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Resumo

Dados estruturados em formato de grafos têm se tornado cada vez mais disponíveis, e dev-

ido à sua ubiquidade, têm se tornado objeto de estudo em várias áreas de pesquisa. Dada a

ausência da noção de sequência entre elementos em um grafo, algoritmos de Aprendizado

de Máquina (ML, em inglês) têm historicamente enfrentado diőculdades em trabalhar

com este tipo de dados. Métodos especializados para grafos têm ganhado atenção da co-

munidade de pesquisa recentemente, especialmente as Redes Neurais para Grafos (GNNs,

em inglês), que têm sido extensivamente utilizadas em dados reais, alcançando resultados

estado-da-arte em tarefas como projeto de circuitos, recomendação de őlmes e detecção

de anomalias.

Uma gama de modelos de GNN foi proposta recentemente, e escolher o melhor

modelo para cada tarefa tem se tornado uma tarefa complicada e propensa a erros. Obje-

tivando mitigar este problema, trabalhos recentes têm investigado estratégias para aplicar

Busca de Arquitetura Neurais (NAS, em inglês) - um conjunto de métodos projetados para

automaticamente conőgurar redes neurais, que têm obtido muito sucesso em Redes Neu-

rais Convolucionais (CNNs, em inglês), que lidam com imagens - para modelos de GNN.

GNNs automaticamente conőguradas têm alcançado bons resultados em performance, su-

perando redes conőguradas por humanos. Porém, a literatura de NAS para GNNs ainda

está em seus estágios iniciais, e métodos que foram aplicados com sucesso para NAS em

CNNs, ainda não foram testados para GNNs.

O foco deste trabalho é conduzir uma análise comparativa compreensiva de um

Algoritmo Evolucionario proposto, contra um algoritmo de Aprendizado por Reforço da

literatura, e uma Busca Aleatória como baseline, considerando 7 datasets reais, e dois es-

paços de busca. É demonstrado que a Busca Aleatória é tão efetiva quanto outros métodos

mais complexos, em encontrar boas arquiteturas de GNN. Outro achado interessante é de

que todos os três métodos convergem bem cedo na busca (utilizando aproximadamente

10% da cota). A hipótese é de que isto acontece devido à presença de Neutralidade no

espaço (regiões do espaço em que todas as soluções tem valores de performance parecidas).

Em uma segunda etapa do trabalho, o foco é em conduzir uma avaliação visual e

analítica extensa de um dos espaços de busca da literatura, usando técnicas de redução

de dimensionalidade e Fitness Landscape Analysis (FLA). É demonstrado que o espaço

de busca para NAS em GNNs apresenta grande łBuscabilidadež (i.e. não é difícil para

algoritmos explorar o espaço e encontrar boas soluções) e łNeutralidadež (i.e. existem

várias regiões do espaço em que a performance de soluções vizinhas é relativamente igual).



A hipótese é de que, no futuro, métodos menos computacionalmente custosos possam ser

empregados para esta tarefa sem perda de generalidade.

Palavras-chave: Redes Neurais em Grafos, Aprendizado de Máquina Automatizado,

Busca de Arquiteturas Neurais.



Abstract

Graph-structured data has become increasingly available and, due to its ubiquity, an

object of study in many areas of research. Due to the absence of the notion of sequence in

graphs, Machine Learning (ML) methods have historically struggled to work on this data.

Specialized methods for performing ML over graph data have gained a lot of attention

from the research community, specially Graph Neural Networks (GNNs), which have been

extensively used over real-world data, achieving state-of-the-art results in tasks such as

circuit design, movie recommendation and anomaly detection.

Many GNN models have been recently proposed, and choosing the best model

for each problem has become a cumbersome and error-prone task. Aiming at mitigat-

ing this problem, recent works have proposed strategies for applying Neural Architecture

Search (NAS) - a set of methods designed to automatically conőgure neural networks,

very successful on Convolutional Neural Networks, that deal with image data - to GNN

models. Automatically conőgured GNNs have achieved high performance results, sur-

passing human-crafted ones. However, the NAS for GNNs literature is still at its early

stages and methods that have been successfully applied for NAS in CNNs have yet to be

tested on GNNs as well.

In this work we have conducted a comprehensive comparative analysis of a proposed

Evolutionary Algorithm against a literature Reinforcement Learning and a simple Random

Search baseline, considering 7 real-world datasets and two search spaces. We have shown

that Random Search is just as effective on őnding good performing architectures as other

more complex methods. Another interesting őnding is that all three search methods

converge very early in the search (in about 10% of the budget). We hypothesized that

this might have been happening due to the presence of Neutrality (regions in which all

solutions have very similar performance values) in the search space.

Shifting the focus from the őrst part of this work, in the second part we have

conducted an extensive visual and analytical evaluation of one of the literature’s search

spaces, using dimensionality reduction and Fitness Landscape Analysis techniques. We

have demonstrated that the search space for NAS in GNNs presents high searchability (i.e.

it is not difficult for algorithms to explore and őnd a suitable solution) and neutrality (i.e.

there are many regions in the search space in which the performance of the neighboring

solutions are relatively equal). We hypothesize that in the future, less expensive methods

can be used to perform the optimization in this scenario without loss of generality.



Keywords: Graph Neural Networks, Automated Machine Learning, Neural Architecture

Search.
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Chapter 1

Introduction

Graph structured data occurs naturally on several areas of research, and considering the

large ŕow of data we are experiencing nowadays, performing analytical tasks over this type

of data has become increasingly more interesting. Machine learning methods specialized

on graphs have been used in several applications, including health science [15], electronics

(in circuit design) [79], chemistry (in molecular structure generation) [77], network science

[43, 82], and recommender systems [80].

Unlike images (formed by a grid of pixels) and sentences (formed by a string of

ordered words), there is no notion of sequence in graphs. Nodes (and edges) follow no

absolute order, so it is hard for traditional machine learning (ML) algorithms, which

were built to handle data stored in tensors, to recognize a pattern and generalize their

predictions on this type of data [81].

Works in the őeld of machine learning on graphs (MLG) aim at solving this prob-

lem. Seminal methods on MLG focused on őnding low-dimensional vectors which effi-

ciently encoded the relationship between nodes in order to maximize the efficacy of a

subsequently applied ML algorithm (e.g. logistic regression) for the downstream predic-

tion task [27]. These low dimensional vectors were generated using node embeddings

(NE).

The őrst methods for NE were based on matrix factorization and dimensionality

reduction [67, 6, 34], but due to the high complexity of this process and the success of

word2vec with Skip-Gram [50] ś which is based on a neural network for word embedding,

NE algorithms shifted their focus. They started using personalized random walks to őnd

node sequences, which were then given as input to a single-layer fully-connected feed-

forward neural network following the Skip-gram model. The Skip-Gram model works

by predicting a node given its context (surrounding nodes in the generated sequences)

[54, 24]. The neural network has one neuron for each node, and the neurons weights are

used as dense representations for the nodes at the end of this process.

The next breakthrough in the őeld of MLG came with the success of Graph Con-

volutional Networks (GCN) [37], which followed the deőnition of spectral-based graph

convolution [9] and its later reőnements [16, 4]. GCN is based on a concept deőned years

earlier, named Graph Neural Networks (GNN) [62]. Unlike traditional neural networks,
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where the architecture is composed by fully connected layers of neurons, GNN layers fol-

low the graph structure itself. Forward propagation is done on the nodes, which update

their status repeatedly until convergence. More details on the structure of GNNs are

presented in Chapter 3.

GNNs are currently the state-of-the-art techniques for MLG, and are used in most

real-world applications. After the popularization of the GNN model by GCN [37], a

plethora of models have emerged as alternatives, such as GraphSAGE [28], GAT [73], GIN

[76], GraphSAINT [78], among others. These methods achieve state-of-the-art results on

tasks such as node classiőcation and link prediction. However, they have a large number

of hyper-parameters and their design and optimization is currently either hand-made or

based on heuristics and/or empirical intuition, making this task ineffective and error prone

[76].

Choosing and optimizing a neural network model, in general, is not a simple task.

It requires a high level of expertise from data scientists, and it is still seen by many as

an ad-hoc process. In this direction, the area of Neural Architecture Search (NAS) [18]

appeared as an alternative for automatically testing and tuning a large number of possible

architectures. Composed of three main building blocks: (i) a search space of neural

architecture building blocks; (ii) a search method that deőnes a strategy for exploring

the search space; and (iii) a performance evaluation system for the architectures [18],

NAS techniques have been successfully used for designing and optimizing different types

of networks, with a large focus on Convolutional Neural Networks (CNNs) ś popular

state-of-the-art models designed for dealing with images [85, 58, 61].

Inspired by the success of automated methods for NAS in CNNs, a few works

have proposed strategies for doing the same for GNNs [21, 84, 83]. It has been shown

in the NAS literature (for CNNs) that two main types of methods are the most effective

at solving the NAS problem: Reinforcement Learning (RL) and Evolutionary Algorithms

(EAs) [18]. However, in the context of GNNs, EAs have been so far overlooked.

Regardless of the method of choice, it is known that in order to design effective

meta-heuristics for solving optimization problems ś including hyperparameter tuning ś

a good understanding of the underlying structure of the problem is desirable. In this

sense, Fitness Landscape Analysis (FLA) methods have proved to be very useful for

characterizing and analyzing search spaces [61].

The concept of a őtness landscape was őrst introduced with the goal of charac-

terizing the distribution of őtness values over the space of genotypes in (natural) evolu-

tion, and was later mapped onto a generic framework for optimization problems [75, 47].

In optimization problems, the őtness landscape is deőned by a tuple (S, f, N), where

S is the set of all possible solutions (i.e. the search space), f : S → R is a func-

tion that attributes a real valued performance estimation for each solution in S, and

N(x) is a notion of neighborhood between solutions, usually deőned as a distance metric
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N(x) = {y ∈ S|d(x, y) ≤ ϵ} for a sufficiently small ϵ [56]. Although the FLA deőnition is

generic and may be applied to any search method, it has gained a lot of attention from

the evolutionary computing community.

Following the deőnition of the Fitness Landscape, many methods were proposed

with the goal of deőning a metric that measures the łhardnessž or łeasynessž of speciőc

őtness functions or landscapes [30], which turned out not to be a simple problem [47].

