al. [2020], such that we used the

same offsets in the jobs traces as they used in their evaluation.

All the models in this and following sections were trained in an episodic manner, with

an episode ending every time 256 jobs were successfully scheduled. Between episodes, the sys-

tem state was reset to the empty cluster (𝜌 = { }). All sets of 256 jobs were generated by the

Lublin workload model, with different random seeds, such that each episode is different from

the other. The agents were trained with Maskable PPO for a million events, which translates

to training for little more than one hour for each setting on a Core i7-8700K Desktop running

Arch Linux with kernel version 5.16.2, with the performance CPU frequency governor and

5.3. Performance in the option-based SMDP model 81

Table 5.5: Environment, workload model, and learning parameters used in the experiments
that used the Lublin workload model.

Surrogate epochs 10
𝑛 steps 50
batch size 64
Clipping 𝜖 0.2
Value coefficient 0.5
gae 𝜆 0.95
Discount factor 𝛾 0.99
Entropy coefficient 10−4
Learning rate Linear decay [3 × 10−4, 10−5]
Total iterations 106
Event horizon size 60
Window of attention size 128

Table 5.6: Comparison of the average bounded slowdown achieved by our SMDP model ver-
sus the ones reported by rlscheduler [Zhang et al., 2020]. For the SMDP model, we report
the average bounded slowdown and standard deviation after the ± symbol. Lower bounded
slowdown is better. In the table, “rls” stands for the base rlscheduler model, whereas “rlsb”
stands for the rlscheduler model with backfilling. In this experiment, all SMDP models were
trained with the Lublin workload model. Values in the Trace column describe the trace file
used for evaluation.

Trace rls rlsb SMDP (Ours)

Lublin-1 254.67 58.64 67.55 ± 20.21
Lublin-2 724.51 118.79 225.58 ± 124.46
HPC2N 117.01 86.14 59.77 ± 87.45
SDSC-SP2 466.44 397.82 121.62 ± 137.81

an NVIDIA GeForce GTX1070 GPU. For training, we used Maskable PPO with learning and

environment parameters from Table 5.5. In these experiments, we trained a two-layer neural

network with 256 units in the first layer and 128 in the second one, with no parameter sharing

between value and policy networks, and the rectified linear unit activation function.

Table 5.6 shows a comparison of average bounded slowdown achieved by our model

and compared with rlscheduler. For our model, we report both the average value, and stan-

dard deviation. For the other values, we only report the mean, as we only reproduce what

was reported by Zhang et al. [2020]. We also evaluated the average resource utilization for the

same datasets, and report the results in Table 5.7. The reader should be aware that while we

compare performance in the four datasets of tables 5.6–5.7, our model had never seen any of

that data before evaluation.

From the data, we see that our SMDP model outperforms the base rlscheduler model

(rls) inmost cases, while not necessarily doing so against the backfilling variant of rlscheduler

(rlsb). We attribute this from the fact that despite our model not using backfilling explicitly,

5.3. Performance in the option-based SMDP model 82

Table 5.7: Comparison of the average resource utilization achieved by our SMDP model ver-
sus the ones reported by rlscheduler [Zhang et al., 2020]. For the SMDP model, we report
the average utilization and standard deviation after the ± symbol. Higher utilization is bet-
ter. In the table, “rls” stands for the base rlscheduler model, whereas “rlsb” stands for the
rlscheduler model with backfilling. In this experiment, all SMDP models were trained with
the Lublin workload model and trained to optimize for slowdown. Values in the Trace column
describe the trace file used for evaluation.

Trace rls rlsb SMDP (Ours)

Lublin-1 0.714 0.850 0.795 ± 0.025
Lublin-2 0.562 0.593 0.647 ± 0.078
HPC2N 0.640 0.642 0.593 ± 0.163
SDSC-SP2 0.671 0.707 0.770 ± 0.061

Table 5.8: Workload traces used in the evaluationwith real traces. The trace column represents
the name of the log in the Parallel Workloads Archive, with the version column representing
the version used. The processors column corresponds to the number of processors in the
machine, while the model column tells the number of processors that were used in training
our models.

Trace Version Processors Model

ANL-Intrepid [Tang et al., 2011] 1 163840 16384
CTC-SP2 [Hotovy, 1996] 3.1-cln 338 256
HPC2N 2.2-cln 240 256
SDSC-SP2 4.2-cln 128 128
SDSC-BLUE 4.2-cln 1152 2048

the use of an event horizonwith events the agent expects to happen allows it to perform better

planning ahead. Backfilling benefits rlscheduler because it uses a kernel to compute the pri-

ority of individual jobs in the queue, making local decisions, whereas backfilling gives a more

global view of the schedule to the algorithm.

In the cases where our model has worse performance than the rlsb model (Lublin-1 &

Lublin-2), we performed a t-test to check whether of our average bounded slowdown obser-

vations when considering the rlsb values as a population mean. Hence, the null hypothesis

is that our distributions are the same, whereas the alternative hypothesis is that they are not.

For the Lublin-1 case, we fail to reject the null hypothesis, but in the Lublin-2 case, we do

reject it (p-value < 0.05). For the other two datasets (HPC2N and SDSC-SP2), we reject the

null hypothesis (p-value < 0.05).
A remarkable difference between the SMDP model and rls is on how performance

of models trained on a given trace degraded when applied to another trace. For example,

when rls was trained on datasets other than Lublin-1 [see Zhang et al., 2020, Table VII], its

performance degraded by ≈ 89% (SDSC-SP2), 11% (HPC2N), and 31% (Lublin-2). We attribute

this difference to the local focus of the kernel layer rls uses, which contrasts with the more

5.3. Performance in the option-based SMDP model 83

global approach of the SMDP model.

In the original HPC2N and SDSC-SP2 traces, average bounded slowdown for the same

jobs we used in our evaluation are 156.12 ± 173.42 and 202.65 ± 215.75 respectively, and due

to the high variance of the average bounded slowdowns of the original schedules, when using

Welch’s t-test, we fail to reject the null hypothesis that the average bounded slowdows of the

schedules of the learned agent versus those of the original traces have differentmeans. Still, the

schedule generated by a learning agent has much lower variance than the original schedule,

making it a better choice for a more stable behavior. Concerning the utilization results in

Table 5.7, they are interesting because our SMDP model was trained to minimize bounded

slowdown, not utilization, and, despite that, it achieves good performance when compared

against models that were explicitly trained to maximize utilization, outperforming them in 3

out of 4 cases.

