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“É preferível a angústia da busca à calma da acomodação.”
(Dom Resende Costa)



Resumo

O sistema de transporte metropolitano das grandes cidades é composto pelo sistema de
transporte coletivo e pelos serviços de transporte particular. O sistema de transporte
coletivo tem como principais características a alta ocupação dos veículos, a longa duração
das viagens e o baixo custo para os passageiros. Por outro lado, os serviços de transporte
particular, como o táxi, possuem baixa ocupação dos veículos, as rotas são flexíveis e
o preço de longas viagens pode ser elevado se comparado com o transporte coletivo.
Visando reduzir o preço das viagens do transporte particular, atualmente, esses serviços
permitem o compartilhamento de viagens e divisão dos custos do trajeto compartilhado
entre os passageiros adicionais. Embora as modalidades pública e privada de transporte
se interceptem no tempo e espaço, a integração entre elas ainda é pouco explorada.

Esta dissertação tem como objetivo avaliar a viabilidade de integração dos sistemas
de transporte coletivo e particular compartilhado. Sendo assim, as contribuições desse
trabalho foram as seguintes. Primeiramente, foi realizada uma caracterização dos dados
de viagens de táxi e transporte coletivo realizadas na cidade de Nova Iorque em um
intervalo de tempo específico. Em seguida, foi proposto o TM-Sharing, um algoritmo que
realiza o casamento das viagens desses diferentes modais. Além disso, foram propostas
duas políticas de precificação para o sistema integrado de transporte. Por último, foram
geradas quatro novas bases de dados sintéticas para avaliar o TM-Sharing em cenários com
diferentes aspectos temporais e quantitativos. Os resultados mostram que no cenário de
transporte integrado avaliado o passageiro de transporte coletivo pode fazer viagens mais
rápidas, enquanto o passageiro de transporte particular realiza viagens mais baratas.

Palavras-chave: Cidades Inteligentes, Mobilidade Urbana, Sistemas de Transporte Mul-
timodal, Compartilhamento de Viagens



Abstract

Taxi and mass transportation services (e.g., buses, subways) are key components of the
transportation system of metropolitan areas. Mass transportation tends to be the chea-
pest alternative, as costs are amortized among many people on the same trip, but they
offer the same fixed trajectory. On the other hand, taxi trips tend to be more flexible
and faster as they carry fewer people, often in a single direct trip towards the passenger
destination. As such, they also tend to be more expensive. Both services often operate
completely independent, even though their trips may intercept each other spatially and
temporally. Indeed, the integration of mass transportation and taxi services into a unified
transportation system has been little explored.

In this thesis, we explored alternatives to combine these two systems focusing on
cost and time reduction as the main metrics of interest. Specifically, we characterized data
on mass transportation and taxi trips made in New York City in the same period. Then,
we designed the TM-Sharing algorithm that matches trips considering temporal, spatial
and economic aspects. Then, we proposed two pricing policies for the integrated system.
Furthermore, we created four new datasets by inflating the original one to evaluate TM-
Sharing in different scenarios. Results showed that in the evaluated scenario of integrated
system, mass transportation passengers can save time, while taxi passenger saves money.

Keywords: Smart Cities, Urban Mobility, Multimodal Transport Systems, Ridesharing
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Capítulo 1

Introduction

Thousands of people use mass transportation and on-demand car services to get around
in urban centers daily. mass transportation, including bus, subway, and train modes, is
the cheapest alternative as costs are divided among many people sharing the same trip.
However, they offer fixed trajectories aiming at serving a larger fraction of the population
and not necessarily covering the shortest path between different locations. To travel by
one of these modes, people need to walk from their origin to a location where a vehicle
of the desired line stops for boarding. When disembarking, passengers may need to walk
from the nearest line stop to their final destination. Thus, mass transportation services
are often time-consuming.

The mass transportation system is composed of different lines, each with a default
trajectory and timetable. Thus, it is possible to predict the time a vehicle of a certain line
will reach a stop or station for boarding and disembarking of passengers. Some passenger
trips demand more than one line to achieve the destination. In such cases, passengers
should disembark on a mass transportation stop, walk to the nearest stop of the next
line, and wait for boarding a different vehicle. In many cities, the fare paid by passengers
on each boarding does not depend on the distance traveled nor on the duration of the
trip. Thus, long distances traveled by mass transportation means tend to be cheaper than
those traveled by other personalized transportation services.

On the other hand, on-demand car services (such as taxi and Uber1) tend to be
faster but also more expensive than mass transportation. Due to their flexibility, drivers
can choose the best route according to traffic conditions and passenger’s desires. These
transport services carry passengers between locations of their choice. Pricing is based
mostly on the distance traveled and the total time the vehicle remained stopped on traffic,
whereas additional costs are often charged during nighttime and peak hours. Currently,
smartphone applications allow passengers to request a trip, estimate its cost, and pay the
fare using a credit card. Mostly, all these conveniences come with higher costs compared
with mass transportation modes. Moreover, the occupancy of such services is often low,
further increasing the price per passenger of a trip.

Ridesharing services are cheaper mechanisms that offer passengers with (partially)
1https://www.uber.com/
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similar routes the chance of sharing the trip and its costs. Yet, to save money, passengers
may accept delays caused by the detour to catch and drop-off additional passengers. To
work properly, a ridesharing system must keep track of the real-time positions of all
registered vehicles, the number of available seats, origins, and destinations of each trip,
as well as process passenger requests. By exploiting such data, ridesharing services can
match similar routes and ideally quickly meet the demand. Uber Pool2 and Lyft3 are
examples of such service where passengers request a shared trip through smartphones and
the system looks for passengers with similar routes to put together on the same vehicle.

1.1 Motivation

The challenge of ridesharing is to find passengers with similar routes that would like
to share their trips. In some cases, it is difficult to find candidate trips for ridesharing due
to the lack of tracked trips in some areas at specific periods. Moreover, even if matchings
of different trips are detected, the passengers may not accept delays in their trips to
get additional passengers. More broadly, ridesharing incentives, such as environmental,
monetary, and traffic-related ones, may not be enough to motivate participation.

On the other hand, combining ridesharing services with mass transportation mo-
des can be a good alternative to minimize those drawbacks. Passengers can switch modes
to save time and trip costs along their way. Buses, for example, have fixed itineraries.
During periods of traffic congestion, when trip delays are expected, passengers may opt
for disembarking at a particular station to join a shared car trip, aiming at taking alter-
native paths and arriving faster at their destinations. Downtown regions tend to be very
congested during peak hours. Thus, passengers traveling by taxi services could choose to
switch and continue their trips by subway to avoid traffic. In some cases, there might
not be a station close to the passenger’s destination. In that case, he could benefit from
switching transportation mode and completing the last portion of the trip faster with a
ridesharing service and drop-off closer to the destination.

The basic prerequisite for an integrated ridesharing system is to keep track of
both cars and mass vehicle positions in real-time to be able to identify potential route
sharings. Indeed, in many cities, both mass transportation and taxi services are already
being tracked by central systems. For example, in large cities such as New York, the real-
time position of mass vehicles are provided by the metropolitan traffic agency4. Individual

2https://www.uber.com/il/en/ride/uberpool/
3https://www.lyft.com/
4http://datamine.mta.info/
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transport services are tracked as well and it is possible to know the occupation of each
vehicle and the pick-up and drop-off positions5. The knowledge of these positions, in
real-time, enables the design of services that combine mass transportation modes with
individual transport services in single trips.

Previous studies have analyzed the viability and benefits of the integration between
mass transportation and car modes. A preliminary study made by [8] showed that a
transportation system that integrates buses with shared and fixed-route taxis is viable
when taxi sharing is allowed in low-density areas. [16] designed a generic multimodal
system that allows passengers with similar routes and the same mode to share it. Similarly,
[5] proposed an optimal matching model to find the best combination of passenger trips
for a multimodal transport system. [14] proposed a system that integrates ridesharing
with mass transportation modes. However, the authors analyzed the system only from the
perspective of the mass transportation passenger, disregarding the individual passenger
viewpoint.

Although a variety of studies propose different means of ridesharing and multi-
modal systems, there is a lack of studies that investigate the costs and the benefits of
transportation services that integrate ridesharing with mass transportation modes. Pre-
vious work is mostly focused on matching trips of the same mode and integrating different
modes of transportation separately. Moreover, due to the scarcity of datasets that con-
template trips made by distinct modes in the same period, multimodal systems are often
evaluated based only on synthetic data.

1.2 Objective

The objective of this work is to investigate to what extent the integration of on-
demand individual car and mass transportation trips is feasible and economically viable.
On one hand, the mass transportation passenger may find that ridesharing offers time
savings that compensate for the extra costs (as compared to the mass transportation
fares). The individual car passenger, on the other hand, may find it beneficial to share
the costs despite a possible extra delay.

We envision the following scenario for such bimodal transport service: to request
a shared trip, a mass transportation passenger must be registered in the system and
connected to the Internet. Before boarding a mass vehicle, passengers must plan their
trips, informing their current position and the desired destination location. Then, the
integration system will look for route matches where individual on-demand trip passengers

5http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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save money while mass transportation passengers save time. The best match is the one in
which the delay experienced by the individual car passenger and the extra cost imposed
on the mass transportation passenger are minimized. Given such a target scenario, our
driving questions are: What are the costs and benefits for such a system for each party,
i.e., mass transportation passenger and on-demand car passenger? Can we devise an
integration strategy that delivers a win-win scenario?