Because of that, a shift has been seen throughout works in the FLA literature to measure

the łevolvabilityž (or the łsearchabilityž) of problems instead of łhardnessž.

Evolvability is formally deőned as a population’s ability of producing offspring őtter

than its parents [1]. In its original formulation, evolvability is heavily tied to the search

method and can be roughly seen as a performance metric for an algorithm rather than a

metric of the landscape. However, some works redeőned this notion, naming łevolvabilityž

the ability of a given search method to move through the search space. Broadening the

focus to a generic search method allows for a redeőnition of the term łevolvabilityž to

łsearchabilityž [47].

Moreover, works in the FLA literature have attempted at investigating speciőc

aspects of search spaces in order to guide the development of search methods that tackle

such aspects, improving results for a certain class of problems [60]. An example of metric

studied in the literature is Neutrality [59], which is deőned as the degree in which solutions

in the search space have similar őtness (evaluation) values. Neutrality can impact the

performance of a search method as it can be misinterpreted as convergence, and cause the

search to be stuck in a local optimum [47]. Identifying neutrality in a search space may

serve as an indicative that gradient-based methods might not perform so well on it, and

more exploratory methods might perform better.

Few works in the literature have applied Fitness Landscape analysis to Automated

Machine Learning (AutoML) problems [22, 55, 61], and to the best of our knowledge, this

work is the őrst to apply such methods to NAS.

1.1 Objective

The main goal of this work is to elaborate on the challenges of developing au-

tomated methods to design and optimize Graph Neural Network models. We split the

investigation into two moments: the őrst focusing on the search methods for NAS and

the second on the characteristics of the search spaces used by these methods.

So far, evolutionary methods have not been explored in the context of GNNs,

regardless of their success in NAS for other types of networks. In particular, the Evolu-
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tionary Algorithm proposed by [58] has been shown to be state-of-the-art in a few NAS

tasks. based on that, our őrst research question is:

RQ1: Do Evolutionary Algorithms [58] achieve better results than Reinforce-

ment Learning when used as an optimizer for NAS in GNNs?

Next, in order to support the results of this őrst question, we use techniques from

FLA to analyze the search space of NAS for GNNs, posed in our second research question:

RQ2: What can be said about the search space of NAS for GNNs, in terms

of łsearchabilityž and neutrality? And how do these characteristics affect the

search methods currently applied to it?

1.2 Contributions

Considering the two research questions presented in the section above, we list our

main contributions as:

1. We perform a comparative study of an Evolutionary Algorithm with a Reinforce-

ment Learning approach in the context of NAS for GNNs. We consider 7 datasets

and two versions of search spaces. We have published a paper at the 9th Brazilian

Conference in Intelligent Systems - BRACIS 2020 [52] with the results from this

investigation.

2. We propose two different ways of representing the GNNs when performing FLA,

one of them based on 2D embeddings of the search space. This approach is new in

this literature, and shows the power of these tools.

3. We investigate the searchability of the evaluated search spaces using three different

FLA metrics, namely Fitness Distance Correlation (FDC) [35], Dispersion [46], and

Neutrality [59]. We have published a paper at the 22nd Genetic and Evolutionary

Computation Conference - GECCO 2021 [51] with the results from this investiga-

tion.
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1.3 Text Organization

This work is structured as follows: In Chapter 2 we present important background

on Graph Neural Networks and Automated Machine Learning, along with a chronological

view of the related work on Neural Architecture Search for GNNs and Fitness Landscape

Analysis. In Chapter 3 we present the methodology proposed in this work, providing

details on the search spaces and methods evaluated in this work. We also discuss the

methodology used to sample and traverse the search space in order to extract useful

measurements by applying FLA methods, and present the techniques we used in order to

visualize the search space. Chapter 4 presents the experiments used to investigate each of

the RQs, and their results. Finally, Chapter 5 presents the discussions and őnal remarks.
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Chapter 2

Background and Related Work

This chapter provides background into the most important concepts used in this work,

including Graph Neural Networks, Automated Machine Learning and Fitness Landscape

Analysis. It also presents and reviews related works on NAS for GNNs and FLA, and

serves as a reference for the notation used in the following chapters.

2.1 Graph Neural Networks

A Graph Neural Network receives as input a dataset in the format of a graph,

composed by a set of nodes and edges, G = (N,E). Each node ni ∈ N is associated with

a feature vector xi ∈ X, and a single class ci ∈ C, which establishes the conőguration for

a supervised node multi-class classiőcation problem. In this work, the graph G is simple,

undirected and unweighted. Other types of GNNs exist, with different purposes, but we

do not cover them in this work. We refer the reader to [26] for more details.

The fundamental idea behind GNNs is that nodes in a graph represent abstract

concepts, and edges represent the relationship between such concepts. Therefore, neigh-

boring nodes’ features should correlate with each other, deőning a state (or hidden node

representation) hi ∈ HN for each node [62]. In a GNN, the graph nodes can be interpreted

as the łneuronsž, since the computation is performed node-wise.

The classical neural network notion of a łlayerž in GNNs is translated into a com-

position of three functions: the őrst aggregates information from the neighborhood N (i)

of each node i, forming an intermediate vector hN (i) (aggregate); the second combines this

intermediate vector with the current node representation hi (combine); and the third is

an activation function (activate) applied over the combined vectors hi and hN (i) [62, 28].

The following equations describe this process:
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h
(k)
N (i) = aggregate(hk−1

j : j ∈ N (i)) (2.1)

h
(k)
i = activate(combine(h

(k−1)
i , h

(k)
N (i)))

where the superscript (k) in Equation 2.1 represents the layer index. The nodes’ feature

vector is conventionally used as the őrst hidden representation, h(0)
i = xi [37].

The name neural message passing was coined to describe the general process of

repeatedly updating a node’s status by exchanging information with its neighborhood

via a linear operation (aggregate and combine) followed by a element-wise non-linearity

(activate)[23]. A GNN łlayerž is, therefore, nothing more than one message-passing iter-

ation over the graph nodes. The idea is that, at layer (k), hi encodes information about

the k-hop neighborhood of node i [26].

A GNN architecture is composed of a combination of layers in the format described

above. In order to illustrate this process, Figure 2.1a presents an example graph contain-

ing 5 nodes. All references to nodes and edges on Figure 2.1 refer to the example graph

in Figure 2.1a. In Figure 2.1b the process described in Equation 2.1 is illustrated, where

a node aggregates the information from its neighborhood, combines it with its own rep-

resentation and applies an activation function on the result, with the example of node

A in the őrst layer (aggregating the initial representation of its neighbors - h
(0)
i - and

combining with its own - h
(0)
A - in order to output the őrst layer hidden representation

h
(1)
A ). In Figure 2.1c, an example of an unrolled GNN with two layers is illustrated. Note

that the number of neurons is dependent of the number of nodes in the graph. Also, the

layers are not fully connected as in traditional MLPs, as the neurons only connect with

the neighbors of the correspondent graph nodes.

One of the most emblematic works on GNN work is GCN (Graph Convolutional

Networks) [37]. Since GCN was introduced, a plethora of similar models have been pro-

posed, such as GraphSAGE [28], GAT (Graph Attention Networks) [73], GIN (Graph

Isomorphism Network) [76]. These methods achieve state-of-the-art results on tasks such

as node classiőcation and link prediction.

2.2 AutoML and Neural Architecture Search

Automated Machine Learning (AutoML) was born in the early 2000s with the

proposal of a guided search method (a Genetic Algorithm) to replace Grid Search on the

Hyperparameter Optimization task for a SVM classiőer [14]. The őrst attempt of build-

ing a complete ML pipeline was made by [19] which devised an approach that selected a
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(c) Expanded GNN built using 2 layers and the example graph of Figure 2.1a.

Figure 2.1: GNN construction, from an example graph.

preprocessing, a feature selection and a classiőcation algorithm while tuning the hyper-

parameters of each method. But the term łAutoMLž itself was only coined in 2009 with

the seminal work of [68].

The AutoML process can be divided into four stages, namely: data preparation,

feature engineering, model generation and model evaluation [31]. The őrst two stages are

data-centered, and focus on performing actions such as Data Augmentation, Data Clean-

ing, Feature Selection, etc. The model generation phase can be sub-divided into search

space and search/optimization methods [31]. The search space is composed of the build-

ing blocks of ML algorithms, and when it consists only of neural network architectures,

instead of traditional ML algorithms (e.g. SVM, Random Forests), the task at hand is

named Neural Architecture Search (NAS). The search method (also hereon referred to as

optimizer) is an optimization algorithm that deőnes a strategy for exploring the search

space [18].

The problem of searching for a neural architecture can be formally deőned as

follows: given a dataset D ś split into training and validation sets Dtrain and Dvalid,

respectively ś and a search space of neural network operators S, capable of generating a

network with architecture a ∈ S with its own set of hyperparameters λ ∈ Λ, the goal is
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to őnd the model that maximizes the expectancy of a prediction metric (e.g. accuracy)

E[A] on Dvalid, when its parameters w∗ are set by minimizing a loss function L on Dtrain,

setting the following bi-level optimization problem:

argmax
aλ∈S,λ∈Λ,w∗

E[A(aλ(w
∗,Dvalid))] (2.2)

s. t. w∗ = argmin
w

L(aλ(w,Dtrain)),

Note that the search method performs the optimization on the top level, where the pre-

diction metric (in this case, accuracy A) is evaluated.

The widespread adoption of deep learning models led to an increase in difficulty

when designing modern and complex neural architectures, and since these techniques au-

tomate the feature engineering process (which was a challenge in shallow models), NAS

became the current challenge in AutoML algorithms [18]. Famous NAS works consist

of a search space of Convolutional Neural Networks (since the data in focus are image

datasets, such as ImageNet and CIFAR-10 [85, 10]), and the most used search methods can

be roughly split into three categories: Reinforcement Learning (RL) [85, 10], Evolutionary

Algorithms (EA) [45, 58, 3] and Gradient-Based methods (GB) [44]. It has been shown

that all types of methods are able to őnd models that perform better than human engi-

neered ones, but [58] present empirical proof that EA-based and RL-based methods are

able to őnd equally well-suited models in terms of performance, with EA-based methods

őnding less complex models in less overall time.

GraphNAS [21] was the őrst work to propose, apply and evaluate a search space for

performing NAS in a GNN search space, using Reinforcement Learning as an optimizer.

