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Abstract 

 

We present in this work a yet unexploited property of the Maxwell equations 

when applied to conductors. It was found that the real part impedance of passive circuits 

can achieve negative values. We have performed calculations which forecast this so far 

unobserved part of the impedance spectrum of conducting materials. A series of 

experiments which confirms our predictions was also conducted. The impedance of 

single spires and also of some coils of specific geometry were measured in the MHz 

frequency range. Metallic and carbon wires were used in constructing these spires and 

coils. Spectral analyses of our data demonstrate that in fact, the impedance of these 

passive circuits presents a frequency-dependent phase angle able to cover the full 

trigonometric cycle [-π, π]. 

Besides direct impedance readings, additional experiments were performed in 

order to check our data against possible systematic errors. We have constructed and 

enclosed our circuits within several kinds of electromagnetic shields, all of them 

presenting wall thickness several times larger than the skin dept of the radiation in the 

frequency range of measurement. With this, we guaranteed that external sources could 

not possibly induce any relevant noise in our measurements. The negative real part 

impedance effects were also present on these shielded experiments. In addition to that, it 

was confirmed on an oscilloscope screen that the voltage and current on a passive 

circuit may, in fact, present a phase difference of π.   

A first-principles theoretical model that assumes the presence of longitudinal 

undamped waves propagating in the system was devised. An expression for the 

impedance of circuits possessing theses waves was then obtained. This way we were 

able to make numerical calculations and predict the negative real part impedance 

effects. Experimental evidence for the existence of these longitudinal waves was also 

obtained. On these footings we have pointed out a special propagation mode of the 

electromagnetic field as the cause of the unusual observed spectral response. A 

discussion on the validity of impedance data and causality issues is also presented. 
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1-Introduction  
 

 Impedance measurements are one of the most used techniques available to study 

material properties as well as electromagnetic devices and circuits. This way, novelties 

on device construction and circuit technology associated to new material properties 

and/or unusual field dynamics generally rely on results supported by impedance data.  

 The variety of material properties relevant to the interaction of electromagnetic 

fields with matter led to the development of passive circuit elements and active devices 

designed to control charges and currents in matter. This allows the advent of 

technologies inherent to almost all aspects of modern human life. Passive circuit 

elements are based on equations relating field and matter variables, as defined by the 

constitutive relations, and are crucial in determining the best performance and economic 

viability of practical circuits. In this case, a property of Maxwell equations which has 

not yet been considered could determine new relations between fields and currents, thus 

allowing new circuit configurations or even new circuit elements. 

 In this work we present a so far concealed part of the impedance spectrum of 

passive circuits. We have found that the real part of the impedance of carefully designed 

passive devices may attain negative values in a specific frequency range of 

measurement. Both field theoretical calculations and a set of experiments were 

performed. The systems studied comprise single spires and also coils which were 

constructed with metallic and carbon wires, possessing different geometries. Calculated 

and measured data are in good agreement and display the negative impedance effects. 

 Due to the inherent dissipative character of the ohmic regime, it is expected that 

the real part of the impedance increases as the frequency of the applied excitation signal 

becomes larger. It is known that this effect is caused by magnetic forces inside the 

material, which push charge carriers to the longitudinal surface of the material in such a 

way that the effective transversal area available to charge transport becomes smaller 

than the geometric one - the skin effect. However, for longer wires we have observed 

that this effect is lessened, being almost minimal. Our data show that, as frequency 

increases the real part of the impedance gets a maximum. Further increases in frequency 

lead to smaller values of the real part, which may even assume negative values. This is 

an effect that field dynamics relevant to skin calculations cannot account for. 
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 For still larger frequencies a kind of abnormal resonance peak, in the sense that 

it is inverted when compared to usual RLC peaks, is observed. This means that the spire 

presents a ‘negative resistance’ component forming its impedance spectral response. As 

a consequence, the observed resonances admit an extended phase angle variation, 

ranging from  -π  to  π  instead of the usual  - π/2  to  π/2  interval, defined in its limits 

by the reactance of pure capacitances and inductances. 

1.1-Organization of the work  

  

 We first expose a brief historical background of impedance spectroscopy 

technique, pointing out the foundations as well as referencing later developments and 

recent advances.  

 Following, in Chapter 2, we present the concept of impedance of a linear system. 

We then define, more specifically, how electrical impedance measurements are made. 

The most used method for electrical impedance measurement is described in detail. In 

sequence, the theoretical formalism of electromagnetism is reviewed. The set of 

Maxwell equations are presented and the formulation of potentials is shown. Besides 

that, some fundamental electromagnetic effects and usual impedance calculations are 

derived. These effects are thoroughly disseminated in the literature and provide the 

basis for the understanding of several devices which comprise the basic circuit elements 

of electronics.  

 In Chapter 3 we present a first-principle theoretical model which assumes the 

presence of undamped longitudinal current waves along the length of a conducting 

material. This assumption was never made, to the best of our knowledge, to the kind of 

systems and frequency range that was used in this work. By use of the Maxwell-Faraday 

equation and the retarded vector potential in the Lorentz gauge, we were able to 

generate an impedance formula and perform numerical calculations. These calculations 

predicted the negative real part impedance effect which was confirmed by a sequence of 

carefully executed experiments.  

 In sequence, we present in Chapter 4 a detailed description of the performed 

experiments, confirming our predictions. First, we show experimental evidence for the 

presence of these current waves along the wire length of a conductor, justifying the 

assumptions made in our model. In sequence, direct impedance measurement data for 

several circuits are displayed. The impedance spectra of single spires and coils of 
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different lengths and wire materials are displayed. These spectra present the negative 

real part impedance which was predicted by our theoretical model. A major concern 

when performing our experiments was the possibility that the measured negative real 

part impedances were due to the interference of external electromagnetic sources. In 

order to check if that was the case, we have constructed several kinds of 

electromagnetic shields to enclose our circuits. All of the shields were constructed with 

metallic walls several times thicker than the skin dept of the radiation in the 

measurement frequency range. All of the resulting impedance spectra for the shielded 

experiments still presented negative real part impedance effects. Besides that, additional 

experimental evidence such as the linearity of the measurements proves that no external 

sources could be responsible for the observed phenomenon. On an oscilloscope screen it 

was also possible to confirm that the voltage and current of a passive circuit can achieve 

a phase angle of π. 

  In Chapter 5 we provide a discussion on the validity of impedance data. Linear 

System Theory provides the grounds for impedance spectroscopy technique and 

imposes some constrains that must be satisfied by any physically realizable impedance. 

In particular, Linear System Theory demands that the impedance must be a causal 

function. A causal impedance function is a guarantee that no effect will precede its 

cause. In a loose manner, inside an electrical circuit it means that no current will rise 

before the potential difference is applied. It will be shown that the impedance will only 

be a causal function if its real and imaginary parts are not independent of each other but 

constitute a Hilbert transform pair instead. It will be also shown in Chapter 5 that the 

impedance formula we have derived by assuming longitudinal waves naturally satisfies 

this causality condition.  

 Finally, in Chapter 6 we present our concluding arguments and perspectives.     

1.2-Historical background 

 

 Due to the immediate applicability of almost all electromagnetic phenomena, 

materials containing non-trivial electronic properties are highly sought-after. To this 

end, there has recently been a marked search for new materials or special molecular 

arrangements in the nanoscale domain, featuring better device performance, low 

fabrication cost and/or low energy consumption [1-2]. On more general grounds, 

Strukov, Snider, Stewart and Williams [3] recently found the menristor, the last circuit 

element that can be derived from the fundamental relations of circuit variables, which 
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was predicted by Chua [4]. Therefore, any novelty in circuit configuration or circuit 

size, such as the use of quantum dynamics in practical devices [5-7] or new materials 

[8-11] can enhance their applicability. Likewise, the discovery of a new field dynamics 

in matter would also be of relevance in determining the properties of existing circuit 

elements or even lead to the development of new ones. 

 The grounds for impedance spectroscopy were introduced by Heaviside in the 

late nineteenth century with the advent of the Linear System Theory. Warburg then 

extended the concept to electrochemical systems and derived the impedance for a 

system undergoing a diffusion process [12]. A few decades later, at the middle of the 

twentieth century, the potentiostat was invented. Nevertheless, it was only after the 

1970’s, with the invention of the frequency response analyzers, that this technique 

become widely used. In fact, a wide set of distinct phenomena was studied with the aid 

of impedance spectroscopy. 

 The field of electrochemistry has greatly benefitted from impedance 

spectroscopy. In particular, the task of elucidating and characterizing corrosion 

mechanisms was only achieved due to the application of this technique [13]. As very 

useful in determining the electrical response of devices, impedance spectroscopy has 

also been used to characterize and design continuously better circuit components [14-

16]. 

 Several attempts to improve this technique and extend its limits of applicability 

have been carried out. Self-calibration methods [17-18] and digital signal-processing 

solutions [19] are examples of an effort to minimize impedance errors. Also a great 

amount of survey was dedicated to augment the frequency range of measurement. A 

common limiting factor at high frequency values is the signal loss due to cabling 

impedances. The impedance of cables at high frequencies can be measured by the Time 

Domain Reflectometry technique [20]. Also at high frequency values, the impedance 

spectroscopy can be useful in determining electromagnetic response of antennas [21-

23], which is a cornerstone for communications [24]. Nowadays the electrical 

impedance of a system can be measured at very low (~µHz), as well as very high 

frequencies (microwave and mm-waves) [25-28]. However there is a window in that 

broad frequency range that has been proven difficult to work with (dozens of MHz to 

thousands of MHz). Apparently the metrology for this specific frequency range has 

presented several challenges in producing good standards of impedance and generating 

proper calibration for instruments [29]. Other phenomena also studied with the aid of 
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impedance spectroscopy range from electronic conduction in polymers [30] and ionic 

mobility of nanostructures [31] to biophysics applications such as the study of cell 

migration [32] and toxicology [33]. This technique has also been efficient in the 

determination of state-of-charge and state-of-health of batteries [34]. Impedance 

measurements are also available in the context of microscopic techniques at the 

microwave frequency range. In this case, one can retrieve a map of resistance and 

capacitance of a microscopic sample [35]. 

 Given the wide range of applicability, and the possibility of retrieving valuable 

physical information such as those concerning transport, dielectric relaxation and 

corrosion phenomena, it is clear that any advance towards improving the impedance 

technique is certainly much welcome. 

 Negative real part impedances have been reported on the context of 

electrochemical impedance spectroscopy [36-38] and on quantum systems under the 

presence of microwave radiation [39]. Besides, specific devices possessing negative 

resistance and negative differential resistance are of widespread usage on electronics, as 

for example; Tunnel diodes, Gunn diodes, gas discharge tubes and thyristors. All of the 

examples cited above are fed by an external source of energy, whereas electrochemical 

systems may present active electrode reactions, which could drive energy into the 

circuit. So they cannot be considered as passive devices. The seminal work of Bode [40] 

gave us the basis of circuit theory for negative resistances, although he only considers 

this possibility on active circuits.  

 A more subtle point that is not clear on the literature at the present moment is the 

possibility of a passive circuit to present negative real part impedance. At first thought, 

it might seem that a passive circuit could not present negative resistance effects, but we 

show in this work, that this is not the case. 
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2-Impedance definition, measurement and calculations 
 

 In this chapter we first provide a definition for the impedance of a linear system. 

Then, in a more specific way, the electrical impedance is discussed. In sequence, we 

expose a method of measurement that is usually employed by commercial impedance 

meters. We also present a brief review on the classical formulation of electromagnetism 

by presenting the set of Maxwell equations and by making use of the electromagnetic 

potentials. Guidelines to the general solution of the non-homogeneous wave equation 

are also given. Several phenomena which are conspicuous and define the impedances of 

common usage on electrical devices are then considered. The impedances of the 

classical circuit elements which constitute a basis for electronics are derived.   

 

2.1-The concept of impedance of a linear system 

  

 The impedance of a linear system is defined as the ratio between some externally 

applied excitation and the resulting response. This excitation may have different forms 

including electrical, optical or mechanical oscillations. In the case of acoustic 

impedance for example, the excitation signal may be a pressure wave generated by a 

controlled explosion while the measured response may be a mechanical vibration of the 

soil. Thus, the concept of impedance is defined in order to quantify the ability of a 

system to react to some external stimulus. Figure 1 below illustrates in a schematic way 

this relationship: 

 

 

Figure 1: Schematic illustration of relationship between excitation and response of a linear system.  
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 On Figure 1, the time dependent applied excitation is represented by the function 

f(t) and the resulting response by the function g(t). As consequence of Linear System 

Theory (which is discussed with more detail on Chapter 5), there must exist a causal 

Transfer function T(t) which connects the cause (excitation), to the response of the 

system. In a general way, the input may be written as a convolution of the transfer 

function with the output of the system as given below: 

( ) ( ) ( )       ( ) ( ) ( )f t T u t g u du F Z Gω ω ω
∞

−∞

= − ⇒ =∫    (1) 

Equation 1 provides a general definition of the impedance (Z=stimulus/response) of a 

linear system. The Convolution Theorem and Fourier representation were applied in 

order to define the impedance of the system in the frequency instead of time domain.  

 The impedance of non-linear systems may also be defined and measured [41] as 

well. However, the problem of treating non-linear impedances is somewhat more 

involved because the response may be a function of the excitation input itself. Only 

linear systems are considered in this work. 

 

2.2-Definition of electrical impedance  

 

 The electrical impedance of a system is obtained by first submitting the sample 

under study to an alternating potential difference, and then by measuring the resulting 

electrical current. Generally, this applied signal is sinusoidal, and the frequency of 

oscillation is varied within an interval which is as broad as possible in order to obtain a 

maximum amount of information. Two physical parameters are measured. One of them 

is the ratio between the amplitudes of the applied potential and the resulting current. 

The other is the phase difference between the applied voltage and the current in the 

sample. These two parameters, seen as functions of the applied frequency, carry the 

electrical response information of the system under study. In order to define electrical 

impedance in a precise way, suppose that a sinusoidal signal ( , )V tω  is applied across 

two points of a sample. We may write this excitation potential, using the complex 

signals notation [42] as:  

( , ) i t

oV t V e ωω =      (2) 
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The actual applied potential difference is given by the real part of Equation 2. Then a 

current will rise in response to this excitation and, if the sample is a linear and passive 

material, we can write it as: 

[ ]( )( , ) ( ) i t

oI t I e
ω φ ωω ω −=     (3) 

The same complex signals notation of Equation 2 was used here, that is, the current in 

the sample is given by the real part of Equation 3. By introducing this notation, the 

definition of impedance and several other calculations are made easier. The electrical 

impedance is then defined as the ratio of the excitation signal to the response current in 

the sample: 

( )( , )
( )

( , ) ( )
io

o

VV t
Z e

I t I

φ ωω
ω

ω ω
≡ =      (4) 

The impedance is then defined as a complex valued function of the applied frequency. 