We break down these general questions into the following ones: 1) How are trips
made by individual car services and mass transportation modes spatially and temporally
distributed? 2) Are there significant overlaps among them that justify ridesharing? 3)
How can we integrate ridesharing with mass transportation modes considering the trip
duration and the costs imposed on passengers (trip prices)? 4) What would be a fair
pricing policy for passengers in the integration scenario? 5) How would an increase in
taxi trips impact the number of viable integrations? In this work, we would like to answer
these questions analyzing trips from passengers that travel by different modes at the same
time and in the same city.

1.3 Contributions

The contributions of this thesis are the following:

1. Characterization of taxi and mass transportation trips: To understand the spatial
and temporal aspects of these two transportation modes, we analyze real datasets
of taxi and mass transportation trips collected in New York City.

2. An algorithm that matches mass transportation and taxi trips considering spatial,
temporal and economical aspects: To have a match, both taxi and mass trans-
portation passengers should benefit. Taxi passengers must save money and mass
transportation passengers must save time on their trips.

3. Two pricing methods for the integrated system: The first method is based on the
New York City Taxi and Limousine Commission (TLC), composed by initial charge,
rate per mile, rate per minute stopped and additional surcharges. In this policy,
we define splitting factors to divide the cost of shared segments between taxi and
mass transportation passengers. In the second method, the amount saved by taxi
passengers is proportional to delay of their trip. Thus, the more taxi passengers de-
viate from their original route to get additional passengers from mass transportation
modes, the more they will save in their trip cost.
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4. Evaluation of our integration method, composed of the proposed algorithm and pri-
cing methods and referred to as TM-Sharing, in real and synthetic scenarios: The
real scenario is built from datasets collected from New York City. However, the
total of taxi trips in the real dataset is fairly small. Thus we build synthetic (but
realistic) scenarios by inflating the number of taxi trips. By doing so, we aim to
evaluate how the proposed system performs as the number of available taxi trips
increases.

1.4 Organization

The remaining of this thesis is organized as follows. Chapter 2 presents previous
studies related to ours and introduces important concepts as well as algorithms and fra-
meworks of ridesharing and multimodal systems of transportation. Chapter 3 presents
our new TM-Sharing integration method. Chapter 4 presents our evaluation methodo-
logy and the results of trip data characterization, matching algorithm, and pricing policies
evaluation. Finally, Chapter 5 summarizes our thesis and presents possible directions for
future work.
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Capítulo 2

Related Work

There have been many efforts to improve the efficiency of transportation systems in me-
tropolitan areas. Some studies explore mechanisms to support ridesharing by passengers
with similar routes (Section 2.1). Other studies investigate multimodal approaches by
exploiting different modes of transportation on the same passenger’s trip (Section 2.2).
In this chapter, we review prior investigations of ridesharing and multimodal approaches,
emphasizing how they deal with the aforementioned challenges.

2.1 Ridesharing

In all cases of ridesharing, any solution must tackle three basic challenges: the
identification of candidate trips to be shared (Section 2.1.1), the matching of different
trips and the scheduling of the matched trips (Section 2.1.2), and the pricing of shared
and integrated trips (Section 2.1.3).

2.1.1 Identification of Candidate Trips

The basic condition for the success of ridesharing is the identification of multiple
trips with similar routes (i.e., routes that share, both temporally and spatially, some
segment that could be shared). Aiming at identifying candidate trips to be shared, some
authors [7, 2] have analyzed mobile phone data (notably Call Data Records, or CDRs)
to estimate origin and destination positions of different trips based on the locations of
cell towers. Others have exploited data from social networks [7], data collected by GPS
equipment at the taxi cars [10, 18, 3] as well as synthetic datasets [1, 9].



2.1. Ridesharing 17

2.1.2 Matching and Scheduling Trips

After identifying candidate trips from a data source, the following steps consist of
matching and scheduling these trips. To that end, [10] designed a real-time ridesharing
algorithm with a service guarantee that considers waiting time and detour to get additional
passengers. They analyzed one day of data collected from taxi trips in Shanghai and
showed that the proposed kinetic tree algorithm is faster than branch-and-bound and
integer programming approaches. However, the uncertainty of delays on traffic was not
considered in their approach.

Similarly, [1] developed a framework to select the best candidates to share a ride
evaluating constraints imposed by passengers and drivers related to waiting times and trip
costs. They developed a dynamic model, named SHAREK, to match trips and used the
Euclidean distance to prune candidate trips and reduce the search space. These pruning
methods consider both time and costs of candidate trips and find those candidate drivers
that are within a circular area around the passenger. The model selects the best driver,
who dominates all the other candidates considering waiting time and price. The authors
evaluated their method using the synthetic Minnesota Traffic Generator.

From a different perspective, [6] proposed approximation algorithms to assign
passengers to drivers by considering that the satisfaction of riders is more important
than vehicle travel costs. They formulated the problem of Utility-Aware Ridesharing on
Network Roads, proved that it is NP-Hard, and designed approximate algorithms to tac-
kle that problem. In general terms, these algorithms aim at maximizing the system’s
total utility, which is a function of riders’ satisfaction, considering constraints of vehicle
capacity and the maximum time of passenger’s arrival at destination.

[15] developed an approach that considers the individual passengers’ discomfort
to compute the collective benefits of ridesharing. To that end, they introduced concepts
of shareability, that is the maximum number of trips that can be shared in one route,
and considered the time window each passenger could wait for sharing. They showed that
their approach can be applied in scenarios in which the density of trips is high (e.g., which
is the case of large cities such as New York City) and, by subsampling the dataset, they
showed that good results can be achieved in cities with low-density taxi trips as well.

A big challenge of ridesharing systems is to meet all demand without compromising
the global optimality. Due to the high computational effort required to supply all the
ridesharing requests in real-time, systems tend to adopt greedy approaches that yield
sub-optimal and faster solutions, resulting in missed requests. To tackle that, [13] used
historical data to predict the real-time demand and make local decisions yielding to near-
optimal global solutions. Thus, the number of unmatched trips reduced significantly.
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2.1.3 Pricing of Shared Trips

The pricing policy is another important module of a ridesharing system, which
determines how costs are divided among all involved parties and thus influences which
candidate trips should be matched to bring benefits to all of them. In that direction, [18]
developed a complete ridesharing system, including hardware and software design, and a
win-win fare model where both drivers and passengers have monetary incentives to share
a ride. They computed the ridesharing benefit based on shared and non-shared route
distances. Initial charge and time stopped on traffic are not considered in the benefit
computation. They showed that smaller ridesharing distances generate higher profits for
drivers and lower costs for riders.

The framework proposed by [3], which is named Auction-based Price-Aware Real-
Time (APART), chooses drivers with greater profits and compensates passengers for de-
lays. To do that, both drivers and riders inform their constraints to the system, which
tries to satisfy them while maximizing the revenue of the overall requests. APART runs
in a distributed platform where each driver’s schedule is processed in parallel and the one
with the highest profit is selected in real-time.

More recently, [20] modeled an order dispatch system that selects drivers and
passengers that maximize the ridesharing platform profit. They showed that this problem
is NP-Hard and designed approximation methods. They also developed a framework of
a ridesharing system based on real data and conducted experiments to validate their
proposal.

To increase platform revenue, [4] proposed a pricing method based on future traffic
conditions. For each trip, the method computes the demand at the origin position and
estimates the destination one. Thus, a dynamic pricing scheme was designed to incentivize
passengers who travel from low to high demand regions.

Beyond monetary incentives, ridesharing also has social and environmental bene-
fits, which have been considered by some authors. For example, [7] considered friendship
among passengers to select trips to be shared. They also evaluated the impact of ridesha-
ring on the number of running vehicles. [2] explored the impact of ridesharing on urban
traffic by considering the mobility of people by car and on foot. They analyzed how the
number of people who choose to walk or to join a shared ride relate to the total number
of running vehicles on traffic.

From a different perspective, [11] qualitatively evaluated the experiences of riders
and drivers while sharing their trips. They examined how the ridesharing ecosystem con-
tributes to the development of social and cultural capital. They evaluated semi-structured
interviews of Uber users and analyzed the growth of social capital. Results showed that
drivers and riders can gain informational, emotional, instrumental resources, and compa-
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nionship by sharing their trips.

2.2 Multimodal Transportation Systems

Beyond sharing the same trip with different passengers, integrating different trans-
portation modes on the same trip can be an economic and fast alternative to get around
in big cities. Thus, this section presents works that evaluate the integration of different
modes of transportation (Section 2.2.1) and those that focus on the integration of mass
transportation with taxi modes, specifically (Section 2.2.2).

2.2.1 Integrating Different Transportation Modes

In a multimodal system, it is possible to combine the multiple transportation
modes available in a metropolitan area on the same trip. In that direction, [19] modeled
a multimodal transport system that integrates mass and individual modes, such as buses,
private cars, bikes and even walking. They used a graph model and applied Dijkstra’s
routing algorithm, considering only temporal attributes to match trips. Despite the long
computational time to run the algorithm, results show that it is possible to combine
different modalities of transport into a street network.