The authors demonstrated that automatically found architectures surpassed manually

crafted ones for the supervised node classiőcation task. In this work, we adapt the EA

proposed by [58] as a search method for the GraphNAS’ search space, and compare its

performance with RL and a Random Search baseline.

Auto-GNN [84] was the őrst successor of GraphNAS. It uses the same search space

as its predecessor, but proposes changes to the RL controller to address some of the

previous shortcomings in performance. Auto-GNNs RL controller, instead of generating

arbitrary GNN architectures at each step, keeps a pool of the best evaluated architectures

and generates new ones by introducing slight changes into the models from this pool.

SNAG [83], in turn, uses the same RL model as GraphNAS, but introduces changes to

GraphNAS’ search space, such as adding new aggregate options, and an option for Skip-

connection. [33] consider GNNs which incorporate node and edge features into the search

process. They use an Evolutionary Algorithm based on Regularized Evolution [58] (the

same one we explore in this work). However, the three aforementioned works do not

release their source code publicly, and hence this work does not evaluate these models.
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Policy-GNN [38] employs a Deep RL algorithm for learning a meta-policy that

optimizes the number of aggregations necessary for each node in a general GNN, with the

goal of improving the accuracy of the downstream task. In this work we are interested in

evaluating search spaces that cover all components of GNNs. Therefore we do not evaluate

Policy-GNN’s search space, which focuses only on the aggregate component described in

Eq. 2.1.

During the development of this thesis, new works have emerged as alternatives for

performing AutoML over graph data. Next we provide an overview of very recent works.

Cai et. al. [11] proposed two new methods: GNAS (Graph Neural Architecture

Search), a combination of a newly designed search space and a gradient-based search

method; and GAP (Graph Neural Architecture Paradigm), which replaces the common

message-passing paradigm (described earlier) in GNNs with a tree-topology computational

procedure, allowing for the search of deeper networks. It is important to point out that

previous works have found that a deeper network may suffer in terms of performance as

nodes’ representation throughout the whole graph starts converging to the same value

[37, 41]). GAP is out of scope for this work as the search spaces that we investigate are

based on the traditional message-passing paradigm.

AutoGL [25] was proposed as an off-the-shelf easy-to-use alternative for performing

AutoML over graph data. The library provides options to perform Feature Engineering,

Hyperparameter Optimization, Model Training and a Model Ensemble module that com-

bines the output of different models to improve prediction power. Despite working with

the same traditional GNN models (GAT, GraphSAGE, GIN), at the time we őnished the

experiments for this thesis, there was not an option in AutoGL for performing NAS.

2.3 Fitness Landscape Analysis

A őtness landscape is formally deőned as a tuple (S, f,N ), composed of: the set of

all possible solutions S, a function that attributes a real valued performance estimation

for each solution in S, f : S → R and a neighborhood notion between solutions, usually

deőned as a distance metric N (ag) = {a′g ∈ S|d(ag, a
′
g) ≤ ϵ} for a sufficiently small ϵ.

Here the search space is composed of building blocks of GNN architectures, which can be

interpreted as individuals a ∈ S with genotype ag and phenotype ap. The őtness function

f is the architecture’s accuracy over the validation set Dvalid. We provide a discussion

about the use of accuracy instead of other metrics in Chapter 3.

The genotype ag is deőned as an abstract representation of the architecture, or an

łarchitecture descriptorž, and it may take many forms (e.g., a string of comma separated
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values, a list of the same values, a one-hot encoded vector, and others). The phenotype

ap is deőned as the instantiated architecture, composed by the initialized weight matrices.

The relationship between ag and ap is bijective, meaning that each genotype corresponds

to only one phenotype and vice-versa. The representation used in ag is very important

because it deőnes a measure of distance between architectures, which are used when

calculating neighborhoods N (ag) as the third component of őtness landscapes.

In this work, we analyze the őtness landscape of NAS for GNNs, and therefore it is

important to mention that the literature on őtness landscape analysis for machine learning

problems is relatively new. The őrst works in this direction focused in characterising

neural network error landscapes [8, 57, 69, 39]. [57] showed that the error landscape tends

to be łŕatterž, or less rugged, as the number of layers increases. [69] studied the effects

of neutrality in such landscapes, and concluded that the presence of neutrality can be

harmful to the performance of population-based methods when training neural networks.

[39] produced visualizations of the error landscapes of neural networks, demonstrating the

effect of architecture choices on this surface.

Concerning AutoML search spaces, [22] analyzed a subset of the search space ex-

plored by an AutoML tool that evolves machine learning pipelines for regression and

classiőcation problems using genetic programming. Their results suggest that many re-

gions of high őtness exist in the space, but these are prone to over-őtting (the training

results are very different from the testing results). Despite being a pioneer in analysing

AutoML using FLA, this work does not present any results based in common FLA met-

rics, and how these characteristics may inŕuence the optimization methods’ performance.

To the best of our knowledge, the őrst work to employ FLA techniques to AutoML search

spaces was done by [55], which measured FDC and neutrality in a search space composed

of machine learning pipelines for classiőcation. [61] characterized őtness landscapes of

meta-heuristics for neuroevolution of CNNs on training and unseen data using autocor-

relation and entropic measure of ruggedness. As far as we know, our work is the őrst to

apply FLA metrics to a search space for Neural Architecture Search on GNNs.

The following sections present the metrics that will be used to characterize the

őtness landscapes studied in this work: Fitness Distance Correlation, Dispersion and

Neutrality.

2.3.1 Fitness Distance Correlation

Fitness distance correlation (FDC) is a measure proposed by [35] for estimating

problem difficulty for genetic algorithms with known global optima, but it has been also
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used as a metric to evaluate the őtness landscapes of general optimization problems [47].

The intuition behind this metric is that őtness values should increase in the region close

to the global optimum, and decrease when further away.

Knowledge of the global optimum is infeasible for many real-life optimization prob-

lems, so [56] proposed an adaption of FDC, called FDCe, for problems with no known

global optimum. Given a vector of őtness values F = {f1, ..., fn} from a sample of n

points X = {x1, ..., xn} from the search space, the őttest point in the sample is denoted

by x∗. The distances D = {d1, ..., dn} from every xi ∈ X to x∗ are calculated. FDCe is

given by Eq. 2.3, and its values range from −1 (indicating a perfect anti-correlation) to

+1 (perfect correlation). We refer to FDCe as FDC from this point forward.

FDCe =
Cov(F,D)

σ(F )σ(D)
(2.3)

A landscape is said to be łdeceptivež or łhardž if the values of FDC are positive or

high (meaning that the further the point is away from the global optimum, the higher its

őtness), and łnon-deceptivež or łeasyž if the FDC is negative or low [47]. In this work we

do not know the global optimum for the problem, so we use the terms łnon-searchablež

and łsearchablež for the same concepts, respectively.

2.3.2 Dispersion

A landscape is said to contain łfunnelsž when it presents a global basin shape in

which local optima are clustered. The presence of multiple funnels in a landscape may

be prejudicial to search algorithms that rely on local information as they may become

trapped into sub-optimal funnels [56]. [46] proposed the Dispersion metric for estimating

the presence of funnels in a landscape. The intuition behind dispersion is that even on

multimodal landscapes, if the underlying structure is unimodal, the local optima are still

close together.

The calculation of the dispersion metric is done as follows [56]: assuming a n-

dimensional vector of real values as a representation for the architectures (ag ∈ R
n),

we take a uniformly random sample Sx of x points in the space and normalize each

coordinate of the vectors in Sx in the [0, 1] interval, producing S ′. This is done in order

to keep the distance values also in the [0, 1] interval. Next, we calculate the average

pair-wise distance between points in S ′, generating the dispersion dist(S ′). Then, we

deőne S∗ ⊂ S ′ as the őttest f% points in S ′. Finally, we calculate disp(S∗) as the

average pairwise distance between the points in S∗, and the dispersion metric is deőned
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as DM f
x = disp(S∗) − disp(S ′). If disp(S∗) < disp(S ′), DM f

x < 0 and we say that the

space tends to be unimodal as the dispersion in the f% őttest architectures in the sample

is smaller than the dispersion in the whole sample.

2.3.3 Neutrality

[59] proposed the study of neutrality as a method for identifying regions in the

landscape with similar values of őtness. Neutrality can both make the search space easier

to explore [72] or get some algorithms stuck in regions of the search space with similar

(or equal) őtness, preventing them from exploring areas with possibly better results [47].

Assuming a discrete representation of the solutions ag and deőning a łmutationž as a

change in one of the components of ag that leads to a neighbor solution aig ∈ N(ag), We

them evaluate the neutrality of the landscape using two methods: one based on a neutral

network (as deőned by [71]) and one based on neutral walks (as deőned by [59]).

[71] deőne a Neutral Neighborhood Nn(a) of a solution a as all the nodes in the

neighborhood of a with a sufficiently similar őtness value to f(a), formally: Nn(a) = {a′ ∈

N (a) | |f(a′)−f(a)| < ϵ} for a sufficiently small ϵ ≥ 0. A Neutral Network NN is deőned

as a connected component (subset S ′ of the search space S) of Neutral Neighborhoods,

formally deőned as: NN = (S ′, EN ), where EN = {s1, s2 ∈ S2|s2 ∈ Nn(s1)} [71]. In a

neutral network, the Neutrality Degree Nd(s) and Ratio Nr(s) of a solution s are deőned

as: Nd(s) = |Nn(s)| and Nr(s) =
|Nn(s)|
|N(s)|

. It has been shown that large values (≈ 1) for

the Average Neutrality Ratio in a Neutral Network Nr =
∑n

i Nr(si)

|S′|
indicate that there is

a large number of possible neutral mutations between individuals in a search space [71],

and therefore we use this value as one of the metrics for neutrality.

In its original formulation [71], the previously described approach of Neutral Net-

works requires a full enumeration of the search space, for the numbers to be exact (as the

entire neighborhood of each solution must be explored). All values obtained using this

technique in a sample of a search space ś as done in this work ś are only approximations.