Another difference in the data is that both in the Lublin-1 and Lublin-2 datasets, run

time estimates are missing. What both rlscheduler and our model do is assume accurate run

time estimates, while in the HPC2N and SDSC-SP2 datasets, actual user run time estimates

are present. This should tend to make models that rely more heavily on accurate estimates to

have better performance in the Lublin-1 and Lublin-2 datasets, and worse performance in the

datasets with actual user run time estimates. Given that our model uses global cluster state

features as well as job features, this would explain why rlscheduler performs better in the

Lublin-1 and Lublin-2 datasets: rlscheduler probably gives more weight to the user run time

estimates, having its performance degraded as the quality of estimates degrade.

5.3.2 Effects of noisy estimates with synthetic workload models

The models from the previous section were trained with accurate run time estimates,

and evaluated with both accurate estimates (Lublin-1 and Lublin-2), and actual user run time

estimates (HPC2N and SDSC-SP2). Now that we’ve established in the previous section that

the performance of our SMDP model is at least comparable with, and arguably better than, a

state-of-the-art model, we evaluate how the SMDP model fares under different synthetic run

time estimate models. We trained models in clusters of 128, 256, 512, 1024, 2048, and 16384

processors with accurate run time estimates, with the Gaussian model (with 𝜈 varying from

0.5 to 2.0), and with the Tsafrir run time estimate model. Table 5.9 summarizes the results

of the evaluation of the aforementioned models under the same settings. From the values

shown, we don’t see a trend in any direction, and the average bounded slowdown obtained

with models trained with inaccurate user run time estimates are not different from the models

with accurate run time estimates in a significant manner. This is different from what we

5.3. Performance in the option-based SMDP model 84

expected, as we expected thatmodels trainedwith uncertain run time estimateswould perform

better than models trained on accurate estimates. Perhaps, due to the way we build the state

representation, the model does not rely that much on the run time estimate feature itself. In

hindsight, although adding Gaussian noise may help in situations with small amounts of data,

due to our use of a simulator and the Gaussian noise having zero mean, it might have been

the case that the effects of the noise averaged out, not affecting much the performance of the

system.

Table 5.9: Average bounded slowdown of models evaluated with the Lublin workload model
and with run time estimates generated by the Tsafrir model. After performing a t-test between
the models trained with accurate estimates and the models trained with inaccurate estimates,
we didn’t find any statistically-significant (p-value < 0.05) differences between models. All
models were evaluated with the same random seeds and we report the average and standard
deviation of 10 independent evaluations.

Processors

Uncertainty model 128 256 512 1024 2048 16384

Accurate estimates 17.9 ± 19.0 22.8 ± 9.48 57.1 ± 43.7 20.7 ± 30.6 33.5 ± 47.0 32.7 ± 35.9

𝜈 = 0.5 18.4 ± 19.7 23.2 ± 9.35 57.9 ± 44.5 36.0 ± 75.6 24.8 ± 33.1 32.8 ± 34.4
𝜈 = 1.0 16.0 ± 18.4 25.3 ± 13.5 60.9 ± 46.8 20.5 ± 31.0 24.5 ± 24.1 32.4 ± 33.8
𝜈 = 1.5 14.5 ± 18.1 22.4 ± 7.82 57.5 ± 43.1 19.1 ± 29.5 34.4 ± 47.4 31.8 ± 35.2
𝜈 = 2.0 16.4 ± 18.5 21.6 ± 6.73 59.6 ± 46.6 35.1 ± 73.7 25.2 ± 24.5 33.4 ± 34.5
Tsafrir 14.6 ± 17.8 20.8 ± 6.83 59.0 ± 45.3 35.8 ± 75.6 27.1 ± 29.5 33.4 ± 33.6

Evaluation with workload traces

Given the performance of the models when trained with uncertain estimates, we now evaluate

what happens when we evaluate our models under real production workloads. For doing so,

we selected a set of different job traces of clusters with varied numbers of processors. All

datasets we used were downloaded from the Parallel Workloads Archive, and are summarized

in Table 5.8. In the table we also show the number of processors we used to train our models

when mapping to each workload trace. From the table, for example, we see that the same

model was used in the CTC-SP2 workload and in the HPC2N workload, since we used the

256-processor model with both workload traces.

We computed both the average slowdown obtained by eachmodel, shown in Table 5.10,

and the cluster utilization, shown in Table 5.11. In the tables, we included not only the met-

rics for our models, but we also computed the average bounded slowdown and utilization

achieved by the original scheduler of the logs, and also the metrics of a scheduler that uses the

SJF heuristic, and the packing heuristic proposed by Grandl et al. [2014]. Including the real

scheduler performance serves as a qualitative comparison, since, differently from our evalua-

tion scenario, the real clusters were not empty when the evaluation jobs arrived in the system.

This is especially salient in the CTC-SP2 cluster, which differ by one order of magnitude be-

5.3. Performance in the option-based SMDP model 85

tween the simulation and actual settings. Due to that, we also included the performance of SJF

(which minimizes slowdown with accurate estimates), and the packing heuristic, which tends

to increase resource utilization. We see that for most simulation scenarios, the variance of

the average bounded slowdown metric is on the same order of magnitude of the metric itself,

making it hard to differentiate between models in a statistically-significant way.

In Table 5.10, we underlined models trained with noise that outperformed the corre-

sponding model trained with accurate estimates. In general, although with not too large a

difference, at least one model trained with inaccurate estimates outperformed the same model

when trained with accurate estimates. What is interesting in the metrics shown is that the

learned model is more stable than the heuristics compared. For example, in the SDSC-BLUE

case, the average bounded slowdown is ≈ 3× larger than that of the learned models and even

when the learning model trained with accurate estimates is outperfomed by a heuristic, the

maximum difference (SDSC-SP2, SJF) is on the order of ≈ 3%. It is also somewhat surprising

that the packing heuristic has worse performance than the actual schedule in the SDSC-SP2

trace.

