UNIVERSIDADE FEDERAL DE MINAS GERAIS Instituto de Ciências Exatas Programa de Pós-Graduação em Estatística

Rumenick Pereira da Silva

MODELOS SEMIPARAMÉTRICOS PARA ANÁLISE DE EVENTOS RECORRENTES

Belo Horizonte 2019 Rumenick Pereira da Silva

MODELOS SEMIPARAMÉTRICOS PARA ANÁLISE DE EVENTOS RECORRENTES

Versão final

Tese apresentada ao Programa de Pós-graduação em Estatística da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do grau de Doutor em Estatística.

Orientador: Prof. Dr. Vinícius Diniz Mayrink Coorientador: Prof. Dr. Fábio Nogueira Demarqui

Belo Horizonte 2019 2019, Rumenick Pereira da Silva @Todos os direitos reservados

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa CRB 6ª Região nº 1510

	Silva, Rumenick Pereira da
S586m	Modelos semiparamétricos para análise de eventos recorrentes / Rumenick Pereira da Silva — Belo Horizonte, 2019. ix,290 f. il.; 29 cm.
	Tese(doutorado) - Universidade Federal de Minas Gerais – Departamento de Estatísitca. Orientador: Vinícius Diniz Mayrink. Coorientador: Fábio Nogueira Demarqui
	 Estatística - Teses. 2. Poisson, Processos de . Teoria bayesiana de decisão estatistica. 4.Polinômios de Bernstein. 5 Amostrador de Gibbs. I. Orientador. II. Coorientador. III.Título.
	CDU 519.2 (043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS

UFMG

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA

ATA DA DEFESA DE TESE DO ALUNO RUMENICK PEREIRA DA SILVA

Realizou-se, no dia 20 de setembro de 2019, às 14:00 horas, Sala 2076 ICEx, da Universidade Federal de Minas Gerais, a 56^a defesa de tese, intitulada *Modelos Semiparamétricos para Análise de Eventos Recorrentes*, apresentada por RUMENICK PEREIRA DA SILVA, número de registro 2015656264, graduado no curso de ESTATÍSTICA, como requisito parcial para a obtenção do grau de Doutor em ESTATÍSTICA, à seguinte Comissão Examinadora: Prof(a). Vinícius Diniz Mayrink - Orientador (DEST/UFMG), Prof(a). Fábio Nogueira Demarqui - Coorientador (DEST/UFMG), Prof(a). Rosangela Helena Loschi (DEST/UFMG), Prof(a). Wagner Barreto de Souza (DEST/UFMG), Prof(a). Vera Lúcia Damasceno Tomazella (UFSCar), Prof(a). Mário de Castro Andrade Filho (ICMC/USP).

A Comissão considerou a tese:

(V) Aprovada

() Reprovada

Finalizados os trabalhos, lavrei a presente ata que, lida e aprovada, vai assinada por mim e pelos membros da Comissão. Belo Horizonte, 20 de setembro de 2019.

Prof(a). Vinícius Diniz Mayrink (Doutor)

Prof(a). Fábio Nogueira Demarqui - Coorientador (Doutor)

Prof(a). Rosangela Helena Loschi (Doutora)

Prof(a). Wagner Barreto de Souza (Doutor)

Prof(a). Vera Lúcia Damasceno Tomazella (Doutora)

Prof(a). Mário de Castro Andrade Filho (Doutor)

A minha irmã, Renilma Pereira da Silva.

Agradecimentos

Agradeço primeiramente a Deus, por ter me dado a energia necessária para concluir este trabalho.

Aos meus orientadores, Prof. Dr. Vinícius Diniz Mayrink e Prof. Dr. Fábio Nogueira Demarqui, pela orientação presente e por todas as contribuições feitas desde a proposta e durante o processo de elaboração deste trabalho.

A minha esposa, Carolina Vital, por estar sempre ao meu lado incentivando e me dando forças para concluir esta tese.

A minha família, pelo suporte dado em toda minha trajetória de vida, em especial, ao meu cunhado Claudio Javier Tablada e a minha irmã, por toda ajuda no decorrer do curso de doutorado.

Aos professores membros da banca: Prof. Dr. Mário de Castro Andrade Filho, Prof.^a Dr.^a Rosangela Helena Loschi, Prof.^a Dr.^a Vera Lucia Damasceno Tomazella e Prof. Dr. Wagner Barreto de Souza por aceitarem participar dessa banca de defesa de tese.

Aos amigos do Programa de Pós-graduação em Estatística, em especial os discentes Adriana Lima, Alejandro Monzón, Caio Oliveira, Emilly Malveira, Erick Amorim, Fernando Bastos, Guilherme Oliveira, Ian Ananda, Juliana Freitas, Magno Tairone, Nívea Bispo, Renato Panaro, Silvio Cabral, Wagner Pinheiro, Walmir Miranda, Willian Marciano (Chico) e à secretária Rogéria Figueiredo, que contribuíram de alguma forma para o bom andamento deste trabalho.

Aos professores do Programa de Pós-graduação em Estatística, por todas as experiências enriquecedoras vividas em disciplinas e seminários.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo financiamento que proporcionou o desenvolvimento desta tese.

Por fim, agradeço a todos que me ajudaram diretamente ou indiretamente nessa jornada.

Resumo

Em áreas como medicina, saúde pública, negócios, indústria, confiabilidade, ciências sociais e seguros surgem muitas situações em que o interesse é estudar processos que geram eventos repetidamente ao longo do tempo. Esses tipos de situações são denominados processos de eventos recorrentes e os dados que eles fornecem são chamados de dados de eventos recorrentes. Nesse contexto, as modelagens propostas no presente trabalho são, fundamentalmente, modelos de sobrevivência baseados em processo de Poisson e processo de renovação, sendo a função de risco (ou intensidade) construída sob uma ótica semiparamétrica via polinômios de Bernstein. Além disso, são propostas duas classes gerais de modelos semiparamétricos que possuem como casos particulares os processos supracitados, sendo as funções de risco (ou intensidade) destas classes obtidas através dos polinômios de Bernstein e da exponencial por partes. Os modelos propostos são flexíveis no sentido de não impor uma forma específica para a função de risco (ou intensidade), ter qualidades similares às dos modelos paramétricos no que diz respeito a estimação das funções de sobrevivência, risco (ou intensidade) e risco acumulado (ou intensidade acumulada). Alguns destes modelos não assumem proporcionalidade entre os riscos (ou intensidades) e possuem características computacionais que são atrativas do ponto de vista de inferência frequentista e Bayesiana, o que motivou realizar inferência para os modelos propostos sob ambos os paradigmas. A análise desenvolvida aqui apresenta resultados de um estudo de simulação objetivando investigar o comportamento dos modelos propostos diante de diferentes cenários e explora também dados reais de estudos clássicos na literatura de análise de eventos recorrentes.

Palavras-chave: Processo de Poisson, Processo de renovação, Classe geral, Polinômios de Bernstein, Exponencial por partes, Inferência frequentista, Inferência Bayesiana, Amostrador de Gibbs, JAGS.

Abstract

In areas such as medicine, public health, business, industry, reliability, social sciences and insurance, many situations arise in which the interest is to study processes that generate events repeatedly over time. These types of situations are called recurrent event processes, and the data they provide is called recurrent event data. In this context, the models proposed in the present work are, fundamentally, survival models based on the Poisson process and the renewal process, with the hazard function (or intensity) being constructed from a semiparametric perspective via Bernstein polynomials. In addition, two general classes of semiparametric models are proposed that have the above processes as particular cases, the hazards functions (or intensities) of these classes being obtained through the Bernstein polynomials and the piecewise exponential. The proposed models are flexible in the sense that they do not impose a specific form for the hazard function (or intensity), have qualities similar to those of the parametric models with regard to the estimation of the survivor, hazard (or intensity) and cumulative hazard (or intensity) functions. Some of these models do not assume proportional hazards (or intensities) and have computational characteristics that are attractive from the point of view of classical and Bayesian inference, which motivated to make inference for the models proposed under both paradigms. The analysis developed here presents the results of a simulation study aimed at investigating the behavior of the proposed models in different scenarios and also explores real data from classic studies in the literature for the analysis of recurring events.

Keywords: Poisson Processes, Renewal Processes, General Class, Bernstein Polynomial, Piecewise Exponential, Classical Inference, Bayesian Inference, Gibbs Sampling, JAGS.

Sumário

1	Intr	rodução	9
	1.1	Objetivos	11
		1.1.1 Objetivo geral	11
		1.1.2 Objetivos específicos	12
	1.2	Organização da tese	12
2	Cor	nceitos básicos	14
	2.1	Análise de dados de sobrevivência	14
	2.2	Polinômios de Bernstein	17
		2.2.1 Formulação da função de risco e função intensidade	18
3	Aná	álise de dados de eventos recorrentes	27
	3.1	Processo de Poisson via Polinômios de Bernstein	31
		3.1.1 Aplicação - estudo de carcinogênese	37
	3.2	Processo de renovação via Polinômios de Bernstein	49
		3.2.1 Aplicação - exacerbações pulmonares na fibrose cística	50
4	Um	a classe geral de modelos semiparamétricos para análise de dados de	
	eve	ntos recorrentes	55
	4.1	Classe geral de modelos semiparamétricos	58
	4.2	Estudo de simulação	64
		4.2.1 Resultados: abordagem clássica	68
		4.2.2 Resultados: abordagem Bayesiana	99
	4.3	Aplicações	30

5	Considerações finais	135
	5.1 Trabalhos futuros	. 138
R	eferências	139
\mathbf{A}	pêndice	146

Capítulo 1

Introdução

Nos últimos anos foi observado um aumento significativo de propostas de modelos paramétricos e semiparamétricos para analisar dados cuja variável resposta, comumente, é o tempo até a ocorrência de um determinado evento de interesse. Tais modelos foram propostos buscando encontrar alternativas mais flexíveis e robustas que permitam acomodar funções de risco que tenham formas não monótonas (Lai, 2013). Neste sentido, abordagens que assumem função de risco arbitrária, ou seja, que não impõem uma estrutura (ou forma) para esta função, são de notável relevância na análise destes tipos de dados e é o principal objeto de estudo deste trabalho.

A área da estatística que se ocupa da modelagem desse tipo de variável resposta é a análise de dados de sobrevivência e esta variável é denominada tempo de vida ou tempo até a falha. Por exemplo, o tempo até um cliente romper o contrato com uma determinada instituição financeira ou ainda o tempo até um indivíduo fazer a primeira doação de sangue. Observe que, se o evento é fazer uma doação de sangue, este não seria terminal, podendo assim ocorrer várias vezes ao longo de um período de tempo, dando origem ao que é referido na literatura estatística por dados de eventos recorrentes ou dados de múltiplos eventos do mesmo tipo.

Segundo Therneau e Grambsch (2000), existe um crescente interesse por analisar dados de eventos recorrentes e, para os autores, isso deve-se ao fato de que com o aumento da qualidade de vida, eventos recorrentes como reinternações e outros desfechos secundários passaram a ser mais frequentes. Dados com a configuração de recorrência podem ser encontrados em diversas áreas, como por exemplo, sociologia, engenharia, finanças e seguro.

Sem dúvida, as abordagens mais utilizadas para análise de dados de eventos recorrentes são

os modelos marginais de Andersen e Gill (AG) (Andersen e Gill, 1982), Prentice, Williams e Peterson (PWP) (Prentice et al., 1981) e de Wei, Lin e Weissfeld (WLW) (Wei et al., 1989), caracterizados por serem extensões do modelo de riscos proporcionais de Cox (1972) e ditos marginais do ponto de vista de estimação dos parâmetros (Therneau e Grambsch, 2000; Ozga et al., 2018). Essas estratégias se diferenciam principalmente em relação à definição dos instantes em que há risco de se observar o evento de interesse. O modelo AG assume que após ocorrer cada evento, os elementos permanecem em risco de apresentar um novo. Já o modelo PWP considera que o risco de os elementos experimentarem o segundo evento somente iniciará após a ocorrência do primeiro e assim por diante até o fim do acompanhamento, sendo também referido como modelo condicional. No caso do modelo WLW, assume-se que os elementos estão constantemente em risco para qualquer um dos eventos desde o início do período de observação até que todos os eventos ocorram ou aconteça a perda do acompanhamento, denotado algumas vezes na literatura por modelo marginal.

Nesse seguimento, este trabalho propõe modelos semiparamétricos para explorar dados de eventos recorrentes no contexto dos métodos baseados em contagem e função de intensidade e análise do tempo entre eventos. Os modelos desenvolvidos têm como fundamentação o processo de Poisson e o processo de renovação. A estimação de quantidades desconhecidas é feita sob os pontos de vista Bayesiano e frequentista. Para tal, considera-se funções de risco ou intensidade induzidas pelos Polinômios de Bernstein (PBs) (Bernstein, 1912), como apresentado em Osman e Ghosh (2012). Ademais, seguindo os passos de Peña e Hollander (2004) são propostas aqui duas classes gerais de modelos semiparamétricos que possuem como casos particulares os processos de Poisson e renovação. Além disso, as abordagens incorporam em suas estruturas o impacto do número acumulado de eventos sobre a recorrência de novos eventos, sendo as denominadas funções de intensidade geral construídas com base nos PBs e na Exponencial por Partes (EP) (Breslow, 1974; Kitchin et al., 1980, 1983).

Os modelos induzidos pelos polinômios são fortes concorrentes do modelo de riscos proporcionais de Cox (1972) e do modelo EP, uma vez que, assim como estes, não admitem uma forma específica para função de risco (ou intensidade); o que não ocorre quando utiliza-se modelos paramétricos como o exponencial, de Weibull, log-normal e log-logístico. Assim como referido em Demarqui (2010) e Demarqui et al. (2011), para o caso do modelo EP, a função de risco (ou intensidade) obtida via PBs possui uma forma paramétrica em um senso estrito, no entanto, este pode ser pensado como um modelo não paramétrico, pois sua função risco (ou intensidade) não apresenta restrições quanto a sua forma. Além de tudo, as funções de risco (ou intensidade) definidas de acordo com a EP não são contínuas, sendo esta uma das principais diferenças da EP com relação aos PBs, que produz funções de risco (ou intensidade) contínuas e suaves.

Apesar das propriedades teóricas dos PBs serem amplamente estudadas (Lorentz, 1986) e de sua vasta aplicação para estimação de densidades (Vitale, 1975; Tenbusch, 1994; Petrone, 1999; Wang e Guan, 2019) e aproximação de funções (Phillips, 2003), poucos são os trabalhos no contexto de análise de sobrevivência ou confiabilidade que fazem o uso deste para modelagem. Pode-se citar Chang et al. (2005), que consideram a estrutura dos polinômios para estimar de forma não paramétrica a função de risco acumulada via inferência Bayesiana e não consideram covariáveis. Os autores também apresentam uma série de resultados envolvendo a interpretação da função de risco induzida. Osman e Ghosh (2012), usando da flexibilidade dada pelas funções de risco obtidas via PBs, propõem um modelo de regressão assumindo não proporcionalidade entre os risco e fazem a estimação dos parâmetros por máxima verossimilhança. Chen et al. (2014), que baseado na especificação da função de risco de um modelo de risco de falha acelerado (Chen e Wang, 2000), utilizam os polinômios para desenvolver um nova classe de modelos que são misturas de distribuições paramétricas, como por exemplo: Weibull e log-logística. Zhou et al. (2017) usaram funções de risco acumulada construídas através dos PBs para propor um modelo de regressão semiparamétrico para dados de censura intervalar bivariada. Por último, considere Shin et al. (2018) que utilizando a mesma estrutura do modelo AG, propõe um modelo com fragilidade compartilhada entre elementos da mesma família assumindo a função de intensidade de base com apresentada no Capítulo 3 desta tese.

1.1 Objetivos

1.1.1 Objetivo geral

O objetivo principal deste trabalho é propor modelos semiparamétricos alternativos para análise de dados de eventos recorrentes baseados nos processos de Poisson e de renovação, com funções de risco ou intensidade induzidas pelos PBs. Além disso, estende-se essas abordagens através de duas classes gerais de modelos semiparamétricos baseadas nos PBs e na EP.

1.1.2 Objetivos específicos

- Descrever aspectos probabilísticos e inferenciais dos processos de Poisson e de renovação no contexto de análise de dados de eventos recorrentes tomando como base os resultados empíricos;
- Propor novos métodos baseados em processos de contagem e função intensidade via PBs;
- Desenvolver novas ferramentas baseadas na análise do tempo entre eventos através dos PBs;
- Propor classes mais gerais de modelos semiparamétricos considerando os PBs e a EP;
- Realizar inferência para os modelos propostos utilizando os paradigmas frequentista e Bayesiano;
- Avaliar por meio de simulações o desempenho dos modelos propostos considerando diferentes cenários;
- Comparar resultados de aplicações apresentados na literatura com aqueles obtidos por meio das modelagens propostas quando aplicadas ao mesmo conjunto de dados;
- Desenvolver pacotes para o *software* R considerando todas as abordagens propostas neste trabalho.

1.2 Organização da tese

Os capítulos deste trabalho estão dispostos da seguinte forma: no Capítulo 2 são apresentados alguns conceitos básicos de análise de dados de sobrevivência e é feita a apresentação dos PBs com sua formulação para obtenção da função de risco (ou intensidade) e alguns aspectos associados à interpretação da função induzida. No Capítulo 3 é apresentada uma breve introdução sobre análise de dados de eventos recorrentes, mostra-se os fundamentos dos processos de Poisson e de renovação, o desenvolvimento teórico dos modelos propostos e a aplicação destes a conjuntos de dados reais. No Capítulo 4 são desenvolvidas as classes gerais de modelos semipamétricos, um exaustivo estudo de simulação e algumas aplicações a dados reais das abordagens propostas. Por fim, no Capítulo 5 discute-se tudo que foi apresentado e proposto, destacando-se as principais conclusões do estudo e as propostas de trabalhos futuros.

Capítulo 2

Conceitos básicos

2.1 Análise de dados de sobrevivência

Análise de dados de sobrevivência (ou confiabilidade) é um conjunto de métodos estatísticos que servem para explorar dados correspondentes ao tempo até a ocorrência de um determinado evento de interesse. Este tempo é na literatura comumente denominado por tempo de sobrevivência ou tempo até a falha e o conjunto de observações é chamado de dados de sobrevivência. Alguns exemplos são: o tempo até a morte de um paciente devido a alguma enfermidade previamente diagnosticada, o tempo até a cura da mesma após algum tratamento, o tempo até a falha de um componente eletrônico, o tempo até que um indivíduo deixe de ser cliente de uma instituição financeira, entre outros.

Uma característica marcante em dados de sobrevivência é a presença de observações censuradas, isto é, para alguns elementos ocorre algo que impede que o tempo exato do evento de interesse seja observado. Segundo Colosimo e Giolo (2006), dados censurados podem ser encontrados em muitos estudos e por diversos motivos; dentre estes, pode-se citar: a conclusão do acompanhamento antes que todos os elementos pesquisados apresentem o evento de interesse, pacientes em estudos clínicos desistindo do tratamento ou falecendo por uma causa diferente da estudada, em estudos na área de confiabilidade um componente eletrônico pode não apresentar a falha no momento que os dados foram encaminhados para análise. Na área financeira o indivíduo pode ter morrido sendo cliente da instituição ou ainda era cliente desta ao fim do estudo. Existem diversos tipos de censura, porém, este trabalho considera apenas o tipo "à direita" assumida como não informativa e apresentando mecanismo aleatório, ver Figura 2.1 (d). Em outras palavras, o evento de interesse ocorreu à direita do tempo registrado, o acontecimento da censura não influencia no que provoca o evento falha e quando perdido o acompanhamento de algum elemento é por motivo diferente do evento falha, motivo esse supostamente aleatório. Esta configuração de censura é encontrada com maior frequência nos dados de sobrevivência, como pode ser visto em várias aplicações reais em Lawless (2003), Kleinbaum e Klein (2005), Colosimo e Giolo (2006) e Carvalho et al. (2011).

Na Figura 2.1 são apresentadas ilustrações referentes a três mecanismos de censura à direita e uma ilustração para o caso de dados completos. Sendo assim, no painel (a) todos os elementos experimentaram o evento até o final do estudo, em (b) alguns elementos não experimentaram o evento de interesse até o final do estudo, em (c) o estudo finalizou após uma quantidade pré-estabelecida de falhas (neste caso, após a quinta falha) e em (d) o acompanhamento dos elementos foi interrompido por alguma causa diferente do evento falha e alguns deles não experimentaram o evento até o final do estudo.

Figura 2.1: Ilustração de alguns mecanismos de censura à direita, em que (\bullet) representa um tempo de falha e (\circ) o de censura; fonte: Silva (2015).

Seja T uma variável aleatória contínua e não negativa que representa o tempo de sobrevivência de um elemento, com função densidade de probabilidade f(t) e função de distribuição acumulada F(t). Definem-se as funções de sobrevivência e de risco, respectivamente, da seguinte forma:

$$S(t) = P(T > t) = 1 - F(t), \ \forall t > 0$$

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}.$$

Estas expressões representam, respectivamente, a probabilidade de um elemento sobreviver pelo menos até o tempo t e a taxa instantânea de falha ou morte no tempo t condicional à sobrevivência do elemento até o tempo t. Note que S(t) é uma função monótona decrescente, contínua, com as seguintes propriedades: S(0) = 1 e $\lim_{t\to\infty} S(t) = 0$. Além disso, em termos das definições das funções de sobrevivência e de risco, exibidas anteriormente, pode-se determinar as seguintes relações matemáticas:

$$S(t) = \exp\left\{-\int_{0}^{t} h(u) \, du\right\} = \exp\left\{-H(t)\right\},\tag{2.1}$$

$$f(t) = -\frac{dS(t)}{dt} = h(t) S(t)$$
$$= h(t) \exp\left\{-\int_0^t h(u) du\right\}$$
(2.2)

е

$$h(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt} \log [S(t)].$$
(2.3)

Considere que $H(t) = \int_0^t h(u) du$ é a função de risco acumulada, sendo finita para t > 0 e $\int_0^\infty h(u) du = \infty$. Observe que conhecendo uma das funções, as demais são obtidas diretamente por essas relações, ou seja, pode-se especificar a distribuição da variável aleatória T por qualquer destas funções, pois são equivalentes (Lawless, 2003).

2.2 Polinômios de Bernstein

Os polinômios de Bernstein foram propostos em 1912 pelo matemático russo Sergei Natanovich Bernstein a fim de dar uma prova construtiva para o teorema de Stone-Weierstrass, que afirma que toda função real contínua cujo domínio é um intervalo compacto pode ser aproximada uniformemente por polinômios (Bernstein, 1912). Lorentz (1986), em seu livro intitulado *Bernstein Polynomials (BP)*, apresenta uma série de resultados envolvendo esta metodologia, fazendo uma exposição exaustiva dos principais fatos relacionados a ela e discutindo algumas de suas aplicações em Análise Real.

Nesta seção, são apresentados os PBs e a função de risco induzida por eles como definida em Osman e Ghosh (2012), bem como a obtenção da função intensidade por analogia com a função de risco. Além disso, mostra-se visualmente alguns aspectos relacionados a flexibilidade dos polinômios ao aproximar funções de riscos suaves.

2.2.1 Formulação da função de risco e função intensidade

Seja C(y) uma função contínua definida no intervalo $[0, \tau]$ compacto, ou seja, limitado e fechado, sendo y um elemento deste intervalo. Assim, como apresentado em Lorentz (1986), a aproximação de C(y) através dos polinômios de Bernstein de grau m, de base $\boldsymbol{B}_m = (B_{0,m}, B_{1,m}, \ldots, B_{m,m})^{\top}$ e coeficientes $\boldsymbol{b}_m = (b_{0,m}, b_{1,m}, \ldots, b_{m,m})^{\top}$, é dada por:

$$B_m(y;C) = \sum_{k=0}^m b_{k,m} B_{k,m}(y) \, ,$$

em que $B_{k,m}(y) = {m \choose k} \left(\frac{y}{\tau}\right)^k \left(1 - \frac{y}{\tau}\right)^{m-k}$, com ${m \choose k} = \frac{m!}{k!(m-k)!}$ e $b_{k,m} = C\left(\frac{k\tau}{m}\right)$, para $k = 0, 1, \ldots, m$. Pelo teorema de Stone-Weierstrass (ou apenas Weierstrass), tem-se que $B_m(y; C)$ converge uniformemente para C(y) em $[0, \tau]$ quando m tende a infinito; para detalhes sobre a prova consulte Bernstein (1912) e Lorentz (1986).

Neste contexto, pode-se mostrar que a primeira derivada de $B_m(y;C)$ com respeito a y, denotada por $b_m(y;C)$, é dada por:

$$b_m(y;C) = \sum_{k=1}^m \left[C\left(\frac{k\tau}{m}\right) - C\left(\frac{(k-1)\tau}{m}\right) \right] \frac{f_\beta\left(\frac{y}{\tau}|k,m-k+1\right)}{\tau},\tag{2.4}$$

sendo f_{β} a função densidade de probabilidade da distribuição Beta com parâmetros $k \in m-k+1$ e avaliada no ponto y/τ . Segue a demonstração:

$$\begin{aligned} \frac{dB_m(y;C)}{\partial y} &= \sum_{k=0}^m C\left(\frac{k\tau}{m}\right) \binom{m}{k} \left[k\left(\frac{y}{\tau}\right)^{k-1} \frac{1}{\tau} \left(1-\frac{y}{\tau}\right)^{m-k} + \left(\frac{y}{\tau}\right)^k (m-k) \left(1-\frac{y}{\tau}\right)^{m-k-1} \left(-\frac{1}{\tau}\right) \right] \\ &= \frac{1}{\tau} \sum_{k=0}^m C\left(\frac{k\tau}{m}\right) k\binom{m}{k} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} - \\ &= \frac{1}{\tau} \sum_{k=0}^m C\left(\frac{k\tau}{m}\right) (m-k) \binom{m}{k} \left(\frac{y}{\tau}\right)^k \left(1-\frac{y}{\tau}\right)^{m-k-1} \\ &= \frac{1}{\tau} \sum_{k=1}^m C\left(\frac{k\tau}{m}\right) k\binom{m}{k} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} - \\ &= \frac{1}{\tau} \sum_{k=0}^m C\left(\frac{k\tau}{m}\right) k\binom{m}{k} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} - \\ &= \frac{1}{\tau} \sum_{k=0}^m C\left(\frac{k\tau}{m}\right) k\binom{m}{k} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} - \\ &= \frac{1}{\tau} \sum_{k=1}^m C\left(\frac{k\tau}{m}\right) k\binom{m}{k} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} - \\ &= \frac{1}{\tau} \sum_{k=1}^m C\left(\frac{(k-1)\tau}{m}\right) (m-k+1) \left(\binom{m}{k-1}\right) \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} \\ &= \frac{1}{\tau} \sum_{k=1}^m \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} \left[C\left(\frac{k\tau}{m}\right) k\binom{m}{k} - C\left(\frac{(k-1)\tau}{m}\right) (m-k+1) \binom{m}{k-1}\right]. \end{aligned}$$

Contudo,

$$k\binom{m}{k} = k \frac{m!}{k! (m-k)!} = \frac{m!}{(k-1)! (m-k)!}$$

е

$$(m-k+1)\binom{m}{k-1} = (m-k+1)\frac{m!}{(k-1)!(m-k+1)!} = \frac{m!}{(k-1)!(m-k)!}$$

Isso implica que:

$$k\binom{m}{k} = (m-k+1)\binom{m}{k-1} = \frac{m!}{(k-1)!(m-k)!} = \frac{\Gamma(m+1)}{\Gamma(k)\Gamma(m-k+1)}.$$

Portanto,

$$\begin{aligned} \frac{\partial B_m\left(y;C\right)}{\partial y} &= \frac{1}{\tau} \sum_{k=1}^m \left[C\left(\frac{k\tau}{m}\right) - C\left(\frac{(k-1)\tau}{m}\right) \right] \frac{\Gamma\left(m+1\right)}{\Gamma\left(k\right)\Gamma\left(m-k+1\right)} \left(\frac{y}{\tau}\right)^{k-1} \left(1-\frac{y}{\tau}\right)^{m-k} \\ &= \sum_{k=1}^m \left[C\left(\frac{k\tau}{m}\right) - C\left(\frac{(k-1)\tau}{m}\right) \right] \frac{f_\beta\left(\frac{y}{\tau}|k,m-k+1\right)}{\tau} = b_m\left(y;C\right) \\ \end{aligned}$$

Similar a $B_m(y; C)$, também pode-se mostrar que $b_m(y; C)$ converge uniformemente para c(y), derivada de C(y), em $[0, \tau]$ quando m tende a infinito. Novamente ressalta-se que este e outros detalhes sobre os PBs podem ser encontrados em Lorentz (1986) e suas referências.

Assim como na Seção 2.1, considere T uma variável aleatória contínua e não negativa que representa o tempo de sobrevivência com função de risco h(t) associado a uma função de risco acumulada H(t) e a uma função de sobrevivência S(t). Logo, com base em (2.4), pode-se definir a aproximação desta função de risco da seguinte forma:

$$h_m(t;H) = \sum_{k=1}^m \left[H\left(\frac{k\tau}{m}\right) - H\left(\frac{(k-1)\tau}{m}\right) \right] \frac{f_\beta\left(\frac{t}{\tau}|k,m-k+1\right)}{\tau},\tag{2.5}$$

em que $\tau = \inf \{t : S(t) = 0\}$, pois para garantir a convergência uniforme é necessário assumir que a variável aleatória T está definida no intervalo compacto $[0, \tau]$.

Portanto, dado um formato para a função de risco acumulada, pode-se aproximar a respectiva função de risco usando (2.5). Além disso, como a função de risco acumulada é monótona não decrescente, têm-se que todas as quantidades envolvidas no somatório da aproximação são positivas, garantindo assim que esta é sempre maior do que 0.

A Figura 2.2 exemplifica a aproximação usando a função de risco acumulada da distribuição Gama Generalizada (GG), assumindo uma função de risco na forma de banheira (Stacy, 1962). Observe que é necessário que o grau do polinômio seja relativamente alto para obter uma aproximação razoável, porém a função de risco escolhida apresenta uma queda rápida ao longo do tempo, isto é, para funções não suaves precisa-se de um maior grau para obter uma aproximação considerada satisfatória.

Figura 2.2: Curva da função de risco da distribuição GG e curvas da função $h_{m,k}(t; H)$ para m = 4, 10, 100 e 1000, assumindo $H(\cdot)$ como sendo a função de risco acumulada da distribuição GG.

Neste sentido, defina $\gamma_k = H\left(\frac{k\tau}{m}\right) - H\left(\frac{(k-1)\tau}{m}\right)$ e $g_{m,k}(t) = f_\beta(t/\tau|k, m-k+1)/\tau$, sendo: (*i*) γ_k a parte que define em (2.5) a forma da função de risco e (*ii*) $g_{m,k}(t)$ uma constante que funciona como um coeficiente, informando em qual proporção γ_k contribui mais no cálculo da aproximação da função de risco aplicada ao ponto t. Note que, γ_k não depende de t e que este é constante no intervalo de $[0, \tau]$, contudo para um tempo t tal que $\frac{\tau(k-1)}{m} < t < \frac{\tau k}{m}$, esse (γ_k) será o de maior contribuição no cálculo da função de risco, ou seja, neste intervalo o valor de $g_{m,k}(t)$ associado será maior do que o valor de $g_{m,j}(t)$, para todo $j \neq k$.

Para compreender as afirmações (i) e (ii) fixe m = 4 e considere, as Figuras 2.3 e 2.4. A primeira figura, exibe um gráfico da função $h_4(t; H)$, supondo uma função de risco acumulada arbitrária para obter γ_k , isto é, substituindo γ_k por quaisquer valores positivos, com k =1, 2, 3, 4. Já na segunda figura, apresenta-se um gráfico da função $g_{4,k}(t)$, para k = 1, 2, 3, 4, sendo que em ambos os gráficos varia-se t no intervalo [0, 2], isto é, toma-se $\tau = 2$. Analisando a Figura 2.3, pode-se ver que realmente a forma da função de risco a ser aproximada depende da escolha de γ_k , uma vez que este é uma função de H(t). Além disso, note que uma diversidade de formas suaves para função de risco pode ser obtida.

Observando a Figura 2.4, verifica-se que à medida que o t aumenta o γ_1 , que é o de maior contribuição proporcional para os tempos no intervalo (0, 0.5), vai perdendo sua influência sobre o cálculo da aproximação para valores de t próximos de 2 (ou próximos de τ). O valor assumido por γ_4 agora, proporcionalmente, contribui mais para a aproximação dos tempos no intervalo que vai de 1.5 até 2. Em outros termos, os PBs induzem uma partição do eixo t e para o k-ésimo intervalo da partição tem-se um γ_k associado, sendo este o que mais contribuirá de maneira proporcional para o cálculo da aproximação dos valores de t que são elementos dessa partição. Alguns pontos recebem a mesma contribuição proporcional de pelo menos um γ_k , por exemplo t = 1.5, recebe contribuições de igual ponderação de γ_3 e γ_4 , dado que $g_{4,3}(1.5) = g_{4,4}(1.5)$, como pode ser visto no gráfico.

Figura 2.3: Curvas da função $h_{m,k}(t; H)$ fixando m = 4 e assumindo função de risco arbitrária.

Figura 2.4: Curvas da função $g_{m,k}(t)$ fixando $m = 4, k = 1, 2, 3 \in 4$.

Neste sentido, tendo em vista a estrutura apresentada na Equação (2.5), Osman e Ghosh (2012) assumem que a quantidade γ_k é desconhecida e definem a seguinte função de risco:

$$h_m(t|\boldsymbol{\gamma}) = \sum_{k=1}^m \gamma_k g_{m,k}(t) = \boldsymbol{\gamma}^\top \boldsymbol{g}_m(t), \qquad (2.6)$$

em que $\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_m)^\top$ é um vetor de coeficientes desconhecidos satisfazendo $\gamma_k \ge 0$, para $k = 1, \dots, m \in \boldsymbol{g}_m(t) = (g_{m,1}(t), g_{m,2}(t), \dots, g_{m,m}(t))^\top$, com $g_{m,k}(t) = f_\beta(t/\tau|k, m-k+1)/\tau$, tal que $\tau = \inf \{t : S(t) = 0\} \in \tau < \infty$.

A função de risco acumulada pode ser obtida de acordo com a Equação (2.1). Ela é dada por:

$$H_m(t|\boldsymbol{\gamma}) = \int_0^t \sum_{k=1}^m \gamma_k g_{m,k}(u) \, du = \sum_{k=1}^m \gamma_k G_{m,k}(t) = \boldsymbol{\gamma}^\top \boldsymbol{G}_m(t) \,, \qquad (2.7)$$

sendo $\boldsymbol{G}_{m}(t) = (G_{m,1}(t), G_{m,2}(t), \dots, G_{m,m}(t))^{\top}$, com $G_{m,k}(t) = F_{\beta}(t/\tau|k, m-k+1)$, para $k = 1, 2, \dots, m$, em que F_{β} corresponde à função de distribuição acumulada da Beta com parâmetros $k \in m-k+1$ e avaliada no ponto t/τ . Ademais, deve-se destacar que os parâmetros da distribuição Beta são conhecidos e a função de risco acumulada em (2.7) é uma função

monótona crescente, pois $\gamma_k \ge 0$ e $g_{m,k}(t) \ge 0$, para k = 1, 2, ..., m e $t \ge 0$. Contudo, a função de risco (2.6) não satisfaz $\int_0^{\tau} h_m(u|\boldsymbol{\gamma}) du = \infty$, sendo necessário alguns ajustes do ponto de vista teórico (Osman e Ghosh, 2012).

Para entender o ajuste proposto por Osman e Ghosh (2012), considere uma amostra aleatória de tamanho n, censurada à direita de maneira não informativa e os seus dados representado pelos pares (T_i, δ_i) , sendo $T_i = \min \{Y_i, C_i\}$ e $\delta_i = I (Y_i \leq C_i) \operatorname{com} Y_i, C_i \in \delta_i$ correspondendo, respectivamente, ao tempo de falha, ao tempo de censura e o indicador de falha do *i*-ésimo elemento, $i = 1, 2, \ldots, n$. Neste contexto, os autores consideram o estimador $\hat{\tau} = \max \{T_1, T_2, \ldots, T_n\}$ e modelam T redefinindo as funções de risco e risco acumulado da seguinte forma:

$$h_m(t|\boldsymbol{\gamma}, \hat{\tau}) = \begin{cases} h_m(t|\boldsymbol{\gamma}), & \text{se } 0 \le t \le \hat{\tau}, \\ \frac{m\gamma_m}{\hat{\tau}}, & \text{se } t > \hat{\tau}, \end{cases}$$
(2.8)

е

$$H_m(t|\boldsymbol{\gamma}, \hat{\tau}) = \begin{cases} H_m(t|\boldsymbol{\gamma}), & \text{se } 0 \le t \le \hat{\tau}, \\ \sum_{k=1}^m \gamma_k + \frac{m\gamma_m}{\hat{\tau}} (t - \hat{\tau}), & \text{se } t > \hat{\tau}. \end{cases}$$
(2.9)

O ponto colocado pelo estudo é que se pode modelar T usando (2.6) e (2.7) sobre $(0, \hat{\tau}]$, porém quando $t > \hat{\tau}$ os autores supõem que a função de risco é constante, uma vez que não há informação sobre a distribuição de T no intervalo $(\hat{\tau}, \infty)$. Desta forma, as funções de risco e risco acumulado, respectivamente, exibidas em (2.8) e (2.9) são definidas para todo $t \in [0, \infty)$ e $\int_0^{\infty} h_m (u|\gamma, \hat{\tau}) du = \infty$. Logo, o ajuste realizado torna (2.8) uma função de risco legítima. Ademais, o trabalho relata que $\hat{\tau}$ converge em probabilidade para τ , quando o tamanho da amostra tende a infinito, lembrando que $\tau = \inf \{t : S(t) = 0\}$.

Neste sentido, percebe-se que na prática fazendo uma escolha apropriada para τ , pode-se usar diretamente as funções de risco e risco acumulada definidas, respectivamente, em (2.6) e (2.7), pois todos os tempos observados na amostra são menores do que ou iguais ao máximo. Portando, a escolha dessa constante será discutida para cada formulação de modelo proposta neste trabalho, de forma que após aplicados os ajustes propostos por Osman e Ghosh (2012) a funções de riscos condicionadas a $\hat{\tau}$ sejam legítimas.

Agora, considere $0 < T_1 < T_2 < \ldots < \tau$ variáveis aleatórias que representam tempos de eventos, como por exemplo, tempos de falhas de um único equipamento, em que T_k é o tempo

do k-ésimo evento (ou falha). Associado a estes tempos tem-se um processo de contagem $\{N(t), 0 \leq t\}$, referente ao número acumulado de eventos que ocorreram até o instante t, sendo $N(t) = \sum_{k=1}^{\infty} I(T_k \leq t)$ o número de eventos ocorridos no intervalo [0, t]. O processo definido é contínuo à direita. Então, sendo respectivamente, t - e t + tempos infinitesimalmente menores do ou maiores do que t, logo N(t) = N(t+) e N(t-) representa o número de eventos que ocorreram antes de t.

E fato conhecido da teoria de processos de contagem que o desenvolvimento ao longo do tempo de $\{N(t), 0 \le t\}$ pode ser controlado pelo seu processo de intensidade (Andersen et al., 1993; Aalen et al., 2008), que é o processo que descreve a probabilidade instantânea de ocorrência de evento no tempo t, dado o seu histórico de ocorrência de eventos antes de t. Formalmente, sendo $\mathscr{H}(t) = \{N(t) : 0 \le s < t\}$ o histórico do processo no tempo t e $\Delta N(t) = N(t + \Delta t -) - N(t -)$ o número de eventos que ocorreram no intervalo $[t, t + \Delta t)$, a função de intensidade é definida da seguinte forma:

$$\lambda \left[t | \mathscr{H} \left(t \right) \right] = \lim_{\Delta t \downarrow 0} \frac{P \left[\Delta N \left(t \right) = 1 | \mathscr{H} \left(t \right) \right]}{\Delta t}.$$
(2.10)

Note que, para eventos ocorrendo em tempo contínuo reside sob a formulação de (2.10) a suposição de que dois eventos não podem acontecer simultaneamente, por conveniência matemática (Cook e Lawless, 2010). Associada à equação (2.10), tem-se a função de intensidade acumulada, dada por:

$$\Lambda\left[t|\mathscr{H}\left(t\right)\right] = \int_{0}^{t} \lambda\left[u|\mathscr{H}\left(u\right)\right] du.$$
(2.11)

No caso do processo de Poisson, tem-se que o número de eventos em intervalos disjuntos de tempo são independentes, ou seja, se N(s,t) = N(t) - N(s) representa o número de eventos ocorridos no intervalo (s,t], então $N(s_1,s_2) \in N(s_3,s_4)$ são independentes, com $s_2 < s_3$. Isso significa que a função de intensidade e a função intensidade acumulada desse processo não dependem do histórico do processo e são dadas, respectivamente, pelas expressões:

$$\lambda(t) = \lim_{\Delta t \downarrow 0} \frac{P\left[\Delta N(t) = 1\right]}{\Delta t}$$
(2.12)

e

$$\Lambda\left(t\right) = \int_{0}^{t} \lambda\left(u\right) du, \qquad (2.13)$$

que representa o número esperado de eventos no intervalo [0, t], pois pode-se mostrar que $E[N(t)] = \Lambda[t]$.

Sendo assim, partindo da fundamentação usada por Osman e Ghosh (2012) para induzir uma função de risco e sabendo que um processo de contagem pode ser caracterizado por sua função de intensidade, pode-se de maneira análoga, induzir a função intensidade do processo de Poisson, através dos PBs, da seguinte forma:

$$\lambda_m(t|\boldsymbol{\gamma}) = \sum_{k=1}^m \gamma_k g_{m,k}(t) = \boldsymbol{\gamma}^\top \boldsymbol{g}_m(t), \qquad (2.14)$$

supondo que $\gamma_k = \Lambda\left(\frac{k\tau}{m}\right) - \Lambda\left(\frac{(k-1)\tau}{m}\right)$ é desconhecido. Portanto, se (2.14) é a nova função de intensidade do processo de Poisson, isso implica que $N(t) \sim \text{Poisson}\left(\Lambda_m(t|\boldsymbol{\gamma})\right)$, de forma que $\Lambda_m(t|\boldsymbol{\gamma}) = \int_0^t \lambda_m(u|\boldsymbol{\gamma}) du = \boldsymbol{\gamma}^\top \boldsymbol{G}_m(t)$ é a nova média de eventos até o tempo t.

Por fim, pode-se dizer que os PBs induzem uma função de risco, visto que partiu-se do problema de aproximação de uma função de risco arbitrária, através da sua função de risco acumulada, para definir uma nova função de risco mais flexível, como fica exemplificado pelas formas de funções produzidas na Figura 2.3. Note que em momento algum supõe-se que H(t) é uma função com forma conhecida, exceto no caso em que de fato aproxima-se a função de risco do modelo GG, ficando claras as diferenças entre aproximar e formular uma nova função de risco baseadas nos PBs. Analogamente, vale para as funções de intensidade de processos de contagem.

No presente capítulo foram discutidos alguns conceitos básicos de análise de dados de sobrevivência e foram apresentados os PBs, bem como a formulação da função de risco e da função de intensidade induzidas por eles conforme Osman e Ghosh (2012). No próximo capítulo apresenta-se uma breve introdução à análise de dados de eventos recorrentes e define-se os modelos propostos via PBs baseados nos processos de Poisson e renovação.

Capítulo 3

Análise de dados de eventos recorrentes

Em muitas situações em análise de dados de sobrevivência e confiabilidade, o evento alvo de observação não é terminal e pode ser registrado mais de uma vez ao longo do tempo para o mesmo elemento. Dados com esse tipo de configuração são encontrados em muitos tipos de estudos, por exemplo, na área da saúde possíveis eventos são: ataque de asma, ataque epilético, episódio de diarreia, detecção de tumores e episódio de doação de sangue. Em estudos da área de sociologia, episódio de perda do emprego e reincidência de ex-detentos no crime, são alguns fenômenos. Quando trata-se da área de finanças ou seguro, pode-se citar fatos como reivindicação de seguro, solicitação de garantias de automóveis e inadimplência. Já para estudos na área de engenharia, o evento pode ser o acontecimento da falha de um determinado equipamento eletrônico de uma máquina e a manutenção preventiva de um sistema (exemplo: o motor de um automóvel, um aparelho auditivo ou um transformador de energia elétrica). Observe que todos os casos citados são passivos de múltiplas ocorrências do mesmo evento ao longo de um período de tempo.

Neste contexto, para fazer o tratamento adequado desse tipo de dado uma alternativa é usar técnicas de análise de eventos recorrentes, ou ainda, análise de eventos históricos, como são referidas algumas vezes na literatura. Neste tipo de investigação, o principal interesse é estudar processos (elementos) que geram eventos repetidamente ao longo do tempo, sendo estes denominados de processos de eventos recorrentes e os dados gerados nessa situação são chamados de dados de eventos recorrentes.

Segundo Cook e Lawless (2010), no que diz repeito ao número de processos e ao número de eventos, dados de eventos recorrentes, em geral, são encontrados em duas configurações.

Sendo a primeira representada por um número relativamente pequeno de processos, os quais geram um número relativamente grande de falhas; alguns exemplos são: linhas de montagem e estudo do histórico de falhas de um *software*. Já na segunda, ocorre o contrário da primeira, ou seja, número relativamente grande de processos, com um número relativamente pequeno de falhas. Nestes casos os autores citam exemplos na área da saúde e de negócios, em que geralmente tem-se uma quantidade razoável de pessoas sendo acompanhadas para registro do evento, por exemplo: estudo de recorrência de algum agravo à saúde, pagamento de prêmio ou inadimplência.

Para Tomazella (2003) e Cook e Lawless (2010), ao analisar dados de eventos recorrentes os principais interesses são: compreender e descrever a dinâmica de ocorrência de eventos individual para cada processo; identificar e caracterizar a variação entre um conjunto de processos; comparar grupos de processos e determinar a relação de covariáveis fixas ou variando no tempo com a ocorrência do evento.

Na Figura 3.1, é apresentada uma ilustração de possíveis variáveis que podem ser utilizadas em uma de análise de dados de eventos recorrentes. Neste trabalho, é dado destaque as variáveis "número de eventos" e "tempo entre eventos" e propõem-se modelos que focalizam no tratamento destes tipos de variáveis. Importante destacar, que dependendo dos objetivos na análise de dados desta natureza as metodologias clássicas de estudos de sobrevivência não são adequadas, sendo assim muitos pesquisadores fazendo uso destas técnicas acabam por usar apenas parte da informação observada, analisando apenas o tempo até a ocorrência do primeiro evento, perdendo assim informação do restante do acompanhamento; esse tipo de comentário é feito em Tomazella (2003).

Figura 3.1: Ilustração de possíveis variáveis que podem ser observadas em dados de processos de eventos recorrentes; fonte: Louzada-Neto e Pereira (2000).

Na busca de entender e caracterizar como os eventos ocorrem ao longo do tempo, o processo de Poisson e o processo de renovação possuem papel crucial na análise de eventos recorrentes. Sendo o processo de Poisson, referido por Andersen et al. (1993), Aalen et al. (2008) e Cook e Lawless (2010), como modelo canônico para análise da variável número de eventos ocorridos em um intervalo de tempo. Já o processo de renovação, para Cook e Lawless (2010), é o procedimento padrão no caso da análise do tempo entre eventos.

Para definir esses processos, formalmente, assim como visto na Seção 2.2.1 e reafirmado e reforçado aqui, considere um único processo de evento recorrente com partida em t = 0 (por simplicidade) e $0 < T_1 < T_2 < \cdots < T_j < \cdots < \kappa$, sendo T_j o tempo até a ocorrência do *j*-ésimo evento e κ o tempo de acompanhamento deste processo, supostamente fixo. Seja $\{N(t), 0 \leq t\}$ um processo de contagem associado ao número acumulado de eventos, com $N(t) = \sum_{k=1}^{\infty} I(T_k \leq t)$ representando o número de eventos ocorridos no intervalo [0, t]. As funções de intensidade e risco que caracterizam os processos de Poisson e renovação, respectivamente, são dadas por:

$$\lambda\left[t|\mathscr{H}\left(t\right)\right] = \lambda\left(t\right)$$

е

$$h\left[t|\mathscr{H}\left(t\right)\right] = h\left[t - T_{N(t-)}\right],$$

sendo $\mathscr{H}(t)$ o histórico do processo e N(t-) o número de eventos que ocorreram antes de t, pois t- representa um tempo infinitesimalmente menor do que t.

O processo de Poisson pertence à classe dos processos Markovianos, uma vez que $\lambda(t)$ não depende do histórico do processo, isto é, a possibilidade de experimentar um novo evento só dependente do estado atual (se o elemento está em risco) e não dos eventos precedentes. Já o processo de renovação depende do histórico através de $T_{N(t-)}$, que por sua vez representa o tempo até a ocorrência do evento que aconteceu anterior a t. Este processo é dito de renovação, pois na prática acaba-se por modelar o tempo entre eventos (ou *qap time* ou *waiting time*) $W_j = T_j - T_{j-1}, j = 1, 2, \dots$, que formam uma amostra aleatória de W, com função de risco h(w)e função de risco acumulada H(w). Desta forma, imediatamente após ocorrência de um evento o risco acumulado assume valor 0 e cresce ou se estabiliza ao longo do tempo até a ocorrência de um novo evento, pois se pressupõe que o risco de ocorrência do (j+1)-ésimo evento somente se inicia após observação do j-ésimo. Desta forma, é possível dizer, que o processo se renova após o acontecimento de um evento, pois o risco acumulado de ocorrência de um novo evento cai para zero após observação de um evento. Ao contrário do processo de Poisson, que imediatamente após ocorrência de um evento mantém a intensidade acumula, $\Lambda(t) = \int_0^t \lambda(u) \, du$, de forma crescente, isto é, o número esperado de eventos sempre será maior após a ocorrência de um evento, pois assume-se que todos os eventos começam a se desenvolver simultaneamente, de forma independente, no mesmo instante de tempo e a ordenação apenas reflete a ordem de seus acontecimentos no tempo. Isso justifica o fato de alguns autores mencionarem esse processo como o de análise de tempo total (ou tempo global) em estudo.

Deve-se destacar que no contexto de confiabilidade, especialmente, quando analisa-se dados de sistemas que são passiveis de reparos após falhas (sistemas reparáveis), o processo de Poisson e o de renovação, são ditos, respectivamente, processos de reparo mínimo e perfeito. Isto devido ao fato de que o processo de Poisson pressupõe que após ocorrência de um reparo, a ocorrência de um novo evento é eminente, pois o sistema retorna para o estado que estava exatamente antes da falha. Enquanto que no processo de renovação é assumido que imediatamente após o reparo, uma nova falha é improvável de ocorrer, uma vez que o sistema volta às condições de funcionamento de um novo. Essas nomenclaturas serão aplicadas com maior frequência no Capítulo 4.

Seguindo essas ideias, este capítulo é dividido sobre duas linhas de pensamento, sendo uma

delas voltada para a análise da contagem de eventos e a outra direcionada para a análise do tempo entre eventos. Na Seção 3.1, são propostos os métodos baseados em contagem e função intensidade que são sustentados no processo de Poisson. Na sequência apresenta-se uma aplicação para dados de um estudo de carcinogênese ilustrando o uso desta metodologia. Na Seção 3.2, são propostos os métodos voltados para a análise do tempo entre eventos, os quais são consolidados com o processo de renovação. Uma aplicação desta técnica a dados de exacerbações pulmonares de pacientes portadores de fibrose cística também é realizada. Por fim, são descritos os principais resultados e conclusões deste capítulo.

3.1 Processo de Poisson via Polinômios de Bernstein

Nesta seção são apresentadas duas propostas de modelagem de dados de eventos recorrentes no contexto dos métodos baseados em contagem e função de intensidade. Os modelos desenvolvidos têm como fundamentação o processo de Poisson não-homogêneo e são denominados de processo de Poisson via PBs e processo de Poisson via PBs com fragilidade (ou efeito aleatório). A formulação dos modelos, desde a especificação da função intensidade até a estimação sob o ponto de vista Bayesiano são mostradas na sequência.

Considere que *n* elementos são observados, cada um deles contendo q_i eventos (i = 1, ..., n)e seja t_{ij} $(j = 1, ..., q_i)$ o tempo até a ocorrência do *j*-ésimo evento para o *i*-ésimo elemento observado no intervalo de tempo $[0, \kappa_i]$, supostamente fixo, de modo que $0 < t_{i1} < t_{i2} < \cdots < t_{iq_i} \leq \kappa_i$. Ademais, admita que a função de intensidade do processo de Poisson é dada por:

$$\lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},m\right) = \lambda_{m}\left(t_{ij}|\boldsymbol{\gamma}\right)\exp\left(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right),\tag{3.1}$$

sendo $\lambda_m (t_{ij}|\boldsymbol{\gamma})$ a função de intensidade de base induzida pelos PBs definida em (2.14), $\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_m)^\top$ são os coeficientes desconhecidos dos polinômios, m é o grau deste polinômio, $\boldsymbol{x}_i = (x_{i1}, \ldots, x_{ip})^\top$ é o vetor de covariáveis fixas e $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)^\top$ é um vetor de coeficientes de regressão desconhecidos. Além disso, como visto na Seção 2.2.1 a definição de $\lambda_m (t_{ij}|\boldsymbol{\gamma})$ depende da constante τ que, neste caso, foi tomada como max { $\kappa_1, \ldots, \kappa_n$ }. Para esta escolha seguiu-se a mesma estratégia usada por Osman e Ghosh (2012), objetivando definir um modelo de riscos não proporcionais via PBs.

Observe que a função de intensidade (3.1), goza de uma estrutura similar à do modelo AG

apresentado em Andersen e Gill (1982), uma extensão do modelo de riscos proporcionais de Cox (Cox, 1972) para o caso de eventos recorrentes, em que o efeito das covariáveis atua de forma multiplicativa sobre a função de intensidade de base. Foi dada preferência a esta formulação, pois ela possui papel fundamental na análise de dados de sobrevivência e é de fácil interpretação (Lawless, 2003). Contudo, sob este modelo reside a suposição de intensidades proporcionais. Portanto, assumindo a função de intensidade exibida em (3.1), origina-se o primeiro modelo proposto denominado de processo de Poisson via PBs, ou ainda, processo de Poisson com função intensidade induzida pelos PBs.

Sob a ótica do modelo exibido na Equação (3.1), será assumido que os q_i eventos gerados pelo *i*-ésimo elemento ao longo do tempo são mutuamente independentes, porém em alguns casos essa suposição será inadequada. Tomazella (2003), Tomazella et al. (2004), Colosimo e Giolo (2006) e Louzada-Neto et al. (2007), mencionam que se tratando de eventos recorrentes é razoável supor que exista uma certa associação entre os tempos de um mesmo elemento, logo uma associação entre os eventos. Além disso, nos dados utilizados na aplicação da Seção 3.1.1, há indícios de que os eventos não ocorrem de forma independente, uma vez que, alguns elementos (ratazana) tiveram dois eventos ocorrendo de forma simultânea ou com tempo entre eventos muito pequeno. Diante disso, deve-se lembrar que uma suposição do processo de Poisson é que dois eventos (ou mais) não podem ocorrer simultaneamente, logo para essas situações, como sugerido por Cook e Lawless (2010), será feito uma pequena pertubação no tempo relacionado aos demais eventos de um mesmo elemento, de modo a não ter tempos empatados.

Desta forma, partindo da premissa que os eventos não se desenvolvem de forma independente, o segundo modelo proposto considera um efeito aleatório, denotado por ν_i , que possui a finalidade de captar uma possível relação existente entre os eventos, de modo que, condicionado a esse efeito os eventos referentes ao mesmo elemento, possam ser considerados independentes (Cook e Lawless, 2010). Em análise de dados de sobrevivência, comumente, o efeito aleatório é chamado de fragilidade, pois o efeito aleatório atua de maneira a aumentar a intensidade de eventos, dito assim que elementos com efeito relativamente grande são mais frágeis. Essa abordagem estende o Processo de Poisson via PBs e pode ser obtida quando define-se a função intensidade do Processo de Poisson da seguinte maneira:

$$\lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_{i},\boldsymbol{x}_{i},m\right) = \nu_{i}\lambda_{m}\left(t_{ij}|\boldsymbol{\gamma}\right)\exp\left\{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right\},\tag{3.2}$$

em que ν_1, \ldots, ν_n são variáveis aleatórias, assumidas independentes entre si e das covariáveis e seguindo a distribuição gama com média 1 e precisão ζ_{ν} (desconhecida), ou seja, $\nu_i \sim$ Gama $(\zeta_{\nu}, \zeta_{\nu})$, para $i = 1, \ldots, n$. Desta forma, quanto menor for a precisão, maior será a variância entre os elemento e, por consequência, maior será o grau de dependência entre as contagens de eventos em intervalos disjuntos de tempo para um mesmo elemento. A preferência por este tipo de especificação deve-se, principalmente, ao fato de comumente se observar sua utilização para construir modelos de sobrevivência com fragilidade (Ibrahim et al., 2001b). Sendo assim, para manter a comparabilidade com outros trabalhos presentes na literatura optou-se por essa especificação na Equação (3.2).

Note que os q_i tempos associados com o *i*-ésimo elemento compartilham da mesma fragilidade e é assumido que a função de intensidade (3.2) é uma função condicional de t_{ij} dado o efeito aleatório não observado e as demais quantidades (Ibrahim et al., 2001b). Neste contexto, tem-se o modelo intitulado de processo de Poisson via PBs com fragilidade, ou ainda, processo de Poisson via PBs com efeito aleatório. Além de tudo, note que este modelo é de intensidades não proporcionais, pois elementos com os mesmos tempos e covariáveis podem ter fragilidades (ou efeitos aleatórios) diferentes, o que implica em intensidades diferentes. Este modelo constitui uma alternativa ao modelo de intensidades não proporcionais de Aalen (1980) e ao modelo de riscos não proporcionais proposto por Osman e Ghosh (2012).

Sob essas condições, de acordo com Cook e Lawless (2010), as funções de verossimilhança para os Processos de Poisson com função intensidade (3.1) e (3.2) são dadas, respectivamente, da seguinte forma:

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{t},\boldsymbol{x},m) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_i} \lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m\right) \right] \exp\left\{ -\int_0^{\kappa} Y_i\left(s\right)\lambda\left(s|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m\right) ds \right\}$$
(3.3)

е

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{t},\boldsymbol{x},\boldsymbol{\nu},m) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_i} \lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_i,\boldsymbol{x}_i,m\right) \right] \exp\left\{ -\int_0^{\kappa} Y_i\left(s\right)\lambda\left(s|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_i,\boldsymbol{x}_i,m\right)ds \right\}, \quad (3.4)$$

em que $\boldsymbol{t} = (t_{11}, \dots, t_{1q_1}, \dots, t_{nq_n})^{\top}, \boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^{\top}, m$ é o grau do polinômio, $\boldsymbol{\nu} = (\nu_1, \dots, \nu_n)^{\top}, Y_i(s) = I \ (0 \le s \le \kappa_i) \in \kappa = \max \{\kappa_1, \dots, \kappa_n\}.$ Pode-se reescrever as funções de verossimilhança (3.3) e (3.4), na devida ordem, da seguinte forma:

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{t},\boldsymbol{x}_{i},m) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_{i}} \lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},m\right) \right] \exp\left\{-\Lambda\left(\kappa_{i}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},m\right)\right\}$$
(3.5)

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{t},\boldsymbol{x}_{i},\boldsymbol{\nu},m) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_{i}} \lambda\left(t_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_{i},\boldsymbol{x}_{i},m\right) \right] \exp\left\{-\Lambda\left(\kappa_{i}|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_{i},\boldsymbol{x}_{i},m\right)\right\},\tag{3.6}$$

em que a função $\Lambda(\kappa_i|\cdot)$ nas equações (3.5) e (3.6) é obtida, respectivamente, da seguinte forma:

$$\int_{0}^{\kappa_{i}} \lambda\left(u|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i}\right) du = \Lambda_{m}\left(\kappa_{i}|\boldsymbol{\gamma}\right) \exp\left(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right) = \boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(\kappa_{i}\right) \exp\left(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right)$$

е

$$\int_{0}^{\kappa_{i}} \lambda\left(u|\boldsymbol{\gamma},\boldsymbol{\beta},\nu_{i},\boldsymbol{x}_{i}\right) du = \nu_{i}\Lambda_{m}\left(\kappa_{i}|\boldsymbol{\gamma}\right) \exp\left(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right) = \nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(\kappa_{i}\right) \exp\left(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right).$$

Inferências para os modelos propostos serão realizadas sob a visão Bayesiana. Deste modo, para obter uma amostra da distribuição *a posteriori* conjunta foram utilizados métodos de Monte Carlo via Cadeia de Markov (MCMC sigla do termo em inglês *Markov Chain Monte Carlo*), uma vez que, têm-se dificuldades para tratar, analiticamente, as distribuições *a posteriori* conjunta desses modelos. Em especial será aplicado o amostrador de Gibbs (*Gibbs Sampling*), um método MCMC, proposto por Geman e Geman (1984) no contexto de reconstrução de imagens e posteriormente apresentado por Gelfand e Smith (1990), como uma forma de gerar amostras da distribuição *a posteriori* conjunta.

Para implementar o amostrador de Gibbs é necessário ser capaz de gerar amostras de todas as distribuições condicionais completas, podendo essas serem obtidas de maneira direta, caso em que as condicionais completas possuem núcleo conhecido, bem como, de maneira indireta nas situações em que essas distribuições não possuem uma forma conhecida. Neste trabalho optou-se por utilizar como ferramenta auxiliar, para construção do amostrador de Gibbs, o *software* JAGS (*Just Another Gibbs Sampling*, http://mcmc-jags.sourceforge.net) que elimina a necessidade de se implementar os passos de amostragem das condicionais completas *a posteriori*. O JAGS tem sintaxe de programação parecida com a do WinBUGS (Spiegelhalter et al., 1996, 2003; Lunn et al., 2000) e OpenBUGS (Spiegelhalter et al., 1996, 2003), requerendo em seu *script* apenas a especificação da verossimilhança e das distribuições *a priori*. Ademais, para as situações em que uma condicional completa *a posteriori* não tem forma fechada, o JAGS,
automaticamente, lança mão de métodos como, por exemplo: Adaptive Rejection Sampling (ARS) de Gilks e Wild (1992), Slice Sampling de Neal (2003) ou Metropolis-Hastings de Metropolis et al. (1953) e Hastings (1970), para gerar amostras de forma indireta das distribuições condicionais completas e, por consequência, da distribuição a posteriori conjunta (Plummer, 2015). Para mais detalhes sobre métodos MCMC e JAGS pode-se consultar, respectivamente, Gamerman e Lopes (2006) e Lunn et al. (2012) e Plummer (2015).

Seja $\boldsymbol{\eta} = (\eta_1, \eta_2, \dots, \eta_m)^{\top}$, com $\eta_k = \log(\gamma_k)$ e $k = 1, 2, \dots, m$. Assuma que $\boldsymbol{\eta}$ e $\boldsymbol{\beta}$ são independentes *a priori*. Destaca-se também que nas especificações *a priori*, quando empregada a distribuição gama *a priori*, os hiperparâmetros *a* e *b*, subscritos em notação aos seus respectivos parâmetros, são nesta ordem, o parâmetro de forma e o parâmetro interpretado como taxa. As especificações *a priori* passadas para o JAGS via o pacote R2jags (Su e Yajima, 2015) do *software* R, são apresentadas a seguir:

- Distribuição conjunta a priori para γ :
 - Modelo 1 $(M_{BP(m)}^G)$: $\gamma_k \sim \text{Gama}(a_{\gamma_k}, b_{\gamma_k}), k = 1, \dots, m$, sendo γ_i independente de γ_j para todo $i \neq j$. Portando, a distribuição conjunta é dada por:

$$\prod_{k=1}^{m} \frac{b_{\gamma_{k}}^{a_{\gamma_{k}}}}{\Gamma\left(a_{\gamma_{k}}\right)} \gamma_{k}^{a_{\gamma_{k}}-1} \exp\left(-b_{\gamma_{k}}\gamma_{k}\right);$$

• Distribuição conjunta *a priori* para η :

$$\boldsymbol{\eta} \sim N_m \left(\boldsymbol{\mu}_{\boldsymbol{\eta}}, \boldsymbol{\Omega}_{\boldsymbol{\eta}} \right),$$

sendo $\boldsymbol{\mu}_{\eta} = (\mu_{\eta_1}, \mu_{\eta_2}, \dots, \mu_{\eta_m})^{\top} \in \boldsymbol{\Omega}_{\eta}$, respectivamente, o vetor de médias e a matriz de precisão. Foram consideradas cinco especificações *a priori* para $\boldsymbol{\mu}_{\eta} \in \boldsymbol{\Omega}_{\eta}$:

- Modelo 2 $(M_{BP(m)}^Z)$: $\boldsymbol{\mu}_{\boldsymbol{\eta}} = (0, 0, \dots, 0)^{\top}$ e $\boldsymbol{\Omega}_{\boldsymbol{\eta}} = \zeta_{\boldsymbol{\eta}} \boldsymbol{I}_m$, em que \boldsymbol{I}_m é uma matriz identidade de ordem m e $\zeta_{\boldsymbol{\eta}}$ é o parâmetro de precisão, com $\zeta_{\boldsymbol{\eta}} \sim \text{Gama}(a_{\zeta_{\boldsymbol{\eta}}}, b_{\zeta_{\boldsymbol{\eta}}});$
- Modelo 3 $(M_{BP(m)}^{PL})$:

$$\mu_{\eta_k} = \log\left[\frac{\Lambda_0\left(\tau k/m\right) - \Lambda_0\left[\tau\left(k-1\right)/m\right]}{\tau/m}\right],$$

em que $\Lambda_0(t|\theta_1, \theta_2) = \theta_2 t^{\theta_1}$ é a função de intensidade de base acumulada do processo lei de potência (PL sigla do termo em inglês *Power Law*) e considera-se que $\theta_1 \sim$ Gama $(a_{\theta_1}, b_{\theta_1})$ e $\theta_2 \sim$ Gama $(a_{\theta_2}, b_{\theta_2})$. Além disso, $\Omega_{\eta} = \zeta_{\eta} I_m$, com I_m uma matriz identidade de ordem m e ζ_{η} é o parâmetro de precisão, tal que $\zeta_{\eta} \sim$ Gama $(a_{\zeta_{\eta}}, b_{\zeta_{\eta}})$. Note que, utilizando essa estrutura é possível passar, através da média *a priori* de η , informação sobre a forma da função de intensidade do processo (Ibrahim et al., 2001a);

- Modelo 4 $(M_{BP(m)}^{Wishart})$: $\boldsymbol{\mu}_{\boldsymbol{\eta}} = (0, 0, \dots, 0)^{\top} \in \boldsymbol{\Omega}_{\boldsymbol{\eta}} \sim \text{Wishart}_{m}(\boldsymbol{R}, d)$, em que \boldsymbol{R} é uma matriz quadrada positiva definida de ordem $m \in d$ os graus de liberdade. Para fazer a escolha de \boldsymbol{R} tomou-se como base o valor esperado da distribuição Wishart que, neste caso, é $E(\boldsymbol{\Omega}_{\boldsymbol{\eta}}) = d\boldsymbol{R}^{-1}$. Logo assumindo $\boldsymbol{R} = d\boldsymbol{\Sigma}$, com $\boldsymbol{\Sigma}$ correspondendo à matriz de covariâncias *a priori* do $\boldsymbol{\eta}$, tem-se que a média *a priori* de $\boldsymbol{\Omega}_{\boldsymbol{\eta}} \in \boldsymbol{\Sigma}^{-1}$ (matriz de precisão *a priori* de $\boldsymbol{\eta}$). Já no caso dos graus de liberdade, optou-se pela escolha de d = 1.5m, pois segundo Lunn et al. (2012) sob a condição de d = m a distribuição *a priori* é a menos informativa, logo para essa escolha de *d* considera-se uma aumento na informação *a priori*. Sendo assim, $\boldsymbol{\Omega}_{\boldsymbol{\eta}} \sim \text{Wishart}_m (1.5m\boldsymbol{\Sigma}, 1.5m)$. De acordo com os autores supracitados, esta é uma forma conveniente de especificar a informação *a priori* para uma matriz de precisão quando usa-se a distribuição Wishart;
- Modelo 5 $(M_{BP(m)}^{RW})$:

$$\mu_{\eta_1} \sim N(0, \zeta_{\boldsymbol{\eta}})$$

$$\mu_{\eta_k} \sim N(\mu_{\eta(k-1)}, \zeta_{\boldsymbol{\eta}}), \ k = 2, \dots, m,$$

em que ζ_{η} é o parâmetro de precisão, com $\zeta_{\eta} \sim \text{Gama}(a_{\zeta_{\eta}}, b_{\zeta_{\eta}})$. O principal ponto desta especificação, é que utiliza-se um passeio aleatório (RW sigla do termo em inglês *Random Walk*) a priori para a média do parâmetro η , a fim de introduzir uma estrutura de dependência entre os elementos deste vetor.