In order to obtain more accurate measurements for neutrality in a small sample of

a large search space, we also employ the Neutral Walks method [59]. In this method, a

random walk is performed in the graph deőned by the neighborhood relationships N (a),

starting on a random solution a0. The Neutral Neighborhood of a0 is built by evaluating

all neighbors ai ∈ N(a0) and selecting the ones for which the őtness f(ai) differs from

f(a0) by at most ϵ: Nn(a0) = {ai ∈ N(a0)| |f(a0)− f(ai)| < ϵ}. Given Nn(a0), a random

solution is selected, and the walk continues if this solution increases the distance from a0.

The walk stops when no neutral neighbors are found or if none of the neutral neighbors
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increase the distance to the initial solution a0. It is important to notice the role of the

threshold ϵ in determining the neutrality of a search space. Different values of ϵ may yield

different neutrality results for the same search space.

The value extracted from the Neutral Walks is the number of steps taken in the

walk, i.e. the length of the walk |WGag |. It has been shown that if the őtness landscape is

seen as a graph (Gag) of solutions (as vertices), with neighborhoods deőned by adjacent

solutions (edges), the length of neutral walks is bound by diam(Gag) [59], as the maximum

amount of steps that the walk can take is the largest distance between two architectures

in the space. In this work we execute q Neutral Walks on the graph (varying the random

seed, since this is a stochastic process), with different őtness thresholds ϵ (for considering

a neighbor as neutral) and we measure the neutrality of the landscape as the average walk

length with respect to the graph diameter diam(Gag) and the őtness similarity threshold

ϵ, as in Equation 2.4.

Nϵ =
avg(|WGag |)

diam(Gag)
(2.4)
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Chapter 3

Methodology

Recall that the Research Questions posed in Chapter 1.1 aim at investigating: (RQ1) If

an EA is able to outperform RL in the task of searching for a GNN architecture that is

able to achieve high accuracy values; and (RQ2) how are the search spaces currently used

for NAS in GNNs in terms of searchability and neutrality, and how do these characteristics

affect the search methods used for this task.

Considering the background presented in Chapter 2.2, Chapters 3.1 and 3.2 present

details of the Search Spaces and Search Methods for NAS in GNNs evaluated in this work

(addressing both RQ), respectively. Chapter 3.3 details how this work performs Fitness

Landscape Analysis (in order to address RQ2) for the selected search space, and Section

3.4 explains how different GNN architecture representations used in this work contributed

to the analysis on RQ2.

3.1 Search Spaces

This section details the search spaces deőned by GraphNAS [21], the ones used in

our analyses. The two search spaces, named by the authors as łMacrož and łMicrož, are

composed by different GNN layers. The name łMacrož comes from the fact that, in this

search space, the structure of the network is not altered. Only high level components are

changed. In contrast, the name łMicrož comes from the fact that, in this search space,

the structure of the network is not őxed and even details of the network (such as the

convolution scheme, hyperparameters and the layer scheme) can be tuned. As previously

stated, these particular search spaces were chosen because, besides being the őrst proposed

search spaces for NAS in GNN, they have publicly available code.1

1https://github.com/GraphNAS/GraphNAS
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ATT K AGG ACT DIM

ATT K AGG ACT # Cl

L1

L2

Figure 3.1: Architecture structure of the łMacrož Search Space.

3.1.1 Macro Search Space

Architectures generated from this space follow a őxed GAT [73] structure (as illus-

trated in Figure 3.1), where nine different components need to be instantiated for a 2-layer

network. The number of layers is őxed to two, as the authors in [37] showed that GNNs

perform best overall using architectures with two or three layers. Each layer is composed

of: a multi-head attention mechanism ATT , the number of attention heads K, a choice

of aggregator AGG, an activation function ACT and the output dimension DIM , in this

order. The dotted lines in the őgure represent the end of each layer. The neighborhood

sampling method is őxed as a őrst-order sampler, i.e. only direct neighbors of each node

are sampled at each step. Each node in the layers of Figure 2.1c contains an instance of

a layer, as depicted in Figure 3.1.

Table 3.1: List of options for each component of the search space.

ATT AGG ACT

const, eij = 1 sum tanh
gcn, eij = 1/didj mean linear
gat, eij = leaky_relu((Wlhi +Wrhj)) max softplus
sym-gat, eij = eji + eij mlp sigmoid
cos, eij =< Wlhi,Wrhj > elu
linear, eij = tanh(sum(Wlhj)) relu
gen_linear, eij = Watanh(Wlhi +Wrhj) relu6

leaky_relu
K 2i, i ∈ {1, ..., 6}
DIM 2i, i ∈ {2, ..., 8}

Table 3.1 presents the options available for each component

({ATT ,K,AGG,ACT ,DIM}), which, combined, generate a search space of 12, 644, 352

possible architectures. AGG and ACT are the aggregation and activation functions

previously deőned in Chapter 2.1, Equation 2.1. Regarding the other components,

• (ATT ): The attention mechanism, implemented as a single-layer feed-forward neural
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network using the coefficients eij, is designed to attribute different importance values

(weights) to the features of each neighbor j ∈ N (i) over node i’s representation.

• (K): Multi-head attention is a method for applying independent attention mecha-

nisms over the node’s features. It has been proven that concatenating the results

of these independent mechanisms yields better results than using a single attention

head [73]. The łMacrož search space allows for tuning the number of heads in the

multi-head attention mechanism, represented by the component K.

• (DIM): This component represents a pooling step, which determines the dimension

of the output vector produced by each layer. The output dimension of the last layer

is őxed to the number of classes of each dataset (denoted in the őgure as # Cl),

as the output vector goes through a Softmax function, which assigns probabilities

to each class in the dataset, for the node. The class with the highest assigned

probability is the predicted one.

The hyperparameters not listed in Figure 3.1, used in the training phase of the

GNN, are őxed: the learning rate is set to 0.005, the dropout rate to 0.6 and the weight

decay to 5× 10−4.

3.1.2 Micro Search Space

Table 3.2: Micro search space action and hyperparameters.

CNV GAT1,...,8, GCN, Cheb, SAGE, ARMA, SG, Linear, Zero
CMB Add, Product, Concat
ACT Sigmoid, tanh, elu, relu, linear
LR {1× 10−2, 1× 10−3, 1× 10−4}
DO {0.0, 0.1, ..., 0.9}
WD {0, 1× 10−3, 1× 10−4, 5× 10−4, 1× 10−5, 5× 10−5}
HU 2i, i ∈ {3, ..., 9}

The name łMicrož comes from the fact that architectures generated from this

search space are composed by combining different convolution schemes, and do not follow

a single őxed structure. The choice of components for this space are: a convolution

operator CNV , a combination scheme CMB and an activation function ACT . The

hyperparameters which can be tuned are: the learning rate LR, the dropout rate DO,

the weight decay rate WD and the number of hidden units HU . In the options for CNV ,







3.2. Search Methods 30

in order to generate offspring. Considering one would like to choose λ individuals out of

a population of size n, tournament selection works by repeatedly generating λ random

sample of size µ < n from the population and choosing the őttest individual in each of the

random samples [17]. In this work we employ this method by choosing the őttest individ-

ual (the model which achieves the highest validation accuracy) out of a single λ = 1 őxed

size random sample of the population. The child individual is generated via mutation,

which is uniform over the components of the selected individual, by replacing the chosen

component by a random option. Figure 3.4 presents an example of an architecture de-

scriptor (genotype) ag undergoing mutation. One of the components is randomly selected

(with equal probability over the components) and a random option for this component is

chosen (again with equal probability).

const 1 max elu 4 const mean elu
g_lineargcngat linear sym_gatcos

2

const 1 max elu 4 gat mean elu2

const 1 max elu 4 const mean elu2
Options

Figure 3.4: Example of a mutation in an architecture descriptor ag

The child individual is always added to the population and the oldest individual

in the population (i.e. the individual that has been in the population for the highest

number of iterations) is always removed (hence the name łRegularized Evolutionž).

3.2.2 Reinforcement Learning

Reinforcement Learning is the name given to a set of problems in which an agent

(described as any entity that is able to perform actions in a system) interacts with a system

(described as any observable environment which returns a signal that can be interpreted

as a quality measure) and learns a pattern of behavior through such interactions [36].

Figure 3.5 describes a typical setting of a RL problem. The łControllerž (part of the

agent responsible for choosing and executing actions) receives as feedback signals from

the system: its current state and the łRewardž (a quality metric associated with the last

state transition operation), and chooses an łactionž (a state transition) with the goal of

maximizing the total reward (sum of the rewards received at each step) [66]. The agent’s

reasoning for choosing each action is called a policy π, and agents can switch and test
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3.2.3 Random Search

Random Search is a strategy commonly used in the literature of hyperparame-

ter optimization as a baseline, since [7] demonstrated its effectiveness at őnding good

selections of hyperparameters, compared to Grid Search, using a fraction of the computa-

tional budget. Random Search samples points randomly in the space, and simply stores

the best conőgurations found in the process. [7] also demonstrated that Random Search

tends to perform better in high dimensional spaces, in which some of the dimensions are

less important than others.

In this work, the Random Search baseline is implemented as follows: an initial

random GNN is generated by sampling options from each component in a layer, for the

speciőed number of layers. The GNN is trained and the accuracy on the validation set is

measured. Then, a predeőned number of GNN architectures are generated sequentially,

and the one which achieves the highest validation accuracy is chosen as the őnal solution.

3.3 Fitness Landscape of GNN Search Spaces

After having deőned the search spaces of GNN architectures, and the methods

used to traverse them, the goal of this section is to describe how we are going to analyze

the őtness landscapes of GNNs. Recall that the main motivation for that is to understand

the characteristics of these spaces and, ultimately, improve search methods according to

our őndings. In this section, we are considering the łMacrož GNN search space deőned

by GraphNAS [21], described in Section 3.1.1.

As we are unable to enumerate and evaluate the complete search space - which

has more than 12MM solutions, the next sections describe the sampling process used to

explore a subset of the space, the őtness function used to evaluate the GNN architectures,

and the different representations used in this work. The latter being a key component in

deőning neighborhood relations between architectures.
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3.3.1 Sampling the Search Space

Exploring the full search spaces in order to perform FLA is computationally un-

feasible, because the training of GNNs is an expensive process, which requires advanced

acceleration techniques, including the use of Graphical Processing Units (GPUs). There-

fore, the analyses performed in this work rely on a sample of the search space. Since one of

our goals is to measure łsearchabilityž, and for that a sample derived from an algorithm’s

execution is needed, the sampling process took advantage of architectures previously eval-

uated by the three different search methods described in section 3.2: (i) a Reinforcement

Learning method (RL); (ii) an Evolutionary Algorithm (EA); and (iii) a Random Search

(RS) (code publicly available online2).