Similarly, [5] designed a mathematical approach that allows the integration of
private car sharing, ridesharing, buses and trains on the same trip. First, passengers
and drivers schedule their trips informing their origin and destination. Then, the system
searches for different transportation modes that could be integrated to fulfill the user
requests. Results showed that even though the computation effort was high, their system
could always find integrated trip solutions.

[16] designed a multimodal system that receives passenger transportation requests,
decomposes them into segments according to their areas and modalities, assigns each seg-
ment to an available resource in an optimal way, and combines the segments formulating
the entire passenger journey. Their work aims to answer passenger requests by creating
itineraries composed of mass transportation, ridesharing, and free-use car modes. They
modeled the problem as a Multi-Agent System, where the passengers were self-interested
agents, having as a goal the maximization of the global utility of the system.
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2.2.2 Mass Transportation and Taxi

Some authors have focused specifically on combining mass transportation and taxi
services into a bimodal transportation system, as these are the most often used transpor-
tation modes (beyond private vehicles). For example, [8] designed a transit network that
integrates fixed-route shared taxi and buses. They considered the costs for passengers
and drivers as well as environmental and infrastructural costs in their design. The results
showed that ridesharing services should be used in areas where population density is low
and buses in areas with high population density (e.g., downtown).

[17] modeled the impact of bus passengers when a taxi stands near bus stop lo-
cations. They studied the possibility of designing an integrated station for taxi and bus
passengers in such a way that a mode does not cause delay to the other. Then, they
applied the model on a real road network and computed the probability of passenger
queuing.

More recently, [12] developed a multimodal and context-aware transportation re-
commendation system. In a preliminary study, they analyzed data from different sources,
including data related to user behavior, geographical and weather information as well as
user profiles and built a framework that recommends unimodal and multimodal routes.
The system generates feasible routes, constructs features from datasets, captures the user
preference order, and then makes the recommendation.

Finally, [14] developed a multimodal trip planner that integrates the existing mass
transportation network with a taxi sharing service. They validated their proposal using
a mass transportation planner as a baseline and comparing the advantages to opt for
ridesharing or mass transportation modes to complete the trip. Results show that in-
tegrating these modes can reduce the trip duration with an acceptable extra cost for
passengers.

2.3 Discussion

In this section, we provide an overall discussion of prior studies, highlighting their
limitations and how our present effort differs from them. As mentioned, one key compo-
nent of ridesharing and multimodal systems is the identification of candidate trips to be
shared, which requires datasets collected from different sources. Unlike prior ridesharing
studies [18, 4], which mostly used real datasets in their evaluations, multimodal studies
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often lack trip-related data from different modes collected during the same time and thus
have to resort to other strategies for evaluating the proposed approaches. For exam-
ple, [19] used only data from mass transportation line stops and schedule, [8] evaluated
their proposal analyzing demographic data, whereas [5] and [14] used randomly generated
synthetic data. Moreover, [16] and [17] designed multimodal systems, but did not vali-
date their proposals using real data, whereas [12] evaluated their recommendation system
using data generated by users interaction with a map routing service.

In this thesis, we use data collected from real mass transportation and taxi services
at the same time and covering the same region to evaluate our proposal. We reconstruct
trips from an origin and destination survey made in New York City. The dataset contains
trip characteristics such as locations, date and time, and mode of transportation informed
by residents of that city. By doing so, we can assess the benefit of our approach TM-
Sharing in a real scenario.

After the identification of trips from different modes, the next step is to match
them in such a way that the passenger discomfort is minimized [15]. In the design of
TM-Sharing, we consider costs and delays as sources of discomfort and exploit distances
and trajectories traveled to find the best integration station for the passenger to leave the
mass transportation mode and join a shared vehicle. Inspired by [1], we apply a filtering
approach based on the aforementioned criteria to reduce the search space of candidate
trips.

Another component is the scheduling, which determines the passenger pickup and
drop-off sequence the driver should follow. [10] proposed an approach based on tree
structures that process ridesharing requests on-the-fly and schedule trips considering the
available seats th on vehicle and the maximum waiting time for passengers. Subjected to
these constraints, [6] modeled the scheduling problem as a utility-aware ridesharing task
that aims to maximize passenger satisfaction. In our approach, unlike previous ridesha-
ring systems that consider only the origin and destination of passengers, the multimodal
schedule considers the mass transportation lines and their stops as possible integration
positions.

Finally, pricing is a key factor for the success of a ridesharing system. Passengers
aim to save money while drivers need to maximize profits from trips. In that direction, [3]
proposed a pricing scheme that takes into consideration the passengers’ acceptable detours
and expected discounts as well as the driver’s expected costs (based on traveled distance
and duration). In our proposed pricing schemes detours are divided among passengers
and taxi drivers are paid proportionally over time and traveled distance. Similar to [18],
we take into account the shared and non-shared route aspects in the benefit computation.

Despite the many ridesharing and multimodal transportation solutions available
in the literature, alternatives that combine these modalities are scarce. Studies that most
closely resemble ours are those by [14] and [12], which proposed alternatives that enable
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passengers to combine mass transportation modes with on-demand car services in the
same route. Our proposal differs from them in the following aspects. In the multimodal
trip planner proposed by [14], does not take the taxi passenger perspective into account
to select candidate trips for ridesharing. In the multimodal recommendation system
developed by [12], integrated taxi-bus trips are recommended, but ridesharing was not
considered as an alternative.
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Capítulo 3

TM-Sharing Mechanism

A service that combines mass transportation and ridesharing in single trips has the po-
tential to deliver benefits to passengers from both individual transportation services (i.e.,
taxi services) and mass transportation modes. For taxi passengers, sharing the ride can
be cheaper than individual rides [3]. For mass transportation passengers, the integration
with taxi services may offer faster trips than a non-integrated system [14]. Moreover,
trips from different modalities overlapping each other in both time and space may offer
real opportunities for integration [12].

Motivated by these observations, we propose the TM-Sharing mechanism, which
integrates taxi and mass transportation services aiming at offering real benefits to all
passengers involved. In this section, we first present an overview of the integrated scenario
(Section 3.1). We then describe two key components of TM-Sharing, explaining the
algorithms that match taxi and mass transportation trips to be shared (Section 3.2) and
the pricing policies (Section 3.3).

3.1 Overview

The main scenario for TM-Sharing usage is illustrated in Figure 3.1. The prere-
quisites are the following: (1) passengers as well as taxi drivers must have smartphones
with Internet access and GPS to use our proposed service; (2) they should also accept to
share their routes and (3) (preferably real-time) schedule of mass transportation lines in
the target region must be available.

Using the a smartphone application, mass transportation (e.g., bus, subway, trol-
ley) passengers may plan their trips choosing lines to travel from their origin to their
destination (step 1 in the figure). Similarly, taxi passengers may request trips to available
nearby drivers, informing the required number of passengers (or seats) (step 2). Either
at trip planning/request time or after the trip has already started, both passengers may
opt for integrating and sharing their trip with others to save time or money. Once the



3.1. Overview 24

Figura 3.1: Diagram of the integration between mass transportation and taxisharing.

integration is requested, the system will search for trips from different modes (taxi and
mass transportation) to be matched.

The goal of the TM-Sharing is to attend that specific scenario finding a pair of
trips (one from a mass transportation and one from taxi), whose integration guarantees
two conditions, namely, that mass transportation passengers save time and that taxi
passengers save money. When a match is found, the system sends notifications to all
involved passengers informing (estimated) costs and duration of the shared trip (steps
3 and 4). Part of the matching algorithm consists of computing a new shared route
including an integration stop (where the mass transportation passenger should pick-up
the taxi) and the sequence of destinations, i.e. passengers’ drop-off locations. Once an
integration option is determined, this will be shown to the taxi and mass transportation
passengers. Acceptance from all parties is needed for the integration to be completed. If
the driver and all passengers agree on sharing the trip, the system will inform the mass
transportation passenger at which line stop (down the trip) she should drop-off and join
the taxi ride (step 5) and it will also inform the taxi driver of the new route and where
he should get the mass transportation passenger.

Whoever arrives first at the integration stop (mass transportation passenger or
taxi driver) should wait for the other party. The ridesharing starts when the mass trans-
portation passenger joins the shared taxi ride. The shared route is computed from the
integration stop to the nearest passenger destination (step 6). Next, the trip to the final
destination continues as a individual taxi trip (step 7). The drop-off order depends on
the locations of the passengers’ destinations specified at the time of the request.

Our goal in this thesis is to evaluate the extent to which a system could attend the
scenario illustrated in Figure 3.1 bringing benefits (cost or trip duration reductions) to all
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parties. To that end, we developed the following procedure. Firstly, we characterized real
data from passenger trips to understand how people move around in a large metropolitan
area, notably New York City, by different modes of transportation and to which extent
the opportunities for cost-effective sharing happen. The results of this characterization
are discussed in the next chapter. Secondly, we ran our algorithms to match and integrate
mass transportation trips with taxi ones. For the same pair of trips, we exploit all possible
points of integration, taking the viable taxi trip that is near to a mass transportation
stop as a candidate to the integration. We select pairs of trips to be matched where (1)
taxi passengers would pay less than traveling only by taxi and (2) mass transportation
passengers would travel faster than only by mass transportation modes. Therefore TM-
Sharing exploits the trade-off between cost reduction for taxi passengers and time savings
for mass transport passengers. If no pair of trips offers those gains, the integration is
considered not viable1.