• Distribuição conjunta *a priori* para os β :

$$\boldsymbol{\beta} \sim N_p \left(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Omega}_{\boldsymbol{\beta}} \right),$$

sendo $\boldsymbol{\mu}_{\boldsymbol{\beta}} = \left(\mu_{\beta_1}, \mu_{\beta_2}, \dots, \mu_{\beta_p}\right)^{\top} \in \boldsymbol{\Omega}_{\boldsymbol{\beta}} = \zeta_{\boldsymbol{\beta}} \boldsymbol{I}_p$, em que $\zeta_{\boldsymbol{\beta}}$ é o parâmetro de precisão e \boldsymbol{I}_p é uma matriz identidade de ordem p; • Distribuição a priori para ζ_{ν} :

$$\zeta_{\nu} \sim \operatorname{Gama}\left(a_{\zeta_{\nu}}, b_{\zeta_{\nu}}\right)$$

sendo assumido independência *a priori* mutuamente entre os parâmetros η (ou γ), β e ζ_{ν} , no caso do modelo com fragilidade.

Um destaque relevante sobre os modelos propostos nesta seção está relacionado com o estudo de Shin et al. (2018), que simultaneamente ao desenvolvimento desta tese propôs um modelo usando os PBs com característica similar aos aqui apresentados, porém restrito ao contexto de múltiplos cânceres primários em indivíduos com síndrome de Li-Fraumeni, síndrome que causa uma predisposição anômala a diversos tipos câncer. Com o objetivo de estimar penetrância (probabilidade de ocorrência do *j*-ésimo câncer primário dado a síndrome e o histórico de cânceres anteriores), os autores consideram um modelo com efeito aleatório semelhante ao exposto na Equação (3.2), sendo que no caso deles a fragilidade é compartilha entre indivíduos da mesma família (ou grupo) e não entre os eventos do mesmo elemento, maneira considerada nesta tese. Inferência também é realizada usando a abordagem Bayesiana, contudo não são consideradas uma variedade de especificações *a priori* como nesta tese.

3.1.1 Aplicação - estudo de carcinogênese

O conjunto de dados a ser analisado é apresentado em Gail et al. (1980) e representa um estudo sobre o desenvolvimento de tumores mamários em 48 ratazanas. O experimento realizado para obtenção dos dados era composto, inicialmente, por 76 ratas que receberam no primeiro dia do estudo, denominado dia 0, uma mistura cancerígena que propiciava a ocorrência de câncer de mama. Sendo que, após 60 dias da aplicação do agente cancerígeno as ratazanas que não apresentaram o câncer, um total de 48, foram aleatorizadas em dois grupos, o de controle e o de tratamento com *retinoid prophylaxis*. Depois disso, as 48 unidades experimentais passaram a ser periodicamente examinas, duas vezes por semana, para detecção de tumores mamários, sendo registrado apenas o número de tumores entre dois exames consecutivos. Ao fim do período de acompanhamento de 122 dias (valor de τ para essa aplicação), todas as ratazanas foram consideradas censuradas à direita. Todos os aspectos supracitados são visualmente detalhados na Figura 3.2, que a apresenta uma ilustração da estruturação do experimento.

Figura 3.2: Ilustração do experimento do estudo de carcinogênese; fonte: elaboração própria.

Os dados de recorrência de tumores mamários estão representados na Figura 3.3. Observa-se que ao longo do tempo as ratas do grupo controle tenderam a apresentar uma maior quantidade de eventos. Como mencionado, note que, algumas ratazanas experimentaram o evento no final do segmento. Ademais, Gail et al. (1980) ressalta, como já dito na Seção 3.1, que alguns dos elementos estudados apresentaram mais de um evento (ocorrência de tumor mamário) no mesmo tempo, sendo estes exibidos levemente sobrepostos na linha do tempo no gráfico. A título de exemplo, tome a rata de número 24 no tempo 61 dias, veja que têm-se dois eventos ligeiramente separados.

Figura 3.3: Eventos de ocorrência de tumores representados ao longo do tempo segundo grupo controle e tratamento, para o estudo de carcinogênese envolvendo ratazanas.

Estes dados são tidos como exemplo clássico de dados de eventos recorrentes e já foram analisados por diversos autores na literatura, dentre estes pode-se citar o trabalho de Ibrahim et al. (2001b), que fazem uma discussão desses dados e consideram o modelo de riscos proporcionais de Cox (1972) com efeito aleatório para representar a estrutura de dependência dentro de cada grupo (controle e tratamento). Segundo os autores, essa suposição provavelmente é plausível, pois ratazanas do grupo controle produzem um maior número de eventos. Tomazella (2003) considera o Processo de Poisson com função intensidade de base constante e LP e introduz os efeito das covariáveis e a fragilidade de forma multiplicativa e aditiva na função intensidade do processo. Além disso, neste trabalho são comparadas duas distribuições para o efeito aleatório. Por fim, pode-se citar Cook e Lawless (2010), que consideram o processo de Poisson assumindo função intensidade de base separadas por grupo e, similar ao presente trabalho, assume que as covariáveis atuam de forma multiplicativa na função intensidade do processo. Ademais, os autores admitem que a função intensidade de base assume a forma da intensidade LP ou da EP.

Observe que é consenso entre os autores supracitados o uso da forma multiplicativa para introduzir os efeitos das covariáveis e, portanto, a suposição de proporcionalidade entre as funções de intensidades, quando aplicados aos dados os modelos sem fragilidade. Neste sentido, pode-se usar a função intensidade (3.1) para modelar os dados do estudo de carcinogênese.

O interesse principal nesse estudo é compreender e caracterizar o processo de recorrência de tumores mamários ao longo do tempo segundo o grupo, bem como, verificar qual é o efeito do tratamento sobre o número esperado de tumores ao longo do período de acompanhamento. Para tal, será utilizada a função intensidade:

$$\lambda\left(t_{ij}|\boldsymbol{\gamma},\beta_{1},x_{i1},m\right) = \lambda_{m}\left(t_{ij}|\boldsymbol{\gamma},m\right)\exp\left\{\beta_{1}x_{1}\right\},\tag{3.7}$$

em que x_1 representa a variável explicativa tratamento, sendo 0, se a rata pertence ao o grupo controle e 1, se pertence ao grupo tratado com *retinoid prophylaxis* e β_1 é o efeito desconhecido. A escolha do grau do polinômio (m) foi realizada através de um estudo de sensibilidade que leva em consideração diferentes configurações de modelos estabelecidas nesta tese. Para ajuste dos modelos $M_{BP(m)}^G$, $M_{BP(m)}^Z$, $M_{BP(m)}^{PL}$, $M_{BP(m)}^{Wishart}$ e $M_{BP(m)}^{RW}$ usando o JAGS, foram utilizados os seguintes valores para os hiperparâmetros:

• $M_{BP(m)}^G$: especificação que considera a distribuição gama para os coeficientes dos PBs, sendo os hiperparâmetros dados por $a_{\gamma_k} = 0.58$ e $b_{\gamma_k} = 0.35$, k = 1, 2, ..., m. A escolha dos valores destes hiperparâmetros foi realizada de modo que a média e a precisão *a priori* de γ_k sejam semelhantes em todos os modelos considerados, isto é, nas abordagens a seguir é considerado que *a priori* γ_k tem distribuição log-normal com média $e^{\frac{1}{2\zeta_{\eta}}}$ e precisão $\frac{1}{e^{1/\zeta_{\eta}}(e^{1/\zeta_{\eta}}-1)}$, sendo γ_i independente de γ_j para todo $i \neq j$. Para tal, dadas as escolhas realizadas nestes modelos $(M_{BP(m)}^Z, M_{BP(m)}^{PL}, M_{BP(m)}^{Wishart} \in M_{BP(m)}^{RW})$ observase que a média *a priori* de ζ_{η} é 1, logo obteve-se a média e a variância *a priori* de γ_k de acordo com a distribuição log-normal supondo $\zeta_{\eta} = 1$. Posteriormente, iguala-se a média e a variância *a priori* segundo a especificação $M_{BP(m)}^G$ com a obtida anteriormente, resultando no seguinte sistema e sua solução:

$$\begin{cases} \frac{a_{\gamma_k}}{b_{\gamma_k}} = 1.65\\ \frac{a_{\gamma_k}}{b_{\gamma_k}^2} = 4.67 \end{cases} \Rightarrow \frac{1.65}{b_{\gamma_k}} = 4.67 \Rightarrow b_{\gamma_k} = 0.35 \text{ e } a_{\gamma_k} = 0.58; \end{cases}$$

- M^Z_{BP(m)}: especificação que considera média zero para η e distribuição gama a priori para o hiperparâmetro de precisão (ζ_η), sendo a_{ζη} = 1 e b_{ζη} = 1, isto é, esperança e variância a priori igual a 1. O que resulta em uma precisão a priori relativamente pequena para γ_k, que a priori possui distribuição log-normal com precisão ¹/_{e^{1/ζη}(e^{1/ζη}-1)};
- $M_{BP(m)}^{PL}$: especificação que considera média usando função intensidade de base LP para $\boldsymbol{\eta}$ e distribuição gama *a priori* para os hiperparâmetros de precisão (ζ_{η}), forma (θ_1) e escala (θ_2), sendo $a_{\zeta_{\eta}} = 1$, $b_{\zeta_{\eta}} = 1$, $a_{\theta_1} = 0.1$, $b_{\theta_1} = 0.1$, $a_{\theta_2} = 1$ e $b_{\theta_1} = 1$. Neste caso, permite-se uma maior variabilidade *a priori* para o parâmetro de forma, enquanto o parâmetro de escala tem maior precisão, pois no ajuste dos modelos todos os tempos são transformados para o intervalo (0, 1];
- $M_{BP(m)}^{Wishart}$: especificação que considera média zero para η e distribuição de Wishart *a* priori para o hiperparâmetro que indica a matriz de precisão (Ω_{η}), sendo a Wishart com $\Sigma = I_m$;
- $M_{BP(m)}^{RW}$: especificação que considera média como passeio aleatório para η e distribuição *a priori*, para o hiperparâmetro de precisão (ζ_{η}), sendo $a_{\zeta_{\eta}} = 1$ e $b_{\zeta_{\eta}} = 1$.

Além dos modelos induzidos pelos PBs, foram ajustados aos dados os processos de Poisson assumindo função intensidade de base via LP e aquela através da modelagem EP, ou seja, no caso do processo LP é assumido que:

$$\lambda \left(t_{ij} | \theta_1, \theta_2, \beta_1, x_{i1} \right) = \theta_1 \theta_2 t_{ij}^{\theta_1 - 1} \exp \left\{ \beta_1 x_{i1} \right\} = \theta_1 t_{ij}^{\theta_1 - 1} \exp \left\{ \log \left(\theta_2 \right) + \beta_1 x_{i1} \right\},$$

sendo $\theta_1 \in \theta_2$, nesta ordem, os parâmetros de forma e de escala. Para facilitar na especificação da distribuição *a priori* do parâmetro de escala optou-se por escalonar os tempos para o intervalo (0, 1], dividindo-se t_{ij} pelo máximo dos tempos observados τ . Note que este procedimento proporciona uma simplificação na especificação da distribuição para os parâmetros de escala, pois os tempos passam a ter uma escala fixa e a elicitação da distribuição *a priori* nesta situação não dependera da escala observada nos dados.

No caso da abordagem via EP, considere inicialmente uma partição de tamanho l do eixo do tempo, dada por: $0 = s_0 < s_1 < \ldots < s_l < \infty$. A função de intensidade deste modelo assume valor de intensidade de eventos constante dentro de intervalos, e é obtida da seguinte maneira:

$$\lambda(t_{ij}|\xi_k,\beta_1,x_{i1}) = \xi_k \exp\{\beta_1 x_{i1}\}, t_{ij} \in I_k,$$

em que $\xi_k > 0$, $I_k = (s_{k-1}, s_k]$, para $k = 1, \ldots, l$. Como o processo via PB induz uma partição do eixo do tempo em intervalos de igual amplitude, foi tomado l = m e os l intervalos com o mesmo comprimento, tornando os processos mais comparáveis. Assim como θ_2 no processo LP, os ξ_k são parâmetros que dependem da escala observada dos tempos. Desta forma, adotou-se também o procedimento de escalonamento dos tempos para o intervalo (0, 1], sendo agora a partição do eixo do tempo construída sobre este intervalo. Perceba que as funções intensidades induzidas via PB possuem em sua forma funcional essa escalonação dos tempos, devido sua relação com a distribuição beta que tem como domínio o intervalo [0, 1]. Ademais, para trabalhar com as mesmas especificações *a priori* usadas para o vetor de parâmetro η dos PBs, considere $\phi = (\phi_1, \ldots, \phi_l)$ o vetor composto pelo logaritmo das intensidades, com $\phi_k = \log(\xi_k)$.

Para ajuste do processo LP e do processo de Poisson via EP usando o JAGS foram consideradas as seguintes especificações *a priori*:

- LP: admite-se que θ_1 (parâmetro de forma) e θ_2 (parâmetro de escala) são independentes a priori, com $\theta_1 \sim \text{Gama}(0.1, 0.1)$ e log $(\theta_2) \sim N(0, 1/4^2)$. Este modelo será referenciado por M_{PL} ;
- EP: os modelos referenciados por $M_{EP(l)}^G$, $M_{EP(l)}^Z$, $M_{EP(l)}^{PL}$, $M_{EP(l)}^{Wishart}$ e $M_{EP(l)}^{RW}$ admitem para o vetor de parâmetros $\boldsymbol{\xi}$ ou $\boldsymbol{\phi}$, respectivamente, as mesmas especificações *a priori* dos modelos $M_{PB(m)}^G$, $M_{PB(m)}^Z$, $M_{PB(m)}^{PL}$, $M_{PB(m)}^{Wishart}$ e $M_{PB(m)}^{RW}$ para o vetor de parâmetro $\boldsymbol{\gamma}$ ou $\boldsymbol{\eta}$. Destaca-se uma única diferença para o modelo $M_{EP(l)}^{PL}$, a média *a priori* do ϕ_k é dada por:

$$\mu_{\phi_k} = \log\left[\frac{\Lambda_0\left(s_k\right) - \Lambda_0\left(s_{k-1}\right)}{s_k - s_{k-1}}\right]$$

Em todos os casos foi admitido que o efeito da covariável tratamento tem a seguinte especificação *a priori*:

$$\beta_1 \sim N\left(0, \zeta_{\beta_1}\right)$$

em que ζ_{β_1} é a precisão do β_1 *a priori* fixada em 1/4². Como pode ser visto em (3.7), o coeficiente β_1 esta dentro de um termo exponencial, portanto, assumir uma especificação *a priori* muito vaga poderia acarretar em problemas numéricos (Gjessing et al., 2010). Acredita-se que 1/4² é suficiente para explorar o espaço paramétrico.

As configurações do algoritmo MCMC, foram escolhidas considerando um total de 100 mil iterações, sendo 50 mil o tamanho do período de aquecimento (*burn in*) e saltos (*lag*) de apenas 1 iteração para amostragem. Ao final, obteve-se uma amostra da distribuição *a posteriori* de tamanho 50 mil. Os intervalos de credibilidade de mais alta densidade (da sigla em inglês HPD) com 95% de probabilidade *a posteriori* para o parâmetro β_1 , foram obtidos usando a função HPDinterval do pacote coda (Plummer et al., 2006) do R. Em termos de convergência, foram verificados os gráficos de trajetória das cadeias, os quais indicaram que a convergência para distribuição alvo foi atingida.

Neste contexto, na Figura 3.4 é apresentado um mapa de calor do critério de seleção DIC obtido para todos os modelos propostos para a análise dos dados do estudo de carcinogênese. Estes modelos variam o grau do polinômio ou tamanho da partição utilizada nos casos baseados na EP. Sendo assim, sabendo que quanto menor o valor do DIC, mais o modelo é indicado para ajustar os dados, adicionou-se no centro de cada retângulo uma quantidade relativa, que representa o quando o valor do critério de um dado modelo distancia-se em termos percentuais do valor do modelo escolhido pelo critério supracitado. Neste caso, valores de DIC menores estão associados às regiões na cor branca. O modelo $M_{PE(15)}^{PL}$ é aquele que possui o menor valor do critério, 1787.247. Dentre os modelos baseados nos PBs, o que apresentou o menor valor do critério é o $M^Z_{BP(16)},\,1797.187,\,{\rm sendo}$ este valor0.556%
 $\left(\left[1797.187-1787.247\right]/1787.247\times100\right)$ maior do que o valor do critério do $M_{PE(15)}^{PL}$. Veja também que os processos de Poisson via PBs são bem estáveis em relação a variação dos valores do critério em termos de grau, já os processos via EP apresentam oscilações nos valores do critério, chegando a ter pior ajuste que o processo LP para alguns valores de l. Além disso, os valores do critério para os modelos construídos com base nos PBs são próximos ao do $M_{PE(15)}^{PL}$, não excedendo 1% do valor do DIC para este modelo.

Semelhante ao resultado apresentado na Figura 3.4 para o DIC, no Apêndice A são exibidos

os mapas de calor para os critérios -2 LPML e -2 WAIC, respectivamente, nas Figuras A.1 e A.2. De modo a facilitar a interpretação dos critérios multiplicou-se estes por -2, para que eles tenham interpretação similar ao DIC, isto é, quando menor o valor do critério melhor o modelo se ajusta aos dados. Destes resultados, observa-se que os critérios, incluindo o DIC, não divergem em relação ao melhor modelo a ser escolhido entre aqueles baseados nos PBs, todos os critérios direcionam para escolha do $M_{PB(16)}^Z$. O que não é observado para os baseados na EP, que segundo o critério de -2 LPML o melhor modelo é o $M_{EP(15)}^{Wishart}$ e pelo critério de -2WAIC o melhor é o $M_{EP(15)}^{PL}$, mesmo que o escolhido usando o DIC para aplicação dos dados de carcinogênese.

Figura 3.4: DIC segundo o grau do polinômio (m) ou tamanho da partição (l), para o estudo de carcinogênese.

Na Figura 3.5 (a), (b) e (c), tem-se o número esperado de tumores mamários para o modelo escolhido com base nos critérios de seleção DIC e -2 WAIC. A Figura 3.5 (d), (e) e (f), e para o melhor modelo baseado nos PBs, segundo todos os critérios. Além disso, a título de comparação é apresentado o número esperado de tumores mamários para o modelo paramétrico M_{PL} , Figura 3.5 (g), (h) e (i). Para todos os modelos, o número esperado de tumores foi estimado usando a média, mediana e a moda¹ da amostra *a posteriori* do número esperado de eventos em cada instante de tempo. As curvas obtidas foram comparadas às estimadas usando o estimador não paramétrico de Nelson-Aalen (Cook e Lawless, 2010). Observa-se que os resultados dos modelos $M_{EP(15)}^{PL}$ e $M_{PB(16)}^{Z}$ são os que mais se aproximam do obtido pelo estimador de Nelson-Aalen, contudo o $M_{PB(16)}^{Z}$ produz uma curva mais suave do que o $M_{EP(15)}^{PL}$. Note que no caso de usar a moda *a posteriori* para estimar o número esperado de tumores, esta produz alguns resultados não esperados, uma vez que a função de intensidade acumulada é uma função não decrescente, vide Equação (2.11).

¹Valor da amostra *a posteriori* da função de risco acumulada que maximiza a densidade estimada via kernel, obtido com auxílio da função **density** do pacote **stats** do software R (R Core Team, 2019), usando as configurações padrão.

Figura 3.5: Estimativa do número esperado de tumores assumindo os modelos $M_{EP(15)}^{PL}$, $M_{PB(16)}^{Z}$ e M_{PL} , usando a média, mediana e a moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

No Apêndice A, expõe-se os demais resultados similares aos apresentados na Figura 3.5, para os modelos $M_{BP(m)}^G$, $M_{BP(m)}^Z$, $M_{BP(m)}^{PL}$, $M_{BP(m)}^G$, $M_{PE(l)}^G$, $M_{PE(l)}^{PL}$, $M_{PE(l)}^{PL}$, $M_{PE(l)}^{Wishart}$ e $M_{PE(l)}^{RW}$ com m(l) = 2, 9, 16. Considerando essas opções, nota-se que para graus (ou tamanho da partição) maiores do que ou iguais a 9, tem-se uma melhor aderência à estimativa não paramétrica. Já para grau do polinômio ou tamanho da partição da EP igual a 2, o ajuste fica similar ao M_{PL} . Mas essa mudança é muito sensível ao se fazer uma análise de sensibilidade variando o grau ou tamanho da partição estudada.

Na Figura 3.6, são apresentadas as estimativas *a posteriori* do parâmetro β_1 , usando a média, a mediana e a moda para todos os modelos ajustados, exceto para o M_{PL} . Ademais, apresenta-se os intervalos HPD de credibilidade, com 95% de probabilidade *a posteriori*, bem como o desvio padrão da amostra *a posteriori* para o parâmetro supracitado. No caso do modelo M_{PL} , a média, mediana e moda de β_1 são, respectivamente, -0.828, -0.827 e -0.830, sendo o desvio padrão da amostra *a posteriori* de 0.149 e o intervalo de 95% estimado por (-1.127, -0.542).

No que diz respeito à estimativa de β_1 , Cook e Lawless (2010), quando analisaram esse conjunto de dados usando o processo de Poisson com especificações variadas para função de intensidade de base, obtiveram uma estimativa de -0.82 com erro padrão de 0.15, usando abordagem clássica. Esta estimativa pontual é representada pela linha sólida preta nos gráficos. Na Figura 3.6, percebe-se visualmente que os modelos M_{PL} , $M_{BP(m)}^G$, $M_{BP(m)}^{PL}$

Com base na análise desenvolvida aqui, é possível dizer que os resultados apresentados nas Figuras 3.3, 3.5 e 3.6 permitem compreender e caracterizar o processo de recorrência de tumores mamários ao longo do tempo para ambos os grupos (controle e tratamento).

Nesta seção foram propostas duas abordagem baseadas no modelo de Andersen e Gill (1982),

para análise de eventos recorrentes. O processo de Poisson via PBs foi aplicado ao conjunto de dados do estudo de carcinogênese demonstrando resultados competitivos com os obtidos pelos processos de Poisson construídos usando o PL e a EP. Na próxima seção, são propostos os processos de renovação induzidos através dos PBs, bem como uma aplicação a dados reais.

3.2 Processo de renovação via Polinômios de Bernstein

Assim como anteriormente, considere que *n* elementos são observados, cada um deles composto por q_i eventos (i = 1, ..., n) e seja t_{ij} $(j = 1, ..., q_i)$ o tempo até a ocorrência do *j*-ésimo evento para o *i*-ésimo elemento que foi observado no período de tempo $(0, \kappa_i]$, de modo que $0 < t_{i1} < t_{i2} < \cdots < t_{iq_i} \leq \kappa_i$. Além disso, seja W_{ij} uma variável aleatória representando o tempo entre eventos com função de risco:

$$h(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m) = h_m(w_{ij}|\boldsymbol{\gamma})\exp\left\{\boldsymbol{x}_i^{\top}\boldsymbol{\beta}\right\},$$
(3.8)

sendo $h_m(w_{ij}|\boldsymbol{\gamma})$ a função de risco de base induzida pelos PBs definida em (2.6), $w_{ij} = t_{ij} - t_{i,j-1}$, com $t_{i0} = 0$, $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_m)^{\top}$, $\boldsymbol{x}_i = (x_{i1}, \dots, x_{ip})^{\top}$, $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$ e m é o grau do polinômio. Sabe-se que a função $h_m(w_{ij}|\boldsymbol{\gamma})$ depende da constante τ , que no caso das análises de tempos entre eventos será tomado como o máximo dos tempos entre eventos.

Assim como na função de intensidade (3.1), na função risco (3.8) assume-se que as covariáveis atuam de forma multiplicativa sobre a função de risco de base, logo o modelo definido usando esta função de risco pertencerá à classe dos modelos de riscos proporcionais e será referido como processo de renovação via PBs ou processo de renovação com função de risco induzida pelos PBs.

A função de verossimilhança assumindo independência entre os n elementos e entre os tempos entre eventos do *i*-ésimo elemento é dada por:

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{w},\boldsymbol{x},m) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_i} h(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m) \exp\left\{-H(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m)\right\} \right] \times \exp\left\{-H(w_{i,q_i+1}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,m)\right\},$$
(3.9)

em que $\boldsymbol{w} = (w_{1,1}, \dots, w_{1,q_1}, w_{1,q_1+1}, \dots, w_{n,1}, \dots, w_{nq_n}, w_{n,q_n+1})^{\top}, \boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^{\top}, w_{i,q_i+1} = \kappa_i - t_{iq_i}$ e $H(w|\cdot) = \int_0^w h(u|\cdot) du$. Observe que (3.9) comporta o problema de censura à

direita, pois w_{i,q_i+1} representa um tempo censurado, logo sua contribuição é dada pela função de sobrevivência aplicada neste instante de tempo.

No processo de renovação via PBs, para construção da função de verossimilhança (3.9) foi assumido que os tempos entre eventos de um mesmo elemento são independentes. Porém, para Colosimo e Giolo (2006), quando analisa-se dados de eventos recorrentes, há situações em que não será razoável supor ausência de associação entre os tempos entre eventos. Neste contexto, propõe-se o modelo denominado processo de renovação via PB com fragilidade, que inclui na função de risco um efeito aleatório que visa descrever essa possível associação entre tempos entre eventos. Para tal é considerado a seguinte função de risco:

$$h\left(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},\nu_{i},m\right) = \nu_{i}h_{m}\left(w_{ij}|\boldsymbol{\gamma}\right)\exp\left\{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}\right\},\tag{3.10}$$

em que ν_1, \ldots, ν_n são variáveis aleatórias, independentes entre si e das covariáveis e seguindo a distribuição gama com média 1 e precisão ζ_{ν} , isto é, $\nu_i \sim G(\zeta_{\nu}, \zeta_{\nu})$, para $i = 1, \ldots, n$. Observe que os tempos entre eventos associados com o *i*-ésimo elemento compartilham da mesma fragilidade e é assumido que a função de risco (3.10) é uma função condicional de w_{ij} dado o efeito aleatório (fragilidade) não observado e as demais quantidades (Ibrahim et al., 2001b). A função de verossimilhança para esse modelo pode ser obtida da seguinte forma:

$$L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{w},\boldsymbol{x},\boldsymbol{\nu},m) = \prod_{i=1}^{n} \left\{ \prod_{j=1}^{q_i} h(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,\nu_i,m) \exp\left[-H(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,\nu_i,m)\right] \right\} \times \exp\left[-H(w_{i,q_i+1}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_i,\nu_i,m)\right], \qquad (3.11)$$

sendo $\boldsymbol{\nu} = (\nu_1, \nu_2, \dots, \nu_n)^\top$.

Inferência Bayesiana para o processo de renovação com e sem fragilidade será realizada usando especificações *a priori* similares àquelas usadas no processo de Poisson com e sem fragilidade; vide Seção 3.1.

3.2.1 Aplicação - exacerbações pulmonares na fibrose cística

Nesta aplicação considera-se dados obtidos por Fuchs et al. (1994) através de um ensaio clínico aleatorizado envolvendo 968 pessoas portadoras de fibrose cística, doença genética que afeta as células produtoras de muco, suor e sucos digestivos. Os indivíduos acometidos por esta doença são propensos ao acúmulo de fluídos espessos e pegajosos nos pulmões, ocasionando exacerbações pulmonares (infecções que exigem o uso de antibióticos intravenosos) e desgaste da função pulmonar, pois esses bloqueiam as vias aéreas. O objetivo principal neste estudo foi verificar os efeitos da administração, uma vez por dia e duas vezes por dia, de rhDNase, que é uma forma recombinante purificada da enzima humana DNase I, sobre exacerbações dos sintomas respiratórios durante o período de aproximadamente 169 dias para maioria dos pacientes. O grupo tratado com rhDNase é composto por 643 pacientes, sendo que 322 receberam uma dose diária e 321 duas doses diárias, já o grupo controle que recebeu uma dose diária de um placebo, totaliza 325 pacientes. Destaca-se que os pacientes e os seus médicos não sabiam qual substância estavam recebendo.

Neste trabalho, assim como em Cook e Lawless (2010), não foram considerados todos os dados observados por Fuchs et al. (1994). Logo, para manter a comparação com os resultados apresentados por Cook e Lawless (2010), analisou-se apenas os dados referentes aos pacientes que receberam diariamente uma dose, seja de um placebo ou de rhDNase. Sendo assim, foram utilizados dados de 324 pacientes do grupo placebo e os dos 321 indivíduos do grupo tratado com uma dose de rhDNase. Além do registro dos tempos em que ocorreram as exacerbações pulmonares individualmente por grupo, foram coletados dados sobre o volume expiratório forçado (VEF, sigla do termo em inglês *forced expiratory volume*), uma medida subjetiva da capacidade pulmonar mensurada no dia da alocação dos pacientes no grupo tratado ou placebo.

Cook e Lawless (2010), quando analisaram estes dados consideraram avaliar os tempos até a ocorrência do primeiro evento (W_{i1}) e os tempos entre ocorrências do primeiro e segundo eventos (W_{i2}) , uma vez que poucos pacientes do estudo rhDnase apresentam mais de duas exacerbações, apenas 27. Uma observação é que pacientes que não apresentam eventos são considerados censurados para W_{i1} , enquanto aqueles que tiveram apenas uma exacerbação são a censura para W_{i2} . Em ambos os casos tem-se censura à direita, assumida aleatória e não informativa.

Neste contexto, para modelagem dos dados os autores supracitados optaram por três abordagens, sendo a primeira considerando o modelo de riscos proporcionais de Cox para W_{i1} , adicionado das covariáveis tratamento e VEF. A segunda, consistiu em investigar através do modelo de Cox a variável resposta W_{i2} , assumindo as mesmas covariáveis da primeira e adicionando também o tempo do primeiro evento. A covariável "tempo do primeiro evento" foi incluída com a finalidade de estudar uma possível relação entre os tempos. Por último, considerou-se o modelo de riscos proporcionais com efeito aleatório compartilhado entre os tempos $W_{i1} \in W_{i2}$, assumindo efeito multiplicativo no risco das mesmas covariáveis da primeira abordagem. Note que, assim como na segunda, na terceira e última abordagem busca-se mensurar uma possível correlação entre os tempos $W_{i1} \in W_{i2}$. Um outro ponto relevante, é que da definição da variável W_{ij} , assume-se que os elementos são observados de forma contínua do instante 0 até o final do acompanhamento, o que não ocorre nestes dados, pois após acontecer uma infecção, os pacientes são tratados com antibióticos e uma exacerbação subsequente não pode ocorrer antes do final do período de tratamento. Portanto, entre um evento (exacerbação) até o final do tratamento com antibióticos o paciente que apresenta uma exacerbação fica fora de risco, esses períodos são altamente variáveis embora a maioria dure de 10 a 15 dias.

Sob estas condições, as abordagens propostas neste trabalho, que são equivalentes às usadas por Cook e Lawless (2010), foram ajustadas aos dados. Sendo, a primeira e segunda obtidas do modelo definido na Equação (3.8) e expressa em particular para esses dados, respectivamente, da seguinte forma:

$$h(w_{i1}|\boldsymbol{\gamma},\beta_1,\beta_2,x_{i1},x_{i2},m) = h_m(w_{i1}|\boldsymbol{\gamma})\exp\{x_{i1}\beta_1 + x_{i2}\beta_2\}$$
(3.12)

e

$$h(w_{i2}|\boldsymbol{\gamma},\beta_1,\beta_2,\beta_3,x_{i1},x_{i2},w_{i1},m) = h_m(w_{i2}|\boldsymbol{\gamma})\exp\{x_{i1}\beta_1 + x_{i2}\beta_2 + w_{i1}\beta_3\}, \quad (3.13)$$

em que x_{i1} e x_{i2} correspondem, respectivamente, ao indicador de tratamento (1 - rnDNase e 0 - placebo) e FEV para o *i*-ésimo paciente, i = 1, ..., 645. O modelo equivalente à terceira abordagem está definido na Equação (3.10) e no contexto desta aplicação fica representado da seguinte maneira:

$$h(w_{ij}|\boldsymbol{\gamma},\beta_1,\beta_2,x_{i1},x_{i2},\nu_i,m) = \nu_i h_m(w_{ij}|\boldsymbol{\gamma}) \exp\{x_{i1}\beta_1 + x_{i2}\beta_2\}, j = 1,2.$$
(3.14)

Neste estudo optou-se por utilizar apenas modelos baseados nos PBs, assumindo m = 10e restringindo-se nas abordagens com especificação *a priori* para os coeficientes do polinômio similares às utilizadas nos casos $M_{BP(10)}^G$ e $M_{BP(10)}^{PL}$, conforme visto na aplicação dos dados de carcinogênese. A justificativa para escolha destas especificações reside no fato de que o principal interesse nesta aplicação é estimar o efeito das covariáveis e, como pode ser visto no estudo de carcinogênese, não houve grandes diferenças entre as diversas especificações e grau do polinômio no que diz respeito a estimativas do coeficiente da variável regressora (vide Figura 3.6).

Os resultados obtidos por Cook e Lawless (2010), reproduzidos neste trabalho, foram obtidos sob o paradigma frequentista usando a função **coxph** do pacote **survival** (Therneau e Grambsch, 2000) do *software* R, enquanto os modelos propostos nesta tese foram ajustados sob o paradigma Bayesiano usando os *softwares* JAGS e R através do pacote BayesGCMRec², construído para implementar os modelos aqui propostos.

Para a primeira, segunda e terceira abordagens utilizou-se, respectivamente, as funções de verossimilhança exibidas nas Equações (3.9), (3.9) e (3.11). Completando a especificação do modelo, para os coeficientes das variáveis regressoras e para precisão das fragilidades foram admitidos, na devida ordem, as seguintes distribuições *a priori*:

 $\beta_1 \sim N(0, 1/4^2),$ $\beta_2 \sim N(0, 1/4^2),$ $\beta_3 \sim N(0, 1/4^2)$

е

$$\zeta_{\nu} \sim \text{Gama}(1,1),$$

sendo assumido independência *a priori* mutuamente entre os parâmetros γ (coeficientes do polinômio), β (coeficientes das covariáveis) e ζ_{ν} (precisão do efeito aleatório), do modelo com fragilidade e independência entre $\gamma \in \beta$ no caso dos modelos sem efeito aleatório.

Na Tabela 3.1, pode-se observar os resultados para todos os modelos ajustados na aplicação rhDNase. Antes de seguir com as análises, ressalta-se que a função **coxph** não produz erro padrão para precisão (ou variância) da fragilidade, logo não sendo possível obter o intervalo de confiança na modelagem com fragilidade que utiliza essa função para fazer o ajuste.

²Pacote em construção, pretende-se em breve disponibilizá-lo através do CRAN (*Comprehensive R Archive Network*).

Na Tabela 3.1, pode-se observar que todas as modelagens indicam risco menor de ocorrência de eventos para pacientes tratados com rhDNase, exceto para W_1 que o tratamento exibe efeito estatisticamente nulo e contrário em comparação com as demais abordagens. Há indícios que VEF maiores estejam associados ao menor risco de ocorrência do primeiro evento, porém não há indicativos que esta variável influencia de forma significativa na ocorrência do segundo evento. Quando modelado o tempo entre o primeiro e o segundo eventos, todos os modelos indicam uma relação estatisticamente significativa entre W_1 e W_2 . Essa relação é confirmada posteriormente pela abordagem com fragilidade compartilhada entre esses tempos. Como sugere Cook e Lawless (2010), esta última afirmação pode ser verificada utilizando a precisão da fragilidade que, neste caso, ficou em torno de aproximadamente 0.8, indicando uma estrutura de associação entre o primeiro e segundo evento. Ademais, vale destacar que valores de ζ_{ν} próximos de 0 apontam ausência de relação entre W_1 e W_2 , entretanto como pode ser visto na Tabela 3.1, as análises dos intervalos HPD com 95% de probabilidade deste parâmetro recomendam que tal indagação seja pouco provável nesta aplicação. Por fim, salienta-se que os modelos apresentam estimativas pontuais e intervalares muito próximas e sempre direcionam para as mesma conclusões.

Tomo on ontoo counts	Danâmatra	coxph	$M^G_{BP(10)}$	$M_{BP(10)}^{PL}$					
Tempos entre evento	Parametro	Estimativa (IC 95%)	Média a posteriori (HPD 95%)	Média a posteriori (HPD 95%)					
W_1	β_1 (rhDNase)	-0.383 (-0.637, -0.129)	-0.380 (-0.623, -0.123)	-0.385 (-0.650, -0.138)					
	$\beta_2(\text{FEV})$	-0.021 (-0.026, -0.015)	-0.020 (-0.026, -0.015)	-0.021 (-0.026 , -0.015)					
W_2	β_1 (rhDNase)	0.358 (-0.082, 0.798)	0.357 (-0.066, 0.774)	0.365 (-0.053, 0.825)					
	$\beta_2(\text{FEV})$	0.001 (-0.010, 0.011)	$0.0001 \ (-0.010, \ 0.010)$	0.001 (-0.010, 0.010)					
	$\beta_3(w_1)$	-0.014 (-0.022, -0.007)	-0.011 (-0.018 -0.004)	-0.014 (-0.022, -0.007)					
W_1 e W_2	β_1 (rhDNase)	-0.313 (-0.599, -0.027)	-0.322 (-0.472, -0.172)	-0.320 (-0.470, -0.171)					
	$\beta_2(\text{FEV})$	-0.022 (-0.028, -0.016)	-0.022 (-0.025, -0.019)	-0.022 (-0.025, -0.019)					
	$\zeta_{\nu}(\text{fragilidade})$	0.881	$0.821 \ (0.607, \ 1.096)$	$0.829\ (0.615,\ 1.116)$					

Tabela 3.1: Estimativas para todos o parâmetros dos modelos considerados na aplicação dos dados de exacerbações pulmonares:

Diante da discussão apresentada, percebe-se claramente que os processos de renovação via PBs são alternativas viáveis para análise de tempo entre eventos assumindo ou não o termo de fragilidade para modelagem de dados reais. Por fim, reitera-se que os resultados aqui encontrados são análogos aos obtidos por Cook e Lawless (2010), incluindo a forte evidência de relação entre os tempos entre eventos, observada pelos autores na aplicação de exacerbações pulmonares.

Capítulo 4

Uma classe geral de modelos semiparamétricos para análise de dados de eventos recorrentes

Neste capítulo são propostas duas classes gerais de modelos semiparamétricos para análise de dados de eventos recorrentes, as quais são baseadas em uma classe geral proposta por Peña e Hollander (2004). De acordo com estes autores, esta classe de modelos incorpora simultaneamente: o efeito da intervenção após ocorrência de um evento, se foi realizado um reparo mínimo (processo de Poisson), imperfeito ou perfeito (processo de renovação); os efeitos das covariáveis, sejam estas variantes ou não com o tempo; o efeito acumulativo da ocorrência de eventos, ou seja, o quanto histórico de eventos impacta no acontecimento de novos eventos; a possível correlação existente entre os tempos de eventos de um mesmo elemento, através do termo de fragilidade. Os novos modelos possuem o processo de Poisson e o processo de renovação como casos particulares e são flexíveis no sentido de não impor uma forma específica para a função de risco ou intensidade de base, pois estas são construídas sob uma ótica semiparamétrica usando os PBs e a EP.

Segundo Peña e Hollander (2004), apesar de existirem muitos modelos para análise de dados de eventos recorrentes, ainda se faz necessário modelagens mais gerais e flexíveis que consideram, simultaneamente: o efeito da intervenção após ocorrência de um evento, os efeitos das covariáveis, o efeito acumulativo da ocorrência de eventos, a possível dependência existente entre os tempos de eventos para um mesmo elemento. Sob essas premissas eles propuseram uma classe geral de modelos que estende os processos usuais e adiciona novas estruturas que não são consideradas nas abordagens canônicas (processo de Poisson e renovação), um exemplo é o efeito acumulativo do número de eventos na aceleração ou desaceleração no acontecimento de novos eventos. Para os autores, buscar entender a natureza aleatória geradora dos dados na sua forma intrínseca é essencial em situações que envolvem dados de eventos recorrentes, uma vez que esses podem influenciar na antecipação ou retardamento da recorrência, ou até mesmo na não ocorrência do evento.

Neste sentido, González et al. (2005a) mostram que na área de oncologia (ou cancerologia) a classe geral é eficiente para modelar os efeitos de intervenção após recidivas de câncer. Além disso serve, para acomodar o efeito das covariáveis, o impacto do número de recaídas anteriores e a heterogeneidade entre os indivíduos. Entende-se por intervenção uma ação que busca prolongar, se não eliminar a recorrência do evento; por exemplo: tratamentos profiláticos ou curativos, como quimioterapia, radioterapia ou até mesmo transplante, para alguns tipos de cânceres, são intervenções que podem reduzir significativamente o risco de uma recorrência. Logo, tais atuações podem vir a proporcionar uma melhora do paciente, o que para os esses autores reforça a importância deste componente no modelo, pois por mais natural que pareça ser importante considerar o efeito das intervenções realizadas, os principais modelos utilizados no campo da saúde não levam isso em conta.

A abordagem proposta por Stocker IV e Peña (2007), assim como as propostas nesta tese, considera a classe geral estabelecida por Peña e Hollander (2004), porém os autores supracitados especificam a função de intensidade de base do modelo sob uma ótica totalmente paramétrica e a estimação dos parâmetros é realizada via inferência clássica. Isso é diferente do que é feito no presente trabalho, que modela essa função usando uma estrutura semiparamétrica através dos PBs e da EP e utiliza abordagens Bayesianas e clássicas para fazer inferência sobre as quantidades desconhecidas. Destaca-se que aqui foi utilizada a mesma argumentação de Stocker IV e Peña (2007) para formular os modelos propostos nesta seção, uma vez que do ponto de vista estrito, as funções de intensidade de base induzidas pelos PBs e pela EP possuem em sua definição formas paramétricas.

Neste contexto, mesmo que a classe geral proposta com base nos PBs e na EP possua uma estrutura paramétrica, sua forma semiparamétrica é mais comparável com a abordagem semiparamétrica colocada por Peña et al. (2007). Estes autores utilizam uma função de intensidade geral definida em Peña e Hollander (2004) e especificam de forma não paramétrica a função intensidade de base através de uma estrutura similar ao estimador de Nelson-Aalen (ou Aalen-Breslow). Fazendo correspondência com os modelos propostos neste trabalho, a parte não paramétrica seria aquela que é especificada usando os PB e a EP, assim como eles, a parte não paramétrica é a função intensidade de base. Já a parte paramétrica em ambos os casos são aquelas associadas às covariáveis e demais parâmetros que surgem ao se introduzir uma possível relação entre tempos de eventos e ao quantificar a influência da ocorrência de eventos na recorrência de eventos. Destaca-se também que os autores derivam uma verossimilhança parcial que pode ser visto como uma generalização da verossimilhança parcial apresentada para o modelo de riscos proporcionais de Cox (Cox, 1972; Andersen e Gill, 1982) e utilizam a abordagem de Nielsen et al. (1992) para fazer estimação dos parâmetros do modelo via algoritmo EM (Dempster et al., 1977).

Para estimação dos parâmetros, todos os autores citados anteriormente optaram pelo método da máxima verossimilhança e usaram algum recurso computacional para maximizar a função de verossimilhança considerada. Porém, observa-se que Gouvêa (2010) e Gouvêa et al. (2011) trabalharam sob o paradigma Bayesiano a inferência para o modelo proposto por Peña e Hollander (2004), usando a mesmas especificações de Stocker IV e Peña (2007) e assumindo função de intensidade de base via LP, assim como feito por estes em estudo de simulação e aplicação real. No entanto, a inferência proposta por Gouvêa e colaboradores é restrita ao modelo de reparo mínimo (ou processo de Poisson). Eles fazem uso de uma única especificação a priori e não realizam estudos de simulação. Logo, no tocante à abordagem Bayesiana, o presente estudo torna-se original, pois propõe e verifica por simulações cinco especificações a priori para o modelo de reparo mínimo e para o de reparo perfeito (processo de renovação), destacando, como já mencionado, que as funções de risco ou intensidade são especificadas de forma semiparamétrica de maneira não observada na literatura corrente. Além disso, para termos comparativos considera-se também, neste trabalho, a abordagem via maximização da função de verossimilhança, assim como feito por González et al. (2005a), Stocker IV e Peña (2007) e Peña et al. (2007).

4.1 Classe geral de modelos semiparamétricos

Novamente considere a notação mostrada no Capítulo 3. Suponha que *n* elementos são observados, cada um deles composto por q_i eventos (i = 1, ..., n) e seja t_{ij} $(j = 1, ..., q_i)$ o tempo até a ocorrência do *j*-ésimo evento para o *i*-ésimo elemento observado sobre o período de tempo $[0, \kappa_i]$, de modo que $t_{i0} = 0 < t_{i1} < t_{i2} < \cdots < t_{ij-1} < t_{ij} < \cdots < t_{iq_i} \leq \kappa_i$. Seja $w_{ij} = t_{ij} - t_{ij-1}$ o tempo entre os eventos j - 1 e j e $w_{i,q_i+1} = \kappa_i - t_{iq_i}$ o tempo compreendido entre o último evento (o evento q_i) e o final do acompanhamento (κ_i) , sendo este um tempo censurado à direita. Além disso, para o elemento i considera-se que é observado o vetor de covariáveis \boldsymbol{x}_i $(t_{ij}) = (x_{i1} (t_{ij}), x_{i2} (t_{ij}), \ldots, x_{ip} (t_{ij}))^{\top}$.

Sob essas condições, Peña e Hollander (2004) definem um processo de contagem associado ao número acumulado de eventos gerado pelo processo $\{N_i(t_{ij}), 0 \leq t_{ij}\}$, com $N_i(t_{ij})$ representando o número de eventos ocorridos no intervalo $[0, t_{ij}]$. O processo definido é contínuo a direita, sendo, respectivamente, t_{ij} – e t_{ij} + tempos infinitesimalmente menores ou maiores que t_{ij} , logo $N_i(t_{ij}) = N_i(t_{ij}+)$ e $N_i(t_{ij}-)$ representa o número de eventos que ocorreram antes de t_{ij} .

A classe geral de modelos requer também a especificação de uma função observável e previsível $\mathscr{E}_i(t_{ij})$, denominado de idade efetiva do elemento. Ela é observável no sentido de que é passível de observação. Ela é previsível no tocante que, se depende de outros tempos, só dependerá de tempos de eventos anteriores a t_{ij} , ou seja, dos tempos $t_{i1} < t_{i2} < \cdots < t_{ij-1} < t_{ij}$. Essa idade efetiva possibilita de forma dinâmica modificar o tipo de reparação que está sendo feita no elemento. Se a reparação for mínima (processo de Poisson) tem-se $\mathscr{E}_i(t_{ij}) = t_{ij}$. Por outro lado, se $\mathscr{E}_i(t_{ij}) = t_{ij} - t_{i,N_i(t_{ij}-)} = t_{ij} - t_{ij-1} = w_{ij}$, o reparo feito após a ocorrência de um evento é perfeito (processo de renovação), dentre outras formas que contemplam a reparação imperfeita que podem ser assumidas para esta função. Algumas condições precisam ser satisfeitas por essa função, são elas: (i) $\mathscr{E}_i(t_{ij}) \ge 0$ e (ii) no intervalo $(t_{ij-1}, t_{ij}]$, $\mathscr{E}_i(t_{ij})$ é monótona e quase certamente diferenciável com derivada $\mathscr{E}'_i(t_{ij})$ positiva.

A classe de modelos proposta por Peña e Hollander (2004) pode ser obtida quando assume-se que a função de intensidade condicional do processo é dada da seguinte forma:

$$\lambda\left(t_{ij}|N_{i}\left(t_{ij}-\right),\boldsymbol{x}_{i}\left(t_{ij}\right),\nu_{i}\right)=\nu_{i}\lambda_{0}\left[\mathscr{E}_{i}\left(t_{ij}\right)\right]\rho\left[N_{i}\left(t_{ij}-\right)|\alpha\right]\psi\left[\boldsymbol{x}_{i}^{\top}\left(t_{ij}\right)\boldsymbol{\beta}\right],$$
(4.1)

sendo ν_i a fragilidade que permite incorporar possíveis associações entre tempos de eventos do

mesmo elemento; $\lambda_0(\cdot)$ uma função intensidade de base, que pode ser especificada de forma não paramétrica ou paramétrica; $\mathscr{E}_i(\cdot)$ a função idade efetiva, que incorpora o efeito da performance da intervenção; $\rho(\cdot|\alpha)$ uma função com forma conhecida que depende de um único parâmetro e deve ser escolhida de modo que $\rho(0|\alpha) = 1$, esse componente permite estudar o efeito do número acumulado de ocorrências na recorrência; finalmente $\psi\left[\boldsymbol{x}_i^{\top}(t_{ij})\boldsymbol{\beta}\right]$ é uma função de ligação não negativa com forma funcional conhecida que deve ser especificada tal que $\psi(0) = 1$, defina mais uma vez $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$.

Através da classe geral de modelos estabelecida por Peña e Hollander (2004), dada em (4.1) e assumindo $\rho \left[N_i(t_{ij}-) |\alpha\right] = \alpha^{N_i(t_{ij}-)} e \psi \left[\boldsymbol{x}_i^{\top}(t_{ij}) \boldsymbol{\beta} \right] = e^{\boldsymbol{x}_i^{\top}(t_{ij})\boldsymbol{\beta}}$, as classes gerais de modelos semiparamétricos via PBs e EP, aqui propostas, são obtidas considerando-se, respectivamente, as seguintes especificações:

$$\lambda(t_{ij}|\boldsymbol{\gamma},\alpha,\boldsymbol{\beta},\nu_{i},N_{i}(t_{ij}-),\boldsymbol{x}_{i}(t_{ij}),m) = \nu_{i}\lambda_{m}\left[\mathscr{E}_{i}(t_{ij})|\boldsymbol{\gamma}\right]\alpha^{N_{i}(t_{ij}-)}e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta}}$$
$$= \nu_{i}\lambda_{m}\left[\mathscr{E}_{i}(t_{ij})|\boldsymbol{\gamma}\right]e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta}+\log(\alpha)N_{i}(t_{ij}-)}$$
(4.2)

е

$$\lambda(t_{ij}|\boldsymbol{\xi},\boldsymbol{\beta},\alpha,\nu_{i},N_{i}(t_{ij}-),\boldsymbol{x}_{i}(t_{ij}),l) = \nu_{i}\xi_{k}\alpha^{N_{i}(t_{ij}-)}e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta}}$$
$$= \nu_{i}\xi_{k}e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta}+\log(\alpha)N_{i}(t_{ij}-)}, \qquad (4.3)$$

em que $\alpha > 0$ e $\mathscr{E}_i(t_{ij}) \in (s_{k-1}, s_k]$, $k = 1, \ldots, l$, na função de intensidade (4.3). Note que os intervalos são construídos com base em uma partição de tamanho l do eixo gerado pela função idade efetiva. Como visto na Seção 2.2.1 a função de intensidade basal, $\lambda_m [\mathscr{E}_i(t_{ij}) | \boldsymbol{\gamma}]$, depende em seu cálculo da escolha da constante τ que para classe geral baseada nos PBs foi adotado como o valor máximo da idade efetiva, ou seja, $\tau = \max \{\mathscr{E}_1(t_{11}), \mathscr{E}_1(t_{12}), \ldots, \mathscr{E}_1(t_{1q_1}), \ldots, \mathscr{E}_n(t_{n1}), \mathscr{E}_n(t_{n2}), \ldots,$

Neste contexto, considerando que ν_i é uma variável aleatória, independentes das covariáveis e seguindo uma distribuição gama de média igual a 1 e variância σ_{ν}^2 , isto é, $\nu_i \sim \text{Gama}(\zeta_{\nu}, \zeta_{\nu})$, com $\zeta_{\nu} = \frac{1}{\sigma_{\nu}^2}$ a precisão desconhecida das fragilidades. De acordo com Peña et al. (2007), Stocker IV e Peña (2007) e Cook e Lawless (2010), pode-se definir a seguinte função de verossimilhança condicional:

$$L(\boldsymbol{\gamma}, \alpha, \boldsymbol{\beta} | \boldsymbol{\nu}, \boldsymbol{D}(\kappa)) = \prod_{i=1}^{n} \left[\prod_{j=1}^{q_i} \nu_i \lambda_m \left[\mathscr{E}_i(t_{ij}) | \boldsymbol{\gamma} \right] e^{\boldsymbol{x}_i^\top(t_{ij})\boldsymbol{\beta} + \log(\alpha)N_i(t_{ij}-)} \right] \times \exp\left[-\nu_i \int_0^{\kappa} Y_i(s) \lambda_m \left[\mathscr{E}_i(s) | \boldsymbol{\gamma} \right] e^{\boldsymbol{x}_i^\top(s)\boldsymbol{\beta} + \log(\alpha)N_i(s-)} ds \right], \quad (4.4)$$

em que $\boldsymbol{\nu} = (\nu_1, \dots, \nu_n)^{\top}$, $Y_i(s) = I (0 \le s \le \kappa_i)$ e $\boldsymbol{D}(\kappa) = (\boldsymbol{t}, \boldsymbol{q}, \boldsymbol{N}(\kappa), \boldsymbol{x}(\kappa), m)$, representada os dados observados, sendo $\kappa = \max \{\kappa_1, \dots, \kappa_n\}, \boldsymbol{t} = (t_{11}, \dots, t_{1q_1}, \dots, t_{n1}, \dots, t_{nq_n})^{\top}, \boldsymbol{q} = (q_1, \dots, q_n)^{\top}, \boldsymbol{N}(\kappa) = (N_1(t_{11}), \dots, N_1(t_{1q_1}), \dots, N_n(t_{n1}), \dots, N_n(t_{nq_n}))^{\top}, \boldsymbol{x}(\kappa) = (\boldsymbol{x}_1(t_{11}), \dots, \boldsymbol{x}_1(t_{1q_1}))^{\top}$ e m o grau do polinômio. Já a função de verossimilhança completa é expressa da seguinte maneira:

$$L(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \boldsymbol{\nu}, \boldsymbol{D}(\boldsymbol{\kappa})) = L(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta} | \boldsymbol{D}(\boldsymbol{\kappa})) \prod_{i=1}^{n} \left[\frac{\zeta_{\nu}^{\zeta_{\nu}}}{\Gamma(\zeta_{\nu})} \nu_{i}^{\zeta_{\nu}-1} \exp\left\{-\zeta_{\nu}\nu_{i}\right\} \right]$$

$$= \prod_{i=1}^{n} \frac{\zeta_{\nu}^{\zeta_{\nu}}}{\Gamma(\zeta_{\nu})} \nu_{i}^{\zeta_{\nu}-1} \exp\left\{-\zeta_{\nu}\nu_{i}\right\}$$

$$\times \left[\prod_{j=1}^{q_{i}} \nu_{i}\lambda_{m} \left[\mathscr{E}_{i}\left(t_{ij}\right) | \boldsymbol{\gamma}\right] e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta} + \log(\boldsymbol{\alpha})N_{i}(t_{ij}-)} \right]$$

$$\times \exp\left\{-\nu_{i}\int_{0}^{\boldsymbol{\kappa}} Y_{i}\left(s\right)\lambda_{m} \left[\mathscr{E}_{i}\left(s\right) | \boldsymbol{\gamma}\right] e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\boldsymbol{\alpha})N_{i}(s-)}ds\right\}.$$
(4.5)

Logo como ν_i , i = 1, ..., n, não são observáveis, ao integrar (4.5) em relação ν , obtém-se a função de verossimilhança marginal, apresentada a seguir:

$$L(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \boldsymbol{D}(\boldsymbol{\kappa})) = \int_{0}^{\infty} \int_{0}^{\infty} \dots \int_{0}^{\infty} L(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \nu_{1}, \nu_{2}, \dots, \nu_{n}, \boldsymbol{D}(\boldsymbol{\kappa})) d\nu_{1} d\nu_{2} \dots d\nu_{n}$$

$$= \left\{ \prod_{i=1}^{n} \frac{\zeta_{\nu}^{\zeta_{\nu}} \Gamma(\zeta_{\nu} + q_{i})}{\Gamma(\zeta_{\nu}) \left\{ \zeta_{\nu} + \int_{0}^{\kappa} Y_{i}(s) \lambda_{m} \left[\mathscr{E}_{i}(s) |\boldsymbol{\gamma}\right] e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\boldsymbol{\alpha})N_{i}(s-)} ds \right\}^{\zeta_{\nu} + q_{i}} \right\}$$

$$\times \left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \lambda_{m} \left[\mathscr{E}_{i}(t_{ij}) |\boldsymbol{\gamma}\right] e^{\boldsymbol{x}_{i}^{\top}(t_{ij})\boldsymbol{\beta} + \log(\boldsymbol{\alpha})N_{i}(t_{ij}-)} \right].$$
(4.6)

Sendo assim, o logaritmo da função de verossimilhança marginal é dado da seguinte forma:

$$\log L\left(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \boldsymbol{D}\left(\boldsymbol{\kappa}\right)\right) = n\left\{\zeta_{\nu}\log\left(\zeta_{\nu}\right) - \log\left[\Gamma\left(\zeta_{\nu}\right)\right]\right\} + \sum_{i=1}^{n}\left\{\log\left[\Gamma\left(\zeta_{\nu}+q_{i}\right)\right]\right\} - \sum_{i=1}^{n}\left(\zeta_{\nu}+q_{i}\right)\log\left\{\zeta_{\nu}+\int_{0}^{\kappa}Y_{i}\left(s\right)\lambda_{m}\left[\mathscr{E}_{i}\left(s\right)|\boldsymbol{\gamma}\right]e^{\boldsymbol{x}_{i}^{\top}\left(s\right)\boldsymbol{\beta}+\log\left(\boldsymbol{\alpha}\right)N_{i}\left(s-\right)}ds\right\} + \sum_{i=1}^{n}\sum_{j=1}^{q_{i}}\left\{\log\left\{\lambda_{m}\left[\mathscr{E}_{i}\left(t_{ij}\right)|\boldsymbol{\gamma}\right]\right\} + \boldsymbol{x}_{i}^{\top}\left(t_{ij}\right)\boldsymbol{\beta}+\log\left(\boldsymbol{\alpha}\right)N_{i}\left(t_{ij}-\right)\right\}.$$

$$(4.7)$$

De maneira análoga, podem ser obtidas as funções de verossimilhança condicional, completa e marginal para o modelo EP. Neste trabalho, os modelos estimados via inferência clássica consideram o logaritmo da função de verossimilhança marginal e usam o método da máxima verossimilhança para obter estimativas das quantidades desconhecidas. Já os modelos estimados via inferência Bayesiana são construídos com base na função de verossimilhança condicional e usam as mesmas especificações *a priori* apresentadas na Seção 3.1, utilizando o amostrador de Gibbs através do *software* JAGS.

Sob a situação de reparo mínimo, isto é, $\mathscr{E}_i(t_{ij}) = t_{ij}$, tem-se para a Equação (4.7) a seguinte expressão:

$$\log L(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \boldsymbol{D}(\boldsymbol{\kappa})) = n \left\{ \zeta_{\nu} \log \left(\zeta_{\nu} \right) - \log \left[\Gamma\left(\zeta_{\nu} \right) \right] \right\} + \sum_{i=1}^{n} \left\{ \log \left[\Gamma\left(\zeta_{\nu} + q_{i} \right) \right] \right\} - \sum_{i=1}^{n} \left(\zeta_{\nu} + q_{i} \right) \log \left\{ \zeta_{\nu} + \int_{0}^{\boldsymbol{\kappa}} Y_{i}\left(s \right) \lambda_{m}\left(s | \boldsymbol{\gamma} \right) e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log\left(\boldsymbol{\alpha} \right) N_{i}\left(s - \right)} ds \right\} + \sum_{i=1}^{n} \sum_{j=1}^{q_{i}} \left\{ \log \left[\lambda_{m}\left(t_{ij} | \boldsymbol{\gamma} \right) \right] + \boldsymbol{x}_{i}^{\top}\left(t_{ij} \right) \boldsymbol{\beta} + \log\left(\boldsymbol{\alpha} \right) N_{i}\left(t_{ij} - \right) \right\}.$$

$$(4.8)$$

Sabendo que os pontos de descontinuidade de $\boldsymbol{x}_i^{\top}(s)$ e $N_i(s-)$, geralmente ocorrem nos tempos de eventos t_{ij} (Cook e Lawless, 2010), a integral em (4.8) é dada por:

$$\begin{split} \int_{0}^{\kappa} Y_{i}\left(s\right) \lambda_{m}\left(s|\boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}\left(s\right)\boldsymbol{\beta} + \log\left(\alpha\right)N_{i}\left(s-\right)} ds &= \int_{0}^{\kappa_{i}} \lambda_{m}\left(s|\boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}\left(s\right)\boldsymbol{\beta} + \log\left(\alpha\right)N_{i}\left(s-\right)} ds \\ &= \sum_{j=1}^{q_{i}+1} e^{\boldsymbol{x}_{i}^{\top}\left(t_{ij}\right)\boldsymbol{\beta} + \log\left(\alpha\right)N_{i}\left(t_{ij}-\right)} \int_{t_{ij-1}}^{t_{ij}} \lambda_{m}\left(s|\boldsymbol{\gamma}\right) ds \\ &= \sum_{j=1}^{q_{i}+1} e^{\boldsymbol{x}_{i}^{\top}\left(t_{ij}\right)\boldsymbol{\beta} + \log\left(\alpha\right)N_{i}\left(t_{ij}-\right)} \left[\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(t_{ij}\right) - \boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(t_{ij-1}\right)\right], \end{split}$$

em que $t_{i0} = 0$ e $t_{iq_i+1} = \kappa_i$. Note que é assumido que o elemento *i* é observado de maneira contínua em todo intervalo desde o instante 0 até κ_i , porém por simplicidade, geralmente assume-se que os saltos são em t_{ij} . Além disso, note que $N(t_{ij}-) = j - 1$, portanto quando $j = q_i + 1$, tem-se $N(t_{iq_i+1}-) = q_i$, que é o número de eventos acumulado em todo período de observação.

Já sob a hipótese de reparo perfeito, ou seja, $\mathscr{E}_i(t_{ij}) = t_{ij} - t_{i,N_i(t_{ij}-)}$, o logaritmo da função de verossimilhança apresentado em (4.7) converte-se em:

$$\log L\left(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \zeta_{\nu}, \boldsymbol{D}\left(\boldsymbol{\kappa}\right)\right) = n\left\{\zeta_{\nu}\log\left(\zeta_{\nu}\right) - \log\left[\Gamma\left(\zeta_{\nu}\right)\right]\right\} + \sum_{i=1}^{n}\left\{\log\left[\Gamma\left(\zeta_{\nu}+q_{i}\right)\right]\right\} - \sum_{i=1}^{n}\left(\zeta_{\nu}+q_{i}\right)\log\left\{\zeta_{\nu}+\int_{0}^{\kappa}Y_{i}\left(s\right)\lambda_{m}\left(s-t_{iN_{i}\left(s-\right)}\right|\boldsymbol{\gamma}\right)e^{\boldsymbol{x}_{i}^{\top}\left(s\right)\boldsymbol{\beta}+\log\left(\boldsymbol{\alpha}\right)N_{i}\left(s-\right)}ds\right\} + \sum_{i=1}^{n}\sum_{j=1}^{q_{i}}\left\{\log\left[\lambda_{m}\left(w_{ij}\right|\boldsymbol{\gamma}\right)\right] + \boldsymbol{x}_{i}^{\top}\left(t_{ij}\right)\boldsymbol{\beta} + \log\left(\boldsymbol{\alpha}\right)N_{i}\left(t_{ij}-\right)\right\}.$$

$$(4.9)$$

Assim como para (4.8), supondo-se que os pontos de descontinuidade em $\boldsymbol{x}_i^{\top}(s)$ e $N_i(s-)$ acontecem em t_{ij} e fazendo a mudança de variável $u = s - t_{iN_i(s-)}$, a integral em (4.9) pode ser expressa da seguinte forma:

$$\int_{0}^{\kappa} Y_{i}(s) \lambda_{m} \left(s - t_{iN_{i}(s-)} | \boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\alpha)N_{i}(s-)} ds = \int_{0}^{\kappa_{i}} \lambda_{m} \left(s - t_{iN_{i}(s-)} | \boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\alpha)N_{i}(s-)} ds \\
= \sum_{j=1}^{q_{i}+1} \int_{t_{ij-1}}^{t_{ij}} \lambda_{m} \left(s - t_{ij-1} | \boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\alpha)(j-1)} ds \\
= \sum_{j=1}^{q_{i}+1} \int_{0}^{w_{ij}} \lambda_{m} \left(u | \boldsymbol{\gamma}\right) e^{\boldsymbol{x}_{i}^{\top}(t_{ij-1}+u)\boldsymbol{\beta} + \log(\alpha)(j-1)} du \\
= \sum_{j=1}^{q_{i}+1} e^{\boldsymbol{x}_{i}^{\top}(t_{ij-1}+w_{ij})\boldsymbol{\beta} + \log(\alpha)(j-1)} \int_{0}^{w_{ij}} \lambda_{m} \left(u | \boldsymbol{\gamma}\right) du \\
= \sum_{j=1}^{q_{i}+1} \boldsymbol{\gamma}^{\top} \boldsymbol{G}_{m} \left(w_{ij}\right) e^{\boldsymbol{x}_{i}^{\top}(t_{ij-1}+w_{ij})\boldsymbol{\beta} + \log(\alpha)(j-1)}, \tag{4.10}$$

em que $N_i((t_{ij-1}+w_{ij})-) = N_i(t_{ij}-) = j-1$ e $\boldsymbol{x}_i^{\top}(t_{ij-1}+w_{ij}) = \boldsymbol{x}_i^{\top}(t_{ij})$, pois supostamente $\boldsymbol{x}_i^{\top}(t)$ é constante no intervalo $(t_{ij-1}, t_{ij}]$ entre eventos.