The search methods were previously run őve times in a set of 7 datasets and on

both of the search spaces described in Section 3.1. In this part of the study, considering

the computational cost involved, we opted to focus on the łMacrož search space and used

3 datasets, increasing the sample size for each of them instead of analyzing 7 smaller

samples. Table 3.3 details how many samples were obtained for each method in each

dataset. The line Others refers to solutions generated for four datasets removed from

this study. They remain in the table because the original architectures sampled were

reevaluated in the three datasets considered here. Note that, in general, only around

1, 000 architectures are sampled by each execution of the search methods. Combining

these samples and removing the duplicates, we have been able to obtain a sample of

around 17,500 different architectures.

An analysis of the architecture descriptors ag in the sample demonstrates that all

options for each component appear in the sample, roughly with the same frequency. This

indicates that our sample is representative of the search space, as it covers different regions

of the space. However, we will return to this discussion when analysing the embedded

space.

For comparison purposes, our analysis considers two samples of the search space: a

small sample (SS) ś which includes only architectures originally explored by the methods

in that dataset ś and a large sample (LS), which considers all architectures generated for

all datasets by all methods, in a total of 89, 820 unique GNN architectures (≈ 0.7% of the

entire search space).

2https://github.com/mhnnunes/nas_gnn
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Table 3.3: Number of samples obtained using different search methods. SS stands for
Small Sample and LS for Large Sample. RL numbers are higher than the other methods
(approximately double) because each architecture is evaluated twice in RL.

Dataset
Method Size of SS

RL EA RS Total Unique
CIT 11, 050 5, 000 5, 925 21, 975 17, 658
COR 11, 050 5, 000 6, 000 22, 050 17, 352
MED 11, 050 5, 000 6, 000 22, 050 17, 676
Others 44, 200 20, 000 24, 000 88, 200 53, 591

Size of LS
Total 106, 277

Unique 89, 820

3.3.2 Fitness Function

As previously mentioned, we consider the Accuracy obtained by the architectures

in a validation set as the őtness function. Any other metric regarding the performance

of the methods could have been used. We chose to use accuracy for this work as it is the

most common performance metric used in the GNN literature. Note that the network is

őrst trained in a set of training nodes, and the őtness calculated in a validation set of

nodes. After the best GNN architecture is selected, we test it in a new set of test nodes.

Having deőned the search space and őtness, the next step is to deőne distance

measures between the solutions of the search space and deőne neighbors for each of them.

For that we need to őnd a suitable representation for the GNN architectures. Here we

propose two types of representations and evaluate how they affect distances between

genotypes and neighborhood deőnitions.

3.4 GNN Architecture Representation

In order to instantiate a GNN architecture from the description of the search space

given in Figure 3.1 we need to replace each of its abstract components by one of the options

listed in Table 3.1. Every component has a set of discrete values as options. A change

in the value of the option for a component can change the architecture entirely. Figure

3.6a shows graphically how instantiating an architecture is like choosing elements in 9

consecutive roulette spins.

It is important to note that the space representation is directly related to how

distances between individuals are calculated, and how neighborhoods are determined. In
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(a) Example of an architecture descriptor ag (in blue) and the other possibilities for each
architecture component in gray. Abbreviations have been made to some components’
name due to space constraints.a

a{g_linear → generalized_linear, l_relu → leaky_relu, soft+ → softplus}
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0001000 100000  ...   ...    ...     ...    00000001

-20.769114 ; -12.245099

(b) One-Hot and 2-D embedding representation of GNN architectures.

Figure 3.6: Different representations for an architecture description ag: list of components,
one-hot encoded and 2-D embedded.

order to calculate distances between individuals, we convert the categorical representation

from Figure 3.6a into a numeric one. Figure 3.6b shows an example of an architecture

and the two types of genotype ag representation used in this work. The őrst transforms

the list of chosen components into a one-hot encoded sparse vector. The second embeds

the one-hot encoding into a dense 2-dimensional vector. The next sections present the

details of each process.

3.4.1 One-hot encoded representation

One-hot encoding is frequently used in ML algorithms for transforming categorical

attributes into numerical ones. Due to its simplicity, it is usually applied as a őrst step to

more sophisticated representation approaches [29]. When using this method, a categorical

variable with three possible values x = {x1, x2, x3} is encoded as x = {001, 010, 100}.
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Many FLA works adopt binary encoding to represent genotypes, using the Hamming

distance to calculate the distance between individuals and deőne neighborhoods [47]. We

follow the same approach.

The one-hot encoded vectors for our search space have 57 dimensions (which is the

sum of the domain size of all categorical variables). Bit vectors that differ in at most 2

positions were considered neighbors, as differing in two bits is equivalent to differing in

one component in the list of tokens representation. This approach was chosen due to its

direct interpretability.

Distance: After generating the binary representation of each individual, the pair-wise

Hamming distance between all vectors is calculated, and a neighborhood graph Gag in

which each node corresponds to a genotype and edges connect neighbor genotypes was

built. The neighborhood relationship is derived from the mutation operator from the

EA (described in section 3.2.1), which replaces a random component in the architecture

by another random option in the same component. In the binary representation, this

operation is equivalent to ŕipping two bits, therefore architectures that differ in at most

two bits were considered neighbors in Gag .

The graph generated in this step has interesting properties that are worth men-

tioning. We know beforehand that each node (architecture ag) has a őxed number of

neighbors, and we know this number by counting the possible changes in each compo-

nent and summing them (basically, by counting the grey blocks in Figure 3.6a), as a

neighbor is deőned as a single component change. Therefore each node v in Gag has

deg(v) = 6 + 5 + 3 + 7 + 6 + 6 + 5 + 3 + 7 = 48 neighbors. If we were to materialize the

graph for the entire space, it would be composed of |V | = 12, 644, 352 nodes, and (due to

the Handshaking Lemma [20]) |E| =
∑

v∈V deg(v)

2
= 303, 464, 448 edges. The graph is very

sparse (compared to the complete graph: |E|
|V |2

= 3.79× 10−6).

The sampling process described in Section 3.3.1 will generate the sub-graph Gag

from the theoretical full graph Gag , where the nodes correspond to the architectures in

the samples, and the edges connect neighboring architectures. We leverage this graph for

calculating the neutrality metrics that involve neutral networks, described in Section 2.3.3.

As for FDC and Dispersion, since they do not rely on the neighborhood but on a distance

calculation, when calculating them on G′
ag

we employ the Hamming distance.

3.4.2 2-D embedded representation

A visual analysis of landscapes allows for the identiőcation of some characteristics

such as Ruggedness, Neutrality, Deception and others [47]. However, this is only possible
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for one or two-dimensional problems. To the best of our knowledge, the visualization of

neural network landscapes has been done only for traditional Multi-Layer Perceptrons

and in the context of error landscapes [40, 65].

One option with high dimensional problems is to apply dimensionality reduction

methods, and discuss how the landscape characteristics in low dimensions relate to the

original space [42]. Such observations, along with the calculation of FLA metrics, may

provide a better understanding of the distribution of the solutions and the neighborhood

structures formed in the search space.

t-Stochastic Neighbor Embedding (t-SNE) [70] is a nonlinear dimensionality re-

duction algorithm commonly used for visualization, and its main objective is to place

neighbors close to each other in a low dimensional space, which is exactly what we want

to do in this context. t-SNE was the state-of-the-art for manifold learning for many years,

but it has been known to not preserve global structure very well, to be slow (computation-

ally complex) and to not scale to very large datasets [5]. Uniform Manifold Approximation

and Projection (UMAP) [49] was proposed in order to address the shortcomings of t-SNE,

and has been readily adopted by the bioinformatics community, for tasks such as study-

ing the landscape of mammalian organogenesis [12] and feature visualization on neural

networks [13]. UMAP is implemented as a two-step process: an efficient (approximate)

k-nearest neighbor calculation and an optimization stage via stochastic gradient descent.

The overall complexity of UMAP is O(n1.14) [49], which is competitive against t-SNE’s

O(n2) [70].

In this work we perform two visual analyses, contrasting the results found between

these two methods. First we apply t-SNE [70] and UMAP [49] to the Large Sample

(LS) of the search space (described in Section 3.3.1) and investigate the distribution of

local optima. We also attempt to visually identify neutral regions (places where the

őtness is common across neighbors) and visualize the path each optimization algorithm

follows across the sample, identifying regions of focus and comparing these regions to

neighborhoods in Gag . Note that, in this step, the points in LS are embedded with

respect only to the points in the sample. This analysis is useful to identify regions of

high or low őtness in the sample, and serves as an interpretable visualization of the myopic

space that the search methods have accessed.

Subsequently, we apply UMAP [49] to the entire search space S and perform the

same analyses as before, comparing the results of the two. Note that, in this step, the

points are embedded with respect to the entire search space. This analysis is useful to

understand which areas of the search space were explored by the methods. It also shows

how much of the space was actually explored, and provides an overview of the true shape

of the őtness landscape.

Distance: As the 2D embedded vectors are composed of real numbers, in order to calcu-

late FDC and Dispersion (as described in Sections 2.3.1 and 2.3.2), the distance function
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used for this representation is the Euclidean distance. The neighborhood relationship

N(ag) needed to calculate the Neutrality (as described in Section 2.3.3) is deőned as fol-

lows: we calculated three regions of neighborhood : N2(ag), N4(ag) and N10(ag), which

consider the 2, 4, and 10 closest neighbors to the current solution ag as their neighborhood,

respectively.

3.5 Summary

In this chapter, we have presented the two GNN search spaces studied in this work

[21] ś Macro and Micro ś and three search methods ś a Reinforcement Learning, an Evo-

lutionary Algorithm and a Random Search ś that are used to traverse the search spaces,

optimizing GNN architectures. We have also introduced two numeric representation for

the architectures ś one-hot encoding and 2D embedded using t-SNE [70] and UMAP [49]

ś and explained how to use these representations to perform visual analyses of the search

spaces, calculate distances between genotypes and form neighborhoods between different

candidate solutions.