Its modulus is retrieved by calculating the ratio of the excitation and response 

amplitudes and the phase angle is obtained from the direct measurement of the phase 

difference of the applied signal and the resulting current. The impedance modulus and 

phase angle (or equivalently, the real and imaginary parts) are usually given as function 

of the applied frequency in the form of a spectrum.  

 Notice that, for a time-invariant system, the time dependence is canceled out in 

Equation 4, leaving a stable impedance function. This means that the impedance as 

defined by that equation only makes physical sense if the system does not evolve with 

time, that is, it is at a stationary state due to the continuously applied excitation. In fact, 

the impedance function must satisfy some quite general criteria imposed by Linear 

System Theory (LST) in order to represent real systems. These criteria are discussed in 

detail on Chapter 5. The necessity of a steady state system means that, in practice, a 

time interval between the starting of the excitation and the response current measuring 

must be kept in order to permit all transients due to the buildup of electromagnetic fields 

inside the sample to vanish. This fact presents no constrains in the measurements of 

highly conducting materials such as metals. This is because the dielectric relaxation 

times for these materials are very low. The reciprocals of these characteristic times are 

much higher than the typical frequencies in an impedance experiment, and would only 

be relevant near the optical regime.   
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2.3-The usual method for impedance measurements 

 

 There are several means of measuring the impedance of a device, as for 

example, by making it balance a bridge or by using the unknown impedance on a 

resonant circuit [43]. For every frequency range or desired application, a different 

measurement method proves to be the best in providing reliable impedance results. For 

the range of MHz the most wide spread method is based on the direct measurement of 

the applied voltage and resulting current in the sample, which is also converted on a 

voltage. This procedure is commonly employed by commercial impedancemeters and 

has the advantage of being easily automated, generating easy to use equipments. Further 

details of this widespread method are described below. 

 

 2.3.1-Impedance modulus measurement 

 

 In order to obtain the impedance modulus of a device under test (DUT), a known 

potential difference is applied to this device, and the resulting current is converted into 

another potential difference by a wide frequency range impedance converter. This 

procedure is schematized below on Figure 2: 

 

 
Figure 2: Principles of impedance modulus measuring method. 

 

 As shown on Figure 2, the AC voltage from the generator is applied to the 

sample and measured as V1. The DUT current (I), feeds an operational amplifier with 

an inverting input, which has the variable resistor Rx in its feedback loop. A value of 

Rx is chosen so that the output voltage V2 of the operational amplifier is in a good 

measurable range. Then the voltage V2 is related to the DUT current as 2/I V Rx= − , if 
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the operational amplifier is considered to be ideal (virtual ground with zero input 

impedance at the current input). The voltage V1 is the potential difference across the 

device. With these considerations, DUT impedance modulus is obtained from: 

1 1

2DUT

V V
Z Rx

I V

−
= =  

 The measurement of voltages V1 and V2 are actually phase sensitive. That is 

necessary in order to obtain the DUT impedance phase angle. The method usually 

employed to obtain the difference of phases of those signals is explained in sequence. 

  

 2.3.2-Impedance phase angle measurement 

 

 As already shown on Figure 2, the signal from an AC generator is applied to a 

DUT. In order to obtain the phase difference introduced by the DUT, two signal 

correlators are used. This is illustrated on Figure 3 below, which shows the signal 

arising from the DUT. It is displaced by a phase angle ϕ in relation to the generator. 

This signal is multiplied by the signal of the generator itself and integrated on the 

temporal parameter along an integer number N of periods. The result of this operation is 

a DC voltage which is proportional to cos(ϕ).      

 

 
Figure 3: Principles of impedance phase angle measuring method. The element with a symbol π/2 has the 

function of shifting the signal by a phase angle of π/2. The elements with the circled x symbols have the 

function of multiplying and integrating the signals. Their operation is represented by the equations also 

shown on this figure.  
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Also, another portion of the signal is drawn from the generator and displaced by an 

angle of π/2. The signal arising from the DUT is also multiplied by this second 

displaced signal and integrated in another correlator. After integration, a DC voltage 

which is proportional to sin(ϕ) is obtained. This way, the phase angle defined on 

Equation 4 is measured. 

 

2.4-Basic laws of electromagnetism and theoretical formalism 

 

 In this section we present the basic theoretical formalism by presenting the set of 

Maxwell equations as well as by defining the gauge transformations and 

electromagnetic potentials. The steps to obtaining the general solution of the 

inhomogeneous wave equations are provided, and the concept of retarded potentials 

naturally arises from these guidelines. 

 

 2.4.1-Maxwell equations  

 

 Generally, the starting point of impedance calculations is the set of Maxwell 

equations. That is because they are the basic governing laws for the whole discipline of 

electromagnetism. This set of partial differential equations is summarized below: 

2

.       Gauss's Law

                         . 0      Gauss's Law of Magnetism

      Faraday's Law

1
      Ampère-Maxwell Law

o

o

E

B

B
xE

t

E
xB J

c t

ρ
ε

µ

∇ =

∇ =

∂
∇ = −

∂

∂
∇ = +

∂

� �

� �

�
� �

�
� � �

 

 These equations, as written above, are valid for the case of the presence of 

sources in free space. By sources we mean an electrical charge densities ( ρ ) and/or 

current densities ( J
�
). The constant 128.85 10 /o x F mε −=  is called the electrical 

permittivity, the constant 74 10 /o x H mµ π −=  the magnetic permeability of the free 

space and the speed of light c  has the following definition: 1/ o oc µ ε= .  
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 A generalization to the less restrictive case of a linear isotropic media is made by 

replacing the vacuum constants by the constants of a particular material: oε ε→ , 

oµ µ→  and 1/c v µε→ = . Inside the material, these physical properties can actually 

be frequency dependent. Also, it may be useful to define constitutive relations and 

auxiliary fields such as the electric displacement, in order to consider the presence of 

polarizations and magnetizations which could be built inside the media. These auxiliary 

fields are the macroscopic average from the spatial and temporal abrupt changing 

microscopic fields of the individual constituents. The more general case of a non-

isotropic media requires the introduction of tensorial equations. Besides that, there is 

also a possibility that, for some material, non-linearities are present, in such a way that 

the permeability and permittivity are not simple constants, but functions of the fields 

themselves. 

 For the kind of problems we intent to treat in this work it will not be necessary to 

define those auxiliary fields, nor to consider frequency or space dependent material 

properties. It will suffice to consider the free space case which is ruled by the set of 

differential equations just given above. That is because in our case the electromagnetic 

fields will extend themselves into linear isotropic media only. For example, a case of 

interest will be that of a single spire constructed with a thin metallic wire, in the open 

air. In this case, almost all of the fields are extended in the air around the spire and only 

a tiny portion inside the wire material. Thus, in this case it is sufficient to consider only 

that portion of the fields which are outside the wire material. The air is a very sparse 

media, and for this reason, the electromagnetic parameters are almost equal to those of 

the vacuum. So, an approximation which is reasonable and will be consistently made in 

this work, is to consider the air as having the same properties as the free space ( air oε ε≈  

and )air oµ µ≈ . Even if the fields inside the wire were somehow important, the material 

properties which shall be considered are constant numbers, unless the frequency is too 

high or the material too special. 

 

 2.4.2-Electromagnetic potentials and gauge 

 

 All electromagnetic phenomena must be described by the dynamics of the 

electric and magnetic fields, which are given as the solutions of the set of Maxwell 
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equations when supplemented by appropriate constitutive relations. Nevertheless it is 

frequently useful to define auxiliary functions, usually referred as electromagnetic 

potentials, in order to turn the calculations manageable. Several problems are easier to 

solve by obtaining these potentials first and then by calculating the fields from them. 

 In order to define those potentials, first consider the null divergence of the 

magnetic field as presented in the set of the Maxwell equations above. Since the 

divergent of a curl is always equal to zero, we can always write the magnetic field as the 

curl of another vector field. This other field is usually denoted by A
�

 and is called the 

vector potential: 

B xA= ∇
�� �
     (5) 

With this definition, the magnetic field still possesses no divergence in complete 

accordance with the Maxwell equations set. By plugging this result (Equation 5) into 

Faraday’s law we have: 

( )       0
A

xE xA x E
t t

 ∂ ∂
∇ = − ∇ ⇒ ∇ + = 

∂ ∂ 

�
�� � � � �

 

The term in parenthesis in the last Equation has a vanishing curl. That means it can be 

written as the gradient of a scalar function. Thus, we may define a scalar potential V as 

that function which satisfies the following differential equation: 

A
E V

t

∂
= −∇ −

∂

�
� �

     (6) 

 It is possible to obtain an alternative set of equations relating the potentials 

instead of the fields, as functions of the sources. If that is achieved, one can first obtain 

the potentials and then retrieve the fields from Equations 5 and 6. In order to do that, 

Equation 6 is joined with Gauss’s law and the following result is obtained: 

( )2

.    

   .

o

o

A
V

t

V A
t

ρ
ε

ρ
ε

 ∂
∇ −∇ − = 

∂ 
∂

⇒ ∇ + ∇ = −
∂

�
� �

��
    (7) 

Also, by putting Equations 5 and 6 into Ampère-Maxwell law yields: 

( )
2

2 2

2
2

2

1

   .

o

o o o o o

A
x xA J V

c t t

A V
A A J

t t

µ

µ ε µ ε µ

 ∂ ∂
∇ ∇ = + − ∇ − ∂ ∂ 

 ∂ ∂ ⇒ ∇ − −∇ ∇ + = −   ∂ ∂  

�
�� � � �

�
� �� � �

  (8) 
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Equations 7 and 8 express the electromagnetic potentials in terms of the sources. They 

contain all the information present in the set of Maxwell equations. 

  Nevertheless, there is still some arbitrariness in the definitions of the potentials 

making the choice of the functions A
�

 and V  not unique. The lasting freedom which is 

still present can be removed by noting that we can add to the vector potential the 

gradient of any scalar function, provided that we subtract the time rate of change of that 

scalar function in the scalar potential. Then by defining an arbitrary scalar function α , 

another set of potentials 'A
�

 and 'V  may be used: 

'    ;   'A A V V
t

α
α

∂
= +∇ = −

∂

� � �
 

The change from A
�

 and V  to 'A
�

 and 'V  is called a gauge transformation. The 

electromagnetic fields are invariant under this operation. That is, it is possible to show 

that 'A
�

 and 'V  provide the same electric and magnetic fields which would be obtained 

with the original potentials. Since the electromagnetic fields are the only physically 

meaningful entities, a gauge transformation can be always used without any physical 

consequence. Once we have this identity: 2. ' .A A α∇ =∇ +∇
� �� �

, a gauge transformation 

can be exploited in order to choose the value of the divergence of the vector potential. A 

common choice for the transformation, commonly known as Coulomb gauge, is to 

make the divergent of the vector potential to vanish. However the appropriate choice in 

some circumstances is: 

. o o

V
A

t
µ ε

∂
∇ = −

∂

��
     (9) 

Equation 9 is known as Lorentz gauge and will be the appropriate choice here, being 

used throughout this work. By plugging Equation 9 into Equations 7 and 8, a 

considerable simplification is possible and these Equations can be rewritten as: 

2
2

2 2

1

o

V
V

c t

ρ
ε

∂
∇ − = −

∂
     (10) 

2
2

2 2

1
o

A
A J

c t
µ

∂
∇ − = −

∂

�
� �

    (11) 

The Lorentz gauge is frequently utilized for simplifying Equations 7 and 8 into 

Equations 10 and 11, which makes the potentials to be treated in the same footing. This 

symmetry is particularly useful in dealing with relativistic problems. 
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 We then have arrived at two wave equations for the electromagnetic potentials 

with charges and current distributions acting as sources. At principle, once these initial 

distributions are known, it is possible so find the potentials through Equations 10 and 11 

and then to find the electromagnetic fields from Equations 5 and 6. Unless the 

distribution of sources is too simple, the general problem of solving Equations 10 and 

11 is not easy. General considerations about the method for obtaining the solution of 

these wave equations are presented on the next subsection.  

 

 2.4.3-Time dependent problems and the retarded potentials 

 

 The wave equations we intend to solve, accordingly to Equations 10 and 11, 

present the following structure: 

  
2

2
2 2

1 ( , )
( , ) 4 ( , )

r t
r t f r t

c t

ψ
ψ π

∂
∇ − = −

∂

�
� �

   (12) 

In Equation 12, the term ( , )f r t
�

 represents a known source distribution. In order to 

solve Equation 12 we remove the explicit time dependence by introducing the following 

Fourier integral representations: 

   

1
( , ) ( , )

2

1
( , ) ( , )

2

i t

i t

r t r e d

f r t f r e d

ω

ω

ψ ψ ω ω
π

ω ω
π

∞
−

−∞

∞
−

−∞

=

=

∫

∫

� �
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The inverse transformations are then: 

( , ) ( , )

( , ) ( , )

i t

i t

r r t e dt

f r f r t e dt

ω

ω

ψ ω ψ

ω

∞

−∞

∞

−∞

=

=

∫

∫

� �

� �
 

With these definitions, the Fourier transform ( , )rψ ω
�

 must satisfy the inhomogeneous 

Helmholtz wave equation: 

2 2( ) ( , ) 4 ( , )k r f rψ ω π ω∇ + = −
� �

    (13) 

In Equation 13, the wake number k  has the following definition: /k cω= .  