The pricing scheme, that is, how the total costs are split among all passengers,
is an important part of the matching algorithm. As a baseline, for individual taxi trips
we estimate costs following rules of the Taxi & Limousine Commission (TLC) of the
New York City2. Specifically, an initial amount is charged at the beginning of the trip,
different amounts are charged for miles traveled and stoppeds minute on the traffic. There
are additional rates at night and peak hours. We further elaborate on this pricing scheme
in Section 4.1.

For shared taxi trips, we analyze different strategies to split the total price of
the ride among all passengers sharing it, considering the proportion of the trip that is
shared and the extra delay imposed on the (original) taxi passenger. We evaluate how
the number of viable integrations (i.e., integrations that benefit all parties) vary for each
pricing policy and considering different availabilities of taxi trips.

In the next two sections, we present a detailed description of our integration algo-
rithm and of the pricing schemes we considered in the design of the TM-Sharing.

3.2 Taxi and Mass Transportation Trip Integration

In this section, we describe the main algorithms that compose the trip integra-
tion mechanism in TM-Sharing. While describing them, we assume that a set of mass
transportation trips M and a set of taxi trips T are given. We assume that a mass trans-

1In a real setup, the taxi driver could choose to refuse the integration for personal reasons. In our
study, we assume that all candidate integrations are accepted by all taxi drivers, although they are
accepted by the passengers only if real benefits (money or time savings) are achieved.

2https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page
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portation trip is a passenger route composed by one or more mass mode of transportation
(subway and/or train) that the passenger is interested in the integration service. Thus,
each mass transportation trip is characterized by the origin and the destination of the
associated passenger as well as by the stops of the corresponding transit line and the
expected time of arrival at each stop. Each taxi trip, in turn, is characterized by an
origin and a destination of its passenger as well as a real-time trajectory. In other words,
we assume that the service has real-time information about the location of all taxi trips.
Moreover, in our evaluation we assume that this information, as well as the arrival times
of the mass transportation trips at all line stops, are precise3. We also assume that all
taxis have seats for an extra (mass transportation) passenger and that the taxi passenger
always accepts a request for integration (step 4 in Figure 3.1).

In our analysis, we focused on find incentives for passengers to share their trips and
ensuring that taxi drivers will have no financial loss. Thus, our algorithm looks for means
to make the trip integration viable for passengers, keeping drivers subject to the existing
pricing rules. The consequence of our method is increasing the duration of taxi trips and
making the taxi mode more accessible by increasing the occupancy of the vehicles.

In addition to the sets of trips T and M , another key input parameter is d, the
maximum distance between the location of the taxi and the mass transportation stop
where a potential integration can happen. The idea is that only taxis that are within
such distance of a stop are candidates for integration (at that stop).

In general, our taxi-mass transportation trip integration mechanism, referred to
as TM-Sharing, is composed of three steps. First, pairs of trips that could be integrated
considering temporal and spatial attributes are matched by a Spatiotemporal Matching
algorithm. Second, the integrations that are economically viable are filtered by a Viability
Filtering algorithm. Third, from all integration possibilities of the same trip pair, the one
with the maximum time and cost benefits is selected by the Maximum Benefit procedure.

The following algorithm matches mass transportation and taxi trips.
3We leave to future work an evaluation of the impact of imprecisions on the effectiveness of our

approach.
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Algorithm 1 Spatiotemporal Matching
1: procedure ST-Matching

▷ maximum integration distance d; set of taxi trips T; set of mass transportation
trips M
Input: d, T, M

▷ set of pairs of taxi and mass transportation trips B
Output: B

2: ▷ consider each mass transportation trip m
3: for each m in M do

4: ▷ consider each stop in the line corresponding to trip m
5: for each stop in m do

6: ▷ identify ongoing taxi trips
7: T = taxis_on_route(stop.datetime, T )

8: ▷ consider only taxi trips within d meters of stop
9: T = taxis_around(stop, d, T )

10: for each t in T do

11: ▷ select the nearest taxi position in t from transit stop as
12: ▷ the taxi passenger acceptance position
13: acceptance = nearest_neighbourhood(stop, t)

14: ▷ compute the distance between stop and the taxi acceptance position
15: integration_distance = distance(acceptance.pos, stop.pos)

16: ▷ compute the distance from acceptance position to taxi destination
17: individual_distance = distance(acceptance.pos, t.destination.pos)
18: if stop.datetime < t.destination.datetime

and acceptance.datetime < m.destination.datetime
and integration_distance < individual_distance then

19: ▷ compute the shared route b
20: b = OTP (stop, acceptance,m.destination, t.destination)

21: ▷ add shared route b to the solution set B
22: B = B + {b}

Return: B

The Spatiotemporal Matching algorithm takes as input the parameter d, which is
the maximum acceptable distance between candidate trips; as well as the sets T and M of
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taxi and mass transportation trips, respectively. It produces as output a set B of candidate
trips to the integration, each integration b in B is a pair of taxi and mass transportation
trips along with a location (mass transportation stop) where the integration is performed
and the time as well. The generation of set B takes into account only spatial and temporal
constraints. For example, only trips that overlap in time and space can be effectively
integrated. Similarly, only integrations that can take place before the taxi passenger
arrives at her destination are worth pursuing.

The algorithm iterates over each mass transportation trip m (line 3). For each
stop of the mass transportation line trip, m will still pass through (line 5), the algorithm
considers only taxi trips that are carrying passengers at the time the mass transportation
vehicle passes by that stop (line 7) and that are at most within d meters (euclidean
distance) from the stop position (line 9), we here assume d = 3km. Then, for each filtered
taxi trip t (line 10), the algorithm selects the location along the taxi trip trajectory t that
is nearest to the bus stop (line 13). Let’s call the location the acceptance location as it
will be the position where the taxi is when integration is accepted (in case it indeed is).
The algorithm then computes two distances, namely, the distance between the acceptance
location and the target bus stop (line 15) and the distance still to be covered by the taxi
if it continues as a individual trip, i.e., if no integration occurs (line 17).

The taxi trip will be selected as a candidate for the integration if (i) the taxi trip
does not arrive at its destination before the mass transportation reaches the stop; (ii)
taxi passenger accepts the integration before the mass transportation passenger would
arrive at his destination by the mass transportation line; and (iii) the distance between
taxi acceptance and the nearest transit stop is shorter than the distance between the
acceptance position to the taxi passenger’s destination (line 18). If these three conditions
are met, the integration route is computed (line 20). The algorithm returns a set of pairs
of mass transportation and taxi trips (B) candidates to the integration (22).

Some candidate trips may not be viable considering trip costs and the duration of
the integration. The Viability Filtering algorithm filter viable integrations taking as input
the result from Algorithm 1 (B), a set T of individual taxi trips, and a set M of mass
transportation trips. The algorithm returns a set C of trips pairs (mass transportation
and taxi) that are temporal and economically viable to the integration.
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Algorithm 2 Viability Filtering
1: procedure Viability-Filtering

▷ set of integrated trips B; set of taxi trips T; set of mass transportation trips M
Input: B, T, M

▷ set of viable shared trips C
Output: C

2: ▷ consider each shared trip b
3: for each b in B do

4: ▷ recover original taxi and mass transportation trips
5: t = get_trip(b.taxi.id, T )

6: m = get_trip(b.transit.id,M)

7: ▷ compute the original cost of the (individual) taxi trip
8: taxi_individual_cost = compute_taxi_cost(t)

9: if b.taxi.duration < α ∗ t.duration
and b.transit.destination.datetime < m.destination.datetime

and bimodal_costs.taxi < taxi_individual_cost then

10: ▷ add shared route b to the solution set C
11: C = C + {b}

Return: C

For each candidate integration b (line 3), the algorithm determines its viability as
follows. A candidate integration b is viable if the following three conditions are met: (i) we
consider an upper limit on the total duration of the integrated trip for the taxi passenger
to avoid excessively long delays. We assume that the total duration of the integrated trip
for the taxi passenger should be less than α times the duration of the individual trip,
we here assume α = 2, we here consider the waiting time at the integration station; (ii)
the mass transportation passenger should save time in the integrated trip; (iii) the taxi
passenger should save money in the integration trip (line 9). The algorithm returns a
set of viable integrated trips (C) including repeated pairs with integrations occurring at
different (all viable) stop positions (11).

The last procedure of the TM-Sharing Algorithm is responsible for selecting the
best option of integration, out of all viable possibilities (set C). In other words, it selects
the pair of mass transportation and taxi trips along with an integration stop (where the
mass transportation passenger will disembark and join the shared taxi ride) with the
maximum benefit to both parties. Thus, we define the utility of a candidate integration
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c (c ∈ C) as the product of the total amount of time saved by the mass transportation
passenger if she chooses c (compared to the original trip duration) and the total amount
of money saved by the taxi passenger (compared to the original individual trip cost).