We discussed that it is computationally unfeasible to exhaustively traverse the

complete search space in order to study the landscape. Therefore, we rely on a sample of

architectures to perform our analyses, and we aim at making this sample as representative

of the search space as possible. We have also detailed characteristics of the sample of the

search space collected. Applying Fitness Landscape Analysis to this collected data allows

us to move one step further at understanding the characteristics of these spaces and

developing search methods that are more őt to the task.

In the next chapter we elaborate on how the experiments were performed in order

to address the two research questions posed in Section 1.1. We compare the performance

of different search methods and analyze different search spaces using Fitness Landscape

Analysis techniques by leveraging different architecture representations.



39

Chapter 4

Experimental Analysis

Recall that this work aims to answer two research questions, introduced in Chapter 1.1:

(RQ1) Is an EA able to outperform RL in the task of searching for a GNN architecture

that achieves high accuracy values for a multi-class node classiőcation task?; and (RQ2)

How are the state-of-the-art search spaces for NAS in GNNs in terms of searchability and

neutrality, and how do these characteristics affect the search methods used for this task?

Considering the background on GNNs and NAS presented in Chapter 2, and the

description of the search spaces and methods considered in this work, presented om Chap-

ter 3, here we introduce the datasets used in our experiments, the experimental setup and

the results of RQ1. Next, considering the background on Fitness Landscape Analysis pre-

sented in Chapter 2.3, and the methodology used in this work to study the search space

(described in Chapter 3.1.1) presented in Chapters 3.3 and 3.4, Chapter 4.3 presents the

experimental setup and the results obtained for RQ2. But őrstly, Chapter 4.1 presents

details on the datasets used for investigating both RQs.

4.1 Datasets

Table 4.1 presents details of the seven datasets, provided by Pytorch Geometric1,

used to evaluate the methodology proposed in this thesis. Note that these datasets were

built to deal with a multi-class node classiőcation task, where we use information from the

nodes with known-labels to assign a class to nodes with unknown label (test/validation

set). The only elements in the datasets that contain features are the nodes, therefore we

do not use edge features in this work.

The őrst three datasets (COR, CIT, MED) are paper co-authorships networks,

used previously by [37]. Nodes represent documents, and an edge between two documents

means that one paper cited the other. Class labels represent sub-areas of machine learning

[63]. Node features are sparse bag-of-words vectors.

1https://github.com/rusty1s/pytorch_geometric
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Table 4.1: Dataset characteristics.

Dataset (Abbrv.) # Classes # Features # Nodes # Edges
CORA (COR) 7 1, 433 2, 708 10, 556
Citeseer (CIT) 6 3, 703 3, 327 9, 104
Pubmed (MED) 3 500 19, 717 88, 648
Coauthor CS (CS) 15 6, 805 18, 333 163, 788
Coauthor Physics (PHY) 5 8, 415 34, 493 495, 924
Amazon Computers (CMP) 10 767 13, 752 491, 722
Amazon Photo (PHO) 8 745 7, 650 238, 162

CS and PHY are also co-authorship networks, based on the Microsoft Academic

Graph from KDD Cup 2016. However, in these datasets nodes represent authors instead

of papers, connected by an edge if they have co-authored a paper. Node features represent

paper keywords for each author’s papers. Class labels indicate the most active őeld of

study for each author in the network.

CMP and PHO are segments of the Amazon co-purchase graph, where nodes

represent products and edges are added between items frequently bought together. The

nodes features are a bag-of-words representation of product reviews, and class labels

represent the product category.

4.2 Comparison of Methods for GNN Search

This section presents the experimental setup used to investigate (RQ1): łis an

Evolutionary Algorithm able to outperform Reinforcement Learning in the task of NAS for

GNNs?ž. In order to achieve this goal, we have considered the search spaces and methods

presented in Chapter 3. In particular, we assess the performance of an Evolutionary

Algorithm (EA)2, a Reinforcement Learning (RL) method and a Random Search (RS) on

the transductive learning scenario, in a supervised multi-class node classiőcation

task, over a set the 7 datasets previously introduced in this chapter, and two search spaces

(łMacrož and łMicrož) in terms of accuracy and runtime. It is important to note that

this work does not compare the architectures obtained by the optimization methods to

hand-crafted ones, as that was already done in GraphNAS’ paper [21].

2Code available at: https://github.com/mhnnunes/nas_gnn
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4.2.1 Experimental Setup

All search methods are executed for 1000 iterations (meaning that, in total, 1000

architectures are evaluated per search) in order to enable a fair comparison. Even in

the case of RL, the controller is trained over δ = 10 iterations, evaluating λ = 100

GNN architectures per iteration, resulting in 1000 total architecture evaluations. In each

iteration, a single GNN architecture is generated, trained on Dtrain and evaluated (in terms

of accuracy) on Dvalid. The architecture with the highest validation accuracy is saved

across iterations, and returned as the result of the optimization process. The generated

architectures are trained for 300 epochs, using the following őxed hyperparameters for all

search spaces and methods: minimizing cross-entropy loss using ADAM optimizer, initial

learning rate of 0.005.

Random search has only one parameter: the number of iterations. The Rein-

forcement Learning controller is trained using the same hyperparameters as described

on GraphNAS’ paper [21]: a one-layer LSTM with 100 hidden units, ADAM optimizer,

learning rate at 3.5× 10−4 and random initialization of weights.

The Evolutionary Algorithm (Regularized Evolution) has three main parameters:

the population size, the tournament size k and the number of iterations n. The őrst

parameter is related to the number of solutions evaluated during the search process, while

the tournament size controls the convergence speed. The higher the value of k, the faster

the algorithm converges. From all tested values ({100, 25}, {25, 2}, {100, 3}), the best

results were achieved using the population size set to 100 and k set to 3.

The dataset split between training, validation and testing sets was done in the

same way as in the GraphNAS public code3: 1, 000 nodes are reserved for validation and

testing, split evenly between the two.

All experiments were repeated 5 times as the methods are non-deterministic. The

experiments were run on a machine with a 16-core Intel(R) Xeon(R) Silver 4108 CPU @

1.80GHz, 16GB DIMM DDR4 @ 2,666 MHz RAM, and a NVIDIA GV100 [TITAN V]

graphics card, with 12GB dedicated RAM.
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Table 4.2: Accuracies and execution times (in ×104 seconds) of search methods.

Macro Micro
Accuracy Time Accuracy Time

EA 0.83± 0.007 0.75± 0.16 0.82± 0.005 1.73± 0.53
COR RL 0.83± 0.003 1.45± 0.38 0.81± 0.001 2.42± 0.62

RS 0.82± 0.003 0.96± 0.02 0.80± 0.009 1.20± 0.21
EA 0.75± 0.002 1.18± 0.10 0.71± 0.007 2.80± 0.72

CIT RL 0.73± 0.004 1.52± 0.42 0.68± 0.006 2.24± 0.08
RS 0.73± 0.005 1.05± 0.03 0.69± 0.006 1.29± 0.04
EA 0.82± 0.003 1.40± 0.37 0.82± 0.009 1.40± 0.09

MED RL 0.80± 0.003 2.10± 0.14 0.76± 0.017 2.58± 0.28
RS 0.85± 0.045 1.31± 0.02 0.80± 0.009 1.10± 0.18
EA 0.98± 0.001 3.35± 0.78 0.99± 0.002 2.65± 0.48

CS RL 0.95± 0.001 3.13± 0.11 0.97± 0.002 2.90± 0.34
RS 0.97± 0.001 1.50± 0.03 0.99± 0.001 1.58± 0.05
EA 0.99± 0.002 4.21± 0.85 0.99± 0.000 1.53± 0.15

PHY RL 0.98± 0.001 3.34± 0.27 0.98± 0.001 2.01± 0.19
RS 0.98± 0.001 2.08± 0.07 0.99± 0.001 1.11± 0.05
EA 0.91± 0.005 3.09± 0.49 0.93± 0.004 4.02± 1.94

CMP RL 0.90± 0.010 3.43± 0.21 0.92± 0.008 3.68± 0.27
RS 0.89± 0.004 1.69± 0.07 0.92± 0.002 2.05± 0.07
EA 0.97± 0.002 2.48± 0.22 0.98± 0.004 1.66± 0.41

PHO RL 0.96± 0.005 3.65± 0.19 0.97± 0.002 1.88± 0.23
RS 0.96± 0.002 1.82± 0.04 0.97± 0.002 1.08± 0.04

4.2.2 Results

Table 4.2 shows the results of accuracy and execution time for the łMacrož and

łMicrož search spaces, at the end of the optimization process (after 1, 000 iterations). In

terms of accuracy, the results obtained by the EA and RL methods are very similar

to the ones obtained by Random Search. In terms of execution time, RS wins

in most cases. The execution time for the search varies between 2 and 12 GPU hours,

across methods.

Figure 4.1 presents the evolution of the highest validation accuracy value achieved

by an GNN architecture across the iterations, by search method We present only the

results for the Macro search space, and for the CIT and COR datasets, because the

results for all datasets are very similar. The same applies to the results from the Micro

search space. Each line represents the mean validation accuracy across all seeds, and

the shaded area around it represents the standard deviation of this value. It is very clear

that all methods converge (őnd a good performing architecture and plateaus) within

3https://github.com/GraphNAS/GraphNAS
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being too large. This corroborates the őndings of [58] which state that Evolutionary

Algorithms are able to őnd less complex but equally well performing architectures than

RL. In this case, the architecture’s size is acting as an indirect selection method, because

when an architecture does not őt into the GPU memory, it gets assigned the lowest őtness.

Therefore, large architectures are never going to be selected in the process.

Another orthogonal study was made by [74] and [53], stating that the NAS opti-

mization task is usually tackled in the literature by using complex optimization algorithms,

such as Evolutionary Strategies or Reinforcement Learning. However, these studies show

that, when compared with a simple Random Search baseline there is not much difference

between the results of all the methods. The authors show that Local Search might be

a simple yet effective optimization algorithm for solving the NAS problem, and conduct

experiments demonstrating this hypothesis. A complementary study needs to be done to

investigate if this holds true to GNNs as well, since the authors have focused on CNNs.