 Equation 13 is a linear partial differential equation known as inhomogeneous 

Helmholtz wave equation. It can be solved by considering only localized sources first, 
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and then by using the principle of superposition to write the solution to the general 

problem as a combination these localized solutions. Consider then the Helmholtz 

equation for a source localized at the point 'r
�
: 

2 2( ) ( , ') 4 ( ')k G r r r rπδ∇ + = − −
� � � �

    (14) 

If boundary surfaces are absent, the function ( , ')G r r
� �

, commonly known as Green’s 

function, can depend only on the difference 'R r r= −
� � �

. Besides, the point source 

introduced on Equation 14 demands it must be spherically symmetrical, making it 

depend only on the distance between the field point and the source point R . This 

permits further simplifications in the Laplacian operator, and Equation 14 is then 

rewritten as: 

( ) ( )
2

2
2

1
4

d
RG k G R

R dR
πδ+ = −
�

    (15) 

Except at the source points themselves ( 0R = ), the Green function must satisfy the 

following differential equation: 

( ) ( )
2

2
2

0
d

RG k RG
dR

+ =  

Its solution being: 

( )
ikR ikRAe Be

G R
R

−+
=      (16) 

For the region 0R →
�

 the delta function on Equation 15 cannot be discarded. However, 

for this region ( 1kR << ), the second term is negligible in comparison with the first, 

making the solution easy if the following identity is noted: 

2 1
4 ( ')

| ' |
r r

r r
πδ

 
∇ = − − − 

� �
� �  

Thus the appropriate Green function must be bounded in the region 0R →
�

 to 

0

1
lim ( )
R

G R
R→

=  

Thus, we conclude that Equation 16 is the solution of Equation 15 provided that 

1A B+ = . We then rewrite Equation 16 for a matter of convenience as: 

( ) ( ) ( )      ( )
ikRe

G R AG R BG R G R
R

±
+ − ±= + ⇒ =    (17) 

 The appropriate values for the constants A and B will depend on the boundary 

restrictions relative to the time parameter. For a source that is turned on at some time 
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t=0 it seems intuitive that the G+
 function will be the appropriate choice for the 

problem because it represents outward propagating waves. Although that choice is 

convenient, it is not unique. The G−
 function may turn the most convenient choice by 

specifying suitable wave amplitudes at certain boundary times. These different time 

behaviors can be further investigated by constructing the corresponding time dependent 

Green functions that must satisfy: 

2
2

2 2

1
( , , ', ') 4 ( ') ( ')G r t r t r r t t

c t
πδ δ± ∂

∇ − = − − − ∂ 

� � � �
 

By using the Fourier transformations as defined at the beginning of this subsection, we 

conclude that the source term is rewritten as '4 ( ') i tr r eωπδ− −
� �

. Thus the time dependent 

Green functions are simply given as '( ) i tG R e ω± . In order to make the time dependence 

explicit, the Fourier transformations are used again and we obtain the following time 

dependent Green functions: 

( ' )1
( , , ', ')

2

ikR
i t te

G r t r t e d
R

ω ω
π

∞ ±
± −

−∞

= ∫
� �

 

After integrating the last equation, the Green function is explicitly given as: 

| ' |
'

( , , ', ')
| ' |

r r
t t

c
G r t r t

r r

δ
±

 −  −    =
−

� �

∓
� �

� �    (18) 

 The Green function G+  is called the retarded Green function. That is because 

the argument of the delta function ensures that an effect observed at a position r
�
 and 

time t  is caused by the action of a source at a distance R  away, at an anterior time 

' /t t R c= −  also known as retarded time. In a similar manner, the function G−
 is called 

the advanced Green function. This time dependence reflects the fact that the 

electromagnetic waves can only propagate with a finite speed given by 1/ o oc µ ε=  at 

the free space.  

 We had shown the solution of Equation 14, which is essentially a particular case 

of Equation 13 for localized sources. By superimposing these solutions we may actually 

represent the case of a distributed source and, with this, a particular solution of Equation 

13 is written as: 

3( , ) ( , , ', ') ( ', ') ' 'r t G r t r t f r t d r dtψ ± ±= ∫∫
� � � �
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The general solution of Equation 13 was not specified yet because we still need to add 

the general solution of the associated homogeneous wave equation. In order to do that, 

it is necessary to specify the physical problem by choosing between the retarded or 

advanced Green function.  

 Then we consider first the problem of a wave hom( , )r tψ
�

 that satisfies the 

homogeneous wave equation and is assumed to always have existed ( t → −∞ ). Also 

there is a source that is quiescent until the time ' 0t =  when it is turned on, and for this 

reason, generates waves of its own. The complete solution for this case is written as: 

3
hom( , ) ( , ) ( , , ', ') ( ', ') ' 'r t r t G r t r t f r t d r dtψ ψ += + ∫∫

� � � � �
   (19) 

In this case, the presence of the Green function G+
 guarantees that no contribution can 

come from the integral before the source is turned on.  

 The other situation is to consider that at remotely later times ( t → +∞ ) a wave 

hom( , )r tψ
�

 is specified as the solution to the homogeneous wave equation. Also, the 

source had always been functioning when it is turned off at ' 0t = . Then the complete 

solution for this case is given as: 

3
hom( , ) ( , ) ( , , ', ') ( ', ') ' 'r t r t G r t r t f r t d r dtψ ψ −= + ∫∫

� � � � �
   (20) 

In this second case, the function G−
 guarantees that no signal can arise from the source 

after it shuts off. 

 The most common case is that described by Equation 19. The physical situation 

represented with this is the case of a source which is quiescent being turned on at some 

specific time. As this is the case we shall study in this work, we focus our attention to 

this particular representation. By inserting explicitly the retarded Green function on 

Equation 19, we are left with the following expression for the solution of this problem: 

[ ] 3
hom

( ', ')
( , ) ( , ) '

| ' |
ret

f r t
r t r t d r

r r
ψ ψ= +

−∫
�

� �
� �    (21) 

In Equation 21 the brackets [ ]
ret

 means that the time 't  must be evaluated at a retarded 

time, that is, ' | ' | /t t r r c= − −
� �

. 

 Now we may return to Equations 10 and 11 which were the motivation for this 

subsection. By recurring to the result expressed on Equation 21, we know how to write 

the solutions of Equations 10 and 11 by simple comparison. These are given below: 
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[ ] 3
hom

( ', ')1
( , ) ( , ) '

4 | ' |
ret

o

r t
V r t V r t d r

r r

ρ

πε
= +

−∫
�

� �
� �     (22) 

3
hom

( ', ')
( , ) ( , ) '

4 | ' |
o ret

J r t
A r t A r t d r

r r

µ
π

  = +
−∫

� �
� �� �

� �     (23) 

Equations 22 and 23 express the scalar and the vector potential which can be obtained 

once a particular initial distribution of charges ( ρ ) and also of currents ( J
�
) are 

specified everywhere in the space, in a retarded time. The solution to the homogeneous 

wave equation ( hom ( , )V r t
�

 and hom ( , )A r t
� �

) also needs to be specified. 

 Once the initial distribution of charges and currents is known, it is possible to 

calculate the potentials through the use of Equations 10 and 11. Nevertheless, it may be 

easier to specify those sources at a retarded time to obtain the potentials from Equations 

22 and 23 instead. The fields can then be retrieved through Equations 5 and 6. 

 

2.5-Some fundamental electromagnetic effects and their impedances  

 

 In this section we present the derivation of some fundamental electromagnetic 

effects and their resulting impedances. The starting point is the set of Maxwell 

equations and the definition of electromagnetic potentials as they represent useful tools. 

The effects which shall be derived are nowadays largely applied in the fabrication of a 

countless amount of devices which are present in our everyday lives and constitute a 

basis for modern electronics. The impedance of the basic circuit elements of electronics 

will be presented. Electromagnetic phenomena are seminal to a wide class of materials 

and geometries and are of immensurable relevance in the field of physics and 

engineering. 

 Much of the design and analysis of devices are performed by use of lumped-

circuit elements modeling. In this case, the components used to describe real devices 

present characteristic impedances and interact with each other through the use of 

negligible impedance paths which couple them electromagnetically. Several passive 

devices can be satisfactorily represented in a broad frequency range by a specific 

idealized lumped circuit element or by a proper combination of a few of them. Some 

idealized circuit elements are of widespread in basic electronics; they are called the 

resistor, the inductor and the capacitor (R/L/C). 
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 The linking between two components in an electrical circuit is most often 

assumed to possess negligible impedance. This however may not be strictly true, 

especially if the lengths of these connections are large. However, for the majority of 

cases a large linking can also be modeled by a proper combination of those three 

classical elements. For other cases another approach might be necessary, as for example 

by considering distributed impedances rather than localized ones, as in the case of 

transmission lines. 

 Another approximation frequently made in order to calculate impedances is to 

consider that the size of an element is negligible in comparison with the wavelength of 

the electromagnetic field. If that is reasonable, then the fields can be regarded as 

quasistatic. This means that, although time varying, the fields have a spatial distribution 

which is essentially the same as if they were static. If the element is rather large, the 

lumped circuit modeling can still be satisfactory but, the distribution of fields inside the 

element must be taken into account in a more rigorous way.  

 

 2.5.1-The resistance 

 

 Before the seminal work of George Ohm, Henry Cavendish performed by the 

year of 1781, several experiments with Leyden jars and glass tubes filled with saline 

solutions. He studied the propagation of electricity through those systems by varying the 

geometry (lengths and diameters). At his time he did not have tools to quantify 

electrical quantities except his own body sensations. This way, he measured the 

intensity of flow of electricity by observing how strong a shock he felt when closing the 

circuit with his own body. These results were only known after their through study and 

publication by Maxwell in the year of 1879. In the years of 1825 and 1826 George Ohm 

conducted a series of experiments using Voltaic Piles, and later using thermocouples in 

order to generate more stable voltage sources. He used Galvanometers to measure 

electric current and closed his circuits with different material, lengths and diameter 

wires. In order to provide a theoretical explanation to his work Ohm inspired himself on 

Fourier’s works on the conduction of heat. In 1827 Ohm published his work 

establishing the proportionality between voltage and current, but he suffered hostility 

from the critics. By the decade of 1850’s Ohm’s law was considered widely proved and 

useful to applications such as telegraph system design as stated by Samuel Morse in 
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1855. A brief review on the history of Ohm’s law can be found on the work of Shedd 

[44].   

 In order to present the effect studied by Ohm, we consider a short piece of 

conducting material for which a potential difference is applied between its extremities 

as illustrated by Figure 4: 

 
Figure 4: Piece of conducting media submitted to an applied potential difference. 

 

Conductors are usually defined as those materials satisfying a constitutive relation, 

which is frequently referred as Ohm’s law. This relation states that, as consequence of 

the applied potential difference, a current density is established and is proportional to 

the resulting electric field. The constant of proportionality (σ ) is called the 

conductivity: 

J Eσ=
� �

      (24) 

Consider first that the applied potential difference is constant in time, in a way that the 

potentials and, as consequence, the fields are also static. Then, by making the time rate 

of change of the vector potential null in Equation 6, we can perceive that the electric 

field can be obtained simply from the gradient of the applied signal (E V=−∇
� �

). In an 

equivalent manner, we can argue that the electrical potential difference can then be 

written as a path integral of the electric field along the material length: 

( ) ( ) .
b

a

V b V a E ds− = −∫
� �

    (25) 

By joining Equations 24 and 25 we can rewrite this potential difference as 

.
( ) ( )

b b

R

a a

J ds ds
V V a V b I IR

Aσ σ
≡ − = = ≡∫ ∫

� �

   (26) 
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On the last step of Equation 26 the current density was assumed to be homogeneous, 

that is, it cannot change from one point inside the material to another. This is the only 

way of conserving the electrical charge inside the sample, at least in this electrostatic 

approximation. 

 Although Equation 26 was derived by assuming an electrostatic situation, it may 

be valid even for the case of time varying fields. This is true if the time rate of change of 

the fields is not so large, that is, if the applied frequency is well below the plasma 

frequency of the conducting material. In this case we have assumed that the length of 

the device is much smaller than the wavelength of the fields, characterizing the 

quasistatic approximation. This means that the fields instantaneously have the spatial 

distribution as they would have in the static case, and the time dependence is included 

by simply multiply the static fields by the harmonic factor i te ω . This motivates us to 

define, in a more general way, the resistor as that circuit element for which the potential 

difference is instantaneously proportional to the electrical current inside it. The constant 

of proportionality (R), which was defined on Equation 26, is called the resistance and 

depends upon the conductivity as well as the geometry of the material. This relation is 

written down below: 

( , ) ( , )R RV t RI tω ω=      (27) 

Equation 27 tells us that the time dependence of the current will be just the same of the 

applied potential difference. From this, we can readily see that the impedance of a 

resistor is independent of the applied frequency and is simply given by the constant 

resistance value:  

( , )

( , )
R

R

R

V t
Z R

I t

ω
ω

≡ =      (28) 

Notice that the impedance of a resistor is a real number, that is, its phase angle is null. 

This means, from the definition of Equation 4, that the applied voltage and resulting 

current are in phase with each other. 

 A more precise justification for this quasistatic approximation inside good 

conductors can be obtained by considering the Drude model for the conductivity [45]. 

By the year of 1900, Drude presented a model for the electronic conductivity of a 

material. His work attained great success in explaining the conductivity of metals in a 

relative broad frequency range. He applied the kinetic theory to the electrons in the 

material, which he assumed to be detached from the atoms and behave similarly to a gas 
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around positively and immobile positive ions. It turns out that in practice, this free 

electron model is good enough for the vast majority of metals and for the frequency 

range of interest in this work (MHz). Thus, for the cases which we shall treat here, the 

conductivity will always be considered to a real, frequency independent and positive 

number.  

        

 2.5.2-The inductance  

 

 Inductance is the ability of a conductor which is carrying a time changing 

current, to induce voltages inside itself (self-inductance) and on nearby conductors 

(mutual-inductance). This property can be deduced from a few fundamental 

observations. The first connection between magnetism and electricity was discovered by 

Oersted in 1820. He observed that a steady electrical current generates a magnetic field 

around it. He noticed that by observing the needle of a compass to place itself 

perpendicularly to a nearby current carrying wire. Electromagnetic induction was 

discovered independently by Michael Faraday in 1831 and Joseph Henry in 1832. 

Faraday provided demonstrations of electromagnetic induction by wrapping two wires 

on opposite sides of an iron made torus. Then he connected one of the wire wrappings 

to a galvanometer, and the other to a battery. He was able to measure current transients 

as he connected and disconnected the battery to the system. Faraday explained 

electromagnetic induction by introducing the concept of lines of force, but his ideas 

were rejected mostly because they were not mathematically formulated. Those ideas of 

lines of force were used later by James Clerk Maxwell in order to formulate a 

mechanical model of electromagnetism. A critical examination of the electromagnetic 

induction history can be found at the reference [46].        

 In order to apply the potential difference across two points of a piece of material 

as discussed on the last subsection, it is necessary to link the material to a battery or a 

generator. The usual way to do that is through the use of a loop of good conducting 

wire. By good conducting we mean a material with an infinite conductivity, in such a 

way that the resistance of the wire is essentially zero. The concern however, is the 

possibility of introducing extra impedances, other than wire resistance. This is because 

the Ampère-Maxwell’s law states that a magnetic field which surrounds the wire will be 

produced. In turn, Faraday’s law states that the time rate of change of the flux of that 
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magnetic field will induce additional electric fields inside the wire, changing the current 

and then the impedance of the loop.  