Deve-se ressaltar que na literatura o modelo definido pelo logaritmo da função de verossimilhança apresentado na equação (4.9) é comumente denominado de processo de renovação modulado (Cook e Lawless, 2010). Apesar de este modelo apresentar o mecanismo de reparação perfeita, ele se diferencia dos modelos definidos na Seção 3.2 pelo fato de apresentar covariáveis variando com o tempo e ter dependência do histórico do processo através de $N_i((t_{ij-1} + w_{ij})-)$. Sendo assim, na ausência destas características a integral em (4.10), resume-se na seguinte expressão:

$$\int_{0}^{\kappa} Y_{i}(s) \lambda_{m}(s - t_{ij-1}|\boldsymbol{\gamma}) e^{\boldsymbol{x}_{i}^{\top}(s)\boldsymbol{\beta} + \log(\alpha)N_{i}(s-)} ds = \sum_{j=1}^{q_{i}+1} \boldsymbol{\gamma}^{\top} \boldsymbol{G}_{m}(w_{ij}) e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}}$$
$$= \sum_{j=1}^{q_{i}} \boldsymbol{\gamma}^{\top} \boldsymbol{G}_{m}(w_{ij}) e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} + \boldsymbol{\gamma}^{\top} \boldsymbol{G}_{m}(w_{i,q_{i}+1}) e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}}$$
(4.11)

Neste contexto, como a função de verossimilhança para o modelo de reparo perfeito, apresentada na Equação (3.11) é uma função de verossimilhança condicional, ao substituir o resultado da Equação (4.11) na função verossimilhança condicional (4.4), com as devidas modificações, tem-se uma função de verossimilhança exatamente igual à definida para o processo de renovação na Seção 3.2. Segue o resultado:

$$\begin{split} L(\boldsymbol{\gamma},\boldsymbol{\beta}|\boldsymbol{w},\boldsymbol{x},\boldsymbol{\nu},m) &= \prod_{i=1}^{n} \left[\prod_{j=1}^{q_{i}} \nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{g}_{m}\left(w_{ij}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} \right] \times \\ & \exp\left\{ -\nu_{i}\sum_{j=1}^{q_{i}}\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(w_{ij}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} - \nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(w_{i,q_{i}+1}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} \right\} \\ &= \prod_{i=1}^{n} \left[\prod_{j=1}^{q_{i}} \nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{g}_{m}\left(w_{ij}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}}\exp\left\{ -\nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(w_{ij}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} \right\} \right] \times \\ & \exp\left\{ -\nu_{i}\boldsymbol{\gamma}^{\top}\boldsymbol{G}_{m}\left(w_{i,q_{i}+1}\right)e^{\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}} \right\} \\ &= \prod_{i=1}^{n} \left[\prod_{j=1}^{q_{i}} h\left(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},\nu_{i},m\right)\exp\left\{ -H\left(w_{ij}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},\nu_{i},m\right)\right\} \right] \times \\ & \exp\left\{ -H\left(w_{i,q_{i}+1}|\boldsymbol{\gamma},\boldsymbol{\beta},\boldsymbol{x}_{i},\nu_{i},m\right)\right\}. \end{split}$$

Finalmente, destaca-se que a identificabilidade da classe geral no caso sem fragilidade foi estabelecida por Peña e Hollander (2004) no Teorema 1. Duas condições básica são fixadas pelos autores, a primeira é que para qualquer valor dos parâmetros $(\lambda_0(.), \alpha, \beta)$ a idade efetiva, $\mathscr{E}_i(t_{ij})$, deve estar definida no intervalo $[0, \kappa]$. A segunda, afirma que se $\rho [N_i(t_{ij}-) |\alpha^{(1)}] =$ $\rho [N_i(t_{ij}-) |\alpha^{(2)}]$, para $N_i(t_{ij}-) = 0, 1, \ldots, q_i$, isso implica que $\alpha^{(1)} = \alpha^{(2)}$. As abordagens propostas neste capítulo atende as condições supracitadas.

Por último, ressalta-se que as propriedades assintóticas, consistência e convergência fraca dos estimadores dos parâmetros associados à classe geral sem efeito aleatório foram obtidas por Peña (2016).

4.2 Estudo de simulação

Nesta seção são apresentados os procedimentos utilizados na geração dos dados simulados, bem como as especificações dos modelos e a notação usada para referenciar estes e os cenários considerados na discussão dos resultados. Mediante N réplicas de Monte Carlo, o objetivo é examinar numericamente as propriedades dos estimadores de máxima verossimilhança e Bayesianos dos parâmetros dos modelos proposto no Capítulo 4, Seção 4.1. Especificamente, neste estudo são avaliados o impacto do tamanho da amostra sobre as propriedades dos estimadores através das características: vício (ou vício relativo em termos percentuais), variância (ou desvio padrão) e raiz do erro quadrático médio empírico (RMSE sigla do termo em inglês *Root Mean* Square Error). Ademais, na abordagem clássica, examina-se as propriedades dos erros padrão dos estimadores obtidos com base na inversa da matriz de informação observada, através da média destes erros em todas a réplicas e da taxa de cobertura do intervalo de 95% de confiança, construído usando esse erro padrão. Neste contexto, buscando a equivalência na apresentação dos resultados das simulações, na abordagem Bayesiana o erro padrão do estimador de um determinado parâmetro é estimado considerando o desvio padrão da amostra a posteriori do respectivo parâmetro. Nesta análise o intervalo de 95% de credibilidade (HPD) é utilizado para fazer o cálculo da taxa de cobertura.

Os cenários avaliados foram escolhidos com base em Peña et al. (2007) e Stocker IV e Peña (2007), sendo explorados os seguintes aspectos: tamanho da amostra, função de intensidade de base crescente e decrescente, ausência e presença do termo de fragilidade (ou efeito aleatório), impacto do número acumulado de eventos sobre a recorrência do evento e o uso de covariáveis qualitativa e quantitativa. Abaixo é apresentadas as configurações consideradas nas diversas situações simuladas e detalhes de como os dados foram gerados, de acordo com as instruções dadas por Peña et al. (2007).

Tamanho da amostra (n): são avaliados dois tamanhos, sendo n = 30 e n = 50. Peña et al. (2007) destacam que a escolha por este tamanho de amostra foi motivada por situações na área de saúde e problemas numéricos (falta de convergência dos métodos de otimização) obtidos em simulações com amostra de tamanho 10, porém eles ressalvam que amostras pequenas podem surgir em problemas na área de engenharia ou confiabilidade.

Mecanismo de censura: os n elementos simulados são acompanhados do instante 0 até

o tempo κ_i , i = 1, 2, ..., n. Estes tempos (κ_i), são tempos de censura e são gerados de uma distribuição uniforme definida no intervalo $[0, \kappa]$, sendo o κ escolhido considerando uma situação de reparo mínimo ($\mathscr{E}_i(t_{ij}) = t_{ij}$) ou reparo perfeito ($\mathscr{E}_i(t_{ij}) = w_{ij}$) e $\alpha = 1$ (sem efeito do número acumulado de eventos sob a recorrência), de modo que tenha-se em média, aproximadamente, 10 eventos por elemento. Peña et al. (2007), considerou também um limite de 50 eventos por elemento e, neste caso, $\kappa_i = t_{i50}$. Para os autores, esse procedimento introduz um viés, pois está sendo combinado dois tipos de mecanismo de censura: tipo II e aleatória. Contudo, para eles, como 50 é um número de eventos relativamente grande, o vício introduzido é pouco impactante no ajuste final do modelo aos dados gerados.

Efeito do número acumulado de evento na recorrência: para estudo do impacto desse componente do modelo foi assumido três situações. A primeira é denominada de efeito de benefício e é caracterizada pela redução da recorrência de eventos em função do número acumulado de eventos anteriores. A segunda estabelece que a ocorrência dos eventos anteriores não afeta a recorrência, e neste caso, tem-se a situação sem efeito. Por último a situação de efeito adverso, em que os eventos ocorridos anteriormente provocam aumento na ocorrência de novos eventos. As situações de efeito de benefício, sem efeito e efeito adverso são obtidas ao simular os dados considerando o parâmetro α , respectivamente, igual a 0.90, 1.00 e 1.05.

Função intensidade de base: para esta função foi admitido um processo LP, o que implica tomar $\lambda_0(t_{ij}|\theta_1,\theta_2) = \theta_1 \theta_2 t_{ij}^{\theta_1-1}$, sendo o parâmetro de escala θ_2 fixado em 1 e o parâmetro de forma θ_1 configurado de maneira a possibilitar intensidade decrescente e crescente do número de eventos ao longo do tempo. A escolha realizada neste caso para atender tais situações, respectivamente, são os valores 0.9 e 2.0.

Covariáveis: considerou-se duas covariáveis $x_{i1} e x_{i2}$, sendo estas geradas de forma independente, respectivamente, de uma distribuição de Bernoulli com probabilidade de sucesso igual a 0.5 e de uma distribuição normal padrão. Assim como Peña et al. (2007), os coeficientes das variáveis regressoras foram fixados em $\beta_1 = -1 e \beta_2 = 1$. Diferente dos autores supracitados, neste estudo de simulação as covariáveis são tratadas como fixas para todas as réplicas de Monte Carlo, ou seja, elas são geradas uma única vez, pois o interesse é isolar o efeito da aleatoriedade dos tempos de evento.

Componente de fragilidade (ou efeito aleatório): o parâmetro ζ_{ν} associado a distribuição gama atribuída ao efeito aleatório, que neste caso pode ser interpretado como um parâmetro

que indica a precisão das fragilidades dos elementos. Este foi configurado para assumir os valores 2, 6 e ∞ , sendo que este último valor corresponde a ausência de fragilidade. Ademais, Peña et al. (2007), utilizam uma parametrização da precisão, dada por $\zeta_{\nu}/(1+\zeta_{\nu})$, obtendo os seguintes valores correspondentes: 0.67, 0.86 e 1.00, respectivamente, para 2, 6 e ∞ . Optou-se por apresentar os resultados para este componente usando esta mesma parametrização, por questões comparativas relacionadas aos trabalhos de Peña et al. (2007) e Stocker IV e Peña (2007).

Os cenários serão referenciados usando a seguinte notação: $S^{\alpha,\theta_1}_{\zeta_{\nu,n}}$. Por exemplo: $S^{0.90, 0.9}_{2, 30}$ indica o cenário que considera redução da ocorrência de novos eventos em função do número acumulado de eventos que já ocorreram, função de intensidade decrescente ao longo do tempo, efeito aleatório com precisão igual a 2 e tamanho de amostra igual a 30. Nas Tabelas 4.1, 4.2 e 4.3, são apresentados todos os cenários considerados segundo a abordagem utilizada para realizar inferência e o tipo de reparação investigados.

Cenário	Parâmetros					Abordagem		Reparação	
	α	θ_1	$\zeta_{ u}$	$\zeta_{\nu}/\left(1+\zeta_{\nu}\right)$	n	Clássica	Bayesiana	Mínima	Perfeita
$S_{2.0,30}^{0.90,0.9}$	0.90	0.9	2.0	0.67	30	Sim	- Não	Sim	- Não
$S_{2.0,50}^{0.90,0.9}$					50	Sim		Sim	
$S_{6.0,30}^{0.90,0.9}$			6.0	0.86	30	Sim		Sim	
$S_{6.0,50}^{0.90,0.9}$					50	Sim		Sim	
$S^{0.90,0.9}_{\infty,30}$			∞	1.00	30	Sim		Sim	
$S^{0.90,0.9}_{\infty,50}$					50	Sim		Sim	
$S_{2.0,30}^{0.90,2.0}$		2.0	2.0	0.67	30	Sim	Sim	Sim	Sim
$S_{2.0,50}^{0.90,2.0}$					50	Sim		Sim	
$S_{6.0,30}^{0.90,2.0}$			6.0	0.86	30	Sim	Não	Sim	Não
$S_{6.0,50}^{0.90,2.0}$					50	Sim		Sim	
$S^{0.90,2.0}_{\infty,30}$			∞	1.00	30	Sim	Sim	Sim	Sim
$S^{0.90,2.0}_{\infty,50}$					50	Sim		Sim	

Tabela 4.1: Cenários avaliados segundo abordagem usada para fazer inferência e tipo de reparação (parte 1):

Cománia	Parâmetros					Abordagem		Reparação	
Cenario	α	θ_1	$\zeta_{ u}$	$\zeta_{\nu}/\left(1+\zeta_{\nu}\right)$	n	Clássica	Bayesiana	Mínima	Perfeita
$S_{2.0,30}^{1.00,0.9}$	1.00	0.9	2.0	0.67	30	Sim	- Não	Sim	- Não
$S^{1.00,0.9}_{2.0,50}$					50	Sim		Sim	
$S_{6.0,30}^{1.00,0.9}$			6.0	0.86	30	Sim		Sim	
$S_{6.0,50}^{1.00,0.9}$					50	Sim		Sim	
$S^{1.00,0.9}_{\infty,30}$			∞	1.00	30	Sim		Sim	
$S^{1.00,0.9}_{\infty,50}$					50	Sim		Sim	
$S_{2.0,30}^{1.00,2.0}$		2.0	2.0	0.67	30	Sim	Sim	Sim	Sim
$S^{1.00,2.0}_{2.0,50}$					50	Sim		Sim	
$S^{1.00,2.0}_{6.0,30}$			6.0	0.86	30	Sim	Não	Sim	Não
$\overline{S^{1.00,2.0}_{6.0,50}}$					50	Sim		Sim	
$S^{1.00,2.0}_{\infty,30}$			∞	1.00	30	Sim	Sim	Sim	Sim
$S^{1.00,2.0}_{\infty,50}$					50	Sim		Sim	

Tabela 4.2: Cenários avaliados segundo abordagem usada para fazer inferência e tipo de reparação (parte 2):

Cenário		Pa	arâme	etros		Abordagem		Reparação	
	α	θ_1	$\zeta_{ u}$	$\zeta_{\nu}/\left(1+\zeta_{\nu}\right)$	n	Clássica	Bayesiana	Mínima	Perfeita
$S^{1.05,0.9}_{2.0,30}$	-	0.9	2.0	0.67	30	Sim	Não	Sim	- Não
$S_{2.0,50}^{1.05,0.9}$					50	Sim		Sim	
$S_{6.0,30}^{1.05,0.9}$			6.0	0.86	30	Sim		Sim	
$S_{6.0,50}^{1.05,0.9}$					50	Sim		Sim	
$S^{1.05,0.9}_{\infty,30}$	1.05		∞	1.00	30	Sim		Sim	
$S^{1.05,0.9}_{\infty,50}$					50	Sim		Sim	
$S_{2.0,30}^{1.05,2.0}$		2.0	2.0	0.67	30	Sim	Sim	Sim	Sim
$S_{2.0,50}^{1.05,2.0}$					50	Sim		Sim	
$S^{1.05,2.0}_{6.0,30}$			6.0	0.86	30	Sim	Não	Sim	Não
$S^{1.05,2.0}_{6.0,50}$					50	Sim		Sim	
$S^{1.05,2.0}_{\infty,30}$			∞	1.00	30	Sim	Sim	Sim	Sim
$S^{1.05,2.0}_{\infty,50}$					50	Sim		Sim	

Tabela 4.3: Cenários avaliados segundo abordagem usada para fazer inferência e tipo de reparação (parte 3):

Além dos cenários relacionados diretamente com as características da classe geral ou tamanho da amostra, foi considerado também a variação do grau do polinômio e por correspondência o tamanho da partição da EP. O objetivo é avaliar qual grau ou tamanho de partição confere um melhor ajuste aos dados. Neste sentido, para $m \in l$ foram assumidos nas simulações modelos com m(l) = 5 ou 10, sendo essa escolha realizada levando em conta a convergência dos modelos na abordagem clássica, tempo computacional nas abordagens clássica e Bayesiana e as indicações de Osman e Ghosh (2012).

4.2.1 Resultados: abordagem clássica

Nesta seção são apresentados os resultados das simulações usando abordagem clássica, que consiste na utilização do método da máxima verossimilhança para realizar a estimação dos parâmetros desconhecidos dos modelos definidos pelas Equações (4.2) e (4.3), bem como do

modelo gerador dos dados e do modelo semiparamétrico proposto por Peña et al. (2007). Para o ajuste do último, foram utilizados os pacotes **survival** e **gcmrec** do R, que produziram de forma independente dois resultados para o mesmo modelo, sendo um obtido com base na função **coxph** do primeiro pacote e o outro resultante da execução da função **gcmrec** do pacote de mesmo nome, não pertencente ao repositório oficial do R, porém implementado pelos autores supracitados. Os modelos propostos neste trabalho e o modelo gerador dos dados foram implementados usando o software R através do pacote **MLEGCMRec¹**, sendo este utilizado para produzir os resultados aqui apresentados para abordagem frequentista. Neste pacote, recorre-se a função **optim** da biblioteca **stats** (R Core Team, 2019) para realizar o procedimento de maximização do logaritmo da função de verossimilhança (4.7), sendo método de otimização BFGS (Broyden, Fletcher, Goldfarb e Shanno) (Nocedal e Wright, 1999) empregado aqui para tal objetivo.

Para facilitar a identificação dos modelos, na análise dos resultados das simulações foi utilizada a seguinte notação: $M_{BP(m)}$; $M_{PE(l)}$; M_{PL} ; M_{coxph} ; M_{gcmrec} , respectivamente, representado os modelos: classe geral baseada nos PBs de grau m, classe geral baseada na EP com partição de tamanho l, classe geral com função intensidade LP, classe geral proposta por Peña et al. (2007) sendo estimada usando a função **coxph** e através da função **gcmrec**.

Nas tabelas e figuras na sequência deste texto são apresentado os resultados para os cenários simulados. Nas tabelas temos os cenários $S_{\zeta_{\nu},30}^{\alpha,2}$, com $\zeta_{\nu} = 2, 6, \infty$ e $\alpha = 0.90, 1.00, 1.05, já nas figuras tem-se esses mesmos cenários com a adição dos casos <math>S_{\zeta_{\nu},50}^{\alpha,2}$, variando os dois parâmetros da mesma forma que a anterior. As tabelas para o caso $S_{\zeta_{\nu},50}^{\alpha,2}$ e os resultados relacionados aos cenários $S_{\zeta_{\nu},n}^{\alpha,0.9}$, com $n = 30, 50, \zeta_{\nu} = 2, 6, \infty$ e $\alpha = 0.90, 1.00, 1.05$ são apresentados no Apêndice B. Partindo de N = 1000 réplicas de Monte Carlo, nas tabelas são exploradas as características média, desvio padrão, RMSE, média do erro padrão, média do vício relativo (%), taxa de cobertura e nas figuras é considerado o diagrama esquemático do vício relativo (%).

Na Tabela 4.4, pode-se observar o resultado para todos os modelos considerados para o cenário $S_{2,30}^{0.90,2}$. Nota-se que todos os casos apresentam média próxima dos valores simulados de β_1 , β_2 e α , exceto o $M_{PE(5)}$ que apresenta vício relativo médio para β_1 e β_2 , em valor absoluto maior que 13%. Ainda em termos de vício relativo médio tem-se que os modelos $M_{PE(10)}$, M_{coxph}

¹Pacote em construção, pretende-se em breve disponibilizá-lo através do CRAN (*Comprehensive R Archive Network*).

e M_{gcmrec} são os que estimam melhor todos os parâmetros, excluindo o ζ_{ν} , que é melhor estimado pelo modelo $M_{BP(10)}$, com vício relativo médio de aproximadamente metade dos vícios relativos médios dos casos $M_{PE(10)}$, M_{coxph} e M_{gcmrec} . Destaca-se que entre os modelos que especificam uma forma estrita paramétrica $(M_{BP(m)} e M_{PE(l)})$ ou paramétrica (M_{PL}) , o $M_{PE(10)}$ chega a ter uma melhor performance do que o modelo gerador, quando analisado o vício relativo médio. Já quando considerado o RMSE, o modelo gerador dos dados simulados (M_{PL}) é o que apresenta a menor magnitude deste erro para todos os parâmetros ou fica equiparável com o $M_{PE(10)}$. Comparando o desvio padrão com a média dos erros padrão obtida usando a matriz de informação observada, tem-se indícios de que o erro padrão obtido com base nesta matriz tende a subestimar a variabilidade dos estimadores dos parâmetros, logo prejudicando assim a taxas de cobertura dos intervalos de confiança assintóticos. No caso de ζ_{ν} não é possível realizar a comparação, pois o desvio padrão apresentado é para $\zeta_{\nu}/(1 + \zeta_{\nu})$ e a média é dos erros padrão de ζ_{ν} . Além disso, no caso do modelo com fragilidade o pacote **gcmrec** não retorna erros padrão com base na matriz de informação observada, portanto não foi possível avaliar essa característica neste cenário para o M_{qcmrec} .

No tocante ao grau do polinômio e o tamanho da partição, em geral, quando aumenta-se o grau do polinômio as características de desvio padrão, RMSE, erro padrão médio e vício relativo médio tendem a aumentar para β_1 , $\beta_2 \in \alpha$. Por exemplo, o vício relativo médio, sofre um aumento, respectivamente, de 9.1%, 11.7% e 15%, enquanto que ζ_{ν} tem uma redução de 9.4%. O mesmo não pode ser dito quando muda-se o tamanho da partição da EP, que para l = 10 em comparação com l = 5 apresenta uma queda drástica no vício relativo médio, contudo as demais quantidades tendem a mostrar padrão similar aos modelos baseados nos PBs.

Neste contexto, analisando os diagramas esquemáticos apresentados na Figura 4.1 para os cenários $S_{2,30}^{0.90,2}$ e $S_{2,50}^{0.90,2}$, pode-se notar que à medida que aumenta-se o tamanho da amostra o vício relativo tende a ficar mais concentrado em torno de zero, exceto para o modelo $M_{PE(5)}$ em que aparentemente, mesmo aumentando o tamanho amostral, mostra um vício mantendo patamar constante e com menor variabilidade. Veja que quando aumenta-se o grau do polinômio, independente do tamanho da amostra, os diagramas apresentam alta semelhança. Já no caso do EP tem-se uma melhora expressiva com o aumento do tamanho da partição. Este aspecto reforça a conclusão tirada anteriormente com base na Tabela 4.4, sobre o tamanho da partição.
Tabela 4.4: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{0.90,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.068	0.465	0.470	0.418	6.770	91.0
$M_{PE(5)}$		0.866	0.374	0.397	0.345	-13.428	87.3
$M_{BP(10)}$		1.074	0.467	0.472	0.423	7.383	91.9
$M_{PE(10)}$	$\beta_1 = 1$	0.996	0.427	0.427	0.392	-0.401	90.9
M_{coxph}		1.017	0.448	0.448	0.387	1.731	89.3
M_{gcmrec}		1.004	0.567	0.567	-	0.444	-
M_{PL}		1.043	0.445	0.447	0.397	4.335	91.3
$M_{BP(5)}$		-1.059	0.288	0.293	0.256	-5.887	90.4
$M_{PE(5)}$		-0.854	0.219	0.263	0.207	14.580	83.9
$M_{BP(10)}$		-1.066	0.291	0.298	0.259	-6.565	92.0
$M_{PE(10)}$	$\beta_2 = -1$	-0.986	0.257	0.257	0.239	1.402	91.2
M_{coxph}		-1.008	0.278	0.278	0.228	-0.780	88.8
M_{gcmrec}		-1.007	0.271	0.271	-	-0.664	-
M_{PL}		-1.033	0.259	0.261	0.234	-3.297	91.7
$M_{BP(5)}$		0.885	0.055	0.057	0.049	-1.639	89.2
$M_{PE(5)}$		0.944	0.041	0.060	0.040	4.889	78.4
$M_{BP(10)}$		0.883	0.057	0.059	0.051	-1.891	90.0
$M_{PE(10)}$	$\alpha = 0.9$	0.905	0.049	0.049	0.047	0.543	92.1
M_{coxph}		0.901	0.055	0.055	0.039	0.120	84.1
M_{gcmrec}		0.901	0.051	0.051	-	0.068	-
M_{PL}		0.892	0.039	0.040	0.038	-0.862	92.5
$M_{BP(5)}$		0.699	0.133	0.136	0.594	4.804	92.6
$M_{PE(5)}$		0.792	0.117	0.172	1.276	18.817	95.5
$M_{BP(10)}$		0.696	0.134	0.137	0.603	4.392	93.6
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.731	0.127	0.142	0.737	9.590	94.9
M_{coxph}		0.724	0.133	0.144	-	8.581	-
M_{gcmrec}		0.723	0.130	0.141	-	8.466	-
M_{PL}		0.709	0.123	0.130	0.590	6.404	93.8

Figura 4.1: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{0.90,2} \in S_{2,50}^{0.90,2}$.

Na Tabela 4.5, tem-se os resultados para o cenário $S_{6,30}^{0.90,2}$, a diferença deste caso com relação ao anterior é um aumento na precisão da fragilidade, isto é, redução na variância do efeito aleatório de aproximadamente três vezes. Quando observado o vício relativo médio para β_1 , $\beta_2 \in \alpha$, os resultados são semelhantes aos observados na Tabela 4.4, porém para o parâmetro ζ_{ν} pode-se ver claramente que em comparação com $S_{2,30}^{0.90,2}$, o vício relativo médio tende a cair aproximadamente 40% para maioria dos modelos. Contudo, as taxas de cobertura para este parâmetro tendem a piorar, variando de 77.1% (M_{PL}) até 80.1% ($M_{PE(5)}$). Já comparando o RMSE de ambos os cenários, verificar-se uma redução para todos os modelos e parâmetros, sendo a maior delas de 41.24% (M_{gcmrec} para β_1) e a menor de 4.03% (M_{PL} para α). Houve redução também nos desvios padrão e nas médias dos erros padrão dos parâmetros β_1 , β_2 e α , respectivamente, variando de 41.28% (M_{gcmrec} para $\beta_1 = 1$) a 3.04% (M_{PL} para α) e de 27.70% (M_{PL} para β_1) até 5.80% ($M_{BP(5)}$ para α), quando os cenários são confrontados.

Tabela 4.5: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{0.90,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.063	0.349	0.355	0.309	6.278	91.5
$M_{PE(5)}$		0.867	0.275	0.305	0.256	-13.251	86.5
$M_{BP(10)}$		1.066	0.352	0.358	0.310	6.551	91.6
$M_{PE(10)}$	$\beta_1 = 1$	0.996	0.320	0.320	0.291	-0.446	92.1
M_{coxph}		1.009	0.334	0.333	0.281	0.878	89.9
M_{gcmrec}		1.013	0.333	0.333	-	1.278	-
M_{PL}		1.037	0.326	0.327	0.287	3.665	91.1
$M_{BP(5)}$		-1.060	0.232	0.239	0.205	-6.041	90.7
$M_{PE(5)}$		-0.862	0.170	0.218	0.164	13.753	82.5
$M_{BP(10)}$		-1.064	0.235	0.243	0.205	-6.391	90.8
$M_{PE(10)}$	$\beta_2 = -1$	-0.993	0.206	0.206	0.192	0.704	92.5
M_{coxph}		-1.007	0.222	0.222	0.176	-0.651	88.5
M_{gcmrec}		-1.011	0.220	0.220	-	-1.146	-
M_{PL}		-1.034	0.200	0.203	0.179	-3.370	92.7
$M_{BP(5)}$		0.888	0.051	0.053	0.046	-1.359	85.7
$M_{PE(5)}$		0.942	0.033	0.053	0.036	4.614	71.9
$M_{BP(10)}$		0.887	0.052	0.054	0.046	-1.481	86.5
$M_{PE(10)}$	$\alpha = 0.9$	0.906	0.043	0.044	0.044	0.630	91.1
M_{coxph}		0.903	0.049	0.049	0.036	0.358	81.1
M_{gcmrec}		0.902	0.048	0.048	-	0.181	-
M_{PL}		0.895	0.038	0.039	0.035	-0.562	90.0
$M_{BP(5)}$		0.881	0.100	0.102	1.304	2.792	79.0
$M_{PE(5)}$		0.946	0.062	0.108	3.392	10.377	79.6
$M_{BP(10)}$		0.880	0.101	0.103	1.196	2.719	80.1
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.905	0.086	0.098	1.789	5.595	79.2
M_{coxph}		0.901	0.092	0.102	-	5.131	-
M_{gcmrec}		0.899	0.090	0.100	-	4.936	-
M_{PL}		0.891	0.091	0.097	1.122	4.006	77.0

Figura 4.2: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{0.90,2} \in S_{6,50}^{0.90,2}$.

Assim como para os cenários $S_{2,30}^{0.90,2}$ e $S_{2,50}^{0.90,2}$ mostrados na Figura 4.1, a Figura 4.2 apresenta os diagramas esquemáticos para o vício relativo de $S_{6,30}^{0.90,2}$ e $S_{6,50}^{0.90,2}$. O aspecto geral que pode ser observado é que ao aumentar a precisão do efeito aleatório tem-se uma melhor estimação dos parâmetros β_1 , β_2 e α para todos os modelos, ou seja, quando comparados aos cenários $S_{2,30}^{0.90,2}$ e $S_{2,50}^{0.90,2}$ é possível ver que $S_{6,30}^{0.90,2}$ e $S_{6,50}^{0.90,2}$ apresentam vício relativo mais centrados em zero e menores com o aumento do tamanho da amostral. Há exceção para $M_{PE(5)}$, que apresenta vício relativo em valor absoluto relativamente alto em todos os cenários mencionados. Ademais, Na Tabela 4.6 tem-se o resumo da simulação para o cenário $S_{\infty,30}^{0.00,2}$. Este caso difere dos anteriores no sentido que os dados foram simulados na ausência do termo de fragilidade, ou seja, $\zeta_{\nu} = \infty$. Percebe-se que para todos os modelos, em contraste com $S_{6,30}^{0.90,2}$, a situação sem fragilidade apresenta uma redução no vício relativo médio para α . Para os parâmetros $\beta_1 e \beta_2$ ocorreu aumento do vício relativo médio, exceto para o $M_{PE(5)}$ que apresentou o maior vício relativo médio em $S_{6,30}^{0.90,2}$. No caso $S_{\infty,30}^{0.90,2}$ o $M_{PE(5)}$ apresentou queda no vício relativo médio para esses parâmetros. Ainda comparando esses cenários, para todos os modelos e parâmetros houve queda nos valores das características de desvio padrão e RMSE, sendo que esta redução variou respectivamente, de 34.00% ($M_{BP(5)}$ para α) a 18.20% ($M_{PE(10)}$ para β_2) e de 40.23% ($M_{PE(5)}$ para α) a 7.92% ($M_{PE(10)}$ para β_2). A média dos erros padrão, em geral apresentou redução, sendo a maior queda de 27.04% ($M_{BP(5)}$ para β_1) e a menor queda de 11.20% (M_{coxph} para β_2). Destaca-se que o único aumento ocorreu para o modelo M_{coxph} para o parâmetro α , que apresentou aumento de 0.95%. No tocante das taxas de cobertura, em comparação com todos os cenários apresentados até o momento, o modelo sem efeito aleatório foi o que indicou taxas mais próximas do valor nominal (95%) entre todas as abordagens e parâmetros.

Observando Figura 4.3, verifica-se que para $S^{0.90,2}_{\infty,30}$ e $S^{0.90,2}_{\infty,50}$ todos os modelos tendem a sobrestimar β_1 e subestimar β_2 e α . Além disso, esse padrão permanece com o aumento do grau do polinômio (ou tamanho da partição), contudo o vício relativo apresenta um deslocamento em direção ao zero com o aumento do tamanho da amostra, excluindo $M_{PE(5)}$ que se desloca no sentido contrário para todos os parâmetros. Comparando com as demais situações até aqui analisadas, percebe-se que o diagrama esquemático do vício relativo para cada modelo e parâmetro, quando considerado n = 30, já ficava relativamente centrado em 0, especialmente, para M_{gemrec} , M_{coxph} e M_{PL} , sendo a única exceção o modelo $M_{PE(5)}$.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.088	0.237	0.253	0.225	8.84	92.8
$M_{PE(5)}$		0.942	0.193	0.202	0.215	-5.83	95.8
$M_{BP(10)}$		1.094	0.240	0.258	0.228	9.42	93.1
$M_{PE(10)}$	$\beta_1 = 1$	1.089	0.238	0.254	0.227	8.92	93.5
M_{coxph}		1.062	0.232	0.241	0.227	6.22	94.3
M_{gcmrec}		1.062	0.232	0.241	0.227	6.22	94.3
M_{PL}		1.066	0.224	0.233	0.215	6.62	93.3
$M_{BP(5)}$		-1.087	0.167	0.188	0.155	-8.71	92.5
$M_{PE(5)}$		-0.936	0.128	0.143	0.140	6.41	93.0
$M_{BP(10)}$		-1.093	0.170	0.194	0.158	-9.29	91.5
$M_{PE(10)}$	$\beta_2 = -1$	-1.087	0.169	0.190	0.156	-8.74	92.0
M_{coxph}		-1.060	0.165	0.175	0.157	-5.99	94.0
M_{gcmrec}		-1.060	0.165	0.175	0.157	-5.99	94.0
M_{PL}		-1.064	0.153	0.166	0.141	-6.38	93.6
$M_{BP(5)}$		0.880	0.034	0.039	0.036	-2.18	90.7
$M_{PE(5)}$		0.917	0.027	0.032	0.032	1.88	92.4
$M_{BP(10)}$		0.879	0.035	0.041	0.037	-2.35	90.3
$M_{PE(10)}$	$\alpha = 0.9$	0.880	0.034	0.040	0.036	-2.21	91.8
M_{coxph}		0.887	0.034	0.036	0.037	-1.43	94.0
M_{gcmrec}		0.887	0.034	0.036	0.032	-1.43	89.4
M_{PL}		0.886	0.028	0.031	0.030	-1.52	93.2

Tabela 4.6: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S^{0.90,2}_{\infty,30}$:

77

Figura 4.3: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S^{0.90,2}_{\infty,30} \in S^{0.90,2}_{\infty,50}$

Os cenários a serem explorados nas avaliações que se seguem são similares aos anteriores. Considere novamente função de risco crescente, precisão da fragilidade 2 ou 6 e n = 30 ou 50. Este estudo difere no sentido de supor ausência do efeito do número acumulado de eventos sobre a recorrência de novos eventos ($\alpha = 1.00$). Nos cenários analisados nas Tabelas 4.4 a 4.6 e nas Figuras 4.1 a 4.3, os dados foram simulados sobre a hipótese de que o número de eventos anteriores afeta a recorrência de modo a reduzí-la ($\alpha = 0.90$). Essa diferença provoca uma aumento no número de eventos por sistema gerado nesta configuração, sendo aqui 10 eventos em média por processo de eventos recorrentes.

Na Tabela 4.7, tem-se os resultados para o primeiro cenário $S_{2,30}^{1.00,2}$ que considera essa especificação. Observando essa tabela, nota-se que o modelo $M_{PE(5)}$ é o que apresenta menor vício relativo médio para β_1 , seguido por M_{coxph} e M_{gcmrec} . Estes últimos também apresentam menor vício relativo médio para β_2 e α , seguido por $M_{PE(10)}$. Os modelos baseados nos PBs, são aqueles que apontam menor vício relativo médio para ζ_{ν} . A taxa de cobertura para a maioria dos modelos e parâmetros encontram-se abaixo de 95%, porém estas são maiores que 90%, para a maior parte dos casos. Quando comparados o desvio padrão e a média dos erros padrão, percebe-se que para β_1 , β_2 e α a média dos erros padrão são menores que o desvio padrão em todos os modelos. No caso de ζ_{ν} não é possível realizar a comparação, pois o desvio padrão apresentado é para $\zeta_{\nu}/(1 + \zeta_{\nu})$ e a média dos erro padrão é referente a ζ_{ν} , como mencionado anteriormente. Analisando o RMSE, nota-se que todos os modelos apresentam esta medida

resumo ao redor de 0.4, 0.2, 0.02 e 0.1, respectivamente, para β_1 , β_2 , $\alpha \in \zeta_{\nu}$. Isto significa que segundo este critério os modelos ajustados produzem resultados semelhantes.

Tabela 4.7: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{1.00,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.045	0.413	0.415	0.374	4.523	92.2
$M_{PE(5)}$		0.942	0.372	0.376	0.340	-5.764	92.3
$M_{BP(10)}$		1.048	0.413	0.416	0.375	4.792	92.7
$M_{PE(10)}$	$\beta_1 = 1$	1.011	0.399	0.399	0.362	1.118	92.7
M_{coxph}		1.026	0.407	0.408	0.366	2.609	92.1
M_{gcmrec}		1.027	0.406	0.407	-	2.696	-
M_{PL}		1.039	0.404	0.406	0.367	3.858	92.5
$M_{BP(5)}$		-1.021	0.233	0.233	0.216	-2.069	92.9
$M_{PE(5)}$		-0.918	0.205	0.220	0.194	8.244	88.2
$M_{BP(10)}$		-1.023	0.234	0.235	0.217	-2.329	93.1
$M_{PE(10)}$	$\beta_2 = -1$	-0.986	0.223	0.223	0.209	1.423	92.1
M_{coxph}		-1.002	0.232	0.232	0.209	-0.235	91.5
M_{gcmrec}		-1.003	0.231	0.231	-	-0.302	-
M_{PL}		-1.016	0.226	0.226	0.208	-1.557	92.4
$M_{BP(5)}$		0.998	0.016	0.016	0.013	-0.229	93.5
$M_{PE(5)}$		1.011	0.013	0.017	0.011	1.132	82.5
$M_{BP(10)}$		0.997	0.016	0.016	0.014	-0.255	93.8
$M_{PE(10)}$	$\alpha = 1$	1.002	0.015	0.015	0.013	0.231	94.4
M_{coxph}		1.001	0.016	0.016	0.013	0.097	91.0
M_{gcmrec}		1.001	0.015	0.015	-	0.101	-
M_{PL}		0.999	0.012	0.012	0.010	-0.137	93.8
$M_{BP(5)}$		0.712	0.098	0.108	0.495	6.845	94.8
$M_{PE(5)}$		0.749	0.095	0.125	0.531	12.394	92.3
$M_{BP(10)}$		0.712	0.098	0.108	0.490	6.812	95.6
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.726	0.097	0.113	0.489	8.872	95.1
M_{coxph}		0.721	0.100	0.114	-	8.208	-
M_{gcmrec}		0.723	0.097	0.112	-	8.381	-
M_{PL}		0.714	0.095	0.106	0.469	7.034	93.7

Realizando um comparativo entre os resultados apresentados na Tabela 4.7 para o cenário $S_{2,30}^{1.00,2}$ e na Tabela 4.4 para o caso $S_{2,30}^{0.90,2}$, nota-se que o padrão é de redução do vício relativo médio, especialmente, para β_1 , β_2 e α . Já o RMSE indica leve redução para β_1 , β_2 e ζ_{ν} e uma

diminuição acentuada para α , sendo a menor redução de 69.39% (para o $M_{PE(10)}$) e a maior de 75.00% (para o M_{PL}). Diminuíram também, fortemente, para α o desvio padrão e o erro padrão médio. Para os demais parâmetros observa-se uma redução leve, pois as quantidades mencionadas são relativamente próximas em ambas situações. No tocante a taxa de cobertura, observa-se que estas tenderam a aumentar de maneira a se aproximarem do nível nominal (95%). Registra-se aumentos expressivos da cobertura para o modelo $M_{PE(5)}$, que apesar de apresentar as piores taxas em ambos cenários, ao que parece, tendeu a melhorar com o aumento do número de eventos por sistemas.

Explorando os diagramas esquemáticos apresentados na Figura 4.4, pode-se ver que, com exceção do modelo $M_{PE(5)}$, os diagramas do vício relativo tendem a ficar centrados em zero para β_1 , $\beta_2 \in \alpha$. Entretanto, os diagramas para ζ_{ν} indicam que os modelos tendem a sobrestimar este parâmetro. Ademais, percebe-se que a variabilidade do vício relativo percentual é semelhante para os modelos avaliados e apresenta redução com o aumento do tamanho amostral. No caso dos modelos baseados nos PBs e na EP, não se observa diferença na variabilidade do vício relativo com o aumento do grau ou tamanho da partição. Contudo para os modelos construídos via EP aparentemente, uma partição de maior tamanho produz vícios relativos próximos de 0.

Contrastando os resultados dos cenários $S_{2,30}^{1.00,2}$ e $S_{2,50}^{1.00,2}$ com aqueles de $S_{2,30}^{0.90,2}$ e $S_{2,50}^{0.90,2}$, correspondentes a menos do parâmetro α , tem-se que as análises para os parâmetros β_1 , β_2 e ζ_{ν} são semelhantes em termos de vício relativo; ver Figuras 4.1 e 4.4. Porém, pode-se observar que o parâmetro α possui vício relativo percentual potencialmente reduzido para todos os modelos, assinalando que um aumento no número de eventos por sistema pode implicar na redução do vício do parâmetro supracitado.

80

Figura 4.4: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{1.00,2} \in S_{2,50}^{1.00,2}$.

Na Tabela 4.8 são apresentados os resultados para o cenário $S_{6,30}^{1.00,2}$, que se diferencia da situação anteriormente exposta na Tabela 4.7 e Figura 4.4 pelo fato de assumir fragilidade com precisão 6. Pode-se concluir com base nesta tabela que, quando comparados os resultados aqui com aqueles obtidos para $S_{2,30}^{1.00,2}$, houve uma redução no vício relativo médio absoluto para os modelos baseados nos PBs para todos os parâmetros, sendo a redução mínima de 41.46% (para o $M_{BP(5)}$ no β_1) e a máxima de 79.59% (para o $M_{BP(10)}$ no β_2). Para os modelos $M_{PE(5)}$, $M_{PE(10)}$, M_{coxph} e M_{gemrec} foi observada redução que varia de 43.83% a 45.62% no vício relativo médio absoluto de ζ_{ν} . Além disso, verificou-se redução de vício em β_1 para $M_{PE(10)}$, M_{coxph} e M_{gcmrec} de, respectivamente, 37.28%, 80.07% e 84.56%. Para β_2 e α , os modelos $M_{PE(5)}$, $M_{PE(10)}$, M_{coxph} e M_{gcmrec} apresentaram tendência de aumento no vício relativo médio absoluto com o aumento da precisão do efeito aleatório, variando de 8.85% (para o $M_{PE(5)}$ no α) a 574.28% (para o M_{coxph} no β_2). Destaca-se que o caso $M_{PE(5)}$ também apresentou aumento de 16.99% no vício relativo médio absoluto de β_1 , quando contrastado os cenários $S_{2,30}^{1.00,2}$ e $S_{6,30}^{1.00,2}$.

Analisando o desvio padrão das estimativas nas 1000 réplicas de Monte Carlo no cenário $S_{6,30}^{1.00,2}$, percebe-se claramente que com exceção do modelo M_{gcmrec} para β_1 e α , houve uma diminuição desta medida para todos os modelos e parâmetros, variando de 3.34% (para o M_{coxph} no α) a 34.03% (para o $M_{PE(5)}$ no ζ_{ν}). Resultado análogo ocorre com o RMSE, que para o modelo M_{gcmrec} apresenta aumento de 4.60% e 9.54%, na devida ordem, para β_1 e α . Já para os demais modelos e parâmetros observou-se redução, variando de 0.69% (para o $M_{PE(5)}$ no α) a 31.99% (para o $M_{PE(5)}$ no ζ_{ν}).

Na Tabela 4.8, também pode-se observar que o desvio padrão e o erro padrão médio de β_1 , β_2 e α , são relativamente próximos. Porém os erros padrão médio ainda são menores que o desvios padrão dos parâmetros mencionados. Em comparação com o cenário $S_{2,30}^{1.00,2}$, as diferenças observadas entre as duas quantidades mencionadas são menores no cenário $S_{6,30}^{1.00,2}$. As taxas de cobertura apesar de não serem próximas de 95%, geralmente, são maiores que 91% e semelhantes as obtidas na Tabela 4.7, a menos de uma redução média de aproximadamente 1.90% nas taxas do cenário $S_{6,30}^{1.00,2}$ em comparação com o cenário $S_{2,30}^{1.00,2}$.

Na mesma linha de análise feita para $S_{2,30}^{0.90,2}$ e $S_{2,30}^{1.00,2}$, observou-se para $S_{6,30}^{0.90,2}$ e $S_{6,30}^{1.00,2}$ resultados semelhantes. Detectou-se diminuição do vício relativo médio e RMSE, em especial para o parâmetro α . Houve também redução do desvio padrão e do erro padrão dos estimadores dos parâmetros em todos os modelos, com exceção do desvio padrão do estimador de β_1 para o modelo M_{gemree} . Ademais, a taxa de cobertura tende a fica mais próxima do valor nominal, porém são pequenas as diferenças entre os cenários.

Apreciando os resultados apresentados na Figura 4.5 para $S_{6,30}^{1.00,2}$ e $S_{6,50}^{1.00,2}$, pode-se concluir que as tendências observadas na Tabela 4.8 para o modelo M_{gcmrec} , provavelmente, foram influenciadas por amostras apresentando estimativas distantes dos valores verdadeiros de β_1 , α e ζ_{ν} , provocando assim um distanciamento em relação ao padrão observado para os demais modelos quando comparados aos cenários anteriormente analisados, uma vez que os vícios

82

relativos acentuados estão associados à amostra de tamanho 30 e aos parâmetros mencionados.

Tabela 4.8: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{1.00,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.026	0.286	0.287	0.262	2.648	91.8
$M_{PE(5)}$		0.926	0.258	0.268	0.237	-7.383	89.2
$M_{BP(10)}$		1.026	0.288	0.289	0.263	2.611	91.1
$M_{PE(10)}$	$\beta_1 = 1$	0.993	0.277	0.277	0.254	-0.701	91.7
M_{coxph}		1.004	0.284	0.284	0.252	0.403	90.4
M_{gcmrec}		0.995	0.426	0.426	-	-0.537	-
M_{PL}		1.024	0.281	0.282	0.254	2.392	91.3
$M_{BP(5)}$		-1.004	0.174	0.174	0.160	-0.448	91.8
$M_{PE(5)}$		-0.904	0.150	0.178	0.142	9.645	86.5
$M_{BP(10)}$		-1.005	0.176	0.176	0.161	-0.475	92.1
$M_{PE(10)}$	$\beta_2 = -1$	-0.972	0.166	0.168	0.155	2.809	91.1
M_{coxph}		-0.984	0.176	0.177	0.152	1.587	89.5
M_{gcmrec}		-0.985	0.176	0.177	-	1.504	-
M_{PL}		-1.002	0.164	0.164	0.149	-0.156	91.3
$M_{BP(5)}$		0.999	0.015	0.015	0.013	-0.060	92.3
$M_{PE(5)}$		1.012	0.012	0.017	0.011	1.232	79.2
$M_{BP(10)}$		0.999	0.015	0.015	0.013	-0.062	92.8
$M_{PE(10)}$	$\alpha = 1$	1.004	0.014	0.014	0.013	0.359	92.8
M_{coxph}		1.003	0.016	0.016	0.012	0.261	88.7
M_{gcmrec}		1.002	0.017	0.017	-	0.245	-
M_{PL}		1.000	0.011	0.011	0.010	-0.018	92.9
$M_{BP(5)}$		0.889	0.071	0.078	0.844	3.672	91.6
$M_{PE(5)}$		0.915	0.062	0.085	1.173	6.804	92.1
$M_{BP(10)}$		0.889	0.072	0.078	0.850	3.701	92.2
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.899	0.069	0.080	1.031	4.825	91.6
M_{coxph}		0.897	0.071	0.081	-	4.610	-
M_{gcmrec}		0.896	0.075	0.084	-	4.516	-
M_{PL}		0.889	0.069	0.076	0.850	3.723	91.0

Ainda com base na Figura 4.5, visualmente os diagramas esquemáticos para β_1 , $\beta_2 \in \alpha$ tendem a apresentar vício relativo centrado em zero e com menor variabilidade com o aumento amostral, sendo que esta tendência ocorre de maneira menos persistente para $M_{PE(5)}$. O comportamento do vício relativo em relação ao grau ou tamanho da partição tende a ser invariante.

Figura 4.5: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{1.00,2} \in S_{6,50}^{1.00,2}$.

Assim como observado nos cenários analisados anteriormente, tem-se maior dificuldades para estimar ζ_{ν} e em geral os modelos considerados tendem a superestimar esse parâmetro (ver Figura 4.5). Contudo, nos cenários $S_{6,30}^{1.00,2}$ e $S_{6,50}^{1.00,2}$ a escala do vício relativo de ζ_{ν} indica uma redução na variabilidade do vício quando comparado com os demais cenários até aqui descritos, principalmente, em relação a $S_{6,30}^{0,9,2}$ e $S_{6,50}^{0,9,2}$ apresentados na Figura 4.2.

Na Tabela 4.9, são avaliados os resultados para o cenário $S_{\infty,30}^{1.00,2}$. Os modelos que exibem menor vício relativo médio em valor absoluto, para todos os parâmetros, são os que especificam

de forma explicita uma função intensidade de base não paramétrica, isto é, M_{coxph} e M_{gcmrec} . Na sequência, em termos dessa característica tem-se o modelo gerador dos dados (M_{PL}) . Os modelos baseados nos PBs e o $M_{PE(10)}$, geralmente, apresentam vício relativo médio absoluto próximos, sendo correntes nesta quantidade. Enquanto o modelo $M_{PE(5)}$ é o que expõem maior vício relativo médio absoluto para todos os parâmetros.

Ainda analisando os resultados da Tabela 4.9, pode-se verificar que o desvio padrão, o RMSE e o erro padrão médio para todos os parâmetros associados ao modelo gerador dos dados, são os que apresentam menores valores para essas medidas. Os demais modelos exibem valores dessas medidas próximos, sendo a diferença observada apenas na terceira casa decimal, geralmente. O desvio padrão segue a mesma tendência do RMSE, porém apresentando valores levemente menores que o RMSE. Já o erro padrão médio é levemente menor que o desvio padrão. A taxa de cobertura fica próxima da nominal para maioria dos modelos e parâmetros.

Comparando o cenário $S_{\infty,30}^{1.00,2}$ com as situações $S_{2,30}^{1.00,2}$ e $S_{6,30}^{1.00,2}$, que são semelhantes a esse, porém diferente na questão de não assumir a existência de fragilidade, pode-se observar que o vício relativo médio absoluto para os modelos baseados nos PBs e no LP apresentam tendência de queda para β_1 , quando comparado ao cenário que assume precisão da fragilidade como sendo 2. Por outro lado, os modelos baseados na EP, o M_{coxph} e o M_{gcmrec} apresentam um aumento no vício relativo médio em valor absoluto para esse coeficiente de regressão. Ainda comparando com o cenário $S_{2,30}^{1.00,2}$, com exceção de $M_{PE(5)}$, todos os demais modelos apresentaram crescimento no vício relativo médio absoluto dos parâmetros β_2 e α . Esse aumento no vício relativo médio analisado em valor absoluto também ocorre para β_1 e β_2 , quando confrontados os resultados do cenário $S_{\infty,30}^{1.00,2}$ com o $S_{6,30}^{1.00,2}$, permanecendo como única exceção o modelo $M_{PE(5)}$. Neste contexto, os modelos baseados nos PBs e no LP conferiram um maior vício relativo médio absoluto para α , enquanto os demais apresentaram redução desta quantidade.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.040	0.172	0.176	0.162	4.000	94.0
$M_{PE(5)}$		0.936	0.150	0.163	0.155	-6.393	92.6
$M_{BP(10)}$		1.044	0.174	0.179	0.164	4.359	94.3
$M_{PE(10)}$	$\beta_1 = 1$	1.040	0.173	0.177	0.164	4.013	94.7
M_{coxph}		1.027	0.171	0.173	0.164	2.700	94.7
M_{gcmrec}		1.027	0.171	0.173	0.164	2.700	94.7
M_{PL}		1.028	0.158	0.160	0.152	2.780	94.7
$M_{BP(5)}$		-1.034	0.120	0.125	0.112	-3.433	93.0
$M_{PE(5)}$		-0.930	0.101	0.123	0.102	6.981	88.6
$M_{BP(10)}$		-1.037	0.122	0.127	0.113	-3.656	93.2
$M_{PE(10)}$	$\beta_2 = -1$	-1.033	0.121	0.125	0.113	-3.305	93.2
M_{coxph}		-1.021	0.120	0.122	0.113	-2.061	93.8
M_{gcmrec}		-1.021	0.120	0.122	0.113	-2.061	93.8
M_{PL}		-1.023	0.105	0.108	0.098	-2.283	94.1
$M_{BP(5)}$		0.997	0.010	0.010	0.009	-0.331	93.3
$M_{PE(5)}$		1.007	0.008	0.011	0.008	0.717	85.3
$M_{BP(10)}$		0.996	0.010	0.011	0.009	-0.366	92.6
$M_{PE(10)}$	$\alpha = 1$	0.997	0.010	0.011	0.009	-0.339	92.8
M_{coxph}		0.998	0.010	0.010	0.009	-0.203	93.5
M_{gcmrec}		0.998	0.010	0.010	0.009	-0.203	93.4
M_{PL}		0.998	0.008	0.008	0.007	-0.217	94.8

Tabela 4.9: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S^{1.00,2}_{\infty,30}$:

Destaca-se também que quando comparados os cenários $S_{2,30}^{1.00,2}$, $S_{6,30}^{1.00,2}$ e $S_{\infty,30}^{1.00,2}$, em termos do desvio padrão, do RMSE e do erro padrão médio, todas as quantidades mencionadas apresentam redução com o aumento da precisão do efeito aleatório. Sendo os casos sem fragilidade, aqueles que conferem os menores valores das características supracitadas para todos os modelos e parâmetros. Ademais, é perceptível uma melhora nas taxas de cobertura, que se apresentam cada vez mais próximas de 95% no modelo sem efeito aleatório. Já quando comparado o cenário $S_{\infty,30}^{1.00,2}$ com $S_{\infty,30}^{0.90,2}$, pode-se verificar uma redução expressiva em termos de desvio padrão, RMSE e vício relativo médio absoluto, indicando estimavas mais próxima do real para todos os modelos no caso $S_{\infty,30}^{1.00,2}$.

Na Figura 4.6 são exibidos os diagramas esquemáticos do vício relativo percentual para

 $S_{\infty,30}^{1.00,2}$ e $S_{\infty,50}^{1.00,2}$. Percebe-se que todos os modelos apresentam diagramas centrados no zero, exceção do modelo $M_{PE(5)}$ que tende a subestimar β_1 e α e sobrestimar β_2 . No caso do modelos baseados nos PBs, aparentemente não há indícios para acreditar em redução do vício relativo com o aumento do grau. Ademais, todos os modelos apresentam redução na variabilidade do vício relativo com o aumento do tamanho da amostra.

Realizando uma comparação dos cenários apresentados na Figura 4.6 $(S_{\infty,30}^{1.00,2} e S_{\infty,50}^{1.00,2})$ como os expostos nas Figuras 4.4 $(S_{2,30}^{1.00,2} e S_{2,50}^{1.00,2})$ e 4.5 $(S_{6,30}^{1.00,2} e S_{6,50}^{1.00,2})$, contata-se claramente uma redução da variabilidade do vício relativo para todos os modelos e parâmetros na situação que não é considerada a presença de efeito aleatório. Isto está de acordo, com os apontamentos extraídos das Tabelas 4.7 $(S_{2,30}^{1.00,2})$, 4.8 $(S_{6,30}^{1.00,2})$ e 4.9 $(S_{\infty,30}^{1.00,2})$.

Figura 4.6: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S_{\infty,30}^{1.00,2}$ and $S_{\infty,50}^{1.00,2}$.

Neste contexto, quando compara-se os resultados dos cenários $S_{\infty,30}^{1.00,2}$ e $S_{\infty,50}^{1.00,2}$ com aqueles de $S_{\infty,30}^{0.90,2}$ e $S_{\infty,50}^{0.90,2}$, nota-se também uma redução na variabilidade dos vícios relativos para todos os modelos e parâmetros. Indicando uma redução do vício relativo percentual como o aumento do número de eventos por processo de eventos recorrentes, uma vez que aumentar o valor de α significa aumentar o número de eventos por sistema gerado.

Na Tabela 4.10, são apresentados os resultados para o cenário $S_{\infty,30}^{1.05,2}$, neste caso considerase aumentar o valor de α de modo que o número acumulado de eventos até um instante de tempo venha a contribuir de forma a aumentar a recorrência de eventos após esse tempo. Nesta situação pode-se observar que os modelos baseados nos PBs, são os que apresentam menor vício relativo para β_2 , $\alpha \in \zeta_{\nu}$, perdendo apenas para o modelo gerador dos dados. Na sequência, em termos de vício relativo médio para estes parâmetros tem-se as abordagens $M_{coxph} \in M_{gemree}$, que ficam também em segundo lugar em termos de vício relativo médio para β_1 , perdendo neste coeficiente apenas para os modelos baseados na EP. Destaca-se que o vício relativo médio em valor absoluto de M_{gemree} para β_2 , $\alpha \in \zeta_{\nu}$ são, respectivamente, 2.75, 14.88 e 1.19 vezes o vício relativo médio absoluto da abordagem $M_{BP(5)}$. Ademais, o vício relativo médio absoluto de M_{gemree} . Um padrão semelhante ao verificado para o vício relativo médio é observado para o RMSE e o desvio padrão, porém as diferenças encontradas entre os modelos para essas duas características são em menor magnitude.

Contrastando o caso $S_{2,30}^{1.00,2}$ com o $S_{2,30}^{1.05,2}$, assim como anteriormente na comparação entre $S_{2,30}^{0.90,2}$ e $S_{2,30}^{1.00,2}$, é observado redução no desvio padrão e no RMSE em função do aumento de α . Excepcionalmente, tal comportamento não se manteve para o M_{gcmrec} , que apresentou o padrão de redução do desvio padrão apenas para α e redução do RMSE para α e ζ_{ν} . Cabe salientar que no desvio padrão a maior redução registrada é de 108.60% para $M_{BP(5)}$ no parâmetro α e a menor é de 0.35% para o M_{coxph} no parâmetro ζ_{ν} . Na análise do RMSE a maior redução também é para o modelo $M_{BP(5)}$ no parâmetro ζ_{ν} . Ademais, percebe-se que a média dos erros padrão possuem tendência de queda para todos os modelos e parâmetros, variando de 87.45% ($M_{BP(5)}$ para α) a 1.02% (M_{coxph} para β_1).

Tabela 4.10: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{1.05,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.056	0.401	0.405	0.365	5.569	91.5
$M_{PE(5)}$		0.967	0.368	0.369	0.337	-3.258	90.7
$M_{BP(10)}$		1.057	0.402	0.406	0.365	5.658	91.4
$M_{PE(10)}$	$\beta_1 = 1$	1.022	0.389	0.389	0.354	2.172	91.0
M_{coxph}		1.043	0.401	0.403	0.362	4.259	91.0
M_{gcmrec}		1.048	0.452	0.454	-	4.815	-
M_{PL}		1.055	0.400	0.403	0.361	5.532	91.4
$M_{BP(5)}$		-1.002	0.228	0.228	0.208	-0.249	91.7
$M_{PE(5)}$		-0.912	0.200	0.219	0.191	8.802	87.8
$M_{BP(10)}$		-1.004	0.229	0.229	0.209	-0.369	92.0
$M_{PE(10)}$	$\beta_2 = -1$	-0.968	0.217	0.219	0.202	3.164	91.4
M_{coxph}		-0.990	0.230	0.230	0.206	0.983	91.2
M_{gcmrec}		-0.993	0.255	0.255	-	0.684	-
M_{PL}		-1.003	0.222	0.222	0.203	-0.309	91.5
$M_{BP(5)}$		1.050	0.008	0.008	0.007	-0.008	95.0
$M_{PE(5)}$		1.058	0.007	0.010	0.006	0.723	77.4
$M_{BP(10)}$		1.050	0.008	0.008	0.007	-0.018	94.6
$M_{PE(10)}$	$\alpha = 1.05$	1.053	0.008	0.008	0.007	0.252	93.5
M_{coxph}		1.051	0.010	0.010	0.008	0.103	92.5
M_{gcmrec}		1.051	0.010	0.010	-	0.119	-
M_{PL}		1.050	0.007	0.007	0.006	-0.005	95.8
$M_{BP(5)}$		0.711	0.097	0.107	0.448	6.606	93.6
$M_{PE(5)}$		0.739	0.094	0.118	0.470	10.791	90.5
$M_{BP(10)}$		0.711	0.098	0.107	0.463	6.668	93.3
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.723	0.096	0.112	0.478	8.472	92.7
M_{coxph}		0.717	0.100	0.112	-	7.483	-
M_{gcmrec}		0.719	0.099	0.112	-	7.839	-
M_{PL}		0.709	0.094	0.103	0.437	6.319	92.6

Nesta mesma perspectiva, quando analisado o vício relativo médio em valor absoluto observase um padrão de queda, especialmente, para os modelos baseados nos PBs, na EP e para o M_{PL} . Os modelos M_{coxph} e M_{gcmrec} , para maioria dos parâmetros apresenta vício relativo maior no cenário $S_{2,30}^{1.05,2}$ em comparação com $S_{2,30}^{1.00,2}$. Aponta-se que em $S_{2,30}^{1.05,2}$ o vício relativo médio absoluto de $M_{BP(5)}$ para α , é apenas 3.55% do vício para o mesmo modelo e parâmetro no cenário $S_{2,30}^{1.00,2}$. Por outro lado, o modelo M_{coxph} apresenta para o coeficiente β_2 um vício que é 4.18 vezes aquele do cenário que assume $\alpha = 1.00$.

Na Figura 4.7, avalia-se o comportamento do vício relativo percentual em função do tamanho da amostra. Percebe-se que a variabilidade do vício tende a diminuir com o aumento amostral, assim como já observado para os outros cenários. Contudo, o modelo $M_{PE(5)}$ tende a manter o vício relativo distante de zero, para maioria dos parâmetros. Já o modelo M_{gcmrec} apresenta um número expressivo de pontos discrepantes, especialmente, na amostra de tamanho 50, valendo este comportamento para todos os parâmetros. Pode-se observa também que o padrão de sobrestimação do parâmetro ζ_{ν} se mantém para todos os modelos, entretanto o M_{gcmrec} para n = 50 apresenta diagrama de ζ_{ν} mais centrado em zero devido ao número grande de pontos discrepantes inferiores.

Comparando os cenários $S_{2,30}^{1.00,2}$ e $S_{2,50}^{1.00,2}$ com aqueles apresentados na Figura 4.7, percebe-se que a menos de alguns pontos discrepantes os casos $S_{2,30}^{1.05,2}$ e $S_{2,50}^{1.05,2}$ exibem uma menor variabilidade do vício relativo. Particularmente, para α , nota-se uma redução de aproximadamente 50% do vício na escala dos diagramas. Como já observado, os pontos discrepantes produzidos por alguns amostras no modelo M_{gcmrec} acabam por prejudicar este modelo conferindo ao mesmo pior ajustes em termos de vício relativo em $S_{2,30}^{1.05,2}$ e $S_{2,50}^{1.05,2}$.

Figura 4.7: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{1.05,2} \in S_{2,50}^{1.05,2}$.

No cenário $S_{6,30}^{1.05,2}$ apresentado na Tabela 4.11, considera-se estudar o efeito do aumento da precisão do efeito aleatório, isto é, as consequências de reduzir a variância da fragilidade. Pode-se verificar que nestas condições os modelos baseados nos polinômios e o M_{PL} são os que apresentam menores vícios relativos percentuais médios para β_2 , $\alpha \in \zeta_{\nu}$, enquanto que para β_1 os modelos M_{coxph} e M_{gcmrec} são os que indicam menores valores dessa quantidade. Avaliando os modelos em termos do desvio padrão e RMSE, identifica-se que, fixado o parâmetro, as diferenças nos valores dessas características estão na segunda ou terceira casa decimal. Destacase que o modelo gerador dos dados é o que apresentam melhores ajustes aos dados considerando essas medidas, porém ainda são muito próximas das obtidas para os demais modelos. Em geral, nota-se que os modelos M_{BP5} e M_{BP10} , apresentam melhores taxas de cobertura que os modelos concorrentes.

Realizando uma análise comparativa entre as situações $S_{2,30}^{1.05,2}$ e $S_{6,30}^{1.05,2}$, verifica-se que aumentandose a variância do efeito aleatório, o vício relativo médio absoluto de β_1 apresentou redução, exceto para $M_{PE(5)}$ no qual houve um aumento de 55.14% no vício. Já o coeficiente β_2 registou aumento, variando de 5.79% a 71.28%, respectivamente, para os modelos $M_{PE(5)}$ e $M_{BP(5)}$. Ressalta-se que em ambos os cenários o vício do $M_{PE(5)}$ se manteve em patamares elevados, enquanto o $M_{BP(5)}$ apresentou níveis baixos do vício. Para α , o único modelo que apresentou queda do vício foi o $M_{PE(5)}$, de 3.65%, os demais apresentaram aumento entre 15.54% ($M_{PE(10)}$) e 87.41% ($M_{BP(5)}$). Por fim, é observado redução no vício relativo médio em valor absoluto para o parâmetro ζ_{ν} em todos os modelos, sendo o $M_{PE(5)}$ aquele com a maior redução, de 69.07%, e o M_{coxph} aquele com a menor redução (51.84%). Como já destacado, apesar do modelo $M_{PE(5)}$, indicar queda para maioria dos parâmetros, os patamares de vício em $S_{2,30}^{1.05,2}$ e $S_{6,30}^{1.05,2}$ são relativamente alto, chegando a mais de 10.00% de vício relativo médio absoluto para ζ_{ν} no cenário $S_{2,30}^{1.05,2}$.

Ainda comparando os cenários, nota-se que o desvio padrão para $\beta_1 \in \beta_2$ em todos os modelos estudados apresentaram queda, variando de 39,30% $(M_{PE(10)})$ a 57,73% (M_{gcmrec}) para o β_1 e de 35,10% (M_{coxph}) a 49,87% (M_{gcmrec}) para o β_2 . Para α , apesar das diferenças serem muito pequenas em relação aos cenários, os modelos induzidos pelos PBs, o $M_{PE(10)}$ e o M_{PL} registram aumentos no desvio padrão menores que 4.10%. O desvio padrão, relacionado a ζ_{ν} também exibe queda para todos os modelos, oscilando entre 49.07% $(M_{BP(5)})$ e 60.41% $(M_{PE(5)})$. Uma vez que o RMSE e o desvio padrão dentro de cada um dos cenários $S_{2,30}^{1.05,2}$ e $S_{6,30}^{1.05,2}$, apresentam valores próximos, os resultados comparativos de crescimento e decrescimento do RMSE são análogos ao do desvio padrão.

Analisando a taxa de cobertura, ao contrário do que foi observado até o momento com o aumento da precisão da fragilidade, notou-se uma distanciamento do nível nominal, quando comparados os cenários $S_{2,30}^{1.05,2}$ e $S_{6,30}^{1.05,2}$. Enquanto isso, o erro padrão médio tendeu a diminuir ou permanecer constante para β_1 , β_2 e α e apresentou tendência de crescimento para o parâmetro ζ_{ν} , de aproximadamente 34.57% em média.

