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Resumo

Cardiopatia Reumática (CR) afeta aproximadamente 39 milhões de pessoas ao redor do
mundo e é a doença cardíaca adquirida mais comum entre crianças e adolescentes. A
doença é responsável por mais de 300.000 mortes anualmente e figura entre as principais
causas de morte e invalidez em países de baixa e média renda mas pode ser evitada se
detectada precocemente. Ecocardiogramas são o padrão ouro para o diagnóstico de CR,
sendo uma ferramenta muito eficaz para sua identificação enquanto latente. Devido ao
custo de equipamento e à escassez de mão de obra qualificada, a adoção em massa de
programas de rastreamento para detecção precoce e prevenção da progressão da doença
em áreas endêmicas ainda é severamente restrita. Avanços tecnológicos recentes dimin-
uíram o custo de máquinas ecocardiográficas portáteis, porém a lacuna de mão de obra
qualificada permanece e poderia ser preenchida através da implementação de aplicações
para diagnóstico auxiliado por computador.

Neste trabalho, abordamos os desafios do diagnóstico automático de CR em exames
ecocardiográficos convencionais. Não há literatura prévia sobre o assunto, e hipotetizamos
que os métodos desenvolvidos para tarefas relacionadas provavelmente não funcionariam
tão bem devido à negligência de informações temporais. Para testar essa hipótese, com-
paramos o desempenho de uma rede neural convolucional (RNC) 3D com um modelo de
tamanho semelhante da literatura ao prever a presença de CR em cada vídeo. Também
propomos uma estratégia de agregação mais sofisticada para emitir o diagnóstico de um
exame completo, que é supervisionada e baseado nos momentos da distribuição de con-
fiança para as previsões de vídeo do classificador anterior. Experimentos mostram que o
modelo com noção temporal e a estratégia de agregação supervisionada são significativa-
mente melhores na tarefa de diagnóstico de CR.

Finalmente, apresentamos uma rede neural convolucional de dois fluxos em uma
configuração de aprendizado multitarefa que usa uma RNC 2D como extrator de carac-
terísticas, mas que ainda assim é capaz de incorporar informações temporais na previsão
por meio de mecanismos de atenção. Além disso, propomos uma estratégia de agre-
gação não supervisionada que é centrada na detecção de vídeos fora da distribuição como
instâncias ruidosas, eventualmente removendo-os do processo de diagnóstico final. Ao
levar em conta rótulos de anormalidades funcionais do coração como tarefas auxiliares
durante o treino, nosso novo método não só é capaz de superar significativamente outros
métodos tomados linhas de base com uma acurácia de 71,18% mas também é capaz de
fornecer informações consistentes sobre seu processo de tomada de decisão em múltiplos



níveis, principalmente como visualizações temporais (quadros relevantes no vídeo) e es-
paciais (estruturas relevantes em um quadro). Direções para a adoção dessa tecnologia
no mundo real são discutidas.

Palavras-chave: aprendizado de máquina, aprendizado profundo, visão computacional,
ecocardiografia, cardiopatia reumática



Abstract

Rheumatic Heart Disease (RHD) affects an estimated 39 million people worldwide and
is the most common acquired heart disease in children and young adults. The disease is
responsible for more than 300,000 deaths annually and ranks as a leading cause of death
and disability in low- and middle-income countries but is preventable if detected early.
Echocardiograms are the gold standard for diagnosis of RHD, being a very effective tool
for its identification while latent. Due to equipment costs and a shortage of skilled ex-
perts, the adoption of widespread screenings for early detection and prevention of disease
progression in endemic areas is still severely restricted. Recent technological advance-
ments increased the affordability of portable echocardiographic machines, but the gap of
expert shortage remains and could be bridged by the implementation of computer-aided
diagnosis applications.

In this work, we address the challenges of automatic diagnosis of RHD in conven-
tional echocardiographic exams. There is no previous literature on the subject, and we
hypothesized that methods developed for related tasks were unlikely to work well due to
their disregard for temporal information. To test this hypothesis, we compare the perfor-
mance of a 3D convolutional neural network (CNN) with a similar-sized model from the
literature when predicting the presence of RHD in each video. We also propose a more
sophisticated aggregation strategy to issue a whole exam diagnosis, which is supervised
and based on the moments of the confidence distribution for the video predictions of the
previous classifier. Experiments show that the temporal-aware model and the supervised
aggregation strategy are significantly better at the task of RHD diagnosis.