 This way, we now take a look at a closed path of conducting wire alone, and see 

what impedances it can produce. Consider that a single spire (closed loop of wire) is 

carrying an alternate current. For the sake of simplicity this loop is assumed, without 

loss of generality, to lie in a plane as illustrated on Figure 5 below: 

 

 
Figure 5: Single wire loop. 

  

Then define the simplest surface Ω which lies in the loop plane and is bounded by the 

contour of the loop. By use of Faraday’s law it is possible to calculate the time rate of 

change of the magnetic flux inside this surface: 

( ). .xE da B da
tΩ Ω

∂
∇ = −

∂∫ ∫
� � �� �

    (29) 

The symbol da
�

 on Equation 29 represents an element of area inside the surface Ω as 

depicted on Figure 5. By use of Stokes’s theorem we can change the flux of the curl of 

the electric field by the integral path of that field along the loop path. Also, the Ampère-

Maxwell law can be used to calculate the magnetic field and thus its flux on the surface 

Ω. The term proportional to the time rate of change of the electric field in Ampère’s law 

is divided by the square of the speed of light, being negligible if compared to the time 

rate of change of magnetic field of Faraday’s law. This way we may assume that the 

magnetic field and so, its flux, is proportional to the current inside the wire. Then 

Equation 29 is rewritten as:    

( ). .
L

V E ds B da LI
t tΩ

∂ ∂
≡ = − ≡ −

∂ ∂∫ ∫
� �� �

�    (30) 

This motivates the definition of another circuit element called the inductor. For this 

element, the potential difference between its terminals is proportional to minus the time 

rate of change of the current. The constant of proportionality which was defined in 
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Equation 30 depends upon the detailed geometry of the loop and is called the 

inductance (L). We may then define an inductor as that circuit element which obeys the 

following relation: 

( , )
( , )       ( , ) i toL

L L

VdI t
V t L I t e

dt i L

ωω
ω ω

ω
= − ⇒ = −    (31) 

In Equation 31 the harmonic time dependence which was introduced by Equation 2 was 

assumed. This way, the impedance of an inductor can be readily written as 

( )LZ i Lω ω=       (32) 

A current carrying loop of wire can then be modeled by using an inductor element. It is 

clear from Equation 32 that the impedance of this system increases with the applied 

frequency and also possesses a phase angle equal to π/2. On the above analysis we 

have considered the case of a thin wire, that is, we have only considered the fields 

outside the wire. The resulting inductance from this calculation is commonly 

denominated as external inductance. It may be necessary, for some cases, to consider 

the fields inside a non-zero thickness wire. The inductance resulting from that 

calculation is denominated the internal inductance. 

 A device that is of common usage in electronics is the coil. A coil is constructed 

by wrapping a wire around some support in order to produce several current loops 

instead of the single loop as discussed above. The aim of having more than one current 

loop is to exacerbate the effect produced by Faraday’s law, since the flux of the 

magnetic field is now roughly multiplied by the number of turns, and so is the induced 

potential difference.  

 

 2.5.3-The capacitance 

 

 Until now we have not explored a very useful property that can be easily 

observed at several configurations; the capacitance. This property describes the ability 

of a body to accumulate electrical charge. In addition to support electrical currents, a 

material may store electrical charge when submitted to a certain electric potential. A 

device which is build with this purpose is called a capacitor. The invention of the 

capacitor is attributed to a German scientist named Ewald Georg von Kleist who 

worked in end of the year 1745, and observed that charge could be accumulated by 

connecting an electrostatic generator to a volume of water in a hand held glass jar. In 

this case the water volume and the hand acted as conductors and the glass in between 
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was the dielectric. Several months later, Pieter van Musschenbroek, a Dutch professor at 

the University of Leyden independently made up a similar device named Leyden Jar 

which is sometimes credit as the first capacitor [47].  

 In practice the term capacitance is often used to refer to the mutual capacitance 

between two conductors, but a self-capacitance may also be defined as the amount of 

charge that is added to a conductor in order to elevate its electrical potential by one unit. 

The mutual capacitance or, in short, the capacitance of a pair or conductors is defined to 

be the ratio between the charge accumulated on the conductors and the potential 

difference raised in order to build that separation of charges. By taking the time 

derivative of this relation, we can write the following differential equation which relates 

the time rate of change of the potential difference and the current in the system: 

    
( , ) 1

      ( , )      ( , ) i tC
C C o

C

dV tQ
C I t I t i CV e

V dt C

ωω
ω ω ω≡ ⇒ = ⇒ =  (33) 

The harmonic time dependence was assumed just as we have made on the resistance and 

the inductance cases. A capacitor is then defined as that circuit element for which the 

current is proportional to the time rate of change of the potential difference across its 

terminals. The constant of proportionality is the reciprocal of the capacitance (C). This 

number is also a geometrical property since it also depends on the exact spatial 

configuration of the conductors. The concept of capacitance may be also attributed not 

as a simple result of some particular geometrical distribution of charges, but in a more 

involved way. That is the case of quantum capacitance [48], which arises from systems 

possessing a low density of states such as a two-dimensional electronic system as a 

semiconductor surface or graphene [49]. We only consider in this development the 

geometrical capacitance arising from a charge distribution. By using the capacitance 

definition provided on Equation 33, the impedance of a capacitor can be written as 

1
( )CZ

i C
ω

ω
=       (34) 

Note that the impedance of a capacitor decreases with the applied frequency and possess 

a phase angle equal to –π/2. The most common device that explores this property is the 

parallel plate capacitor. This device is built by using two plane and parallel conductors 

for which the potential difference is applied. These conductors are usually separated by 

a slab of dielectric material. 
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 2.5.4-Lumped circuit elements modeling 

 

 A great sort of linear passive devices can be modeled by using one of the circuit 

elements described above. However, in some cases it is necessary to use a proper 

combination of a few basic circuit elements in order to represent a real device. Take a 

piece of conducting material as discussed on subsection 2.5.1 for example. Even in that 

situation, a changing magnetic field will surround the material and, as consequence, 

induce potential differences along its axis. For this reason, an inductive character is also 

expected. The point however, is that for a short piece of material, this effect will be 

small when compared to the resistance effect. On the other hand, if the frequency is so 

high that the time rate of change of the magnetic field is large enough, considerable 

potential differences would be induced in the material and the inductive character would 

certainly be observed, even for a short length material. The same applies to the loop 

current discussed on subsection 2.5.2. For this configuration it is possible to apply a 

signal of such a small frequency, that the inductive character would be small in 

comparison with the resistance effect.  

 It is of common usage to construct a model consisted of an electrical circuit 

comprising several basic circuit elements linked to each other in order to represent real 

devices. Such a model is frequently referred as the lumped circuit model or the 

equivalent circuit. It is possible to associate these basic circuit elements by linking them 

in a way to apply the same potential difference to the components of the set (parallel 

association) or in a way to drive the same current to these components (series 

association). The elements are assumed to be connected by paths of negligible 

impedance. In order to perform the analysis of a circuit association of elements, there 

are basic circuit rules which provide equations relating potential differences and 

currents within it. These rules were introduced by Kirchhoff in 1845 [50]. Widely used 

on Electrical Engineering, they are frequently called Kirchhoff’s circuit laws. One of the 

Kirchhoff laws is based on the principle of the conservation of the electrical charge. It 

states that the algebraic sum of the currents in a node of the circuit is equal to zero. The 

other Kirchhoff law states that the electrical potential drops inside each element, plus 

eventual raises in it which are caused by the presence of sources, is also equal to zero, 

for a closed circuit path. By combining these two rules it is an easy matter to check that 

the impedance of a series association is given by the sum of the individual impedances 
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of the elements ( 1 2sZ Z Z= + ) and that the impedance of a parallel association is given 

by the inverse of the sum of reciprocals of individual impedances ( 1 1 1
1 2pZ Z Z− − −= + ). 

 These circuit laws must be used with great care in a practical circuit, because it 

is easy to find situations for which they are violated. The reason for that is that these 

rules assume that the linking between the circuit elements possess negligible 

impedance, and that may be unrealistic. For example, the sum of voltages in a closed 

circuit path is not equal to zero in the case of alternating currents. That is because the 

changing magnetic field produced by the devices, and also by the connecting wires 

themselves, will induce potential differences on these linking wires. Thus, for this kind 

of circuit, the cabling impedance cannot be ignored. However, the impedance of the 

cables can be frequently also modeled by some proper combination of circuit elements 

which are added into the modeling circuit. Then a proper model will generally comprise 

circuit elements designed to describe the devices and some other elements intended to 

describe the cabling connections. This way, the Kirchhoff circuit laws are then 

applicable to the correct modeling circuit. 

 

 2.5.6-Skin effect 

 

 An interesting effect happens when measuring the electrical resistance of a 

conductor with an alternating signal. The result actually depends on the chosen 

frequency, being larger for higher frequency values. This phenomenon is present even 

in the quasistatic approximation, as discussed on subsection 2.5.1. That is, even for 

frequencies which are not so high as to change the conductivity of the material we can 

observe a frequency dependent resistance. What happens in this case is that the electric 

field distributes itself into smaller portions of the conductor as the frequency augments. 

We know from Ohm’s law that the current density is proportional to the electric field. 

Thus, the current density will also distribute itself into smaller regions turning the area 

available to transport smaller, and the resistance larger. This is called the skin effect. 

 The charge density inside the volume of a perfect conductor, in an electrostatic 

situation is null. That is because if a charge is placed inside it, the electric field 

generated by it will act on the free electrical charges (electrons in a metal) which are 

inside the conductor by definition. This will establish a current density which will 

redistribute the charge until it completely vanishes. As a consequence, the electric field 



35 

 

 

 

itself also vanishes inside the volume of this conductor. The electron mobility inside a 

typical conductor is so high that this process generally occurs much faster than the 

reciprocals of the frequencies of the exciting signals. All interesting phenomena will lie 

on the conductor surface were the excess of charge (if there is one) is placed. This 

analysis is also valid in the quasistatic approximation, being also true for low frequency 

harmonic signals, as discussed in the subsection 2.5.1.       

 In order to investigate this phenomenon in a more precise way, consider a linear 

and isotropic conducting material for which an alternating signal is applied. The electric 

field inside it can be written as:  

( , , ) ( , ) i t

o
E r t E r e ωω ω=
� �� �

    (35) 

In order to evaluate the distribution of this electric field inside the media, we invoke the 

Faraday’s law of induction and apply the curl operator at both sides of it: 

2( ) ( . ) ( )x xE E E xB
t

∂
∇ ∇ =∇ ∇ −∇ = − ∇

∂

� � � � � � � � �
     

There may have no charges inside a good conductor, and by use of Gauss’s law we see 

that the electric field must possess no divergence. By adding that fact and also by 

including the information on Ampère-Maxwell law, we have: 

2
2

1 E
E J

t c t
µ

 ∂ ∂
∇ = + ∂ ∂ 

�
� �

  

In order to further simplify the result given above, note that Equation 24 is frequently 

used to define a conductor. In other words, in a conductor, the current density is linearly 

proportional to the electric field (Ohm’s law). Also note that for the simple time 

dependence assumed on Equation 35, the derivative operation is performed by simply 

multiplying the fields by iω . This results in: 

2
2

2
E i E

c

ω
ωµσ

 
∇ = − 

 

� �
      

For the frequency range of interest (maximum of dozens of MHz), and for the vast 

majority of conductors such as copper at room temperature ( 7 1 15.96 10x mσ − −= Ω  and 

oµ µ≈ ), the following relation is valid: 2 2/ cωµσ ω≫ . This enables us to neglect the 

second term in the parenthesis of the equation above. In the case of copper, the second 

term is as smaller as billionths of the first, even at frequencies in the range of GHz. This 

simplification results in: 
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2E i Eωµσ∇ =
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    (36) 

 Consider the differential Equation 36 for the case of a plane conductor extending 

itself to the infinity as well as having an infinite thickness. That is, consider that in a 

Cartesian system of coordinates, the conductor extends itself along the half-space (x>0) 

region. If the electric field points in the z direction and we assume no variations in the y 

and z directions, then we have 

2

2
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d E
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dx
δωµσ

−
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    (37) 

1
δ

ωµσ
=       (38) 

The parameter δ  is called the skin dept of the radiation. It measures how deep an 

electromagnetic field can penetrate inside a conductor. The used geometry of a plane 

conductor is useful for treating the case of the incidence of electromagnetic radiation on 

a metallic surface, for example.  

 In spite of the fact that Equations 37 and 38 are only exact for a “semi-infinite” 

plane conductor, this result may be a good approximation for a great number of cases, 

including some problems for which the conductor is not plane, as in the case of a wire 

for example. For high frequency values the skin depth may be much smaller than the 

diameter and curvature of the wire, in a way that the conductor may be regarded as an 

infinitely thick plane. The resulting electric field has a vanishingly amplitude as it 

propagates inside the conductor along a typical distance of a few δ  as can be seen from 

Equation 37. For low frequency values, the skin dept may be so large that the filed may 

be regarded as homogeneously distributed. As reference values, take for example, 

copper at the frequency values of 1Hz and 100MHz. Then the skin dept values at those 

frequencies are approximately: (1 ) 5Hz cmδ ≃  and (100 ) 5MHz mδ µ≃ .  

 Let us return to the experiment of measuring the electrical resistance of a 

metallic wire. We assume that an alternating current is driven through a round straight 

wire. Now, the natural choice for the system of coordinates is the cylindrical one. The 

axis of this conductor, and consequently its current, are chosen to lie on the z axis and 

no variations with the z or the polar coordinate ϕ are allowed. By symmetry we can 

argue that no variations with the polar coordinates are expected, but the dependence 

with the axial coordinate is discarded by assuming that no charges can be build inside a 
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conductor. Then, we may use Equations 36 and 24 to write down an expression for the 

current density inside the wire: 

2
z z

J i Jωµσ∇ =
� �

     (39) 

With the choice of cylindrical coordinates and the above specified symmetry 

considerations, Equation 39 may be rewritten as: 

2

2 2

1
z z

z

d J dJ i
J

dr r dr δ
+ =   

The solution to the above equation is a combination of the Bessel functions of the first 

and second type. Since the second type Bessel function has no boundary at the point 

0r = , it must be excluded from the solution of the problem. Thus we may write the 

current density inside the wire as: 

3/2

z o

i
J J rα

δ
 

=  
 

     (40) 

Where oJ  is the zero order Bessel function of the first kind. The constant α can be 

found by demanding that the flux of the current density across the wire to be the total 

electrical current. For a round wire of radius a  we then have: 
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∫ ∫   (41) 

A plot of the modulus of the current density as function of the wire radius, for certain 

frequency values, gives us a clue on how the current is distributed along the cross 

sectional area of the wire. Figure 6 below displays the current density inside a 1mm 

radius copper wire carrying a harmonic electrical current of amplitude 1A, for several 

frequency values: 
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Figure 6: Calculated modulus of current density for a 1mm radius copper wire carrying a harmonic 

current of amplitude 1A , for the frequencies of 1KHz (●), 25KHz (■), 50KHz (♦) and 100KHz (▲). 