Tabela 4.11: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{1.05,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.013	0.285	0.285	0.243	1.304	89.9
$M_{PE(5)}$		0.927	0.261	0.271	0.223	-7.263	86.2
$M_{BP(10)}$		1.013	0.287	0.287	0.245	1.346	90.3
$M_{PE(10)}$	$\beta_1 = 1$	0.983	0.279	0.280	0.237	-1.734	89.3
M_{coxph}		0.998	0.287	0.287	0.238	-0.217	89.0
M_{gcmrec}		0.998	0.286	0.286	-	-0.239	-
M_{PL}		1.016	0.280	0.280	0.237	1.642	88.1
$M_{BP(5)}$		-0.991	0.167	0.167	0.148	0.869	91.1
$M_{PE(5)}$		-0.907	0.147	0.174	0.134	9.342	83.1
$M_{BP(10)}$		-0.991	0.167	0.167	0.149	0.873	91.4
$M_{PE(10)}$	$\beta_2 = -1$	-0.961	0.159	0.164	0.144	3.872	89.4
M_{coxph}		-0.977	0.170	0.172	0.144	2.281	89.1
M_{gcmrec}		-0.977	0.170	0.172	-	2.262	-
M_{PL}		-0.995	0.154	0.154	0.139	0.518	89.7
$M_{BP(5)}$		1.051	0.008	0.008	0.007	0.064	92.3
$M_{PE(5)}$		1.057	0.007	0.010	0.006	0.697	76.9
$M_{BP(10)}$		1.051	0.008	0.008	0.007	0.065	91.7
$M_{PE(10)}$	$\alpha = 1.05$	1.053	0.008	0.009	0.007	0.298	89.9
M_{coxph}		1.052	0.010	0.010	0.007	0.199	88.8
M_{gcmrec}		1.052	0.010	0.010	-	0.202	-
M_{PL}		1.050	0.007	0.007	0.006	0.040	92.4
$M_{BP(5)}$		0.893	0.065	0.074	0.674	4.229	92.1
$M_{PE(5)}$		0.912	0.059	0.080	0.790	6.382	90.9
$M_{BP(10)}$		0.894	0.065	0.075	0.717	4.299	93.2
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.902	0.063	0.077	0.729	5.225	93.1
M_{coxph}		0.899	0.066	0.078	-	4.928	-
M_{gcmrec}		0.900	0.065	0.077	-	4.961	-
M_{PL}		0.891	0.063	0.072	0.615	3.957	90.0

Figura 4.8: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{1.05,2} \in S_{6,50}^{1.05,2}$.

Na Figura 4.8, dedicada aos cenários $S_{6,30}^{1.05,2}$ e $S_{6,50}^{1.05,2}$, observa-se que com o aumento de ζ_{ν} tem-se uma maior estabilidade dos modelos, não havendo tantos pontos discrepantes como em $S_{2,50}^{1.05,2}$ para o M_{gcmrec} . Nota-se também uma redução na variabilidade do vício relativo percentual de β_2 , enquanto que β_1 apresenta um padrão similar aos dos cenários $S_{2,30}^{1.05,2}$ e $S_{2,50}^{1.05,2}$. Apesar de visualmente todos modelos apresentarem tendência de sobrestimação do parâmetro ζ_{ν} , em geral, a variabilidade do vício é menor nesta análise, quando comparada aos cenários apresentados na Figura 4.7. Ademais, como verificado em todos os cenários é nítida a redução

do vício com o aumento do tamanho amostral. Novamente percebe-se que o $M_{PE(5)}$ é uma exceção neste padrão. Finalmente, quanto ao grau do polinômio e o tamanho da partição, tem-se resultados equivalentes para m iguais a 5 e 10. Enquanto o resultados em termos de vício são melhores para partição de tamanho 10.

Por fim, são apresentados na Tabela 4.12 os resultados para o cenário $S_{\infty,30}^{1.05,2}$. Nesta situação em que não assume-se termo de fragilidade na geração dos dados, pode-se ver que as taxas de cobertura para todos os modelos e parâmetros estão relativamente próximas da nominal. Apenas o parâmetro ζ_{ν} no modelo $M_{PE(5)}$ exibe uma taxa distante de 95%. É importante destacar que, o modelo gerador dos dados apresenta os melhores resultados em termos de vício relativo médio para β_1 e β_2 . Por outro lado, na avaliação de α os modelos M_{coxph} e M_{gemrec} determinam o menor vício. Deve-se ressaltar que a maioria dos modelos apresentam vício relativo médio em valor absoluto abaixo de 4% para todos os parâmetros.

Ainda na Tabela 4.12, quando analisado o desvio padrão e o RMSE, nota-se que eles estão próximos e ficam perto de 0.16, 0.11 e 0.01, respectivamente, para β_1 , β_2 e α , porém os valores obtidos para o M_{PL} e $M_{PE(5)}$ estão abaixo daquele observado para maior parte dos modelos, especialmente, nos coeficientes β_1 e β_2 . Nessa tabela, pode-se ver também que em comparação com os cenários correspondentes com fragilidade, $S_{2,30}^{1.05,2}$ e $S_{6,30}^{1.05,2}$, o erro padrão médio de β_1 e β_2 tende a ser menor que nas situações supracitadas. No caso do parâmetro α , o erro padrão médio permanece praticamente constante. Verifica-se o mesmo de tipo de interpretação para, o desvio padrão e o RMSE. O vício relativo médio em valor absoluto, apresentou redução em β_1 para maioria dos modelos e tendência de aumento para β_2 . No caso do parâmetro α , temse mudanças sensíveis no vício relativo médio entre os cenários $S_{2,30}^{1.05,2}$, $S_{6,30}^{1.05,2}$ e $S_{\infty,30}^{1.05,2}$. Vale destacar que nestas situações o vício relativo médio absoluto de α não ultrapassa 1%. Ademais, como já observados nos cenários anteriormente expostos, a taxa de cobertura nos casos sem fragilidades ficam razoavelmente próximas do nível nominal (95%).

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.032	0.154	0.157	0.150	3.153	94.6
$M_{PE(5)}$		0.948	0.141	0.150	0.145	-5.174	93.7
$M_{BP(10)}$		1.035	0.156	0.160	0.155	3.515	94.7
$M_{PE(10)}$	$\beta_1 = 1$	1.034	0.157	0.161	0.155	3.389	94.7
M_{coxph}		1.024	0.157	0.159	0.157	2.382	95.8
M_{gcmrec}		1.024	0.157	0.159	0.157	2.382	95.8
M_{PL}		1.023	0.143	0.145	0.139	2.287	96.0
$M_{BP(5)}$		-1.024	0.104	0.106	0.104	-2.404	95.2
$M_{PE(5)}$		-0.938	0.088	0.108	0.096	6.230	91.2
$M_{BP(10)}$		-1.026	0.107	0.110	0.108	-2.640	95.5
$M_{PE(10)}$	$\beta_2 = -1$	-1.025	0.107	0.110	0.108	-2.483	95.5
M_{coxph}		-1.015	0.109	0.110	0.109	-1.491	95.9
M_{gcmrec}		-1.015	0.109	0.110	0.109	-1.491	95.9
M_{PL}		-1.015	0.092	0.093	0.092	-1.480	94.5
$M_{BP(5)}$		1.049	0.006	0.006	0.006	-0.140	95.2
$M_{PE(5)}$		1.054	0.006	0.007	0.005	0.376	88.8
$M_{BP(10)}$		1.048	0.006	0.007	0.006	-0.174	94.2
$M_{PE(10)}$	$\alpha = 1.05$	1.048	0.007	0.007	0.006	-0.187	94.3
M_{coxph}		1.049	0.007	0.007	0.007	-0.087	95.6
M_{gcmrec}		1.049	0.007	0.007	0.007	-0.087	96.4
M_{PL}		1.049	0.005	0.005	0.005	-0.094	95.3

Tabela 4.12: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.05,2}$:

Na Figura 4.9, estão expostos os diagramas esquemáticos do vício relativo para os cenários $S_{\infty,30}^{1.05,2}$ e $S_{\infty,50}^{1.05,2}$. Observa-se que o modelo M_{gcmrec} apresenta um ponto discrepante que impossibilita a visualização da representação gráfica para o parâmetro α , porém para β_1 e β_2 , assim como já observado em outros cenários, com exceção do $M_{PE(5)}$, os demais modelos apresentam diagramas centrados em zero. Além disso, não verifica-se grandes diferenças, em relação ao grau, para os modelos induzidos pelos PBs. Porém um tamanho de partição maior para os modelos EP produzem melhores resultados.

Contrastando os cenários $S_{\infty,30}^{1.05,2}$ e $S_{\infty,50}^{1.05,2}$ com os casos contendo fragilidade $(S_{2,30}^{1.05,2}, S_{2,50}^{1.05,2}, S_{6,30}^{1.05,2})$, percebe-se uma redução na variabilidade do vício relativo percentual dos parâmetros β_1 e β_2 . Isto pode ser verificado comparando a escala do vício observada na Figura

4.9 com as exibidas nas Figuras 4.7 e 4.8.

Figura 4.9: Vício relativo dos estimadores de β_1 , β_2 e α nos cenários $S_{\infty,30}^{1.05,2}$ e $S_{\infty,50}^{1.05,2}$

Note que nas tabelas expostas nesta seção não foram tratados os cenários que consideram n = 50, porém como pode ser visualizado no Apêndice B, os resultados produzidos para esta configuração são similares aos relatados acima. Neste sentido, como pode ser observado nas Tabelas B.7 a B.9, B.16 a B.18 e da B.25 a B.27, para todos os parâmetros e modelos, a tendência é de redução do desvio padrão, RMSE, erro padrão médio e vício relativo médio, em comparação com os cenários que consideram n = 30. Outro aspecto a ser relatado é que com o aumento do tamanho amostral o modelo gerador dos dados simulados indica valores das características supracitadas menores, o que é esperado. Ademais, verifica-se que as taxas de cobertura ficam cada vez mais próxima de 95% em todos os cenários. Cita-se ainda que o modelo $M_{PE(5)}$, assim como visto anteriormente, apresenta estimativas com vício relativo médio maior e tendendo a exibir padrão diferente dos demais modelos utilizados nas simulações com o aumento de n e configurações utilizadas para α e ζ_{ν} , não sendo observado um padrão claro de aumento ou redução.

Em resumo, fixado o ζ_{ν} , tem-se que para os cenários com $\alpha < 1$ o vício relativo tende a ser maior que nas situações que consideram efeito adverso ($\alpha > 1$). Contudo, esse padrão só fica bem evidente nas tabelas e figuras correspondentes a α , o que é esperado, uma vez que temos um aumento no número de eventos, e portanto mais informação para estimá-lo. Além disso, na situação em que $\alpha > 1$ é esperado uma melhor estimação da precisão do efeito aleatório, em consequência de ter-se mais eventos ocorrendo para cada processo gerado. Porém como pode ser visto nas tabelas e figuras para alguns modelos, verifica-se um padrão de redução do vício, já para outros um padrão de aumento. Entretanto, para o parâmetro ζ_{ν} , ressalta-se que nas situações com $\alpha > 1$ o desvio padrão e o RMSE tendem a ser menores, mas ainda são relativamente próximos dos obtidos para os cenários que possuem $\alpha < 1$. Esta conclusão pode ser estendida para os coeficientes β_1 e β_2 e não para o α , que apresenta desvio padrão e RMSE menores e relativamente distantes dos obtidos nos cenários em que ele é menor que 1. O erro padrão de α e ζ_{ν} , geralmente, são menores nas situações com $\alpha > 1$. Já o erro padrão de β_1 e β_2 são próximos aos dos casos com $\alpha < 1$, mas ainda são ligeiramente maiores. As taxas de cobertura, tendem a ser mais próxima do valor nominal para os parâmetros α e ζ_{ν} , quando $\alpha > 1$. Os demais parâmetros apresentam pequenas variações na taxa com o aumento de α . Destaca-se que nos cenários em que não é considerado o termo de fragilidade, verifica-se uma redução de alta magnitude do desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto para as configurações que consideram $\alpha > 1$, em contraste com os casos que levam em conta um efeito de benefício.

Avaliando as situações com fragilidade em comparação com as sem fragilidade, fixado α , nota-se que as taxas de cobertura ficam mais distantes da nominal (95%) quando há um termo de fragilidade a ser estimado; isso é notável, para todos os modelos e parâmetros. O desvio padrão, o RMSE, o erro padrão médio e o vício relativo médio absoluto apresentam tendência de redução com o aumento da precisão da fragilidade, porém na situação sem fragilidade, $\zeta_{\nu} = \infty$, o vício relativo absoluto tende a ser maior que nas situações com efeito aleatório. Sendo verdade especialmente para β_2 e α . Evidencia-se que o vício relativo médio de ζ_{ν} reduz praticamente de pela metade, quando aumenta-se este parâmetro de 2 para 6.

Na comparação de modelos, verificou-se que em termos de vício relativo médio, os casos M_{coxph} e M_{gcmrec} são os que, geralmente, produzem menor vício relativo para β_1 e β_2 , seguido do modelo gerador dos dados (M_{PL}) , e depois dos modelos baseados nos PBs e $M_{PE(10)}$, nesta ordem. No caso do parâmetro α , não tem-se um modelo específico que seja melhor em termos de vício relativo médio. Entretanto, o parâmetro ζ_{ν} apresenta menor valor de vício relativo médio M_{PL} , $M_{BP(5)}$ e $M_{BP(10)}$. Analisando o desvio padrão, o RMSE e o erro padrão médio, percebese que fixado o parâmetro α ou ζ_{ν} estas quantidades para todos os modelos são próximas, contudo o modelo M_{PL} tende a apresentar os menores valores dessas características em todos

os cenários avaliados. Deve-se salientar que os modelos induzidos pelos PBs, independente do grau, produz resultados semelhantes para todos os parâmetros nos diversos cenários analisados.

No Apêndice B, nas Tabela B.1 a B.6, B.10 a B.15 e B.19 a B.24, e nas Figuras B.1 a B.9, são apresentados também os resultados dos cenários que assumem função de intensidade decrescente (FID), isto é, $\theta_1 = 0.9$. Tais resultados diferem dos cenários apresentados anteriormente, que consideram função de intensidade crescente (FIC) com, $\theta_1 = 2.0$. Perceba, que o impacto do θ_1 é semelhante ao de α e está relacionado com a frequência de eventos por processo ou sistema. Quando analisados esses cenários de forma isolada, nota-se que o padrão observado nos casos que consideram FIC é reproduzido para as situações que consideram FID, apesar de não ser possível visualizar um padrão claro. Nos casos que assume-se FID, observa-se maior desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto, especialmente, quando temse $\alpha < 1$. Nas situações em que $\alpha \ge 1$, os resultados tendem a ficar mais equilibrados. As taxas de cobertura também seguem um padrão similar aos percebidos nos cenários que consideram FIC. Ressalta-se que, aparentemente, ζ_{ν} tende apresentar vício relativo médio absoluto menor nos cenários com FID.

Por fim, verificou-se que os cenários assumindo $\alpha < 1 \text{ e } \theta_1 < 1$ (situação com efeito similar a reparação perfeita), são aqueles que tendem a apresentar maiores valores de desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto. Por outro lado, os cenários que consideram $\alpha > 1 \text{ e } \theta_1 > 1$ (situação com efeito similar a reparação mínima) são os que exibem menores valores das características supracitadas. Esse comportamento já tinha sido observado também por Peña et al. (2007), para o M_{gemrec} , e por Stocker IV e Peña (2007) para o M_{PL} . Acentua-se, que os resultados observados neste trabalho para o M_{PL} são análogos aos observados por Stocker IV e Peña (2007).

Após apresentar os resultados sob a visão clássica da inferência, a próxima seção é dedicada à análise baseada na abordagem Bayesiana. Esta seção foi dividida em duas partes, sendo a primeira destinada a análise considerando os modelos de reparação mínima e a segunda para os modelos de reparação perfeita. Note que o pacote **gcmrec** não será avaliado a seguir visto que não leva em conta tal perspectiva.

4.2.2 Resultados: abordagem Bayesiana

Nesta seção são apresentados os resultados do estudo de simulação usando a abordagem Bayesiana, seja para os modelos de reparo mínimo ou perfeito. Para obter as amostras *a posteriori* dos parâmetros dos modelos baseados nos PBs, na EP e no LP (modelo gerador dos dados), como já mencionado, foi considerado o *software* JAGS e as especificações *a priori* e configurações do algoritmo MCMC apresentadas na Seção 3.1.1. Contudo, todos os modelos utilizados no estudo de simulação, tiveram seus ajustes obtidos através do pacote BayesGCMRec, desenvolvido neste trabalho para facilitar a utilização dos modelos propostos sob o paradigma Bayesiano. Ressalta-se que as especificações *a priori* consideradas na aplicação apresentada na Seção 3.1.1 não abrangem os parâmetros β_2 , $\log(\alpha) \in \zeta_{\nu}$, sendo adotadas, respectivamente, $N(0, 1/4^2)$, $N(0, 1/4^2)$ e Gama (1, 1).

Assim como no estudo de simulação da abordagem clássica, na análise dos resultados das simulações Bayesianas foi utilizado a seguinte notação para identificação dos modelos:

 $M_{\rm Função}^{\rm Principal característica da especificação a priori de <math>\eta$ (ou γ) ou ξ (ou ϕ) Função intensidade de base (grau ou tamanho da partição),

sendo, $M_{BP(m)}^Z$, por exemplo, o modelo construído com base no polinômio de Bernstein de grau m que assume especificação a priori para η que considera média zero e distribuição a priori para o hiperparâmetro de precisão ζ_{η} . Para o modelo gerador dos dados artificiais utilizou-se a notação M_{PL} , mesma adotada nas análises do estudo de simulação sob o paradigma frequentista, porém aqui tal nomenclatura está ligada aos resultados do modelo Bayesiano. Destaca-se que essa mesma notação foi utilizada no Capítulo 3, sendo mantida por conformidade.

Por questões de tempo computacional, foi reduzido o número de cenários avaliados na abordagem Bayesiana, bem como também o número de réplicas de Monte Carlo. Restringindo-se aos cenários $S^{\alpha,2}_{\zeta_{\nu},30}$, com $\zeta_{\nu} = 2$ ou ∞ , $\alpha = 0.90, 1.00$ ou 1.05 e n = 30 ou 50 e N = 100 réplicas. Para descrever as simulações, usando a média *a posteriori* como estimador dos parâmetros em cada réplica, foram obtidos de todas as réplicas as seguintes características: média, desvio padrão, RMSE, média do erro padrão (desvio padrão da amostra *a posteriori* referente a um parâmetro), média do vício relativo e a taxa de cobertura (usando o HPD de 95%).

Nas tabelas e figuras exibidas na sequência deste texto, são mostrados os resultados para os cenários simulados conforme a mesma estruturação das Tabelas 4.1, 4.2 e 4.3. Nas tabelas da presente seção têm-se os resultados descritivos para os cenários $S^{\alpha,2}_{\zeta_{\nu},30}$, com $\zeta_{\nu} = 2, \infty$ e $\alpha~=~0.90, 1.00, 1.05,$ para os modelos: M_{PL} (gerador dos dados), $M_{BP(m)}^{PL}$ (melhor modelo baseado nos PBs segundo os critérios DIC, -2 LPML e -2 WAIC), $M_{PE(l)}^{RW}$ (melhor modelo baseado na EP segundo os critérios DIC, -2 LPML e -2 WAIC e em termos de vício relativo percentual) e $M_{BP(m)}^G$ (melhor modelo baseado nos PBs em termos de vício relativo percentual). Quando um determinado modelo é classificado como melhor seguindo estes critérios, tal fato significa que para maioria das réplicas este foi o que apresentou menores valores dos critérios de seleção, em todos os cenários. Já quando diz-se que é o melhor segundo o vício relativo percentual, este aspecto significa que quando acumulado o vício relativo percentual para todos os parâmetros em cada réplica, tal modelo foi o que, geralmente, apresentou o menor valor desta soma de vícios em todos os cenários. Uma observação a ser feita é que não necessariamente estes modelos são os que apresentam menor vício relativo médio absoluto para cada parâmetro individual no respectivo cenário avaliado. Além das tabelas, o estudo também leva em conta figuras onde são expostos os diagramas esquemáticos do vício relativo percentual para todas as modelagens avaliadas nos mesmos cenários apresentados nas tabelas. Os resultados dos cenários correspondentes aos supracitados para amostra de tamanho 50 são mostrados no Apêndice C, assim como os resultados dos modelos omitidos.

Para facilitar a compreensão dividiu-se os resultados dos modelos Bayesianos em duas subseções, uma referente aos dados simulados sobre o processo de Poisson (reparação mínima) e outra para os dados simulados sob o processos de renovação (reparação perfeita). Segue as análises relacionadas aos dados sintéticos.

Análise sob reparação mínima

Na Tabela 4.13, nota-se que para o cenário $S_{2,30}^{0.90,2}$ o modelo $M_{BP(m)}^G$, m = 5 ou 10, é o que apresenta menor vício relativo médio absoluto para todos os parâmetros, sendo que o ajuste com o grau 10 sugere menor vício em valor absoluto para β_2 e α , enquanto que o grau 5 indica menores valores desta característica para β_1 e ζ_{ν} . Em geral, o $M_{BP(10)}^G$ tende a sobrestimar todos os parâmetros, com exceção do ζ_{ν} , sendo a tendência de subestimação. Já o padrão do $M_{BP(5)}^G$ é de subestimar β_1 e ζ_{ν} e sobrestimar β_2 e α . Destaca-se que os vícios relativos médios em valor absoluto de β_1 e ζ_{ν} para o caso em que m = 5, é praticamente metade do vício quando m = 10. Porém para β_2 e α os vícios do modelo com grau menor são, respectivamente, 129

e 2 vezes maiores que o de grau maior para o respectivos parâmetros. As taxas de cobertura tendem a ser maiores do que 95%, algumas iguais a 100%, o que ocorre provavelmente devido ao número baixo de réplicas de Monte Carlo.

Ainda analisando os resultados da situação $S_{2,30}^{0.90,2}$, percebe-se que em termos de desvio padrão, RMSE e erro padrão médio os modelos se diferenciam nos valores destas medidas, geralmente, apenas a partir da segunda casa decimal, a depender do parâmetro. Por exemplo, para β_2 , o desvio padrão das medidas variam de 0.233 a 0.291, sendo a diferença apenas na segunda casa decimal. Um ponto relevante, é que o desvio padrão e o RMSE são próximos indicando variabilidade semelhante ao redor da média e do verdadeiro valor do parâmetro. Para α , estas duas quantidades são próximas e pequenas, indicando bom desempenho na estimação.

Na Figura 4.10, tem-se os diagramas esquemáticos para todos os modelos Bayesianos ajustados no $S_{2,30}^{0.90,2}$. Uma primeira constatação feita aqui é que os modelos baseados nos PBs apresentam em termos de vício relativo, muita semelhança independente do grau, enquanto os modelos construídos via EP aparentam uma forte dependência da escolha da partição. Sendo que tamanho de partição maior sugere melhores resultados, com exceção do $M_{PE(l)}^G$ que tende apresentar diagramas não centrados em zero para maioria dos parâmetros independente do tamanho da partição. Veja também, que os modelos baseados nos PBs, seguem tendências similares ao do modelo gerador dos dados (M_{PL}) , enquanto os construídos através da EP tendem a fazer exatamente o sentido contrário, especialmente, para l = 5. Contudo, este último com tamanho de partição 10 fica mais centrado em torno de zero para $M_{PE(10)}^Z$, $M_{PE(10)}^{PL}$, $M_{PE(10)}^{RW}$, e $M_{PE(10)}^{Wishart}$.

2,00 1		v		1			
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.990	0.339	0.338	0.437	-1.033	100
$M_{BP(5)}^{PL}$		1.143	0.402	0.425	0.491	14.271	97
$M_{PE(5)}^{RW}$		0.970	0.341	0.341	0.432	-3.012	100
$M^G_{BP(10)}$	$\beta_1 = 1$	1.024	0.349	0.348	0.446	2.381	100
$M_{BP(10)}^{PL}$		1.148	0.405	0.430	0.494	14.790	97
$M_{PE(10)}^{RW}$		1.073	0.377	0.382	0.463	7.270	98
M_{PL}		1.105	0.386	0.398	0.474	10.472	98
$M^G_{BP(5)}$		-0.969	0.233	0.234	0.245	3.095	97
$M_{BP(5)}^{PL}$		-1.125	0.287	0.312	0.286	-12.476	93
$M_{PE(5)}^{RW}$		-0.939	0.233	0.240	0.246	6.120	94
$M^G_{BP(10)}$	$\beta_2 = -1$	-1.000	0.240	0.239	0.252	0.024	96
$M_{BP(10)}^{PL}$		-1.134	0.291	0.319	0.289	-13.414	94
$M_{PE(10)}^{RW}$		-1.051	0.262	0.266	0.269	-5.090	95
M_{PL}		-1.089	0.274	0.287	0.271	-8.905	93
$M^G_{BP(5)}$		0.905	0.027	0.028	0.035	0.607	100
$M_{BP(5)}^{PL}$		0.870	0.041	0.051	0.038	-3.367	87
$M_{PE(5)}^{RW}$		0.917	0.028	0.032	0.033	1.850	96
$M^G_{BP(10)}$	$\alpha = 0.9$	0.903	0.028	0.028	0.035	0.306	100
$M_{BP(10)}^{PL}$		0.868	0.042	0.053	0.039	-3.559	90
$M_{PE(10)}^{RW}$		0.885	0.035	0.038	0.036	-1.702	93
M_{PL}		0.879	0.032	0.038	0.033	-2.282	93
$M^G_{BP(5)}$		1.980	0.561	0.559	0.838	-0.984	98
$M_{BP(5)}^{PL}$		1.674	0.532	0.622	0.711	-16.314	87
$M_{PE(5)}^{RW}$		2.069	0.570	0.571	0.870	3.444	99
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	1.954	0.556	0.555	0.819	-2.279	98
$M_{BP(10)}^{PL}$		1.660	0.531	0.628	0.706	-17.006	89
$M_{PE(10)}^{RW}$		1.804	0.543	0.575	0.757	-9.817	98
M_{PL}		1.740	0.559	0.614	0.718	-12.987	91

Tabela 4.13: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura 4.10: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo.

O cenário a ser analisado agora, $S_{\infty,30}^{0.90,2}$, se diferencia do anterior pelo fato de não possuir o termo de fragilidade, isto é, os dados são gerados considerando o M_{PL} sem efeito aleatório. Assim, como já tinha sido observado no estudo de simulação usando inferência clássica, as taxas de cobertura ficam mais próxima do nível nominal quando não considera-se a fragilidade. O vício relativo percentual médio absoluto não ultrapassa 7%, e em geral são menores que os observados no caso $S_{2,30}^{0.90,2}$ para os correspondentes modelos e parâmetros. Há uma redução clara no desvio padrão, no RMSE e na média do erro padrão das estimativas, em especial, para $\beta_1 e \beta_2$ são registrados os maiores impactos, quando comparados aos resultados expostos nas Tabelas 4.13 ($S_{2,30}^{0.90,2}$) e 4.14 ($S_{\infty,30}^{0.90,2}$). Uma vez que uma variação extra adicional não está sendo considerada.

Como percebe-se na Tabela 4.14, o modelo $M_{BP(10)}^G$ apresenta os menores valores de vício relativo médio em valor absoluto para todos os parâmetros, seguindo do mesmo modelo com grau menor (m = 5). As características: desvio padrão, RMSE e erro padrão médio, são todas próximas e relativamente pequenas, por exemplo, o parâmetro β_1 em todos os modelos apresenta valores destas medidas girando em torno de 0.2. Já para β_2 e α a diferença é registrada apenas na segunda casa decimal.

Tabela 4.14: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.980	0.185	0.185	0.220	-2.039	98
$M_{BP(5)}^{PL}$		1.060	0.208	0.215	0.223	5.980	99
$M_{PE(5)}^{RW}$		0.943	0.179	0.187	0.216	-5.673	98
$M^G_{BP(10)}$	$\beta_1 = 1$	0.985	0.188	0.187	0.220	-1.543	99
$M_{BP(10)}^{PL}$		1.065	0.213	0.221	0.225	6.515	99
$M_{PE(10)}^{RW}$		1.034	0.199	0.201	0.221	3.379	98
M_{PL}		1.040	0.198	0.201	0.215	3.980	99
$M^G_{BP(5)}$		-0.978	0.125	0.126	0.142	2.242	95
$M_{BP(5)}^{PL}$		-1.061	0.145	0.157	0.149	-6.055	94
$M_{PE(5)}^{RW}$		-0.940	0.123	0.136	0.136	5.967	93
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.982	0.125	0.126	0.142	1.759	96
$M_{BP(10)}^{PL}$		-1.065	0.146	0.159	0.151	-6.452	95
$M_{PE(10)}^{RW}$		-1.030	0.135	0.138	0.143	-3.034	96
M_{PL}		-1.042	0.138	0.143	0.138	-4.152	93
$M^G_{BP(5)}$		0.907	0.022	0.023	0.029	0.754	99
$M_{BP(5)}^{PL}$		0.886	0.028	0.031	0.030	-1.592	92
$M_{PE(5)}^{RW}$		0.916	0.025	0.029	0.028	1.727	96
$M^G_{BP(10)}$	$\alpha = 0.9$	0.905	0.023	0.023	0.029	0.544	99
$M_{BP(10)}^{PL}$		0.884	0.029	0.033	0.031	-1.744	93
$M_{PE(10)}^{RW}$		0.892	0.027	0.028	0.029	-0.839	97
M_{PL}		0.890	0.023	0.025	0.027	-1.094	96

Na Figura 4.11, nota-se que o vício relativo percentual obtido para o cenário $S^{0.90,2}_{\infty,30}$ tende a variar menos para β_1 , $\beta_2 \in \alpha$, em comparação com os resultados mostrados na Figura 4.10 para

o cenário $S_{2,30}^{0.90,2}$, corroborando com os achados exibidos na Tabela 4.14. Tal conclusão pode ser verificada analisando as escalas desta medida nos gráficos apresentados nas figuras mencionadas. Ademais, o vício relativo percentual apresenta diagramas esquemáticos mais centrados em zero para todos os modelos, com exceção daqueles baseados na EP com partição de tamanho 5 e o $M_{BP(10)}^G$, que expõe comportamento similar àquele no caso $S_{2,30}^{0.90,2}$.

Figura 4.11: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo mínimo.

Na sequência avalia-se o efeito de não considerar a influência do histórico do processo, através do número acumulado de eventos, ou seja, o cenário $S_{2,30}^{1.00,2}$. Pode-se observar na Tabela 4.15, que o parâmetro α é melhor estimado que os demais, expondo vícios relativos percentuais médios menores do que 1% para todos os modelos em valor absoluto. Quando contrastado com o cenário $S_{2,30}^{0.90,2}$, percebe-se o decaimento do vício para esse parâmetro indicando, assim como já observado no estudo de simulação clássico, que crescer o número de eventos por processo gerado provoca um aumento de informação para estimação de α , implicando em menor vício. Comportamento semelhante é observado para ζ_{ν} , em menor proporção que para α , sendo no contexto Bayesiano mais evidente que no clássico essa tendência de queda com aumento do α . Observando o desvio padrão e o RMSE, reforça-se esta afirmação, pois de fato todos os modelos apresentam maior redução destas quantidades para o parâmetro α , ficando pouco evidente as diferenças para β_1 , β_2 e ζ_{ν} . Por último, tem-se um melhora expressiva na taxa de cobertura, que não atinge 100% para qualquer parâmetro em todos os modelos, variando na faixa de 89 a 99%.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Relative bias	Coverage rate
$M^G_{BP(5)}$		0.966	0.381	0.381	0.404	-3.393	96
$M_{BP(5)}^{PL}$		1.152	0.446	0.469	0.442	15.196	95
$M_{PE(5)}^{RW}$		1.028	0.408	0.407	0.408	2.759	97
$M^G_{BP(10)}$	$\beta_1 = 1$	0.995	0.395	0.393	0.403	-0.537	99
$M_{BP(10)}^{PL}$		1.154	0.452	0.475	0.444	15.437	94
$M_{PE(10)}^{RW}$		1.100	0.434	0.443	0.428	9.962	97
M_{PL}		1.124	0.443	0.458	0.432	12.448	96
$M^G_{BP(5)}$		-0.870	0.173	0.215	0.213	13.004	96
$M_{BP(5)}^{PL}$		-1.046	0.211	0.215	0.243	-4.575	96
$M_{PE(5)}^{RW}$		-0.923	0.181	0.196	0.221	7.699	97
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.897	0.173	0.201	0.213	10.314	96
$M_{BP(10)}^{PL}$		-1.048	0.211	0.215	0.244	-4.750	97
$M_{PE(10)}^{RW}$		-0.992	0.197	0.196	0.234	0.789	95
M_{PL}		-1.024	0.207	0.208	0.236	-2.421	96
$M^G_{BP(5)}$		1.002	0.012	0.012	0.012	0.208	97
$M_{BP(5)}^{PL}$		0.991	0.017	0.019	0.013	-0.863	90
$M_{PE(5)}^{RW}$		1.004	0.011	0.012	0.011	0.411	97
$M^G_{BP(10)}$	$\alpha = 1$	1.002	0.012	0.012	0.012	0.241	97
$M^{PL}_{BP(10)}$		0.991	0.018	0.020	0.013	-0.918	89
$M_{PE(10)}^{RW}$		0.994	0.014	0.015	0.012	-0.604	93
M_{PL}		0.994	0.013	0.014	0.011	-0.589	95
$M^G_{BP(5)}$		1.978	0.524	0.522	0.789	-1.085	95
$M_{BP(5)}^{PL}$		1.892	0.532	0.541	0.728	-5.406	92
$M_{PE(5)}^{RW}$		2.107	0.574	0.581	0.818	5.341	98
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	2.060	0.537	0.538	0.809	2.986	97
$M^{PL}_{BP(10)}$		1.880	0.529	0.540	0.724	-5.989	92
$M_{PE(10)}^{RW}$		1.937	0.540	0.541	0.747	-3.128	91
M_{PL}		1.934	0.523	0.525	0.735	-3.290	94

Tabela 4.15: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

O comportamento do vício relativo percentual observado na Figura 4.12, para o cenário $S_{2,30}^{1.00,2}$, é praticamente idêntico ao visto na Figura 4.10 para a situação $S_{2,30}^{0.90,2}$. As únicas
diferenças são que aparentemente o vício está mais centrado ao redor de zero e as escalas dos gráficos para $\alpha \in \zeta_{\nu}$ estão relativamente reduzidas. Outro ponto é que excluindo o $M_{PE(5)}^{G}$, os modelos EP com partição menor produzem resultados mais próximos dos verdadeiros valores para todos os parâmetros, especialmente, para $\beta_1 \in \zeta_{\nu}$.

Figura 4.12: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo.

Explorando os resultados da Tabela 4.16, para o cenário $S_{\infty,30}^{1.00,2}$, pode-se ver que o vício relativo percentual médio em valor absoluto não ultrapassa 6%, o que implica um redução de aproximadamente 1% em comparação com o cenário $S_{\infty,30}^{0.90,2}$ que indicou essa medida inferior a 7% para todos os parâmetros e modelos. Assim, como observado para $S_{2,30}^{1.00,2}$, o maior impacto no aumento do número de eventos por processo foi no vício de α e os demais parâmetros não

apresentaram uma tendência clara neste sentido. Já quando analisado o impacto da ausência ou presença do termo de fragilidade, os achados são análogos aos obtidos na comparação dos cenários $S_{2,30}^{0.90,2}$ e $S_{\infty,30}^{0.90,2}$, isto é, redução drástica do desvio padrão, RMSE e do erro padrão médio dos estimadores dos parâmetros para todos os modelos. Essa mesma tendência de redução entre os cenários $S_{2,30}^{1.00,2}$ e $S_{\infty,30}^{1.00,2}$ apenas não é evidente para o vício relativo percentual médio absoluto, que em algumas abordagens são menores no cenário $S_{\infty,30}^{1.00,2}$ e maiores no caso $S_{2,30}^{1.00,2}$, sendo a reciproca verdadeira.

Tabela 4.16: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.960	0.163	0.167	0.159	-4.035	92
$M_{BP(5)}^{PL}$		1.049	0.179	0.185	0.161	4.909	93
$M_{PE(5)}^{RW}$		0.957	0.159	0.164	0.156	-4.290	93
$M^G_{BP(10)}$	$\beta_1 = 1$	0.962	0.163	0.166	0.159	-3.843	92
$M_{BP(10)}^{PL}$		1.053	0.178	0.185	0.162	5.273	93
$M_{PE(10)}^{RW}$		1.041	0.176	0.180	0.161	4.063	94
M_{PL}		1.039	0.170	0.174	0.152	3.871	96
$M^G_{BP(5)}$		-0.947	0.096	0.109	0.104	5.287	91
$M_{BP(5)}^{PL}$		-1.038	0.118	0.123	0.110	-3.823	92
$M_{PE(5)}^{RW}$		-0.942	0.100	0.115	0.102	5.771	91
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.948	0.097	0.110	0.105	5.218	93
$M_{BP(10)}^{PL}$		-1.040	0.117	0.123	0.111	-3.999	93
$M_{PE(10)}^{RW}$		-1.026	0.116	0.119	0.109	-2.639	91
M_{PL}		-1.026	0.099	0.102	0.098	-2.626	97
$M^G_{BP(5)}$		1.005	0.008	0.009	0.008	0.496	93
$M_{BP(5)}^{PL}$		0.996	0.010	0.010	0.009	-0.368	90
$M_{PE(5)}^{RW}$		1.006	0.008	0.010	0.008	0.586	91
$M^G_{BP(10)}$	$\alpha = 1$	1.005	0.008	0.009	0.009	0.478	96
$M_{BP(10)}^{PL}$		0.996	0.010	0.010	0.009	-0.392	89
$M_{PE(10)}^{RW}$		0.997	0.009	0.010	0.009	-0.273	94
M_{PL}		0.997	0.008	0.009	0.008	-0.256	94

O primeira questão que deve-se notar na Figura 4.13 é que ao contrastar o cenário $S_{\infty,30}^{1.00,2}$ com $S_{\infty,30}^{0.90,2}$ e $S_{2,30}^{1.00,2}$ percebe-se uma redução de alta magnitude na escala do vício relativo percentual,

o que pode ser verificado comparando as escalas dos gráficos exibidos nas Figuras 4.11 e 4.12 com a figura supracitada. Definitivamente, observa-se que o modelo $M_{PE(l)}^G$, l = 5 ou 10 produz os piores ajustes para os modelos baseados na EP e partições menores produzem resultados com menor vício, porém não tão menor que as partições de tamanho maior. Neste contexto, os modelos induzidos pelos PBs são mais robustos, no sentido de serem pouco variantes em termos de vício relativo percentual quando muda-se o grau.

Figura 4.13: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo.

Perceba que nesta tese sempre são consideras situações com e sem fragilidade, e se avalia também o aumento do valor do parâmetro α , que representa o efeito do número acumulado de eventos sobre a ocorrência de novos eventos. No que diz respeito a este parâmetro, já foram avaliadas situações com efeito de benefício ($\alpha = 0.90$) e sem efeito ($\alpha = 1.00$), agora tem-se o caso de efeito adverso, isto é, o histórico passado acumulado de eventos influencia na recorrência de maneira a aumentar o risco de ocorrer um novo evento. Sendo assim, nos cenários seguintes, $S_{2,30}^{1.05,2}$ e $S_{\infty,30}^{1.05,2}$, é esperado um número maior de eventos por processo individual.

Na Tabela 4.17, referente ao cenário $S_{2,30}^{1.05,2}$, pode-se perceber que o modelo $M_{BP(m)}^{PL}$, geralmente apresentando vícios relativos percentuais médios maiores do que os de $M_{BP(m)}^{G}$, agora apresenta valores menores para β_1 , β_2 e ζ_{ν} , quando a análise dessa medida é feita em valor absoluto. Um ponto a se destacar é que conforme α cresce, o modelo $M_{BP(m)}^{G}$ foi priorando seus resultados chegando a vícios mais elevados, enquanto que os demais modelos baseados nos PBs foram tornando-se cada vez mais competitivos. Isso foi percebido quando avaliou-se o vício percentual acumulado por réplica de Monte Carlo. Constatando que nesse cenário em média cada modelo $(M^*_{BP(m)})$ tinha menor vício percentual acumulado em aproximadamente 20 réplicas. O modelo $M^{RW}_{PE(10)}$ também apresenta excelentes resultados em termos de vício, não sendo maior que 3% para todos os parâmetros.

Da mesma maneira que se tinha observado nos cenários anteriormente analisados, na situação $S_{2,30}^{1.05,2}$, verificou-se uma redução acentuada das medidas de desvio padrão, RMSE, erro padrão médio para α . No caso de ζ_{ν} , houve redução apenas no erro padrão médio. Os parâmetros β_1 e β_2 tiveram pouco impacto nestas característica, ficando mais evidentes as mudanças no vício relativo percentual médio, que tendeu a aumentar para alguns modelos e a diminuir para outros. Ademais, as taxas de cobertura aparentemente ficaram mais próxima de 95%, não chegando a 100% como observado nos cenários em que $\alpha = 1$.

Na Figura 4.14, atesta-se o observado na Tabela 4.17 em relação ao vício relativo percentual do modelo $M_{BP(m)}^G$, ou seja, diagramas esquemáticos concentrados bem acima ou abaixo da linha referente ao zero. Ademais, nas escalas dos gráficos exibidos nas Figuras 4.10, 4.12 e 4.14 o vício relativo percentual de α e ζ_{ν} tendem a diminuir, sendo a redução no primeiro mais acentuada e no segundo mais leve. Comportamento semelhante não são observados para os coeficientes β_1 e β_2 , em geral o vício desses parâmetros são os mais afetados tanto para situações com ou sem fragilidade.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Relative bias	Coverage rate
$M^G_{BP(5)}$		0.761	0.287	0.373	0.397	-23.907	95
$M_{BP(5)}^{PL}$		1.019	0.391	0.389	0.421	1.924	93
$M_{PE(5)}^{RW}$		0.928	0.357	0.363	0.393	-7.199	96
$M^G_{BP(10)}$	$\beta_1 = 1$	0.783	0.295	0.365	0.391	-21.721	94
$M_{BP(10)}^{PL}$		1.021	0.387	0.386	0.424	2.053	93
$M_{PE(10)}^{RW}$		0.974	0.366	0.365	0.410	-2.639	96
M_{PL}		1.004	0.386	0.384	0.415	0.425	94
$M^G_{BP(5)}$		-0.789	0.194	0.286	0.213	21.126	84
$M_{BP(5)}^{PL}$		-1.052	0.250	0.254	0.237	-5.248	93
$M_{PE(5)}^{RW}$		-0.941	0.219	0.225	0.221	5.870	92
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.810	0.191	0.269	0.211	19.012	84
$M_{BP(10)}^{PL}$		-1.052	0.251	0.256	0.238	-5.245	93
$M_{PE(10)}^{RW}$		-1.001	0.244	0.243	0.229	-0.141	92
M_{PL}		-1.035	0.242	0.243	0.232	-3.457	93
$M^G_{BP(5)}$		1.053	0.006	0.007	0.006	0.257	96
$M_{BP(5)}^{PL}$		1.047	0.007	0.007	0.007	-0.279	94
$M_{PE(5)}^{RW}$		1.054	0.006	0.007	0.006	0.391	92
$M^G_{BP(10)}$	$\alpha = 1.05$	1.053	0.006	0.007	0.007	0.305	93
$M_{BP(10)}^{PL}$		1.047	0.007	0.008	0.007	-0.282	93
$M_{PE(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.159	96
M_{PL}		1.048	0.006	0.006	0.006	-0.202	94
$M^G_{BP(5)}$		1.547	0.511	0.681	0.631	-22.648	81
$M_{BP(5)}^{PL}$		1.924	0.618	0.619	0.711	-3.781	90
$M_{PE(5)}^{RW}$		2.083	0.655	0.657	0.777	4.150	95
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	1.691	0.538	0.618	0.676	-15.452	88
$M_{BP(10)}^{PL}$		1.926	0.619	0.620	0.713	-3.704	89
$M_{PE(10)}^{RW}$		1.959	0.624	0.623	0.728	-2.028	91
M_{PL}		1.949	0.618	0.617	0.711	-2.527	88

Tabela 4.17: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura 4.14: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo.

O cenário correspondente ao anterior e agora sem fragilidade, denominado $S_{\infty,30}^{1.05,2}$, tem seus resultados resumidos na Tabela 4.18. Primeiramente, ressalta-se a redução do vício relativo percentual médio em valor absoluto em relação ao cenário com efeito aleatório. Sendo observado apenas valores para esta características de no máximo 7%, mas a maioria dos modelos não ultrapassam 5%. Comparando com os cenários $S_{\infty,30}^{0.90,2}$ e $S_{\infty,30}^{1.00,2}$, verifica-se uma leve redução do desvio padrão, RMSE e erro padrão médio. O vício relativo médio absoluto tende a cair, porém para alguns modelos pode-se observar oscilações. Referente a última afirmação, a única exceção é o parâmetro α , que sugere decaimento de todas a característica supracitadas diante do seu aumento. Por fim, destaca-se novamente que a taxa de cobertura fica mais próxima do valor nominal nos cenários sem efeito aleatório e melhoram substancialmente com o aumento de α .

Tabela 4.18: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.950	0.144	0.151	0.148	-4.955	96
$M_{BP(5)}^{PL}$		1.056	0.153	0.162	0.150	5.581	95
$M_{PE(5)}^{RW}$		0.975	0.152	0.153	0.145	-2.458	96
$M^G_{BP(10)}$	$\beta_1 = 1$	0.952	0.144	0.151	0.149	-4.808	96
$M_{BP(10)}^{PL}$		1.057	0.155	0.165	0.151	5.717	97
$M_{PE(10)}^{RW}$		1.046	0.154	0.160	0.152	4.633	97
M_{PL}		1.041	0.152	0.157	0.140	4.143	96
$M^G_{BP(5)}$		-0.937	0.071	0.095	0.097	6.315	95
$M_{BP(5)}^{PL}$		-1.040	0.081	0.090	0.102	-4.021	98
$M_{PE(5)}^{RW}$		-0.961	0.080	0.089	0.096	3.904	97
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.935	0.072	0.097	0.098	6.506	96
$M_{BP(10)}^{PL}$		-1.040	0.084	0.092	0.103	-3.991	98
$M_{PE(10)}^{RW}$		-1.029	0.086	0.091	0.103	-2.865	98
M_{PL}		-1.027	0.072	0.077	0.092	-2.742	97
$M^G_{BP(5)}$		1.054	0.004	0.006	0.006	0.343	96
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.006	-0.229	98
$M_{PE(5)}^{RW}$		1.052	0.005	0.006	0.006	0.211	93
$M^G_{BP(10)}$	$\alpha = 1.05$	1.054	0.004	0.006	0.006	0.338	96
$M^{PL}_{BP(10)}$		1.048	0.005	0.006	0.006	-0.236	96
$M_{PE(10)}^{RW}$		1.048	0.005	0.005	0.006	-0.163	97
M_{PL}		1.048	0.005	0.005	0.005	-0.176	96

Na Figura 4.15, tem-se os diagramas esquemáticos para os vícios relativos percentuais médios de todos os modelos e para cada parâmetro. Analisando esta figura, percebe-se visualmente que, a menos de alguns pontos discrepantes, a escala do vício relativo tende a diminuir para todos os casos, em comparação com os cenários $S_{\infty,30}^{0.90,2}$ e $S_{\infty,30}^{1.00,2}$. Neste contexto, como havia-se observado na Tabela 4.15, o parâmetro α é o que apresenta maiores reduções diante do seu crescimento. Além disso, assim como verificado os cenários discutidos anteriormente, modelos baseados na EP com partição de tamanho 5 não produzem resultados melhores que a partição de tamanho 10. Por fim, vale enfatizar que poucas são as diferenças em termos de vício relativo

entre os modelos induzidos pelos PBs com a variação do grau.

Figura 4.15: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo.

Resumidamente, para os casos de reparação mínima as conclusões com base no estudo de simulação Bayesiano confirmam o que havia sido observado na simulação clássica, indicando que aumentar α a tendência é de menor desvio padrão, RMSE, erro padrão médio e vício relativo percentual médio absoluto dos estimadores dos parâmetros dos modelos considerados. Outro ponto de destaque é a robustez dos modelos induzidos pelos PBs no que diz respeito a apresentar estimativas dos parâmetros muito próximas do verdadeiro valor, independente do grau considerado. Neste contexto, há indícios de que partições maiores para os modelos EP são mais indicadas, produzindo estimativas menos enviesadas.

Analisando agora, especificamente, os modelos Bayesianos pode-se ver que para $\alpha < 1$ todas as especificações *a priori* testadas se mostram com boa performance, em especial aquela que caracteriza o modelo $M_{BP(m)}^{G}$, entre os casos via PBs. Ainda neste contexto, quando $\alpha \geq 1$, os modelos $M_{BP(m)}^{Z}$, $M_{BP(m)}^{PL}$, $M_{BP(m)}^{RW}$ e $M_{BP(m)}^{Wishart}$ são os que produzem estimativas com melhores propriedades, aparentemente pouco dependente do grau. Como já destacado no caso dos modelos obtidos via a EP, as especificações referenciadas através das notações $M_{PE(10)}^{Z}$, $M_{PE(10)}^{PL}$, $M_{PE(10)}^{RW}$ e $M_{PE(10)}^{Wishart}$ são as mais indicadas em todos os cenários analisados.

O efeito da inserção do termo de fragilidade nos dados simulados introduz uma variabilidade extra que, por sua vez, acabam refletindo nas característica dos estimadores dos modelos propostos. Em síntese, sempre que comparados os cenários com efeito aleatório e seu correspondente sem o efeito, verifica-se menor desvio padrão, RMSE e erro padrão médio nas configurações em que os dados foram simulados sem fragilidade. O vício relativo médio absoluto tende a diminuir, porém em alguns casos apresenta oscilações, isto é, quedas para alguns modelos e crescimento para outros, na comparação das situações com e sem efeito aleatório. As taxas de cobertura ficam mais próximas do valor nominal nos casos sem fragilidade, porém essas também sofrem efeito do valor assumido por α .

No Apêndice C, como já mencionado, são expostos os resultados para todos os modelos omitidos nesta análise principal. Os cenários com n = 50 também estão exibidos neste apêndice. Analisando os resultados dos modelos não considerados aqui, a principal conclusão é que alguns modelos em um determinado cenário podem ser melhor para estimar um determinado parâmetro. Por exemplo, avaliando o vício relativo percentual médio na Tabela C.43, nota-se que o modelo $M_{PE(10)}^Z$ é o que apresenta o menor valor desta quantidade de forma absoluta para o parâmetro β_1 . Isso ocorre pelo fato que o modelo considerado nas Tabelas 4.13 a 4.18 foram escolhidos com base no vício relativo de todos parâmetros de forma acumulada, por réplica de Monte Carlo.

Quando analisado os cenários com amostra de tamanho 50, observa-se padrões similares aos encontrados no caso n = 30, sendo que o desvio padrão, o RMSE, o erro padrão médio e o vício relativo percentual médio não tendem a cair de forma drástica com o acréscimo de 20 unidades em cada uma das 100 réplicas. As taxas de cobertura ficam cada vez mais próximas do valor nominal e, em alguns casos, apresenta valores bem abaixo de 95%, para modelos com altos percentuais de vício.

Após desenvolver o estudo da classe geral para a condição de reparação mínima sob a visão Bayesiana, o próximo passo do trabalho é investigar resultados relativos à reparação perfeita. Isso é feito na próxima seção.

Análise sob reparação perfeita

Os modelos de reparação perfeita podem ser obtidos através da classe geral quando considerado $\mathscr{E}(t) = t - T_{N(t-)}$. Como discutido, nesta situação tem-se que após uma falha o sistema passa por um processo de reparação que permite este voltar as condições de funcionamento de um novo e, portanto, o risco de uma novo evento (falha) decai para zero. O que o difere dos casos

de reparação mínima que assume a idade efetiva como sendo uma função identidade do tempo $(\mathscr{E}(t) = t)$. Sob esta condição o sistema volta a funcionar nas mesmas condições que estava no instante exatamente anterior a falha.

Analisando os resultados considerando os ajustes dos modelos sob reparo perfeito, observase um comportamento das estatísticas de avaliação de modelos similares aos já observados para as classes gerais com idade efetiva assumindo reparo mínimo. Como pode ser verificado na Tabela 4.19 para o cenário $S_{2,30}^{0.90,2}$, o modelo $M_{BP(5)}^G$ se destaca com menores valores de vício relativo percentual médio absoluto. O desvio padrão, o RMSE e o erro padrão médio se apresentam relativamente próximos e pequenos, exceto para ζ_{ν} , que apresenta desvio padrão e RMSE próximos e erro padrão médio relativamente diferente. Este parâmetro também indica um aumento no vício relativo médio absoluto em comparação com os resultados obtidos para o mesmo cenário sob repara mínimo. Além disso, como foi notado em todos os cenários aqui analisados, a classe geral baseada na EP possui forte dependência do tamanho da partição escolhida, enquanto a classe geral induzida através dos PBs aparenta ser menos susceptível a escolha do grau.

Analisando a figura correspondente ao cenário $S_{2,30}^{0.90,2}$, Figura 4.16, pode-se verificar o desempenho de todos os modelos considerados no estudo de simulação Bayesiano no caso de idade efetiva sob reparação perfeita. Percebe-se que em geral os modelos ajustados tendem a subestimar o verdadeiro valor de ζ_{ν} , corroborando com os achados da Tabela 4.19. Com exceção do modelo $M_{PE(m)}^{G}$, geralmente, para os parâmetros β_1 , β_2 e α os diagramas esquemáticos do vício relativo percentual se mantêm ao redor de zero. Ademais, como observado anteriormente, os modelos baseados nos PBs exibem ajustes fortemente semelhantes em termos de vício relativo percentual.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Relative bias	Coverage rate
$M^G_{BP(5)}$		0.988	0.339	0.338	0.437	-1.208	100
$M_{BP(5)}^{PL}$		1.136	0.400	0.421	0.491	13.588	97
$M_{PE(5)}^{RW}$		0.967	0.339	0.339	0.432	-3.321	100
$M^G_{BP(10)}$	$\beta_1 = 1$	1.022	0.348	0.347	0.446	2.239	100
$M_{BP(10)}^{PL}$		1.143	0.403	0.425	0.494	14.265	97
$M_{PE(10)}^{RW}$		1.068	0.374	0.378	0.463	6.784	98
M_{PL}		1.102	0.385	0.396	0.474	10.152	98
$M^G_{BP(5)}$		-0.963	0.233	0.235	0.245	3.696	97
$M_{BP(5)}^{PL}$		-1.113	0.286	0.306	0.286	-11.339	93
$M_{PE(5)}^{RW}$		-0.931	0.232	0.241	0.246	6.914	94
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.993	0.239	0.238	0.252	0.682	96
$M_{BP(10)}^{PL}$		-1.122	0.289	0.313	0.289	-12.193	94
$M_{PE(10)}^{RW}$		-1.041	0.260	0.262	0.269	-4.097	95
M_{PL}		-1.080	0.272	0.282	0.271	-7.950	93
$M^G_{BP(5)}$		0.905	0.027	0.028	0.035	0.552	100
$M_{BP(5)}^{PL}$		0.869	0.041	0.051	0.038	-3.412	87
$M_{PE(5)}^{RW}$		0.916	0.028	0.032	0.033	1.810	96
$M^G_{BP(10)}$	$\alpha = 0.9$	0.902	0.028	0.028	0.035	0.250	100
$M_{BP(10)}^{PL}$		0.868	0.042	0.053	0.039	-3.598	90
$M_{PE(10)}^{RW}$		0.884	0.035	0.038	0.036	-1.735	93
M_{PL}		0.879	0.032	0.038	0.033	-2.287	93
$M^G_{BP(5)}$		1.823	0.523	0.550	0.838	-8.857	98
$M_{BP(5)}^{PL}$		1.538	0.491	0.673	0.711	-23.087	87
$M_{PE(5)}^{RW}$		1.907	0.535	0.540	0.870	-4.652	99
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	1.802	0.519	0.553	0.819	-9.923	98
$M_{BP(10)}^{PL}$		1.524	0.490	0.682	0.706	-23.796	89
$M_{PE(10)}^{RW}$		1.662	0.505	0.606	0.757	-16.898	98
M_{PL}		1.608	0.519	0.648	0.718	-19.590	91

Tabela 4.19: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura 4.16: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito.

Nos resultados para o cenário $S^{0.90,2}_{\infty,30}$, exibidos na Tabela 4.20, nota-se imediatamente uma melhora nas taxas de cobertura em contraste com a situação anteriormente analisada que considera o termo de fragilidade. Ainda em comparação com o cenário $S^{0.90,2}_{2,30}$, verifica-se também que apesar do vício relativo percentual médio em termos absoluto do modelo $M^G_{BP(5)}$ ter aumentado, os demais modelos indicam valores mais baixos desta quantidade, em especial o modelo $M^G_{BP(10)}$. Não diferente dos casos até aqui analisados, observa-se uma queda drástica do desvio padrão, RMSE e do erro padrão médio dos parâmetros β_1 , β_2 e α , quando não existe o efeito aleatório nos dados simulados.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.977	0.185	0.186	0.220	-2.347	98
$M_{BP(5)}^{PL}$		1.057	0.208	0.214	0.223	5.732	99
$M_{PE(5)}^{RW}$		0.941	0.178	0.187	0.216	-5.949	98
$M^G_{BP(10)}$	$\beta_1 = 1$	0.982	0.187	0.186	0.220	-1.812	99
$M_{BP(10)}^{PL}$		1.062	0.212	0.220	0.225	6.220	99
$M_{PE(10)}^{RW}$		1.032	0.199	0.200	0.221	3.152	98
M_{PL}		1.037	0.198	0.200	0.215	3.703	99
$M^G_{BP(5)}$		-0.977	0.125	0.126	0.142	2.287	95
$M_{BP(5)}^{PL}$		-1.060	0.145	0.156	0.149	-5.980	94
$M_{PE(5)}^{RW}$		-0.940	0.123	0.136	0.136	5.993	93
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.982	0.125	0.126	0.142	1.801	96
$M_{BP(10)}^{PL}$		-1.064	0.146	0.158	0.151	-6.354	95
$M_{PE(10)}^{RW}$		-1.030	0.135	0.137	0.143	-3.006	96
M_{PL}		-1.040	0.137	0.143	0.138	-4.017	93
$M^G_{BP(5)}$		0.906	0.022	0.023	0.029	0.713	99
$M_{BP(5)}^{PL}$		0.885	0.028	0.031	0.030	-1.633	92
$M_{PE(5)}^{RW}$		0.915	0.025	0.029	0.028	1.686	96
$M^G_{BP(10)}$	$\alpha = 0.9$	0.905	0.023	0.023	0.029	0.503	99
$M_{BP(10)}^{PL}$		0.884	0.029	0.033	0.031	-1.782	93
$M_{PE(10)}^{RW}$		0.892	0.027	0.028	0.029	-0.878	97
M_{PL}		0.890	0.023	0.025	0.027	-1.100	96

Tabela 4.20: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

As escalas dos gráficos apresentados na Figura 4.17, refletem as questões levantadas na Tabela 4.20. Os diagramas esquemáticos do vício relativo percentual estão centrados em zero para a maioria dos modelos e as escalas mostram menor amplitude que as observadas na Figura 4.16. Os modelos EP com partição de tamanho 5 e o $M_{PE(10)}^G$ são os que exibem maior afastamento da linha de referência, enquanto a classe geral construída via PBs apresenta estabilidade no vício relativo percentual em relação ao grau.

Figura 4.17: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo perfeito.

Explorando os resultados expostos na Tabela 4.21 para o cenário $S_{2,30}^{1.00,2}$, percebe-se que aumentando o valor de α melhora-se suas estimativas, uma vez que a tendência observada é de redução do desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto deste parâmetro. Tais conclusões coincidem com os achados obtidos para as situações de reparo mínimo. Os demais parâmetros aparentemente são menos afetados, porém em alguns casos percebe-se uma leve queda, quando são contrastados as situações $S_{2,30}^{0.90,2}$ e $S_{2,30}^{1.00,2}$. Ainda comparando esses cenários, particularmente, o modelo $M_{PE(5)}^{RW}$ apresenta um redução no vício relativo médio mais acentuada para o parâmetro ζ_{ν} .

Observando o vício relativo percentual dos parâmetros para todas as especificações *a priori* e para as funções de risco basal assumidas no cenário $S_{2,30}^{1.00,2}$, Figura 4.18, identifica-se que o modelo $M_{BP(m)}^{G}$ tende a apresentar vícios maiores que as demais especificações baseadas nos PBs. Quando comparado ao mesmo modelo no cenário $S_{2,30}^{0.90,2}$ percebe-se o mesmo comportamento, isto é, diagramas esquemáticos não centrados em zero, confirmando o que foi observado na Tabela 4.21 através do vício relativo percentual médio. Os modelos construídos via EP, com tamanho de partição menor (l = 5), apresentam resultados com menor vício para a precisão do efeito aleatório ζ_{ν} ; isso é notado na comparação de modelagens dentro do cenário $S_{2,30}^{1.00,2}$.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Relative bias	Coverage rate
$M^G_{BP(5)}$		0.970	0.381	0.380	0.404	-3.028	96
$M_{BP(5)}^{PL}$		1.151	0.444	0.467	0.442	15.114	95
$M_{PE(5)}^{RW}$		1.027	0.407	0.405	0.408	2.731	97
$M^G_{BP(10)}$	$\beta_1 = 1$	0.998	0.395	0.393	0.403	-0.203	99
$M_{BP(10)}^{PL}$		1.153	0.450	0.473	0.444	15.258	94
$M_{PE(10)}^{RW}$		1.100	0.433	0.442	0.428	9.968	97
M_{PL}		1.126	0.442	0.457	0.432	12.564	96
$M^G_{BP(5)}$		-0.869	0.172	0.215	0.213	13.083	96
$M_{BP(5)}^{PL}$		-1.040	0.210	0.213	0.243	-3.960	96
$M_{PE(5)}^{RW}$		-0.919	0.181	0.197	0.221	8.142	97
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.895	0.173	0.202	0.213	10.523	96
$M_{BP(10)}^{PL}$		-1.041	0.210	0.213	0.244	-4.078	97
$M_{PE(10)}^{RW}$		-0.987	0.197	0.196	0.234	1.267	95
M_{PL}		-1.018	0.205	0.205	0.236	-1.808	96
$M^G_{BP(5)}$		1.002	0.012	0.012	0.012	0.205	97
$M_{BP(5)}^{PL}$		0.991	0.018	0.019	0.013	-0.860	90
$M_{PE(5)}^{RW}$		1.004	0.011	0.012	0.011	0.408	97
$M^G_{BP(10)}$	$\alpha = 1$	1.002	0.012	0.012	0.012	0.240	97
$M_{BP(10)}^{PL}$		0.991	0.018	0.020	0.013	-0.914	89
$M_{PE(10)}^{RW}$		0.994	0.014	0.015	0.012	-0.606	93
M_{PL}		0.994	0.013	0.014	0.011	-0.580	95
$M^G_{BP(5)}$		1.843	0.490	0.512	0.789	-7.849	95
$M_{BP(5)}^{PL}$		1.769	0.498	0.546	0.728	-11.530	92
$M_{PE(5)}^{RW}$		1.969	0.539	0.537	0.818	-1.564	98
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	1.923	0.503	0.506	0.809	-3.858	97
$M_{BP(10)}^{PL}$		1.758	0.495	0.548	0.724	-12.080	92
$M_{PE(10)}^{RW}$		1.812	0.506	0.537	0.747	-9.408	91
M_{PL}		1.812	0.489	0.522	0.735	-9.380	94

Tabela 4.21: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura 4.18: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito.

A Tabela 4.22 mostra os resultados para o cenário $S_{\infty,30}^{1.00,2}$, o qual é a versão sem fragilidade de $S_{2,30}^{1.00,2}$, que foi tratado na Tabela 4.21. Particularmente, já havia-se notado em todas as situações sem fragilidades estudadas aqui que em geral o vício relativo percentual médio tende a ficar mais estável e as taxas de cobertura ficam mais próxima do valor nominal, 95% neste caso. O que não é diferente para o cenário $S_{\infty,30}^{1.00,2}$. Outro ponto é a redução drástica do vício relativo médio em valor absoluto de alguns modelos, percebe-se também que esta quantidade não ultrapassa 6%, levando a concluir que os modelos sem fragilidade são mais estáveis. Destaca-se que essa redução não ocorre somente para esta quantidade, as características: desvio padrão, RMSE e erro padrão médio sofrem um impacto maior quando comparados com aqueles do cenário com fragilidade.

Outro ponto importante de ser investigado é relativo às mudanças causadas pelo parâmetro α , isto é, deseja-se confrontar os cenários com efeito do número acumulado de eventos com aqueles sem tal característica, situações $S_{\infty,30}^{0.90,2}$ e $S_{\infty,30}^{1.00,2}$. Assim como observado nas análises anteriormente apresentadas, verifica-se na Tabela 4.22 que o parâmetro α é o que apresenta maiores impactos de redução no desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto, enquanto os demais parâmetros reduzem as quantidades supracitadas em menor proporção, comparado o cenário $S_{\infty,30}^{0.90,2}$. Sabe-se que esse efeito não é explicado pelo fato de não existir o efeito do número acumulado de eventos na recorrência, pois como observado na análise dos estudos simulados clássico e Bayesiano, no caso de reparação mínima, os cenários com $\alpha = 1.05$ produzem maior redução nessas características em comparação com as situações em que $\alpha \leq 1.00$.

Os diagramas esquemáticos para vício relativo percentual exibidos na Figura 4.19 (cenário $S_{\infty,30}^{1.00,2}$) divergem em relação aos apresentados na Figura 4.17 (cenário $S_{\infty,30}^{0.90,2}$). Isso é notado em relação as escalas dos gráficos para cada parâmetro, principalmente para os parâmetros β_1 e α . Por exemplo, no caso do parâmetro α , a escala do gráfico correspondente na Figura 4.19 varia de -2 a 5, enquanto que a escala deste mesmo parâmetro na Figura 4.17 vai de -11 a 15, aproximadamente. Ademais, modelos baseados nos PBs apresentam pouca mudança em relação ao grau e o modelo $M_{BP(m)}^G$ apresenta vícios relativos maiores, tendendo a sobrestimar β_2 e α e subestimar β_1 . Diferindo levemente dos resultados observados em $S_{\infty,30}^{0.90,2}$, pois apesar de apresentar padrão similar neste cenário o modelo $M_{BP(m)}^G$ teve melhor performance em termos de vício relativo percentual.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.959	0.162	0.167	0.159	-4.139	92
$M_{BP(5)}^{PL}$		1.048	0.179	0.184	0.161	4.771	93
$M_{PE(5)}^{RW}$		0.956	0.159	0.164	0.156	-4.443	93
$M^G_{BP(10)}$	$\beta_1 = 1$	0.960	0.162	0.166	0.159	-3.982	92
$M_{BP(10)}^{PL}$		1.051	0.178	0.185	0.162	5.141	93
$M_{PE(10)}^{RW}$		1.039	0.176	0.179	0.161	3.907	94
M_{PL}		1.037	0.170	0.173	0.152	3.722	96
$M^G_{BP(5)}$		-0.947	0.096	0.109	0.104	5.336	91
$M_{BP(5)}^{PL}$		-1.038	0.118	0.123	0.110	-3.760	92
$M_{PE(5)}^{RW}$		-0.942	0.100	0.115	0.102	5.797	91
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.947	0.097	0.110	0.105	5.256	93
$M_{BP(10)}^{PL}$		-1.039	0.117	0.123	0.111	-3.945	93
$M_{PE(10)}^{RW}$		-1.026	0.116	0.119	0.109	-2.587	91
M_{PL}		-1.026	0.099	0.102	0.098	-2.571	97
$M^G_{BP(5)}$		1.005	0.008	0.009	0.008	0.495	93
$M_{BP(5)}^{PL}$		0.996	0.010	0.010	0.009	-0.367	90
$M_{PE(5)}^{RW}$		1.006	0.008	0.010	0.008	0.584	91
$M^G_{BP(10)}$	$\alpha = 1$	1.005	0.008	0.009	0.009	0.478	96
$M_{BP(10)}^{PL}$		0.996	0.010	0.010	0.009	-0.391	89
$M_{PE(10)}^{RW}$		0.997	0.009	0.010	0.009	-0.274	94
M_{PL}		0.997	0.008	0.009	0.008	-0.252	94

Tabela 4.22: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura 4.19: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{1.00,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo perfeito.