Algorithm 3 Maximum Benefit Trip
1: procedure Maximum-Benefit

▷ set of viable integrated trips C
Input: C

▷ shared trip with maximum benefit to both passengers
Output: best_integration

2: ▷ initialize the maximum utility variable
3: max_utility = −∞
4: best_integration = NULL

5: ▷ consider each integrated trip c
6: for each c in C do

7: ▷ compute mass transportation passenger saved time
8: benefitmt = get_saved_time(c)

9: ▷ compute taxi passenger saved money
10: benefitt = get_saved_money(c)

11: ▷ compute the integrated trip utility
12: integration_utility = benefitmt ∗ benefitt

13: ▷ select the best integration
14: if integration_utility > max_utility then
15: max_utility = integration_utility
16: best_integration = c

Return: best_integration

For each viable candidate integration, c in set C (line 6), the algorithm computes
the benefit of c to the mass transportation passenger (line 8)), to the taxi passenger (line
10) as well as the overall utility of c (line 12). Out of all viable candidate integrations
(set C), the algorithm selects and returns the one with maximum utility (line 14-16), or
NULL if no such candidate exists (C = ∅).
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3.3 Pricing Policies

Splitting the price of several route segments among the taxi and mass transporta-
tion passengers is an important task that impacts directly the viability of TM-Sharing.
As shown in Figure 3.1, each trip segment should be priced in such a way that there is
economy for taxi passengers, and the price paid for mass transportation passengers can-
not be too high. In that direction, we propose two different pricing policies to enable the
TM-Sharing mechanism.

We consider pricing policies that are based on the typical pricing schemes em-
ployed by individual taxis. The total price is the sum of a fixed initial amount, which is
independent of trip duration and distance traveled, plus a variable amount that consists
of a rate charged per unit of distance traveled. Moreover, the time stopped on traffic is
charged, and additional costs are employed during peak and night hours. Then, we derive
policies to distribute the total price of a shared trip among all participating passengers
as follows.

Taking Figure 3.1 as a reference, we split the total price of a shared taxi trip into
the following components: (a) initial, corresponding to the fixed amount charged for
initiating the taxi ride; (b) original route, corresponding to the price of the taxi route
until integration is established (segment between (2) and (4) in Figure 3.1); (c) detour,
price of the (possible) deviation of the taxi and to pick up mass transportation passenger
and the waiting time spent at integration station (segment between 4 and 5); (d) shared
route, corresponding to the price of the shared route until first destination (segment
between 5 and 6) and (e) final destination, corresponding to the price of trip between
destinations (segment 6-7).

In both pricing policies, segmented and proportional, we assume that (b) is entirely
charged to the original taxi passenger while (e) is fully charged to the last passenger to
drop-off. Thus, we vary the way the segments (a), (c) and (d) are split between taxi and
mass transportation passengers. Specifically, we consider two approaches.

In our first approach, we define splitting factors, sinitial, sdetour, and sshared to
be applied to the initial (a), detour (c) and shared route (d) segments, respectively, as
follows. A fraction si of the price component i (i equal to initial, detour or shared) is
charged to the passenger coming from the mass transportation, and the rest is charged to
the original taxi passenger. Clearly, the values assigned to parameters sinitial, sdetour and
sshared directly impact the cost-effectiveness of the integration.

In our second policy, passengers from mass transportation modes pay proportio-
nally to the taxi passenger extra delay due to integration imposed on the original taxi
passengers. The system estimates the total taxi trip duration to the original passenger’s
destination with integration (tnewtaxi) and without the integration (torigtaxi). It then computes
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a splitting factor f =
tnew
taxi−torigtaxi

tnew
taxi

that is a delay incurred in the taxi passenger route due
to the integration. The price components (a), (c) and (d) are then split such that mass
transportation passenger will pay (sinitial + sdetour + sshared) ∗ f while the taxi passenger
will pay for the rest of the shared trip such as (sinitial + sdetour + sshared) ∗ (1− f).

3.4 Summary

We have presented TM-Sharing, a mechanism to integrate mass transit and taxi
trips. TM-Sharing takes into account spatial and temporal constraints as well as econo-
mical aspects to select viable integrations. TM-Sharing explores the one between time
and cost of the integrated trips aiming to benefit both mass transit and taxi passengers.
We have also proposed two schemes to split the price of the integrated trip amount both
passengers: one considers fixed splitting factors while the other takes the delay imposed
to the taxi passenger into account to decide how much should be changed to the mass
transit passenger.

An example that illustrates the proposed scenario follows. Suppose that at 6:50
AM a taxi passenger requests for a trip informing her origin and destination position and
an acceptable delay for ridesharing (15 minutes). At 6:55 an available taxi arrives at
the origin of the passenger and she picks-up on the vehicle. Not far from there, another
passenger board on a bus at 7:08 AM. At that time, both passengers are traveling towards
their destination in different modes of transportation.

Unexpectedly, at 7:22, an accident slows down the traffic on the avenue where the
bus of our passenger passes by. Then, to avoid getting late, the bus passenger requests
to a shared trip using his smartphone. He opens the application and informs the bus line
he is traveling, the position of his destination, and the max time he wants to arrive at his
destination, 8:00 AM. The system then looks for on-rout taxi trips that are around the
bus line route and that attends the bus passengers requisites.

The system sends requisitions for all taxi passengers and drivers that do not have
their time constraints violated, and that generates acceptable money savings for taxi
passengers. Generating and expected delay of 13 minutes and a saving of 5 dollars,
our taxi passenger accepts to share her trip with the bus passenger. Therefore, the bus
passenger could arrive at this destination at 7:46, saving around 14 minutes. To save that
time, he should pay 21 dollars.

If both passengers and the taxi driver accept the ridesharing, the system recompu-
tes the route of the taxi driver passing by a bus station to get the additional passenger. If
the bus passenger arrives before the taxi at the station of integration, he should wait to
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pick-up. If the taxi arrives first, he should wait as well, but that waiting time is charged
to passengers. In this example, the bus passenger disembarks at 7:28 and picks-up on
the taxi at 7:30. The shared route is from the pick-up of the bus passenger to the drop-
off of the passenger with the nearest destination. At this example, the taxi passenger
drops-off first, at 7:37, and the bus passenger drops-off last, at 7:46. At this time the trip
ends and the system charges the trip fees for both passengers and pays the taxi driver
proportionally.

Given that example, in the next chapter, we evaluate our mechanism in the scenario
of New York City using a dataset of real trips and generating synthetic trips derived from
real ones.



34

Capítulo 4

Evaluation

In this chapter, we present our evaluation of the proposed TM-Sharing mechanism. We
start by introducing the key aspects of our evaluation methodology in Section 4.1, notably
the datasets used. Next, we present a temporal and spatial characterization of the trips
in our dataset in Section 4.2. We show the results of the evaluation of each component
of the proposed mechanism in the following sections.

4.1 Evaluation Methodology

In this section, we discuss the methodology adopted to evaluate the TM-Sharing
mechanism. We present the datasets used in our study (Section 4.1.1), describe how we
estimate the route taken by a given trip (Section 4.1.2) and how we compute the price of
the shared trip (Section 4.1.3).

4.1.1 Datasets

We validated our method on real and synthetic datasets. The real dataset is built
from a survey with passengers who traveled by different transportation modes during the
same time at a given metropolitan area, i.e., New York City1. We used this dataset as the
basis to assess the benefit of our proposal. We also used it to generate synthetic datasets
aiming at assessing how the number of potential trip integrations increases as the number
of taxi trips grows. In the following, we first give an overview of the survey dataset
(Section 4.1.1.1) and then describe how we generate synthetic datasets (Section 4.1.1.2)).

1http://web.mta.info/mta/planning/data-nyc-travel.html
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4.1.1.1 Survey Dataset

Our survey dataset is from the 2008 New York City Customer Travel Survey com-
missioned by the Metropolitan Transportation Authority (MTA). The survey method
was to call by phone and mail NYC residents to ask them characteristics, such as origin,
destination, modes, and the purpose of their previous day trips. This survey aimed to
understand the travel patterns of New York City residents and to guide improvements on
the transportation system. This survey collected 42,900 trips from 16,186 residents from
May to November 2008. Out of all trips, 30,743 used some type of mass transportation
service (mass transportation and taxi) as shown in Table 4.12.

Tabela 4.1: Survey dataset: Number of trips per mass transportation service.

Mode Number of Trips

Subway 16,453
Bus 8,301
Subway + Bus 4,093
Taxi, car/van service 1,896

In our study, we focus on trips by mass transportation and taxi services only.
Subway and buses are the most commonly used mass transportation services in the city.
Indeed, trips by either bus or subway or by both modes (subway+bus) comprise the
majority of all collected trips (94%). In contrast, taxi-related services correspond to a
small part of the trips in our survey data, only 6%.

Each trip record has 136 variables, including census tract codes of origin and
destination, mode traveled, date and time of departure and arrival at destination. We
estimated the latitude and longitude of each origin and destination location as the centroid
of its census tract.