   

From Figure 6 we can see that, as the frequency increases, the current is expelled 

towards to the wire surface ( 1r mm= ). This results in an increase of impedance since 

the effective area available to transport gets smaller as the frequency increases.  

 If the wire impedance is desired, the ratio between voltage and current is needed. 

Nevertheless, a more general result is the impedance per unit length of wire. This 

quantity is simply the ratio between the electric field and the current. Even then, it 

would be necessary to define an r-dependent distributed impedance function and to 

consider a concentric ring shaped element of area where the current density is a 

constant, in order to take into account the variation with the coordinate r . In order to 

avoid that complication we may take a reference point at the border of the wire ( r a= ), 

were the current tends to be concentrated on. Thus we define the skin impedance as the 

impedance per unit length of the wire as given by 

3/ 23/ 2

3/2
1

( / )( )
( )

2 ( / )
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δ
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π δσ δ
≡ =    (42) 



39 

 

 

 

Equation 42 expresses an approximation for the impedance of a round wire capable of 

presenting the skin effect. The measured impedance may be lower than that calculated, 

once the regions of small r  values also contribute to the total current and represent 

parallel impedances that were neglected. But at least for high frequency values, when 

the effect is exacerbated and almost all of the current is nearly on the surface of the 

wire, Equation 42 is a good approximation. Figure 7 below illustrates the skin effect for 

the case of the 1mm diameter copper wire. There, the real and imaginary parts of the 

impedance of this wire were calculated using Equation 42 and plotted as function of the 

applied frequency: 

 

 
Figure 7: Real (●) and imaginary (■) parts of the Skin Impedance of a 1mm radius copper wire as 

function of the applied frequency. 

 

By examining Figure 7 we can check that the modulus of the impedance increases with 

the applied frequency because both the real and imaginary parts are ascending 

functions. That picture is consistent with the interpretation provided from the analysis of 

Figure 6, that is, as frequency increases the effective area available to transport becomes 

smaller and the impedance increases. 
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 2.5.7-Diffusional processes: the Warburg impedance 

  

 The electromagnetic effects in a circuit are related to several thermodynamic 

processes which occur inside it. As a simple example, when conduction takes place, part 

of the work done on the charges by the electric field is converted into heat by random 

collisions of these charges in the structure of the material, as pictured by Drude and 

cited on section 2.5.1. Thus, even in the simple case of a piece of current carrying 

material it may be insufficient just to solve Maxwell equations in order to explain the 

whole system dynamics. That is because the temperature changes induced by the energy 

coming from the electric field may alter material properties and, in turn, change the 

electric transport characteristics. Nevertheless, for the case of a current carrying wire, 

the electrical power is sometimes so small that the heat is readily dissipated to the 

environment and the temperature is approximately constant in time. That is especially 

true for slow amplitude signals and currents, as in the case of the measuring the 

impedance.  

 In some situations however, a particular thermodynamic process may be of great 

relevance or even be the dominant aspect. That is the case of diffusion in some 

electrochemical systems. Inside a metal, the charge carriers (electrons) have such a high 

mobility that the time needed for any excess of charge to redistribute itself on the 

surface of the conductor is generally too small. This time is frequently much smaller 

than the reciprocal of the frequencies of the applied signals. On the other hand, 

electrochemical systems generally present typical charge carriers which have 

significantly smaller mobility (ions). This way, when applying a potential difference 

between two points of a salty water volume for example, the response current will be 

limited by ionic diffusion. Instead of readily responding to the electric field like the 

electrons in a metal, the ions will suffer from the random thermal collisions with the 

water molecules. These random collisions will generate a diffusion current density in 

order to stabilize the concentration gradients generated by the electric field, as stated by 

Fick’s law: 
diffJ D C= − ∇
� �

 [51]. The parameter D  is called the diffusion coefficient.  

 Warburg was the first to extend the concept of impedance to electrochemical 

systems [12]. He derived the impedance of a system undergoing a diffusional process. 

By using Fick’s law and also the continuity equation: . / 0J C t∇ +∂ ∂ =
� �

, it is possible to 

derive an equation for the space and time dependent concentration field C . The result is 
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sometimes called the diffusion equation, the heat equation or still the second Fick’s law. 

This result is provided below: 

2

2

( , ) ( , )C x t C x t
D

t x

∂ ∂
=
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For a harmonic excitation, it is reasonable to expect also a harmonic time dependent 

concentration field such as i t

oC C e ω= . Thus, it is possible to solve the diffusion 

equation by considering the Fourier representation and changing it to the frequency 

domain as was done with the wave equation, in subsection 2.4.3. The definition of an 

appropriate Green function, corresponding to an initial localized source would be 

necessary. The solution to this problem in the frequency domain is presented as follows: 

( , ) expo

i
C x C x

D

ω
ω

 
= −  

 
 

From the form of this solution it is possible to note that, for an applied frequency ω , the 

diffusing particles will undergo a distance of about /Dλ ω=  in a characteristic time 

of about the reciprocal of ω . Thus, by making a simple analogy with Equation 26, we 

may define a diffusion-generated impedance. We argue that the impedance advent from 

this diffusion process must have a modulus equal to | | /WZ Aλ σ= . That is, its modulus 

is that of a resistor having a length of about the typical diffusion length λ .  

 The conductivity of an electrochemical system is usually written as function of 

the ionic mobilities, concentrations and electrical charges. Consider then a single ionic 

species whose electrical charge is given by q eυ= , in which υ  is the ionic valence and 

e  the fundamental electrical charge. The conductivity is then given by the product of 

mobility, charge, and ionic concentration: | |q Cσ µ= . Another useful result is 

Einstein-Smoluchowski relation [52]. It states that the ratio between mobility and 

diffusion coefficient is proportional to the ratio of electrical and thermal energies 

( )/ / BD e k Tµ = . It is also possible to show that this diffusive impedance possesses a 

constant phase angle equal to / 4π− . By joining all these results, the whole expression 

for the diffusive impedance is given by    

2
    ;   W=

| |
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k TW
Z

i e CA Dω ν
=     (43) 
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The impedance of Equation 43 is called the Warburg impedance. It is frequently used in 

a lumped circuit elements model, combined with other elements such as capacitors and 

resistors, in order to describe the full electrical behavior of an electrochemical cell [53]. 

  

 2.5.8-9ewmann’s formula for the inductance of a spire 

 

 A case of great interest is that of a filamentary current. This system may be 

defined by considering a current carrying material which is much longer than wide or 

tick, as is frequently the case of a conducting wire. This physical situation is very 

common and will be of particular interest in this work. For this reason, we present here 

a usual approach to this calculation due to Newmann. On Chapter 3 we shall consider in 

detail the impedance of a thin spire which is essentially a conducting wire presenting a 

filamentary current. There, we derive a more general impedance formula for the 

impedance of a spire. By introducing the presence of undamped current waves along the 

length of the spire we generalize Newmann’s result, extending the impedance real part 

values to the negative range. 

 Consider then two closed loops of filamentary currents, close to each other. 

From Ampère’s law, the magnetic field produced by Loop 1 is proportional to the 

current I1 and the magnetic field from Loop 2 is proportional to the current I2. Then 

some of the magnetic field lines of Loop 1 pass through the Loop 2 and vice-versa, as 

illustrated on Figure 8 below: 

 

 
Figure 8: Two current carrying loops of wire. The magnetic field produced from one loop intercepts the 

other one.   
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We have already defined the inductance as the proportionality between the magnetic 

field and current in section 2.5.2 by Equation 30. In that situation the magnetic flux 

across the loop surface was due to the current loop itself. For this reason, the inductance 

of that configuration is called the self inductance. A difference scenario is displayed on 

Figure 8. Consider then the magnetic field 1B
�
 which is produced by Loop 1. The flux of 

this field through the surface of Loop 2 is written as   

2 1 2B daφ = ∫
� �

     (44) 

Since 1B
�

 is proportional to the current I1, we may define the mutual inductance as the 

constant of proportionality between the flux 2φ  and the current I1 as 

2 1,2 1M Iφ =        

 The magnetic field can be written in terms of the vector potential accordingly to 

Equation 5. By doing that and also by invoking Stokes’ theorem we may rewrite 

Equation 44 as 

( )2 1 2 1 2. .xA da A dsφ = ∇ =∫ ∫
� �� � �

�     (45) 

On Equation 45 the element of length 2ds
�

 strings along the wire path of Loop 2. Now 

the vector potential can be calculated through the use of Equation 23, without the 

homogeneous contribution. Here, we will consider that the two current loops are close 

to each other, so that retardation effects can be neglected. Also, there is no incoming 

electromagnetic radiation, and the homogeneous solution can be discarded. By putting 

retardation effects aside and also by integrating along the cross sectional area of the 

wire, the vector potential 1A
�
 can be obtained from: 
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With this result the flux 2φ  on Equation 45 is given by 
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Finally, the mutual inductance of this couple of loops can be written as 
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−∫ ∫
� �

� �� �     (46) 
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 It is clear from this reasoning that the mutual inductances 1,2M  and 2,1M  must 

be equal since both loops were treated on equal footings. Equation 46 depends on the 

geometrical properties of the loop paths and also on their relative position. This result is 

due to Newmann and is frequently known as Newmann’s formula. 

 Although Equation 46 was constructed to obtain the mutual inductance of a pair 

of current loops, it can also be useful in determining the self inductance of a single loop. 

In order to do that, the two current loops can be made much alike each other and put in 

the same spatial location so that, in the limiting case, they converge to just one single 

loop. The problem with that approach is that the integral may have not be defined 

anymore in the points where 'r r=
� �

. Nevertheless, consider a conductor of finite cross 

sectional area like that of Figure 9.a, which posses a wire radius equal to a .  

 

 
Figure 9: Current loops. (a) Conductor with loop radius equal to ρ and wire radius equal to a. (b) Two 

filamentary current loops of loop radius equal to ρ and separation equal to a.   

 

The external contribution to the self inductance of this conductor can be obtained by 

considering two filamentary current loops separated by a distance equal to 2a , like 

those of Figure 9.b. This approximation will be reasonable if the wire radius is much 

smaller than the loop radius, that is, if a ρ<< . On Figure 9 we draw circular loops for 

simplicity but the reasoning presented here is valid for any desired wire shape.  

 

 2.5.9-Electromagnetics of circuits and radiation resistance 

 

 A useful approach in dealing with the electromagnetic fields on electrical 

circuits is to separate the electric field into an applied and an induced portion. Although 

artificial, this separation may turn the analysis easier. The applied portion is defined as 
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that which is built due to the presence of the applied potential difference only. The 

induced portion is that part of the electric field which is generated from the dynamics of 

the electrical charges and currents which may be present as consequence of the applied 

potential. This way, we write the electric field ( E
�
) as the sum of the applied ( o

E
�
) and 

the induced ( 'E
�
) fields. It is useful to write the induced part in terms of the 

electromagnetic potentials, once the latter can be easily obtained from the charges and 

currents in the circuit, through the use of Equations 22 and 23. This results in:     

'o o

A J
E E E E

t σ
∂

= + = − =
∂

� �
� � � �

    (47) 

On the last step of Equation 47 the Ohm’s law was used. If however there are parts of 

the circuit which are non-conducting, the association of the electric field to a current 

density is not well defined there. For those regions both J
�

 and σ  are null. 

 Figure 10 below illustrates a circuit path being fed by a generator. The potential 

difference varies harmonically in time, and an instantaneous potential difference oV  is 

shown: 

 
Figure 10: Circuit path being fed by a generator. 

 

 If the fields on Equation 47 are integrated along the entire circuit length, the 

following result is obtained:  

2 1 1

1 2 2

. . . 0o

A J
E ds ds ds

t σ
∂

− − =
∂∫ ∫ ∫
� �
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   (48) 

The first integral on Equation 48 is readily recognized as the potential difference 

introduced by the generator in the circuit, as defined by: 

1 2

2 1

. . .o o o

circuit generator

V E ds E ds E ds= = = −∫ ∫ ∫
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�  
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The harmonic time dependence on the above equation was omitted for simplicity. The 

last integral on Equation 48 was already computed for a particular case in subsection 

2.5.1 by working with the resistance effect. There we have assumed a constant 

conductivity, but that is not a limiting constraint because a position dependent 

conductivity can be easily integrated along the circuit path. We have also assumed that 

the current is equally independent of position. This last restriction was necessary in 

order to guarantee the electrical charge conservation from the point of view of 

electrostatic or quasistatic situations.     

 With these results, and also by recalling the harmonic time dependence which 

was assumed to be present in the excitation signal from the generator, Equation 48 is 

rewritten as 

int . 0oV Z I i Adsω− − =∫
� �

�     (49) 

On Equation 49 we have defined the internal impedance of the circuit path as the part of 

the impedance apart from the contribution of the vector potential. For low frequency 

values it can be associated with the resistance of the wire which was deduced on 

subsection 2.5.1, and for higher frequency values it can be associated with the Skin 

impedance defined on subsection 2.5.6.  

 In order to obtain the whole impedance expression for the closed circuit path of 

Figure 10, the vector potential is demanded. Equation 23 is a general expression which 

gives the vector potential as function of the current density. It can be simplified by 

integrating the current density along the cross sectional area of the wire. Since there is 

no incoming electromagnetic radiation, the homogeneous solution can be discarded. If 

the distribution of the current along the wire radius in unimportant, that is, if this circuit 

is treated as having a filamentary current, we have: 
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On the last equation 's  strings along the entire wire length and 'r
�

 localizes the current 

element. By assuming a filamentary current we consistently neglect the Skin 

impedance, since the distribution of current inside the wire is assumed to be constant. 

The internal impedance in this case is simply given by the resistance of the wire, and 

Equation 49 can be rewritten as: 
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The harmonic temporal dependence was also omitted on Equation 51, and the parameter 

/k cω=  has the same definition as that given by Equation 13.  