Analisando os resultados para o cenário $S_{2,30}^{1.05,2}$, exibidos na Tabela 4.23, nota-se que o modelo $M_{BP(m)}^{PL}$ apresenta em geral vício relativo médio absoluto menor que os observados nos cenários $S_{2,30}^{0.90,2}$ e $S_{2,30}^{1.00,2}$. Isso corrobora com as conclusões obtidas com base nas simulações clássica e Bayesianas para o caso de reparo mínimo. Nota-se aumento do vício relativo médio em valor absoluto para o modelo $M_{BP(m)}^G$ ao aumentar o parâmetro α , indicando que para $\alpha > 1$ este modelo não seria apropriado. Como já observado, a medida que α cresce mais informação está disponível para estimá-lo, logo provocando uma redução do vício deste parâmetro gradualmente com o seu aumento. Reduções não ocorrem somente para o vício, a análise mostra também que o desvio padrão, o RMSE e o erro padrão médio desse parâmetro apresentam tendência de queda. O modelo $M^{RW}_{PE(l)}$ exibe resultados competitivos ou melhores que o $M^{PL}_{BP(m)}$, sendo ζ_{ν} melhor estimado pela versão EP quando l = 5. Destaca-se que os modelos baseados na EP, na maioria das vezes indicaram priores resultados em outros cenários aqui avaliados, porém para a precisão das fragilidades, aparentemente, este modelo tem mostrado boa estimação. As taxas de cobertura também tendem a ficar mais próximas de 95%, quando comparados os cenários $S_{2,30}^{0.90,2}$, $S_{2,30}^{1.00,2}$ e $S_{2,30}^{1.05,2}$. Neste quesito, os melhores resultados para todos os modelos e seus respectivos parâmetros ocorreram no cenário $S_{2,30}^{1.05,2}$.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Relative bias	Coverage rate
$M^G_{BP(5)}$		0.768	0.287	0.368	0.397	-23.167	95
$M_{BP(5)}^{PL}$		1.020	0.392	0.391	0.421	1.967	93
$M_{PE(5)}^{RW}$		0.928	0.355	0.361	0.393	-7.180	96
$M^G_{BP(10)}$	$\beta_1 = 1$	0.789	0.296	0.362	0.391	-21.112	94
$M_{BP(10)}^{PL}$		1.021	0.386	0.385	0.424	2.090	93
$M_{PE(10)}^{RW}$		0.975	0.366	0.365	0.410	-2.487	96
M_{PL}		1.007	0.386	0.384	0.415	0.680	94
$M^G_{BP(5)}$		-0.789	0.194	0.285	0.213	21.074	84
$M_{BP(5)}^{PL}$		-1.046	0.249	0.252	0.237	-4.618	93
$M_{PE(5)}^{RW}$		-0.936	0.217	0.225	0.221	6.380	92
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.810	0.190	0.268	0.211	18.965	84
$M_{BP(10)}^{PL}$		-1.047	0.250	0.253	0.238	-4.688	93
$M_{PE(10)}^{RW}$		-0.997	0.243	0.242	0.229	0.319	92
M_{PL}		-1.029	0.241	0.242	0.232	-2.918	93
$M^G_{BP(5)}$		1.053	0.006	0.007	0.006	0.259	96
$M_{BP(5)}^{PL}$		1.047	0.007	0.007	0.007	-0.277	94
$M_{PE(5)}^{RW}$		1.054	0.006	0.007	0.006	0.392	92
$M^G_{BP(10)}$	$\alpha = 1.05$	1.053	0.006	0.007	0.007	0.306	93
$M_{BP(10)}^{PL}$		1.047	0.007	0.008	0.007	-0.281	93
$M_{PE(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.157	96
M_{PL}		1.048	0.006	0.006	0.006	-0.198	94
$M^G_{BP(5)}$		1.437	0.475	0.736	0.631	-28.175	81
$M_{BP(5)}^{PL}$		1.811	0.581	0.608	0.711	-9.438	90
$M_{PE(5)}^{RW}$		1.959	0.618	0.616	0.777	-2.065	95
$M^G_{BP(10)}$	$\zeta_{\nu} = 2$	1.574	0.500	0.655	0.676	-21.286	88
$M_{BP(10)}^{PL}$		1.813	0.582	0.608	0.713	-9.363	89
$M_{PE(10)}^{RW}$		1.843	0.588	0.605	0.728	-7.842	91
M_{PL}		1.839	0.582	0.601	0.711	-8.059	88

Tabela 4.23: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , α e ζ_{ν} no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Os resultados, verificados na Figura 4.20, confirmam que o modelo $M_{BP(m)}^G$ inclina-se de forma mais severa a subestimar β_1 e ζ_{ν} e sobrestimar β_2 e α , em comparação com os cenários

 $S_{2,30}^{0.90,2}$, $S_{2,30}^{1.00,2}$. Fica evidente também nesta figura que o vício relativo percentual diminui com o aumento de α , pois claramente os diagramas esquemáticos tendem a ficar centrados na linha de referência que indica vício relativo nulo. Como sempre observado, o modelo $M_{PE(l)}^G$, independente do tamanho da partição, expõe os piores resultados em termos de vício relativo. Sustentando as conclusões obtidas com a Tabela 4.23, pode-se observar que, com exceção do modelo $M_{PE(5)}^G$, as propostas construídas através da EP com l = 5 são as que mostram diagramas esquemáticos com maior centralização em zero para ζ_{ν} .

Figura 4.20: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito.

Finalmente, chega-se na análise do cenário sem fragilidade o $S_{\infty,30}^{1.05,2}$, que tem correspondência com o caso com efeito aleatório $S_{2,30}^{1.05,2}$. Verifica-se que o desvio padrão, o RMSE e erro padrão

médio apresentam queda brusca em seus valores em comparação com a situação em que os dados foram gerados considerando o efeito aleatório. Isso não difere das conclusões tiradas na contrastação dos pares de cenários $S_{2,30}^{0.90,2}$ e $S_{\infty,30}^{1.00,2}$ e $S_{\infty,30}^{1.00,2}$. Assim como visto na análise dos cenários anteriores, a tendência de α é reduzir os valores das características supracitadas com o seu aumento. Os coeficientes β_1 e β_2 também exibem queda nestas quantidades em menor magnitude, quando aumenta-se α . Na avaliação do efeito conjunto de não ter a fragilidade e aumento de α , percebe-se que as taxas de cobertura no cenário $S_{\infty,30}^{1.05,2}$ são ainda mais próxima de 95%, apesar de tenderem a ser levemente maiores que o nível nominal.

Tabela 4.24: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M^G_{BP(5)}$		0.949	0.142	0.151	0.148	-5.129	96
$M_{BP(5)}^{PL}$		1.055	0.152	0.161	0.150	5.453	95
$M_{PE(5)}^{RW}$		0.974	0.151	0.152	0.145	-2.586	96
$M^G_{BP(10)}$	$\beta_1 = 1$	0.951	0.143	0.151	0.149	-4.940	96
$M_{BP(10)}^{PL}$		1.056	0.154	0.163	0.151	5.599	97
$M_{PE(10)}^{RW}$		1.045	0.153	0.159	0.152	4.494	97
M_{PL}		1.040	0.151	0.156	0.140	4.026	96
$M^G_{BP(5)}$		-0.936	0.071	0.095	0.097	6.363	95
$M_{BP(5)}^{PL}$		-1.040	0.081	0.090	0.102	-3.954	98
$M_{PE(5)}^{RW}$		-0.960	0.080	0.089	0.096	3.950	97
$M^G_{BP(10)}$	$\beta_2 = -1$	-0.935	0.072	0.097	0.098	6.547	96
$M_{BP(10)}^{PL}$		-1.039	0.083	0.092	0.103	-3.925	98
$M_{PE(10)}^{RW}$		-1.028	0.086	0.090	0.103	-2.823	98
M_{PL}		-1.027	0.072	0.076	0.092	-2.694	97
$M^G_{BP(5)}$		1.054	0.004	0.006	0.006	0.344	96
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.006	-0.228	98
$M_{PE(5)}^{RW}$		1.052	0.005	0.006	0.006	0.211	93
$M^G_{BP(10)}$	$\alpha = 1.05$	1.054	0.004	0.006	0.006	0.338	96
$M_{BP(10)}^{PL}$		1.048	0.005	0.005	0.006	-0.235	96
$M_{PE(10)}^{RW}$		1.048	0.005	0.005	0.006	-0.162	97
M_{PL}		1.048	0.005	0.005	0.005	-0.174	96

Analisando os diagramas esquemáticos do vício relativo percentual para todos o modelos

considerados no cenário $S_{\infty,30}^{1.05,2}$, exibidos na Figura 4.21, percebe-se que, excluídos alguns pontos discrepantes, os resultados deste cenário são melhores que os obtidos para os casos $S_{\infty,30}^{0.90,2}$ e $S_{\infty,30}^{1.00,2}$. As exceções aqui são os modelos $M_{BP(m)}^{G}$ e $M_{PE(m)}^{G}$ que indicam vício relativo percentual elevado. Essa conclusão pode ser verificada comparando as escalas dos gráficos nas Figuras 4.17, 4.19 e 4.21.

Figura 4.21: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito.

As análises deste estudo de simulação Bayesiano, para o caso dos modelos ajustados supondo reparação perfeita, confirmam tendências semelhantes àquelas observadas para o estudo de simulação clássico e Bayesiano sob reparação mínima. Uma percepção importante é que aumentado-se o α , tende-se a reduzir o desvio padrão, RMSE, erro padrão médio e vício relativo médio absoluto. De modo geral, em todos os casos percebeu-se também que todas essas característica são impactadas em termos de redução quando contrastadas as situações com e sem fragilidade, sendo que os cenários sem fragilidade apresentado menores valores das estatísticas supracitadas. Ademais, as taxas de coberturas aparentemente sofrem efeito de α e de ζ_{ν} , sugerindo que situações sem efeito aleatório e $\alpha > 1$ tendem a ter taxas próximas do valor nominal.

No contexto Bayesiano, é evidente que para os modelos baseados na EP o ideal é escolher partições de tamanho maior, neste caso l = 10. Além disso, deve-se evitar o modelo $M_{PE(l)}^G$ para uma análise de dados reais, pois geralmente as estatísticas exploradas aqui para avaliar os parâmetros desse modelo indicam variabilidade alta entorno da média e vício relativo percentual médio elevado em todos os cenários avaliados. A opção sugerida nesta tese é escolher o $M_{PE(10)}^{RW}$ que apresentou na maioria das vezes os melhores resultados. No caso dos modelos induzidos pelos PBs, a orientação é buscar pelas especificações que apresentaram pouca dependência do valor de α . Contudo no caso de $\alpha < 1$, indica-se $M_{BP(m)}^{G}$ e para $\alpha \geq 1$ melhores resultados são obtidos com $M_{BP(m)}^{PL}$. Entretanto, em geral todos os modelos baseados nos PBs tem estimação *a posteriori* com qualidades semelhantes seja em situações com ou sem fragilidade, especialmente em termos de vício relativo percentual.

Para escolher o grau do polinômio, lembre-se que as estatísticas avaliadas mostraram pouca dependência disso, apesar de em termos de vício relativo percentual médio os modelos com grau maior apresentarem resultados levemente melhores. Contudo, para escolha de *m* deve-se levar em consideração o quão suave é a representação desejada para a curva de risco basal, bem como o tamanho do conjunto de dados, uma vez que aumentar o grau significa mais parâmetros a serem estimados, o que também é problema para escolha do tamanho da partição dos modelos construídos através da EP.

4.3 Aplicações

Nesta seção considera-se replicar os resultados de duas aplicações obtidos por Peña et al. (2007) para a classe geral com especificação da função intensidade (ou risco) de forma não paramétrica. Os conjuntos de dados utilizados são denominados **bladder** e **readmission** e tratam, respectivamente, de recorrência de câncer de bexiga e repetidas internações hospitalares de pacientes com câncer colorretal.

O conjunto de dados bladder é dito clássico, sendo comumente utilizado para ilustrar análise de eventos recorrentes e já foi trabalhado por diversos autores em vários contextos. Pode-se citar Therneau e Grambsch (2000), que utilizam estes dados para descrever questões sobre a aplicação dos modelos AG, WLW, no caso marginal, e o modelo condicional PWP, que são abordagens tradicionais, encaradas como extensões do modelo de Cox para o caso de múltiplos eventos por elemento.

O segundo conjunto de dados foi analisado por González et al. (2005b). O primeiro autor deste trabalho é um dos coautores da classe geral no tocante de inferência semiparamétrica, porém nesse artigo utiliza-se um caso particular da classe geral quando $\alpha = 1$ e $\mathscr{E}_i(t_{ij}) = t_{ij}$, isto é, utilizaram um modelo de riscos proporcionais de Cox com fragilidade compartilhada entre os eventos do mesmo paciente.

A seguir são apresentadas breves descrições dos conjuntos de dados e suas particularidades quanto à escolha da idade efetiva (tipo de reparação) a ser utilizada em cada situação, para mais detalhes sobre os dados pode-se consultar Therneau e Grambsch (2000), González et al. (2005b) e Peña et al. (2007).

- bladder: este conjunto de dados é disponibilizado através do pacote survival do software
 R. Especificamente, os dados utilizados são os fornecidos através do objeto bladder2. Para um total de 85 pessoas são fornecidas informações dos tempos de início e término de uma recorrência e três covariáveis: rx, size e number, representando, respectivamente, a indicadora de tratamento (0 Placebo e 1 Tiotepa), o tamanho do maior tumor inicial (em cm) e o número inicial de tumores. Neste caso, Peña et al. (2007) decidiram por ajustar modelos de reparação mínima (*E*_i (t_{ij}) = t_{ij}) e perfeita (*E*_i (t_{ij}) = w_{ij}) com e sem fragilidade. De modo análogo aqui nesta seção foram replicados os resultados usando a classe geral baseada nos PBs e na EP, da forma definida nas Equações (4.2) e (4.3);
- readmission: estes dados são fornecidos por Peña et al. (2007) através do pacote gcmrec também do software R e são compostos por tempos de reinternação após a cirurgia para 403 pacientes diagnosticados com câncer do reto. Além disso, tem-se a classificação de Dukes, que indica o estadiamento do câncer e está agrupada em três categorias A-B, C e D; o estadiamento A-B foi tomado como a categoria de referência nas análises. Por último, tem-se a covariável indicadora de tratamento, sendo 1 se o paciente foi tratado com quimioterapia e 0 caso contrário. Para essa aplicação, Peña et al. (2007) optaram por modelar a idade efetiva como sendo os tempos entre eventos (*E*_i (t_{ij}) = w_{ij}), assumindo situações com e sem efeito aleatório. Sendo assim, também foram considerados nesta tese os modelos equivalentes induzidos pelos PBs e EP, porém apenas no caso sem fragilidade.

Para ambas aplicações elegeu-se os modelos referenciados pelas notações $M_{BP(10)}^Z \in M_{PE(10)}^Z$, com as mesmas especificações *a priori* utilizadas na simulações no caso Bayesiano. Como verificado através do estudo de simulação, essas estruturas também apresentaram bons desempenhos em todos os cenários em termos de vício relativo percentual. Ademais, um dos motivos para esta escolha é que o modelo de fragilidade gama, proposto neste trabalho, pode se tornar extremamente demorado computacionalmente (tempo condicionado ao JAGS) quando o conjunto de dados apresenta muitos elementos, situação em que se enquadra os dados de reinternação. A função de verossimilhança utilizada nos ajustes dos modelos aqui avaliados está dada na Equação (4.4). Especificações *a priori* para os coeficientes das variáveis regressoras são baseadas na distribuição normal com média 0 e precisão $1/4^2$, sendo esta também a distribuição *a priori* para log (α). A distribuição *a priori* para precisão do efeito aleatório é dada por uma Gama(1, 1). Com estes detalhes, os modelos estão completamente especificados.

Na Tabela 4.25, tem-se os resultados dos modelos sem fragilidade para os conjuntos de dados bladder e readmission. Para o primeiro conjunto, Peña et al. (2007) consideram situações de reparação mínima e perfeita. Já para a aplicação dos dados de rehospitalização, os autores utilizam apenas os modelos de reparação perfeita. Pode-se verificar nessa tabela que o gcmrec produz resultados similares aos obtidos para os modelos $M_{PE(10)}^Z$ e $M_{BP(10)}^Z$, porém na maioria das vezes as estimativas obtidas pelas as abordagens aqui proposta são levemente maiores do que as encontradas por Peña et al. (2007). Contudo, se avaliados os intervalos de confiança e o HPD, percebe-se que todos os modelos levam às mesmas conclusões. Neste sentido, todas as abordagens indicam efeito adverso do número acumulado de eventos sobre a recorrência e que o impacto do covariável tratamento é estatisticamente nulo, em qualquer uma das aplicações.

		Classe geral					
Reparo	Parâmetro	gcmrec	$M_{PE(10)}^Z$	$M_{BP(10)}^Z$			
		Estimativa (IC 95%)	Média a priori (HPD 95%)	Média a priori (HPD 95%)			
Aplicação câncer de bexiga (bladder)							
	$\alpha \left(N\left(t-\right) \right)$	1.690 (1.349, 2.025)	1.670(1.374, 2.019)	1.690 (1.374, 2.034)			
M7 ·	$\beta_1 ({ m rx})$	-0.300 (-0.701, 0.101)	-0.327 (-0.714, 0.083)	-0.331 (-0.717, 0.085)			
Minimo	β_2 (Size)	-0.016 (-0.152, 0.120)	-0.019 (-0.150 , 0.121)	-0.018 (-0.151 , 0.118)			
	$\beta_3(\text{Number})$	$0.138\ (0.041,\ 0.236)$	$0.148\ (0.052,\ 0.242)$	$0.149\ (0.047,\ 0.242)$			
	$\alpha \left(N\left(t-\right)\right)$	$1.340 \ (1.097, \ 1.583)$	$1,460\ (1.206,1.721)$	$1.430 \ (1.190, \ 1.704)$			
Deefeite	$\beta_1 (\mathrm{rx})$	-0.299 (-0.701, 0.102)	-0.360(-0.745, 0.026)	-0.354 (-0.744 , 0.059)			
Perieito	β_2 (Size)	-0.006 (-0.140, 0.127)	-0.019 (-0.149 , 0.104)	-0.018 (-0.157 , 0.111)			
	$\beta_3(\text{Number})$	$0.143 \ (0.044, \ 0.242)$	$0.153 \ (0.061, \ 0.252)$	$0.148 \ (0.048, \ 0.245)$			
		Aplicação rehospit	alização (readmission)				
	$\alpha \left(N\left(t-\right)\right)$	1.120(1.096, 1.152)	$1.140 \ (1.113, \ 1.167)$	$1.150 \ (1.119, \ 1.173)$			
Deefeite	β_1 (Dukes C)	$0.308\ (0.072,\ 0.543)$	$0.325\ (0.093,\ 0.557)$	$0.351 \ (0.112, \ 0.579)$			
Perfeito	β_2 (Dukes D)	$0.926 \ (0.658, \ 1.195)$	$1.010\ (0.744,\ 1.269)$	$1.100\ (0.838,\ 1.359)$			
	β_3 (Chemotherapy)	-0.125 (-0.333, 0.083)	-0.097 (-0.309, 0.099)	-0.097 (-0.304, 0.115)			

Tabela 4.25: Comparação dos modelos $M_{PE(10)}^Z$ e $M_{BP(10)}^Z$ com o gemrec para os conjuntos de dados bladder e readmission, no caso dos modelos sem fragilidade:

Peña et al. (2007) também ajustaram os modelos com fragilidade correspondentes àqueles utilizados na Tabela 4.25, os resultados para essas abordagens estão na Tabela 4.26. Analisando os resultados, nota-se que as modelagens aqui propostas tendem a apresentar estimativas diferentes das obtidas através da classe geral semiparamétrica de Peña et al. (2007). Para o conjunto de dados **bladder**, o modelo referenciado por **gcmrec** indica ausência de fragilidade, enquanto os modelos $M_{PE(10)}^Z$ e $M_{BP(10)}^Z$ direcionam para importância de considerar o efeito aleatório. Além disso, a proposta dos desses autores sugere efeito adverso da contagem acumulada de eventos, ao passo que o intervalo HPD de α evidencia ausência deste efeito. Em geral, o sinal ou a significância dos coeficientes das variáveis regressoras são iguais para todas as abordagens na aplicação **bladder**. No caso dos dados **readmission**, os modelos $M_{PE(10)}^Z e M_{BP(10)}^Z$ apontam para efeito de benefício de N(t-), indo em sentido contrário ao que é exibido pelo **gcmrec**. Os demais termos avaliados, precisão da fragilidade e coeficientes das covariáveis, apesar de apresentarem pequenas diferenças entre as abordagens, fornecem as mesmas inferências para os dados de rehospitalização.

		Classe geral								
Reparo	Parâmetro	gcmrec	$M_{PE(10)}^Z$	$M_{BP(10)}^Z$						
		Estimativa (IC 95%)	Média a priori (HPD 95%)	Média a priori (HPD 95%)						
	Aplicação câncer de bexiga (bladder)									
	$\alpha \left(N\left(t-\right)\right)$	1.69(1.321, 2.054)	$0.892 \ (0.528, \ 1.282)$	$1.060 \ (0.642, \ 1.490)$						
	$\zeta_{\nu}(\text{Fragilidade})$	∞	$0.724\ (0.230,\ 1.527)$	$1.140\ (0.245,\ 2.631)$						
Mínimo	$\beta_1 ({ m rx})$	-0.300 (-0.756, 0.156)	-0.744 (-1.585 , 0.035)	-0.598 $(-1.335, 0.080)$						
	β_2 (Size)	-0.016 (-0.144 , 0.112)	0.003 (-0.300, 0.265)	-0.007 (-0.236, 0.212)						
	$\beta_3(\text{Number})$	$0.138\ (0.010,\ 0.266)$	$0.301 \ (0.067, \ 0.566)$	$0.252 \ (0.245, \ 2.631)$						
	$\alpha \left(N\left(t-\right) \right)$	$1.340\ (1.097,\ 1.583)$	$1.080\ (0.824,\ 1.354)$	$1.120 \ (0.835, \ 1.400)$						
	ζ_{ν} (Fragilidade)	∞	$0.850\ (0.296,\ 1.654)$	$1.260\ (0.352,\ 2.598)$						
Perfeito	$\beta_1 ({ m rx})$	-0.299 (-0.736 , 0.137)	-0.624 (-1.372 , 0.102)	-0.555 (-1.224 , 0.113)						
	β_2 (Size)	-0.006 (-0.135 , 0.123)	0.011 (-0.239, 0.268)	$0.002 \ (-0.202, \ 0.215)$						
	$\beta_3(\text{Number})$	$0.143\ (0.033,\ 0.254)$	$0.295\ (0.066,\ 0.533)$	$0.252 \ (0.064, \ 0.460)$						
		Aplicação rehospit	alização (readmission)							
	$\alpha \left(N\left(t-\right) \right)$	$1.080\ (0.816,\ 1.344)$	$0.874\ (0.848,\ 0.901)$	$0.878\ (0.851,\ 0.905)$						
	$\zeta_{\nu}(\text{Fragilidade})$	2.39	$1.476\ (1.116,\ 1.953)$	$1.523 \ (1.133, \ 2.046)$						
Perfeito	β_1 (Dukes C)	$0.304\ (\text{-}0.014,\ 0.621)$	$0.330\ (0.167,\ 0.493)$	$0.327 \ (0.165, \ 0.489)$						
	β_2 (Dukes D)	$1.051 \ (0.653, \ 1.449)$	$1.551 \ (1.347, \ 1.756)$	$1.527 \ (1.320, \ 1.734)$						
	β_3 (Chemotherapy)	-0.145(-0.412, 0.123)	-0.045 (-0.192 , 0.102)	-0.043 (-0.189 , 0.103)						

Tabela 4.26: Comparação dos modelos $M_{PE(10)}^Z$ e $M_{BP(10)}^Z$ com o gemrec para os conjuntos de dados bladder e readmission, no caso dos modelos com fragilidade:

Neste capítulo foram propostas duas classes gerais de modelos semiparamétricos via PBs e EP. Para avaliar as propriedades dos modelos no caso frequentista e Bayesiano, realizou-se um exaustivo estudo de simulação considerando diversos cenários, contemplando várias características das classes aqui originadas. Por fim, comparou-se os resultados de duas aplicações realizadas por Peña et al. (2007) com os obtidos pelas as modelagens aqui proposta. Na sequência são resumidos os principais achados desta tese e é apresentada algumas sugestões de trabalhos futuros.

Capítulo 5

Considerações finais

Nesta tese são propostos modelos para análise de dados de eventos recorrentes com base em duas funções de risco ou intensidade de base, flexíveis e induzidas pelos PBs e pela EP. Os modelos desenvolvidos são fundamentados em processos de Poisson, de renovação e em uma classe geral que contém esses dois processos como casos particulares. Como foi observado nas aplicações e no estudo de simulação realizado, os modelos propostos são fortes concorrentes dos modelos paramétricos e semiparamétricos usais em análise de dados de sobrevivência ou confiabilidade, no contexto de eventos recorrentes.

Umas das limitações quando usa-se modelos paramétricos em análise de dados de sobrevivência é que ao ajustar uma modelagem específica aos dados, por exemplo: exponencial, de Weibull, gama, log-normal, log-logística, dentre outros, é assumido que os tempos de sobrevivência foram gerados com uma das possíveis função de risco (ou intensidade) comportada por este modelo. Entretanto, em algumas situações, a estrutura imposta por este pode não ser a mesma que gerou os tempos de sobrevivência. Logo, nesta condição as conclusões tiradas utilizando essa opção paramétrica podem estar incorretas, pois ela não representa de maneira apropriada a estrutura de risco ou a intensidade de como os eventos se desenvolvem ao longo do tempo. Portanto, modelos paramétricos tem restrição de formatos para o risco ou intensidade. Já as versões semiparamétricas trazem uma flexibilidade crucial quanto a possibilidade de se estabelecer formas bem variadas para estas funções.

Neste sentido, os modelos propostos são semelhantes ao modelo semiparamétrico de riscos proporcionais estabelecido por Cox (1972). Em específico para o caso de análise de dados de eventos recorrentes, a extensão do modelo de Cox é denominado modelo AG (Andersen e

Gill, 1982). O ponto central da semelhança está na não imposição de uma forma especifica para a função de risco de base (ou intensidade de base). Em relação a essa afirmação, note que, ao induzir uma função de risco de base (ou intensidade de base) usando os PBs, o único pressuposto sob esta função é que ela seja suave (ver o Capítulo 2.2), o que não é exigido pelo modelo AG. Entretanto, quando o grau do polinômio tende a infinito, a função de risco de base (ou intensidade de base) toma forma não paramétrica, assim como na proposta de Andersen e Gill (1982). Avaliando agora os modelos propostos através da EP, tem-se neste caso que a função de risco ou intensidade de base sempre será uma função escada, contudo assim como para os modelos baseados nos PBs, quando o tamanho da partição tende a infinito, ambos os modelos tomam forma não paramétrica. Sendo isso, o que motivou definir os modelos propostos como pertencentes à classe de modelos semiparamétricos.

Outro fato relevante é que ao ajustar o modelo AG por máxima verossimilhança, surgem dificuldades para estimar a função de risco de base (ou intensidade de base) e, geralmente, estimadores Bayesianos ou não paramétrico são usados para obter estimativas desta quantidade. Este problema não existe nos modelos propostos nesta tese, pois a função de risco de base (ou intensidade de base) dispõe de uma forma paramétrica e ao estimar os parâmetros associados, a obtenção dessa função é feita de forma imediata, bem como de outras, através das relações apresentadas na Seção 2.1. Além disso, quando trabalha-se com o modelo de AG, independente da abordagem utilizada para estimação, as funções de sobrevivência, risco e risco acumulada não são contínuas. Nos modelos induzidos pelos polinômios todas as funções supracitadas são contínuas. No caso da EP, a função de risco ou intensidade de base não será contínua, mas a função de risco ou intensidade acumulada será sim e por consequência a função de sobrevivência relacionada a função de risco será contínua.

Sabendo das principais diferenças dos modelos paramétrico e AG em relação aos modelos propostos neste trabalho via PBs e EP, pode-se reiterar as abordagens aqui originadas, bem como suas principais características. Começando pelo processo de Poisson via PBs, esta abordagem corresponde ao modelo AG, porém com função intensidade de base induzida pelos polinômios. Nesta modelagem o objetivo é entender e caracterizar como os eventos se desenvolvem ao longo do tempo. Não diferente em termos de objetivo, a segunda abordagem é o processo de Poisson via PBs com fragilidade, que é obtido ao introduzir um efeito aleatório com a finalidade de captar uma possível relação entre os eventos do mesmo elemento, havendo assim a quebra do pressuposto de proporcionalidade, uma vez que elementos diferentes podem ter fragilidades diferentes.

O terceiro e o quarto modelo, foram denominados de processo de renovação via PB e processo de renovação com fragilidade via PB, neste caso a modelagem é realizada levando em consideração os tempos entre eventos, sendo que no quarto modelo a fragilidade é compartilhada entre os tempos entre eventos de um mesmo elemento, assim como no processo de Poisson. Em ambos, o objetivo é compreender a estrutura de risco inerente aos tempos entre eventos, supondo independência (caso sem fragilidade) ou independência condicional (condicionado ao efeito aleatório) entre os tempos entre eventos.

Por último, foram propostas duas classes gerais de modelos, denominadas por classe geral via PBs e classe geral via EP, sendo uma baseada nos PBs e a outra através da EP. A classe geral via PBs possui como caso especial os processos supracitados. A classe geral via EP, possui seus correspondentes com função intensidade por partes como casos particulares, contudo esses casos, apesar de terem sido explorados no Capítulo 3, não são novidades apresentadas neste trabalho. O processo de Poisson com função intensidade via EP é explorado em Cook e Lawless (2010) e o processo de renovação via EP foi amplamente discutido por Rigdon e Basu (2000).

Neste trabalho foi realizado um exaustivo estudo de simulação considerando todos os modelos aqui propostos. Dos resultados deste estudo, pode-se concluir que as abordagens propostas são fortes concorrentes as alternativas semiparamétricas de Andersen e Gill (1982) e Peña et al. (2007) e as paramétricas de Stocker IV e Peña (2007). A classe geral baseada nos PBs indicam que grau 5 e 10 produzem resultados similares, porém o grau maior permite funções de risco (ou intensidade) mais suaves e apresentam resultados levemente melhores. No caso da classe geral via EP, constata-se que a escolha da partição é determinante para um bom ajuste deste modelo, sendo as partições maiores indicadas no ajuste desse a dados reais. Na perspectiva Bayesiana, as especificações *a priori* referenciadas por $M_{BP(m)}^{G}$, $M_{PE(l)}^{PL}$ são as que verificam melhores resultados em termos de vício relativo percentual e pelos critérios de seleção de modelos.

No contexto dos cenários avaliados, notou-se que as estimativas ficam mais próximas do verdadeiro valor a medida que aumenta-se do parâmetro α , em especial, as medidas para o estimador deste parâmetro reduzem muito com o seu crescimento. Outro ponto de destaque, são as situações com e sem efeito aleatório. Nos modelos com fragilidade, geralmente, verifica-

se que as características analisadas exibem valores maiores que o seus correspondentes sem esse efeito. As taxas de coberturas também ficam mais próximas do valor nominal nos casos sem fragilidade. Ainda nos cenários com efeito aleatório, nota-se claramente que os modelos estimados sob o paradigma Bayesiano apresentam melhor performance que aqueles nas mesmas situações usando abordagem frequentista para estimar ζ_{ν} . Quando avaliado, o ajuste das classes aos dados gerados sob FID ($\theta_1 < 1$) e FIC ($\theta_1 > 1$), percebe-se um efeito similar aos observados nos casos com $\alpha < 1$ (efeito de benefício) e $\alpha > 1$ (efeito adverso), respectivamente. Por último, enfatiza-se que poucas foram as diferenças observadas entre as situações de reparação mínima e perfeita em termos das medidas utilizadas para avaliar o bom ajuste dos modelos.

5.1 Trabalhos futuros

Ao longo da pesquisa e implementação das análises realizadas para as aplicações e estudo simulado, deparou-se com algumas ideias interessantes que poderiam ser incluídas como parte deste estudo. Sendo assim, algumas propostas para trabalhos futuros são:

- Propor modelos de reparação intermediária (reparação imperfeita), situações em que o sistema volta a funcionar em condições entre aquela que seria no caso de reparo mínimo e perfeito, por exemplo considerar os modelos ARA (*Arithmetic Reduction of Age*) e ARI (*Arithmetic Reduction of Intensity*) proposto por Doyen e Gaudoin (2004) com função de risco induzida pelos PBs;
- Considerar outras distribuições para o efeito aleatório, por exemplo inversa gaussiana, motivado pelos estudos de Tomazella (2003), Tomazella et al. (2004) e Louzada-Neto et al. (2007);
- Propor generalizações do Processo de Poisson (Processo de Poisson composto), para contemplar casos de múltiplos eventos do mesmo tipo ocorrendo simultaneamente, motivado pelo estudo de carcinogênese;
- Propor modelagens de dados de eventos recorrentes com fração de curados (ou imunes) do evento de interesse, motivado pelos eventos "reincidência no crime" e "doação de sangue". Note que, para esses eventos uma parte dos elementos estudados pode não apresentar recorrência do evento alvo de estudo.

Referências

- Aalen, O. (1980), "A model for nonparametric regression analysis of counting processes," in Mathematical statistics and probability theory, eds. K. W, K. A., e R. J, vol. 2, Springer, New York, Lecture Notes in Statistics.
- Aalen, O., Borgan, O., e Gjessing, H. (2008), Survival and event history analysis: a process point of view, Springer, New York.
- Andersen, P. K. e Gill, R. D. (1982), "Cox's regression model for counting processes: a large sample study," *The Annals of Statistics*, 10, 1100–1120.
- Andersen, P. K., Borgan, O., Gill, R. D., e Keiding, N. (1993), Statistical Models Based on Counting Processes, Springer, New York.
- Bernstein, S. N. (1912), "Démonstration du théoreme de Weierstrass fondée sur le calcul des probabilities," Communications de la Société mathématique de Kharkow, 13, 1–2.
- Breslow, N. (1974), "Covariance analysis of censored survival data," *Biometrics*, 30, 89–99.
- Carvalho, M. S., Andreozzi, V. L., Codeço, C. T., Campos, D. P., Barbosa, M. T. S., e Shimakura, S. E. (2011), Análise de sobrevivência: teoria e aplicações em saúde, Editora FIOCRUZ, Rio de Janeiro.
- Chang, I.-S., Hsiung, C. A., Wu, Y.-J., e Yang, C.-C. (2005), "Bayesian survival analysis using Bernstein polynomials," *Scandinavian Journal of Statistics*, 32, 447–466.
- Chen, Y., Hanson, T., e Zhang, J. (2014), "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," *Biometrics*, 70, 192–201.

- Chen, Y. Q. e Wang, M.-C. (2000), "Analysis of accelerated hazards models," *Journal of the American Statistical Association*, 95, 608–618.
- Colosimo, E. A. e Giolo, S. R. (2006), Análise de sobrevivência aplicada, Edgard Blücher, São Paulo.
- Cook, R. J. e Lawless, J. (2010), *The statistical analysis of recurrent events*, Springer, New York.
- Cox, D. R. (1972), "Regression models and life-tables," Journal of the Royal Statistical Society, Series B, 34, 187–220.
- Demarqui, F. N. (2010), "Uma classe mais flexível de modelos semiparamétricos para dados de sobrevivência," Tese de doutorado, Departamento de Estatística, Universidade Federal de Minas Gerais, Belo Horizonte, MG.
- Demarqui, F. N., Dey, D. K., Loschi, R. H., e Colosimo, E. A. (2011), "Modeling survival data using the piecewise exponential model with random time grid," in *Recent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics*, eds. M. Bhattacharjee, S. K. Dhar, e S. Subramanian, vol. 4, chap. 6, pp. 109–122, World Scientific, Singapore.
- Dempster, A. P., Laird, N. M., e Rubin, D. B. (1977), "Maximum likelihood from incomplete data via the EM algorithm," *Journal of the Royal Statistical Society, Series B*, 39, 1–38.
- Doyen, L. e Gaudoin, O. (2004), "Classes of imperfect repair models based on reduction of failure intensity or virtual age," *Reliability Engineering & System Safety*, 84, 45–56.
- Fuchs, H. J., Borowitz, D. S., Christiansen, D. H., Morris, E. M., Nash, M. L., Ramsey, B. W., Rosenstein, B. J., Smith, A. L., e Wohl, M. E. (1994), "Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis," New England Journal of Medicine, 331, 637–642.
- Gail, M. H., Santner, T. J., e Brown, C. C. (1980), "An analysis of comparative carcinogenesis experiments based on multiple times to tumor," *Biometrics*, 36, 255–266.
- Gamerman, D. e Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Chapman and Hall/CRC, Boca Raton.

- Gelfand, A. E. e Smith, A. F. (1990), "Sampling-based approaches to calculating marginal densities," Journal of the American Statistical Association, 85, 398–409.
- Geman, S. e Geman, D. (1984), "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6, 721–741.
- Gilks, W. R. e Wild, P. (1992), "Adaptive rejection sampling for Gibbs sampling," *Applied Statistics*, 41, 337–348.
- Gjessing, H. K., Røysland, K., Penã, E. A., e Aalen, O. O. (2010), "Recurrent events and the exploding Cox model," *Lifetime Data Analysis*, 16, 525–546.
- González, J. R., Peña, E. A., e Slate, E. H. (2005a), "Modelling intervention effects after cancer relapses," *Statistics in Medicine*, 24, 3959–3975.
- González, J. R., Fernandez, E., Moreno, V., Ribes, J., Peris, M., Navarro, M., Cambray, M., e Borràs, J. M. (2005b), "Sex differences in hospital readmission among colorectal cancer patients," *Journal of Epidemiology & Community Health*, 59, 506–511.
- Gouvêa, G. D. R. (2010), "Métodos Bayesianos para análise de dados de eventos recorrentes considerando uma classe geral de modelos com fragilidade multiplicativa," Tese de doutorado, Departamento de Estatística, Universidade Federal de Lavras, Lavras, MG.
- Gouvêa, G. D. R., Tomazella, V. L. D., e Scalon, J. D. (2011), "Estimação Bayesiana das fragilidades individuais de pacientes com insuficiência renal crônica da cidade de Lavras – MG," *Revista Brasileira de Biometria*, 29, 534–548.
- Hastings, W. K. (1970), "Monte Carlo sampling methods using Markov chains and their applications," *Biometrika*, 57, 97–109.
- Ibrahim, J. G., Chen, M.-H., e Sinha, D. (2001a), "Bayesian semiparametric models for survival data with a cure fraction," *Biometrics*, 57, 383–388.
- Ibrahim, J. G., Chen, M.-H., e Sinha, D. (2001b), Bayesian survival analysis, Springer, New York.

- Kitchin, J., Langberg, N. A., e Proschan, F. (1980), "A New Method for Estimating Life Distributions from Incomplete Data," Tech. rep., FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS.
- Kitchin, J., Langberg, N. A., e Proschan, F. (1983), "A New Method for Estimating Life Distributions from Incomplete Data," *Statistics & Risk Modeling*, 1, 241–255.
- Kleinbaum, D. G. e Klein, M. (2005), *Survival analysis: a self-learning text*, Springer, New York.
- Lai, C. (2013), "Constructions and applications of lifetime distributions," Applied Stochastic Models in Business and Industry, 29, 127–140.
- Lawless, J. F. (2003), *Statistical models and methods for lifetime data*, John Wiley & Sons, New Jersey.
- Lorentz, G. G. (1986), Bernstein polynomials, Chelsea Publishing Company, New York.
- Louzada-Neto, F. e Pereira, B. d. B. (2000), "Modelos em análise de sobrevivência," Cadernos de Saúde Coletiva, Rio de Janeiro, 8, 8–26.
- Louzada-Neto, F., Tomazella, V. L. D., e Andrade, M. G. (2007), "Bayesian modelling for recurrent lifetime data with a non homogeneous Poisson process with a frailty term with a gamma or inverse Gaussian distribution," *Journal of Applied Statistical Science*, 15, 305–316.
- Lunn, D., Jackson, C., Best, N., Thomas, A., e Spiegelhalter, D. (2012), *The BUGS book: A practical introduction to Bayesian analysis*, Chapman and Hall/CRC, Boca Raton.
- Lunn, D. J., Thomas, A., Best, N. G., e Spiegelhalter, D. J. (2000), "WinBUGS A Bayesian modelling framework: concepts, structure, and extensibility," *Statistics and Computing*, 10, 325–337.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., e Teller, E. (1953), "Equation of state calculations by fast computing machines," *The Jurnal of Chemical Physics*, 21, 1087–1092.
- Neal, R. M. (2003), "Slice sampling," The Annals of Statistics, 31, 705–741.
- Nielsen, G. G., Gill, R. D., Andersen, P. K., e Sørensen, T. I. (1992), "A counting process approach to maximum likelihood estimation in frailty models," *Scandinavian Journal of Statistics*, 19, 25–43.
- Nocedal, J. e Wright, S. (1999), Numerical optimization, Springer, New York.
- Osman, M. e Ghosh, S. K. (2012), "Nonparametric regression models for right-censored data using Bernstein polynomials," *Computational Statistics & Data Analysis*, 56, 559–573.
- Ozga, A.-K., Kieser, M., e Rauch, G. (2018), "A systematic comparison of recurrent event models for application to composite endpoints," *BMC Medical Research Methodology*, 18, 2.
- Peña, E. A. e Hollander, M. (2004), "Models for recurrent events in reliability and survival analysis," in *Mathematical reliability: An expository perspective*, eds. R. Soyer, T. A. Mazzuchi, e N. D. Singpurwalla, pp. 105–123, Springer, New York.
- Peña, E. A., Slate, E. H., e González, J. R. (2007), "Semiparametric inference for a general class of models for recurrent events," *Journal of Statistical Planning and Inference*, 137, 1727–1747.
- Petrone, S. (1999), "Bayesian density estimation using Bernstein polynomials," Canadian Journal of Statistics, 27, 105–126.
- Peña, E. A. (2016), "Asymptotics for a class of dynamic recurrent event models," Journal of Nonparametric Statistics, 28, 716–735.
- Phillips, G. M. (2003), Interpolation and approximation by polynomials, Springer, New York.
- Plummer, M. (2015), JAGS Version 4.2.0 user manual, http://mcmc-jags.sourceforge.net.
- Plummer, M., Best, N., Cowles, K., e Vines, K. (2006), "CODA: Convergence Diagnosis and Output Analysis for MCMC," R News, 6, 7–11, https://journal.r-project.org/archive/.
- Prentice, R. L., Willians, B. J., e Peterson, A. V. (1981), "On the regression analysis of multivariate failure time data," *Biometrika*, 68, 373–379.
- R Core Team (2019), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

- Rigdon, S. E. e Basu, A. P. (2000), Statistical methods for the reliability of repairable systems, Wiley, New York.
- Shin, S. J., Li, J., Ning, J., Bojadzieva, J., Strong, L. C., e Wang, W. (2018), "Bayesian estimation of a semiparametric recurrent event model with applications to the penetrance estimation of multiple primary cancers in Li-Fraumeni syndrome," arXiv preprint arXiv:1804.06883.
- Silva, R. P. d. (2015), "Modelos flexíveis de sobrevivência com fração de cura: implementação computacional," Dissertação de mestrado, Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, RN.
- Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W., e Lunn, D. (1996), BUGS 0.5: Bayesian inference using Gibbs sampling (version ii), https://www.mrcbsu.cam.ac.uk/software/bugs.
- Spiegelhalter, D. J., Thomas, A., Best, N. G., e Lunn, D. J. (2003), WinBUGS user manual, https://www.mrc-bsu.cam.ac.uk/software/bugs.
- Stacy, E. W. (1962), "A generalization of the gamma distribution," The Annals of Mathematical Statistics, 33, 1187–1192.
- Stocker IV, R. S. e Peña, E. A. (2007), "A general class of parametric models for recurrent event data," *Technometrics*, 49, 210–221.
- Su, Y.-S. e Yajima, M. (2015), R2jags: Using R to Run JAGS, R package version 0.5-7, https://CRAN.R-project.org/package=R2jags.
- Tenbusch, A. (1994), "Two-dimensional Bernstein polynomial density estimators," Metrika, 41, 233–253.
- Therneau, T. M. e Grambsch, P. M. (2000), *Modeling survival data: extending the Cox model*, Springer, New York.
- Tomazella, V. L. D. (2003), "Modelagem de dados de eventos recorrentes via Processo de Poisson com termo de fragilidade," Tese de doutorado, Instituto de Ciência Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP.

- Tomazella, V. L. D., Louzada-Neto, F., e Andrade, M. G. (2004), "Bayesian modelling for multivariate lifetime data with a homogeneous Poisson process with a frailty term," *Brazilian Journal of Probability and Statistics*, 18, 19–35.
- Vitale, R. A. (1975), "A Bernstein polynomial approach to density function estimation," in Statistical Inference and Related Topics, ed. M. L. Puri, vol. 2, chap. 5, pp. 87–99, Academic Press.
- Wang, T. e Guan, Z. (2019), "Bernstein polynomial model for nonparametric multivariate density," *Statistics*, 53, 321–338.
- Wei, L. J., Lin, D. Y., e Weissfeld, L. (1989), "Regression analysis of multivariate incomplete failure time data by modeling marginal distributions," *Journal of the American Statistical Association*, 84, 1065–1073.
- Zhou, Q., Hu, T., e Sun, J. (2017), "A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data," *Journal of the American Statistical Association*, 112, 664–672.

Apêndice

Apêndice A: Resultados auxiliares da aplicação do estudo de carcinogênese

Resultados adicionais utilizados para análise dos dados do estudo de carcinogênese. Na Figura A.1 e A.2, são apresentados os mapas de calor para os critérios -2 LPML e -2 WAIC, na devida ordem. Nas Figuras A.3 a A.12, são exibidas as curvas estimadas do número esperado de tumores assumindo, respectivamente, os modelos $M_{BP(m)}^G$, $M_{BP(m)}^{PL}$, $M_{BP(m)}^{Wishart}$, $M_{BP(m)}^{RW}$, $M_{PE(l)}^G$, $M_{PE(l)}^Z$, $M_{PE(l)}^{PL}$, $M_{PE(l)}^{Wishart}$ e $M_{PE(l)}^{RW}$, variando o grau do polinômio ou tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aelen para os dados do estudo mencionado.

Figura A.1: -2 LPML segundo o grau do polinômio (m) ou tamanho da partição (l).

Figura A.2: -2 WAIC segundo o grau do polinômio (m) ou tamanho da partição (l).

Figura A.3: Estimativa do número esperado de tumores assumindo o $M^G_{BP(m)}$. Análise variando o grau do polinômio e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.4: Estimativa do número esperado de tumores assumindo o $M_{BP(m)}^Z$. Análise variando o grau do polinômio e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.5: Estimativa do número esperado de tumores assumindo o $M_{BP(m)}^{PL}$. Análise variando o grau do polinômio e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.6: Estimativa do número esperado de tumores assumindo o $M_{BP(m)}^{Wishart}$. Análise variando o grau do polinômio e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.7: Estimativa do número esperado de tumores assumindo o $M_{BP(m)}^{RW}$. Análise variando o grau do polinômio e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.8: Estimativa do número esperado de tumores assumindo o $M_{PE(m)}^G$. Análise variando o tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.9: Estimativa do número esperado de tumores assumindo o $M_{PE(m)}^Z$. Análise variando o tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.10: Estimativa do número esperado de tumores assumindo o $M_{PE(m)}^{PL}$. Análise variando o tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.11: Estimativa do número esperado de tumores assumindo o $M_{PE(m)}^{Wishart}$. Análise variando o tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Figura A.12: Estimativa do número esperado de tumores assumindo o $M_{PE(m)}^{RW}$. Análise variando o tamanho da partição e usando a média, a mediana e moda *a posteriori*, e o estimador de Nelson-Aalen para o estudo de carcinogênese.

Apêndice B: Resultados auxiliares do estudo de simulação usando inferência clássica

Optou-se por apresentar neste apêndice um conjunto de resultados complementares dos estudo de simulação realizados nas Seção 4.2.1.

Tabela B.1: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{0.90,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.086	0.413	0.422	0.393	8.570	92.5
$M_{PE(5)}$		1.112	0.413	0.428	0.386	11.184	91.5
$M_{BP(10)}$		1.082	0.412	0.420	0.395	8.231	92.8
$M_{PE(10)}$	$\beta_1 = 1$	1.101	0.416	0.428	0.391	10.088	92.3
M_{coxph}		1.022	0.393	0.393	0.361	2.161	91.2
M_{gcmrec}		1.025	0.392	0.393	-	2.503	-
M_{PL}		1.053	0.391	0.394	0.375	5.295	92.3
$M_{BP(5)}$		-1.065	0.250	0.258	0.242	-6.489	93.7
$M_{PE(5)}$		-1.090	0.236	0.253	0.225	-8.990	91.9
$M_{BP(10)}$		-1.062	0.252	0.260	0.245	-6.174	94.1
$M_{PE(10)}$	$\beta_2 = -1$	-1.079	0.247	0.259	0.236	-7.915	92.8
M_{coxph}		-1.002	0.244	0.243	0.215	-0.215	90.4
M_{gcmrec}		-1.006	0.241	0.241	-	-0.572	-
M_{PL}		-1.033	0.233	0.236	0.225	-3.278	93.9
$M_{BP(5)}$		0.882	0.052	0.055	0.049	-1.945	90.5
$M_{PE(5)}$		0.875	0.042	0.049	0.038	-2.818	83.5
$M_{BP(10)}$		0.883	0.055	0.057	0.051	-1.836	90.8
$M_{PE(10)}$	$\alpha = 0.9$	0.878	0.048	0.053	0.045	-2.411	87.8
M_{coxph}		0.903	0.053	0.053	0.038	0.281	83.6
M_{gcmrec}		0.901	0.051	0.051	-	0.144	-
M_{PL}		0.891	0.042	0.043	0.041	-0.953	91.8
$M_{BP(5)}$		0.690	0.120	0.122	0.659	3.561	94.0
$M_{PE(5)}$		0.678	0.114	0.114	0.479	1.655	92.3
$M_{BP(10)}$		0.692	0.122	0.125	0.589	3.846	93.2
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.684	0.119	0.120	0.550	2.543	93.0
M_{coxph}		0.720	0.122	0.133	-	8.032	-
M_{gcmrec}		0.719	0.121	0.131	-	7.815	-
M_{PL}		0.703	0.113	0.118	0.558	5.456	94.9

Tabela B.2: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{0.90,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.050	0.283	0.287	0.279	5.044	94.5
$M_{PE(5)}$		1.092	0.289	0.303	0.280	9.152	93.1
$M_{BP(10)}$		1.043	0.282	0.285	0.279	4.250	94.6
$M_{PE(10)}$	$\beta_1 = 1$	1.074	0.289	0.298	0.281	7.439	93.8
M_{coxph}		1.012	0.274	0.274	0.266	1.181	94.5
M_{gcmrec}		1.013	0.274	0.274	-	1.329	-
M_{PL}		1.025	0.273	0.274	0.271	2.535	94.9
$M_{BP(5)}$		-1.048	0.153	0.160	0.147	-4.790	94.3
$M_{PE(5)}$		-1.088	0.146	0.170	0.138	-8.814	89.6
$M_{BP(10)}$		-1.040	0.153	0.158	0.149	-3.953	94.5
$M_{PE(10)}$	$\beta_2 = -1$	-1.071	0.151	0.167	0.144	-7.111	92.7
M_{coxph}		-1.009	0.151	0.151	0.137	-0.903	91.9
M_{gcmrec}		-1.010	0.150	0.150	-	-1.049	-
M_{PL}		-1.023	0.145	0.147	0.140	-2.332	94.4
$M_{BP(5)}$		0.889	0.026	0.028	0.028	-1.228	93.4
$M_{PE(5)}$		0.878	0.022	0.031	0.022	-2.433	78.0
$M_{BP(10)}$		0.891	0.027	0.028	0.029	-0.978	94.4
$M_{PE(10)}$	$\alpha = 0.9$	0.883	0.025	0.030	0.026	-1.924	87.1
M_{coxph}		0.900	0.027	0.027	0.024	-0.035	90.6
M_{gcmrec}		0.899	0.026	0.026	-	-0.086	-
M_{PL}		0.896	0.023	0.023	0.026	-0.499	94.7
$M_{BP(5)}$		0.678	0.083	0.083	0.375	1.648	95.8
$M_{PE(5)}$		0.658	0.077	0.078	0.334	-1.279	94.1
$M_{BP(10)}$		0.682	0.083	0.085	0.384	2.268	95.8
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.667	0.081	0.081	0.356	0.010	95.3
M_{coxph}		0.696	0.083	0.088	-	4.383	-
M_{gcmrec}		0.696	0.083	0.088	-	4.414	-
M_{PL}		0.688	0.079	0.082	0.371	3.231	96.0

Figura B.1: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{0.90,0.9} \in S_{2,50}^{0.90,0.9}$.

Tabela B.3: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{0.90,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.057	0.311	0.316	0.294	5.657	91.7
$M_{PE(5)}$		1.082	0.304	0.315	0.281	8.220	89.5
$M_{BP(10)}$		1.050	0.347	0.350	0.295	4.962	91.7
$M_{PE(10)}$	$\beta_1 = 1$	1.069	0.309	0.316	0.290	6.856	91.8
M_{coxph}		0.994	0.298	0.298	0.265	-0.571	89.4
M_{gcmrec}		1.002	0.300	0.300	-	0.202	-
M_{PL}		1.026	0.298	0.299	0.275	2.618	91.3
$M_{BP(5)}$		-1.059	0.217	0.225	0.196	-5.943	91.1
$M_{PE(5)}$		-1.085	0.197	0.215	0.174	-8.533	88.7
$M_{BP(10)}$		-1.055	0.225	0.232	0.198	-5.488	91.7
$M_{PE(10)}$	$\beta_2 = -1$	-1.072	0.211	0.222	0.188	-7.160	90.3
M_{coxph}		-0.997	0.208	0.208	0.167	0.253	87.2
M_{gcmrec}		-1.005	0.206	0.206	-	-0.460	-
M_{PL}		-1.027	0.193	0.195	0.176	-2.749	91.8
$M_{BP(5)}$		0.884	0.048	0.051	0.048	-1.724	89.8
$M_{PE(5)}$		0.877	0.041	0.047	0.037	-2.587	83.2
$M_{BP(10)}$		0.886	0.061	0.063	0.049	-1.510	89.2
$M_{PE(10)}$	$\alpha = 0.9$	0.881	0.046	0.049	0.044	-2.127	87.7
M_{coxph}		0.903	0.047	0.047	0.037	0.372	83.1
M_{gcmrec}		0.901	0.046	0.046	-	0.107	-
M_{PL}		0.893	0.041	0.041	0.039	-0.759	89.7
$M_{BP(5)}$		0.873	0.096	0.097	0.908	1.905	80.5
$M_{PE(5)}$		0.866	0.095	0.096	0.792	1.050	77.7
$M_{BP(10)}$		0.874	0.096	0.098	0.973	2.020	80.1
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.870	0.095	0.096	0.885	1.488	78.9
M_{coxph}		0.897	0.089	0.098	-	4.661	-
M_{gcmrec}		0.894	0.092	0.099	-	4.297	-
M_{PL}		0.886	0.090	0.094	1.254	3.321	79.3

Tabela B.4: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{0.90,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.039	0.225	0.228	0.207	3.947	91.9
$M_{PE(5)}$		1.080	0.224	0.237	0.204	7.985	90.9
$M_{BP(10)}$		1.032	0.225	0.227	0.208	3.161	92.4
$M_{PE(10)}$	$\beta_1 = 1$	1.062	0.225	0.234	0.207	6.219	91.7
M_{coxph}		1.001	0.219	0.219	0.193	0.080	91.0
M_{gcmrec}		1.004	0.219	0.219	-	0.377	-
M_{PL}		1.017	0.213	0.214	0.199	1.717	92.5
$M_{BP(5)}$		-1.037	0.132	0.137	0.122	-3.715	93.0
$M_{PE(5)}$		-1.078	0.119	0.142	0.108	-7.790	87.7
$M_{BP(10)}$		-1.029	0.133	0.136	0.124	-2.911	93.8
$M_{PE(10)}$	$\beta_2 = -1$	-1.060	0.128	0.141	0.117	-6.002	92.3
M_{coxph}		-0.998	0.131	0.131	0.108	0.169	89.2
M_{gcmrec}		-1.001	0.129	0.129	-	-0.123	-
M_{PL}		-1.015	0.121	0.121	0.113	-1.534	93.0
$M_{BP(5)}$		0.890	0.027	0.028	0.028	-1.071	93.3
$M_{PE(5)}$		0.879	0.021	0.030	0.022	-2.292	80.6
$M_{BP(10)}$		0.893	0.027	0.028	0.030	-0.827	95.3
$M_{PE(10)}$	$\alpha = 0.9$	0.884	0.025	0.030	0.026	-1.762	89.6
M_{coxph}		0.901	0.027	0.027	0.024	0.114	87.5
M_{gcmrec}		0.900	0.026	0.026	-	0.013	-
M_{PL}		0.896	0.023	0.023	0.025	-0.434	94.9
$M_{BP(5)}$		0.869	0.068	0.069	0.668	1.333	93.7
$M_{PE(5)}$		0.853	0.066	0.067	0.548	-0.534	91.5
$M_{BP(10)}$		0.872	0.068	0.069	0.696	1.693	94.2
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.860	0.068	0.068	0.603	0.277	92.1
M_{coxph}		0.884	0.067	0.072	-	3.089	-
M_{gcmrec}		0.883	0.065	0.070	-	3.028	-
M_{PL}		0.877	0.063	0.066	0.691	2.275	94.3

Figura B.2: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{0.90,0.9} \in S_{6,50}^{0.90,0.9}$.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.077	0.222	0.235	0.214	7.73	93.9
$M_{PE(5)}$		1.100	0.218	0.240	0.205	10.01	91.9
$M_{BP(10)}$		1.075	0.222	0.234	0.214	7.46	94.6
$M_{PE(10)}$	$\beta_1 = 1$	1.089	0.222	0.239	0.211	8.89	92.3
M_{coxph}		1.044	0.216	0.220	0.215	4.40	95.7
M_{gcmrec}		1.044	0.216	0.220	0.215	4.40	95.7
M_{PL}		1.049	0.209	0.214	0.206	4.94	94.2
$M_{BP(5)}$		-1.087	0.153	0.176	0.146	-8.66	92.8
$M_{PE(5)}$		-1.111	0.143	0.180	0.133	-11.07	88.4
$M_{BP(10)}$		-1.084	0.154	0.176	0.148	-8.39	93.3
$M_{PE(10)}$	$\beta_2 = -1$	-1.099	0.152	0.181	0.142	-9.87	91.4
M_{coxph}		-1.053	0.149	0.158	0.147	-5.34	94.9
M_{gcmrec}		-1.053	0.149	0.158	0.147	-5.34	94.9
M_{PL}		-1.059	0.139	0.151	0.136	-5.95	93.9
$M_{BP(5)}$		0.879	0.033	0.039	0.036	-2.32	90.7
$M_{PE(5)}$		0.873	0.029	0.040	0.031	-2.98	85.0
$M_{BP(10)}$		0.880	0.034	0.039	0.036	-2.25	91.5
$M_{PE(10)}$	$\alpha = 0.9$	0.876	0.033	0.040	0.035	-2.66	89.3
M_{coxph}		0.888	0.033	0.035	0.037	-1.36	95.4
M_{gcmrec}		0.888	0.033	0.035	0.032	-1.36	90.5
M_{PL}		0.886	0.029	0.032	0.032	-1.54	94.1

Tabela B.5: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S^{0.90,0.9}_{\infty,30}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.044	0.145	0.151	0.144	4.362	94.8
$M_{PE(5)}$		1.077	0.144	0.163	0.138	7.652	91.8
$M_{BP(10)}$		1.039	0.145	0.151	0.145	3.907	94.7
$M_{PE(10)}$	$\beta_1 = 1$	1.059	0.146	0.157	0.143	5.936	93.3
M_{coxph}		1.023	0.143	0.145	0.145	2.271	95.3
M_{gcmrec}		1.023	0.143	0.145	0.145	2.271	95.3
M_{PL}		1.030	0.141	0.144	0.141	2.995	94.8
$M_{BP(5)}$		-1.040	0.093	0.102	0.093	-4.015	93.8
$M_{PE(5)}$		-1.074	0.085	0.113	0.082	-7.422	85.8
$M_{BP(10)}$		-1.035	0.094	0.100	0.094	-3.543	94.6
$M_{PE(10)}$	$\beta_2 = -1$	-1.056	0.091	0.107	0.089	-5.635	91.6
M_{coxph}		-1.019	0.092	0.094	0.094	-1.873	95.7
M_{gcmrec}		-1.019	0.092	0.094	0.094	-1.873	95.7
M_{PL}		-1.026	0.086	0.090	0.087	-2.620	95.1
$M_{BP(5)}$		0.890	0.020	0.022	0.022	-1.092	94.2
$M_{PE(5)}$		0.882	0.017	0.025	0.019	-1.996	82.2
$M_{BP(10)}$		0.891	0.020	0.022	0.023	-0.968	95.3
$M_{PE(10)}$	$\alpha = 0.9$	0.886	0.019	0.024	0.021	-1.524	90.1
M_{coxph}		0.895	0.020	0.020	0.023	-0.516	96.1
M_{gcmrec}		0.895	0.020	0.020	0.020	-0.516	93.1
M_{PL}		0.893	0.018	0.019	0.021	-0.734	93.9

Tabela B.6: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S^{0.90,0.9}_{\infty,50}$:

Figura B.3: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S^{0.90,0.9}_{\infty,30} \in S^{0.90,0.9}_{\infty,50}$.

Tabela B.7: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{0.90,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.060	0.331	0.336	0.297	6.034	92.2
$M_{PE(5)}$		0.872	0.268	0.297	0.250	-12.780	88.2
$M_{BP(10)}$		1.062	0.331	0.336	0.298	6.212	92.1
$M_{PE(10)}$	$\beta_1 = 1$	0.992	0.305	0.305	0.280	-0.830	92.5
M_{coxph}		1.035	0.323	0.324	0.285	3.494	91.5
M_{gcmrec}		1.034	0.322	0.324	-	3.417	-
M_{PL}		1.047	0.319	0.323	0.289	4.698	92.4
$M_{BP(5)}$		-1.030	0.165	0.168	0.157	-3.008	93.2
$M_{PE(5)}$		-0.849	0.124	0.196	0.128	15.102	75.6
$M_{BP(10)}$		-1.031	0.165	0.168	0.157	-3.117	93.9
$M_{PE(10)}$	$\beta_2 = -1$	-0.964	0.146	0.150	0.146	3.585	93.2
M_{coxph}		-1.006	0.163	0.163	0.145	-0.599	91.3
M_{gcmrec}		-1.006	0.161	0.161	-	-0.556	-
M_{PL}		-1.017	0.152	0.153	0.147	-1.708	93.4
$M_{BP(5)}$		0.892	0.030	0.031	0.029	-0.938	93.2
$M_{PE(5)}$		0.938	0.021	0.044	0.024	4.253	55.4
$M_{BP(10)}$		0.891	0.030	0.031	0.030	-0.979	93.6
$M_{PE(10)}$	$\alpha = 0.9$	0.908	0.026	0.027	0.027	0.849	93.4
M_{coxph}		0.898	0.029	0.029	0.025	-0.210	89.0
M_{gcmrec}		0.898	0.029	0.029	-	-0.203	-
M_{PL}		0.895	0.023	0.023	0.024	-0.567	95.3
$M_{BP(5)}$		0.685	0.089	0.091	0.406	2.720	95.7
$M_{PE(5)}$		0.767	0.082	0.129	0.495	15.057	89.7
$M_{BP(10)}$		0.685	0.089	0.090	0.407	2.704	95.6
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.714	0.085	0.097	0.429	7.078	96.1
M_{coxph}		0.697	0.089	0.094	-	4.504	-
M_{gcmrec}		0.698	0.088	0.094	-	4.651	-
M_{PL}		0.689	0.082	0.085	0.385	3.398	95.4

Tabela B.8: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{0.90,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.044	0.226	0.231	0.220	4.370	94.6
$M_{PE(5)}$		0.866	0.181	0.225	0.183	-13.352	85.6
$M_{BP(10)}$		1.045	0.227	0.231	0.220	4.506	94.5
$M_{PE(10)}$	$\beta_1 = 1$	0.982	0.209	0.210	0.207	-1.765	93.8
M_{coxph}		1.018	0.222	0.223	0.206	1.789	93.9
M_{gcmrec}		1.020	0.222	0.222	-	1.976	-
M_{PL}		1.033	0.217	0.219	0.210	3.323	94.1
$M_{BP(5)}$		-1.028	0.140	0.143	0.130	-2.802	93.4
$M_{PE(5)}$		-0.852	0.104	0.181	0.105	14.833	67.9
$M_{BP(10)}$		-1.030	0.142	0.145	0.131	-2.964	93.0
$M_{PE(10)}$	$\beta_2 = -1$	-0.967	0.125	0.130	0.121	3.276	92.1
M_{coxph}		-1.003	0.139	0.139	0.115	-0.268	90.2
M_{gcmrec}		-1.005	0.138	0.138	-	-0.452	-
M_{PL}		-1.017	0.126	0.127	0.117	-1.740	93.1
$M_{BP(5)}$		0.893	0.028	0.029	0.029	-0.781	94.1
$M_{PE(5)}$		0.937	0.020	0.042	0.023	4.131	55.3
$M_{BP(10)}$		0.893	0.028	0.029	0.029	-0.818	94.1
$M_{PE(10)}$	$\alpha = 0.9$	0.908	0.024	0.026	0.027	0.870	92.6
M_{coxph}		0.900	0.027	0.027	0.023	-0.035	88.5
M_{gcmrec}		0.899	0.027	0.027	-	-0.092	-
M_{PL}		0.896	0.023	0.023	0.024	-0.493	94.2
$M_{BP(5)}$		0.871	0.071	0.072	0.791	1.646	93.3
$M_{PE(5)}$		0.933	0.052	0.092	1.817	8.826	96.2
$M_{BP(10)}$		0.871	0.071	0.072	0.719	1.612	93.4
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.894	0.064	0.074	0.982	4.250	94.9
M_{coxph}		0.881	0.070	0.074	-	2.828	-
M_{gcmrec}		0.881	0.068	0.073	-	2.812	-
M_{PL}		0.875	0.066	0.068	0.674	2.065	93.7

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.033	0.159	0.162	0.152	3.261	93.0
$M_{PE(5)}$		0.898	0.133	0.168	0.145	-10.174	90.3
$M_{BP(10)}$		1.035	0.160	0.164	0.152	3.473	92.8
$M_{PE(10)}$	$\beta_1 = 1$	1.030	0.159	0.162	0.152	2.962	93.1
M_{coxph}		1.019	0.157	0.158	0.152	1.856	93.5
M_{gcmrec}		1.019	0.157	0.158	0.152	1.856	93.5
M_{PL}		1.024	0.152	0.154	0.146	2.394	93.8
$M_{BP(5)}$		-1.039	0.104	0.111	0.099	-3.902	93.4
$M_{PE(5)}$		-0.900	0.078	0.126	0.087	9.950	79.7
$M_{BP(10)}$		-1.041	0.104	0.112	0.099	-4.057	93.0
$M_{PE(10)}$	$\beta_2 = -1$	-1.035	0.103	0.109	0.099	-3.545	94.0
M_{coxph}		-1.024	0.102	0.105	0.099	-2.444	94.9
M_{gcmrec}		-1.024	0.102	0.105	0.099	-2.444	94.9
M_{PL}		-1.030	0.093	0.098	0.090	-3.017	94.2
$M_{BP(5)}$		0.892	0.020	0.022	0.022	-0.885	93.8
$M_{PE(5)}$		0.923	0.016	0.028	0.019	2.610	73.6
$M_{BP(10)}$		0.892	0.021	0.022	0.022	-0.928	93.5
$M_{PE(10)}$	$\alpha = 0.9$	0.893	0.020	0.022	0.022	-0.807	93.7
M_{coxph}		0.895	0.020	0.021	0.022	-0.520	94.5
M_{gcmrec}		0.895	0.020	0.021	0.020	-0.520	91.5
M_{PL}		0.894	0.018	0.019	0.019	-0.671	93.9

Tabela B.9: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S^{0.90,2}_{\infty,50}$:

Tabela B.10: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.044	0.378	0.380	0.353	4.371	93.5
$M_{PE(5)}$		1.071	0.386	0.392	0.357	7.115	92.8
$M_{BP(10)}$		1.043	0.378	0.380	0.353	4.285	93.3
$M_{PE(10)}$	$\beta_1 = 1$	1.054	0.383	0.387	0.355	5.400	93.0
M_{coxph}		1.022	0.373	0.373	0.345	2.172	92.3
M_{gcmrec}		1.021	0.372	0.373	-	2.089	-
M_{PL}		1.031	0.368	0.369	0.346	3.114	93.1
$M_{BP(5)}$		-1.027	0.226	0.228	0.206	-2.691	92.3
$M_{PE(5)}$		-1.054	0.228	0.235	0.205	-5.407	92.2
$M_{BP(10)}$		-1.025	0.226	0.227	0.207	-2.548	92.8
$M_{PE(10)}$	$\beta_2 = -1$	-1.037	0.230	0.232	0.206	-3.688	92.2
M_{coxph}		-1.005	0.223	0.223	0.200	-0.462	92.5
M_{gcmrec}		-1.004	0.222	0.222	-	-0.388	-
M_{PL}		-1.015	0.215	0.216	0.199	-1.536	93.2
$M_{BP(5)}$		0.997	0.017	0.017	0.014	-0.291	93.8
$M_{PE(5)}$		0.993	0.015	0.017	0.012	-0.689	91.2
$M_{BP(10)}$		0.997	0.017	0.018	0.014	-0.269	93.7
$M_{PE(10)}$	$\alpha = 1$	0.996	0.017	0.017	0.014	-0.431	92.2
M_{coxph}		1.001	0.018	0.018	0.013	0.099	90.0
M_{gcmrec}		1.001	0.017	0.017	-	0.103	-
M_{PL}		0.999	0.014	0.014	0.011	-0.130	94.0
$M_{BP(5)}$		0.699	0.096	0.101	0.453	4.812	93.9
$M_{PE(5)}$		0.687	0.094	0.096	0.416	3.083	93.9
$M_{BP(10)}$		0.700	0.096	0.102	0.443	4.926	94.2
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.695	0.096	0.100	0.435	4.245	93.5
M_{coxph}		0.708	0.097	0.105	-	6.212	-
M_{gcmrec}		0.709	0.096	0.105	-	6.409	-
M_{PL}		0.702	0.092	0.099	0.423	5.275	94.3

Tabela B.11: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.020	0.269	0.270	0.254	1.997	93.2
$M_{PE(5)}$		1.054	0.275	0.280	0.258	5.387	93.3
$M_{BP(10)}$		1.017	0.268	0.268	0.254	1.715	93.5
$M_{PE(10)}$	$\beta_1 = 1$	1.037	0.273	0.276	0.256	3.665	93.1
M_{coxph}		1.008	0.266	0.266	0.253	0.753	93.3
M_{gcmrec}		1.006	0.265	0.265	-	0.584	-
M_{PL}		1.013	0.266	0.266	0.251	1.263	92.6
$M_{BP(5)}$		-1.011	0.133	0.134	0.125	-1.092	93.1
$M_{PE(5)}$		-1.044	0.135	0.141	0.124	-4.363	92.2
$M_{BP(10)}$		-1.008	0.132	0.133	0.126	-0.810	93.6
$M_{PE(10)}$	$\beta_2 = -1$	-1.027	0.135	0.138	0.125	-2.663	93.6
M_{coxph}		-0.999	0.131	0.131	0.124	0.077	93.4
M_{gcmrec}		-0.998	0.130	0.130	-	0.247	-
M_{PL}		-1.004	0.129	0.129	0.122	-0.394	93.6
$M_{BP(5)}$		0.998	0.008	0.008	0.008	-0.182	94.7
$M_{PE(5)}$		0.994	0.007	0.010	0.007	-0.609	83.1
$M_{BP(10)}$		0.999	0.008	0.008	0.008	-0.145	95.4
$M_{PE(10)}$	$\alpha = 1$	0.996	0.008	0.009	0.008	-0.392	91.6
M_{coxph}		1.000	0.008	0.008	0.008	-0.029	93.5
M_{gcmrec}		1.000	0.008	0.008	-	-0.006	-
M_{PL}		0.999	0.007	0.007	0.007	-0.091	95.4
$M_{BP(5)}$		0.689	0.070	0.073	0.320	3.387	93.7
$M_{PE(5)}$		0.676	0.068	0.068	0.306	1.334	94.4
$M_{BP(10)}$		0.691	0.070	0.074	0.322	3.577	93.7
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.683	0.070	0.071	0.315	2.421	94.2
M_{coxph}		0.692	0.071	0.075	-	3.801	-
M_{gcmrec}		0.695	0.070	0.075	-	4.272	-
M_{PL}		0.691	0.068	0.072	0.315	3.678	93.8

Figura B.4: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{1.00,0.9} \in S_{2,50}^{1.00,0.9}$.