Observing the results from Table 5.11, we see that utilization with the learning models

is, for most workload traces, larger than those of the heuristics (although not statistically-

significant), giving us confidence that even when optimizing for one metric (average bounded

slowdown), our model is still competitive when we consider other metrics (utilization). In

the table, we see that, for some systems, actual utilization is much lower than the computed

utilization using the algorithms implemented in this work. We believe this happens due to

differences in number of queues (in our simulations, we used a single incoming queue, whereas

the actual systems may have multiple queues with different restrictions), and jobs submitted

to different partitions of the clusters.

5.3.
Perform

ance
in

the
option-based

SM
D
P
m
odel

86

Table 5.10: Average bounded slowdown for the trace files used in this section. Underlined entries represent models that outperform the base
model trained on accurate estimates.

Processors 128 256 2048 16384

SDSC-SP2 CTC-SP2 HPC2N SDSC-BLUE ANL-Intrepid

Accurate estimates 247.81 ± 165.76 7.22 ± 4.15 43.53 ± 65.02 22.35 ± 16.90 1.26 ± 0.31

𝜈 = 0.5 236.77 ± 168.06 6.49 ± 3.85 46.58 ± 68.42 20.60 ± 16.92 1.30 ± 0.38
𝜈 = 1.0 230.26 ± 158.46 6.89 ± 4.80 43.41 ± 60.45 21.81 ± 17.79 1.27 ± 0.27
𝜈 = 1.5 244.10 ± 169.84 6.67 ± 3.84 44.74 ± 67.47 21.40 ± 17.39 1.23 ± 0.26
𝜈 = 2.0 225.03 ± 164.49 7.34 ± 4.81 46.32 ± 59.16 21.42 ± 16.68 1.31 ± 0.34
Tsafrir 243.30 ± 143.33 6.76 ± 4.15 39.30 ± 58.26 21.11 ± 15.75 1.34 ± 0.45

Shortest job first 240.10 ± 107.08 60.27 ± 103.52 55.63 ± 62.61 67.99 ± 99.30 1.78 ± 0.77
Packing heuristic 305.04 ± 221.95 6.98 ± 2.93 42.58 ± 59.07 23.12 ± 18.96 3.84 ± 6.17

Actual schedule 271.53 ± 201.28 86.05 ± 104.36 161.90 ± 184.35 242.618 ± 171.508 16.67 ± 16.07

5.3.
Perform

ance
in

the
option-based

SM
D
P
m
odel

87

Table 5.11: Cluster utilization for the trace files used in this section.

Processors 128 256 2048 16384

SDSC-SP2 CTC-SP2 HPC2N SDSC-BLUE ANL-Intrepid

Accurate Estimates 0.79 ± 0.036 0.75 ± 0.081 0.61 ± 0.140 0.69 ± 0.076 0.71 ± 0.15

𝜈 = 0.5 0.79 ± 0.034 0.75 ± 0.080 0.61 ± 0.140 0.68 ± 0.074 0.71 ± 0.15
𝜈 = 1.0 0.79 ± 0.038 0.75 ± 0.080 0.61 ± 0.140 0.68 ± 0.074 0.71 ± 0.15
𝜈 = 1.5 0.78 ± 0.038 0.75 ± 0.080 0.61 ± 0.140 0.68 ± 0.074 0.71 ± 0.15
𝜈 = 2.0 0.79 ± 0.039 0.75 ± 0.082 0.61 ± 0.140 0.68 ± 0.074 0.71 ± 0.15
Tsafrir 0.79 ± 0.040 0.75 ± 0.080 0.61 ± 0.140 0.69 ± 0.072 0.71 ± 0.16

Shortest Job First 0.74 ± 0.055 0.75 ± 0.031 0.54 ± 0.099 0.64 ± 0.092 0.73 ± 0.14
Packing heuristic 0.77 ± 0.054 0.77 ± 0.033 0.55 ± 0.100 0.66 ± 0.091 0.69 ± 0.13

Actual schedule 0.76 ± 0.082 0.58 ± 0.093 0.41 ± 0.147 0.41 ± 0.107 0.38 ± 0.07

5.3. Performance in the option-based SMDP model 88

5.3.3 Section Summary

In this section, we proposed a way to model job scheduling as an SMDPwith a recently-

introduced RL algorithm (Maskable PPO). We showed, through our experiments, that our

proposed model works with off-the-shelf implementations, by way of being compatible with

the OpenAI Gym environment, and that it is competitive with other learning algorithms and

heuristics, while training in a short time. More importantly, we were able to train good mod-

els with a third of training iterations of our previous work 5.2 while observing the effects of

uncertainty in user run time estimates, a factor that is often overlooked with reinforcement

learning agents for resource management, and we have shown these models are competitive

when evaluated with real workload traces.

We showed that while training with noisy run time estimates improved the model in

simpler settings, doing so failed to provide statistically-significant improvements both with

synthetic, but realistic, workload models and with workload traces from real systems. Still, we

showed that models trained with accurate run time estimates perform well even with noisy es-

timates from real workload traces, which we attribute to the model being able to “reason” over

possible future cluster states at each decision point. Additionally, we showed our approach of

training with realistic workload models outperforms models from the literature even on un-

seen data. Moreover, our models are competitive when transferred from one workload trace

to another, even outperforming models from the literature that were trained in the target en-

vironment. Overall, our experiments suggest that training with synthetic workload models

yields models that can generalize well to unseen situations.

One limitation of this study is that, for the synthetic workloads we generate, we don’t

model whether users, or the applications they execute, have consistent run time estimate bi-

ases. We don’t think identifying the characteristics of user applications, or learning a user

model belong, necessarily, in the RL agent, and we think the scheduling system as a whole

could implement these models, and provide this information to the RL agent, perhaps as an

embedding layer to the agent’s policy and value networks. Due to that, we don’t model spe-

cific user behavior. We don’t think that is a problem though, as run time estimates in HPC

clusters tend to gravitate around a set of twenty most popular estimates [Tsafrir et al., 2005].

Given the above, we did not model user types in this study as we were focused on the

RL model, nor did we think it was appropriate to introduce such a feature, although other

models in the literature use it. Moreover, without an appropriate user model, simply adding

a user identifier to the job state representation would probably work if jobs were submitted

by a fixed set of users. Still, such an agent would fail to generalize once a new user type was

introduced, reducing its usefulness in practice.