 The impedance of the circuit is then readily expressed as the ratio between 

applied potential difference and resulting current as: 
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By expanding the complex exponential on the above integral, we can perceive that, 

besides the internal impedance, there are two impedance elements. One of them 

possesses a null phase angle and other presents a phase angle equal to π/2, as defined 

below: 
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    (53) 

The general impedance formula expressed by Equation 53 contains two terms for which 

the currents are in phase with the applied voltage. These are the internal impedance of 

the wire (R ), and also another impedance ( rR ) which is generally called the radiation 

resistance and accounts for the energy which is radiated from the circuit. There is also 

another impedance term ( L ) with a phase angle equal to π/2, which is a generalization 

to Newmann’s formula expressed on Equation 46. It is straightforward to see that it 

reduces to Newmann’s formula for the low frequency limit by expanding the cosine 

function on the integral and by keeping only the lowest order term. Higher order terms 

represent corrections on the inductance of the circuit for higher frequency values.      
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3-A model for undamped waves on ohmic materials 
  

 In Chapter 2 we have presented the most common electromagnetic effects 

relevant to impedance calculations, as an introductory route to our work. All of the 

preceding analysis is standard and detailed explanations of it can be readily found on 

classical textbooks [54-55] of electromagnetism. In this chapter we present novel results 

concerning the calculation of a yet, unreported impedance. We have theoretically 

predicted this impedance which posses a negative real part. In an equivalent manner, its 

phase angle is capable of attaining a value of π. 

 All of the impedance formulas of Chapter 2 present a positive or null real part. 

As far as we know, this is assumed to be true for any passive device. This is clearly true 

for the resistor, the capacitor, and the inductor. The Skin impedance and the Warburg 

impedance also present non-negative real parts. It is also possible to shown that the 

radiation resistance defined on Equation 53 is always a positive number. Nevertheless, 

we argue that the impedance of a passive circuit may still present negative values under 

specific physical conditions.  

 

3.1-The presence of undamped current waves 

 

 In order to construct a model capable of explaining the negative real part 

impedance, consider a closed loop of conducting material for which a harmonic signal is 

applied between its extremities, just like that of Figure 10. For the frequency range 

commonly used on electrical impedance measurements, it is reasonable to assume that 

no charge density would exist inside a conducting material as consequence of the 

applied field. The reason for that, as discussed with a little more detail in Chapter 2, is 

that an electromagnetic field does not easily penetrate the bulk of a good conducting 

material. Any charges inside it would induce additional redistributing charges in a way 

to neutralize the initial distribution in a very fast manner due to the extraordinarily high 

mobilities of the charge carries. For these reasons, Equation 10 which permitted us to 

obtain the electrical potential as function of the electrical charge density is rewritten as:  

2
2

2
0V V

c

ω
∇ + =      (54) 
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Equation 54 is commonly used to treat the case of a transmission line [55]. The circuits 

which we shall consider here are small enough in such a way that transmission line 

effects are not relevant. Nevertheless, Equation 54 will still be used in order to obtain 

the electrical potential along the circuit path. For a long conductor, meaning its length 

much larger than its typical diameter, Equation 54 admits solutions comprising 

longitudinal undamped propagating modes of the form: ~ iksV e±  , where /k cω= . 

Here, s  is a coordinate that strings along the wire length as usually made in Chapter 2. 

This approximation is reasonable for the case of large spires, meaning their curvature 

radius is much larger in comparison with the typical wire diameter. Given that the 

excitation potential difference is applied across the wire axis, the boundary conditions 

for a wire of total length l, and grounded at 0s = , is 0( ) 0sV = =  and 

( ) exp( )os lV V i tω= = . 

 In view of that, the applied electric field would also present longitudinal modes. 

Moreover, for an ohmic material the current density is proportional to the applied 

electric field and would present this way, longitudinal modes as well. That is, we 

assume a current density of the kind 

( ) ˆi t ks

s oJ J e s
ω+ +=

�
     (55) 

The positive sign in the exponent is consistent with the boundary conditions, in which 

the active pole of the source is at the end of the wire length ( s l= ). That is, the phase 

velocity directs to the ground. 

 Equation 55 expresses a non-trivial hypothesis which shall be used for the rest of 

this chapter in deriving our theoretical model. For this reason, we make a pause in the 

theoretical development in order to show some experimental evidence for these current 

waves. With this, we hope to provide some degree of soundness to our initial 

assumption. Detailed experimental results will be presented in Chapter 4.  

 In order to directly observe these waves on a wire, we have made an experiment 

comprising a coil and a RF generator directly connected to it. An oscilloscope was used 

to monitor the Root Mean Square (rms) potential difference between the generator's 

ground (one of the coil extremities) and various points along the coil wiring. 

Experimental details and instrument specifications are provided on section 4.5 

(Oscilloscope measurements). Choosing to make this measurement on a coil instead of a 

single spire was a matter of simplicity. This is because a large wire length is necessary 

to observe the modulating current phenomenon at frequency values which are not too 
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high. Also, measuring the potential along the length of a large spire would require large 

connecting cables presenting considerable impedances, and disturbing the measurement 

in a non trivial way. This way, the compact topology of a coil was appropriate for this 

investigation. A scheme of this experimental setup is shown on Figure 11 below: 

 
Figure 11: Scheme of the experimental setup for potential difference measurements along the length of 

the conductor, using an oscilloscope. 

 

As can be seen of Figure 11, by using a variable contact the measurement of the 

potential difference between several points of the coil was possible. A coil possessing 

100mm of diameter was constructed from a 100µm diameter constantan* wire with an 

inter-spire separation of 8mm, and a total of 44 turns which gives a total wire length of 

about 14m. This coil was connected to a RF generator and the frequencies of 1MHz, 

10MHz, 20MHz and 40MHz were applied. An oscilloscope reads the rms potential 

difference between the ground and various points along the wire length. Normalized 

oscilloscope readings as function of the position of the variable contact are displayed on 

Figure 12: 

 

 

 

 

 

* Constantan is a copper-nickel alloy. It is consisted of approximately 55% of copper and 45% 

of nickel. The conductivity of this material is fairly constant over a wide range of temperatures. 
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Figure 12: Normalized potential profile along the constantan coil wiring. Root mean square potential 

difference between the ground and several points along the length of a constantan coil at several 

frequencies: 1MHz (●), 10MHz (■), 20MHz (♦) and 40MHz (▲). 

 

 As can be checked in the 1MHz curve, the expected linear drop for the electrical 

potential along the wire is confirmed, evidencing a constant electric field at low 

frequencies. For higher frequencies the electrical potential displays a strong deviation 

from linearity. Near the generator's active pole (great distances from the ground) it is 

observed a large applied electric field. For distances to the ground smaller than 10m, a 

modulated stream of data superimposed upon an almost constant potential profile is 

observed. The modulation is clearly visible at 40MHz. This effect suggests the 

existence of a nontrivial dynamics for the electromagnetic field on the wire. 

 The preceding analysis suffices to infer the presence of a non homogeneous 

current density in the wire. This way we have enough justification for the use of a 

spatially-dependent current, as that given by Equation 55. 
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3.2-The general impedance formula for a single spire 

 

 The spatially modulated current density expressed by Equation 55 generates a 

vector potential responsible for induced magnetic and electric fields in and around the 

wire. The electromotive force generated this way is just a time derivative of the 

(retarded) vector potential integrated along the wire path. This will lead to an impedance 

expression that is a proper generalization of the Neumann's formula. As will be shown, 

the presence of undamped spatial modes along the wire axis would produce, at specific 

frequency ranges, a current density at the source which is in counter phase with the 

applied potential. This new reactive effect is the cause of the observed negative real part 

impedance. It must be stressed that usual ohmic dissipation is still present for all 

frequencies since the internal impedance of the wire is always present, but it may be 

overcome by the reactance we observed. As a result, the impedance phasor angle runs 

over the full trigonometric circle. 

 In order to obtain a general formula for the impedance of a single spire we may 

reconsider the developments from Equation 48 through Equation 52 again. There we 

have integrated the electric field along the circuit path in order to obtain the potential 

drops along the circuit as function of the current. The difference in our approach this 

time is the relaxation of the homogeneous current constrain. A homogeneous current is 

necessary in the context of electrostatics, for it represents the principle of electrical 

charge conservation in that situation. For non stationary fields however, it may be an 

oversimplification of the problem as pointed out on section 3.1. Still, a homogeneous 

current is frequently assumed in many impedance calculations, as for example in 

Newmann’s formula, expressed here by Equation 46.  

 Then, by considering the spatially modulated current density of Equation 55 we 

may recast the vector potential of Equation 50 by making the following adjustment: 

[ ]exp ( ')I I ks r→
�

. This results in: 

| ' |
exp ( ')

( , ) ' '
4 | ' | 4 | ' |

o ret o

r r
i t ks r

cI I
A r t ds ds

r r r r

ω
ω

µ µ
π π

 −  + −    = =
− −∫ ∫

� �
�

� � �
� � � �� �  (56) 

On the Equation 56 the integration of the current density along the cross sectional area 

of the wire was already performed. Thus we may rewrite Equation 51 as: 
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 Circuit impedance is then defined as the ratio of the source potential difference 

to the current. Its expression is analogous to Equation 52, and is given by 

( )
( )exp ( ') | ' |

. '
4 | ' |

o
ik s r r rV i

Z R ds ds
I r r

ωµ
ω

π

− −  = = +
−∫ ∫
� � �

� �
� �� �   (57) 

The result expressed by Equation 57 is different from that one usually employed to get 

radiation resistance because of the presence of the spatially modulated current. 

Existence of a non-homogenous current distribution leads to a complex-valued result for 

the integral. Its real part is just a generalization of circuit inductance. Its imaginary part, 

not present under a homogenous current distribution, represents a new circuit effect. 

The integral in Equation 57 can be viewed as representing a complex inductance (that is 

an inductance presenting both real and imaginary parts) and clearly describes a reactive 

effect. The imaginary part of this generalized inductance produces a negative real part 

contribution for the circuit impedance. 

 

3.3-9umerical evaluations for the impedance of a spire      

 

 The result of the last section permits us to easily perform numerical evaluations, 

once a closed and analytical expression for the impedance was retrieved. Still, the 

integrand of Equation 57 is dominated by the singularity at 'r r=
� �

, and a regularization 

procedure must be performed. The singularity of the integral may be removed by 

rewriting the denominator on the integrand as: 

( )2 2| ' | 'r r r r φ− → − +
� � � �

 

We have performed calculations for a round conductor by choosing a value for φ , 

which is equal to the wire diameter. This approximation is consistent with the reasoning 

of subsection 2.5.8, in which the self inductance of a spire was computed by using the 

mutual inductance of two nearby spires of same shape. By excluding the region within 

the wire from the integral, we give only the external contribution for the generalized 

inductance. This approximation is reasonable for the case of a filamentary current, that 

is, if the spire typical dimensions are much greater than wire radius.  
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 In order to consistently check the result of Equation 57 against one of our 

experiments, numerical data was obtained for a rectangular spire. The structure of 

Equation 57 demands a double integration along the wire path. The case of a rectangular 

spire is easy to compute because the length elements are either in the same direction or 

are perpendicular to each other. Then we need to consider only those situations for 

which they are parallel: . ' 'ds ds dsds=
� �

 and also those situations for which they are anti-

parallel: . ' 'ds ds dsds=−
� �

. For the cases in which the length elements are perpendicular 

we have: . ' 0ds ds =
� �

. Figure 13 below illustrates this spire and the geometrical 

considerations which we have used:  

 

 
Figure 13: Geometry of the rectangular spire. (a) Spire dimensions and definition of the length elements. 

(b) Case in which ds and ds’ are both on the same side, along the greater dimension. (c) Case in which ds 

and ds’ are one at each of the greater dimension sides. (d) Case in which ds and ds’ are each at one of the 

smaller dimension sides. (e) Case in which ds and ds’ are both on the same side, along the smaller 

dimension.   

 

In view of the scheme presented on Figure 13, it is possible to break up the double 

closed path integral into some simpler integrals, involving only one segment of the 

circuit at each time. In order to compare our calculations with one of our experiments, 
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we have considered a rectangular spire as made of a round copper wire having a 

diameter equal to 55 mφ µ= , and with the following spire dimensions: 15a cm=  and 

11,08b m= . This results in a total wire length of approximately 23m and a spire width 

of 30cm.  

 Wire resistance was calculated using Equation 26 and copper electrical 

conductivity at room temperature σ=5.96x107Ω-1m-1. Thus Equation 57 was numerically 

computed by the following expression: 

( )
( ) ( )

( ) ( )

0 0

2 2 2 2 2
0 0

2 2 2 2
0

2 2 2 2
0
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 (58) 

On the numerical expression given by Equation 58, the following functions were used 

in order to specify the ( ')s r
�

 term: 

1( )   ;  2( ) 3 2   ;  s3(z)=a+b+z

s4(z)=4a+2b-z  ;  s5(z)=a-z  ;  s6(z)=5a+2b-z

s u a u s u a b u= + = + −
 

 Calculated and experimental data are presented on Figure 14 below: 
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Figure 14: Impedance spectrum of the copper spire (Cu/23m/300mm/55µm): theory (solid lines) and 

experiment (symbols).  (a) Real part impedance spectrum. (b) Imaginary part impedance spectrum. 
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 We can check on this figure that both the real part (Figure 14.a) as well as the 

imaginary part (Figure 14.b) of the impedance attains positive and negative values. It is 

clear from this figure that the imaginary part of the impedance was reproduced with 

good agreement while the real part impedance presented deviations which will be 

commented in detail on the next chapter.   

 In what follows we give a detailed description of all experiments that we have 

made, including the impedance measurement of the copper spire which was presented in 

advance along with the theoretical calculations on Figure 14.   
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4-Measurements and experimental data 
 

 In this chapter we describe in detail the arrangement of our experiments. 

Essentially, we measured the impedance of a set of spires and coils of particular 

geometry avoiding as much as possible circuit artifacts, like inductances and 

capacitances generated by the connection cables or ground impedances. In order to 

guarantee that no external sources could interfere in our experiment, metallic shields 

were constructed and enclosed some of our circuits. Also, it was possible to visualize 

the applied signal and resulting current on our passive circuits presenting a phase 

difference of π, on an oscilloscope screen.    

 

4.1-Direct impedance measurements 

 

 Direct impedance measurements were performed on both, single spires and 

coils. For this purpose we made use of a Novocontrol Alpha-A High Performance 

Frequency Analyzer Impedancemeter. It has a 10TΩ input resistance in parallel with a 

0.5 pF input capacitance. Its frequency range spans the µHz to 40MHz interval. 

Measurements were performed in the frequency range of 10kHz to 35MHz and with an 

excitation amplitude ranging from 10 to 1000mV. Homemade data acquisition software 

was used to control the impedancemeter via a standard GPIB interface card. Since we 

are concerned with a until now forbidden spectrum part, the utilization of commercial 

software was avoided because it may destroy the correct information on raw data 

through the use of measurement error control techniques. 