Tabela B.12: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.039	0.276	0.279	0.251	3.892	92.3
$M_{PE(5)}$		1.069	0.280	0.288	0.253	6.901	91.6
$M_{BP(10)}$		1.037	0.276	0.278	0.251	3.664	92.0
$M_{PE(10)}$	$\beta_1 = 1$	1.050	0.278	0.283	0.252	4.966	92.0
M_{coxph}		1.017	0.273	0.274	0.242	1.679	91.0
M_{gcmrec}		1.017	0.273	0.273	-	1.726	-
M_{PL}		1.030	0.266	0.267	0.244	2.996	92.3
$M_{BP(5)}$		-1.019	0.157	0.158	0.154	-1.938	93.8
$M_{PE(5)}$		-1.049	0.158	0.165	0.151	-4.936	92.1
$M_{BP(10)}$		-1.017	0.156	0.157	0.155	-1.698	94.2
$M_{PE(10)}$	$\beta_2 = -1$	-1.030	0.159	0.162	0.154	-3.014	93.3
M_{coxph}		-0.998	0.155	0.155	0.145	0.248	92.0
M_{gcmrec}		-0.998	0.154	0.154	-	0.225	-
M_{PL}		-1.011	0.147	0.148	0.145	-1.095	93.5
$M_{BP(5)}$		0.997	0.016	0.016	0.013	-0.257	92.8
$M_{PE(5)}$		0.993	0.015	0.016	0.012	-0.693	88.8
$M_{BP(10)}$		0.998	0.017	0.017	0.014	-0.217	92.9
$M_{PE(10)}$	$\alpha = 1$	0.996	0.016	0.017	0.013	-0.413	91.4
M_{coxph}		1.001	0.016	0.016	0.012	0.099	88.8
M_{gcmrec}		1.001	0.016	0.016	-	0.085	-
M_{PL}		0.999	0.012	0.012	0.011	-0.133	94.2
$M_{BP(5)}$		0.882	0.070	0.074	0.845	2.919	93.5
$M_{PE(5)}$		0.872	0.071	0.072	0.658	1.790	91.7
$M_{BP(10)}$		0.883	0.070	0.075	0.793	3.036	93.5
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.879	0.071	0.074	0.763	2.543	92.4
M_{coxph}		0.890	0.069	0.076	-	3.868	-
M_{gcmrec}		0.890	0.068	0.075	-	3.827	-
M_{PL}		0.884	0.066	0.071	0.891	3.142	93.6

Tabela B.13: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.014	0.179	0.180	0.179	1.445	94.6
$M_{PE(5)}$		1.050	0.183	0.189	0.182	5.005	95.0
$M_{BP(10)}$		1.012	0.179	0.179	0.179	1.171	95.0
$M_{PE(10)}$	$\beta_1 = 1$	1.030	0.183	0.185	0.181	2.962	94.6
M_{coxph}		1.003	0.178	0.178	0.176	0.335	94.4
M_{gcmrec}		1.003	0.178	0.178	-	0.259	-
M_{PL}		1.009	0.176	0.176	0.176	0.941	94.9
$M_{BP(5)}$		-1.009	0.103	0.104	0.096	-0.869	93.7
$M_{PE(5)}$		-1.044	0.100	0.110	0.093	-4.404	91.1
$M_{BP(10)}$		-1.006	0.103	0.104	0.096	-0.626	93.6
$M_{PE(10)}$	$\beta_2 = -1$	-1.024	0.104	0.107	0.096	-2.372	91.4
M_{coxph}		-0.998	0.103	0.103	0.092	0.241	92.1
M_{gcmrec}		-0.997	0.103	0.103	-	0.316	-
M_{PL}		-1.004	0.097	0.097	0.091	-0.360	93.3
$M_{BP(5)}$		0.999	0.008	0.008	0.008	-0.119	94.6
$M_{PE(5)}$		0.994	0.007	0.009	0.007	-0.569	84.9
$M_{BP(10)}$		0.999	0.008	0.008	0.008	-0.083	95.3
$M_{PE(10)}$	$\alpha = 1$	0.997	0.008	0.009	0.008	-0.312	91.7
M_{coxph}		1.000	0.008	0.008	0.007	0.026	92.2
M_{gcmrec}		1.000	0.008	0.008	-	0.035	-
M_{PL}		0.999	0.007	0.007	0.007	-0.056	93.8
$M_{BP(5)}$		0.873	0.050	0.052	0.479	1.856	97.8
$M_{PE(5)}$		0.861	0.050	0.050	0.437	0.447	97.2
$M_{BP(10)}$		0.874	0.050	0.053	0.485	1.984	97.4
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.868	0.050	0.052	0.467	1.279	97.8
M_{coxph}		0.877	0.050	0.054	-	2.339	-
M_{gcmrec}		0.878	0.050	0.054	-	2.381	-
M_{PL}		0.874	0.049	0.052	0.463	1.928	96.6

Figura B.5: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{1.00,0.9} \in S_{6,50}^{1.00,0.9}$.

Tabela B.14: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.052	0.180	0.188	0.173	5.177	94.3
$M_{PE(5)}$		1.079	0.183	0.199	0.170	7.851	91.7
$M_{BP(10)}$		1.050	0.180	0.187	0.174	5.048	94.7
$M_{PE(10)}$	$\beta_1 = 1$	1.052	0.181	0.188	0.174	5.219	94.3
M_{coxph}		1.035	0.179	0.182	0.174	3.541	95.1
M_{gcmrec}		1.035	0.179	0.182	0.174	3.541	95.1
M_{PL}		1.044	0.172	0.178	0.167	4.372	95.4
$M_{BP(5)}$		-1.037	0.114	0.120	0.113	-3.701	94.5
$M_{PE(5)}$		-1.064	0.115	0.131	0.109	-6.387	90.6
$M_{BP(10)}$		-1.035	0.114	0.120	0.114	-3.542	94.3
$M_{PE(10)}$	$\beta_2 = -1$	-1.037	0.115	0.121	0.114	-3.740	94.6
M_{coxph}		-1.021	0.113	0.115	0.114	-2.095	95.0
M_{gcmrec}		-1.021	0.113	0.115	0.114	-2.095	95.0
M_{PL}		-1.028	0.106	0.110	0.105	-2.831	94.8
$M_{BP(5)}$		0.996	0.011	0.011	0.011	-0.362	94.0
$M_{PE(5)}$		0.993	0.011	0.013	0.010	-0.688	89.4
$M_{BP(10)}$		0.997	0.011	0.012	0.011	-0.342	94.3
$M_{PE(10)}$	$\alpha = 1$	0.996	0.011	0.012	0.011	-0.366	93.8
M_{coxph}		0.998	0.011	0.011	0.011	-0.157	94.9
M_{gcmrec}		0.998	0.011	0.011	0.011	-0.157	94.6
M_{PL}		0.997	0.010	0.010	0.010	-0.267	93.6

Tabela B.15: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,50}^{1.00,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.016	0.111	0.112	0.110	1.583	95.1
$M_{PE(5)}$		1.045	0.112	0.121	0.108	4.529	93.6
$M_{BP(10)}$		1.014	0.111	0.112	0.111	1.429	95.3
$M_{PE(10)}$	$\beta_1 = 1$	1.016	0.111	0.112	0.111	1.603	95.3
M_{coxph}		1.008	0.110	0.110	0.111	0.758	95.2
M_{gcmrec}		1.008	0.110	0.110	0.111	0.758	95.2
M_{PL}		1.012	0.107	0.108	0.107	1.176	95.4
$M_{BP(5)}$		-1.016	0.074	0.075	0.071	-1.556	93.9
$M_{PE(5)}$		-1.046	0.071	0.085	0.067	-4.572	87.9
$M_{BP(10)}$		-1.013	0.074	0.075	0.071	-1.321	93.7
$M_{PE(10)}$	$\beta_2 = -1$	-1.015	0.074	0.076	0.071	-1.509	93.5
M_{coxph}		-1.006	0.074	0.074	0.071	-0.621	94.1
M_{gcmrec}		-1.006	0.074	0.074	0.071	-0.621	94.1
M_{PL}		-1.010	0.066	0.067	0.065	-0.994	95.0
$M_{BP(5)}$		0.998	0.007	0.007	0.006	-0.150	93.0
$M_{PE(5)}$		0.995	0.006	0.008	0.006	-0.480	86.0
$M_{BP(10)}$		0.999	0.007	0.007	0.007	-0.117	93.9
$M_{PE(10)}$	$\alpha = 1$	0.999	0.007	0.007	0.007	-0.140	93.0
M_{coxph}		1.000	0.007	0.007	0.007	-0.044	94.0
M_{gcmrec}		1.000	0.007	0.007	0.007	-0.044	93.9
M_{PL}		0.999	0.006	0.006	0.006	-0.086	94.1

Figura B.6: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S_{\infty,30}^{1.00,0.9} \in S_{\infty,50}^{1.00,0.9}$.

Tabela B.16: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{1.00,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.015	0.280	0.280	0.270	1.476	93.8
$M_{PE(5)}$		0.908	0.248	0.265	0.247	-9.237	92.7
$M_{BP(10)}$		1.015	0.280	0.280	0.270	1.497	93.7
$M_{PE(10)}$	$\beta_1 = 1$	0.977	0.268	0.269	0.262	-2.276	93.7
M_{coxph}		1.006	0.278	0.278	0.270	0.613	93.2
M_{gcmrec}		1.007	0.294	0.294	-	0.707	-
M_{PL}		1.012	0.275	0.275	0.267	1.179	93.9
$M_{BP(5)}$		-1.014	0.140	0.141	0.133	-1.390	93.9
$M_{PE(5)}$		-0.909	0.118	0.149	0.120	9.140	86.9
$M_{BP(10)}$		-1.014	0.141	0.141	0.134	-1.407	94.3
$M_{PE(10)}$	$\beta_2 = -1$	-0.977	0.132	0.134	0.129	2.312	93.3
M_{coxph}		-1.007	0.141	0.141	0.132	-0.663	93.6
M_{gcmrec}		-1.007	0.152	0.152	-	-0.696	-
M_{PL}		-1.011	0.138	0.138	0.129	-1.086	92.9
$M_{BP(5)}$		0.999	0.008	0.008	0.008	-0.077	93.0
$M_{PE(5)}$		1.011	0.007	0.013	0.007	1.120	59.9
$M_{BP(10)}$		0.999	0.009	0.009	0.008	-0.075	93.4
$M_{PE(10)}$	$\alpha = 1$	1.003	0.008	0.009	0.008	0.327	91.9
M_{coxph}		1.000	0.009	0.009	0.008	0.022	92.0
M_{gcmrec}		1.001	0.009	0.009	-	0.051	-
M_{PL}		1.000	0.007	0.007	0.007	-0.035	94.1
$M_{BP(5)}$		0.692	0.074	0.078	0.342	3.842	93.8
$M_{PE(5)}$		0.726	0.072	0.093	0.362	8.894	89.4
$M_{BP(10)}$		0.693	0.074	0.079	0.343	3.877	93.7
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.705	0.073	0.083	0.349	5.742	92.1
M_{coxph}		0.693	0.076	0.080	-	3.891	-
M_{gcmrec}		0.696	0.076	0.081	-	4.417	-
M_{PL}		0.693	0.072	0.077	0.335	3.886	93.5

Tabela B.17: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{1.00,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.005	0.199	0.199	0.189	0.495	93.4
$M_{PE(5)}$		0.904	0.181	0.205	0.171	-9.601	88.6
$M_{BP(10)}$		1.005	0.199	0.199	0.189	0.512	93.3
$M_{PE(10)}$	$\beta_1 = 1$	0.972	0.192	0.194	0.183	-2.801	92.3
M_{coxph}		0.996	0.199	0.199	0.186	-0.411	92.6
M_{gcmrec}		0.995	0.199	0.199	-	-0.520	-
M_{PL}		1.004	0.196	0.195	0.185	0.372	92.3
$M_{BP(5)}$		-1.007	0.105	0.105	0.101	-0.735	93.8
$M_{PE(5)}$		-0.909	0.090	0.128	0.090	9.096	79.2
$M_{BP(10)}$		-1.007	0.106	0.106	0.102	-0.745	93.8
$M_{PE(10)}$	$\beta_2 = -1$	-0.975	0.099	0.102	0.098	2.482	93.2
M_{coxph}		-0.999	0.106	0.106	0.098	0.105	92.2
M_{gcmrec}		-0.998	0.105	0.105	-	0.214	-
M_{PL}		-1.006	0.100	0.100	0.095	-0.628	93.5
$M_{BP(5)}$		0.999	0.007	0.008	0.008	-0.050	95.8
$M_{PE(5)}$		1.010	0.007	0.012	0.007	1.046	62.6
$M_{BP(10)}$		1.000	0.008	0.008	0.008	-0.047	96.0
$M_{PE(10)}$	$\alpha = 1$	1.003	0.007	0.008	0.007	0.301	94.0
M_{coxph}		1.001	0.008	0.008	0.007	0.055	93.6
M_{gcmrec}		1.001	0.008	0.008	-	0.070	-
M_{PL}		1.000	0.007	0.007	0.007	-0.041	94.7
$M_{BP(5)}$		0.877	0.055	0.058	0.513	2.349	96.1
$M_{PE(5)}$		0.902	0.050	0.067	0.648	5.198	94.9
$M_{BP(10)}$		0.878	0.055	0.058	0.530	2.380	95.9
$M_{PE(10)}$	$\zeta_{\nu}/(1+\zeta_{\nu})=0.857$	0.886	0.053	0.060	0.575	3.384	95.3
M_{coxph}		0.880	0.055	0.060	-	2.717	-
M_{gcmrec}		0.881	0.054	0.059	-	2.814	-
M_{PL}		0.877	0.053	0.057	0.488	2.264	95.6

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.017	0.111	0.112	0.116	1.676	96.5
$M_{PE(5)}$		0.932	0.098	0.120	0.112	-6.845	92.8
$M_{BP(10)}$		1.017	0.111	0.112	0.116	1.745	96.5
$M_{PE(10)}$	$\beta_1 = 1$	1.014	0.111	0.112	0.117	1.422	96.6
M_{coxph}		1.010	0.110	0.111	0.117	0.975	96.8
M_{gcmrec}		1.010	0.110	0.111	0.117	0.975	96.8
M_{PL}		1.012	0.110	0.110	0.111	1.231	96.4
$M_{BP(5)}$		-1.019	0.079	0.081	0.075	-1.867	93.6
$M_{PE(5)}$		-0.930	0.067	0.097	0.068	7.018	81.7
$M_{BP(10)}$		-1.019	0.080	0.082	0.076	-1.934	93.5
$M_{PE(10)}$	$\beta_2 = -1$	-1.016	0.079	0.081	0.076	-1.592	94.0
M_{coxph}		-1.012	0.079	0.080	0.076	-1.173	93.8
M_{gcmrec}		-1.012	0.079	0.080	0.076	-1.173	93.8
M_{PL}		-1.014	0.072	0.073	0.068	-1.381	93.5
$M_{BP(5)}$		0.999	0.006	0.006	0.006	-0.133	94.7
$M_{PE(5)}$		1.008	0.006	0.009	0.006	0.751	75.0
$M_{BP(10)}$		0.999	0.006	0.007	0.007	-0.138	94.4
$M_{PE(10)}$	$\alpha = 1$	0.999	0.006	0.007	0.007	-0.107	95.2
M_{coxph}		0.999	0.007	0.007	0.007	-0.071	95.4
M_{gcmrec}		0.999	0.007	0.007	0.007	-0.071	95.1
M_{PL}		0.999	0.006	0.006	0.006	-0.092	94.1

Tabela B.18: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,50}^{1.00,2}$:

Tabela B.19: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,30}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.008	0.361	0.361	0.337	0.826	93.2
$M_{PE(5)}$		1.037	0.369	0.371	0.342	3.675	92.9
$M_{BP(10)}$		1.009	0.361	0.361	0.337	0.865	93.0
$M_{PE(10)}$	$\beta_1 = 1$	1.021	0.367	0.368	0.340	2.145	92.9
M_{coxph}		0.996	0.359	0.359	0.334	-0.448	92.8
M_{gcmrec}		0.994	0.358	0.358	-	-0.574	-
M_{PL}		1.005	0.353	0.353	0.333	0.521	93.4
$M_{BP(5)}$		-1.006	0.206	0.206	0.195	-0.585	93.6
$M_{PE(5)}$		-1.034	0.211	0.213	0.195	-3.389	93.5
$M_{BP(10)}$		-1.006	0.205	0.205	0.195	-0.588	93.7
$M_{PE(10)}$	$\beta_2 = -1$	-1.019	0.211	0.211	0.196	-1.881	93.6
M_{coxph}		-0.994	0.207	0.207	0.193	0.566	92.7
M_{gcmrec}		-0.993	0.206	0.206	-	0.684	-
M_{PL}		-1.002	0.200	0.200	0.190	-0.189	94.5
$M_{BP(5)}$		1.050	0.008	0.008	0.007	-0.039	95.1
$M_{PE(5)}$		1.047	0.007	0.008	0.006	-0.294	91.8
$M_{BP(10)}$		1.050	0.008	0.008	0.007	-0.038	95.9
$M_{PE(10)}$	$\alpha = 1.05$	1.048	0.008	0.008	0.007	-0.175	94.1
M_{coxph}		1.051	0.010	0.010	0.008	0.111	92.4
M_{gcmrec}		1.051	0.009	0.009	-	0.121	-
M_{PL}		1.050	0.007	0.007	0.006	0.010	94.9
$M_{BP(5)}$		0.707	0.091	0.100	0.415	6.078	92.7
$M_{PE(5)}$		0.697	0.090	0.095	0.401	4.505	92.8
$M_{BP(10)}$		0.708	0.092	0.100	0.418	6.138	92.4
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.703	0.092	0.098	0.411	5.381	92.3
M_{coxph}		0.712	0.094	0.105	-	6.868	-
M_{gcmrec}		0.715	0.092	0.104	-	7.185	-
M_{PL}		0.707	0.089	0.097	0.401	6.048	91.7

Tabela B.20: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.010	0.257	0.257	0.247	1.042	94.4
$M_{PE(5)}$		1.046	0.265	0.269	0.251	4.564	94.3
$M_{BP(10)}$		1.007	0.256	0.256	0.246	0.739	94.5
$M_{PE(10)}$	$\beta_1 = 1$	1.026	0.261	0.263	0.249	2.593	93.8
M_{coxph}		1.002	0.256	0.255	0.249	0.177	94.7
M_{gcmrec}		0.998	0.254	0.254	-	-0.162	-
M_{PL}		1.006	0.253	0.253	0.244	0.553	93.9
$M_{BP(5)}$		-1.008	0.127	0.127	0.121	-0.838	93.4
$M_{PE(5)}$		-1.043	0.129	0.136	0.120	-4.297	92.6
$M_{BP(10)}$		-1.006	0.126	0.126	0.122	-0.593	93.4
$M_{PE(10)}$	$\beta_2 = -1$	-1.024	0.131	0.133	0.121	-2.369	93.1
M_{coxph}		-1.001	0.127	0.127	0.122	-0.074	93.1
M_{gcmrec}		-0.997	0.126	0.126	-	0.253	-
M_{PL}		-1.004	0.123	0.123	0.118	-0.369	93.5
$M_{BP(5)}$		1.049	0.005	0.005	0.005	-0.058	95.0
$M_{PE(5)}$		1.046	0.004	0.006	0.004	-0.349	86.3
$M_{BP(10)}$		1.050	0.005	0.005	0.005	-0.028	95.0
$M_{PE(10)}$	$\alpha = 1.05$	1.048	0.005	0.005	0.005	-0.199	93.0
M_{coxph}		1.050	0.006	0.006	0.005	0.019	94.0
M_{gcmrec}		1.050	0.006	0.006	-	0.046	-
M_{PL}		1.050	0.005	0.005	0.004	-0.003	95.4
$M_{BP(5)}$		0.693	0.068	0.073	0.308	3.965	93.4
$M_{PE(5)}$		0.680	0.067	0.068	0.297	1.933	94.6
$M_{BP(10)}$		0.694	0.068	0.073	0.310	4.126	93.1
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.687	0.068	0.071	0.304	3.096	93.9
M_{coxph}		0.692	0.070	0.074	-	3.762	-
M_{gcmrec}		0.698	0.068	0.075	-	4.758	-
M_{PL}		0.694	0.067	0.072	0.304	4.059	93.3

Figura B.7: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{2,30}^{1.05,0.9} \in S_{2,50}^{1.05,0.9}$.

Tabela B.21: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,30}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.014	0.254	0.255	0.233	1.437	92.2
$M_{PE(5)}$		1.044	0.261	0.264	0.236	4.447	91.6
$M_{BP(10)}$		1.014	0.254	0.255	0.233	1.436	91.9
$M_{PE(10)}$	$\beta_1 = 1$	1.027	0.258	0.260	0.235	2.713	91.7
M_{coxph}		1.001	0.255	0.255	0.227	0.129	90.1
M_{gcmrec}		1.230	0.897	0.926	-	22.972	-
M_{PL}		1.014	0.252	0.252	0.228	1.403	91.3
$M_{BP(5)}$		-1.001	0.151	0.151	0.141	-0.105	91.6
$M_{PE(5)}$		-1.032	0.154	0.157	0.140	-3.189	90.9
$M_{BP(10)}$		-1.001	0.151	0.151	0.142	-0.120	91.9
$M_{PE(10)}$	$\beta_2 = -1$	-1.014	0.152	0.153	0.142	-1.378	93.1
M_{coxph}		-0.989	0.152	0.152	0.137	1.098	90.6
M_{gcmrec}		-1.130	0.496	0.512	-	-13.022	-
M_{PL}		-1.000	0.145	0.145	0.135	0.005	92.1
$M_{BP(5)}$		1.050	0.008	0.008	0.007	0.002	93.3
$M_{PE(5)}$		1.047	0.007	0.008	0.006	-0.262	90.1
$M_{BP(10)}$		1.050	0.008	0.008	0.007	0.009	93.6
$M_{PE(10)}$	$\alpha = 1.05$	1.049	0.008	0.008	0.007	-0.133	92.4
M_{coxph}		1.051	0.009	0.009	0.007	0.141	89.1
M_{gcmrec}		1.050	0.009	0.009	-	0.034	-
M_{PL}		1.050	0.007	0.007	0.006	0.031	92.7
$M_{BP(5)}$		0.885	0.062	0.068	0.688	3.231	94.3
$M_{PE(5)}$		0.876	0.062	0.065	0.596	2.256	94.4
$M_{BP(10)}$		0.886	0.062	0.068	1.005	3.338	95.3
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.882	0.062	0.067	0.640	2.869	94.6
M_{coxph}		0.891	0.062	0.071	-	3.964	-
M_{gcmrec}		0.836	0.171	0.173	-	-2.521	-
M_{PL}		0.884	0.060	0.065	0.563	3.098	94.5

Tabela B.22: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.016	0.184	0.184	0.171	1.641	93.5
$M_{PE(5)}$		1.047	0.237	0.242	0.175	4.693	91.2
$M_{BP(10)}$		1.016	0.184	0.185	0.172	1.565	93.4
$M_{PE(10)}$	$\beta_1 = 1$	1.034	0.188	0.191	0.173	3.372	92.6
M_{coxph}		1.009	0.186	0.186	0.170	0.853	93.3
M_{gcmrec}		1.247	0.674	0.718	-	24.677	-
M_{PL}		1.016	0.183	0.184	0.169	1.593	92.7
$M_{BP(5)}$		-1.000	0.099	0.099	0.091	-0.049	92.8
$M_{PE(5)}$		-1.039	0.159	0.163	0.089	-3.904	90.6
$M_{BP(10)}$		-1.000	0.099	0.099	0.091	-0.030	93.0
$M_{PE(10)}$	$\beta_2 = -1$	-1.017	0.100	0.101	0.091	-1.744	92.4
M_{coxph}		-0.994	0.099	0.099	0.089	0.593	91.3
M_{gcmrec}		-1.175	0.453	0.485	-	-17.514	-
M_{PL}		-1.001	0.094	0.094	0.087	-0.111	93.3
$M_{BP(5)}$		1.050	0.005	0.005	0.005	-0.024	94.1
$M_{PE(5)}$		1.047	0.019	0.019	0.004	-0.260	86.3
$M_{BP(10)}$		1.050	0.005	0.005	0.005	-0.020	95.0
$M_{PE(10)}$	$\alpha = 1.05$	1.048	0.005	0.005	0.005	-0.179	93.0
M_{coxph}		1.050	0.006	0.006	0.005	0.040	92.6
M_{gcmrec}		1.049	0.006	0.006	-	-0.066	-
M_{PL}		1.050	0.005	0.005	0.004	-0.012	95.0
$M_{BP(5)}$		0.874	0.048	0.051	0.424	1.990	95.0
$M_{PE(5)}$		0.863	0.049	0.050	0.397	0.666	93.9
$M_{BP(10)}$		0.874	0.048	0.051	0.426	2.016	94.7
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.857$	0.869	0.049	0.050	0.414	1.425	94.4
M_{coxph}		0.877	0.050	0.053	-	2.277	-
M_{gcmrec}		0.802	0.168	0.177	-	-6.486	-
M_{PL}		0.872	0.046	0.048	0.407	1.762	94.9

Figura B.8: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ nos cenários $S_{6,30}^{1.05,0.9} \in S_{6,50}^{1.05,0.9}$.

Tabela B.23: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,30}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.04	0.152	0.157	0.146	3.795	94.3
$M_{PE(5)}$		1.06	0.153	0.165	0.143	5.987	93.4
$M_{BP(10)}$		1.04	0.152	0.157	0.147	3.859	94.8
$M_{PE(10)}$	$\beta_1 = 1$	1.04	0.153	0.158	0.148	4.077	94.8
M_{coxph}		1.03	0.153	0.155	0.149	2.793	94.7
M_{gcmrec}		1.03	0.153	0.155	0.149	2.793	94.7
M_{PL}		1.03	0.142	0.145	0.137	2.966	94.9
$M_{BP(5)}$		-1.02	0.103	0.105	0.098	-2.241	94.3
$M_{PE(5)}$		-1.05	0.103	0.113	0.094	-4.612	90.8
$M_{BP(10)}$		-1.02	0.104	0.107	0.099	-2.464	94.4
$M_{PE(10)}$	$\beta_2 = -1$	-1.03	0.105	0.109	0.100	-2.676	94.3
M_{coxph}		-1.01	0.106	0.106	0.101	-1.450	94.5
M_{gcmrec}		-1.01	0.106	0.106	0.101	-1.450	94.5
M_{PL}		-1.02	0.092	0.094	0.088	-1.697	94.4
$M_{BP(5)}$		1.05	0.006	0.006	0.006	-0.144	94.7
$M_{PE(5)}$		1.05	0.006	0.007	0.005	-0.300	90.7
$M_{BP(10)}$		1.05	0.006	0.007	0.006	-0.143	94.9
$M_{PE(10)}$	$\alpha = 1.05$	1.05	0.007	0.007	0.006	-0.177	93.7
M_{coxph}		1.05	0.007	0.007	0.007	-0.056	94.4
M_{gcmrec}		1.05	0.007	0.007	0.007	-0.056	95.7
M_{PL}		1.05	0.005	0.005	0.005	-0.083	94.7

Tabela B.24: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,50}^{1.05,0.9}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.015	0.101	0.102	0.098	1.487	93.5
$M_{PE(5)}$		1.046	0.102	0.112	0.096	4.596	90.6
$M_{BP(10)}$		1.013	0.102	0.103	0.100	1.316	94.3
$M_{PE(10)}$	$\beta_1 = 1$	1.015	0.103	0.104	0.100	1.458	94.6
M_{coxph}		1.008	0.103	0.104	0.101	0.753	94.9
M_{gcmrec}		0.941	0.271	0.277	0.095	-5.894	89.3
M_{PL}		1.011	0.099	0.100	0.094	1.133	93.7
$M_{BP(5)}$		-1.012	0.067	0.068	0.065	-1.237	94.6
$M_{PE(5)}$		-1.048	0.063	0.079	0.060	-4.782	86.9
$M_{BP(10)}$		-1.013	0.067	0.068	0.066	-1.329	94.0
$M_{PE(10)}$	$\beta_2 = -1$	-1.014	0.067	0.069	0.066	-1.428	93.9
M_{coxph}		-1.007	0.067	0.068	0.067	-0.711	94.6
M_{gcmrec}		-0.941	0.258	0.265	0.063	5.887	88.8
M_{PL}		-1.010	0.061	0.062	0.059	-1.050	94.3
$M_{BP(5)}$		1.049	0.004	0.004	0.004	-0.077	96.1
$M_{PE(5)}$		1.047	0.004	0.005	0.004	-0.326	84.3
$M_{BP(10)}$		1.049	0.004	0.004	0.004	-0.069	95.9
$M_{PE(10)}$	$\alpha = 1.05$	1.049	0.004	0.004	0.004	-0.091	95.2
M_{coxph}		1.050	0.005	0.005	0.005	-0.023	96.4
M_{gcmrec}		0.979	0.275	0.283	0.004	-6.722	90.9
M_{PL}		1.049	0.004	0.004	0.004	-0.050	95.9

Figura B.9: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S_{\infty,30}^{1.05,0.9} \in S_{\infty,50}^{1.05,0.9}$.

Tabela B.25: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{2,50}^{1.05,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		0.996	0.276	0.276	0.263	-0.371	93.3
$M_{PE(5)}$		0.896	0.249	0.269	0.242	-10.386	90.8
$M_{BP(10)}$		0.997	0.277	0.277	0.263	-0.330	93.6
$M_{PE(10)}$	$\beta_1 = 1$	0.957	0.267	0.271	0.254	-4.277	93.0
M_{coxph}		0.991	0.279	0.279	0.266	-0.928	93.6
M_{gcmrec}		1.228	0.797	0.828	-	22.763	-
M_{PL}		0.997	0.274	0.274	0.261	-0.275	93.3
$M_{BP(5)}$		-1.005	0.135	0.135	0.128	-0.500	94.1
$M_{PE(5)}$		-0.908	0.113	0.145	0.116	9.166	86.9
$M_{BP(10)}$		-1.005	0.135	0.135	0.129	-0.510	93.5
$M_{PE(10)}$	$\beta_2 = -1$	-0.967	0.126	0.130	0.124	3.271	93.5
M_{coxph}		-1.000	0.138	0.138	0.130	-0.044	93.5
M_{gcmrec}		-1.172	0.468	0.498	-	-17.180	-
M_{PL}		-1.005	0.130	0.130	0.125	-0.461	93.7
$M_{BP(5)}$		1.050	0.005	0.005	0.005	-0.009	94.2
$M_{PE(5)}$		1.058	0.005	0.010	0.004	0.797	56.4
$M_{BP(10)}$		1.050	0.005	0.005	0.005	-0.016	93.9
$M_{PE(10)}$	$\alpha = 1.05$	1.053	0.005	0.006	0.005	0.276	90.6
M_{coxph}		1.050	0.007	0.007	0.006	0.027	91.1
M_{gcmrec}		1.049	0.007	0.007	-	-0.058	-
M_{PL}		1.050	0.005	0.005	0.005	-0.011	94.7
$M_{BP(5)}$		0.695	0.072	0.078	0.328	4.240	92.6
$M_{PE(5)}$		0.724	0.070	0.091	0.344	8.644	87.6
$M_{BP(10)}$		0.696	0.073	0.079	0.330	4.359	92.7
$M_{PE(10)}$	$\zeta_\nu/(1+\zeta_\nu)=0.667$	0.708	0.072	0.083	0.336	6.268	90.9
M_{coxph}		0.693	0.076	0.080	-	3.990	-
M_{gcmrec}		0.647	0.141	0.142	-	-2.904	-
M_{PL}		0.693	0.070	0.075	0.321	4.022	92.8

Tabela B.26: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}/(1+\zeta_{\nu})$ no cenário $S_{6,50}^{1.05,2}$:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.003	0.186	0.186	0.181	0.276	93.6
$M_{PE(5)}$		0.909	0.167	0.190	0.166	-9.131	90.1
$M_{BP(10)}$		1.002	0.186	0.186	0.181	0.220	93.8
$M_{PE(10)}$	$\beta_1 = 1$	0.966	0.179	0.182	0.175	-3.401	93.4
M_{coxph}		0.996	0.188	0.188	0.179	-0.435	94.0
M_{gcmrec}		0.994	0.187	0.187	-	-0.625	-
M_{PL}		1.005	0.182	0.182	0.178	0.471	94.4
$M_{BP(5)}$		-1.006	0.104	0.104	0.097	-0.647	94.0
$M_{PE(5)}$		-0.911	0.090	0.126	0.086	8.864	81.3
$M_{BP(10)}$		-1.005	0.104	0.104	0.098	-0.533	93.8
$M_{PE(10)}$	$\beta_2 = -1$	-0.970	0.098	0.102	0.093	3.015	91.9
M_{coxph}		-0.999	0.105	0.105	0.096	0.077	93.0
M_{gcmrec}		-0.998	0.105	0.105	-	0.239	-
M_{PL}		-1.008	0.098	0.098	0.092	-0.757	93.6
$M_{BP(5)}$		1.050	0.005	0.005	0.005	-0.037	94.8
$M_{PE(5)}$		1.058	0.005	0.009	0.004	0.723	58.4
$M_{BP(10)}$		1.050	0.005	0.005	0.005	-0.027	94.9
$M_{PE(10)}$	$\alpha = 1.05$	1.052	0.005	0.006	0.005	0.237	91.4
M_{coxph}		1.050	0.006	0.006	0.005	0.019	92.8
M_{gcmrec}		1.050	0.006	0.006	-	0.033	-
M_{PL}		1.050	0.005	0.005	0.004	-0.037	94.0
$M_{BP(5)}$		0.877	0.046	0.051	0.445	2.343	94.1
$M_{PE(5)}$		0.896	0.042	0.058	0.490	4.575	92.0
$M_{BP(10)}$		0.878	0.047	0.051	0.457	2.487	94.6
$M_{PE(10)}$	$\zeta_{\nu}/(1+\zeta_{\nu})=0.857$	0.887	0.045	0.054	0.476	3.506	93.6
M_{coxph}		0.881	0.049	0.055	-	2.765	-
M_{gcmrec}		0.883	0.047	0.054	-	2.974	-
M_{PL}		0.875	0.045	0.049	0.429	2.133	94.1

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}$		1.023	0.107	0.109	0.103	2.322	94.0
$M_{PE(5)}$		0.941	0.097	0.114	0.099	-5.856	90.3
$M_{BP(10)}$		1.025	0.109	0.112	0.106	2.463	93.8
$M_{PE(10)}$	$\beta_1 = 1$	1.021	0.109	0.111	0.106	2.073	94.4
M_{coxph}		1.017	0.111	0.112	0.108	1.700	95.0
M_{gcmrec}		1.001	0.168	0.168	0.106	0.077	93.6
M_{PL}		1.018	0.101	0.103	0.097	1.761	93.8
$M_{BP(5)}$		-1.021	0.070	0.073	0.069	-2.124	94.1
$M_{PE(5)}$		-0.926	0.059	0.094	0.062	7.360	75.9
$M_{BP(10)}$		-1.022	0.071	0.075	0.071	-2.221	93.4
$M_{PE(10)}$	$\beta_2 = -1$	-1.019	0.072	0.074	0.071	-1.871	94.8
M_{coxph}		-1.015	0.072	0.074	0.072	-1.504	94.3
M_{gcmrec}		-0.999	0.146	0.146	0.071	0.103	92.8
M_{PL}		-1.016	0.062	0.064	0.062	-1.587	94.6
$M_{BP(5)}$		1.049	0.004	0.004	0.004	-0.103	94.3
$M_{PE(5)}$		1.056	0.004	0.007	0.004	0.538	69.9
$M_{BP(10)}$		1.049	0.005	0.005	0.004	-0.110	94.3
$M_{PE(10)}$	$\alpha = 1.05$	1.049	0.005	0.005	0.004	-0.094	94.7
M_{coxph}		1.049	0.005	0.005	0.005	-0.060	94.1
M_{gcmrec}		1.033	0.132	0.133	0.005	-1.662	93.4
M_{PL}		1.049	0.004	0.004	0.004	-0.070	95.2

Tabela B.27: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para os estimadores de β_1 , β_2 e α no cenário $S_{\infty,50}^{1.05,2}$:

Apêndice C: Resultados auxiliares do estudo de simulação usando inferência Bayesiana

Neste apêndice são exibidos um conjunto de resultados complementares do estudo simulado realizados na Seção 4.2.2. Os resultados para os modelos Bayesianos omitidos no corpo do texto são expostos nas Tabelas C.1 a C.42 e nas Figuras C.1 a C.6, para os casos de reparo mínimo, e nas Tabelas C.43 a C.84 e nas Figuras C.7 a C.12, para as situações de reparo perfeito.

Tabela C.1: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.101	0.391	0.402	0.482	10.107	99
$M_{BP(5)}^Z$		1.095	0.399	0.409	0.477	9.493	97
$M^G_{BP(5)}$		0.990	0.339	0.338	0.437	-1.033	100
$M_{BP(5)}^{PL}$		1.143	0.402	0.425	0.491	14.271	97
$M_{BP(5)}^{RW}$		1.116	0.394	0.409	0.487	11.632	97
$M_{PE(5)}^{Wishart}$		0.935	0.332	0.337	0.423	-6.533	100
$M_{PE(5)}^Z$		0.937	0.332	0.336	0.425	-6.308	99
$M^G_{PE(5)}$		0.752	0.264	0.361	0.402	-24.758	99
$M_{PE(5)}^{PL}$		0.935	0.328	0.333	0.422	-6.480	100
$M_{PE(5)}^{RW}$		0.970	0.341	0.341	0.432	-3.012	100
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.084	0.388	0.395	0.475	8.353	98
$M_{BP(10)}^Z$		1.068	0.384	0.388	0.472	6.819	98
$M^G_{BP(10)}$		1.024	0.349	0.348	0.446	2.381	100
$M_{BP(10)}^{PL}$		1.148	0.405	0.430	0.494	14.790	97
$M_{BP(10)}^{RW}$		1.123	0.406	0.422	0.493	12.254	96
$M_{PE(10)}^{Wishart}$		0.987	0.350	0.348	0.442	-1.326	98
$M_{PE(10)}^Z$		1.000	0.352	0.350	0.444	-0.045	98
$M^G_{PE(10)}$		0.714	0.245	0.376	0.428	-28.575	100
$M_{PE(10)}^{PL}$		0.995	0.345	0.343	0.442	-0.536	99
$M_{PE(10)}^{RW}$		1.073	0.377	0.382	0.463	7.270	98
M_{PL}		1.105	0.386	0.398	0.474	10.472	98

Tabela C.2: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo
médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{0.90,2}$ para o caso
Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.080	0.285	0.295	0.281	-7.980	93
$M_{BP(5)}^Z$		-1.072	0.289	0.297	0.279	-7.218	94
$M^G_{BP(5)}$		-0.969	0.233	0.234	0.245	3.095	97
$M_{BP(5)}^{PL}$		-1.125	0.287	0.312	0.286	-12.476	93
$M_{BP(5)}^{RW}$		-1.099	0.288	0.303	0.286	-9.936	94
$M_{PE(5)}^{Wishart}$		-0.903	0.227	0.246	0.241	9.694	95
$M_{PE(5)}^Z$		-0.905	0.227	0.245	0.241	9.459	95
$M_{PE(5)}^G$		-0.724	0.180	0.329	0.220	27.624	81
$M_{PE(5)}^{PL}$		-0.907	0.227	0.244	0.241	9.342	94
$M_{PE(5)}^{RW}$		-0.939	0.233	0.240	0.246	6.120	94
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.064	0.268	0.275	0.276	-6.438	95
$M_{BP(10)}^Z$		-1.045	0.271	0.273	0.277	-4.466	95
$M^G_{BP(10)}$		-1.000	0.240	0.239	0.252	0.024	96
$M_{BP(10)}^{PL}$		-1.134	0.291	0.319	0.289	-13.414	94
$M_{BP(10)}^{RW}$		-1.103	0.288	0.304	0.291	-10.291	95
$M_{PE(10)}^{Wishart}$		-0.965	0.246	0.247	0.255	3.506	95
$M_{PE(10)}^Z$		-0.978	0.252	0.252	0.258	2.237	95
$M^G_{PE(10)}$		-0.694	0.176	0.352	0.232	30.598	78
$M_{PE(10)}^{PL}$		-0.968	0.241	0.242	0.253	3.154	96
$M_{PE(10)}^{RW}$		-1.051	0.262	0.266	0.269	-5.090	95
M_{PL}		-1.089	0.274	0.287	0.271	-8.905	93

Tabela C.3: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.882	0.041	0.045	0.040	-2.027	92
$M_{BP(5)}^Z$		0.883	0.043	0.045	0.040	-1.833	93
$M^G_{BP(5)}$		0.905	0.027	0.028	0.035	0.607	100
$M_{BP(5)}^{PL}$		0.870	0.041	0.051	0.038	-3.367	87
$M_{BP(5)}^{RW}$		0.879	0.041	0.046	0.040	-2.292	93
$M_{PE(5)}^{Wishart}$		0.925	0.031	0.040	0.035	2.808	90
$M_{PE(5)}^Z$		0.925	0.030	0.039	0.035	2.769	93
$M^G_{PE(5)}$		0.958	0.025	0.063	0.032	6.392	56
$M_{PE(5)}^{PL}$		0.927	0.030	0.040	0.035	3.009	91
$M_{PE(5)}^{RW}$		0.917	0.028	0.032	0.033	1.850	96
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.890	0.039	0.040	0.039	-1.081	95
$M_{BP(10)}^Z$		0.896	0.041	0.041	0.041	-0.416	96
$M^G_{BP(10)}$		0.903	0.028	0.028	0.035	0.306	100
$M_{BP(10)}^{PL}$		0.868	0.042	0.053	0.039	-3.559	90
$M_{BP(10)}^{RW}$		0.882	0.045	0.048	0.041	-2.042	91
$M_{PE(10)}^{Wishart}$		0.902	0.036	0.036	0.038	0.184	95
$M_{PE(10)}^Z$		0.899	0.037	0.037	0.038	-0.083	95
$M^G_{PE(10)}$		0.949	0.025	0.055	0.033	5.422	68
$M_{PE(10)}^{PL}$		0.905	0.034	0.034	0.037	0.559	96
$M_{PE(10)}^{RW}$		0.885	0.035	0.038	0.036	-1.702	93
M_{PL}		0.879	0.032	0.038	0.033	-2.282	93

Tabela C.4: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo
médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,30}^{0.90,2}$ para o caso
Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.779	0.554	0.594	0.766	-11.033	93
$M_{BP(5)}^Z$		1.798	0.555	0.588	0.775	-10.124	93
$M^G_{BP(5)}$		1.980	0.561	0.559	0.838	-0.984	98
$M_{BP(5)}^{PL}$		1.674	0.532	0.622	0.711	-16.314	87
$M_{BP(5)}^{RW}$		1.743	0.543	0.598	0.751	-12.869	93
$M_{PE(5)}^{Wishart}$		2.140	0.577	0.591	0.913	6.989	99
$M_{PE(5)}^Z$		2.137	0.576	0.589	0.910	6.866	99
$M^G_{PE(5)}$		1.988	0.555	0.552	0.908	-0.603	99
$M_{PE(5)}^{PL}$		2.168	0.586	0.607	0.923	8.408	99
$M_{PE(5)}^{RW}$		2.069	0.570	0.571	0.870	3.444	99
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.834	0.555	0.577	0.787	-8.324	96
$M_{BP(10)}^Z$		1.888	0.563	0.571	0.822	-5.586	98
$M^G_{BP(10)}$		1.954	0.556	0.555	0.819	-2.279	98
$M_{BP(10)}^{PL}$		1.660	0.531	0.628	0.706	-17.006	89
$M_{BP(10)}^{RW}$		1.754	0.552	0.602	0.763	-12.322	93
$M_{PE(10)}^{Wishart}$		1.916	0.548	0.552	0.827	-4.219	98
$M_{PE(10)}^Z$		1.904	0.551	0.556	0.821	-4.800	98
$M^G_{PE(10)}$		1.432	0.452	0.724	0.688	-28.390	81
$M_{PE(10)}^{PL}$		1.975	0.559	0.557	0.843	-1.253	98
$M_{PE(10)}^{RW}$		1.804	0.543	0.575	0.757	-9.817	98
M_{PL}		1.740	0.559	0.614	0.718	-12.987	91

Tabela C.5: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.047	0.337	0.339	0.317	4.749	95
$M_{BP(5)}^Z$		1.046	0.338	0.339	0.317	4.569	94
$M^G_{BP(5)}$		0.965	0.306	0.306	0.296	-3.463	95
$M_{BP(5)}^{PL}$		1.075	0.339	0.345	0.323	7.484	94
$M_{BP(5)}^{RW}$		1.060	0.341	0.344	0.322	6.007	95
$M_{PE(5)}^{Wishart}$		0.865	0.274	0.304	0.279	-13.482	94
$M_{PE(5)}^Z$		0.866	0.275	0.304	0.279	-13.383	93
$M^G_{PE(5)}$		0.731	0.243	0.362	0.266	-26.862	87
$M_{PE(5)}^{PL}$		0.862	0.272	0.304	0.278	-13.761	94
$M_{PE(5)}^{RW}$		0.883	0.277	0.299	0.281	-11.655	95
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.033	0.332	0.332	0.314	3.307	94
$M^Z_{BP(10)}$		1.025	0.338	0.337	0.314	2.517	95
$M^G_{BP(10)}$		0.989	0.315	0.313	0.300	-1.063	94
$M^{PL}_{BP(10)}$		1.082	0.350	0.357	0.325	8.171	94
$M_{BP(10)}^{RW}$		1.057	0.347	0.350	0.322	5.722	94
$M_{PE(10)}^{Wishart}$		0.951	0.301	0.303	0.296	-4.903	94
$M_{PE(10)}^Z$		0.960	0.303	0.304	0.297	-4.018	94
$M^G_{PE(10)}$		0.716	0.246	0.375	0.282	-28.377	87
$M_{PE(10)}^{PL}$		0.950	0.298	0.301	0.294	-5.006	94
$M_{PE(10)}^{RW}$		0.999	0.309	0.307	0.305	-0.145	95
M_{PL}		1.058	0.339	0.342	0.314	5.819	93

D	·	-~- J-				2,00	
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.053	0.164	0.171	0.163	-5.325	94
$M_{BP(5)}^Z$		-1.051	0.166	0.172	0.164	-5.066	94
$M^G_{BP(5)}$		-0.972	0.134	0.137	0.146	2.774	95
$M_{BP(5)}^{PL}$		-1.079	0.163	0.180	0.166	-7.923	96
$M_{BP(5)}^{RW}$		-1.066	0.165	0.177	0.166	-6.647	94
$M_{PE(5)}^{Wishart}$		-0.879	0.119	0.169	0.138	12.074	87
$M_{PE(5)}^Z$		-0.882	0.120	0.168	0.139	11.840	86
$M^G_{PE(5)}$		-0.747	0.100	0.271	0.126	25.264	46
$M_{PE(5)}^{PL}$		-0.880	0.118	0.168	0.138	12.034	87
$M_{PE(5)}^{RW}$		-0.899	0.120	0.157	0.140	10.138	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.040	0.156	0.160	0.162	-3.975	95
$M_{BP(10)}^Z$		-1.030	0.161	0.163	0.163	-3.007	95
$M^G_{BP(10)}$		-0.997	0.140	0.140	0.148	0.326	95
$M_{BP(10)}^{PL}$		-1.086	0.166	0.186	0.167	-8.568	93
$M_{BP(10)}^{RW}$		-1.064	0.164	0.175	0.167	-6.376	94
$M_{PE(10)}^{Wishart}$		-0.960	0.136	0.141	0.150	3.980	94
$M_{PE(10)}^Z$		-0.968	0.138	0.141	0.151	3.177	94
$M^G_{PE(10)}$		-0.728	0.103	0.291	0.133	27.208	47
$M_{PE(10)}^{PL}$		-0.958	0.133	0.139	0.148	4.241	95
$M_{PE(10)}^{RW}$		-1.007	0.139	0.138	0.154	-0.734	96
M_{PL}		-1.060	0.160	0.170	0.157	-5.985	95

Tabela C.6: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Tabela C.7: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.887	0.029	0.032	0.025	-1.413	93
$M_{BP(5)}^Z$		0.888	0.029	0.031	0.025	-1.359	94
$M^G_{BP(5)}$		0.903	0.020	0.020	0.023	0.312	98
$M_{BP(5)}^{PL}$		0.881	0.028	0.034	0.025	-2.093	90
$M_{BP(5)}^{RW}$		0.886	0.029	0.032	0.025	-1.608	93
$M_{PE(5)}^{Wishart}$		0.929	0.020	0.035	0.021	3.214	71
$M_{PE(5)}^Z$		0.929	0.020	0.035	0.021	3.182	71
$M^G_{PE(5)}$		0.950	0.016	0.052	0.020	5.512	20
$M_{PE(5)}^{PL}$		0.930	0.020	0.036	0.021	3.334	69
$M_{PE(5)}^{RW}$		0.924	0.019	0.031	0.021	2.719	78
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.893	0.026	0.027	0.025	-0.790	97
$M_{BP(10)}^Z$		0.895	0.028	0.029	0.025	-0.532	97
$M^G_{BP(10)}$		0.900	0.021	0.021	0.023	0.027	97
$M_{BP(10)}^{PL}$		0.880	0.029	0.035	0.025	-2.236	90
$M_{BP(10)}^{RW}$		0.888	0.030	0.032	0.025	-1.370	95
$M_{PE(10)}^{Wishart}$		0.904	0.024	0.024	0.024	0.457	95
$M_{PE(10)}^Z$		0.903	0.024	0.024	0.024	0.311	95
$M^G_{PE(10)}$		0.940	0.017	0.043	0.021	4.452	49
$M_{PE(10)}^{PL}$		0.907	0.023	0.024	0.023	0.769	95
$M_{PE(10)}^{RW}$		0.896	0.023	0.023	0.023	-0.450	97
M_{PL}		0.886	0.022	0.026	0.021	-1.505	92

Tabela C.8: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativ
médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S^{0.90,2}_{2,50}$ para o cas
Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		2.004	0.599	0.596	0.703	0.209	95
$M_{BP(5)}^Z$		2.011	0.599	0.596	0.708	0.538	95
$M^G_{BP(5)}$		2.197	0.618	0.646	0.768	9.832	98
$M_{BP(5)}^{PL}$		1.921	0.571	0.574	0.671	-3.931	92
$M_{BP(5)}^{RW}$		1.969	0.583	0.581	0.692	-1.548	95
$M_{PE(5)}^{Wishart}$		2.537	0.670	0.856	0.899	26.847	98
$M_{PE(5)}^Z$		2.531	0.668	0.851	0.897	26.550	98
$M^G_{PE(5)}$		2.447	0.675	0.807	0.924	22.368	99
$M_{PE(5)}^{PL}$		2.560	0.676	0.875	0.908	27.975	98
$M_{PE(5)}^{RW}$		2.476	0.656	0.808	0.874	23.824	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	2.068	0.614	0.615	0.727	3.409	96
$M_{BP(10)}^Z$		2.108	0.631	0.638	0.751	5.419	96
$M^G_{BP(10)}$		2.169	0.615	0.635	0.753	8.448	97
$M_{BP(10)}^{PL}$		1.911	0.576	0.580	0.664	-4.448	93
$M_{BP(10)}^{RW}$		1.998	0.603	0.600	0.706	-0.110	95
$M_{PE(10)}^{Wishart}$		2.209	0.629	0.660	0.782	10.472	97
$M_{PE(10)}^Z$		2.194	0.630	0.656	0.775	9.720	97
$M_{PE(10)}^G$		1.802	0.556	0.587	0.716	-9.912	93
$M_{PE(10)}^{PL}$		2.254	0.634	0.680	0.796	12.701	97
$M_{PE(10)}^{RW}$		2.106	0.602	0.609	0.730	5.311	97
M_{PL}		1.967	0.545	0.544	0.667	-1.651	95

Figura C.1: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo.

Tabela C.9: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.030	0.202	0.204	0.223	3.034	100
$M_{BP(5)}^Z$		1.026	0.200	0.201	0.224	2.624	100
$M^G_{BP(5)}$		0.980	0.185	0.185	0.220	-2.039	98
$M_{BP(5)}^{PL}$		1.060	0.208	0.215	0.223	5.980	99
$M_{BP(5)}^{RW}$		1.032	0.203	0.204	0.223	3.173	100
$M_{PE(5)}^{Wishart}$		0.924	0.178	0.193	0.218	-7.639	97
$M_{PE(5)}^Z$		0.924	0.179	0.193	0.218	-7.556	97
$M^G_{PE(5)}$		0.804	0.163	0.254	0.222	-19.601	90
$M_{PE(5)}^{PL}$		0.917	0.176	0.194	0.217	-8.279	97
$M_{PE(5)}^{RW}$		0.943	0.179	0.187	0.216	-5.673	98
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.004	0.198	0.197	0.222	0.408	98
$M_{BP(10)}^Z$		0.987	0.199	0.199	0.224	-1.302	98
$M^G_{BP(10)}$		0.985	0.188	0.187	0.220	-1.543	99
$M_{BP(10)}^{PL}$		1.065	0.213	0.221	0.225	6.515	99
$M_{BP(10)}^{RW}$		1.021	0.206	0.206	0.225	2.059	98
$M_{PE(10)}^{Wishart}$		1.002	0.197	0.196	0.226	0.156	97
$M_{PE(10)}^Z$		1.007	0.198	0.197	0.226	0.724	98
$M_{PE(10)}^G$		0.802	0.169	0.260	0.232	-19.817	92
$M_{PE(10)}^{PL}$		0.986	0.191	0.190	0.223	-1.407	98
$M_{PE(10)}^{RW}$		1.034	0.199	0.201	0.221	3.379	98
M_{PL}		1.040	0.198	0.201	0.215	3.980	99

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.031	0.143	0.145	0.149	-3.057	97
$M_{BP(5)}^Z$		-1.026	0.142	0.144	0.149	-2.606	92
$M^G_{BP(5)}$		-0.978	0.125	0.126	0.142	2.242	95
$M_{BP(5)}^{PL}$		-1.061	0.145	0.157	0.149	-6.055	94
$M_{BP(5)}^{RW}$		-1.032	0.143	0.145	0.149	-3.171	94
$M_{PE(5)}^{Wishart}$		-0.921	0.126	0.149	0.139	7.950	92
$M_{PE(5)}^Z$		-0.922	0.127	0.149	0.139	7.820	91
$M^G_{PE(5)}$		-0.792	0.102	0.232	0.133	20.808	65
$M_{PE(5)}^{PL}$		-0.914	0.125	0.151	0.138	8.580	91
$M_{PE(5)}^{RW}$		-0.940	0.123	0.136	0.136	5.967	93
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.002	0.138	0.137	0.147	-0.240	94
$M_{BP(10)}^Z$		-0.985	0.141	0.141	0.150	1.495	93
$M^G_{BP(10)}$		-0.982	0.125	0.126	0.142	1.759	96
$M_{BP(10)}^{PL}$		-1.065	0.146	0.159	0.151	-6.452	95
$M_{BP(10)}^{RW}$		-1.019	0.144	0.144	0.151	-1.949	95
$M_{PE(10)}^{Wishart}$		-0.995	0.139	0.139	0.148	0.464	95
$M_{PE(10)}^Z$		-1.001	0.139	0.139	0.149	-0.129	94
$M^G_{PE(10)}$		-0.783	0.103	0.240	0.139	21.686	66
$M_{PE(10)}^{PL}$		-0.980	0.132	0.132	0.146	1.961	95
$M_{PE(10)}^{RW}$		-1.030	0.135	0.138	0.143	-3.034	96
M_{PL}		-1.042	0.138	0.143	0.138	-4.152	93

Tabela C.10: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.893	0.028	0.028	0.031	-0.757	96
$M_{BP(5)}^Z$		0.894	0.028	0.028	0.031	-0.625	96
$M^G_{BP(5)}$		0.907	0.022	0.023	0.029	0.754	99
$M_{BP(5)}^{PL}$		0.886	0.028	0.031	0.030	-1.592	92
$M_{BP(5)}^{RW}$		0.893	0.028	0.029	0.031	-0.817	97
$M_{PE(5)}^{Wishart}$		0.921	0.026	0.034	0.029	2.372	93
$M_{PE(5)}^Z$		0.921	0.027	0.034	0.029	2.338	92
$M^G_{PE(5)}$		0.960	0.021	0.063	0.028	6.631	37
$M_{PE(5)}^{PL}$		0.923	0.026	0.035	0.029	2.544	91
$M_{PE(5)}^{RW}$		0.916	0.025	0.029	0.028	1.727	96
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.900	0.028	0.027	0.031	-0.053	98
$M_{BP(10)}^Z$		0.904	0.029	0.029	0.032	0.477	96
$M^G_{BP(10)}$		0.905	0.023	0.023	0.029	0.544	99
$M_{BP(10)}^{PL}$		0.884	0.029	0.033	0.031	-1.744	93
$M_{BP(10)}^{RW}$		0.895	0.029	0.030	0.032	-0.516	97
$M_{PE(10)}^{Wishart}$		0.902	0.030	0.030	0.031	0.250	98
$M_{PE(10)}^Z$		0.901	0.030	0.029	0.031	0.075	98
$M^G_{PE(10)}$		0.965	0.021	0.068	0.029	7.209	35
$M_{PE(10)}^{PL}$		0.906	0.027	0.028	0.031	0.621	99
$M_{PE(10)}^{RW}$		0.892	0.027	0.028	0.029	-0.839	97
M_{PL}		0.890	0.023	0.025	0.027	-1.094	96

Tabela C.11: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.029	0.180	0.181	0.150	2.860	91
$M_{BP(5)}^Z$		1.027	0.179	0.181	0.150	2.694	91
$M^G_{BP(5)}$		0.990	0.167	0.166	0.148	-0.956	94
$M_{BP(5)}^{PL}$		1.046	0.183	0.188	0.150	4.646	91
$M_{BP(5)}^{RW}$		1.031	0.180	0.182	0.150	3.122	91
$M_{PE(5)}^{Wishart}$		0.903	0.147	0.176	0.143	-9.706	89
$M_{PE(5)}^Z$		0.903	0.147	0.176	0.143	-9.660	90
$M^G_{PE(5)}$		0.815	0.134	0.228	0.145	-18.521	74
$M_{PE(5)}^{PL}$		0.899	0.147	0.177	0.143	-10.060	89
$M_{PE(5)}^{RW}$		0.915	0.148	0.170	0.143	-8.483	90
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.010	0.177	0.176	0.149	0.983	93
$M_{BP(10)}^Z$		1.003	0.177	0.176	0.150	0.312	89
$M^G_{BP(10)}$		0.994	0.167	0.166	0.147	-0.598	92
$M_{BP(10)}^{PL}$		1.048	0.184	0.190	0.150	4.753	89
$M_{BP(10)}^{RW}$		1.020	0.180	0.180	0.150	2.027	91
$M_{PE(10)}^{Wishart}$		0.987	0.166	0.166	0.149	-1.305	92
$M_{PE(10)}^Z$		0.990	0.167	0.166	0.149	-0.965	92
$M^G_{PE(10)}$		0.821	0.135	0.224	0.150	-17.945	79
$M_{PE(10)}^{PL}$		0.976	0.163	0.164	0.148	-2.436	92
$M_{PE(10)}^{RW}$		1.008	0.167	0.166	0.147	0.849	91
M_{PL}		1.040	0.176	0.179	0.145	4.012	89

Tabela C.12: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.019	0.105	0.106	0.097	-1.855	94
$M_{BP(5)}^Z$		-1.017	0.106	0.107	0.097	-1.705	94
$M^G_{BP(5)}$		-0.981	0.094	0.095	0.094	1.883	95
$M_{BP(5)}^{PL}$		-1.036	0.108	0.113	0.097	-3.603	93
$M_{BP(5)}^{RW}$		-1.021	0.106	0.108	0.097	-2.106	93
$M_{PE(5)}^{Wishart}$		-0.892	0.075	0.131	0.087	10.758	76
$M_{PE(5)}^Z$		-0.893	0.075	0.131	0.087	10.676	75
$M^G_{PE(5)}$		-0.805	0.065	0.205	0.083	19.496	26
$M_{PE(5)}^{PL}$		-0.888	0.074	0.134	0.087	11.167	75
$M_{PE(5)}^{RW}$		-0.904	0.074	0.121	0.086	9.583	79
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.000	0.102	0.101	0.096	0.035	94
$M_{BP(10)}^Z$		-0.993	0.104	0.103	0.097	0.741	93
$M^G_{BP(10)}$		-0.984	0.094	0.095	0.093	1.553	93
$M_{BP(10)}^{PL}$		-1.037	0.108	0.114	0.098	-3.657	94
$M_{BP(10)}^{RW}$		-1.010	0.106	0.106	0.097	-0.981	93
$M_{PE(10)}^{Wishart}$		-0.977	0.096	0.099	0.095	2.301	93
$M_{PE(10)}^Z$		-0.980	0.097	0.098	0.095	2.012	93
$M^G_{PE(10)}$		-0.812	0.070	0.200	0.087	18.814	40
$M_{PE(10)}^{PL}$		-0.965	0.093	0.099	0.094	3.459	93
$M_{PE(10)}^{RW}$		-0.998	0.092	0.092	0.092	0.247	94
M_{PL}		-1.030	0.102	0.106	0.090	-3.015	91