As presented, the way we model observations make the problem we try to solve a

Partially-Observable Markov Decision Process (POMDP), not an MDP. We believe that, sim-

5.3. Performance in the option-based SMDP model 89

ilarly to the Atari case, in which the approach of stacking frames prior to providing them to

the agent effectively turns the problem from a POMDP to an MDP [Hausknecht and Stone,

2015], adding the event horizon to our agent, along with a window of attention of 128 jobs,

also brings the problem closer to an MDP. To overcome the limitation of using the backlog

in the state representation, it might be possible to integrate an attention layer [Vaswani et al.,

2017] to act upon the complete queue state of the system, allowing the agent to select any

job for running, and not only jobs in the window of attention. Such a modification is left for

future work.

90

Chapter 6

Conclusion

In this chapter, we revisit all aspects of this dissertation, discussing its contributions, limita-

tions, and proposing directions for future research.

6.1 Overview

In this dissertationwe’ve dealt with how tomodel High Performance Computing (HPC)

job scheduling with Reinforcement Learning (RL). We have presented an approach to build

a simulator and corresponding RL environment in which agents can learn scheduling poli-

cies directly, by choosing indices in the wait queue as actions. We also analyzed empirically

the impacts of design decisions in parts of MDPs, observing the impact on learning. Finally,

we proposed an option-based SMDP formulation with relatively low computational resource

requirements, removing the need of preprocessing data, while being comparable to other per-

formant approaches in the literature and analyzing the impact of uncertainty in job run time

estimates in learning performance. All these contributions were proposed and evaluated in

light of the guidelines we proposed: (G1) having agents that did not rely on specific environ-

ments, but were able to learn general scheduling functions; (G2) being able to learn in modest

hardware, such as a desktop computer; and (G3) support algorithms from the literature, with-

out the need for special-case code.

6.2. Contributions 91

6.2 Contributions

6.2.1 A study of the impacts of MDP design decisions on learning

performance

We went through most components of the MDP tuple and proposed new formulations

to them. The new formulations are: image-like versus compact representations, time-based

versus event-based transitions, and adjustments to reward function computation. For each of

these proposed changes, we performed a set of experiments to determine the impact of such

changes on learning performance.

After all our proposed changes had been implemented, we arrived at a model that

supported transferring between cluster configuration and which had good performance across

a wide range of configurations. Contrary to one might have imagined, this set of changes

reduced computational requirements for learning while also improving agent performance.

6.2.2 A treatment of HPC job scheduling as an option-based SMDP

Our analysis of the changes to the base MDP had shown the MDPs we were dealing

with were powerful enough to support a wide range of scenarios, but some of them were not

strict MDPs, as time would pass in increments different from one in some cases. To solve that,

we proposed another environment, based on the Semi-MDP formalism that implemented the

same objective function of the base MDP, and that had a stronger theoretical grounding than

the first-proposed event-based MDP.

With our SMDP formalism, we were able to show our learned models are competi-

tive with other models in the literature, while removing the need for preprocessing steps for

successfully processing real cluster workload traces, enabling our model to be trained in ap-

proximately one hour in a desktop computer.

6.2. Contributions 92

6.2.3 An investigation of the impact of uncertainty in run time estimates

We started an investigation of the impacts of uncertainty in job run time estimates,

and performed a comprehensive set of experiments that show how an agent trained with the

SMDP formulation performed under the effects of varying degrees of Gaussian noise, and also

when using the Tsafrir model for run time estimates. We also contrasted the performance of

the learned agents with that of two classical heuristics, opening up an avenue for developing

agents that perform better under uncertainty.

6.2.4 A design approach that decouples MDP and agent development for

HPC job scheduling

We have shown how following a standard API for defining RL environments enabled

us to solve the HPC job scheduling problem with different algorithms with ease, relying on

open implementations of algorithms that, otherwise, would have taken much more time to

implement and execute.

We have assessed whether the approach was sound by being able to reproduce results

from the literature, and then we have demonstrated faster convergence with stable baseline

algorithm implementations [Raffin et al., 2021].

6.2.5 Software contributions

Our main software contribution is an RL environment1 that supports time-based and

event-based simulations, with support for different workload generators (such as the ones

proposed by Mao et al. [2016] and Lublin and Feitelson [2003]), with different job run time

uncertainty models (such as the Gaussian model and the model proposed by Tsafrir et al.

[2005]), and support for replaying traces in the Standard Workload Format (SWF), including

the ones from the Parallel Workloads Archive.

Another software contribution is the library that powers sched-rl-gym’s workload

models2, which wraps and exposes the Tsafrir and Lublin models to the Python language.
1https://github.com/renatolfc/sched-rl-gym, DOI: 10.5281/zenodo.7068617.
2https://github.com/renatolfc/parallelworkloads, DOI: 10.5281/zenodo.7068617.

https://github.com/renatolfc/sched-rl-gym
https://doi.org/10.5281/zenodo.7068609
https://github.com/renatolfc/parallelworkloads
https://doi.org/10.5281/zenodo.7068617

6.3. Limitations and directions for future research 93

6.3 Limitations and directions for future research

6.3.1 Fixed size of the window of attention

A limitation of the current representation is that it assumes the number of job slots

in the state representation contains all or most jobs that will ever be waiting in the queue.

Although we were able to evaluate our models with success using windows of attention with

sizes up to 128 entries, this limits agents into looking into a fixed set size of possible actions.

More importantly, this fixed size limitation made us use an extension to the PPO al-

gorithm that supported the masking of actions, as we have to present a set of jobs of a fixed

size to the agent, even if there are fewer jobs in the system than positions in the window of

attention.

This is a somewhat artificial restriction, and a true general model should not rely on a

representation of a fixed size. Approaches such as a kernel-based neural network combined

with more global information, or the usage of an attention mechanism [Vaswani et al., 2017]

might help lift this restriction of a fixed-size set of actions. These approaches might also

remove the need for using a masked version of PPO, making the learning algorithm simpler

and more comprehensible.