4.1.1.2 Synthetic Datasets

In addition to using the real survey data, we also built synthetic datasets by artifi-
cially inflating the number of taxi trips, aiming at assessing how such inflation impacts the
number of viable integrations. That scenario portrays the case when there are more trips
made by different individual transport services. To keep the general mobility patterns

2The table does not account for trips using private vehicles.
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observed in the real dataset, we inflated the number of taxi trips by simply replacing each
taxi trip in the original data (real trip) by n new synthetic trips with the same spatial
attributes (same origin and same destination) but slightly different departure times. Spe-
cifically, we replaced a real trip starting at time t by n other trips with departure time
uniformly distributed in the period [t − δ; t + δ]. Then, we recomputed the destination
arrival time of each synthetic trip using the OTP mechanism (Section 4.1.2). Such an
approach mimics scenarios where the number of taxi passengers moving from place A to
place B inflates by a factor of n, and each such passenger departs at around the same
time (controlled by window 2δ), but not exactly the same.

Tabela 4.2: Synthetic Trips.

Name n δ Total

5x_10min 5 10 9, 480
5x_20min 5 20 9, 480
10x_10min 10 10 18, 960
10x_20min 10 20 18, 960

As shown in Table 4.2, we built four synthetic datasets by varying n equal to 5
or 10 and by taking δ equal to 10 or 20 minutes. The total numbers of taxi trips in the
synthetic datasets increased to 9,480 and 18,960 for n equal to 10 and 20, respectively.

4.1.2 Trip Routing

Only the origin and destination locations of each trip are available in our datasets.
Yet, we need to estimate the complete route, with intermediate points on the way, to
identify potential candidates for integration. To do so, we used the OpenTripPlanner ser-
vice3 which helps passengers planning their trips by offering itineraries that may combine
transit, pedestrian, bicycle and private car segments (but no taxi services). OpenTrip-
Planner computes the best route based on a map of the metropolitan area extracted from
OpenStreetMap4 and the timetable of mass transportation extracted from General Transit
Feed Specification (GTFS) files provided by metropolitan transport agencies (e.g. MTA).
Figure 4.1 shows an example of a route computed by OpenTripPlaner (OTP). Note that
it receives as input the latitude and longitude coordinates of the start and end points as
well as departure time.

3http://www.opentripplanner.org/
4https://www.openstreetmap.org
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Figura 4.1: Graphical result of a transit route computed by OpenTripPlanner.

OTP was used to compute both taxi and mass transportation trip routes. To
compute a route we need to inform the origin and destination positions, date and time of
origin and which are the travel modes. The result is composed of a sequence of positions,
time and mode. The last position and time are the destination and the arrival time,
respectively. The OTP framework computes the best mass transportation route with the
fewest integrations. From all possible routes OTP returns, we always choose the fastest
one. OTP does not compute the integrated route (taxi and mass transportation) on the
same route. To do that we need to compute separately one route for the taxi (car) trip
and the other for the mass transportation mode. Then, the result is combined in one
integrated route.

Default parameters of OTP were used to compute trip routes. Specifically, mass
transportation routes were computed considering passengers’ walking distances as short
as possible, as few line integrations as possible, and fastest travel time. OTP implements
several heuristics to determine the routes, thus they are not guaranteed to be always
optimal. From departure time, mode of transportation, origin and destination positions
OTP computes the entire route with its intermediate positions and estimated timestamp.
Moreover, traffic congestion was not considered in the route calculation.

Initially, the detailed routes for all taxi trips are computed to identify all potential
points of integration with mass transportation lines. Once matching is determined, OTP
is also used to compute the shared route. For a fair comparison, we use OTP to estimate
trip route and duration and, from that result, we compute the price (see next section) for
all individual and shared taxi trips.
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4.1.3 Trip Pricing

In general, mass transportation has a fixed price per trip while taxi service costs
vary according to distance and duration of the trip. Thus, we here describe how we com-
pute taxi trip costs. Our approach is based on the NYC Taxi and Limousine Commission
(TLC) policies5, presented in the table 4.3.

Tabela 4.3: NYC taxi pricing.

Description Cost

Initial Charge $2.50
MTA State Surcharge $0.50
Rate per Mile $2.50
Rate per Minute Stopped $0.40
Peak Hours $1.00
Night Surcharge $0.50

Initially, a minimum amount is charged per trip, $2.50, added to a State Surcharge
of $0.50 for all trips that end in New York City and nearby. Once the trip starts, there
is a charge of $2.50 per mile as well as a $0.40 per minute the vehicle is stopped in slow
traffic. In peak hours, from 4 pm to 8 pm, there is a surcharge of $1.00. Finally, from 8
pm to 6 am, there is a night surcharge of $0.50. These rules were used to compute the
prices of individual trips and used as a reference for computing the taxi sharing prices
(described in Section 3.3).

To compute the amount paid by public transport passengers in the integrated trip
we do not consider the ticket costs for the following reasons. To have integration, mass
transportation passengers must be onboard a public vehicle. Thus, they have already paid
for the ticket. We consider that the transfer between transit modes is costless. Therefore,
we only consider the additional costs they would be charged to join the shared taxi ride.

4.2 Characterization of Trips

In this section, we present a characterization of the trips in our dataset, empha-
sizing differences across transportation modes. We aim to provide an overview of the
data used in the evaluation of our approach, which can be considered representative of

5http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml



4.2. Characterization of Trips 39

human mobility in a large metropolitan area. We analyze trip durations on the route
and walking distances, as well as spatiotemporal distributions of origin and destination
locations. We believe that this analysis can offer insights into opportunities to improve
the transportation system as a whole. Specifically, we here search for opportunities for
mode integration.

As mentioned, we focus on trips by bus and subway (combined or in isolation) as
mass transportation trips, and we refer to trips by van, private car, and taxi services simply
as taxi trips. We start by analyzing the distributions of trip durations. Figure 4.2 shows
the cumulative distributions of trip durations for each aforementioned transportation
mode. This figure shows distributions for durations informed by passengers, as captured in
our dataset, as well as durations computed by running OTP with the origin and destination
informed in the dataset.
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(b) Computed Durations.

Figura 4.2: Trip durations by different modes.

As expected, Figure 4.2 shows that trips made by taxi services, serving a individual
itinerary, tend to be faster than those made by mass transportation modes, which have
more general, predefined routes. Moreover, mass transportation passengers often need to
walk to the nearest line stop and wait for the vehicle of their preferred line to arrive. As
the passenger takes multiple lines, trip duration may increase accordingly.

As shown in Figure 4.2, computed durations, in general, tend to be faster than
informed ones. While the most time-consuming trip in Figure 4.2a took six hours, in
Figure 4.2b the slowest one lasted for about two hours. Computed trips consider ideal
conditions, delays caused by traffic and unforeseen events are not considered. Yet, we
note that durations informed by passengers may not be accurate either, as they may vary
depending on memory and perception of each passenger. Despite the large differences
between informed and computed durations, for all transportation modes considered, the
relative order of the distributions remains mostly the same, except for trips that combine
subway and bus, which tend to be the slowest ones, if we rely on informed durations, but,
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according to computed durations, tend to be faster than trips by subway only.
In addition to duration, we also analyze the distance covered by each trip. To that

end, we compute the shortest distance (based on a straight line) between the origin and
destination of each trip. Figure 4.3 shows the distributions of these distances.
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Figura 4.3: Distributions of computed straight line distances per mode.

As shown in Figure 4.3, trips by taxi and buses tend to have shorter distances,
with very similar distributions. This observation can be justified by a general trend of
passengers to take the subway (only or combined with buses) to cover longer distances.
Subways avoid traffic and tend to be faster than buses while also cheaper than taxis, being
thus a good alternative for such long trips.

We also analyze the walking distances the mass transportation passengers must
cover to reach the stations nearest to their origin and destination. Figure 4.4 shows these
distributions for the three mass transportation modes. We note that passengers tend to
walk somewhat shorter distances when taking the buses. This may reflect the case that,
in New York City, bus stops are often closer to origins and destinations of passengers
than subway stations, despite the very long subway network available in the city. We
note however that there are exceptions as the walking distances reach as long as 5 km
when passengers traveled by bus mode.

In New York City bus stations are closer to the origins and destinations of pas-
sengers than subway ones. This result shows that passengers tend to walk less opting to
travel by bus then when traveling by subway. Despite having a large subway network,
bus infrastructure is easy to be accessed. Passengers that combined bus and subway on
the same trip had intermediate walking distances.

Next, we analyze the temporal and spatial distributions of the demand for transpor-
tation services through several hours of the day and different regions of the metropolitan
area. Figure 4.5 shows the hourly demand for different transportation services, i.e., for
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Figura 4.4: Walking distances to access mass transportation modes.

each hour of the day and each transportation mode, it presents the average percentage of
the daily trips (by that particular mode) that initiated (boarding time) sometime during
that hour. According to the figure, for all four transportation modes, the trips present
peaks early morning and late afternoon, most probably reflecting patterns of passengers
commuting to work and back home. Note that peaks by taxi tend to be somewhat later,
possibly due to the shorter durations. However, we note that, unlike trips by subway
(only subway or jointly with a bus), the demands for taxi and bus services tend to remain
high, with some variation, throughout the day, dropping at the evening (for taxis, the
drop occurs much later in the evening).

Figura 4.5: Modes demand per hour of day.

The spatial distribution of origins and destinations enables us to identify regions
of greater and smaller demand. Figure 4.6 shows how origin and destination positions are
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distributed in New York City for mass transportation and taxi trips. The map of NYC
was divided into PUMAs (Public Use Microdata Areas) which are regions marked by The
United States Census Bureau to provide statistics and demographic information. Each
PUMA was designed to contain one hundred thousand people.