Tabela C.13: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.896	0.021	0.021	0.019	-0.419	94
$M_{BP(5)}^Z$		0.897	0.021	0.021	0.019	-0.372	93
$M^G_{BP(5)}$		0.905	0.018	0.019	0.019	0.553	96
$M_{BP(5)}^{PL}$		0.892	0.021	0.022	0.019	-0.849	92
$M_{BP(5)}^{RW}$		0.896	0.021	0.021	0.019	-0.486	92
$M_{PE(5)}^{Wishart}$		0.925	0.015	0.029	0.018	2.781	68
$M_{PE(5)}^Z$		0.925	0.015	0.029	0.018	2.756	67
$M^G_{PE(5)}$		0.949	0.013	0.051	0.017	5.430	8
$M_{PE(5)}^{PL}$		0.926	0.015	0.030	0.018	2.879	66
$M_{PE(5)}^{RW}$		0.922	0.014	0.026	0.017	2.455	78
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.900	0.020	0.020	0.019	0.039	95
$M_{BP(10)}^Z$		0.902	0.020	0.020	0.020	0.220	94
$M^G_{BP(10)}$		0.904	0.018	0.018	0.019	0.439	96
$M_{BP(10)}^{PL}$		0.892	0.021	0.022	0.019	-0.865	92
$M_{BP(10)}^{RW}$		0.898	0.021	0.021	0.020	-0.225	94
$M_{PE(10)}^{Wishart}$		0.906	0.019	0.020	0.019	0.636	94
$M_{PE(10)}^Z$		0.905	0.019	0.020	0.019	0.558	94
$M^G_{PE(10)}$		0.949	0.014	0.051	0.018	5.459	13
$M_{PE(10)}^{PL}$		0.908	0.018	0.020	0.019	0.919	94
$M_{PE(10)}^{RW}$		0.901	0.018	0.018	0.018	0.080	94
M_{PL}		0.894	0.019	0.020	0.017	-0.701	92

Tabela C.14: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura C.2: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo mínimo.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.121	0.442	0.456	0.435	12.066	97
$M_{BP(5)}^Z$		1.123	0.438	0.453	0.436	12.339	96
$M^G_{BP(5)}$		0.966	0.381	0.381	0.404	-3.393	96
$M_{BP(5)}^{PL}$		1.152	0.446	0.469	0.442	15.196	95
$M_{BP(5)}^{RW}$		1.144	0.445	0.466	0.438	14.371	96
$M_{PE(5)}^{Wishart}$		1.011	0.403	0.401	0.403	1.117	96
$M_{PE(5)}^Z$		1.017	0.400	0.398	0.402	1.666	97
$M^G_{PE(5)}$		0.642	0.297	0.464	0.439	-35.812	91
$M_{PE(5)}^{PL}$		1.008	0.400	0.398	0.403	0.787	97
$M_{PE(5)}^{RW}$		1.028	0.408	0.407	0.408	2.759	97
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.105	0.428	0.439	0.429	10.514	97
$M_{BP(10)}^Z$		1.102	0.426	0.436	0.430	10.189	96
$M^G_{BP(10)}$		0.995	0.395	0.393	0.403	-0.537	99
$M_{BP(10)}^{PL}$		1.154	0.452	0.475	0.444	15.437	94
$M_{BP(10)}^{RW}$		1.150	0.447	0.469	0.444	14.968	95
$M_{PE(10)}^{Wishart}$		1.041	0.407	0.407	0.418	4.119	97
$M_{PE(10)}^Z$		1.052	0.409	0.410	0.420	5.210	98
$M^G_{PE(10)}$		0.519	0.292	0.561	0.491	-48.056	93
$M_{PE(10)}^{PL}$		1.032	0.405	0.404	0.412	3.196	96
$M_{PE(10)}^{RW}$		1.100	0.434	0.443	0.428	9.962	97
M_{PL}		1.124	0.443	0.458	0.432	12.448	96

Tabela C.15: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.014	0.206	0.205	0.237	-1.435	95
$M_{BP(5)}^Z$		-1.016	0.208	0.208	0.238	-1.555	96
$M^G_{BP(5)}$		-0.870	0.173	0.215	0.213	13.004	96
$M_{BP(5)}^{PL}$		-1.046	0.211	0.215	0.243	-4.575	96
$M_{BP(5)}^{RW}$		-1.037	0.207	0.209	0.241	-3.694	96
$M_{PE(5)}^{Wishart}$		-0.905	0.180	0.203	0.219	9.525	95
$M_{PE(5)}^Z$		-0.909	0.181	0.202	0.221	9.110	95
$M^G_{PE(5)}$		-0.586	0.149	0.439	0.225	41.355	54
$M_{PE(5)}^{PL}$		-0.901	0.178	0.202	0.218	9.856	95
$M_{PE(5)}^{RW}$		-0.923	0.181	0.196	0.221	7.699	97
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.001	0.206	0.205	0.235	-0.082	96
$M_{BP(10)}^Z$		-0.996	0.203	0.202	0.236	0.415	96
$M^G_{BP(10)}$		-0.897	0.173	0.201	0.213	10.314	96
$M_{BP(10)}^{PL}$		-1.048	0.211	0.215	0.244	-4.750	97
$M_{BP(10)}^{RW}$		-1.043	0.211	0.214	0.245	-4.329	98
$M_{PE(10)}^{Wishart}$		-0.936	0.190	0.200	0.226	6.419	96
$M_{PE(10)}^Z$		-0.949	0.195	0.200	0.230	5.123	96
$M^G_{PE(10)}$		-0.511	0.169	0.517	0.243	48.934	43
$M_{PE(10)}^{PL}$		-0.928	0.188	0.200	0.224	7.224	96
$M_{PE(10)}^{RW}$		-0.992	0.197	0.196	0.234	0.789	95
M_{PL}		-1.024	0.207	0.208	0.236	-2.421	96

Tabela C.16: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.993	0.017	0.018	0.013	-0.669	90
$M_{BP(5)}^Z$		0.993	0.018	0.019	0.013	-0.694	90
$M^G_{BP(5)}$		1.002	0.012	0.012	0.012	0.208	97
$M_{BP(5)}^{PL}$		0.991	0.017	0.019	0.013	-0.863	90
$M_{BP(5)}^{RW}$		0.993	0.017	0.018	0.013	-0.670	92
$M_{PE(5)}^{Wishart}$		1.006	0.011	0.013	0.012	0.619	96
$M_{PE(5)}^Z$		1.006	0.011	0.013	0.012	0.609	96
$M^G_{PE(5)}$		1.014	0.011	0.018	0.011	1.395	70
$M_{PE(5)}^{PL}$		1.007	0.011	0.013	0.012	0.661	93
$M_{PE(5)}^{RW}$		1.004	0.011	0.012	0.011	0.411	97
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	0.996	0.015	0.016	0.013	-0.375	95
$M_{BP(10)}^Z$		0.997	0.015	0.016	0.013	-0.349	93
$M^G_{BP(10)}$		1.002	0.012	0.012	0.012	0.241	97
$M_{BP(10)}^{PL}$		0.991	0.018	0.020	0.013	-0.918	89
$M_{BP(10)}^{RW}$		0.994	0.017	0.018	0.013	-0.576	94
$M_{PE(10)}^{Wishart}$		0.998	0.014	0.014	0.013	-0.178	97
$M_{PE(10)}^Z$		0.998	0.014	0.014	0.013	-0.247	96
$M^G_{PE(10)}$		1.010	0.011	0.015	0.011	0.986	92
$M_{PE(10)}^{PL}$		1.000	0.013	0.013	0.013	0.003	95
$M_{PE(10)}^{RW}$		0.994	0.014	0.015	0.012	-0.604	93
M_{PL}		0.994	0.013	0.014	0.011	-0.589	95

Tabela C.17: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.934	0.536	0.537	0.749	-3.301	93
$M_{BP(5)}^Z$		1.929	0.536	0.538	0.746	-3.567	93
$M^G_{BP(5)}$		1.978	0.524	0.522	0.789	-1.085	95
$M_{BP(5)}^{PL}$		1.892	0.532	0.541	0.728	-5.406	92
$M_{BP(5)}^{RW}$		1.921	0.535	0.538	0.742	-3.961	93
$M_{PE(5)}^{Wishart}$		2.135	0.581	0.594	0.832	6.732	98
$M_{PE(5)}^Z$		2.138	0.581	0.595	0.833	6.898	98
$M^G_{PE(5)}$		1.008	0.440	1.085	0.439	-49.625	30
$M_{PE(5)}^{PL}$		2.145	0.581	0.596	0.838	7.267	98
$M_{PE(5)}^{RW}$		2.107	0.574	0.581	0.818	5.341	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.985	0.539	0.536	0.771	-0.759	95
$M_{BP(10)}^Z$		1.985	0.540	0.538	0.773	-0.727	96
$M^G_{BP(10)}$		2.060	0.537	0.538	0.809	2.986	97
$M_{BP(10)}^{PL}$		1.880	0.529	0.540	0.724	-5.989	92
$M_{BP(10)}^{RW}$		1.927	0.540	0.542	0.751	-3.668	93
$M_{PE(10)}^{Wishart}$		1.981	0.552	0.549	0.777	-0.937	94
$M_{PE(10)}^Z$		1.982	0.554	0.551	0.775	-0.920	93
$M^G_{PE(10)}$		0.532	0.281	1.494	0.219	-73.388	5
$M_{PE(10)}^{PL}$		2.022	0.552	0.550	0.791	1.115	96
$M_{PE(10)}^{RW}$		1.937	0.540	0.541	0.747	-3.128	91
M_{PL}		1.934	0.523	0.525	0.735	-3.290	94

Tabela C.18: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.991	0.280	0.279	0.292	-0.866	95
$M_{BP(5)}^Z$		0.992	0.281	0.280	0.291	-0.791	95
$M^G_{BP(5)}$		0.865	0.243	0.277	0.272	-13.490	93
$M_{BP(5)}^{PL}$		1.008	0.284	0.283	0.295	0.773	95
$M_{BP(5)}^{RW}$		1.008	0.284	0.283	0.296	0.814	95
$M_{PE(5)}^{Wishart}$		0.881	0.247	0.273	0.272	-11.899	95
$M_{PE(5)}^Z$		0.885	0.250	0.274	0.271	-11.494	93
$M^G_{PE(5)}$		0.589	0.187	0.451	0.289	-41.141	74
$M_{PE(5)}^{PL}$		0.875	0.245	0.274	0.270	-12.511	95
$M_{PE(5)}^{RW}$		0.890	0.249	0.271	0.271	-10.957	94
$M_{BP(10)}^{Wishart}$		0.980	0.280	0.279	0.288	-1.954	95
$M_{BP(10)}^Z$		0.980	0.283	0.283	0.290	-1.964	95
$M^G_{BP(10)}$		0.880	0.248	0.274	0.272	-11.961	95
$M^{PL}_{BP(10)}$		1.013	0.288	0.287	0.296	1.295	95
$M_{BP(10)}^{RW}$		1.005	0.285	0.283	0.295	0.503	95
$M_{PE(10)}^{Wishart}$		0.926	0.265	0.274	0.281	-7.381	94
$M_{PE(10)}^Z$		0.935	0.264	0.271	0.283	-6.488	95
$M^G_{PE(10)}$		0.496	0.204	0.543	0.324	-50.355	71
$M_{PE(10)}^{PL}$		0.917	0.259	0.270	0.278	-8.289	96
$M_{PE(10)}^{RW}$		0.961	0.271	0.273	0.285	-3.940	96

Tabela C.19: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.018	0.147	0.148	0.140	-1.787	94
$M_{BP(5)}^Z$		-1.019	0.146	0.146	0.140	-1.867	93
$M^G_{BP(5)}$		-0.901	0.117	0.153	0.126	9.914	90
$M_{BP(5)}^{PL}$		-1.036	0.145	0.149	0.141	-3.601	93
$M_{BP(5)}^{RW}$		-1.034	0.145	0.148	0.142	-3.358	93
$M_{PE(5)}^{Wishart}$		-0.913	0.122	0.149	0.128	8.694	91
$M_{PE(5)}^Z$		-0.914	0.123	0.150	0.129	8.617	91
$M^G_{PE(5)}$		-0.643	0.092	0.368	0.129	35.678	13
$M_{PE(5)}^{PL}$		-0.907	0.120	0.151	0.128	9.278	91
$M_{PE(5)}^{RW}$		-0.922	0.123	0.145	0.129	7.814	93
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.007	0.143	0.142	0.139	-0.733	94
$M_{BP(10)}^Z$		-1.007	0.146	0.146	0.139	-0.725	93
$M^G_{BP(10)}$		-0.916	0.119	0.145	0.126	8.439	91
$M_{BP(10)}^{PL}$		-1.036	0.145	0.149	0.143	-3.642	94
$M_{BP(10)}^{RW}$		-1.030	0.146	0.149	0.142	-3.025	94
$M_{PE(10)}^{Wishart}$		-0.959	0.136	0.142	0.134	4.125	93
$M_{PE(10)}^Z$		-0.967	0.136	0.139	0.135	3.341	94
$M^G_{PE(10)}$		-0.567	0.103	0.445	0.142	43.274	7
$M_{PE(10)}^{PL}$		-0.948	0.132	0.141	0.132	5.217	93
$M_{PE(10)}^{RW}$		-0.990	0.138	0.138	0.137	0.990	96
M_{PL}		-1.024	0.140	0.141	0.138	-2.445	92

Tabela C.20: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.999	0.008	0.008	0.008	-0.081	95
$M_{BP(5)}^Z$		0.999	0.008	0.009	0.008	-0.090	93
$M^G_{BP(5)}$		1.005	0.007	0.009	0.007	0.461	88
$M_{BP(5)}^{PL}$		0.998	0.008	0.008	0.008	-0.180	94
$M_{BP(5)}^{RW}$		0.999	0.008	0.008	0.008	-0.110	94
$M_{PE(5)}^{Wishart}$		1.011	0.007	0.013	0.007	1.059	63
$M_{PE(5)}^Z$		1.011	0.007	0.013	0.007	1.053	60
$M^G_{PE(5)}$		1.016	0.006	0.017	0.007	1.561	35
$M_{PE(5)}^{PL}$		1.011	0.007	0.013	0.007	1.091	60
$M_{PE(5)}^{RW}$		1.010	0.007	0.012	0.007	0.953	69
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	1.001	0.008	0.008	0.008	0.051	94
$M_{BP(10)}^Z$		1.001	0.008	0.008	0.008	0.052	95
$M^G_{BP(10)}$		1.005	0.007	0.009	0.007	0.486	88
$M_{BP(10)}^{PL}$		0.998	0.008	0.008	0.008	-0.177	95
$M_{BP(10)}^{RW}$		1.000	0.008	0.008	0.008	0.000	95
$M_{PE(10)}^{Wishart}$		1.004	0.008	0.009	0.008	0.362	89
$M_{PE(10)}^Z$		1.003	0.008	0.009	0.008	0.336	90
$M^G_{PE(10)}$		1.011	0.007	0.013	0.007	1.129	68
$M_{PE(10)}^{PL}$		1.005	0.008	0.009	0.008	0.479	90
$M_{PE(10)}^{RW}$		1.001	0.008	0.008	0.008	0.105	93
M_{PL}		0.999	0.007	0.007	0.007	-0.055	90

Tabela C.21: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		2.012	0.520	0.518	0.627	0.620	97
$M_{BP(5)}^Z$		2.011	0.523	0.520	0.628	0.544	96
$M^G_{BP(5)}$		2.029	0.541	0.539	0.654	1.444	97
$M_{BP(5)}^{PL}$		1.982	0.518	0.515	0.616	-0.921	95
$M_{BP(5)}^{RW}$		1.997	0.523	0.520	0.623	-0.135	96
$M_{PE(5)}^{Wishart}$		2.254	0.579	0.630	0.716	12.699	99
$M_{PE(5)}^Z$		2.255	0.577	0.628	0.718	12.767	99
$M^G_{PE(5)}$		1.129	0.376	0.948	0.395	-43.545	37
$M_{PE(5)}^{PL}$		2.259	0.576	0.629	0.719	12.934	100
$M_{PE(5)}^{RW}$		2.230	0.573	0.615	0.707	11.523	99
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	2.047	0.534	0.533	0.641	2.343	97
$M_{BP(10)}^Z$		2.050	0.540	0.540	0.643	2.478	97
$M^G_{BP(10)}$		2.088	0.548	0.552	0.669	4.405	99
$M_{BP(10)}^{PL}$		1.984	0.521	0.519	0.619	-0.823	94
$M_{BP(10)}^{RW}$		2.022	0.531	0.528	0.635	1.123	96
$M_{PE(10)}^{Wishart}$		2.099	0.543	0.549	0.663	4.942	100
$M_{PE(10)}^Z$		2.098	0.539	0.545	0.661	4.904	100
$M_{PE(10)}^G$		0.587	0.190	1.426	0.191	-70.651	3
$M_{PE(10)}^{PL}$		2.125	0.546	0.557	0.672	6.261	100
$M_{PE(10)}^{RW}$		2.047	0.532	0.531	0.640	2.353	97
M_{PL}		2.012	0.531	0.529	0.619	0.591	95

Tabela C.22: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura C.3: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.040	0.181	0.184	0.161	3.969	93
$M_{BP(5)}^Z$		1.040	0.181	0.184	0.161	3.976	93
$M^G_{BP(5)}$		0.960	0.163	0.167	0.159	-4.035	92
$M_{BP(5)}^{PL}$		1.049	0.179	0.185	0.161	4.909	93
$M_{BP(5)}^{RW}$		1.040	0.177	0.180	0.161	3.971	95
$M_{PE(5)}^{Wishart}$		0.944	0.159	0.167	0.156	-5.629	93
$M_{PE(5)}^Z$		0.944	0.159	0.167	0.156	-5.599	92
$M^G_{PE(5)}$		0.797	0.153	0.254	0.160	-20.267	71
$M_{PE(5)}^{PL}$		0.942	0.158	0.167	0.156	-5.827	92
$M_{PE(5)}^{RW}$		0.957	0.159	0.164	0.156	-4.290	93
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.026	0.177	0.178	0.162	2.577	95
$M_{BP(10)}^Z$		1.025	0.176	0.177	0.162	2.534	94
$M^G_{BP(10)}$		0.962	0.163	0.166	0.159	-3.843	92
$M_{BP(10)}^{PL}$		1.053	0.178	0.185	0.162	5.273	93
$M_{BP(10)}^{RW}$		1.029	0.177	0.179	0.161	2.872	94
$M_{PE(10)}^{Wishart}$		1.013	0.173	0.173	0.161	1.287	94
$M_{PE(10)}^Z$		1.015	0.175	0.175	0.161	1.463	93
$M^G_{PE(10)}$		0.776	0.166	0.278	0.170	-22.382	67
$M_{PE(10)}^{PL}$		0.998	0.171	0.170	0.161	-0.170	95
$M_{PE(10)}^{RW}$		1.041	0.176	0.180	0.161	4.063	94
M_{PL}		1.039	0.170	0.174	0.152	3.871	96

Tabela C.23: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{1.00,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.029	0.123	0.125	0.111	-2.943	90
$M_{BP(5)}^Z$		-1.029	0.123	0.126	0.111	-2.915	91
$M^G_{BP(5)}$		-0.947	0.096	0.109	0.104	5.287	91
$M_{BP(5)}^{PL}$		-1.038	0.118	0.123	0.110	-3.823	92
$M_{BP(5)}^{RW}$		-1.029	0.115	0.118	0.109	-2.879	95
$M_{PE(5)}^{Wishart}$		-0.929	0.101	0.123	0.102	7.106	89
$M_{PE(5)}^Z$		-0.929	0.101	0.123	0.102	7.062	90
$M^G_{PE(5)}$		-0.782	0.078	0.232	0.098	21.828	35
$M_{PE(5)}^{PL}$		-0.927	0.099	0.123	0.102	7.315	89
$M_{PE(5)}^{RW}$		-0.942	0.100	0.115	0.102	5.771	91
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.012	0.115	0.115	0.111	-1.209	94
$M_{BP(10)}^Z$		-1.012	0.116	0.116	0.111	-1.192	95
$M^G_{BP(10)}$		-0.948	0.097	0.110	0.105	5.218	93
$M_{BP(10)}^{PL}$		-1.040	0.117	0.123	0.111	-3.999	93
$M_{BP(10)}^{RW}$		-1.016	0.115	0.116	0.110	-1.627	94
$M_{PE(10)}^{Wishart}$		-0.998	0.114	0.113	0.109	0.244	95
$M_{PE(10)}^Z$		-1.000	0.115	0.114	0.110	0.006	95
$M^G_{PE(10)}$		-0.758	0.077	0.254	0.103	24.249	31
$M_{PE(10)}^{PL}$		-0.983	0.111	0.111	0.109	1.667	94
$M_{PE(10)}^{RW}$		-1.026	0.116	0.119	0.109	-2.639	91
M_{PL}		-1.026	0.099	0.102	0.098	-2.626	97

Tabela C.24: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.997	0.010	0.010	0.009	-0.289	90
$M_{BP(5)}^Z$		0.997	0.010	0.010	0.009	-0.291	89
$M^G_{BP(5)}$		1.005	0.008	0.009	0.008	0.496	93
$M_{BP(5)}^{PL}$		0.996	0.010	0.010	0.009	-0.368	90
$M_{BP(5)}^{RW}$		0.997	0.009	0.010	0.009	-0.277	91
$M_{PE(5)}^{Wishart}$		1.007	0.008	0.011	0.008	0.722	88
$M_{PE(5)}^Z$		1.007	0.008	0.011	0.008	0.718	88
$M^G_{PE(5)}$		1.023	0.007	0.024	0.008	2.256	11
$M_{PE(5)}^{PL}$		1.007	0.008	0.011	0.008	0.747	88
$M_{PE(5)}^{RW}$		1.006	0.008	0.010	0.008	0.586	91
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	0.999	0.009	0.010	0.009	-0.132	93
$M_{BP(10)}^Z$		0.999	0.010	0.010	0.009	-0.127	93
$M^G_{BP(10)}$		1.005	0.008	0.009	0.009	0.478	96
$M_{BP(10)}^{PL}$		0.996	0.010	0.010	0.009	-0.392	89
$M_{BP(10)}^{RW}$		0.998	0.010	0.010	0.009	-0.167	93
$M_{PE(10)}^{Wishart}$		1.000	0.009	0.009	0.009	0.004	94
$M_{PE(10)}^Z$		1.000	0.009	0.009	0.009	-0.018	93
$M^G_{PE(10)}$		1.025	0.007	0.026	0.008	2.503	8
$M_{PE(10)}^{PL}$		1.002	0.009	0.009	0.009	0.152	94
$M_{PE(10)}^{RW}$		0.997	0.009	0.010	0.009	-0.273	94
M_{PL}		0.997	0.008	0.009	0.008	-0.256	94

Tabela C.25: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.994	0.111	0.111	0.114	-0.641	97
$M_{BP(5)}^Z$		0.994	0.111	0.111	0.115	-0.582	97
$M^G_{BP(5)}$		0.944	0.104	0.118	0.113	-5.573	94
$M_{BP(5)}^{PL}$		1.002	0.110	0.110	0.114	0.161	96
$M_{BP(5)}^{RW}$		0.996	0.110	0.109	0.114	-0.398	96
$M_{PE(5)}^{Wishart}$		0.912	0.101	0.134	0.111	-8.848	87
$M_{PE(5)}^Z$		0.912	0.100	0.133	0.111	-8.831	87
$M^G_{PE(5)}$		0.811	0.101	0.213	0.113	-18.856	63
$M_{PE(5)}^{PL}$		0.910	0.101	0.135	0.111	-9.041	87
$M_{PE(5)}^{RW}$		0.919	0.101	0.129	0.111	-8.090	91
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.986	0.107	0.108	0.115	-1.397	97
$M_{BP(10)}^Z$		0.987	0.108	0.109	0.115	-1.290	96
$M^G_{BP(10)}$		0.945	0.103	0.116	0.113	-5.469	96
$M_{BP(10)}^{PL}$		1.002	0.110	0.109	0.115	0.233	96
$M_{BP(10)}^{RW}$		0.989	0.108	0.108	0.114	-1.109	97
$M_{PE(10)}^{Wishart}$		0.968	0.108	0.112	0.114	-3.249	96
$M_{PE(10)}^Z$		0.969	0.108	0.112	0.114	-3.134	97
$M^G_{PE(10)}$		0.799	0.106	0.226	0.119	-20.050	61
$M_{PE(10)}^{PL}$		0.959	0.107	0.114	0.114	-4.059	95
$M_{PE(10)}^{RW}$		0.984	0.108	0.109	0.114	-1.569	95
M_{PL}		0.993	0.114	0.113	0.110	-0.743	94

Tabela C.26: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{1.00,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.019	0.072	0.074	0.075	-1.917	96
$M_{BP(5)}^Z$		-1.020	0.070	0.072	0.075	-1.961	98
$M^G_{BP(5)}$		-0.969	0.060	0.067	0.072	3.062	95
$M_{BP(5)}^{PL}$		-1.027	0.072	0.076	0.075	-2.731	97
$M_{BP(5)}^{RW}$		-1.022	0.071	0.074	0.074	-2.244	96
$M_{PE(5)}^{Wishart}$		-0.931	0.059	0.090	0.068	6.857	86
$M_{PE(5)}^Z$		-0.932	0.059	0.090	0.069	6.823	87
$M^G_{PE(5)}$		-0.828	0.049	0.179	0.066	17.184	17
$M_{PE(5)}^{PL}$		-0.929	0.058	0.091	0.068	7.070	87
$M_{PE(5)}^{RW}$		-0.939	0.059	0.084	0.068	6.068	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.011	0.070	0.071	0.075	-1.105	96
$M_{BP(10)}^Z$		-1.012	0.071	0.072	0.075	-1.183	97
$M^G_{BP(10)}$		-0.970	0.061	0.068	0.072	3.016	95
$M_{BP(10)}^{PL}$		-1.027	0.071	0.076	0.075	-2.745	96
$M_{BP(10)}^{RW}$		-1.013	0.071	0.071	0.075	-1.323	96
$M_{PE(10)}^{Wishart}$		-0.992	0.065	0.066	0.074	0.847	98
$M_{PE(10)}^Z$		-0.993	0.066	0.066	0.074	0.729	97
$M^G_{PE(10)}$		-0.816	0.049	0.191	0.068	18.409	17
$M_{PE(10)}^{PL}$		-0.983	0.064	0.066	0.073	1.723	97
$M_{PE(10)}^{RW}$		-1.009	0.065	0.066	0.074	-0.874	98
M_{PL}		-1.017	0.067	0.069	0.068	-1.715	94

Tabela C.27: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo mínimo:

Tabela C.28:	Sumário indicando a	a média, desvic) padrão, I	RMSE, erro	padrão médio,	vício
relativo médio	(%) e taxa de cobert	ura (%) para o e	estimador o	de α no cená	rio $S^{1.00,2}_{\infty,50}$ para	o caso
Bayesiano na	situação de reparo m	ínimo:				

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.999	0.006	0.006	0.006	-0.096	99
$M_{BP(5)}^Z$		0.999	0.006	0.006	0.006	-0.099	99
$M^G_{BP(5)}$		1.003	0.005	0.006	0.006	0.346	96
$M_{BP(5)}^{PL}$		0.998	0.006	0.006	0.006	-0.167	98
$M_{BP(5)}^{RW}$		0.999	0.006	0.006	0.006	-0.125	99
$M_{PE(5)}^{Wishart}$		1.008	0.005	0.009	0.006	0.797	78
$M_{PE(5)}^Z$		1.008	0.005	0.009	0.006	0.794	77
$M^G_{PE(5)}$		1.018	0.004	0.019	0.006	1.814	4
$M_{PE(5)}^{PL}$		1.008	0.005	0.009	0.006	0.825	74
$M_{PE(5)}^{RW}$		1.007	0.005	0.009	0.006	0.720	79
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	1.000	0.006	0.006	0.006	-0.018	99
$M_{BP(10)}^Z$		1.000	0.006	0.006	0.006	-0.024	98
$M^G_{BP(10)}$		1.003	0.005	0.006	0.006	0.348	95
$M_{BP(10)}^{PL}$		0.998	0.006	0.006	0.006	-0.167	98
$M_{BP(10)}^{RW}$		1.000	0.006	0.006	0.006	-0.033	99
$M_{PE(10)}^{Wishart}$		1.002	0.005	0.006	0.006	0.183	97
$M_{PE(10)}^Z$		1.002	0.005	0.005	0.006	0.173	98
$M^G_{PE(10)}$		1.019	0.005	0.020	0.006	1.925	6
$M_{PE(10)}^{PL}$		1.003	0.005	0.006	0.006	0.275	97
$M_{PE(10)}^{RW}$		1.000	0.005	0.005	0.006	0.020	99
M_{PL}		0.999	0.005	0.005	0.006	-0.086	98

Figura C.4: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{1.00,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo mínimo.

<u>caso Bay</u>	esiano na	sıtuaç	ao de reparo min	umo:			
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.996	0.382	0.380	0.416	-0.446	96
$M_{BP(5)}^Z$		0.996	0.390	0.388	0.418	-0.379	94
$M^G_{BP(5)}$		0.761	0.287	0.373	0.397	-23.907	95
$M_{BP(5)}^{PL}$		1.019	0.391	0.389	0.421	1.924	93
$M_{BP(5)}^{RW}$		1.015	0.393	0.392	0.421	1.452	95
$M_{PE(5)}^{Wishart}$		0.915	0.355	0.363	0.391	-8.500	95
$M_{PE(5)}^Z$		0.916	0.354	0.362	0.393	-8.417	95
$M^G_{PE(5)}$		0.432	0.295	0.639	0.489	-56.785	89
$M_{PE(5)}^{PL}$		0.902	0.351	0.363	0.390	-9.752	96
$M_{PE(5)}^{RW}$		0.928	0.357	0.363	0.393	-7.199	96
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.981	0.379	0.378	0.411	-1.921	95
$M_{BP(10)}^Z$		0.982	0.376	0.375	0.411	-1.774	95
$M^G_{BP(10)}$		0.783	0.295	0.365	0.391	-21.721	94
$M_{BP(10)}^{PL}$		1.021	0.387	0.386	0.424	2.053	93
$M_{BP(10)}^{RW}$		1.011	0.387	0.385	0.424	1.112	95
$M_{PE(10)}^{Wishart}$		0.938	0.357	0.361	0.401	-6.169	96
$M_{PE(10)}^Z$		0.946	0.361	0.363	0.402	-5.397	95
$M^G_{PE(10)}$		0.355	0.359	0.737	0.526	-64.481	85
$M_{PE(10)}^{PL}$		0.913	0.345	0.355	0.397	-8.700	95
$M_{PE(10)}^{RW}$		0.974	0.366	0.365	0.410	-2.639	96
M_{PL}		1.004	0.386	0.384	0.415	0.425	94

Tabela C.29: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.031	0.250	0.251	0.235	-3.065	93
$M_{BP(5)}^Z$		-1.031	0.256	0.257	0.234	-3.120	93
$M^G_{BP(5)}$		-0.789	0.194	0.286	0.213	21.126	84
$M_{BP(5)}^{PL}$		-1.052	0.250	0.254	0.237	-5.248	93
$M_{BP(5)}^{RW}$		-1.049	0.250	0.253	0.238	-4.868	93
$M_{PE(5)}^{Wishart}$		-0.925	0.217	0.228	0.219	7.451	92
$M_{PE(5)}^Z$		-0.929	0.216	0.226	0.219	7.082	94
$M^G_{PE(5)}$		-0.485	0.180	0.545	0.250	51.495	43
$M_{PE(5)}^{PL}$		-0.918	0.213	0.228	0.217	8.216	93
$M_{PE(5)}^{RW}$		-0.941	0.219	0.225	0.221	5.870	92
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.011	0.247	0.247	0.231	-1.123	93
$M_{BP(10)}^Z$		-1.016	0.251	0.250	0.232	-1.565	93
$M^G_{BP(10)}$		-0.810	0.191	0.269	0.211	19.012	84
$M_{BP(10)}^{PL}$		-1.052	0.251	0.256	0.238	-5.245	93
$M_{BP(10)}^{RW}$		-1.048	0.250	0.253	0.238	-4.831	93
$M_{PE(10)}^{Wishart}$		-0.962	0.236	0.238	0.226	3.757	92
$M_{PE(10)}^Z$		-0.970	0.239	0.240	0.225	2.959	93
$M^G_{PE(10)}$		-0.439	0.206	0.597	0.266	56.082	40
$M_{PE(10)}^{PL}$		-0.937	0.229	0.236	0.222	6.325	91
$M_{PE(10)}^{RW}$		-1.001	0.244	0.243	0.229	-0.141	92
M_{PL}		-1.035	0.242	0.243	0.232	-3.457	93

Tabela C.30: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.047	0.007	0.008	0.007	-0.240	92
$M_{BP(5)}^Z$		1.047	0.007	0.008	0.007	-0.249	91
$M^G_{BP(5)}$		1.053	0.006	0.007	0.006	0.257	96
$M_{BP(5)}^{PL}$		1.047	0.007	0.007	0.007	-0.279	94
$M_{BP(5)}^{RW}$		1.047	0.007	0.007	0.007	-0.246	95
$M_{PE(5)}^{Wishart}$		1.055	0.006	0.008	0.006	0.484	87
$M_{PE(5)}^Z$		1.055	0.006	0.008	0.006	0.484	88
$M^G_{PE(5)}$		1.057	0.005	0.009	0.006	0.675	80
$M_{PE(5)}^{PL}$		1.055	0.006	0.008	0.006	0.498	86
$M_{PE(5)}^{RW}$		1.054	0.006	0.007	0.006	0.391	92
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.048	0.007	0.007	0.007	-0.144	94
$M_{BP(10)}^Z$		1.048	0.007	0.008	0.007	-0.150	94
$M^G_{BP(10)}$		1.053	0.006	0.007	0.007	0.305	93
$M_{BP(10)}^{PL}$		1.047	0.007	0.008	0.007	-0.282	93
$M_{BP(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.179	96
$M_{PE(10)}^{Wishart}$		1.050	0.007	0.007	0.007	0.030	97
$M_{PE(10)}^Z$		1.050	0.007	0.007	0.007	0.023	97
$M^G_{PE(10)}$		1.054	0.006	0.007	0.007	0.353	95
$M_{PE(10)}^{PL}$		1.051	0.007	0.007	0.007	0.133	94
$M_{PE(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.159	96
M_{PL}		1.048	0.006	0.006	0.006	-0.202	94

Tabela C.31: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.943	0.623	0.622	0.719	-2.856	89
$M_{BP(5)}^Z$		1.940	0.625	0.624	0.716	-3.016	90
$M^G_{BP(5)}$		1.547	0.511	0.681	0.631	-22.648	81
$M_{BP(5)}^{PL}$		1.924	0.618	0.619	0.711	-3.781	90
$M_{BP(5)}^{RW}$		1.932	0.620	0.620	0.715	-3.410	89
$M_{PE(5)}^{Wishart}$		2.103	0.657	0.662	0.788	5.135	96
$M_{PE(5)}^Z$		2.107	0.659	0.665	0.790	5.344	95
$M^G_{PE(5)}$		0.371	0.158	1.637	0.141	-81.465	0
$M_{PE(5)}^{PL}$		2.099	0.660	0.664	0.788	4.967	95
$M_{PE(5)}^{RW}$		2.083	0.655	0.657	0.777	4.150	95
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.978	0.630	0.628	0.735	-1.114	90
$M_{BP(10)}^Z$		1.973	0.627	0.625	0.735	-1.365	89
$M^G_{BP(10)}$		1.691	0.538	0.618	0.676	-15.452	88
$M_{BP(10)}^{PL}$		1.926	0.619	0.620	0.713	-3.704	89
$M_{BP(10)}^{RW}$		1.948	0.626	0.625	0.725	-2.592	89
$M_{PE(10)}^{Wishart}$		1.999	0.638	0.635	0.749	-0.039	92
$M_{PE(10)}^Z$		2.007	0.637	0.634	0.751	0.358	92
$M^G_{PE(10)}$		0.188	0.078	1.814	0.065	-90.623	0
$M_{PE(10)}^{PL}$		2.007	0.641	0.638	0.758	0.372	92
$M_{PE(10)}^{RW}$		1.959	0.624	0.623	0.728	-2.028	91
M_{PL}		1.949	0.618	0.617	0.711	-2.527	88

Tabela C.32: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.967	0.274	0.274	0.283	-3.330	94
$M_{BP(5)}^Z$		0.968	0.275	0.275	0.284	-3.245	93
$M^G_{BP(5)}$		0.769	0.227	0.322	0.265	-23.060	89
$M_{BP(5)}^{PL}$		0.980	0.278	0.278	0.286	-1.972	95
$M_{BP(5)}^{RW}$		0.981	0.275	0.274	0.285	-1.887	94
$M_{PE(5)}^{Wishart}$		0.869	0.250	0.281	0.263	-13.082	90
$M_{PE(5)}^Z$		0.870	0.253	0.283	0.264	-13.047	90
$M^G_{PE(5)}$		0.461	0.211	0.579	0.318	-53.924	61
$M_{PE(5)}^{PL}$		0.862	0.248	0.283	0.263	-13.790	90
$M_{PE(5)}^{RW}$		0.877	0.251	0.279	0.264	-12.278	93
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.956	0.274	0.277	0.281	-4.450	94
$M_{BP(10)}^Z$		0.958	0.272	0.274	0.281	-4.250	93
$M^G_{BP(10)}$		0.778	0.225	0.316	0.264	-22.219	89
$M_{BP(10)}^{PL}$		0.983	0.279	0.279	0.286	-1.749	95
$M_{BP(10)}^{RW}$		0.977	0.279	0.279	0.286	-2.327	94
$M_{PE(10)}^{Wishart}$		0.911	0.262	0.275	0.273	-8.912	94
$M_{PE(10)}^Z$		0.917	0.263	0.275	0.275	-8.331	94
$M^G_{PE(10)}$		0.389	0.244	0.658	0.348	-61.119	62
$M_{PE(10)}^{PL}$		0.890	0.257	0.278	0.270	-10.994	94
$M_{PE(10)}^{RW}$		0.933	0.266	0.273	0.277	-6.666	95
M_{PL}		0.969	0.274	0.275	0.281	-3.103	95

Tabela C.33: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.004	0.121	0.120	0.135	-0.360	97
$M_{BP(5)}^Z$		-1.005	0.121	0.120	0.136	-0.516	96
$M^G_{BP(5)}$		-0.808	0.094	0.214	0.121	19.207	73
$M_{BP(5)}^{PL}$		-1.019	0.124	0.125	0.136	-1.928	97
$M_{BP(5)}^{RW}$		-1.018	0.125	0.126	0.137	-1.844	96
$M_{PE(5)}^{Wishart}$		-0.905	0.103	0.140	0.124	9.461	88
$M_{PE(5)}^Z$		-0.908	0.105	0.139	0.125	9.175	88
$M^G_{PE(5)}$		-0.515	0.088	0.492	0.141	48.454	1
$M_{PE(5)}^{PL}$		-0.898	0.103	0.145	0.124	10.167	89
$M_{PE(5)}^{RW}$		-0.915	0.105	0.135	0.125	8.467	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-0.992	0.124	0.124	0.134	0.809	96
$M_{BP(10)}^Z$		-0.996	0.127	0.126	0.135	0.370	95
$M^G_{BP(10)}$		-0.819	0.094	0.204	0.121	18.077	73
$M_{BP(10)}^{PL}$		-1.020	0.126	0.127	0.138	-1.972	98
$M_{BP(10)}^{RW}$		-1.016	0.126	0.126	0.138	-1.621	97
$M_{PE(10)}^{Wishart}$		-0.948	0.115	0.125	0.130	5.172	93
$M_{PE(10)}^Z$		-0.955	0.116	0.124	0.131	4.523	93
$M^G_{PE(10)}$		-0.456	0.104	0.553	0.153	54.365	0
$M_{PE(10)}^{PL}$		-0.930	0.110	0.130	0.128	7.050	93
$M_{PE(10)}^{RW}$		-0.972	0.118	0.121	0.132	2.814	94
M_{PL}		-1.008	0.122	0.122	0.133	-0.770	96

Tabela C.34: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.049	0.005	0.006	0.005	-0.104	90
$M_{BP(5)}^Z$		1.049	0.005	0.006	0.005	-0.115	92
$M^G_{BP(5)}$		1.054	0.005	0.006	0.005	0.362	90
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.005	-0.145	93
$M_{BP(5)}^{RW}$		1.049	0.005	0.005	0.005	-0.124	92
$M_{PE(5)}^{Wishart}$		1.057	0.005	0.009	0.005	0.701	59
$M_{PE(5)}^Z$		1.057	0.005	0.009	0.005	0.697	59
$M^G_{PE(5)}$		1.060	0.005	0.011	0.004	0.927	41
$M_{PE(5)}^{PL}$		1.057	0.005	0.009	0.005	0.709	62
$M_{PE(5)}^{RW}$		1.057	0.005	0.008	0.005	0.645	64
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.050	0.006	0.006	0.005	-0.043	92
$M_{BP(10)}^Z$		1.049	0.006	0.006	0.005	-0.064	92
$M^G_{BP(10)}$		1.054	0.005	0.006	0.005	0.376	88
$M_{BP(10)}^{PL}$		1.049	0.005	0.006	0.005	-0.141	91
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.005	-0.079	92
$M_{PE(10)}^{Wishart}$		1.052	0.005	0.006	0.005	0.208	94
$M_{PE(10)}^Z$		1.052	0.005	0.006	0.005	0.201	94
$M^G_{PE(10)}$		1.056	0.005	0.008	0.005	0.581	71
$M_{PE(10)}^{PL}$		1.053	0.005	0.006	0.005	0.278	94
$M_{PE(10)}^{RW}$		1.051	0.005	0.005	0.005	0.067	94
M_{PL}		1.049	0.005	0.005	0.005	-0.073	91

Tabela C.35: Summary of simulated mean, standard deviation, RMSE, mean standard error, mean relative bias (%) and coverage rate (%) of the estimator of β_1 , β_2 , $\alpha \in \zeta_{\nu}$ for the scenario $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		2.076	0.617	0.618	0.618	3.811	93
$M_{BP(5)}^Z$		2.072	0.620	0.621	0.618	3.619	93
$M^G_{BP(5)}$		1.795	0.553	0.587	0.586	-10.253	87
$M_{BP(5)}^{PL}$		2.055	0.617	0.616	0.610	2.732	92
$M_{BP(5)}^{RW}$		2.058	0.618	0.617	0.611	2.876	92
$M_{PE(5)}^{Wishart}$		2.304	0.650	0.715	0.700	15.217	97
$M_{PE(5)}^Z$		2.304	0.648	0.713	0.700	15.220	97
$M^G_{PE(5)}$		0.488	0.167	1.522	0.153	-75.621	0
$M_{PE(5)}^{PL}$		2.302	0.652	0.715	0.700	15.079	97
$M_{PE(5)}^{RW}$		2.285	0.647	0.704	0.693	14.265	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	2.101	0.622	0.627	0.629	5.054	94
$M_{BP(10)}^Z$		2.094	0.626	0.630	0.626	4.716	92
$M^G_{BP(10)}$		1.894	0.573	0.580	0.613	-5.321	91
$M_{BP(10)}^{PL}$		2.056	0.617	0.616	0.613	2.824	92
$M_{BP(10)}^{RW}$		2.077	0.619	0.621	0.621	3.868	93
$M_{PE(10)}^{Wishart}$		2.169	0.630	0.649	0.654	8.453	94
$M_{PE(10)}^Z$		2.171	0.631	0.651	0.655	8.565	95
$M^G_{PE(10)}$		0.235	0.076	1.767	0.066	-88.272	0
$M_{PE(10)}^{PL}$		2.183	0.633	0.656	0.662	9.168	94
$M_{PE(10)}^{RW}$		2.122	0.621	0.629	0.636	6.099	94
M_{PL}		2.071	0.610	0.611	0.609	3.572	96

Tabela C.36: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura C.5: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.046	0.155	0.160	0.150	4.553	97
$M_{BP(5)}^Z$		1.047	0.152	0.159	0.150	4.725	96
$M^G_{BP(5)}$		0.950	0.144	0.151	0.148	-4.955	96
$M_{BP(5)}^{PL}$		1.056	0.153	0.162	0.150	5.581	95
$M_{BP(5)}^{RW}$		1.053	0.153	0.161	0.149	5.262	96
$M_{PE(5)}^{Wishart}$		0.965	0.151	0.154	0.146	-3.508	96
$M_{PE(5)}^Z$		0.965	0.150	0.154	0.146	-3.542	95
$M^G_{PE(5)}$		0.817	0.170	0.249	0.154	-18.262	70
$M_{PE(5)}^{PL}$		0.964	0.150	0.154	0.146	-3.599	96
$M_{PE(5)}^{RW}$		0.975	0.152	0.153	0.145	-2.458	96
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.042	0.152	0.157	0.152	4.153	97
$M_{BP(10)}^Z$		1.041	0.154	0.159	0.152	4.084	97
$M^G_{BP(10)}$		0.952	0.144	0.151	0.149	-4.808	96
$M_{BP(10)}^{PL}$		1.057	0.155	0.165	0.151	5.717	97
$M_{BP(10)}^{RW}$		1.043	0.153	0.158	0.150	4.301	97
$M_{PE(10)}^{Wishart}$		1.023	0.151	0.152	0.152	2.296	97
$M_{PE(10)}^Z$		1.024	0.150	0.151	0.152	2.361	98
$M^G_{PE(10)}$		0.805	0.199	0.277	0.168	-19.466	75
$M_{PE(10)}^{PL}$		1.012	0.149	0.149	0.152	1.213	98
$M_{PE(10)}^{RW}$		1.046	0.154	0.160	0.152	4.633	97
M_{PL}		1.041	0.152	0.157	0.140	4.143	96

Tabela C.37: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.030	0.084	0.089	0.102	-3.024	99
$M_{BP(5)}^Z$		-1.034	0.084	0.090	0.102	-3.360	98
$M^G_{BP(5)}$		-0.937	0.071	0.095	0.097	6.315	95
$M_{BP(5)}^{PL}$		-1.040	0.081	0.090	0.102	-4.021	98
$M_{BP(5)}^{RW}$		-1.037	0.083	0.090	0.102	-3.659	97
$M_{PE(5)}^{Wishart}$		-0.951	0.080	0.093	0.096	4.932	94
$M_{PE(5)}^Z$		-0.951	0.079	0.093	0.096	4.918	95
$M^G_{PE(5)}$		-0.800	0.074	0.214	0.094	20.037	39
$M_{PE(5)}^{PL}$		-0.950	0.079	0.093	0.096	4.976	96
$M_{PE(5)}^{RW}$		-0.961	0.080	0.089	0.096	3.904	97
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.021	0.085	0.088	0.104	-2.144	99
$M_{BP(10)}^Z$		-1.022	0.087	0.089	0.104	-2.190	99
$M^G_{BP(10)}$		-0.935	0.072	0.097	0.098	6.506	96
$M_{BP(10)}^{PL}$		-1.040	0.084	0.092	0.103	-3.991	98
$M_{BP(10)}^{RW}$		-1.026	0.084	0.088	0.102	-2.601	98
$M_{PE(10)}^{Wishart}$		-1.005	0.084	0.084	0.103	-0.537	98
$M_{PE(10)}^Z$		-1.006	0.084	0.084	0.103	-0.623	99
$M^G_{PE(10)}$		-0.783	0.080	0.231	0.101	21.669	42
$M_{PE(10)}^{PL}$		-0.996	0.082	0.082	0.102	0.397	99
$M_{PE(10)}^{RW}$		-1.029	0.086	0.091	0.103	-2.865	98
M_{PL}		-1.027	0.072	0.077	0.092	-2.742	97

Tabela C.38: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.048	0.005	0.005	0.006	-0.179	99
$M_{BP(5)}^Z$		1.048	0.005	0.005	0.006	-0.198	99
$M^G_{BP(5)}$		1.054	0.004	0.006	0.006	0.343	96
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.006	-0.229	98
$M_{BP(5)}^{RW}$		1.048	0.005	0.005	0.006	-0.203	97
$M_{PE(5)}^{Wishart}$		1.053	0.005	0.006	0.006	0.280	94
$M_{PE(5)}^Z$		1.053	0.005	0.006	0.006	0.280	93
$M^G_{PE(5)}$		1.062	0.005	0.013	0.005	1.186	36
$M_{PE(5)}^{PL}$		1.053	0.005	0.006	0.006	0.291	93
$M_{PE(5)}^{RW}$		1.052	0.005	0.006	0.006	0.211	93
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.048	0.005	0.005	0.006	-0.143	97
$M_{BP(10)}^Z$		1.048	0.005	0.005	0.006	-0.147	96
$M^G_{BP(10)}$		1.054	0.004	0.006	0.006	0.338	96
$M_{BP(10)}^{PL}$		1.048	0.005	0.006	0.006	-0.236	96
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.006	-0.142	97
$M_{PE(10)}^{Wishart}$		1.050	0.005	0.005	0.006	-0.023	98
$M_{PE(10)}^Z$		1.050	0.005	0.005	0.006	-0.026	98
$M^G_{PE(10)}$		1.063	0.005	0.014	0.006	1.246	43
$M_{PE(10)}^{PL}$		1.050	0.005	0.005	0.006	0.047	98
$M_{PE(10)}^{RW}$		1.048	0.005	0.005	0.006	-0.163	97
M_{PL}		1.048	0.005	0.005	0.005	-0.176	96

Tabela C.39: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.027	0.103	0.106	0.103	2.741	93
$M_{BP(5)}^Z$		1.027	0.102	0.105	0.103	2.719	94
$M^G_{BP(5)}$		0.925	0.089	0.116	0.100	-7.494	91
$M_{BP(5)}^{PL}$		1.034	0.101	0.106	0.103	3.356	93
$M_{BP(5)}^{RW}$		1.030	0.100	0.104	0.103	3.044	94
$M_{PE(5)}^{Wishart}$		0.947	0.091	0.104	0.099	-5.259	93
$M_{PE(5)}^Z$		0.947	0.091	0.105	0.100	-5.273	92
$M^G_{PE(5)}$		0.768	0.093	0.249	0.102	-23.163	33
$M_{PE(5)}^{PL}$		0.946	0.090	0.104	0.099	-5.377	92
$M_{PE(5)}^{RW}$		0.954	0.091	0.102	0.100	-4.577	94
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.020	0.101	0.103	0.103	1.959	94
$M_{BP(10)}^Z$		1.021	0.099	0.100	0.104	2.071	95
$M^G_{BP(10)}$		0.926	0.088	0.114	0.101	-7.356	91
$M_{BP(10)}^{PL}$		1.033	0.100	0.105	0.104	3.287	94
$M_{BP(10)}^{RW}$		1.024	0.100	0.102	0.103	2.392	95
$M_{PE(10)}^{Wishart}$		0.991	0.098	0.098	0.103	-0.858	98
$M_{PE(10)}^Z$		0.992	0.099	0.098	0.103	-0.756	98
$M^G_{PE(10)}$		0.722	0.106	0.298	0.108	-27.849	24
$M_{PE(10)}^{PL}$		0.984	0.098	0.099	0.103	-1.610	97
$M_{PE(10)}^{RW}$		1.008	0.100	0.100	0.103	0.808	98
M_{PL}		1.026	0.094	0.097	0.097	2.589	92

Tabela C.40: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.017	0.067	0.069	0.068	-1.702	94
$M_{BP(5)}^Z$		-1.017	0.067	0.069	0.068	-1.660	94
$M^G_{BP(5)}$		-0.925	0.053	0.092	0.063	7.497	77
$M_{BP(5)}^{PL}$		-1.024	0.066	0.070	0.068	-2.401	94
$M_{BP(5)}^{RW}$		-1.023	0.065	0.069	0.068	-2.258	95
$M_{PE(5)}^{Wishart}$		-0.925	0.057	0.094	0.061	7.473	69
$M_{PE(5)}^Z$		-0.925	0.057	0.094	0.061	7.463	70
$M^G_{PE(5)}$		-0.765	0.047	0.240	0.058	23.495	2
$M_{PE(5)}^{PL}$		-0.924	0.056	0.094	0.061	7.564	71
$M_{PE(5)}^{RW}$		-0.932	0.057	0.089	0.062	6.808	73
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.008	0.068	0.068	0.069	-0.839	95
$M_{BP(10)}^Z$		-1.009	0.066	0.066	0.068	-0.903	95
$M^G_{BP(10)}$		-0.922	0.053	0.094	0.064	7.790	76
$M_{BP(10)}^{PL}$		-1.021	0.067	0.070	0.069	-2.136	93
$M_{BP(10)}^{RW}$		-1.013	0.066	0.066	0.068	-1.308	94
$M_{PE(10)}^{Wishart}$		-0.983	0.063	0.065	0.067	1.662	96
$M_{PE(10)}^Z$		-0.984	0.063	0.065	0.067	1.553	97
$M_{PE(10)}^G$		-0.737	0.051	0.268	0.062	26.318	0
$M_{PE(10)}^{PL}$		-0.976	0.062	0.066	0.066	2.424	96
$M_{PE(10)}^{RW}$		-0.999	0.064	0.064	0.067	0.057	96
M_{PL}		-1.015	0.059	0.061	0.062	-1.489	96

Tabela C.41: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.048	0.005	0.005	0.004	-0.149	89
$M_{BP(5)}^Z$		1.048	0.005	0.005	0.004	-0.143	88
$M^G_{BP(5)}$		1.054	0.004	0.006	0.004	0.348	85
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.004	-0.171	92
$M_{BP(5)}^{RW}$		1.048	0.005	0.005	0.004	-0.161	90
$M_{PE(5)}^{Wishart}$		1.055	0.004	0.007	0.004	0.502	76
$M_{PE(5)}^Z$		1.055	0.004	0.007	0.004	0.501	76
$M^G_{PE(5)}$		1.065	0.004	0.015	0.004	1.389	5
$M_{PE(5)}^{PL}$		1.055	0.004	0.007	0.004	0.511	75
$M_{PE(5)}^{RW}$		1.055	0.004	0.006	0.004	0.460	78
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.049	0.005	0.005	0.004	-0.083	93
$M_{BP(10)}^Z$		1.049	0.005	0.005	0.004	-0.086	93
$M^G_{BP(10)}$		1.054	0.004	0.006	0.004	0.368	83
$M_{BP(10)}^{PL}$		1.048	0.005	0.005	0.004	-0.149	91
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.004	-0.101	92
$M_{PE(10)}^{Wishart}$		1.051	0.005	0.005	0.004	0.095	95
$M_{PE(10)}^Z$		1.051	0.005	0.005	0.004	0.091	95
$M^G_{PE(10)}$		1.065	0.004	0.016	0.004	1.434	4
$M_{PE(10)}^{PL}$		1.051	0.005	0.005	0.004	0.140	93
$M_{PE(10)}^{RW}$		1.050	0.005	0.005	0.004	-0.004	95
M_{PL}		1.049	0.004	0.004	0.004	-0.115	92

Tabela C.42: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo:

Figura C.6: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ nos cenários $S_{\infty,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo mínimo.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.094	0.390	0.399	0.482	9.425	99
$M_{BP(5)}^Z$		1.089	0.397	0.405	0.477	8.863	97
$M^G_{BP(5)}$		0.988	0.339	0.338	0.437	-1.208	100
$M_{BP(5)}^{PL}$		1.136	0.400	0.421	0.491	13.588	97
$M_{BP(5)}^{RW}$		1.110	0.390	0.404	0.487	10.956	97
$M_{PE(5)}^{Wishart}$		0.932	0.330	0.336	0.423	-6.848	100
$M_{PE(5)}^Z$		0.934	0.330	0.335	0.425	-6.616	99
$M^G_{PE(5)}$		0.754	0.264	0.360	0.402	-24.598	99
$M_{PE(5)}^{PL}$		0.932	0.326	0.331	0.422	-6.801	100
$M_{PE(5)}^{RW}$		0.967	0.339	0.339	0.432	-3.321	100
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.077	0.384	0.389	0.475	7.676	98
$M_{BP(10)}^Z$		1.060	0.381	0.384	0.472	5.995	98
$M^G_{BP(10)}$		1.022	0.348	0.347	0.446	2.239	100
$M_{BP(10)}^{PL}$		1.143	0.403	0.425	0.494	14.265	97
$M_{BP(10)}^{RW}$		1.114	0.403	0.417	0.493	11.357	96
$M_{PE(10)}^{Wishart}$		0.983	0.349	0.348	0.442	-1.740	98
$M_{PE(10)}^Z$		0.997	0.351	0.349	0.444	-0.335	98
$M^G_{PE(10)}$		0.717	0.245	0.374	0.428	-28.332	100
$M_{PE(10)}^{PL}$		0.990	0.343	0.341	0.442	-1.028	99
$M_{PE(10)}^{RW}$		1.068	0.374	0.378	0.463	6.784	98
M_{PL}		1.102	0.385	0.396	0.474	10.152	98

Tabela C.43: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.068	0.282	0.289	0.281	-6.753	93
$M_{BP(5)}^Z$		-1.060	0.286	0.291	0.279	-6.042	94
$M^G_{BP(5)}$		-0.963	0.233	0.235	0.245	3.696	97
$M_{BP(5)}^{PL}$		-1.113	0.286	0.306	0.286	-11.339	93
$M_{BP(5)}^{RW}$		-1.087	0.285	0.297	0.286	-8.679	94
$M_{PE(5)}^{Wishart}$		-0.896	0.226	0.248	0.241	10.367	95
$M_{PE(5)}^Z$		-0.898	0.227	0.247	0.241	10.158	95
$M^G_{PE(5)}$		-0.721	0.180	0.331	0.220	27.863	81
$M_{PE(5)}^{PL}$		-0.900	0.226	0.246	0.241	10.024	94
$M_{PE(5)}^{RW}$		-0.931	0.232	0.241	0.246	6.914	94
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.053	0.266	0.270	0.276	-5.250	95
$M_{BP(10)}^Z$		-1.032	0.269	0.269	0.277	-3.184	95
$M^G_{BP(10)}$		-0.993	0.239	0.238	0.252	0.682	96
$M_{BP(10)}^{PL}$		-1.122	0.289	0.313	0.289	-12.193	94
$M_{BP(10)}^{RW}$		-1.089	0.286	0.298	0.291	-8.914	95
$M_{PE(10)}^{Wishart}$		-0.958	0.245	0.247	0.255	4.243	95
$M_{PE(10)}^Z$		-0.970	0.251	0.252	0.258	3.027	95
$M_{PE(10)}^G$		-0.692	0.175	0.354	0.232	30.788	78
$M_{PE(10)}^{PL}$		-0.960	0.239	0.241	0.253	3.962	96
$M_{PE(10)}^{RW}$		-1.041	0.260	0.262	0.269	-4.097	95
M_{PL}		-1.080	0.272	0.282	0.271	-7.950	93

Tabela C.44: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.881	0.041	0.045	0.040	-2.063	92
$M_{BP(5)}^Z$		0.883	0.043	0.046	0.040	-1.856	93
$M^G_{BP(5)}$		0.905	0.027	0.028	0.035	0.552	100
$M_{BP(5)}^{PL}$		0.869	0.041	0.051	0.038	-3.412	87
$M_{BP(5)}^{RW}$		0.879	0.042	0.046	0.040	-2.306	93
$M_{PE(5)}^{Wishart}$		0.925	0.031	0.040	0.035	2.758	90
$M_{PE(5)}^Z$		0.925	0.030	0.039	0.035	2.725	93
$M^G_{PE(5)}$		0.957	0.025	0.062	0.032	6.357	56
$M_{PE(5)}^{PL}$		0.927	0.030	0.040	0.035	2.973	91
$M_{PE(5)}^{RW}$		0.916	0.028	0.032	0.033	1.810	96
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.890	0.039	0.040	0.039	-1.098	95
$M_{BP(10)}^Z$		0.896	0.042	0.042	0.041	-0.398	96
$M^G_{BP(10)}$		0.902	0.028	0.028	0.035	0.250	100
$M_{BP(10)}^{PL}$		0.868	0.042	0.053	0.039	-3.598	90
$M_{BP(10)}^{RW}$		0.882	0.045	0.048	0.041	-2.052	91
$M_{PE(10)}^{Wishart}$		0.901	0.036	0.036	0.038	0.151	95
$M_{PE(10)}^Z$		0.899	0.037	0.037	0.038	-0.106	95
$M^G_{PE(10)}$		0.948	0.025	0.054	0.033	5.383	68
$M_{PE(10)}^{PL}$		0.905	0.034	0.034	0.037	0.531	96
$M_{PE(10)}^{RW}$		0.884	0.035	0.038	0.036	-1.735	93
M_{PL}		0.879	0.032	0.038	0.033	-2.287	93

Tabela C.45: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.631	0.514	0.630	0.766	-18.431	93
$M_{BP(5)}^Z$		1.647	0.514	0.621	0.775	-17.633	93
$M^G_{BP(5)}$		1.823	0.523	0.550	0.838	-8.857	98
$M_{BP(5)}^{PL}$		1.538	0.491	0.673	0.711	-23.087	87
$M_{BP(5)}^{RW}$		1.598	0.502	0.641	0.751	-20.121	93
$M_{PE(5)}^{Wishart}$		1.969	0.543	0.541	0.913	-1.548	99
$M_{PE(5)}^Z$		1.966	0.540	0.538	0.910	-1.681	99
$M^G_{PE(5)}$		1.810	0.518	0.550	0.908	-9.511	99
$M_{PE(5)}^{PL}$		1.995	0.551	0.548	0.923	-0.238	99
$M_{PE(5)}^{RW}$		1.907	0.535	0.540	0.870	-4.652	99
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.683	0.517	0.604	0.787	-15.868	96
$M_{BP(10)}^Z$		1.729	0.526	0.589	0.822	-13.548	98
$M^G_{BP(10)}$		1.802	0.519	0.553	0.819	-9.923	98
$M_{BP(10)}^{PL}$		1.524	0.490	0.682	0.706	-23.796	89
$M_{BP(10)}^{RW}$		1.605	0.513	0.645	0.763	-19.756	93
$M_{PE(10)}^{Wishart}$		1.757	0.511	0.563	0.827	-12.131	98
$M_{PE(10)}^Z$		1.747	0.512	0.569	0.821	-12.670	98
$M_{PE(10)}^G$		1.289	0.409	0.819	0.688	-35.555	81
$M_{PE(10)}^{PL}$		1.816	0.522	0.551	0.843	-9.216	98
$M_{PE(10)}^{RW}$		1.662	0.505	0.606	0.757	-16.898	98
M_{PL}		1.608	0.519	0.648	0.718	-19.590	91

Tabela C.46: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.043	0.336	0.337	0.317	4.278	95
$M_{BP(5)}^Z$		1.041	0.337	0.338	0.317	4.072	94
$M^G_{BP(5)}$		0.963	0.305	0.306	0.296	-3.680	95
$M_{BP(5)}^{PL}$		1.070	0.337	0.343	0.323	6.964	94
$M_{BP(5)}^{RW}$		1.055	0.340	0.342	0.322	5.518	95
$M_{PE(5)}^{Wishart}$		0.863	0.274	0.305	0.279	-13.716	94
$M_{PE(5)}^Z$		0.863	0.274	0.305	0.279	-13.660	93
$M^G_{PE(5)}$		0.730	0.243	0.362	0.266	-26.956	87
$M_{PE(5)}^{PL}$		0.860	0.271	0.304	0.278	-14.011	94
$M_{PE(5)}^{RW}$		0.881	0.276	0.299	0.281	-11.914	95
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.028	0.331	0.330	0.314	2.835	94
$M_{BP(10)}^Z$		1.020	0.337	0.336	0.314	1.970	95
$M^G_{BP(10)}$		0.986	0.314	0.313	0.300	-1.362	94
$M_{BP(10)}^{PL}$		1.076	0.349	0.355	0.325	7.631	94
$M_{BP(10)}^{RW}$		1.052	0.345	0.347	0.322	5.179	94
$M_{PE(10)}^{Wishart}$		0.948	0.300	0.303	0.296	-5.240	94
$M_{PE(10)}^{Z}$		0.957	0.302	0.304	0.297	-4.337	94
$M^G_{PE(10)}$		0.717	0.245	0.374	0.282	-28.312	87
$M_{PE(10)}^{PL}$		0.947	0.298	0.301	0.294	-5.330	94
$M_{PE(10)}^{RW}$		0.995	0.307	0.306	0.305	-0.522	95
M_{PL}		1.055	0.339	0.342	0.314	5.479	93

Tabela C.47: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.048	0.163	0.169	0.163	-4.775	94
$M_{BP(5)}^Z$		-1.045	0.165	0.170	0.164	-4.519	94
$M^G_{BP(5)}$		-0.969	0.134	0.137	0.146	3.082	95
$M_{BP(5)}^{PL}$		-1.074	0.163	0.178	0.166	-7.406	96
$M_{BP(5)}^{RW}$		-1.061	0.165	0.175	0.166	-6.111	94
$M_{PE(5)}^{Wishart}$		-0.876	0.119	0.172	0.138	12.416	87
$M_{PE(5)}^Z$		-0.878	0.120	0.170	0.139	12.183	86
$M^G_{PE(5)}$		-0.746	0.100	0.272	0.126	25.370	46
$M_{PE(5)}^{PL}$		-0.876	0.118	0.171	0.138	12.368	87
$M_{PE(5)}^{RW}$		-0.895	0.120	0.159	0.140	10.513	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.034	0.155	0.158	0.162	-3.399	95
$M_{BP(10)}^Z$		-1.024	0.161	0.162	0.163	-2.427	95
$M^G_{BP(10)}$		-0.993	0.140	0.139	0.148	0.691	95
$M_{BP(10)}^{PL}$		-1.080	0.165	0.182	0.167	-7.973	93
$M_{BP(10)}^{RW}$		-1.058	0.163	0.172	0.167	-5.754	94
$M_{PE(10)}^{Wishart}$		-0.956	0.135	0.141	0.150	4.369	94
$M_{PE(10)}^Z$		-0.964	0.138	0.142	0.151	3.562	94
$M^G_{PE(10)}$		-0.727	0.102	0.291	0.133	27.259	47
$M_{PE(10)}^{PL}$		-0.954	0.133	0.140	0.148	4.645	95
$M_{PE(10)}^{RW}$		-1.003	0.138	0.138	0.154	-0.292	96
M_{PL}		-1.055	0.159	0.168	0.157	-5.500	95

Tabela C.48: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.887	0.029	0.032	0.025	-1.424	93
$M_{BP(5)}^Z$		0.888	0.029	0.031	0.025	-1.367	94
$M^G_{BP(5)}$		0.903	0.020	0.020	0.023	0.300	98
$M_{BP(5)}^{PL}$		0.881	0.028	0.034	0.025	-2.103	90
$M_{BP(5)}^{RW}$		0.885	0.029	0.032	0.025	-1.618	93
$M_{PE(5)}^{Wishart}$		0.929	0.020	0.035	0.021	3.201	71
$M_{PE(5)}^Z$		0.929	0.020	0.035	0.021	3.175	71
$M^G_{PE(5)}$		0.949	0.016	0.052	0.020	5.495	20
$M_{PE(5)}^{PL}$		0.930	0.020	0.036	0.021	3.322	69
$M_{PE(5)}^{RW}$		0.924	0.019	0.031	0.021	2.705	78
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.893	0.026	0.027	0.025	-0.781	97
$M_{BP(10)}^Z$		0.895	0.029	0.029	0.025	-0.528	97
$M^G_{BP(10)}$		0.900	0.021	0.021	0.023	0.011	97
$M_{BP(10)}^{PL}$		0.880	0.029	0.035	0.025	-2.245	90
$M_{BP(10)}^{RW}$		0.888	0.030	0.032	0.025	-1.375	95
$M_{PE(10)}^{Wishart}$		0.904	0.024	0.024	0.024	0.449	95
$M_{PE(10)}^Z$		0.903	0.024	0.024	0.024	0.301	95
$M^G_{PE(10)}$		0.940	0.016	0.043	0.021	4.446	49
$M_{PE(10)}^{PL}$		0.907	0.023	0.024	0.023	0.778	95
$M_{PE(10)}^{RW}$		0.896	0.023	0.023	0.023	-0.461	97
M_{PL}		0.887	0.022	0.026	0.021	-1.497	92