6.3.2 Incomplete information state representation

Another limitation of the state representation is the presence of the backlog. Especially

in MDPs with image-like representations, the limited window of attention combined with the

backlog make the environment violate the Markov property: in heavy-loaded systems, if the

number of waiting jobs is greater than the space used to represent the backlog, the agent loses

information about the queue, making it possible to have identical state representations even

in different states, making learning harder.

Ideally, state representations should maintain the Markov property at all times, en-

abling queues of any size to be represented and understood by agents. The solution to this

is to define a representation that always passes all information to the agent, but once this is

done, a fully-connected neural network might not be the best type of neural network to use,

as these architectures tend to require fixed-size representations.

6.3. Limitations and directions for future research 94

6.3.3 Optimization of a single metric

Although we have shown that agent performance is satisfactory in metrics other than

slowdown (such as utilization), we still have the limitation that our MDPs only support the

optimization of a single metric. In more complex environments, the reward function should

support join optimization of more than one metric.

6.3.4 Limited use of job information

Even in the SMDP model with cluster traces, we don’t make use of the full set of in-

formation from jobs. For example, we don’t have a user model, nor we use the user identifier

information, nor information about the task being performed (SWF has a field for the exe-

cutable, or the application, number). This makes it hard to make fine-grained decisions, and

for determining and using the resource usage profile of an application to instruct scheduling

decisions.

It would be interesting to be able to build a user model and application model that

could help RL agents make better decisions. The difficulty with such a model is that it would

probably make transfer harder. To mitigate this, we could design a hierarchical model that

made different decisions based on the availability of a model for users or applications. The

moment we do that, though, we will have to keep learning the model continuously with the

RL system, lest it becomes outdated and unusable.

6.3.5 A single queue

Throughout this work we made the assumption there is only a single admission queue

in the whole cluster, and while this is true for all learning agents we found in the literature, this

is not true of real systems, which have multiple queues with different priorities. Additionally,

it is frequent for priorities of jobs being affected by the date and time of the day the scheduling

decision is being made.

We made no attempt to model such situations in this work, but these issues need to be

addressed if we are to adopt scheduling algorithms learned through RL.

95

Bibliography

Ana P. Appel, Renato L. de F. Cunha, Charu Aggarwal, and Marcela Megumi Terakado. Tem-

porally evolving community detection and prediction in content-centric networks. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Dublin,

Ireland, 2018. Springer.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Kon-

winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud com-

puting. Communications of the ACM, 53(4):50–58, 2010.

M. Emin Aydin and Ercan Öztemel. Dynamic job-shop scheduling using reinforcement learn-

ing agents. Robotics and Autonomous Systems, 33(2):169–178, 2000. ISSN 09218890. doi:

10.1016/S0921-8890(00)00087-7.

Betis Baheri and Qiang Guan. MARS: Multi-Scalable Actor-Critic Reinforcement Learning

Scheduler. arXiv e-prints, art. arXiv:2005.01584, May 2020.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark

Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learn-
ing Research, 18:1–43, 2018.

K A Beaty, J M Chow, R L F Cunha, K K Das, M F Hulber, A Kundu, V Michelini, and E R

Palmer. Managing sensitive applications in the public cloud. IBM Journal of Research and
Development, 60(2-3):4:1–4:13, mar 2016. ISSN 0018-8646. doi: 10.1147/JRD.2015.2513720.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira. Hcoc: a cost optimization

algorithm for workflow scheduling in hybrid clouds. Journal of Internet Services and Appli-
cations, 2(3):207–227, 2011.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh

Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel Vaquero, Marco AS

Bibliography 96

Netto, et al. A manifesto for future generation cloud computing: Research directions for

the next decade. ACM computing surveys (CSUR), 51(5):1–38, 2018.

Danilo Carastan-Santos and Raphael Y De Camargo. Obtaining dynamic scheduling policies

with simulation and machine learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–13, 2017.

Xiaomeng Chen, Hui Zhang, Hanli Bai, Chunming Yang, Xujian Zhao, and Bo Li. Runtime

prediction of high-performance computing jobs based on ensemble learning. In Proceed-
ings of the 2020 4th International Conference on High Performance Compilation, Comput-
ing and Communications, HP3C 2020, page 56–62, New York, NY, USA, 2020. Association

for Computing Machinery. ISBN 9781450376914. doi: 10.1145/3407947.3407968. URL

https://doi.org/10.1145/3407947.3407968.

Su-Hui Chiang, Andrea Arpaci-Dusseau, and Mary K Vernon. The impact of more accurate

requested runtimes on production job scheduling performance. In Proceedings of the Inter-
nationalWorkshop on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 103–127.
Springer, 2002.

Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and Dheeraj Sreed-

har. PowerAI DDL. arXiv preprint arXiv:1708.02188, 2017.

Renato L F Cunha, Marcos D. Assunção, Carlos Cardonha, and Marco A S Netto. Exploiting

user patience for scaling resource capacity in cloud services. In IEEE International Conference
on Cloud Computing, CLOUD, pages 448–455. IEEE Computer Society, 2014.

R.L.F. Cunha, E.R. Rodrigues, L.P. Tizzei, and M.A.S. Netto. Job placement advisor based on

turnaround predictions for HPC hybrid clouds. Future Generation Computer Systems, 67,
2017. ISSN 0167739X. doi: 10.1016/j.future.2016.08.010.

Alexandre da Silva Veith, Felipe Rodrigo de Souza, Marcos Dias de Assunção, Laurent Lefèvre,

and Julio Cesar Santos dos Anjos. Multi-objective reinforcement learning for reconfiguring

data stream analytics on edge computing. In Proceedings of the 48th International Conference
on Parallel Processing, pages 1–10, 2019.

Marcos Dias De Assunção, Carlos H. Cardonha, Marco A S Netto, and Renato L F Cunha. Im-

pact of user patience on auto-scaling resource capacity for cloud services. Future Generation
Computer Systems, 55:41–50, 2016.