Finally, we present a two-stream convolutional neural network in a multi-task learn-
ing setup that uses a 2D CNN as a feature extractor but can nonetheless incorporate tem-
poral information in the prediction through attention mechanisms. Furthermore, we pro-
pose an unsupervised aggregation strategy centered around detecting out-of-distribution
videos as noisy instances, ultimately removing them from the final diagnosis process. By
leveraging labels of functional abnormalities of the heart as auxiliary tasks during train-
ing, our new method is not only able to significantly outperform other baselines with an
accuracy of 71.18% but is also able to provide consistent information about its decision-
making process in multiple levels, mainly as temporal (relevant frames in the video) and
spatial (relevant structures in a frame) visualizations. Directions for real-world adoption
of this technology are discussed.



Keywords: machine learning, deep learning, computer vision, echocardiography, rheumatic
heart disease
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Chapter 1

Introduction

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, with an es-
timated number of deaths of 18.6 million individuals per year [94]. Even though CVDs
are considered an expanding threat to global health, socioeconomic, racial, and ethnic
differences still play a crucial role in access to cardiovascular care [28, 26]. Rheumatic
Heart Disease (RHD) — damaged heart valves derived from acute rheumatic fever (ARF)
— affects an estimated 39 million people worldwide [56] and is the most common acquired
heart disease in children and young adults [74, 80]. As a neglected disease [66], RHD ranks
as a leading cause of death and disability in low- and middle-income countries (LMICs)
but can be treated if detected in its early stages. Secondary prophylaxis in the form of
regular penicillin injections can be initiated to prevent new episodes of ARF, avoiding
further valve damage and progression of the disease [103]. In 2013, the Brazilian Pub-
lic Health System reported 5, 169 hospitalizations related to ARF, and 8, 841 related to
chronic RHD, at a cost of 33 million USD, mostly related to cardiovascular surgeries [89].

Thanks to the recent technological advances, echocardiography is more cost-effective
and widely available [33]. Echocardiography is crucial for diagnosing a range of heart
conditions [33] and reducing CVD-related deaths [33, 88, 81, 126]. In particular, echocar-
diograms have emerged as the gold standard for RHD diagnosis [32] and as a very effective
tool for early detection of latent RHD, identifying 10 times more subclinical disease cases
when compared with auscultation [70, 90]. Following guidelines published by the World
Heart Federation in 2012 [88], an experienced echocardiographer can leverage findings
related to structural (morphological) and functional abnormalities in the mitral valve
and aortic valve to issue a diagnosis for RHD. However, the availability of skilled profes-
sionals has proven to be insufficient in underdeveloped regions, creating a gap in which
computer-aided diagnosis of cardiac images can potentially help fill. Additional strategies
to overcome the shortage of experts include task-shifting of imaging acquisition to non-
physicians and utilization of telemedicine for remote diagnosis. Such approaches are made
even more practical in resource-poor settings by the utilization of ultraportable handheld
ultrasound devices.

The application of artificial neural networks to conventional 2-dimensional echocar-
diographic data dates back to 1990 [24]. In recent years the number of publications in the
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field has risen considerably due to the popularization of deep learning (DL) [71]. Many
medical fields, such as oncology and pneumology, have also seen successful applications
of DL methods for disease detection [53, 112, 86, 98].

Concerning conventional echocardiograms, DL literature mainly comprises studies
on echocardiogram viewpoint (view) identification [42, 67, 68, 125], heart chamber seg-
mentation [125, 21], and classification of heart disease [65, 68, 44, 125], primarily applied
for morphological rather than functional abnormalities. None of the disease-related re-
search directly addresses valve abnormalities, and virtually all of the research uses a frame
by frame (2D) approach to process images, discarding the temporal relation encoded in
video clips.

Echocardiography identification of RHD, especially the subtle findings of subclin-
ical disease, is highly dependent on the behavior of cardiac structures and blood flow
across sequences of frames in a video. Therefore, it is unlikely that an approach that
disregards temporal information would achieve the best performance.

1.1 Objectives and Contributions

This dissertation presents the first proposals to address the challenges of automatic
RHD diagnosis in conventional echocardiographic exams. We aim to identify the traits
that differentiate the task at hand from related works in echocardiology and propose
machine learning methods that solve this problem even in data-poor settings.