(a) Mass transportation origins. (b) Taxi origins.

(c) Mass transportation destinations. (d) Taxi destinations

Figura 4.6: Spatial distributions of mass transportation and taxi passengers origins and
destinations.

Figures 4.6a and 4.6c present the spatial distribution of mass transportation pas-
senger origins and destinations. Similarly, the distributions of taxi passenger pick-ups and
drop-offs are shown in Figures 4.6b and 4.6d, respectively. For each transportation mode,
the regions with more concentration of origins and destinations coincide. This suggests
that passengers tend to use the same model both ways. Moreover, we observe much simi-
larity in the distributions for mass transportation and taxi passengers, which may reflect
characteristics of the demography in different regions of the metropolitan area (e.g., the
greater concentration of population in Manhattan).

In sum, our characterization suggests that the integration of mass transportation
and taxi services is a viable and effective alternative in New York City as, despite differen-
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ces, the trips made by both models often overlap, both in time and space. By matching
similar trips we may be able to offer a service that combines the benefits while softening
the drawbacks of each modal. The design of TM-Sharing was driven by that goal. In
the following sections, we present the main results of the evaluation of each step of the
method to show that it indeed can be effective.

4.3 Spatiotemporal Matching

Having analyzed the characteristics of our dataset, we now turn to the evaluation
of our TM-Sharing method, performed by applying it to the analyzed dataset. We aim at
integrating mass transportation trips (i.e., subway or bus trips) with taxi trips (i.e., van,
private car, and taxi services). In this section, we focus on the first step of our method,
i.e., the spatiotemporal matching of candidate trips.

Recall that to integrate a pair of trips we need to match those that benefit both taxi
and transit passengers. Initially, we consider spatial and temporal attributes, and then
economic aspects. As the input of the Spatiotemporal Matching Algorithm (Algorithm 1),
we selected trips computed by OpenTripPlanner including their intermediate positions.
Additionally, we considered the parameter d as the maximum detour acceptable to the taxi
driver get the mass transportation passengers. We assume d = 3km (euclidean distance)
to reduce the search space and eliminate possible unfeasible matchings.

The goal of this first step is to find pairs of candidate trips whose integration
benefit mass transportation passengers, i.e., they can save trip time. Later those trips
will be filtered out to keep only those that also benefit the taxi passenger. We focused
our analysis only on the perspective of passengers, ensuring that the driver will not have
a financial loss. Therefore, given a mass transportation trip, there may be multiple taxi
trips that can be integrated, as there may be multiple mass transportation stops where
the integration could take place. Similarly, a given taxi trip may have with multiple mass
transportation trips options to integrate.

Figure 4.7 shows the number of possibilities for integration in terms of trips (Fi-
gure 4.7a) and stations (Figure 4.7b). Figure 4.7a, in particular, shows the cumulative
distribution of the number of candidate taxi trips that could be integrated to each mass
transportation passenger (blue curve), as well as the distribution of the number of mass
transportation trips that could be integrated to each available taxi trip (orange curve).
Figure 4.7b shows, for each candidate match, the cumulative distribution of the number
of possible mass transportation stop positions (blue curve) where the integration can take
place and the possible taxi trip positions (orange curve) where the trip can deviate from
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the individual route to the shared route.
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Figura 4.7: Possibilities of integration.

Figure 4.7a shows in blue the cumulative distribution of candidate taxi trips that
could attend a transit passenger, and in orange are the number of transit trips that could
attend a taxi passenger integration request. In total, there are 10,173 possible integrations,
built from 324 unique taxi trips and 673 unique transit trips. As Figure 4.7a shows, for
around 60% of the taxi trips, there is more than one integration option, and for around
20% of them, there are more than five options. In contrast, for almost 70% of the mass
transportation trips no integration option is available in the dataset, that is, there is no
taxi trip available that could meet the criteria for integration. This result reflects the
natural asymmetry of mass transportation trips regarding the number of taxi trips.

Differently, Figure 4.7b present the cumulative distribution of integration position
options given pairs of candidate trips. Taxi positions are those where passengers would
be when they accept the integration requisition, from there they will deviate from the
original route and get additional transit passengers. To speed up the computation we
considered the minimum distance of five hundred meters between each position. Transit
positions are stations where the chosen vehicle stops and the passenger could disembark
and wait to pick-up a shared taxi. Results show that more than 80% of taxi trips have
more than one position where the integration could begin while for transit trips these
options are in 70% of all trips.
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4.4 Maximum Benefit Matching and Pricing

We now turn to the analysis of possibilities of integration from the perspective
of the taxi passenger. Starting with the candidate integrations identified in the previous
section, we now filter them into only those that benefit the taxi passenger, i.e., we identify
the viable integrations from the perspective of both parties. The main incentive for taxi
passengers to share their trip is saving money. Thus, we propose two pricing policies
where the shared trip cost is proportionally divided between mass transportation and
taxi passengers.

Our first pricing policy is based on the segments of the trip. The total cost of
the shared trip is divided in three parts: (i) initial cost, which is the initial charge; (ii)
integration cost, which is the cost of traveling from the location where the taxi passenger
accepted the integration to the mass transportation station pick-up; and (iii) sharing cost,
which is the cost of shared trip from mass transportation passenger pick-up on the shared
taxi until the first passenger drops off. We assume that these costs can be either equally
divided between both passengers or paid in a great proportion by mass transportation
passengers, as the latter aims to save time.

To evaluate the segmented policy, we consider different values of parameters sinitial,
sdetour, and sshared, which represent the factors applied to split the cost of each shared
segment (see Section 3.3). A value equal to 0.5 implies that the corresponding cost is
equally divided into both passengers, whereas larger values represent the fraction of the
cost imposed on the mass transportation passenger. We consider 5 different scenarios, as
shown in the x-axis of Figure 4.8 which shows the numbers of distinct mass transportation,
taxis and viable taxi-mass transportation integrations per pricing scheme.

We designed scenarios where either the cost of a segment is equally shared by both
passengers or entirely paid by the mass transportation passengers, to analyze the impact
of the splitting factors in extreme cases. There are in total eight different scenarios, but we
considered that the shared segment of the trip should be split between those passengers,
except in the extreme case where they would pay for the entire trip. Focusing on the
five remaining possibilities it can be seen that the number of viable integrations increases
when mass transportation passengers pay more for the shared trip. This is because the
larger the share paid by the mass transportation passengers, the larger the chance of the
taxi passenger also benefiting (financially) from the integration. Thus, the number of
integration options increases as only those that benefit both parties are considered viable.

We now analyze the benefit each passenger received for each pricing division
scheme. Figure 4.9 shows the cumulative distributions of the total amount of money
saved by the taxi passenger (Figure 4.9a) and the total amount of time saved by the mass
transportation passenger (Figure 4.9b) for each scheme. In both figures the x axis cannot
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Figura 4.8: Distinct trips varying payment policies.

assume negative values (orig > new) because Algorithm 2 allows only integrations with
money saving for taxi passengers and time saving for mass transportation ones.

Figure 4.9a shows that the greater the portion paid by the mass transportation
passenger, the greater the taxi passenger savings, as expected. When mass transporta-
tion passengers pay half of the initial charge and half of the shared portion of the trip
(s_initial = 0.5, s_detour = 0.5, s_shared = 0.5), in about 75% of all trips the taxi
passengers save up to 40% in the total cost of their trips. If the mass transportation
passenger pays for the whole shared trip, taxi passengers save at least 40% of the trip
(s_initial = 1, s_detour = 1, s_shared = 1), which happens in 65% of all integrated
trips.
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(a) Taxi passenger saving money.
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Figura 4.9: Pricing divisions (s_initial, s_detour, s_shared).

Figure 4.9b presents the cumulative distribution of the amount of time the mass
transportation passenger saves for different pricing divisions. It can be seen that the
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proportion paid by the passengers does not affect substantially their time savings. In
general, in 40% of the shared trips, mass transportation passengers save at least 20% of
their trip time.

In the second pricing policy, the mass transportation passenger pays proportionally
to the taxi passenger’s extra delay. This value is computed considering the extra time
incurred in the taxi passengers’ trip when they opt to integrate their trip (see Section 3.3).
Thus, the longer the trip delay, the greater the discount in the value paid by the taxi
passenger in the integrated trip.

In Figure 4.10 we compare the proportional pricing policy with the segmented
one. In the segmented pricing, we consider the division where transit passenger pays
entirely for the initial cost, the detour, and the shared segment is divided equally to mass
transportation and taxi passenger (s_initial = 1, s_detour = 0.5, s_shared = 0.5).
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(a) Taxi passenger saving money.
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(b) Mass transportation passenger saving time.

Figura 4.10: Segmented and proportional pricing policies.

Figures 4.10a and 4.10b present the cumulative distribution function of taxi saving
money and mass transportation saving time for the segmented and proportional pricing
policies. These results show that although the way to compute the integrated trip is
different, one based on trip segments and the other proportional to the taxi passenger’s
extra time, the curves show similar behaviors. Figure 4.10a shows that for both policies
in 30% of matchings taxi passengers save about 20% for integrating their trip. Observing
90% of the integrated trips, while in the segmented pricing policy the saved amount
is about 60%, in the proportional pricing, this amount grows to around 80% savings.
Figure 4.10b shows that no significant difference can be observed in the time savings for
mass transportation passengers when the policies vary.