Renato Luiz de Freitas Cunha and Luiz Chaimowicz. Towards a Common Environment for

Learning Scheduling Algorithms. In Proceedings of the 2020 IEEE Computer Society’s Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nications Systems, MASCOTS. IEEE Computer Society, November 2020. in press.

https://doi.org/10.1145/3407947.3407968

Bibliography 97

Renato Luiz de Freitas Cunha and Luiz Chaimowicz. On the impact of mdp design for rein-

forcement learning agents in resource management. In Brazilian Conference on Intelligent
Systems, pages 79–93. Springer, 2021.

Renato Luiz de Freitas Cunha and Luiz Chaimowicz. An SMDP approach for Reinforcement

Learning in HPC cluster schedulers. Accepted for publication at Future Generation Com-

puter Systems on September 26th, 2022, 2022.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-

ford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.

https://github.com/openai/baselines, 2017.

Giacomo Domeniconi, Eun Kyung Lee, and Alessandro Morari. Cush: Cognitive scheduler

for heterogeneous high performance computing system. In Proceedings of DRL4KDD 19:
Workshop on Deep Reinforcement Learning for Knowledge Discovery (DRL4KDD). Reproduced
by: Vanamala Venkataswamy, Swaroopa Dola, volume 12, 2019.

Yuping Fan and Zhiling Lan. Exploiting multi-resource scheduling for hpc. SC Poster, 2019.

Yuping Fan, Paul Rich, William E. Allcock, Michael E. Papka, and Zhiling Lan. Trade-off

between prediction accuracy and underestimation rate in job runtime estimates. In 2017
IEEE International Conference on Cluster Computing (CLUSTER), pages 530–540, 2017. doi:

10.1109/CLUSTER.2017.11.

Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, and Michael E Papka.

Deep reinforcement agent for scheduling in hpc. arXiv preprint arXiv:2102.06243, 2021.

Dror G Feitelson. Metrics for parallel job scheduling and their convergence. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 188–205. Springer, 2001.

Dror G Feitelson and Larry Rudolph. Toward convergence in job schedulers for parallel su-

percomputers. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 1–26.

Springer, 1996.

Dror G Feitelson, Dan Tsafrir, and David Krakov. Experience with the parallel workloads

archive. The Hebrew University and the Israel Institute of Technology, 2012.

Keke Gai and Meikang Qiu. Optimal resource allocation using reinforcement learning for IoT

content-centric services. Applied SoftComputing Journal, 70:12–21, 2018. ISSN 15684946. doi:

10.1016/j.asoc.2018.03.056. URL https://doi.org/10.1016/j.asoc.2018.03.056.

Piotr Gawłowicz and Anatolij Zubow. ns-3 meets OpenAI Gym: The Playground for Machine

Learning in Networking Research. In ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM), November 2019.

https://github.com/openai/baselines
https://doi.org/10.1016/j.asoc.2018.03.056

Bibliography 98

Paul Glasserman and David D Yao. Some guidelines and guarantees for common random

numbers. Management Science, 38(6):884–908, 1992.

Robert Glaubius, Terry Tidwell, Christopher Gill, and William D. Smart. Real-time scheduling

via reinforcement learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty
in Artificial Intelligence, UAI’10, page 201–209, Arlington, Virginia, USA, 2010. AUAI Press.

ISBN 9780974903965.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.

Multi-resource packing for cluster schedulers. ACM SIGCOMM Computer Communication
Review, 44(4):455–466, 2014.

Swetha Hariharan, Prakash Murali, Abhishek Pasari, and Sathish Vadhiyar. End-to-end

predictions-based resource management framework for supercomputer jobs. arXiv preprint
arXiv:2008.08292, 2020.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable

mdps. In 2015 aaai fall symposium series, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David

Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-

ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining

improvements in deep reinforcement learning. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence, 2018.

Steven Hotovy. Workload evolution on the cornell theory center ibm sp2. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 27–40. Springer, 1996.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy

gradient algorithms. The International FLAIRS Conference Proceedings, 35, May 2022. doi: 10.

32473/flairs.v35i.130584. URL https://doi.org/10.32473/flairs.v35i.130584.

Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas Cholia, John

Shalf, Harvey J Wasserman, and Nicholas J Wright. Performance analysis of high perfor-

mance computing applications on the amazon web services cloud. In Proceedings of the
IEEE Second International Conference on Cloud Computing Technology and Science (Cloud-
Com), 2010.

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep rein-

forcement learning perspective on internet congestion control. In International Conference
on Machine Learning, pages 3050–3059, 2019.

https://doi.org/10.32473/flairs.v35i.130584

Bibliography 99

Athanassios M Kintsakis, Fotis E Psomopoulos, and Pericles AMitkas. Reinforcement learning

based scheduling in a workflow management system. Engineering Applications of Artificial
Intelligence, 81:94–106, 2019.

B. A. Kumar and T. Ravichandran. Instance and value (ivh) algorithm and dodging depen-

dency for scheduling multiple instances in hybrid cloud computing. In 2013 International
Conference on Pattern Recognition, Informatics and Mobile Engineering, pages 408–411, 2013.

Mohit Kumar, S.C. Sharma, Anubhav Goel, and S.P. Singh. A comprehensive survey for

scheduling techniques in cloud computing. Journal of Network and Computer Applica-
tions, 143(April):1–33, 2019. ISSN 10848045. doi: 10.1016/j.jnca.2019.06.006. URL https:

//linkinghub.elsevier.com/retrieve/pii/S1084804519302036.

Rajath Kumar and Sathish Vadhiyar. Identifying quick starters: towards an integrated frame-

work for efficient predictions of queue waiting times of batch parallel jobs. In Proceedings of
the 16th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
2013.

Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. Are user run-

time estimates inherently inaccurate? In Proceedings of the International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), pages 253–263. Springer, 2004.

Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free control for distributed stream

data processing using deep reinforcement learning. Proc. VLDB Endow., 11(6):705–718,

February 2018. ISSN 2150-8097. doi: 10.14778/3199517.3199521. URL https://doi.org/

10.14778/3199517.3199521.

Sisheng Liang, Zhou Yang, Fang Jin, and Yong Chen. Data centers job scheduling with deep

reinforcement learning. arXiv preprint arXiv:1909.07820, 2019.

Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State of the Art Control

of Atari Games Using Shallow Reinforcement Learning. In AAMAS, 2016.

Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: modeling the

characteristics of rigid jobs. Journal of Parallel and Distributed Computing, 63(11):1105–1122,
2003. ISSN 0743-7315. doi: https://doi.org/10.1016/S0743-7315(03)00108-4. URL https:

//www.sciencedirect.com/science/article/pii/S0743731503001084.

N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. I. Kim. Applica-

tions of deep reinforcement learning in communications and networking: A survey. IEEE
Communications Surveys Tutorials, 21(4):3133–3174, 2019.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and

Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and

https://linkinghub.elsevier.com/retrieve/pii/S1084804519302036
https://linkinghub.elsevier.com/retrieve/pii/S1084804519302036
https://doi.org/10.14778/3199517.3199521
https://doi.org/10.14778/3199517.3199521
https://www.sciencedirect.com/science/article/pii/S0743731503001084
https://www.sciencedirect.com/science/article/pii/S0743731503001084

Bibliography 100

open problems for general agents. Journal of Artificial Intelligence Research, 61:523–562,
2018.

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource Manage-

ment with Deep Reinforcement Learning. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, pages 50–56, 2016. ISBN 9781450346610. doi: 10.1145/3005745.3005750.

Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang,

Ryan Marcus, Ravichandra Addanki, Mehrdad Khani, Songtao He, Vikram Nathan, Frank

Cangialosi, Shaileshh Bojja Venkatakrishnan, Wei-Hung Weng, Song Han, Tim Kraska, and

Mohammad Alizadeh. Park: An Open Platform for Learning-Augmented Computer Sys-

tems. Nips, (NeurIPS):61–63, 2019a. URL https://github.com/park-project/park.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Moham-

mad Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings
of the ACM special interest group on data communication, pages 270–288. 2019b.

Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R de Supinski, Barry Rountree,

Martin Schulz, and Xin Yuan. A comparative study of high-performance computing on the

cloud. In Proceedings of the 22nd International Symposium on High-performance Parallel and
Distributed Computing (HPDC), 2013.

Gabriel Marin and John Mellor-Crummey. Cross-architecture performance predictions for

scientific applications using parameterized models. In ACM SIGMETRICS Performance Eval-
uation Review, volume 32, pages 2–13. ACM, 2004.

Andréa Matsunaga and José AB Fortes. On the use of machine learning to predict the time and

resources consumed by applications. In Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pages 495–504. IEEE Computer Society,

2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-

level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-

forcement learning. In International conference on machine learning, pages 1928–1937, 2016.

Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads, and user

runtime estimates in scheduling the ibm sp2 with backfilling. IEEE transactions on parallel
and distributed systems, 12(6):529–543, 2001.

https://github.com/park-project/park.

Bibliography 101

GrahamRNudd, Darren J Kerbyson, Efstathios Papaefstathiou, Stewart C Perry, John SHarper,

and Daniel V Wilcox. PACE-A toolset for the performance prediction of parallel and dis-

tributed systems. International Journal of High Performance Computing Applications, 14(3):
228–251, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative

style, high-performance deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin. Dl2: A deep

learning-driven scheduler for deep learning clusters. arXiv preprint arXiv:1909.06040, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah

Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free ap-

proach to parallelizing stochastic gradient descent. In Advances in neural information pro-
cessing systems, pages 693–701, 2011.

Gonzalo P Rodrigo, P-O Östberg, Erik Elmroth, Katie Antypas, Richard Gerber, and Lavanya

Ramakrishnan. Towards understanding hpc users and systems: a nersc case study. Journal
of Parallel and Distributed Computing, 111:206–221, 2018.

Eduardo R. Rodrigues, Renato L. de F. Cunha, Marco A. S. Netto, and Michael Spriggs. Helping

hpc users specify job memory requirements via machine learning. InWorkshop on HPC User
Support Tools, Salt Lake City, Utah, 2016.

Iman Sadooghi, J Hernandez Martin, Tonglin Li, Kevin Brandstatter, Y Zhao, K Maheshwari,

T Pais Pitta de Lacerda Ruivo, Steven Timm, GGarzoglio, and Ioan Raicu. Understanding the

performance and potential of cloud computing for scientific applications. IEEE Transaction
on Cloud Computing, PP(99):1–1, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in

tensorflow. arXiv preprint arXiv:1802.05799, 2018.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general re-

inforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

Bibliography 102

W. Smith. Prediction services for distributed computing. In Proceeding of the 21th International
Parallel and Distributed Processing Symposium (IPDPS), 2007.

Warren Smith, Valerie Taylor, and Ian Foster. Using run-time predictions to estimate queue

wait times and improve scheduler performance. InWorkshop on Job scheduling strategies for
Parallel Processing, pages 202–219. Springer, 1999.

Warren Smith, Ian Foster, and Valerie Taylor. Predicting application run times with historical

information. Journal of Parallel and Distributed Computing, 64(9):1007–1016, 2004.

Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi

Purkayastha. A framework for performance modeling and prediction. In Supercomputing,
ACM/IEEE 2002 Conference, pages 21–21. IEEE, 2002.

Stelios Sotiriadis, Nik Bessis, and Rajkumar Buyya. Self managed virtual machine scheduling

in cloud systems. Information Sciences, 433-434:381 – 400, 2018. ISSN 0020-0255. doi: https:

//doi.org/10.1016/j.ins.2017.07.006. URL http://www.sciencedirect.com/science/

article/pii/S0020025517308277.

Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Ponnuswamy Sadayappan.

Selective reservation strategies for backfill job scheduling. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 55–71. Springer, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018a.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, chapter 17:

Frontiers, pages 469–472. MIT press, 2018b.