The main goal of this work is to present a first step towards creating effective and
interpretable methods for automatic diagnosis of RHD, which can reduce the cost of RHD
screenings, increasing their coverage to possibly decrease the still heavy burden of RHD
in endemic regions. The implementation of these methods in the real world can be done
through a cloud-application for telemedicine diagnosis or by embedding them in screening
devices for direct utilization at the point-of-care during screening programs.

The main contributions of this work are summarized as:

• A framework for using machine learning in the automated diagnosis of cardiac dis-
eases that depends on temporal information and aggregation of multiple video pre-
dictions into a final diagnosis for a single exam while analyzing the decision-making
process through multiple layers of interpretability.

• Two deep neural network architectures for RHD diagnosis in videos:
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□ A 3D CNN based architecture as a baseline that is the currently published
state-of-the-art [72];

□ A new attention-based multi-task architecture able to train in a regime of small
datasets and provide interpretability in multiple levels.

• Two strategies for aggregating individual video predictions into a final exam diag-
nosis for RHD:

□ A supervised aggregation strategy based in meta-learning of the distributions
of video predictions;

□ An unsupervised aggregation strategy based on a sparse regularization formu-
lation that tackles out-of-distribution samples and provides another layer of
interpretability.

1.2 Publications and Awards

In the following, we list the published works that are a direct contribution of this
dissertation:

• B. R. Nascimento, J. F. Martins, E. R. Nascimento, G. L. Pappa, et. al. Deep
Learning for Automatic Identification of Rheumatic Heart Disease in Echocardio-
graphic Screening Images: Data from the PROVAR-ATMOSPHERE Study. In
Journal of the American College of Cardiology (JACC), 2020. Extended Abstract.

• B. R. Nascimento, J. F. Martins, E. R. Nascimento, G. L. Pappa, et. al.
Spatial-temporal Deep Learning for Automatic Identification of Rheumatic Heart
Disease in Echocardiographic Screening Images - Data from the PROVAR-ATMOSPHERE
Study. In Journal of the American College of Cardiology (JACC), 2021. Extended
Abstract.

• J. F. Martins, E. R. Nascimento, B. R. Nascimento, C. A. Sable, et. al. To-
wards Automatic Diagnosis of Rheumatic Heart Disease on Echocardiographic Ex-
ams Through Video-based Deep Learning. In Journal of the American Medical
Informatics Association (JAMIA), 2021. Full Paper.

Also, the following awards have been received regarding this dissertation:

• Best Work (Main Track) — 75th Brazilian Congress of Cardiology (2020). Work
described in Chapter 3.
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• Best Work (Main Track) — 30th Minas Gerais’ Congress of Cardiology (2021).
Work described in Chapter 4.

1.3 Outline

The remainder of this document is organized as follows:

• Chapter 2 discusses the clinical and computational backgrounds for this disserta-
tion while also addressing related works in computer vision applied to echocardiog-
raphy.

• Chapter 3 proposes and evaluates a strong baseline method for the diagnosis of
RHD. It comprises a 3D CNN for video classification and a supervised meta-classifier
that aggregates video predictions into the final diagnosis.

• Chapter 4 proposes a two-stream attention-based 2D CNN within a multi-task
learning setup and an unsupervised sparse voting strategy for exam diagnosis. The
method is compared to the baselines, and its interpretability capabilities are dis-
cussed.

• Chapter 5 concludes this dissertation by reviewing our main contributions and
proposing future research directions.
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Chapter 2

Background

In this chapter, the clinical and computational concepts relevant to this work are presented
in more detail. Finally, works related to automatic echocardiogram analysis with computer
vision methods are presented and discussed in the context of this dissertation.

2.1 Clinical Background

Permission to use images in this section has been granted in all cases. Images
sourced from [13] are available under a Creative Commons Attribution License 4.0. Images
sourced from [36] were created by co-author Caroline Watson, and WiRED International
has explicitly given permission to use.

2.1.1 Heart

Anatomy and Morphology

The heart is the organ responsible for the circulation of blood through the body of most
animals. In humans, it is located medially between the lungs within the thoracic cavity
and separated from other structures in the mediastinum by a tough membrane known
as the pericardium. Figure 2.1 shows the heart’s position and also identifies some of its
internal and surrounding structures.