Table 4.3: Percentages of generated architectures which exceeded the GPU memory and
therefore were not evaluated, by dataset and search method

Avg. Max
% %

EA 0.60± 0.89 2.0
MED RL 3.20± 0.84 4.0

RS 2.80± 0.84 4.0
EA 4.60± 1.52 6.0

CS RL 10.20± 2.59 14.0
RS 9.60± 1.52 11.0
EA 13.60± 1.82 16.0

PHY RL 41.80± 9.44 56.0
RS 47.80± 0.45 48.0
EA 11.60± 2.61 14.0

CMP RL 47.00± 20.94 81.0
RS 38.40± 1.67 41.0
EA 4.60± 2.70 9.0

PHO RL 20.80± 3.42 24.0
RS 11.80± 1.48 14.0

In summary, results presented in this section indicate that, in terms of Accuracy

(our measure of model performance), all three optimizers (RL, EA and the RS baseline) are

able to őnd equally good models given the 1000 iteration budget. The interesting őnding

is that all of the optimizers converge relatively fast (in less than 10% of the budget, or

around 80 to 100 iterations). We hypothesize that this may stem from the presence of

neutrality [71] in the search space. In the next section we investigate this hypothesis.

Another őnding is that, of all the methods, EA is the method which consistently őnds

good performing but less complex GNN architectures, in line with Real et. al.’s results
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for CNNs [58].

4.3 Fitness Landscape Analysis of GNN Search Spaces

This section investigates (RQ2): łHow are the state-of-the-art search spaces for

NAS in GNNs in terms of searchability and neutrality, and how do these characteristics

affect the search methods used for this task?ž. Understanding these aspects of the search

space is interesting to guide the development of optimizers that perform better in the task

of őnding a suitable solution to the problem.

In the next sections, by following the methodology described in Sections 3.3 and 3.4

to build a sample of the łMacrož search space and generate two numeric representations

for the architecture descriptors ag. We also use the deőnitions presented in Section 2.3 to

calculate FLA metrics for the search space. Finally, we present the results of the visual

representations of the space, and FLA metrics.

Before starting with the representation analysis, it is important to recall that the

GNNs are dealing with a transductive multi-class node classiőcation task, where informa-

tion from the nodes with known-labels is used to assign a class to nodes with unknown

label (test set). For this part of the work, the data split between training/test/validation

is stratiőed and preserves the distribution of classes from the full dataset. The percentage

of nodes for training, validation and testing for all datasets is respectively 64/16/20. Note

that this split is different from the one used in last Chapter, as we realized the previous

split strategy might have been hindering GNN performance on the task. This by all

means does not invalidate our őndings, since we were not investigating which train/test

split conőguration to use, but the performance of the search algorithms on the search

space. Also note that in this section we do not use all datasets presented in Chapter 4.1.

We have chosen to use a subset of the datasets in order to be able to extend our sample

of the search space and keep this analysis computationally feasible. The datasets chosen

for this part of the work are: Cora (COR), Citeser (CIT) and Pubmed (MED).

All the code for this chapter is publicly available5, as well as the results from all

the experiments, and a Jupyter notebook containing the analyses presented.

5https://github.com/mhnnunes/fla_nas_gnn
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node (nodes with no neighbors, degree = 0). The largest connected component contains

34% of the graph’s nodes (31, 073 nodes) and 86% of its edges (59, 657 edges). Even

among the nodes with degree > 0, the degree distribution is highly skewed to the right.

The mean degree is ≈ 3, the median 2 and the third quartile 4. More than 96% of the

nodes have less than 10 neighbors. Figure 4.7a presents the distribution of degrees (in

logarithmic scale), excluding the outliers. The diameter of G′
ag

is diam(G′
ag
) = 32, much

higher than the theoretical diameter of the original graph diam(Gag) = 9. Such behavior

may be explained by the removal of edges (in the subgraph sample that leads to G′
ag

),

which undoes many of the existing paths between nodes and makes existing paths much

longer.

In order to demonstrate the ability of the 2-D embedded representation to encode

local structure, Figure 4.7b shows two connected components from the graph G′
ag

, which

represent two local communities. It is clear from the plot that nodes from different

components in the graph are placed far from each other in the embedded space.

4.3.2 Fitness Landscape Analysis - Metrics

Table 4.4: FLA Metrics calculated using the Hamming distance between the points in the
one-hot encoded space.

S
CIT COR MED

SS LS SS LS SS LS
FDC −0.202 −0.173 −0.297 −0.344 −0.281 −0.193
DM1

1000 −0.110 −0.095 −0.120 −0.112 −0.072 −0.095
DM5

1000 −0.061 −0.055 −0.066 −0.059 −0.031 −0.056
DM10

1000 −0.052 −0.046 −0.049 −0.043 −0.020 −0.046
DM1

5000 −0.082 −0.066 −0.103 −0.082 −0.044 −0.066
DM5

5000 −0.054 −0.047 −0.059 −0.053 −0.023 −0.047
DM10

5000 −0.048 −0.042 −0.043 −0.040 −0.015 −0.042

Nr(s) 0.021 0.043 0.086 0.051 0.016 0.034

Nr(s) ∼ 0.082 0.083 0.096 0.094 0.117 0.112

Next, we calculate the three metrics previously deőned in Chapter 2.3, namely

FDC (Fitness Distance Correlation), DM (Dispersion Metric) and Neutrality. We com-

pare the results of these metrics considering the two genotype representations previously

described. The one-hot encoding representation follows the literature standard method to

measure distances between genotypes, using the Hamming distance as a proxy for editing

distance between lists. The embedding representation has the advantage of making the
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difficult to explore, i.e. it has high searchability and it is therefore not deceptive.

The values of FDC for the small spaces are even smaller. Meaning that these spaces are

even easier to explore.

Regarding the embedding representation (both t-SNE and UMAP), the results of

FDC (presented in the őrst row of Tables 4.5 and 4.6) for the CIT and MED datasets

are closer to 0, with some results for the small sample even being positive (small but

positive). We hypothesize that this happens due to a limitation of the embeddings which,

when converting the points from the original one-hot encoding representation, lose some of

the global information in the trade-off for local information (used to place the points close

together in 2D). As FDC needs information about the global optimum in the search space

(and in our case we are using the best found architecture in the sample), the distances

generated in this case might be misleading.

Table 4.5: FLA Metrics calculated using the Euclidean distance between each point in
the t-SNE space.

S
CIT COR MED

SS LS SS LS SS LS
FDC −0.391 0.059 −0.164 −0.187 0.076 −0.044
DM1

1000 −0.111 −0.113 −0.267 −0.210 −0.179 −0.193
DM5

1000 −0.147 −0.113 −0.158 −0.133 −0.076 −0.119
DM10

1000 −0.150 −0.115 −0.095 −0.083 −0.040 −0.060
DM1

5000 −0.133 −0.078 −0.272 −0.209 −0.166 −0.180
DM5

5000 −0.146 −0.105 −0.157 −0.139 −0.082 −0.097
DM10

5000 −0.147 −0.102 −0.094 −0.080 −0.044 −0.058

N2
r (s) ∼ 0.362 0.372 0.370 0.376 0.362 0.370

N4
r (s) ∼ 0.234 0.240 0.245 0.247 0.234 0.233

N10
r (s) ∼ 0.137 0.130 0.149 0.138 0.136 0.123

Table 4.6: FLA Metrics calculated using the Euclidean distance between each point in
the UMAP space.

S
CIT COR MED

SS LS SS LS SS LS
FDC −0.357 0.088 −0.283 −0.210 0.105 −0.213
DM1

1000 −0.218 −0.052 −0.190 −0.165 −0.041 −0.095
DM5

1000 −0.212 −0.112 −0.162 −0.121 −0.021 −0.032
DM10

1000 −0.203 −0.113 −0.147 −0.071 −0.058 −0.017
DM1

5000 −0.213 −0.051 −0.185 −0.175 −0.016 −0.089
DM5

5000 −0.210 −0.105 −0.161 −0.135 −0.025 −0.029
DM10

5000 −0.200 −0.108 −0.143 −0.080 −0.060 −0.018

N2
r (s) ∼ 0.343 0.352 0.348 0.357 0.361 0.372

N4
r (s) ∼ 0.212 0.222 0.217 0.228 0.233 0.246

N10
r (s) ∼ 0.104 0.116 0.109 0.123 0.130 0.143
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Still on the topic of searchability, another indicative of high searchability in the

space is the presence of uni-modality. In order to obtain the results for the dispersion

metric (which measures uni-modality, as described in Section 2.3.2) we need to deőne the

size x of the dataset sample Sx, and the percentage f of the őttest points that will be

used to calculate the metric. We calculated the metric considering f = {1, 5, 10}% of

the őttest architectures. We have also calculated this metric considering both a sample

of x = 1, 000 and x = 5, 000 GNNs. We can see from rows 2 − 6 of Tables 4.4, 4.5 and

4.6 that all values for this DM f
x are negative. It is interesting that, regardless of the

representation, the results for this metric are similar. This demonstrates the power of

the dimensionality reduction techniques in capturing the landscape of the real problem.

A negative value for DM f
x indicates the presence of a single funnel (uni-modality) in

the landscape, as the average distance between points in the top f% of őtness is smaller

than the average distance between the points in the sample. This is another indicative

that the search space of these networks, considering the datasets studied in this work, is

highly searchable, i.e easy to explore.

Lastly, we analyze the search space in terms of Neutrality. At őrst, we look at how

Neutral the őtness landscape is using the measures of Neutrality Degree and Neutrality

Ratio (described in Section 2.3.3). The early choice of these particular metrics was moti-

vated by the fact that, in order to calculate them, we would not have to perform further

GNN architecture evaluations (saving a lot of computational budget). Later, we have also

evaluated Neutrality by performing neutral walks on the graph, and presented later in

this chapter.

Neutrality Ratio is a metric calculated for each solution, which in our case are

GNN architectures. Since we are looking to classify an entire search space, we consider in

this analysis the average of the Neutrality Ratio in the sample as the degree of Neutrality

of the space. We disregard in this calculation nodes that have no neighbors. The results

of Neutrality Ratio for the one-hot encoding graph representation can be found in the

bottom two rows of Table 4.4. We present two values in this table. The őrst, Nr(s),

considers neutral neighbors solutions that have the exact same value of accuracy. The

second, Nr(s) ∼, considers as neutral neighbors solutions with identical values of accuracy

truncated at the third decimal point (e.g., an accuracy of 0.8219 would be considered

identical to an accuracy of 0.8223). In this case, the neighborhood graph was used for

calculations, which means neighbor nodes are always at a Hamming distance of 2. The

values for neutrality in the one-hot encoded space are very low (close to 0) for all datasets.