To show the difference between segmented and proportional policies, we computed
the function that represents the gain of mass transportation and taxi passengers in each
policy and compared them. Thus, from the first policy we generated Figures 4.11a and
4.11b, and from the proportional policy Figures 4.11c and 4.11d.
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(a) Segmented Pricing: mass transportation pas-
senger trips. y = 1.87x+ 3.39
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(b) Segmented Pricing: taxi passenger trips.
y = 0.54x+ 0.54
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(c) Proportional Pricing: mass transportation
passenger trips. y = 3.09x− 0.49
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(d) Proportional Pricing: taxi passenger trips.
y = 1.41x− 7.18

Figura 4.11: Max Benefit for Segmented and Proportional Pricing Policies.

In these figures, each blue dot represents a pair of trips that could be integrated
generating the maximum benefit for both taxi and mass transportation passengers. The
red line is the tendency curve, which the function that describes it is in the respective
label. Figures 4.11a and 4.11c present the perspective of mass transportation passengers,
where x-axis are the saving time and y-axis the extra cost paid to integrate their trip with
a taxi passenger. On the other hand, Figures 4.11b and 4.11d present the perspective of
taxi passengers, where the x-axis is the extra time and y-axis represents how much money
taxi passengers save to share their trips with mass transportation ones.

Considering the mass transportation perspective, in the segmented pricing policy,
Figure 4.11a, mass transportation passengers pay more for saved time than in the pro-
portional pricing policy (Figure 4.11c). For instance, saving ten minutes in segmented
pricing, public passengers should pay about 22.09 dollars while in proportional pricing
they should pay about 33.41 dollars. In the taxi passenger’s perspective, the proporti-
onal policy pricing (Figure 4.11d), generates more savings than the segmented one (Fi-
gure 4.11b). Considering an extra time of ten minutes in the taxi passenger’s trip, they



4.5. Maximum Benefit and Synthetic Trips 49

save about 6,92 dollars in the proportional pricing policy and in the segmented one they
save 5.94 dollars.

In both policies, the amount paid by public passengers is considerably more than
the amount saved by taxi passengers. That asymmetry is due to the detour of the integra-
ted trip that is charged mostly to the mass transportation passengers. In the segmented
pricing, they pay entirely the initial cost of a taxi trip plus a half of the detour route
to get them. In the proportional pricing, the public passenger should pay proportionally
to the delay in the taxi passenger’s route. Furthermore, if mass transportation passen-
ger drops-off after the taxi one, they should pay fully entirely for the segment between
drop-offs.

4.5 Maximum Benefit and Synthetic Trips

Naturally, more people are traveling by mass transportation modes than by taxi
(as seen in Table 4.1). Then, we inflated the taxi dataset to analyze how the number
of viable integrations increases when the taxi offer is greater (see Section 4.1.1.2). Thus,
integrations were recomputed considering that synthetic taxis picked up passengers at
the same place as the real ones but at different moments. To reduce the search space
of potential integrations we matched trips that the shortest distance between them is at
most three kilometers (d = 3, 000 in Algorithm 3). Both pricing policies were considered,
the one that is based on route segments (s_initial = 1, s_detour = 0.5, s_shared = 0.5)
and the other that is proportional to the delays incurred in the route of taxi passengers.
Figure 4.12 shows results of this analysis.

Results show that the segmented pricing policy generates more viable integrations
than delay proportional ones. The increase in available taxis generates more possible
integrations, as well. When the number of available taxi increases five times (n = 5),
the number of viable integrations increases around two times. And when the increase is
ten times (n = 10) of the number of available taxis integrations grows up to three times.
Additionally, the variation of synthetic trips pick-up time t considerably affects the number
of potential integrations. In both policies, when the range goes from ten minutes (δ = 10)
to twenty minutes (δ = 20) around the original pick up time, integrations grow around
40%.

Varying two parameters, n and δ, we can conclude that the increase of pick-up
time window δ generates more viable integrations than the increase of available trips n.
In the dataset 5x_10min (n = 5 and δ = 10) the number of viable integrations in the
segmented policy is 570. When we double the number of trips and keep the time interval,
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Figura 4.12: Max benefit and synthetic datasets.

dataset 10x_10min, the number of integrations increases to 664 (16%). Keeping n = 5

and increasing the window time to δ = 20, dataset 5x_20min, the number of integrations
increases to 800 (40%). Therefore, in a scenario where there are more available individual
trips, the chances of viable matches increases significantly.
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Capítulo 5

Conclusion

In large urban centers, the metropolitan transportation network is composed of diffe-
rent means that enable passengers to commute and move around for different purposes.
However, there are unexplored options for transportation that could integrate existing
transport modes to offer cheaper and fast trips for passengers. The mass transportation
system, for example, is composed of different modes, such as subway, train, and bus that
integrate with each other but do not communicate with existing private car services such
as taxi. Therefore, we evaluate a mechanism that integrates taxi with mass transporta-
tion modes in such a way that taxi passengers share their trip with mass transportation
ones and both passengers benefit someway. In the proposed integration strategy, mass
transportation passengers save time, while taxi passengers save money if they opt to share
their trip. Furthermore, to save time passengers coming from the mass transport system
should pay a little more and taxi passengers should accept some delays in their trip to
save money.

To evaluate our proposal of integration, we analyzed real data from an origin-
destination survey on residents of New York City. The survey collected trip characteris-
tics such as the origin and destination, date time of origin, and the transportation mode
used by interviewed residents in the day before the survey. From this data, we recons-
tructed all passenger trip routes using the Open Trip Planner framework. Then, from all
passenger trips composed of the complete route with intermediate trip positions and the
mass transportation stops, we characterized trip data considering temporal and spatial
aspects to understand the specificity of each transport modal. Results show that trips
made by taxi and mass transportation modes often overlap in time and space, suggesting
that route sharing is a viable alternative.

Then, we propose the TM-Sharing mechanism that integrates mass transportation
with ridesharing. In the service, passengers that are initially in a mass vehicle can request
a shared taxi trip using their smartphone. If there is a match, the system computes the
shared route and request the passenger to disembark in a station and pick-up in a shared
taxi. To evaluate the viability of that alternative of transport, we designed an algorithm
that computes the integrated trips considering temporal and economic aspects. The TM-
Sharing algorithm is composed by three functions: ST-Matching, Viability-Filtering and
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Maximum-Benefit. First, ST-Matching selects pairs of trips that could be integrated con-
sidering temporal and tpatial aspects. Second, Viability-Filtering selects those pairs that
are economically viable. Third, Maximum-Benefit selects those pairs of trips with maxi-
mum benefit, as well as, the best integration station considering temporal and economic
aspects.

To be viable, an integrated transport system should have a fair pricing scheme.
Thus, we propose two different strategies to compute the fare of TM-Sharing. One is based
on the segment of the integrated trip, and the other on the taxi passenger trip delay. In the
segment-based policy, we divided the integrated trip cost into three parts: s_initial (the
taxi initial charge), s_detour (cost of the deviation to get the passenger), and s_shared

(cost of the shared portion of the route), the cost of each part was divided among mass
transport and taxi passengers. In the second pricing policy, the amount of the integrated
trip paid by the mass transport passenger is proportional to the delay in the taxi passenger
trip. The results of this pricing comparison show that the segment-based policy generates
21% more viable trips than the proportional one. In the segmented policy to save ten
minutes in their trip, the mass passenger should pay on average $22.09 while the taxi
passenger saves $5.94. In the proportional policy, to save ten minutes passengers from
mass transportation pay $30.41, while taxi passengers save $6.92. In sum, the segmented
policy showed to be more viable because it charges less mass transportation passengers
and generates more opportunities of integration.

Finally, we generated four synthetic datasets based on the real one by increasing the
number of available taxi trips to evaluate how the increase of taxi trips and its temporal
aspects would impact in the number of viable integrations. For each real taxi trip, we
generate other n trips with the same spatial aspects and varying the pick-up time around
a time window of t minutes. Results show that longer values of t generates more viable
integrations than the increase of the number of trips (n). Considering the segmented
pricing policy, when n = 5 and we increase the value of t from 10 to 20 minutes the
number of viable integrations increases by 40%. When we keep t = 10 and vary n from 5
to 10 times, the number of viable trips increases by only 16%.

In this work, we explore the trade-off of time and money and we suppose that
mass transportation passengers would like to save money while individual transport ones
would like to save money, which is not always true. There are other different trade-offs
that could be explored like comfort and money and, comfort and time. Additionally,
the results of this work cannot be generalized to other cities, New York is a large city
that is almost entirely covered by the subway network, which is complemented by the
bus mode. Understand the local passenger’s behavior and the geography of the city is
crucial to the design of an integrated and shared transportation system. Furthermore, the
success of such a transportation system depends on the ability to schedule different modes
and adapting to adversities like user cancellations, traffic delays, and unavailability of the
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Internet. However, an integrated system that includes other different modes like bikes,
motorcycles, private and autonomous vehicles could make the transport of large cities
more efficient and adaptable, but the complexity of such a system increases substantially.
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