Richard S Sutton, Doina Precup, and Satinder Singh. BetweenMDPs and semi-MDPs: A frame-

work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211,
1999. URL http://www-all.cs.umass.edu/pubs/1999/sutton{_}ps{_}AI99.

pdf.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient

methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

Wei Tang, Zhiling Lan, Narayan Desai, Daniel Buettner, and Yongen Yu. Reducing fragmenta-

tion on torus-connected supercomputers. In 2011 IEEE International Parallel & Distributed
Processing Symposium, pages 828–839. IEEE, 2011.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level

play. Neural computation, 6(2):215–219, 1994.

http://www.sciencedirect.com/science/article/pii/S0020025517308277
http://www.sciencedirect.com/science/article/pii/S0020025517308277
http://www-all.cs.umass.edu/pubs/1999/sutton{_}ps{_}AI99.pdf
http://www-all.cs.umass.edu/pubs/1999/sutton{_}ps{_}AI99.pdf

Bibliography 103

Philip S Thomas and EmmaBrunskill. Policy gradientmethods for reinforcement learningwith

function approximation and action-dependent baselines. arXiv preprint arXiv:1706.06643,
2017.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Zhao Tong, Zheng Xiao, Kenli Li, and Keqin Li. Proactive scheduling in distributed computing

- A reinforcement learning approach. Journal of Parallel and Distributed Computing, 74(7):
2662–2672, 2014. ISSN 07437315. doi: 10.1016/j.jpdc.2014.03.007. URL http://dx.doi.

org/10.1016/j.jpdc.2014.03.007.

Zhao Tong, Hongjian Chen, Xiaomei Deng, Kenli Li, and Keqin Li. A scheduling scheme in the

cloud computing environment using deep Q-learning. Information Sciences, 512:1170–1191,
2020. ISSN 00200255. doi: 10.1016/j.ins.2019.10.035.

Dan Tsafrir and Dror G Feitelson. Instability in parallel job scheduling simulation: the role

of workload flurries. In Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, pages 10–pp. IEEE, 2006.

Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Modeling user runtime estimates. InWorkshop
on Job Scheduling Strategies for Parallel Processing, pages 1–35. Springer, 2005.

Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using system-generated predictions

rather than user runtime estimates. IEEE Transactions on Parallel and Distributed Systems,
18(6):789–803, 2007.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

José R Vázquez-Canteli, Jérôme Kämpf, Gregor Henze, and Zoltan Nagy. Citylearn v1.0: An

openai gym environment for demand response with deep reinforcement learning. In Pro-
ceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pages 356–357, 2019.

Lan Wang and Erol Gelenbe. Adaptive dispatching of tasks in the cloud. IEEE Transactions on
Cloud Computing, 6, 01 2015. doi: 10.1109/TCC.2015.2474406.

Yuandou Wang, Hang Liu, Wanbo Zheng, Yunni Xia, Yawen Li, Peng Chen, Kunyin Guo, and

Hong Xie. Multi-objective workflow scheduling with deep-q-network-based multi-agent

reinforcement learning. IEEE access, 7:39974–39982, 2019.

http://dx.doi.org/10.1016/j.jpdc.2014.03.007
http://dx.doi.org/10.1016/j.jpdc.2014.03.007

Bibliography 104

YiWei, L. Pan, Shijun Liu, L.Wu, and XiangxuMeng. Drl-scheduling: An intelligent qos-aware

job scheduling framework for applications in clouds. IEEE Access, 6:55112–55125, 2018.

Ronald JWilliams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning, 8(3-4):229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement

learning algorithms. Connection Science, 3(3):241–268, 1991.

TimothyWood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. Profiling andmod-

eling resource usage of virtualized applications. In Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, pages 366–387. Springer-Verlag New York, Inc.,

2008.

Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Tobias Lange, and

Cesar AF De Rose. Performance evaluation of container-based virtualization for high per-

formance computing environments. In Proceedings of the 21st Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP), 2013.

Minxian Xu, Chenghao Song, Huaming Wu, Sukhpal Singh Gill, Kejiang Ye, and Chengzhong

Xu. Esdnn: Deep neural network based multivariate workload prediction in cloud com-

puting environments. ACM Trans. Internet Technol., mar 2022. ISSN 1533-5399. doi:

10.1145/3524114. URL https://doi.org/10.1145/3524114. Just Accepted.

Leo T. Yang, Xiaosong Ma, and Frank Mueller. Cross-platform performance prediction of

parallel applications using partial execution. In Proceedings of the 2005 ACM/IEEE conference
on Supercomputing (SC), 2005.

Di Zhang, Dong Dai, Youbiao He, and Forrest Sheng Bao. Rlscheduler: Learn to schedule hpc

batch jobs using deep reinforcement learning. arXiv preprint arXiv:1910.08925, 2019.

Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. Rlscheduler: an automated

hpc batch job scheduler using reinforcement learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

Wei Zhang and Thomas G Dietterich. A reinforcement learning approach to job-shop schedul-

ing. In IJCAI, volume 95, pages 1114–1120. Citeseer, 1995.

Yu Zhang, Jianguo Yao, and Haibing Guan. Intelligent Cloud Resource Management with

Deep Reinforcement Learning. IEEE Cloud Computing, 4(6), 2017. ISSN 23256095. doi:

10.1109/MCC.2018.1081063.

Dinitry Zotkin and Peter J Keleher. Job-length estimation and performance in backfilling

schedulers. In Proceedings of the International Symposium on High Performance Distributed
Computing (HPDC), pages 236–243. IEEE, 1999.

https://doi.org/10.1145/3524114

	1 Introduction
	1.1 Motivation: HPC job scheduling
	1.2 Objectives
	1.3 Contributions
	1.4 Notation
	1.5 Document layout

	2 Background
	2.1 Batch job scheduling
	2.2 Deep Reinforcement Learning and Job Scheduling
	2.3 Workload models
	2.4 Uncertainty in job run time estimates
	2.5 Policies and approximators
	2.6 Options as a closer-to-reality model
	2.7 OpenAI Gym

	3 Related Work
	3.1 Reinforcement Learning for Scheduling
	3.2 On predicting job features
	3.3 Reinforcement Learning in Resource Management
	3.4 Resource allocation environments in OpenAI Gym
	3.5 Summary

	4 HPC job scheduling with RL
	4.1 Problem description
	4.2 On the need for simulators and frameworks
	4.3 Job Scheduling Simulation
	4.4 The simulator as an OpenAI Gym environment
	4.5 Policy network and learning procedure
	4.6 Alternative MDP formulations
	4.7 The options-based Semi-MDP formulation
	4.8 Summary

	5 Experiments
	5.1 Learning performance in the base MDP
	5.2 Solving the alternative MDP formulations
	5.3 Performance in the option-based SMDP model

	6 Conclusion
	6.1 Overview
	6.2 Contributions
	6.3 Limitations and directions for future research

	Bibliography