This might be attributed to the fact that, being a high dimensional space, points tend

to be further away from each other. This characteristic is reŕected on the graph Gag in

which more than 50% of the nodes have no neighbors.

The results for the 2-D embedded representations are presented in Tables 4.5

and 4.6. In both of these cases, we have considered 3 neighborhoods: the 2, 4 and
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10 closest neighbors to each point in terms of Euclidean distance, which generated N2
r (s),

N4
r (s) and N10

r (s). In contrast with the results of the one-hot encoded representation, the

Neutrality Ratio for the 2-D embedded points are higher, indicating that this space may

present some degree of neutrality. However, the fact that embedding the points in the

low dimensional spaces shrinks the distances between them may inŕuence the neutrality

values, when points that are not neighbors in the original space become close in the em-

bedding space. We hypothesize that the values for the 2-D embeddings may not be very

reliable. Therefore, we decided to perform Neutral Walks [71] in this space in order to

obtain more representative values for this metric, since it considers larger neighborhoods

and is not inŕuenced by a dimensionality reduction.

The methodology for measuring neutrality in search spaces using the Neutral Walks

is described in Section 2.3.3. We have employed őve different values for the threshold

ϵ, running the Neutral Walks three times for each dataset. Recall that the values of ϵ

determine how close the accuracy values for two solutions have to be in order for them to be

considered neutral with respect to each other. We chose ϵ = {0.05, 0.01, 0.02, 0.005, 0.002}

with the goal of testing how this value would vary if we made ϵ tighter. Also note that

the neutrality of the space Nϵ is given by the ratio of number of steps in the walk over

the graph’s diameter (see Equation 2.4). For these calculations we use the theoretical

full graph’s diameter diam(Gag) = 9, as the neutral walks method disregards the initial

graph sample that we were working with and just performs a walk on the solution graph

(evaluating all neighbors from nodes in the path). Table 4.7 presents the results for this

metric for each dataset. The very őrst thing to notice is that Neutrality increases as the

Accuracy threshold ϵ increases. This is expected since ϵ determines how close the values

of őtness should be such that two solutions are considered as neutral neighbors. Next,

we notice that the values of neutrality are very high. The smallest values were obtained

for the CIT dataset, with the smallest of all being found with ϵ = 0.002, in N0.002 = 0.4.

This value means that for a difference in 0.002 in accuracy between solutions, 40% of the

graph diameter is covered by a neutral walk on average.

The neutral walks result indicates that the presence of neutrality is strong

in the search space. Even on the smallest accuracy threshold, the walk is still able to

reach 40% of the graph’s diameter, indicating that the neighborhoods in the graph are

composed by architectures which all share a similar őtness value, consequently making

the space neutral.
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Table 4.7: Mean percentage of the graph’s diameter reached by the walk, by accuracy
threshold ϵ for each dataset.

ϵ CIT COR MED
N0.05 1.00± 0.00 1.00± 0.00 0.96± 0.06
N0.02 0.96± 0.06 0.96± 0.06 0.93± 0.13
N0.01 1.00± 0.00 1.00± 0.00 0.96± 0.06
N0.005 0.52± 0.45 0.70± 0.17 0.59± 0.39
N0.002 0.41± 0.36 0.81± 0.17 0.59± 0.45

Table 4.8: Best architectures for each search space/dataset and their accuracies. The last
column indicates which method generated that solution. Numbers in columns łOpt Acc.ž
and łSource Opt.ž were derived from the results in Section 4.2.2.

S ag Val. Acc. Test. Acc Opt Acc. Source Opt.
CITs: linear,mlp,elu,4,16,linear,sum,tanh,4 0.75± 0.013 0.74± 0.013

0.75± 0.020 EA/RL
CIT : linear,mlp,linear,4,16,gcn,sum,tanh,6 0.75± 0.010 0.74± 0.010

CORs: cos,sum,tanh,1,16,gcn,sum,tanh,1 0.89± 0.009 0.87± 0.004
0.83± 0.007 EA

COR: const,sum,leaky_relu,2,8,gat_sym,sum,linear,1 0.89± 0.010 0.87± 0.013

MEDs: gat,mlp,tanh,4,8,gat_sym,sum,tanh,4 0.89± 0.004 0.89± 0.003
0.85± 0.045 EA/RS

MED: cos,sum,relu6,4,128,generalized_linear,mlp,linear,1 0.89± 0.005 0.89± 0.006

4.3.3 Best performing architectures

We have focused so far on the optmizers and search spaces of GNNs, and all values

of őtness reported corresponded to the accuracy in the validation set. For the sake of

completeness, in this section we show how the GNNs architectures sampled by different

search methods and used to characterize the őtness landscape generalize on test data, and

discuss the components each of these near-optimal architectures have. For this analysis,

we have collected the top performing architectures for each sample of the search space,

and for each dataset, trained and evaluated the model on the validation and test sets őve

times (this was done in order to reduce bias on the results for both validation and test

Accuracies).

Table 4.8 shows the architectures that achieved the highest accuracy in the vali-

dation set and how they performed in the test set. The őrst column indicates from which

sample of the search space the architecture was extracted. The subscript s indicates that

the architectures was extracted from the Small Sample (SS). The absence of subscript in-

dicates that we have extracted this architecture from the Large Sample (LS). The second

column presents the architecture descriptor in the comma separated list of values format.

The third and fourth columns present the mean and standard deviation of accuracy val-

ues for the architecture over the validation and test sets, respectively. The őfth column

(named łOpt Acc.ž) presents the value of validation accuracy found by the optimizer

during the optimization stage. Finally the last column presents the optimizer(s) which

were able to őnd this architecture during the optimization.
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We can interpret these results as testing if a model is able to maintain the high

performance expected of it in a production environment (after the optimization and őne-

tuning), with new out-of-sample data. Notice that for both COR and MED the results

obtained with out-of-sample data are superior to the ones in the found by the optimizer,

while the results of CIT are just as good as those of the optimizer. Also note that the

best architectures for each dataset were found by the EA, while the architectures for

CIT were also found by the RL method. These results are consistent with what we have

shown previously in Section 4.2.2: that the EA converges faster to a region of high őtness

than the RL. We have also argued that this could be result of the population-nature of

evolutionary methods, which start the search simultaneously from different points of the

search space.
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Chapter 5

Conclusions and Future Work

Graph data occurs naturally in many areas of research, and the interest in studying ma-

chine learning methods for such data only grows. One of the most used methods for ML

on graph data is Graph Neural Networks (the famous GNNs). The design and optimiza-

tion of GNNs is currently hand-made and error prone, which makes the automation of

this task desirable. A few works have attempted to perform this task by applying Neural

Architecture Search techniques to GNNs, but most of them use the same optimization

strategy, and the same search space.

In this work we investigated the problem of automating the design of neural ar-

chitectures over two aspects: the optimization strategy and the search space. First, we

have investigated if an Evolutionary Algorithm was competitive against a Reinforcement

Learning one in this task, such as found by [58] for CNNs (RQ1). We have tested the

EA and the RL against a Random Search baseline. The three methods produced GNN

architectures which achieved similar results in terms of accuracy when considering a set

of 7 datasets and two architecture layer search spaces, with the Random Search being

the fastest method followed by the Evolutionary Algorithm and Reinforcement Learning.

Architectures generated by EA tend to őt in GPU memory, while the other methods

generate oversized architectures in up to 80% of cases. This shows that EA generates

less complex structures while achieving a similar accuracy value to the other methods,

corroborating the őndings of [58] for images. We have also observed that all 3 search

methods converge in less than 100 iterations, and after that remain stable.

In general, the results indicate that there may exist some irrelevant dimensions

in the deőned search spaces, which will require a more in-depth study of each of these

spaces. Another hypothesis we raised was the presence of neutrality in the space, i.e.,

the fact that neighbor solutions present different architectures but very similar results of

accuracy. This could be making the optimizers get stuck in a plateau, making search even

harder. These őndings brought us to our next Research Question.

The second aspect analyzed was the shape of the search space (RQ2). We have

applied Fitness Landscape Analysis (FLA) techniques to the search space of NAS for

GNNs, in order to understand why the performances of the optimization algorithms were

all so similar. The literature on FLA for AutoML in general is relatively new. This work
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presented a őrst step towards a more in-depth analyzes of őtness landscape of Neural

Architecture Search problems, speciőcally those involving Graph Neural Network archi-

tectures. We have sampled a set of almost 90k architectures from a search space of over 12

million solutions, and analyzed aspects of the őtness landscape considering three different

representations for the solutions (a one-hot encoded and two different 2D embedded ones)

and three different FLA metrics (FDC, Dispersion and Neutrality).

We performed an extensive analysis of the sample obtained, showing it covers a

large spectrum of őtness values. A visual analysis shows that both EA and RL search

methods tend to sample more architectures from high quality regions in the search space.

The results for Fitness Distance Correlation and Dispersion Metric indicate that the

search space is likely to be uni-modal and to present a high łsearchabilityž, i.e. it has

characteristics of an easy problem for optimizers to őnd a solution close to the optimum.

This result corroborates what recent studies [32] have been pointing to, that the classical

GNN datasets (used in this work) are not suitable for architecture search because the

classiőcation problem they present is too easy for a GNN architecture to solve.

With regards to Neutrality, the analysis using Neutrality Ratio indicate that the

space tends to be neutral but this initial method yielded inconclusive results as we the

values of this metric would vary drastically depending on the representation used. A

subsequent analysis using a more robust method named Neutral Walks [59] demonstrated

more conclusively that the space actually presents a high degree of neutrality. This

explains why all the optimization algorithms tested tend to converge fast: they probably

become stuck in a (rather large) neutral region and are unable to leave.

These őrst results opened up direction for many future research. First, we would

like to generate the őtness landscapes for other datasets that the literature considers more

difficult than the current benchmarks for the GNN area [32]. Increasing the neighborhoods

of the current architectures to generate more connected components, where we can further

analyse aspects such as neutrality and ruggedness, is also an interesting direction. We

would also like to test other less expensive optimization methods for the task, such as Local

Search algorithms (as done by [74, 53] in CNNs). Finally, investigating other embedding

methods that better capture the global structure of the space should also be a priority.
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