 The principles of operation of this impedancemeter are those already discussed 

on section 2.3. In this case, a sine wave is digitally synthesized and applied to a sample 

as illustrated on Figure 15: 
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Figure 15: Scheme of impedance measuring method for Novo-Control imipedancemeter. 

 

This is done by a digital signal processor and a high speed digital to analogue converter. 

This kind of signal generation guarantees high stability and high frequency resolution. 

Low pass filters are commonly employed to remove some noise that could be generated 

by the steepness of the digitally created signal. Channel 1 measures the voltage V1 that 

is applied to the sample. The resulting sample current Is, is transformed in a voltage V2 

by a wide current – wide frequency range precision impedance converter (I/V), and 

measured by Channel 2. The voltages from these two independent channels are 

amplified, filtered and converted into two digital data streams. These are phase sensitive 

and are digitally analyzed with respect to their harmonic base waves by Discrete Fourier 

Transform (DFT). The ratio between the amplitudes V1 and V2 provides the modulus 

of the impedance as stated by Equation 4 and the phase angle is simply given by the 

difference of the phases of those signals. 

 After each measurement of an impedance point, the sample is replaced by an 

impedance of reference. The reference measurement includes all linear systematic 

deviations from the sample and therefore may be used to eliminate them.  

 The signal processor calculates with a maximum sampling rate of 50MHz, and a 

resolution of 32bits is attained, corresponding to a step of 10mHz out of 20MHz [56]. 
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 In all cases the system under testing was directly plugged to the impedance 

meter, using the two-wire configuration. Output data consisted of tables comprising the 

real and imaginary parts as function of the applied frequency.  

 One of the circuit types we have mounted consisted of large single loop spires. 

They were constructed using Al, Cu, Ni-Fe alloy and carbon fiber wires. Effects were 

stronger for larger wire lengths (2 to 26 meters long). Also, it appeared that they must 

be constructed in a way to avoid large loop inductances (large loop area) and large loop 

capacitances (small wire separation). These two opposite geometries demanded a 

careful balance of experimentally adjusted constructive characteristics. Best effects 

were found for spires built in a rectangular geometry, having 60 to 250mm wire 

separation. We also observed that the necessary wire length depends on the kind of wire 

material used. Metallic spires were built with the use of wire diameters ranging from 10 

to 1000µm and wire lengths from 4 to 26m. Carbon fiber wires consisted of a bundle of 

~5µm fibers forming a 100µm thick sheet. Two types of carbon spires were made. One 

of them was 4m long and used a 1mm wide sheet. The other was 2m long and used a 

2mm wide sheet. In order to properly describe which spire was used on a specific 

experiment, we adopt the notation: wire material/wire length/wire separation/wire 

diameter (or width). 

 The other circuit type consisted of coils directly plugged to the impedancemeter. 

Coils were made of Al, Cu, brass and constantan wires, wrapped around PVC tubes. 

These wires had lengths varying between 13 and 25m. However, coil cross sectional 

area had to be controlled in order to prevent loop inductances which may drive the 

phase angle to π/2. The inter-spire capacitance, which may drive the phase angle to –π/2 

at high frequencies, had also to be controlled. This way, the best compromise on wire 

separation and coil cross-sectional area was empirically determined, avoiding the 

evidence of strong LC coil impedance. Good results were obtained by use of a coil 

diameter of 40mm in all experiments. In this sense, spire separation of approximately 

1.5mm and 103 to 200 turns was adjusted. Additional cabling necessary to link the coil 

to the meter was then limited to 100mm (each), introducing negligible extra inductance 

effects in the measurements. Coils are designed by use of the format material/wire 

length/wire separation/wire diameter. 
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4.2-Spire measurements 

  

 In this section we report the measurements performed on single spires. Since we 

observed nontrivial effects in the phase angle (or in the real part impedance) for wire 

lengths larger than few meters, the balance between spire area and wire separation 

applies.  

 In order to test our calculations (Equation 58), a copper spire 

(Cu/23m/300mm/55µm) was mounted. Its impedance spectrum is shown on Figure 14. 

It is clearly seen on this figure that the main features of the calculated spectrum were 

reproduced on both the real (Figure 14.a) and imaginary (Figure 14.b) parts, including 

the presence of negative real part peaks. The frequencies for which these peaks occurred 

closely coincide with the corresponding frequencies predicted by the theoretical curve. 

The depths of the calculated negative real part peaks are considerably larger than the 

measured ones. Also, measured width for the first negative real part peak is smaller than 

the theoretically predicted one. This sharper occurrence for the observed minimum in 

the real part impedance is not trivial and indicates that this model still lacks to explain 

some of the observed features. This confirms the need for a more precise description of 

the field dynamics inside the wire. A good agreement between calculated and measured 

data was obtained for the imaginary part. 

 Observation of same effects on carbon and Ni-Fe spires demanded less wire 

length (few meters) whilst other metallic spires were ten or more meters long.  For an 

excitation signal of a few kilohertz the impedance of all spires present, as expected, a 

characteristic RL response. Moreover, due to skin effects, an additional increase of the 

impedance as a function of the frequency was also observed. This effect is explicit on 

the real part data, which displays a consistent increase as function of the frequency. In 

the Figure 16, we present spectral data for a Ni-Fe spire (Ni-Fe/5.0m/100mm/30µm).  
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Figure 16: Impedance data for the Ni-Fe spire (Ni-Fe/5.0m/100mm/30µm) covering the frequency 

interval from 20KHz to 3MHz. On left vertical axis, circles (●) correspond to the real part; while on right 

vertical axis, squares (■) correspond to the imaginary part. 

 

 Due to the strong magnetic susceptibility of this alloy, the skin effect is marked 

and easily viewed. Note the similarity of this figure with Figure 7 which expresses the 

impedance per unit length of a 1mm diameter copper wire. However, for frequencies of 

few megahertz and above, the real part of the impedance of this Ni-Fe spire becomes 

smaller and assumes negative values. This is shown on Figure 17, where data for the 

same spire at a larger frequency interval is presented.  
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Figure 17: Impedance data for the Ni-Fe spire (Ni-Fe/5.0m/100mm/30µm) covering the frequency 

interval from 1MHz to 20MHz. On left vertical axis, circles (●) correspond to the real part; while on right 

vertical axis, squares (■) correspond to the imaginary part. 

 

There, the real part values take a maximum, follow a path to negative values, and reach 

(at a frequency of 13.8MHz) a minimum of -8.4kΩ. Real part spectra for other spires 

are presented on Figure 18 below: 
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Figure 18: Real part spectra for metallic and carbon fiber spires. On left vertical axis, symbols represent 

metallic spires data and on right vertical axis, symbols represent carbon fiber spire data. Circles (●) 

correspond to the aluminum spire (Al/12m/150mm/10µm); squares (■) correspond to the copper spire 

(Cu/19m/150mm/70 µm); rhombuses (♦) correspond to the Ni-Fe spire (Ni-Fe/5.0m/100mm/30µm) and 

triangles (▲) correspond to the carbon fiber spire (C/4m/100mm/2mm). 

 

 This set of data comprises measurements for spires made of aluminum, copper, 

Ni-Fe alloy and carbon fiber. Real part profiles are similar to that one shown on Figure 

17. The carbon spire (C/4m/100mm/2mm) data (in black) is shown separately on the 

right vertical axis. Material properties seem to be relevant in this phenomenon. The 

effect observed using a carbon made spire needed a wire length of only 4m, smaller than 

those used in all metallic ones. By now we have no reasoning for how material 

properties can change the value of the negative peak.  

 Once the real part impedance attains negative values, the phase angle is able to 

reach the third and fourth quadrants of the trigonometric circle. This effect appears to be 

more intense for long wires and for small cross-sectional area (dozen microns in 

diameter), which is consistent with the regularization procedure for the vector potential 

we have used. This way, a new class of devices and circuits could emerge by use of the 

extended phase space as presented here. For example, phase modulation circuits could 
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now explore a larger dynamic range. We provide in Figure 19 the calculated impedance 

phase angle (from the measured real and imaginary parts) for the carbon spire case.  

 

 
Figure 19: Calculated phase angle for the carbon spire (C/4m/100mm/2mm). 

 

The transition from π to -π (a crossing of the negative real axis) is evident. Having 

passed the resonance, the impedance tends to assume its regular profile, where its real 

part assumes positive values, comparable to those observed in the low frequency region. 

 A detailed presentation for the real and imaginary part data is also shown on 

Figure 20, for another carbon spire (C/2m/100mm/1mm). 
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Figure 20: Spectrum of the carbon fiber spire (C/2m/100mm/1mm). On left vertical axis the circles (●) 

represent the real part; and on right vertical axis the squares (■) represent the imaginary part. Solid lines 

represent a parallel RLC circuit fitting with a negative resistance value. 

 

Again data present points of extremum in their spectral profile and resemble a kind of 

resonant peak. In fact, these data (symbols) can be empirically adjusted to a parallel 

RLC circuit presenting a negative resistance value. In this sense we have adjusted 

spectral data in the inverted peak region according to the formula: 

    ( ) ( )
111

0Z R R i C i Lω ω ω
−−− = + + +      (59) 

As shown in Figure 20, the Equation 59 is well suited to the real and imaginary parts of 

our data. Adjusted parameters are 3
0 (1.12 0.07) 10R x= ± Ω , 4(2.29 0.03) 10R x= − ± Ω , 

10(1.27 0.02) 10C x F−= ±  and 
6(1.86 0.03) 10L x H−= ± . Differently from an ohmic 

resistance, where applied electric field and current density vectors are parallel, here they 

are anti-parallel at the source inputs. As previously shown, this fact is explained as 

coming from a current density pattern along the wire. This way, the use of these spires 

as a new circuit element is justified.  
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 Another relevant feature is a qualitative disagreement between the spectral 

profile of metallic and carbon spires. We have verified that in all metallic spires the 

imaginary part spectrum, at frequencies close to the inverted peak, reaches its negative 

minimum first and then rises to a positive maximum. The analogue spectrum for carbon 

spires initially presents a strong positive spike before its transition to negative values. 

This behavior is illustrated in Figure 21, which displays the imaginary part spectrum for 

the aluminum (Al/12m/150mm/10µm) and the carbon (C/4m/100mm/2mm) spire. 

 

 
Figure 21: Imaginary part spectrum for a metallic and a carbon spire. On left vertical axis, circles (●) 

correspond to the aluminum (Al/12m/150mm/10µm) spire data; while on right vertical axis, squares (■) 

correspond to the carbon (C/4m/100mm/2mm) spire data. 

 

In short, the signal of the derivative at the ZI = 0 point is opposite for metallic and 

carbon spires. 
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4.4-Coils measurements 

 

 For coils, the challenge of controlling stray effects due to inter-spire capacitance 

and loop inductance is harder. Since a sufficient wire length is crucial in detecting 

negative resistance effects, a large number of spires is demanded. Thus a good balance 

of wire length, inter-spire gap and coil diameter is necessary in order to get the best 

results. Once again, this compromise was empirically obtained. 

 The measured spectra for coils are quite different from those observed for single 

spires, the main difference being the occurrence of multiple inverted peaks in coils. This 

effect is shown in Figure 22, which presents data for the constantan coil 

(constantan/27m/1.3mm/100µm).  

 

 
Figure 22: Full spectrum of the constantan coil (constantan/27m/1.3mm/100µm) for four voltages. Full 

symbols represent the real part and empty symbols represent the imaginary part. Circles (●) correspond to 

an excitation signal of 10mV, squares (■) to 50mV, rhombuses (♦) to 500mV and triangles (▲) to 

1000mV. 

 

Notice that points of extrema of one set of data (real or imaginary part) roughly coincide 

with the zeros of the other part, at the same frequency. Also note that the impedance 

data are almost unchanged when we vary the signal amplitude between 10 and 1000mV. 
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The fact that the spectra are independent of the applied signal amplitude indicates that 

the system is linear and no external noises sources are effective in determining the result 

of these measurements.  

 In spite of the proven linearity on the excitation signal, we also have constructed 

shields for the coil measurements. Four circuit shielding configurations for each coil 

were tested. Three of them used different kinds of aluminum shields and one setup was 

unshielded. One of the shields is cylindrical in shape, and possesses a length of 0.44m, 

an external diameter of 114mm and an internal diameter of 98mm. This geometry leads 

to a wall thickness of 8mm which is several times the skin dept of the radiation in 

aluminum at the lowest applied frequency (~0.8mm at 10KHz). The ends of this 

cylinder are also closed by two aluminum caps, 14mm thick, which are hermetically 

attached and screwed in the cylinder shield body. The coils are then inserted on this 

aluminum cylinder and centered along the cylinder axis with the aid of two stripes of 

insulation foam for support. With this configuration, a distance of 29mm is kept 

between the shield wall and the coil. Two BNC connectors are attached in the cylinder 

in order to make the coupling between the coils and the impedancemeter, and also to 

connect the shield to the impedancemeter ground. Pictures of this cylinder-shield are 

displayed on Figure 23.  
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Cylinder-shielded experiments 

 
Figure 23: Pictures of the cylinder-shielded experiments. Top: closed shield connected to the 

impedancemeter. Bottom: side view of the open cylinder-shield displaying the enclosed coil. 

 

Other shield configuration consisted of a rectangular box made with 5mm thick 

aluminum plates. The dimensions of this box are 0.80m x 0.45m x 0.45m. In this case 

the coils are also symmetrically placed, with their axis along the greater box dimension, 

held by insulating supports. These shield dimensions provide a distance from the shield 

walls to the coil of at least 0.20m. Two BNC connectors screwed on one side of this box 

provide electrical contacts to the impedancemeter through coaxial cables. Pictures of 

this box-shield are displayed on Figure 24.  
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Box-shielded experiments 

 
Figure 24: Pictures of the box-shielded experiments. Left: closed shield connected to the impedancemeter. 

Right: top view of the open box-shield displaying the enclosed coil. 

 

The last shield type consisted of a 100µm thick aluminum foil, wrapped around the coils 

as tight as possible to its isolated wire. Pictures of this foil-shield, along with the 

unshielded coil are displayed on Figure 25. 

 

Foil-shielded experiments 

 
Figure 25: Foil-shielded experiments. Top: coil enclosed by the foil-shield. Bottom: unshielded coil. 

 

 Now we present raw data of the measurements for the different shielding 

configurations, performed on the constantan (constantan/27m/1.3mm/100µm) and the 

aluminum (Al/13m/1.4mm/10µm) coils. The resulting spectra for these experiments are 

plotted on Figure 26 (constantan) and on Figure 27 (aluminum).  
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Figure 26: Real part spectrum of the constantan coil (constantan/27m/1.3mm/100µm) for four shield 

configurations. Circles (●) correspond to the unshielded coil, squares (■) to the box-shielded coil, 

rhombuses (♦) to the cylinder-shielded coil and triangles (▲) to the foil-shielded coil. 