Tabela C.49: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.886	0.563	0.572	0.703	-5.692	95
$M_{BP(5)}^Z$		1.892	0.561	0.569	0.708	-5.425	95
$M^G_{BP(5)}$		2.069	0.583	0.584	0.768	3.469	98
$M_{BP(5)}^{PL}$		1.809	0.536	0.567	0.671	-9.573	92
$M_{BP(5)}^{RW}$		1.853	0.548	0.564	0.692	-7.366	95
$M_{PE(5)}^{Wishart}$		2.388	0.636	0.743	0.899	19.422	98
$M_{PE(5)}^Z$		2.383	0.634	0.738	0.897	19.136	98
$M^G_{PE(5)}$		2.288	0.638	0.698	0.924	14.421	99
$M_{PE(5)}^{PL}$		2.409	0.642	0.758	0.908	20.445	98
$M_{PE(5)}^{RW}$		2.332	0.621	0.702	0.874	16.610	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.947	0.578	0.578	0.727	-2.667	96
$M_{BP(10)}^Z$		1.980	0.594	0.591	0.751	-0.998	96
$M^G_{BP(10)}$		2.045	0.581	0.580	0.753	2.269	97
$M_{BP(10)}^{PL}$		1.801	0.540	0.573	0.664	-9.966	93
$M_{BP(10)}^{RW}$		1.879	0.568	0.578	0.706	-6.064	95
$M_{PE(10)}^{Wishart}$		2.078	0.593	0.596	0.782	3.919	97
$M_{PE(10)}^Z$		2.065	0.594	0.595	0.775	3.244	97
$M_{PE(10)}^G$		1.671	0.516	0.610	0.716	-16.429	93
$M_{PE(10)}^{PL}$		2.122	0.598	0.607	0.796	6.084	97
$M_{PE(10)}^{RW}$		1.986	0.568	0.565	0.730	-0.712	97
M_{PL}		1.860	0.512	0.529	0.667	-7.020	95

Tabela C.50: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.7: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.028	0.202	0.203	0.223	2.763	100
$M_{BP(5)}^Z$		1.024	0.200	0.200	0.224	2.378	100
$M^G_{BP(5)}$		0.977	0.185	0.186	0.220	-2.347	98
$M_{BP(5)}^{PL}$		1.057	0.208	0.214	0.223	5.732	99
$M_{BP(5)}^{RW}$		1.029	0.202	0.203	0.223	2.893	100
$M_{PE(5)}^{Wishart}$		0.921	0.177	0.193	0.218	-7.888	97
$M_{PE(5)}^Z$		0.922	0.178	0.193	0.218	-7.812	97
$M^G_{PE(5)}$		0.801	0.161	0.256	0.222	-19.937	90
$M_{PE(5)}^{PL}$		0.915	0.175	0.194	0.217	-8.498	97
$M_{PE(5)}^{RW}$		0.941	0.178	0.187	0.216	-5.949	98
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.001	0.198	0.197	0.222	0.138	98
$M_{BP(10)}^Z$		0.985	0.199	0.198	0.224	-1.534	98
$M^G_{BP(10)}$		0.982	0.187	0.186	0.220	-1.812	99
$M_{BP(10)}^{PL}$		1.062	0.212	0.220	0.225	6.220	99
$M_{BP(10)}^{RW}$		1.018	0.205	0.205	0.225	1.788	98
$M_{PE(10)}^{Wishart}$		0.999	0.196	0.195	0.226	-0.101	97
$M_{PE(10)}^Z$		1.004	0.197	0.196	0.226	0.420	98
$M^G_{PE(10)}$		0.798	0.167	0.262	0.232	-20.173	92
$M_{PE(10)}^{PL}$		0.983	0.190	0.190	0.223	-1.668	98
$M_{PE(10)}^{RW}$		1.032	0.199	0.200	0.221	3.152	98
M_{PL}		1.037	0.198	0.200	0.215	3.703	99

Tabela C.51: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.030	0.142	0.145	0.149	-2.979	97
$M_{BP(5)}^Z$		-1.025	0.142	0.144	0.149	-2.513	92
$M^G_{BP(5)}$		-0.977	0.125	0.126	0.142	2.287	95
$M_{BP(5)}^{PL}$		-1.060	0.145	0.156	0.149	-5.980	94
$M_{BP(5)}^{RW}$		-1.030	0.142	0.145	0.149	-3.045	94
$M_{PE(5)}^{Wishart}$		-0.920	0.126	0.149	0.139	7.986	92
$M_{PE(5)}^Z$		-0.921	0.127	0.149	0.139	7.871	91
$M^G_{PE(5)}$		-0.792	0.102	0.232	0.133	20.837	65
$M_{PE(5)}^{PL}$		-0.914	0.125	0.151	0.138	8.631	91
$M_{PE(5)}^{RW}$		-0.940	0.123	0.136	0.136	5.993	93
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.001	0.137	0.137	0.147	-0.130	94
$M_{BP(10)}^Z$		-0.984	0.141	0.141	0.150	1.638	93
$M^G_{BP(10)}$		-0.982	0.125	0.126	0.142	1.801	96
$M_{BP(10)}^{PL}$		-1.064	0.146	0.158	0.151	-6.354	95
$M_{BP(10)}^{RW}$		-1.018	0.144	0.144	0.151	-1.840	95
$M_{PE(10)}^{Wishart}$		-0.994	0.139	0.139	0.148	0.557	95
$M_{PE(10)}^Z$		-1.000	0.139	0.139	0.149	-0.025	94
$M^G_{PE(10)}$		-0.783	0.103	0.240	0.139	21.725	66
$M_{PE(10)}^{PL}$		-0.980	0.131	0.132	0.146	2.039	95
$M_{PE(10)}^{RW}$		-1.030	0.135	0.137	0.143	-3.006	96
M_{PL}		-1.040	0.137	0.143	0.138	-4.017	93

Tabela C.52: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S^{0.90,2}_{\infty,30}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.893	0.028	0.029	0.031	-0.783	96
$M_{BP(5)}^Z$		0.894	0.028	0.028	0.031	-0.651	96
$M^G_{BP(5)}$		0.906	0.022	0.023	0.029	0.713	99
$M_{BP(5)}^{PL}$		0.885	0.028	0.031	0.030	-1.633	92
$M_{BP(5)}^{RW}$		0.892	0.028	0.029	0.031	-0.842	97
$M_{PE(5)}^{Wishart}$		0.921	0.027	0.034	0.029	2.331	93
$M_{PE(5)}^Z$		0.921	0.027	0.034	0.029	2.302	92
$M^G_{PE(5)}$		0.960	0.021	0.063	0.028	6.612	37
$M_{PE(5)}^{PL}$		0.923	0.026	0.035	0.029	2.506	91
$M_{PE(5)}^{RW}$		0.915	0.025	0.029	0.028	1.686	96
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.899	0.028	0.027	0.031	-0.083	98
$M_{BP(10)}^Z$		0.904	0.029	0.029	0.032	0.449	96
$M^G_{BP(10)}$		0.905	0.023	0.023	0.029	0.503	99
$M_{BP(10)}^{PL}$		0.884	0.029	0.033	0.031	-1.782	93
$M_{BP(10)}^{RW}$		0.895	0.030	0.030	0.032	-0.557	97
$M_{PE(10)}^{Wishart}$		0.902	0.030	0.030	0.031	0.207	98
$M_{PE(10)}^Z$		0.900	0.030	0.029	0.031	0.035	98
$M^G_{PE(10)}$		0.965	0.021	0.068	0.029	7.187	35
$M_{PE(10)}^{PL}$		0.905	0.027	0.028	0.031	0.590	99
$M_{PE(10)}^{RW}$		0.892	0.027	0.028	0.029	-0.878	97
M_{PL}		0.890	0.023	0.025	0.027	-1.100	96

Tabela C.53: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.028	0.180	0.181	0.150	2.785	91
$M_{BP(5)}^Z$		1.026	0.179	0.180	0.150	2.587	91
$M^G_{BP(5)}$		0.990	0.167	0.166	0.148	-1.045	94
$M_{BP(5)}^{PL}$		1.046	0.183	0.188	0.150	4.577	91
$M_{BP(5)}^{RW}$		1.030	0.180	0.182	0.150	3.020	91
$M_{PE(5)}^{Wishart}$		0.902	0.147	0.176	0.143	-9.780	89
$M_{PE(5)}^Z$		0.903	0.148	0.176	0.143	-9.703	90
$M^G_{PE(5)}$		0.814	0.134	0.229	0.145	-18.599	74
$M_{PE(5)}^{PL}$		0.899	0.147	0.178	0.143	-10.137	89
$M_{PE(5)}^{RW}$		0.914	0.148	0.170	0.143	-8.572	90
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.009	0.177	0.176	0.149	0.907	93
$M_{BP(10)}^Z$		1.002	0.177	0.176	0.150	0.208	89
$M^G_{BP(10)}$		0.993	0.167	0.166	0.147	-0.669	92
$M_{BP(10)}^{PL}$		1.047	0.184	0.189	0.150	4.676	89
$M_{BP(10)}^{RW}$		1.019	0.180	0.180	0.150	1.935	91
$M_{PE(10)}^{Wishart}$		0.986	0.166	0.166	0.149	-1.365	92
$M_{PE(10)}^Z$		0.990	0.167	0.166	0.149	-1.046	92
$M^G_{PE(10)}$		0.820	0.135	0.225	0.150	-17.997	79
$M_{PE(10)}^{PL}$		0.975	0.163	0.164	0.148	-2.514	92
$M_{PE(10)}^{RW}$		1.008	0.167	0.166	0.147	0.776	91
M_{PL}		1.039	0.176	0.179	0.145	3.909	89

Tabela C.54: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.018	0.105	0.106	0.097	-1.801	94
$M_{BP(5)}^Z$		-1.016	0.106	0.107	0.097	-1.636	94
$M^G_{BP(5)}$		-0.981	0.094	0.095	0.094	1.944	95
$M_{BP(5)}^{PL}$		-1.036	0.108	0.113	0.097	-3.563	93
$M_{BP(5)}^{RW}$		-1.020	0.106	0.108	0.097	-2.026	93
$M_{PE(5)}^{Wishart}$		-0.892	0.075	0.131	0.087	10.796	76
$M_{PE(5)}^Z$		-0.893	0.075	0.131	0.087	10.714	75
$M^G_{PE(5)}$		-0.805	0.065	0.206	0.083	19.525	26
$M_{PE(5)}^{PL}$		-0.888	0.074	0.134	0.087	11.206	75
$M_{PE(5)}^{RW}$		-0.904	0.074	0.121	0.086	9.609	79
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-0.999	0.102	0.101	0.096	0.116	94
$M_{BP(10)}^Z$		-0.992	0.103	0.103	0.097	0.822	93
$M^G_{BP(10)}$		-0.984	0.094	0.095	0.093	1.626	93
$M_{BP(10)}^{PL}$		-1.036	0.108	0.113	0.098	-3.583	94
$M_{BP(10)}^{RW}$		-1.009	0.106	0.106	0.097	-0.889	93
$M_{PE(10)}^{Wishart}$		-0.976	0.096	0.099	0.095	2.371	93
$M_{PE(10)}^Z$		-0.979	0.097	0.098	0.095	2.081	93
$M^G_{PE(10)}$		-0.812	0.069	0.201	0.087	18.847	40
$M_{PE(10)}^{PL}$		-0.965	0.093	0.099	0.094	3.507	93
$M_{PE(10)}^{RW}$		-0.997	0.092	0.092	0.092	0.283	94
M_{PL}		-1.029	0.102	0.105	0.090	-2.922	91

Tabela C.55: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.896	0.021	0.021	0.019	-0.436	94
$M_{BP(5)}^Z$		0.897	0.021	0.021	0.019	-0.387	93
$M^G_{BP(5)}$		0.905	0.018	0.019	0.019	0.541	96
$M_{BP(5)}^{PL}$		0.892	0.021	0.022	0.019	-0.858	92
$M_{BP(5)}^{RW}$		0.896	0.021	0.021	0.019	-0.494	92
$M_{PE(5)}^{Wishart}$		0.925	0.015	0.029	0.018	2.770	68
$M_{PE(5)}^Z$		0.925	0.015	0.029	0.018	2.744	67
$M^G_{PE(5)}$		0.949	0.013	0.050	0.017	5.421	8
$M_{PE(5)}^{PL}$		0.926	0.015	0.030	0.018	2.869	66
$M_{PE(5)}^{RW}$		0.922	0.014	0.026	0.017	2.444	78
$M_{BP(10)}^{Wishart}$	$\alpha = 0.9$	0.900	0.020	0.020	0.019	0.032	95
$M_{BP(10)}^Z$		0.902	0.020	0.020	0.020	0.211	94
$M^G_{BP(10)}$		0.904	0.018	0.018	0.019	0.432	96
$M_{BP(10)}^{PL}$		0.892	0.021	0.022	0.019	-0.877	92
$M_{BP(10)}^{RW}$		0.898	0.021	0.021	0.020	-0.233	94
$M_{PE(10)}^{Wishart}$		0.906	0.019	0.020	0.019	0.628	94
$M_{PE(10)}^Z$		0.905	0.019	0.020	0.019	0.544	94
$M^G_{PE(10)}$		0.949	0.014	0.051	0.018	5.453	13
$M_{PE(10)}^{PL}$		0.908	0.019	0.020	0.019	0.907	94
$M_{PE(10)}^{RW}$		0.901	0.018	0.018	0.018	0.065	94
M_{PL}		0.894	0.019	0.020	0.017	-0.699	92

Tabela C.56: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,50}^{0.90,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.8: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{0.90,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.120	0.440	0.454	0.435	12.034	97
$M_{BP(5)}^Z$		1.123	0.437	0.452	0.436	12.330	96
$M^G_{BP(5)}$		0.970	0.381	0.380	0.404	-3.028	96
$M_{BP(5)}^{PL}$		1.151	0.444	0.467	0.442	15.114	95
$M_{BP(5)}^{RW}$		1.143	0.444	0.465	0.438	14.322	96
$M_{PE(5)}^{Wishart}$		1.011	0.401	0.399	0.403	1.125	96
$M_{PE(5)}^Z$		1.017	0.399	0.398	0.402	1.672	97
$M^G_{PE(5)}$		0.654	0.297	0.455	0.439	-34.644	91
$M_{PE(5)}^{PL}$		1.009	0.399	0.397	0.403	0.880	97
$M_{PE(5)}^{RW}$		1.027	0.407	0.405	0.408	2.731	97
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.104	0.427	0.437	0.429	10.419	97
$M_{BP(10)}^Z$		1.100	0.425	0.434	0.430	9.987	96
$M^G_{BP(10)}$		0.998	0.395	0.393	0.403	-0.203	99
$M_{BP(10)}^{PL}$		1.153	0.450	0.473	0.444	15.258	94
$M_{BP(10)}^{RW}$		1.147	0.446	0.467	0.444	14.677	95
$M_{PE(10)}^{Wishart}$		1.043	0.407	0.407	0.418	4.253	97
$M_{PE(10)}^Z$		1.053	0.408	0.410	0.420	5.325	98
$M^G_{PE(10)}$		0.534	0.290	0.548	0.491	-46.577	93
$M_{PE(10)}^{PL}$		1.034	0.405	0.404	0.412	3.448	96
$M_{PE(10)}^{RW}$		1.100	0.433	0.442	0.428	9.968	97
M_{PL}		1.126	0.442	0.457	0.432	12.564	96

Tabela C.57: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.008	0.205	0.204	0.237	-0.837	95
$M_{BP(5)}^Z$		-1.010	0.207	0.206	0.238	-0.998	96
$M^G_{BP(5)}$		-0.869	0.172	0.215	0.213	13.083	96
$M_{BP(5)}^{PL}$		-1.040	0.210	0.213	0.243	-3.960	96
$M_{BP(5)}^{RW}$		-1.030	0.206	0.207	0.241	-3.025	96
$M_{PE(5)}^{Wishart}$		-0.901	0.180	0.204	0.219	9.915	95
$M_{PE(5)}^Z$		-0.905	0.180	0.203	0.221	9.501	95
$M^G_{PE(5)}$		-0.588	0.149	0.438	0.225	41.237	54
$M_{PE(5)}^{PL}$		-0.897	0.177	0.204	0.218	10.308	95
$M_{PE(5)}^{RW}$		-0.919	0.181	0.197	0.221	8.142	97
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-0.994	0.205	0.204	0.235	0.600	96
$M_{BP(10)}^Z$		-0.989	0.203	0.202	0.236	1.052	96
$M^G_{BP(10)}$		-0.895	0.173	0.202	0.213	10.523	96
$M_{BP(10)}^{PL}$		-1.041	0.210	0.213	0.244	-4.078	97
$M_{BP(10)}^{RW}$		-1.035	0.210	0.212	0.245	-3.540	98
$M_{PE(10)}^{Wishart}$		-0.932	0.190	0.200	0.226	6.785	96
$M_{PE(10)}^Z$		-0.945	0.193	0.200	0.230	5.511	96
$M_{PE(10)}^G$		-0.512	0.168	0.516	0.243	48.803	43
$M_{PE(10)}^{PL}$		-0.924	0.188	0.202	0.224	7.589	96
$M_{PE(10)}^{RW}$		-0.987	0.197	0.196	0.234	1.267	95
M_{PL}		-1.018	0.205	0.205	0.236	-1.808	96

Tabela C.58: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.993	0.017	0.019	0.013	-0.670	90
$M_{BP(5)}^Z$		0.993	0.018	0.019	0.013	-0.687	90
$M^G_{BP(5)}$		1.002	0.012	0.012	0.012	0.205	97
$M_{BP(5)}^{PL}$		0.991	0.018	0.019	0.013	-0.860	90
$M_{BP(5)}^{RW}$		0.993	0.017	0.018	0.013	-0.664	92
$M_{PE(5)}^{Wishart}$		1.006	0.011	0.013	0.012	0.618	96
$M_{PE(5)}^Z$		1.006	0.011	0.013	0.012	0.606	96
$M^G_{PE(5)}$		1.014	0.011	0.017	0.011	1.393	70
$M_{PE(5)}^{PL}$		1.007	0.011	0.013	0.012	0.664	93
$M_{PE(5)}^{RW}$		1.004	0.011	0.012	0.011	0.408	97
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	0.996	0.015	0.016	0.013	-0.366	95
$M_{BP(10)}^Z$		0.997	0.015	0.016	0.013	-0.341	93
$M^G_{BP(10)}$		1.002	0.012	0.012	0.012	0.240	97
$M_{BP(10)}^{PL}$		0.991	0.018	0.020	0.013	-0.914	89
$M_{BP(10)}^{RW}$		0.994	0.017	0.018	0.013	-0.573	94
$M_{PE(10)}^{Wishart}$		0.998	0.014	0.014	0.013	-0.179	97
$M_{PE(10)}^Z$		0.998	0.014	0.014	0.013	-0.247	96
$M^G_{PE(10)}$		1.010	0.011	0.015	0.011	0.982	92
$M_{PE(10)}^{PL}$		1.000	0.013	0.013	0.013	0.002	95
$M_{PE(10)}^{RW}$		0.994	0.014	0.015	0.012	-0.606	93
M_{PL}		0.994	0.013	0.014	0.011	-0.580	95

Tabela C.59: Summary of simulated mean, standard deviation, RMSE, mean standard error, mean relative bias (%) and coverage rate (%) of the estimators of α for the scenario $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.808	0.501	0.535	0.749	-9.622	93
$M_{BP(5)}^Z$		1.803	0.501	0.536	0.746	-9.863	93
$M^G_{BP(5)}$		1.843	0.490	0.512	0.789	-7.849	95
$M_{BP(5)}^{PL}$		1.769	0.498	0.546	0.728	-11.530	92
$M_{BP(5)}^{RW}$		1.796	0.500	0.538	0.742	-10.216	93
$M_{PE(5)}^{Wishart}$		1.994	0.546	0.544	0.832	-0.311	98
$M_{PE(5)}^Z$		1.998	0.548	0.545	0.833	-0.121	98
$M^G_{PE(5)}$		0.923	0.403	1.149	0.439	-53.848	30
$M_{PE(5)}^{PL}$		2.003	0.545	0.542	0.838	0.161	98
$M_{PE(5)}^{RW}$		1.969	0.539	0.537	0.818	-1.564	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.853	0.504	0.522	0.771	-7.328	95
$M_{BP(10)}^Z$		1.854	0.507	0.525	0.773	-7.300	96
$M^G_{BP(10)}$		1.923	0.503	0.506	0.809	-3.858	97
$M_{BP(10)}^{PL}$		1.758	0.495	0.548	0.724	-12.080	92
$M_{BP(10)}^{RW}$		1.799	0.505	0.541	0.751	-10.067	93
$M_{PE(10)}^{Wishart}$		1.850	0.517	0.536	0.777	-7.490	94
$M_{PE(10)}^{Z}$		1.849	0.518	0.537	0.775	-7.533	93
$M^G_{PE(10)}$		0.492	0.253	1.529	0.219	-75.402	5
$M_{PE(10)}^{PL}$		1.888	0.517	0.527	0.791	-5.593	96
$M_{PE(10)}^{RW}$		1.812	0.506	0.537	0.747	-9.408	91
M_{PL}		1.812	0.489	0.522	0.735	-9.380	94

Tabela C.60: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.989	0.280	0.279	0.292	-1.077	95
$M_{BP(5)}^Z$		0.990	0.281	0.280	0.291	-1.015	95
$M^G_{BP(5)}$		0.866	0.243	0.277	0.272	-13.381	93
$M_{BP(5)}^{PL}$		1.005	0.283	0.282	0.295	0.510	95
$M_{BP(5)}^{RW}$		1.006	0.283	0.281	0.296	0.568	95
$M_{PE(5)}^{Wishart}$		0.879	0.247	0.274	0.272	-12.099	95
$M_{PE(5)}^Z$		0.884	0.249	0.273	0.271	-11.551	93
$M^G_{PE(5)}$		0.592	0.187	0.448	0.289	-40.754	74
$M_{PE(5)}^{PL}$		0.874	0.245	0.274	0.270	-12.575	95
$M_{PE(5)}^{RW}$		0.889	0.248	0.271	0.271	-11.123	94
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.978	0.280	0.279	0.288	-2.216	95
$M_{BP(10)}^Z$		0.979	0.284	0.283	0.290	-2.073	95
$M^G_{BP(10)}$		0.881	0.248	0.274	0.272	-11.881	95
$M_{BP(10)}^{PL}$		1.009	0.287	0.286	0.296	0.938	95
$M_{BP(10)}^{RW}$		1.003	0.284	0.282	0.295	0.280	95
$M_{PE(10)}^{Wishart}$		0.926	0.265	0.274	0.281	-7.398	94
$M_{PE(10)}^Z$		0.934	0.264	0.271	0.283	-6.629	95
$M^G_{PE(10)}$		0.500	0.202	0.539	0.324	-49.968	71
$M_{PE(10)}^{PL}$		0.916	0.258	0.270	0.278	-8.367	96
$M_{PE(10)}^{RW}$		0.960	0.271	0.273	0.285	-3.995	96
M_{PL}		0.993	0.278	0.277	0.291	-0.729	95

Tabela C.61: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.015	0.147	0.147	0.140	-1.507	94
$M_{BP(5)}^Z$		-1.016	0.146	0.146	0.140	-1.563	93
$M^G_{BP(5)}$		-0.900	0.117	0.153	0.126	9.977	90
$M_{BP(5)}^{PL}$		-1.033	0.145	0.148	0.141	-3.290	93
$M_{BP(5)}^{RW}$		-1.030	0.145	0.147	0.142	-3.007	93
$M_{PE(5)}^{Wishart}$		-0.911	0.122	0.151	0.128	8.906	91
$M_{PE(5)}^Z$		-0.912	0.123	0.151	0.129	8.836	91
$M^G_{PE(5)}$		-0.644	0.092	0.367	0.129	35.578	13
$M_{PE(5)}^{PL}$		-0.905	0.120	0.153	0.128	9.524	91
$M_{PE(5)}^{RW}$		-0.920	0.122	0.146	0.129	8.040	93
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.005	0.143	0.142	0.139	-0.454	94
$M_{BP(10)}^Z$		-1.005	0.146	0.146	0.139	-0.463	93
$M^G_{BP(10)}$		-0.915	0.119	0.146	0.126	8.539	91
$M_{BP(10)}^{PL}$		-1.033	0.144	0.147	0.143	-3.281	94
$M_{BP(10)}^{RW}$		-1.026	0.146	0.148	0.142	-2.626	94
$M_{PE(10)}^{Wishart}$		-0.956	0.136	0.142	0.134	4.368	93
$M_{PE(10)}^Z$		-0.964	0.135	0.139	0.135	3.584	94
$M_{PE(10)}^G$		-0.569	0.103	0.443	0.142	43.140	7
$M_{PE(10)}^{PL}$		-0.946	0.131	0.142	0.132	5.450	93
$M_{PE(10)}^{RW}$		-0.987	0.138	0.138	0.137	1.250	96
M_{PL}		-1.021	0.139	0.140	0.138	-2.144	92

Tabela C.62: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Bayesian	Bayesiano na situação de reparo perfeito:										
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate				
$M_{BP(5)}^{Wishart}$		0.999	0.009	0.009	0.008	-0.080	95				
$M_{BP(5)}^Z$		0.999	0.009	0.009	0.008	-0.089	93				
$M^G_{BP(5)}$		1.005	0.007	0.009	0.007	0.463	88				
$M_{BP(5)}^{PL}$		0.998	0.008	0.008	0.008	-0.181	94				
$M_{BP(5)}^{RW}$		0.999	0.008	0.008	0.008	-0.108	94				
$M_{PE(5)}^{Wishart}$		1.011	0.007	0.013	0.007	1.060	63				
$M_{PE(5)}^Z$		1.011	0.007	0.013	0.007	1.053	60				
$M^G_{PE(5)}$		1.016	0.006	0.017	0.007	1.562	35				
$M_{PE(5)}^{PL}$		1.011	0.007	0.013	0.007	1.090	60				
$M_{PE(5)}^{RW}$		1.010	0.007	0.012	0.007	0.953	69				
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	1.001	0.008	0.008	0.008	0.053	94				
$M_{BP(10)}^Z$		1.001	0.008	0.008	0.008	0.053	95				
$M^G_{BP(10)}$		1.005	0.007	0.009	0.007	0.487	88				
$M_{BP(10)}^{PL}$		0.998	0.008	0.008	0.008	-0.174	95				
$M_{BP(10)}^{RW}$		1.000	0.008	0.008	0.008	0.003	95				
$M_{PE(10)}^{Wishart}$		1.004	0.008	0.009	0.008	0.366	89				
$M_{PE(10)}^Z$		1.003	0.008	0.009	0.008	0.338	90				
$M^G_{PE(10)}$		1.011	0.007	0.013	0.007	1.130	68				
$M_{PE(10)}^{PL}$		1.005	0.008	0.009	0.008	0.483	90				
$M_{PE(10)}^{RW}$		1.001	0.008	0.008	0.008	0.105	93				
M_{PL}		0.999	0.007	0.007	0.007	-0.052	90				

Tabela C.63: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.922	0.492	0.496	0.627	-3.893	97
$M_{BP(5)}^Z$		1.921	0.495	0.499	0.628	-3.974	96
$M^G_{BP(5)}$		1.933	0.511	0.513	0.654	-3.350	97
$M_{BP(5)}^{PL}$		1.893	0.490	0.499	0.616	-5.345	95
$M_{BP(5)}^{RW}$		1.908	0.495	0.501	0.623	-4.582	96
$M_{PE(5)}^{Wishart}$		2.150	0.551	0.568	0.716	7.493	99
$M_{PE(5)}^Z$		2.150	0.547	0.565	0.718	7.505	99
$M^G_{PE(5)}$		1.065	0.350	0.998	0.395	-46.756	37
$M_{PE(5)}^{PL}$		2.154	0.548	0.566	0.719	7.684	100
$M_{PE(5)}^{RW}$		2.128	0.544	0.556	0.707	6.394	99
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.954	0.505	0.505	0.641	-2.292	97
$M_{BP(10)}^Z$		1.956	0.510	0.509	0.643	-2.186	97
$M^G_{BP(10)}$		1.990	0.518	0.516	0.669	-0.503	99
$M_{BP(10)}^{PL}$		1.895	0.493	0.501	0.619	-5.265	94
$M_{BP(10)}^{RW}$		1.930	0.502	0.504	0.635	-3.485	96
$M_{PE(10)}^{Wishart}$		2.003	0.513	0.511	0.663	0.126	100
$M_{PE(10)}^Z$		2.002	0.510	0.507	0.661	0.091	100
$M^G_{PE(10)}$		0.557	0.176	1.453	0.191	-72.130	3
$M_{PE(10)}^{PL}$		2.027	0.516	0.514	0.672	1.349	100
$M_{PE(10)}^{RW}$		1.955	0.504	0.503	0.640	-2.247	97
M_{PL}		1.925	0.504	0.507	0.619	-3.770	95

Tabela C.64: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.9: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.038	0.181	0.184	0.161	3.832	93
$M_{BP(5)}^Z$		1.039	0.181	0.184	0.161	3.885	93
$M^G_{BP(5)}$		0.959	0.162	0.167	0.159	-4.139	92
$M_{BP(5)}^{PL}$		1.048	0.179	0.184	0.161	4.771	93
$M_{BP(5)}^{RW}$		1.038	0.177	0.180	0.161	3.844	95
$M_{PE(5)}^{Wishart}$		0.942	0.158	0.167	0.156	-5.759	93
$M_{PE(5)}^Z$		0.943	0.158	0.167	0.156	-5.734	92
$M^G_{PE(5)}$		0.796	0.152	0.254	0.160	-20.421	71
$M_{PE(5)}^{PL}$		0.940	0.158	0.168	0.156	-5.952	92
$M_{PE(5)}^{RW}$		0.956	0.159	0.164	0.156	-4.443	93
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.024	0.176	0.177	0.162	2.449	95
$M_{BP(10)}^Z$		1.024	0.176	0.177	0.162	2.402	94
$M^G_{BP(10)}$		0.960	0.162	0.166	0.159	-3.982	92
$M_{BP(10)}^{PL}$		1.051	0.178	0.185	0.162	5.141	93
$M_{BP(10)}^{RW}$		1.027	0.177	0.178	0.161	2.724	94
$M_{PE(10)}^{Wishart}$		1.012	0.173	0.173	0.161	1.165	94
$M_{PE(10)}^Z$		1.013	0.175	0.174	0.161	1.303	93
$M^G_{PE(10)}$		0.774	0.165	0.279	0.170	-22.568	67
$M_{PE(10)}^{PL}$		0.997	0.170	0.169	0.161	-0.309	95
$M_{PE(10)}^{RW}$		1.039	0.176	0.179	0.161	3.907	94
M_{PL}		1.037	0.170	0.173	0.152	3.722	96

Tabela C.65: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.029	0.122	0.125	0.111	-2.884	90
$M_{BP(5)}^Z$		-1.029	0.123	0.126	0.111	-2.886	91
$M^G_{BP(5)}$		-0.947	0.096	0.109	0.104	5.336	91
$M_{BP(5)}^{PL}$		-1.038	0.118	0.123	0.110	-3.760	92
$M_{BP(5)}^{RW}$		-1.028	0.115	0.117	0.109	-2.801	95
$M_{PE(5)}^{Wishart}$		-0.928	0.101	0.123	0.102	7.152	89
$M_{PE(5)}^Z$		-0.929	0.101	0.123	0.102	7.104	90
$M^G_{PE(5)}$		-0.781	0.078	0.232	0.098	21.852	35
$M_{PE(5)}^{PL}$		-0.927	0.099	0.123	0.102	7.337	89
$M_{PE(5)}^{RW}$		-0.942	0.100	0.115	0.102	5.797	91
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.012	0.115	0.115	0.111	-1.159	94
$M_{BP(10)}^Z$		-1.011	0.116	0.116	0.111	-1.128	95
$M^G_{BP(10)}$		-0.947	0.097	0.110	0.105	5.256	93
$M_{BP(10)}^{PL}$		-1.039	0.117	0.123	0.111	-3.945	93
$M_{BP(10)}^{RW}$		-1.016	0.115	0.116	0.110	-1.564	94
$M_{PE(10)}^{Wishart}$		-0.997	0.114	0.113	0.109	0.290	95
$M_{PE(10)}^Z$		-0.999	0.115	0.114	0.110	0.074	95
$M_{PE(10)}^G$		-0.757	0.077	0.255	0.103	24.271	31
$M_{PE(10)}^{PL}$		-0.983	0.111	0.112	0.109	1.713	94
$M_{PE(10)}^{RW}$		-1.026	0.116	0.119	0.109	-2.587	91
M_{PL}		-1.026	0.099	0.102	0.098	-2.571	97

Tabela C.66: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.997	0.010	0.010	0.009	-0.289	90
$M_{BP(5)}^Z$		0.997	0.010	0.010	0.009	-0.294	89
$M^G_{BP(5)}$		1.005	0.008	0.009	0.008	0.495	93
$M_{BP(5)}^{PL}$		0.996	0.010	0.010	0.009	-0.367	90
$M_{BP(5)}^{RW}$		0.997	0.009	0.010	0.009	-0.274	91
$M_{PE(5)}^{Wishart}$		1.007	0.008	0.011	0.008	0.723	88
$M_{PE(5)}^Z$		1.007	0.008	0.011	0.008	0.718	88
$M^G_{PE(5)}$		1.023	0.007	0.024	0.008	2.258	11
$M_{PE(5)}^{PL}$		1.007	0.008	0.011	0.008	0.747	88
$M_{PE(5)}^{RW}$		1.006	0.008	0.010	0.008	0.584	91
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	0.999	0.009	0.010	0.009	-0.131	93
$M_{BP(10)}^Z$		0.999	0.010	0.010	0.009	-0.126	93
$M^G_{BP(10)}$		1.005	0.008	0.009	0.009	0.478	96
$M_{BP(10)}^{PL}$		0.996	0.010	0.010	0.009	-0.391	89
$M_{BP(10)}^{RW}$		0.998	0.010	0.010	0.009	-0.165	93
$M_{PE(10)}^{Wishart}$		1.000	0.009	0.009	0.009	0.004	94
$M_{PE(10)}^Z$		1.000	0.009	0.009	0.009	-0.020	93
$M^G_{PE(10)}$		1.025	0.007	0.026	0.008	2.504	8
$M_{PE(10)}^{PL}$		1.002	0.009	0.009	0.009	0.151	94
$M_{PE(10)}^{RW}$		0.997	0.009	0.010	0.009	-0.274	94
M_{PL}		0.997	0.008	0.009	0.008	-0.252	94

Tabela C.67: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.993	0.111	0.111	0.114	-0.695	97
$M_{BP(5)}^Z$		0.994	0.111	0.110	0.115	-0.644	97
$M^G_{BP(5)}$		0.944	0.104	0.118	0.113	-5.621	94
$M_{BP(5)}^{PL}$		1.001	0.110	0.110	0.114	0.122	96
$M_{BP(5)}^{RW}$		0.995	0.110	0.109	0.114	-0.469	96
$M_{PE(5)}^{Wishart}$		0.911	0.100	0.134	0.111	-8.884	87
$M_{PE(5)}^Z$		0.911	0.100	0.133	0.111	-8.875	87
$M^G_{PE(5)}$		0.811	0.101	0.214	0.113	-18.925	63
$M_{PE(5)}^{PL}$		0.909	0.101	0.135	0.111	-9.085	87
$M_{PE(5)}^{RW}$		0.919	0.101	0.129	0.111	-8.135	91
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.986	0.107	0.108	0.115	-1.433	97
$M_{BP(10)}^Z$		0.987	0.108	0.108	0.115	-1.331	96
$M^G_{BP(10)}$		0.945	0.103	0.116	0.113	-5.531	96
$M_{BP(10)}^{PL}$		1.001	0.110	0.109	0.115	0.148	96
$M_{BP(10)}^{RW}$		0.988	0.108	0.108	0.114	-1.175	97
$M_{PE(10)}^{Wishart}$		0.967	0.108	0.112	0.114	-3.283	96
$M_{PE(10)}^Z$		0.968	0.108	0.112	0.114	-3.193	97
$M_{PE(10)}^G$		0.799	0.106	0.227	0.119	-20.119	61
$M_{PE(10)}^{PL}$		0.959	0.107	0.115	0.114	-4.147	95
$M_{PE(10)}^{RW}$		0.984	0.108	0.109	0.114	-1.640	95
M_{PL}		0.992	0.114	0.113	0.110	-0.802	94

Tabela C.68: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S^{1.00,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.019	0.072	0.074	0.075	-1.879	96
$M_{BP(5)}^Z$		-1.019	0.070	0.072	0.075	-1.880	98
$M^G_{BP(5)}$		-0.969	0.060	0.068	0.072	3.117	95
$M_{BP(5)}^{PL}$		-1.027	0.072	0.076	0.075	-2.670	97
$M_{BP(5)}^{RW}$		-1.022	0.071	0.074	0.074	-2.186	96
$M_{PE(5)}^{Wishart}$		-0.931	0.059	0.090	0.068	6.878	86
$M_{PE(5)}^Z$		-0.931	0.059	0.090	0.069	6.853	87
$M^G_{PE(5)}$		-0.828	0.049	0.179	0.066	17.196	17
$M_{PE(5)}^{PL}$		-0.929	0.058	0.092	0.068	7.109	87
$M_{PE(5)}^{RW}$		-0.939	0.059	0.085	0.068	6.099	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.010	0.070	0.071	0.075	-1.048	96
$M_{BP(10)}^Z$		-1.011	0.071	0.072	0.075	-1.148	97
$M^G_{BP(10)}$		-0.969	0.061	0.068	0.072	3.062	95
$M_{BP(10)}^{PL}$		-1.027	0.071	0.076	0.075	-2.685	96
$M_{BP(10)}^{RW}$		-1.013	0.071	0.071	0.075	-1.263	96
$M_{PE(10)}^{Wishart}$		-0.991	0.065	0.066	0.074	0.911	98
$M_{PE(10)}^Z$		-0.992	0.066	0.066	0.074	0.782	97
$M^G_{PE(10)}$		-0.816	0.049	0.191	0.068	18.437	17
$M_{PE(10)}^{PL}$		-0.982	0.064	0.066	0.073	1.767	97
$M_{PE(10)}^{RW}$		-1.008	0.065	0.065	0.074	-0.824	98
M_{PL}		-1.017	0.067	0.069	0.068	-1.658	94

Tabela C.69: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.999	0.006	0.006	0.006	-0.095	99
$M_{BP(5)}^Z$		0.999	0.006	0.006	0.006	-0.095	99
$M^G_{BP(5)}$		1.003	0.005	0.006	0.006	0.348	96
$M_{BP(5)}^{PL}$		0.998	0.006	0.006	0.006	-0.167	98
$M_{BP(5)}^{RW}$		0.999	0.006	0.006	0.006	-0.122	99
$M_{PE(5)}^{Wishart}$		1.008	0.005	0.009	0.006	0.797	78
$M_{PE(5)}^Z$		1.008	0.005	0.009	0.006	0.794	77
$M^G_{PE(5)}$		1.018	0.004	0.019	0.006	1.814	4
$M_{PE(5)}^{PL}$		1.008	0.005	0.009	0.006	0.825	74
$M_{PE(5)}^{RW}$		1.007	0.005	0.009	0.006	0.720	79
$M_{BP(10)}^{Wishart}$	$\alpha = 1$	1.000	0.006	0.006	0.006	-0.017	99
$M_{BP(10)}^Z$		1.000	0.006	0.006	0.006	-0.024	98
$M^G_{BP(10)}$		1.003	0.005	0.006	0.006	0.349	95
$M_{BP(10)}^{PL}$		0.998	0.006	0.006	0.006	-0.165	98
$M_{BP(10)}^{RW}$		1.000	0.006	0.006	0.006	-0.031	99
$M_{PE(10)}^{Wishart}$		1.002	0.005	0.006	0.006	0.183	97
$M_{PE(10)}^Z$		1.002	0.005	0.005	0.006	0.173	98
$M^G_{PE(10)}$		1.019	0.005	0.020	0.006	1.926	6
$M_{PE(10)}^{PL}$		1.003	0.005	0.006	0.006	0.275	97
$M_{PE(10)}^{RW}$		1.000	0.005	0.005	0.006	0.021	99
M_{PL}		0.999	0.005	0.005	0.006	-0.083	98

Tabela C.70: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,50}^{1.00,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.10: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{1.00,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.998	0.381	0.379	0.416	-0.166	96
$M_{BP(5)}^Z$		0.998	0.388	0.386	0.418	-0.181	94
$M^G_{BP(5)}$		0.768	0.287	0.368	0.397	-23.167	95
$M_{BP(5)}^{PL}$		1.020	0.392	0.391	0.421	1.967	93
$M_{BP(5)}^{RW}$		1.017	0.393	0.391	0.421	1.652	95
$M_{PE(5)}^{Wishart}$		0.917	0.353	0.361	0.391	-8.286	95
$M_{PE(5)}^Z$		0.916	0.353	0.361	0.393	-8.393	95
$M^G_{PE(5)}$		0.449	0.292	0.622	0.489	-55.057	89
$M_{PE(5)}^{PL}$		0.904	0.351	0.362	0.390	-9.564	96
$M_{PE(5)}^{RW}$		0.928	0.355	0.361	0.393	-7.180	96
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.983	0.378	0.377	0.411	-1.730	95
$M_{BP(10)}^Z$		0.984	0.374	0.373	0.411	-1.640	95
$M^G_{BP(10)}$		0.789	0.296	0.362	0.391	-21.112	94
$M_{BP(10)}^{PL}$		1.021	0.386	0.385	0.424	2.090	93
$M_{BP(10)}^{RW}$		1.011	0.385	0.383	0.424	1.112	95
$M_{PE(10)}^{Wishart}$		0.941	0.358	0.361	0.401	-5.897	96
$M_{PE(10)}^Z$		0.948	0.360	0.362	0.402	-5.183	95
$M^G_{PE(10)}$		0.370	0.353	0.721	0.526	-62.955	85
$M_{PE(10)}^{PL}$		0.917	0.346	0.354	0.397	-8.314	95
$M_{PE(10)}^{RW}$		0.975	0.366	0.365	0.410	-2.487	96
M_{PL}		1.007	0.386	0.384	0.415	0.680	94

Tabela C.71: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.026	0.249	0.249	0.235	-2.562	93
$M_{BP(5)}^Z$		-1.027	0.255	0.255	0.234	-2.683	93
$M^G_{BP(5)}$		-0.789	0.194	0.285	0.213	21.074	84
$M_{BP(5)}^{PL}$		-1.046	0.249	0.252	0.237	-4.618	93
$M_{BP(5)}^{RW}$		-1.043	0.248	0.251	0.238	-4.262	93
$M_{PE(5)}^{Wishart}$		-0.922	0.216	0.229	0.219	7.833	92
$M_{PE(5)}^Z$		-0.925	0.215	0.227	0.219	7.485	94
$M^G_{PE(5)}$		-0.486	0.179	0.544	0.250	51.393	43
$M_{PE(5)}^{PL}$		-0.914	0.212	0.228	0.217	8.598	93
$M_{PE(5)}^{RW}$		-0.936	0.217	0.225	0.221	6.380	92
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.007	0.247	0.245	0.231	-0.665	93
$M_{BP(10)}^Z$		-1.010	0.250	0.249	0.232	-1.027	93
$M^G_{BP(10)}$		-0.810	0.190	0.268	0.211	18.965	84
$M_{BP(10)}^{PL}$		-1.047	0.250	0.253	0.238	-4.688	93
$M_{BP(10)}^{RW}$		-1.042	0.249	0.251	0.238	-4.151	93
$M_{PE(10)}^{Wishart}$		-0.959	0.236	0.238	0.226	4.109	92
$M_{PE(10)}^Z$		-0.966	0.239	0.240	0.225	3.377	93
$M^G_{PE(10)}$		-0.439	0.204	0.597	0.266	56.093	40
$M_{PE(10)}^{PL}$		-0.934	0.228	0.236	0.222	6.559	91
$M_{PE(10)}^{RW}$		-0.997	0.243	0.242	0.229	0.319	92
M_{PL}		-1.029	0.241	0.242	0.232	-2.918	93

Tabela C.72: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.048	0.007	0.008	0.007	-0.237	92
$M_{BP(5)}^Z$		1.047	0.007	0.008	0.007	-0.248	91
$M^G_{BP(5)}$		1.053	0.006	0.007	0.006	0.259	96
$M_{BP(5)}^{PL}$		1.047	0.007	0.007	0.007	-0.277	94
$M_{BP(5)}^{RW}$		1.047	0.007	0.007	0.007	-0.243	95
$M_{PE(5)}^{Wishart}$		1.055	0.006	0.008	0.006	0.486	87
$M_{PE(5)}^Z$		1.055	0.006	0.008	0.006	0.484	88
$M^G_{PE(5)}$		1.057	0.005	0.009	0.006	0.676	80
$M_{PE(5)}^{PL}$		1.055	0.006	0.008	0.006	0.498	86
$M_{PE(5)}^{RW}$		1.054	0.006	0.007	0.006	0.392	92
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.049	0.007	0.007	0.007	-0.142	94
$M_{BP(10)}^Z$		1.048	0.007	0.008	0.007	-0.148	94
$M^G_{BP(10)}$		1.053	0.006	0.007	0.007	0.306	93
$M_{BP(10)}^{PL}$		1.047	0.007	0.008	0.007	-0.281	93
$M_{BP(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.176	96
$M_{PE(10)}^{Wishart}$		1.050	0.007	0.007	0.007	0.034	97
$M_{PE(10)}^Z$		1.050	0.007	0.007	0.007	0.025	97
$M^G_{PE(10)}$		1.054	0.006	0.007	0.007	0.354	95
$M_{PE(10)}^{PL}$		1.051	0.007	0.007	0.007	0.133	94
$M_{PE(10)}^{RW}$		1.048	0.007	0.007	0.007	-0.157	96
M_{PL}		1.048	0.006	0.006	0.006	-0.198	94

Tabela C.73: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.828	0.585	0.607	0.719	-8.596	89
$M_{BP(5)}^Z$		1.826	0.588	0.610	0.716	-8.696	90
$M^G_{BP(5)}$		1.437	0.475	0.736	0.631	-28.175	81
$M_{BP(5)}^{PL}$		1.811	0.581	0.608	0.711	-9.438	90
$M_{BP(5)}^{RW}$		1.818	0.583	0.608	0.715	-9.095	89
$M_{PE(5)}^{Wishart}$		1.976	0.620	0.618	0.788	-1.183	96
$M_{PE(5)}^Z$		1.980	0.622	0.619	0.790	-0.983	95
$M^G_{PE(5)}$		0.346	0.145	1.660	0.141	-82.683	0
$M_{PE(5)}^{PL}$		1.972	0.622	0.619	0.788	-1.376	95
$M_{PE(5)}^{RW}$		1.959	0.618	0.616	0.777	-2.065	95
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	1.860	0.593	0.606	0.735	-6.977	90
$M_{BP(10)}^Z$		1.854	0.590	0.605	0.735	-7.276	89
$M^G_{BP(10)}$		1.574	0.500	0.655	0.676	-21.286	88
$M_{BP(10)}^{PL}$		1.813	0.582	0.608	0.713	-9.363	89
$M_{BP(10)}^{RW}$		1.833	0.590	0.610	0.725	-8.351	89
$M_{PE(10)}^{Wishart}$		1.879	0.601	0.610	0.749	-6.064	92
$M_{PE(10)}^Z$		1.886	0.599	0.607	0.751	-5.707	92
$M^G_{PE(10)}$		0.178	0.073	1.824	0.065	-91.120	0
$M_{PE(10)}^{PL}$		1.885	0.603	0.611	0.758	-5.730	92
$M_{PE(10)}^{RW}$		1.843	0.588	0.605	0.728	-7.842	91
M_{PL}		1.839	0.582	0.601	0.711	-8.059	88

Tabela C.74: Summary of simulated mean, standard deviation, RMSE, mean standard error, mean relative bias (%) and coverage rate (%) of the stimator of ζ_{ν} for the scenario $S_{2,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		0.965	0.273	0.274	0.283	-3.526	94
$M_{BP(5)}^Z$		0.966	0.274	0.275	0.284	-3.396	93
$M^G_{BP(5)}$		0.771	0.226	0.321	0.265	-22.914	89
$M_{BP(5)}^{PL}$		0.980	0.278	0.277	0.286	-2.038	95
$M_{BP(5)}^{RW}$		0.980	0.274	0.273	0.285	-2.006	94
$M_{PE(5)}^{Wishart}$		0.869	0.249	0.280	0.263	-13.124	90
$M_{PE(5)}^Z$		0.869	0.253	0.284	0.264	-13.105	90
$M^G_{PE(5)}$		0.465	0.211	0.575	0.318	-53.511	61
$M_{PE(5)}^{PL}$		0.862	0.248	0.283	0.263	-13.842	90
$M_{PE(5)}^{RW}$		0.876	0.251	0.279	0.264	-12.374	93
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	0.954	0.274	0.277	0.281	-4.555	94
$M_{BP(10)}^Z$		0.956	0.271	0.273	0.281	-4.397	93
$M^G_{BP(10)}$		0.779	0.225	0.315	0.264	-22.073	89
$M_{BP(10)}^{PL}$		0.980	0.279	0.278	0.286	-1.988	95
$M_{BP(10)}^{RW}$		0.974	0.279	0.278	0.286	-2.557	94
$M_{PE(10)}^{Wishart}$		0.910	0.261	0.275	0.273	-8.983	94
$M_{PE(10)}^Z$		0.916	0.263	0.275	0.275	-8.425	94
$M^G_{PE(10)}$		0.394	0.244	0.653	0.348	-60.586	62
$M_{PE(10)}^{PL}$		0.890	0.256	0.277	0.270	-11.037	94
$M_{PE(10)}^{RW}$		0.934	0.266	0.273	0.277	-6.647	95
M_{PL}		0.968	0.274	0.275	0.281	-3.237	95

Tabela C.75: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.001	0.121	0.120	0.135	-0.101	97
$M_{BP(5)}^Z$		-1.002	0.121	0.120	0.136	-0.244	96
$M^G_{BP(5)}$		-0.808	0.094	0.214	0.121	19.221	73
$M_{BP(5)}^{PL}$		-1.016	0.124	0.124	0.136	-1.638	97
$M_{BP(5)}^{RW}$		-1.015	0.125	0.125	0.137	-1.487	96
$M_{PE(5)}^{Wishart}$		-0.903	0.103	0.141	0.124	9.681	88
$M_{PE(5)}^Z$		-0.906	0.105	0.140	0.125	9.406	88
$M^G_{PE(5)}$		-0.517	0.088	0.491	0.141	48.330	1
$M_{PE(5)}^{PL}$		-0.897	0.103	0.146	0.124	10.349	89
$M_{PE(5)}^{RW}$		-0.913	0.105	0.136	0.125	8.715	90
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-0.989	0.124	0.124	0.134	1.105	96
$M_{BP(10)}^Z$		-0.994	0.127	0.126	0.135	0.633	95
$M^G_{BP(10)}$		-0.819	0.094	0.204	0.121	18.082	73
$M_{BP(10)}^{PL}$		-1.017	0.126	0.127	0.138	-1.676	98
$M_{BP(10)}^{RW}$		-1.013	0.126	0.126	0.138	-1.257	97
$M_{PE(10)}^{Wishart}$		-0.946	0.114	0.126	0.130	5.366	93
$M_{PE(10)}^Z$		-0.952	0.116	0.125	0.131	4.775	93
$M^G_{PE(10)}$		-0.457	0.104	0.553	0.153	54.294	0
$M_{PE(10)}^{PL}$		-0.927	0.110	0.131	0.128	7.263	93
$M_{PE(10)}^{RW}$		-0.970	0.118	0.121	0.132	3.027	94
M_{PL}		-1.005	0.123	0.122	0.133	-0.513	96

Tabela C.76: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.049	0.006	0.006	0.005	-0.103	90
$M_{BP(5)}^Z$		1.049	0.005	0.006	0.005	-0.114	92
$M^G_{BP(5)}$		1.054	0.005	0.006	0.005	0.363	90
$M_{BP(5)}^{PL}$		1.049	0.005	0.005	0.005	-0.142	93
$M_{BP(5)}^{RW}$		1.049	0.005	0.005	0.005	-0.122	92
$M_{PE(5)}^{Wishart}$		1.057	0.005	0.009	0.005	0.702	59
$M_{PE(5)}^Z$		1.057	0.005	0.009	0.005	0.697	59
$M^G_{PE(5)}$		1.060	0.005	0.011	0.004	0.927	41
$M_{PE(5)}^{PL}$		1.057	0.005	0.009	0.005	0.709	62
$M_{PE(5)}^{RW}$		1.057	0.005	0.008	0.005	0.645	64
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.050	0.006	0.006	0.005	-0.040	92
$M_{BP(10)}^Z$		1.049	0.006	0.006	0.005	-0.062	92
$M^G_{BP(10)}$		1.054	0.005	0.006	0.005	0.377	88
$M_{BP(10)}^{PL}$		1.049	0.005	0.006	0.005	-0.141	91
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.005	-0.077	92
$M_{PE(10)}^{Wishart}$		1.052	0.005	0.006	0.005	0.208	94
$M_{PE(10)}^Z$		1.052	0.005	0.006	0.005	0.203	94
$M^G_{PE(10)}$		1.056	0.005	0.008	0.005	0.581	71
$M_{PE(10)}^{PL}$		1.053	0.005	0.006	0.005	0.278	94
$M_{PE(10)}^{RW}$		1.051	0.005	0.005	0.005	0.068	94
M_{PL}		1.049	0.005	0.005	0.005	-0.071	91

Tabela C.77: Summary of simulated mean, standard deviation, RMSE, mean standard error, mean relative bias (%) and coverage rate (%) of the estimator of β_1 , β_2 , $\alpha \in \zeta_{\nu}$ for the scenario $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.993	0.590	0.587	0.618	-0.332	93
$M_{BP(5)}^Z$		1.990	0.593	0.590	0.618	-0.523	93
$M^G_{BP(5)}$		1.709	0.525	0.598	0.586	-14.536	87
$M_{BP(5)}^{PL}$		1.973	0.591	0.588	0.610	-1.337	92
$M_{BP(5)}^{RW}$		1.976	0.591	0.589	0.611	-1.213	92
$M_{PE(5)}^{Wishart}$		2.209	0.623	0.654	0.700	10.455	97
$M_{PE(5)}^Z$		2.210	0.622	0.653	0.700	10.479	97
$M^G_{PE(5)}$		0.465	0.157	1.543	0.153	-76.758	0
$M_{PE(5)}^{PL}$		2.206	0.626	0.656	0.700	10.310	97
$M_{PE(5)}^{RW}$		2.191	0.620	0.646	0.693	9.571	98
$M_{BP(10)}^{Wishart}$	$\zeta_{\nu} = 2$	2.016	0.594	0.592	0.629	0.797	94
$M_{BP(10)}^Z$		2.010	0.599	0.596	0.626	0.515	92
$M^G_{BP(10)}$		1.805	0.544	0.576	0.613	-9.756	91
$M_{BP(10)}^{PL}$		1.974	0.591	0.589	0.613	-1.287	92
$M_{BP(10)}^{RW}$		1.994	0.593	0.590	0.621	-0.304	93
$M_{PE(10)}^{Wishart}$		2.081	0.603	0.606	0.654	4.043	94
$M_{PE(10)}^{Z}$		2.082	0.604	0.606	0.655	4.121	95
$M^G_{PE(10)}$		0.226	0.072	1.776	0.066	-88.706	0
$M_{PE(10)}^{PL}$		2.093	0.606	0.610	0.662	4.662	94
$M_{PE(10)}^{RW}$		2.037	0.595	0.593	0.636	1.836	94
M_{PL}		1.991	0.584	0.581	0.609	-0.435	96

Tabela C.78: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de ζ_{ν} no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.11: Vício relativo dos estimadores de β_1 , β_2 , $\alpha \in \zeta_{\nu}$ no cenário $S_{2,50}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito.

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.044	0.154	0.159	0.150	4.410	97
$M_{BP(5)}^Z$		1.046	0.152	0.158	0.150	4.611	96
$M^G_{BP(5)}$		0.949	0.142	0.151	0.148	-5.129	96
$M_{BP(5)}^{PL}$		1.055	0.152	0.161	0.150	5.453	95
$M_{BP(5)}^{RW}$		1.051	0.152	0.160	0.149	5.148	96
$M_{PE(5)}^{Wishart}$		0.964	0.150	0.154	0.146	-3.624	96
$M_{PE(5)}^Z$		0.963	0.150	0.153	0.146	-3.663	95
$M^G_{PE(5)}$		0.816	0.169	0.250	0.154	-18.434	70
$M_{PE(5)}^{PL}$		0.963	0.149	0.153	0.146	-3.720	96
$M_{PE(5)}^{RW}$		0.974	0.151	0.152	0.145	-2.586	96
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.040	0.151	0.156	0.152	4.035	97
$M_{BP(10)}^Z$		1.039	0.154	0.158	0.152	3.944	97
$M^G_{BP(10)}$		0.951	0.143	0.151	0.149	-4.940	96
$M_{BP(10)}^{PL}$		1.056	0.154	0.163	0.151	5.599	97
$M_{BP(10)}^{RW}$		1.042	0.152	0.157	0.150	4.177	97
$M_{PE(10)}^{Wishart}$		1.022	0.150	0.151	0.152	2.159	97
$M_{PE(10)}^Z$		1.022	0.149	0.150	0.152	2.235	98
$M^G_{PE(10)}$		0.804	0.196	0.277	0.168	-19.643	75
$M_{PE(10)}^{PL}$		1.011	0.148	0.148	0.152	1.068	98
$M_{PE(10)}^{RW}$		1.045	0.153	0.159	0.152	4.494	97
M_{PL}		1.040	0.151	0.156	0.140	4.026	96

Tabela C.79: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.030	0.084	0.089	0.102	-2.972	99
$M_{BP(5)}^Z$		-1.033	0.084	0.090	0.102	-3.295	98
$M^G_{BP(5)}$		-0.936	0.071	0.095	0.097	6.363	95
$M_{BP(5)}^{PL}$		-1.040	0.081	0.090	0.102	-3.954	98
$M_{BP(5)}^{RW}$		-1.036	0.083	0.090	0.102	-3.610	97
$M_{PE(5)}^{Wishart}$		-0.950	0.080	0.094	0.096	4.970	94
$M_{PE(5)}^Z$		-0.950	0.079	0.093	0.096	4.955	95
$M^G_{PE(5)}$		-0.799	0.074	0.214	0.094	20.062	39
$M_{PE(5)}^{PL}$		-0.950	0.079	0.093	0.096	5.023	96
$M_{PE(5)}^{RW}$		-0.960	0.080	0.089	0.096	3.950	97
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.021	0.085	0.087	0.104	-2.073	99
$M_{BP(10)}^Z$		-1.021	0.086	0.088	0.104	-2.126	99
$M^G_{BP(10)}$		-0.935	0.072	0.097	0.098	6.547	96
$M_{BP(10)}^{PL}$		-1.039	0.083	0.092	0.103	-3.925	98
$M_{BP(10)}^{RW}$		-1.025	0.084	0.088	0.102	-2.541	98
$M_{PE(10)}^{Wishart}$		-1.005	0.084	0.084	0.103	-0.493	98
$M_{PE(10)}^Z$		-1.006	0.084	0.084	0.103	-0.561	99
$M^G_{PE(10)}$		-0.783	0.081	0.231	0.101	21.699	42
$M_{PE(10)}^{PL}$		-0.996	0.082	0.081	0.102	0.449	99
$M_{PE(10)}^{RW}$		-1.028	0.086	0.090	0.103	-2.823	98
M_{PL}		-1.027	0.072	0.076	0.092	-2.694	97

Tabela C.80: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.048	0.005	0.005	0.006	-0.177	99
$M_{BP(5)}^Z$		1.048	0.005	0.005	0.006	-0.198	99
$M^G_{BP(5)}$		1.054	0.004	0.006	0.006	0.344	96
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.006	-0.228	98
$M_{BP(5)}^{RW}$		1.048	0.005	0.005	0.006	-0.202	97
$M_{PE(5)}^{Wishart}$		1.053	0.005	0.006	0.006	0.280	94
$M_{PE(5)}^Z$		1.053	0.005	0.006	0.006	0.281	93
$M^G_{PE(5)}$		1.062	0.005	0.013	0.005	1.187	36
$M_{PE(5)}^{PL}$		1.053	0.005	0.006	0.006	0.291	93
$M_{PE(5)}^{RW}$		1.052	0.005	0.006	0.006	0.211	93
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.048	0.005	0.005	0.006	-0.143	97
$M_{BP(10)}^Z$		1.048	0.005	0.005	0.006	-0.147	96
$M^G_{BP(10)}$		1.054	0.004	0.006	0.006	0.338	96
$M_{BP(10)}^{PL}$		1.048	0.005	0.005	0.006	-0.235	96
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.006	-0.140	97
$M_{PE(10)}^{Wishart}$		1.050	0.005	0.005	0.006	-0.022	98
$M_{PE(10)}^Z$		1.050	0.005	0.005	0.006	-0.025	98
$M_{PE(10)}^G$		1.063	0.005	0.014	0.006	1.247	43
$M_{PE(10)}^{PL}$		1.051	0.005	0.005	0.006	0.048	98
$M_{PE(10)}^{RW}$		1.048	0.005	0.005	0.006	-0.162	97
M_{PL}		1.048	0.005	0.005	0.005	-0.174	96

Tabela C.81: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:
Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.027	0.103	0.106	0.103	2.702	93
$M_{BP(5)}^Z$		1.027	0.102	0.105	0.103	2.667	94
$M^G_{BP(5)}$		0.925	0.089	0.117	0.100	-7.530	91
$M_{BP(5)}^{PL}$		1.033	0.101	0.106	0.103	3.325	93
$M_{BP(5)}^{RW}$		1.030	0.100	0.103	0.103	2.984	94
$M_{PE(5)}^{Wishart}$		0.947	0.091	0.105	0.099	-5.310	93
$M_{PE(5)}^Z$		0.947	0.091	0.105	0.100	-5.318	92
$M^G_{PE(5)}$		0.768	0.093	0.250	0.102	-23.218	33
$M_{PE(5)}^{PL}$		0.946	0.090	0.105	0.099	-5.410	92
$M_{PE(5)}^{RW}$		0.954	0.091	0.102	0.100	-4.619	94
$M_{BP(10)}^{Wishart}$	$\beta_1 = 1$	1.019	0.101	0.102	0.103	1.913	94
$M_{BP(10)}^Z$		1.020	0.099	0.100	0.104	2.027	95
$M^G_{BP(10)}$		0.926	0.088	0.115	0.101	-7.396	91
$M_{BP(10)}^{PL}$		1.032	0.100	0.105	0.104	3.235	94
$M_{BP(10)}^{RW}$		1.023	0.100	0.102	0.103	2.348	95
$M_{PE(10)}^{Wishart}$		0.991	0.098	0.098	0.103	-0.913	98
$M_{PE(10)}^Z$		0.992	0.099	0.099	0.103	-0.816	98
$M^G_{PE(10)}$		0.721	0.106	0.298	0.108	-27.898	24
$M_{PE(10)}^{PL}$		0.983	0.098	0.098	0.103	-1.656	97
$M_{PE(10)}^{RW}$		1.008	0.100	0.100	0.103	0.769	98
M_{PL}		1.025	0.094	0.097	0.097	2.536	92

Tabela C.82: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_1 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		-1.017	0.068	0.069	0.068	-1.658	94
$M_{BP(5)}^Z$		-1.016	0.067	0.069	0.068	-1.619	94
$M^G_{BP(5)}$		-0.925	0.053	0.092	0.063	7.518	77
$M_{BP(5)}^{PL}$		-1.024	0.066	0.070	0.068	-2.362	94
$M_{BP(5)}^{RW}$		-1.022	0.065	0.069	0.068	-2.204	95
$M_{PE(5)}^{Wishart}$		-0.925	0.057	0.094	0.061	7.496	69
$M_{PE(5)}^Z$		-0.925	0.057	0.094	0.061	7.493	70
$M^G_{PE(5)}$		-0.765	0.047	0.240	0.058	23.507	2
$M_{PE(5)}^{PL}$		-0.924	0.056	0.094	0.061	7.595	71
$M_{PE(5)}^{RW}$		-0.932	0.057	0.089	0.062	6.845	73
$M_{BP(10)}^{Wishart}$	$\beta_2 = -1$	-1.008	0.068	0.068	0.069	-0.782	95
$M_{BP(10)}^Z$		-1.009	0.066	0.066	0.068	-0.863	95
$M^G_{BP(10)}$		-0.922	0.053	0.094	0.064	7.821	76
$M_{BP(10)}^{PL}$		-1.021	0.067	0.070	0.069	-2.075	93
$M_{BP(10)}^{RW}$		-1.013	0.065	0.066	0.068	-1.258	94
$M_{PE(10)}^{Wishart}$		-0.983	0.063	0.065	0.067	1.707	96
$M_{PE(10)}^Z$		-0.984	0.063	0.064	0.067	1.607	97
$M_{PE(10)}^G$		-0.737	0.051	0.268	0.062	26.332	0
$M_{PE(10)}^{PL}$		-0.975	0.062	0.066	0.066	2.452	96
$M_{PE(10)}^{RW}$		-0.999	0.064	0.064	0.067	0.095	96
M_{PL}		-1.014	0.059	0.061	0.062	-1.436	96

Tabela C.83: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de β_2 no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Model	Parameter	Mean	Standard deviation	RMSE	Mean standard error	Mean relative bias	Coverage rate
$M_{BP(5)}^{Wishart}$		1.048	0.005	0.005	0.004	-0.150	89
$M_{BP(5)}^Z$		1.048	0.005	0.005	0.004	-0.144	88
$M^G_{BP(5)}$		1.054	0.004	0.006	0.004	0.348	85
$M_{BP(5)}^{PL}$		1.048	0.005	0.005	0.004	-0.171	92
$M_{BP(5)}^{RW}$		1.048	0.005	0.005	0.004	-0.161	90
$M_{PE(5)}^{Wishart}$		1.055	0.004	0.007	0.004	0.502	76
$M_{PE(5)}^Z$		1.055	0.004	0.007	0.004	0.501	76
$M^G_{PE(5)}$		1.065	0.004	0.015	0.004	1.389	5
$M_{PE(5)}^{PL}$		1.055	0.004	0.007	0.004	0.512	75
$M_{PE(5)}^{RW}$		1.055	0.004	0.006	0.004	0.460	78
$M_{BP(10)}^{Wishart}$	$\alpha = 1.05$	1.049	0.005	0.005	0.004	-0.082	93
$M_{BP(10)}^Z$		1.049	0.005	0.005	0.004	-0.086	93
$M^G_{BP(10)}$		1.054	0.004	0.006	0.004	0.369	83
$M_{BP(10)}^{PL}$		1.048	0.005	0.005	0.004	-0.147	91
$M_{BP(10)}^{RW}$		1.049	0.005	0.005	0.004	-0.100	92
$M_{PE(10)}^{Wishart}$		1.051	0.005	0.005	0.004	0.096	95
$M_{PE(10)}^Z$		1.051	0.005	0.005	0.004	0.091	95
$M^G_{PE(10)}$		1.065	0.004	0.016	0.004	1.435	4
$M_{PE(10)}^{PL}$		1.051	0.005	0.005	0.004	0.139	93
$M_{PE(10)}^{RW}$		1.050	0.005	0.005	0.004	-0.004	95
M_{PL}		1.049	0.004	0.004	0.004	-0.115	92

Tabela C.84: Sumário indicando a média, desvio padrão, RMSE, erro padrão médio, vício relativo médio (%) e taxa de cobertura (%) para o estimador de α no cenário $S_{\infty,30}^{1.05,2}$ para o caso Bayesiano na situação de reparo perfeito:

Figura C.12: Vício relativo dos estimadores de β_1 , $\beta_2 \in \alpha$ no cenário $S^{1.05,2}_{\infty,50}$ para o caso Bayesiano na situação de reparo perfeito.