 

 

Figure 27: Real part spectrum of the aluminum coil (Al/13m/1.4mm/10µm) for four shield configurations. 

Circles (●) correspond to the unshielded coil, squares (■) to the box-shielded coil, rhombuses (♦) to the 

cylinder-shielded coil and triangles (▲) to the foil-shielded coil. 
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Each of these figures displays impedance data for four experimental configurations; the 

unshielded coil, the cylinder-shielded coil, the box-shielded coil and the foil-shielded 

coil. Regardless the way these shields disturb the spectra, the negative real part effect 

does not disappear in all cases. The fact that the negative real part impedance is 

observed with different kinds of coils, all them enclosed by shield walls several times 

thicker than the skin dept in the applied frequency, is a direct confirmation of this 

phenomenon. It excludes external sources as the cause for the observed effects. Since 

the negative real part peaks are dislodged to other frequency values sometimes lessened 

and sometimes augmented, we can conclude that wire near fields are important in 

causing this phenomenon. In particular we observed that the foil-shielded coils real 

parts become negative in lower frequency values when compared to the other 

experiments, changing its signal just below 1MHz for the constantan coil case. 

 

4.5-Oscilloscope measurements 

 

 Qualitative measurements in the frequency range of 10 to 100MHz were also 

performed, using an external RF signal generator (Rohde & Schwarz - SMY01) and a 

100MHz dual channel oscilloscope (Tektronix TDS 220) which has an input impedance 

of 1MΩ in parallel with a capacitance of 20pF. In this case, one channel reads the 

applied voltage in a coil and the other the voltage on a small value shunt resistor placed 

in series with the coil. This way, the voltage in the second channel is in-phase with the 

current in the circuit. This type of measurement generates less precise values for the 

impedance when compared to the impedancemeter but provides a direct comparison of 

voltage and current in the coil as function of time.  

 Measurements using an oscilloscope were performed on an unshielded coil. This 

experiment allows a direct view of the applied voltage and current in the circuit, if an 

in-series, pure resistive, small value shunt is used as a current sensor. Circuit current is 

in-phase with the voltage in the shunt in such a way that a direct comparison of voltage 

and current in the coil, as function of time, is possible. In order to achieve a good 

experimental condition a RF generator was plugged to a coil and the in-series 30Ω 

shunt. Channel 1 of the oscilloscope monitors the applied signal and channel 2 the 

voltage in the shunt. The scheme of this experimental setup is shown on Figure 28. 
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Figure 28: Experimental setup of the measurements made using an RF generator and an oscilloscope. 

They were performed at 17MHz and with a 30Ω shunt resistor in series with an aluminum coil. 

 

Oscilloscope data for measurements made at 17MHz using an aluminum coil is shown 

on Figure 29.a.  

 



75 

 

 

 

 
Figure 29: (a) Oscilloscope data of the measurements performed on an aluminum coil 

(Al/13m/1.4mm/10µm). On left vertical axis, circles (●) represent the Channel 1 voltage; on right vertical 

axis, squares (■) represent the Channel 2 voltage. (b) Impedance spectrum for this aluminum coil. Circles 

(●) represent the real part; and squares (■) represent the imaginary part. The arrow indicates a frequency, 

close to 17MHz, in which the imaginary part is zero and the real part is negative. (c) Detail of the 

spectrum of this coil in the vicinity of 17MHz. 

 

Comparing both channels we can see a characteristic anti-phase picture, evidencing the 

negative real part impedance. Extreme anti-phasing, as shown here, suggests the 

existence of a frequency for which the negative real part coincides with a null imaginary 

part. This can be checked in Figure 29.b, where the spectrum of this coil is shown. For 

clearness, we present in Figure 29.c a detail of this spectrum. The arrow points to the 

zero of the imaginary part, which is very close to 17MHz. The imaginary part changes 

from positive (below ~17MHz) to negative values (above ~17MHz). It can be checked 

that, at this point, the real part in fact has a negative value. Thus the phase angle at this 
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frequency suffers a transition from π to – π, and leads to the anti-phase oscilloscope 

picture.  

 On an oscilloscope screen, visual confirmation of the anti-phase pattern in the 

100 to 500MHz frequency range was also verified, with the use of a similar circuit 

configuration. A linear wire made of carbon fiber, having a length of 0.18m and in 

series with a 5mm length shunt made of the same material was used. Multiple inverted 

peaks were observed at various frequency values within this interval. This observation 

indicates that a device presenting negative resistance effects on tenths of meter scale 

could be feasible in the GHz region. 
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5-The negative real part impedance and causality issues 
  

 As discussed in the Introduction, negative real part impedances were not 

reported on linear passive circuits yet. In this work we have shown that electromagnetic 

field theory explains how the dynamics of the potentials produce this new impedance 

effect. Our model explicitly made use of retarded potentials so it is expected that 

causality is intrinsically satisfied. Still, a discussion on causality is pertinent on the 

grounds of the response theory. 

 There exist several means of checking impedance data for possible 

measurements errors. As result from Linear System Theory, the impedance functions 

must satisfy quite general conditions in order to make physical sense. First, the system 

is described by linear differential equations, so the principle of superposition must apply 

and the impedance values must be independent of the amplitude of the applied signal 

(linearity condition). Also, the system must be stable in time, in the sense that it returns 

to its original state after the perturbation is removed (stability condition). Another 

general condition that must be satisfied is that the impedance must be a continuous and 

finite valued function for all positive frequencies. Besides, any physically realizable 

impedance must be a causal function, that is, the system must not produce any response 

before the perturbation is applied and must not contain any other components from 

spurious sources (causality condition). These four conditions are the basis for the 

derivation of an integral transform commonly referred in the literature as Kramers-

Kronig (K-K) relations. The K-K relations state that the real and the imaginary parts are 

not independent of each other, but related in a distinctive way, which outlines the 

causality condition. In fact, K-K equations are derived from a pair of Hilbert 

transformations, which constrain the real and negative parts of any truly causal transfer 

function, like the impedance. These relations were early applied to electrical networks 

[40] and to the analysis of electrochemical systems [57-60], after its logical foundations 

relating the causality and the origin of dispersion were made clear by Toll [61]. 

 As discussed above, the impedance must be a linear, finite valued, stable in time 

and causal function. These issues were checked for our data. They are stable in time and 

signal amplitude independent (see Figure 22), meaning that our measurements represent 

linear impedances. Another necessary condition, fully checked, is that it is finite valued 

at all measured frequencies. Causality issues are more involved, since in this case, the 

real and imaginary parts must form a Hilbert Transform pair. 
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 The logical foundations for causality were introduced by Toll [61], which made 

use of a theorem proved by Titchmarsh [62]. Toll explained, in a clear and rigorous 

way, in what sense a causal transfer function in time domain leads to a knowledge of its 

real and imaginary parts in the frequency domain. Specifically, in time domain the 

excitation signal ( inF ) on a linear system is given by the convolution of a transfer 

function (T ) and its response ( outF ) as 

( ) ( ) ( )in outF t F u T t u du

∞

−∞

= −∫     (60) 

Since the response cannot rise before the excitation, the transfer function must be 

causal, meaning that it is null for negative values of its argument. And for this same 

reason, we can also write the following equation:  

      ( ) ( ) ( )T t T t t= Θ      (61) 

 where Θ  is the unit step function, that is, 1Θ=  for 0t >  and 0Θ=  for 0t < .  

In our calculations, we follow Titchmarsh [62] and Toll [61], so the following definition 

of a direct Fourier transform is used: 

    { } ( )1
( )

2
i tf t f t e dtω

π

∞

−∞

ℑ = ∫     (62) 

The impedance is defined as the Fourier transform of the transfer function as it was 

done on Equation 1. Given the causality condition demanded by Equation 61, the 

impedance is written as a convolution. Moreover this equation expresses a self-

consistence relationship which must be satisfied by the impedance, and is given by 

    ( ) { } { } { } ( ) { }Z T T Zω ω= ℑ Θ = ℑ ∗ℑ Θ = ∗ℑ Θ    (63) 

where the asterisk symbol denotes the convolution operation. The Fourier transform of 

the unit step distribution is calculated by use of Equation 62, and the result is 

    
1 1

( ( )) ( )
2 2

t
i

δ ω
π ω

ℑ Θ = −     (64) 

In consequence, an equation which must be satisfied by a causal function is obtained in 

the form:  

1
( ) * ( )Z Z

i
ω ω

π ω
= −      (65) 

 Equation 65 can be separated into its real and imaginary parts, and the result is 

the Hilbert transform pair [61, 63]: 
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Re( ( ))
Z x

Z P dx
x

ω
π ω

∞

−∞

=
−∫     (66) 

     
1 Re( ( ))

Im( ( ))
Z x

Z P dx
x

ω
π ω

∞

−∞

= −
−∫     (67) 

The letter P denotes the principal value of the improper integrals. Now we want to 

demonstrate that the impedance derived on Section 3.2 and represented by Equation 57 

is a causal function, that is, it satisfies Equations 66 and 67. In order to achieve this 

goal, we firstly write down its real and imaginary parts explicitly as follows: 

( )
( )sin ( ') | ' | /

( ) Re ( ) '
4 | ' |

s r r r c
R Z R dsds

r r

ωωµ
ω ω

π

− − −  ≡ − =
−∫ ∫
� � �

� �
� �� �               (68) 

( )
( )cos ( ') | ' | /

( ) Im ( ) '
4 | ' |

s r r r c
I Z R dsds

r r

ωωµ
ω ω

π

− −  ≡ − =
−∫ ∫
� � �

� �
� �� �     (69) 

The constant DC term was subtracted from theses equations. Notice that a Hilbert 

transform is a linear operator and commutes with both, the integral and derivative 

operators. Thus, when it is applied to the impedance expression displayed on Equation 

57 (without the DC term) we must calculate the Hilbert transform of a function of the 

type i qi e ωω , that is, we have: 

   { } { }i q i q i q i qd d
H i e H e i e e

dq dq

ω ω ω ωω ω= = = −   (70) 

After insertion of this result on Equation 57, we can expand the exponential and 

compare to Equations 68 and 69. This procedure readily leads to a pair of Hilbert 

transform for the real and imaginary parts and confirms the causality character of the 

impedance we have calculated. Explicitly the result is:   

   { } 1 ( )
( ) Re( ( ) )

I x
I dx Z R

x
ω ω

π ω

∞

−∞

Η = = −
−∫    (71) 

    { } 1 ( )
( ) Im( ( ) )

R x
R dx Z R

x
ω ω

π ω

∞

−∞

−
−Η = = −

−∫    (72) 

 Shortly, the frequency-dependent term of the impedance displayed by Equation 

57, generated by the space-dependent modulation on the current density, is causal, in 

complete consistence with the use of a retarded potential formula. As consequence, all 

requirements of the Linear System Theory are satisfied by our impedance data and 

calculations. 
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6-Conclusion and perspectives 
 

 After a brief historical review on the origins of impedance spectroscopy, we 

have summarized recent developments which represent several efforts to improve the 

accuracy and extend the limits of applicability of this technique, as well as to generate 

new applications and retrieve novel material properties.  

 Original results concerning the observation of a region of impedance spectra that 

was, until now unexploited, was presented in this work. The novelties presented here 

represent an advance towards a better understanding of the electrical impedance of a 

class of devices. They can be summarized as follows: 

• Wave propagating modes for the current density: We have assumed the 

existence of propagating current waves inside an ohmic conductor. This 

hypothesis permitted us to devise a theoretical model which is in accordance 

with experimental results. This fact strongly favors our initial assumption as 

being realistic. Besides, experimental evidence concerning the direct observation 

of these waves was also provided. 

• Prediction and measurements of novel impedances: Our model has predicted a 

region of the impedance spectrum which was never before observed. This 

prediction was confirmed by a set of careful executed experiments. The 

predicted and measured impedances have a negative real part. Equivalently, the 

impedance phase angle is capable of attaining a value of π. It was characterized 

by a new circuit element which complements the set comprising the standard set 

of R/L/C, and allows a full coverage of the trigonometric circle. 

• Theoretical model for the electrodynamics of specific devices: By making use of 

the undulatory current assumption we were able to generate a theoretical model 

which permitted us to compute the dynamics of the electromagnetic potentials. 

As consequence, the electromagnetic fields and the impedance of a specifically 

designed device was obtained.  

• Internal consistency: We have shown that, our modeling as well as our 

experimental data satisfies the criterions of Linear System Theory. In particular 

we have shown that the impedance we have obtained is a linear, finite valued, 

stable and causal function.  
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• Absence of mechanical analog: The obtained impedance presents no mechanical 

analog. This aspect is different in all the impedances already disseminated in the 

literature.    

 In as much as it occurred with the classical impedances of resistors, capacitors 

and inductors, the impedance described on this work may generate devices with a large 

extent of applicability. A patent including a class of devices which resulted from this 

work is pending. Some possible applications may be listed: 

• Devices presenting negative real part impedance could be used in the 

construction a new class of oscillators which may be applied in a great 

variety of situations.  

• Phase modulation, which is an important technique in 

telecommunications could greatly benefit from and extended phase 

element. That is because it encodes information as variations in the 

instantaneous phase of a carrier wave. So, an apparatus which could 

improve phase sensitivity would certainly permit the transmission of a 

greater amount of information.  

• Matching impedance circuits are another class of devices which could be 

improved by use of negative real part impedances. The efficiency in the 

transmission of signals and/or power generally depends on impedance 

matching, which can be made easier with extended phase elements.  

 In regarding future perspectives, we may first cite a refinement on the theoretical 
modeling of the negative real part impedance effect. We have shown a calculation 
which presents the main features of the obtained experimental data, but an 
improvement in the agreement is certainly welcome. In order to improve the 
calculations some refinements can be made as to include the internal inductance 
contribution and the skin effect on the calculation of the extended phase impedance. 
Moreover, compact topology of spires and coils can be achieved in the GHz spectral 
region because much smaller wire length will be necessary to achieve a negative 
resistance component. This way, projects of circuits working in the extended phase 
region and designed for practical uses will become feasible.  The physical system 
studied in this work presents essentially the same aspects of those studied by 
plasmonics, that is, the interaction of electromagnetic fields with the free electrons 
on conductors, in the infra-red range of frequencies. Thus, plasmonics may also be of 
relevance in the context of possible applications of the new phenomenology 
presented here.    
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