The heart is composed of 4 chambers, with each side being made up of an atrium
and a ventricle. An atrium receives blood from external structures and contracts to push
it to the ventricle that follows. Ventricles, on the other hand, function by pumping the
blood out of the organ. Figure 2.2 depicts the heart’s internal structures and the major
blood vessels to which they are connected.
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Figure 2.1: Position of the heart in the thorax. Image adapted from [13].

Present at the end of each chamber in the heart, there is a valve, made of 2 or
3 leaflets, which prevents blood that flows through it from returning to the previous
chamber. Therefore, in a heart with normal function, blood flow is expected to be unidi-
rectional. The valve between the right atrium and the right ventricle is called the tricuspid
valve, while the one found where the right ventricle touches the pulmonary trunk is named
the pulmonary valve. Between the atrium and the ventricle in the left side of the heart
there is the mitral (bicuspid) valve, with the aortic valve located where the left ventricle
connects to the base of the aorta.

The valves between the atria and ventricles, generically called atrioventricular
valves, have an essential mechanism to ensure they function correctly. Chord-like ten-
dons, known as chordae tendinae, connect their leaflets to the papillary muscles, which
are anchored to ventricular walls and prevent the valves from inverting into the atria.
Valves at the end of ventricles, generically called semilunar valves, have no chordae ten-
dinae or papillary muscles associated to them.

Finally, the heart wall is composed of three different layers: epicardium, my-
ocardium, and endocardium. The epicardium, which is also the innermost layer of the
pericardium, is made of connective tissue and protects the heart by lubricating it to pre-
vent friction during cardiac activity. The myocardium is where the cardiac muscle is
located, which contracts through electrical stimulation to enable to heart to work as a
blood pump. The inside of the heart is lined with the endocardium, which also compose
valve leaflets along with additional connective tissue [13, 36].
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Figure 2.2: Internal heart structures and external vessels connected to them.
Image adapted from [13].

Physiology

The heart’s primary function is to take deoxygenated blood to the lungs and then pump
the oxygen-rich blood that comes out of them to the rest of the body. The process of
pumping blood through the 4 chambers of the heart is called a cardiac cycle, which occur
from the beginning of a heartbeat to the beginning of the next.

The cardiac cycle can be divided into two basic phases, which both atria and
ventricles undergo: systole (contraction) and diastole (relaxation). During ventricular
systole, ventricles simultaneously contract, forcing blood out of the open semilunar valves.
At the same time, atrial diastole is happening, with both relaxed atria being filled with
blood, while the atrioventricular valves remain closed. During ventricular diastole and
atrial systole the opposite is true: semilunar valves close while atrioventricular valves
open letting the blood inside the contracting atria fill the relaxed ventricles. For clarity
purposes, from now on, we will use the terms systole and diastole, always referring to
their ventricular instances, as their atrial counterparts can be inferred from that.

Figure 2.3 depicts the circulation of blood through the heart during a cardiac cycle.
Deoxygenated blood with high amounts of carbon dioxide comes from the superior vena
cava into the right atrium. Afterward, it flows to the right ventricle and then into the lungs
through the pulmonary arteries. Gas exchange happens in the pulmonary capillaries to
remove carbon dioxide and enrich the blood with oxygen. Subsequently, the blood returns
to the heart via the pulmonary veins connected to the left atrium. It is then pushed to
the left ventricle, which finally pumps the blood back into the body. This blood will
eventually return to the heart with low amounts of oxygen after exchanging gases in
systemic capillaries [13, 36].
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Figure 2.3: Blood circulation through the heart’s internal structures and exter-
nal vessels. Image adapted from [13].

2.1.2 Rheumatic Heart Disease

Burden, Symptoms and Causes

Rheumatic heart disease (RHD) is the leading acquired heart disease in children and young
adults in the world [74, 80], affects 39 million people worldwide [56], and is responsible
for more than 300,000 deaths annually according to the most recent estimate [75]. It is
associated with household crowding and poverty [25], and ranks as a leading cause of
death and disability in low- and middle-income countries (LMICs) [103] despite having
almost completely disappeared from wealthy countries [116].

RHD is a chronic disease that results from episodes of acute rheumatic fever (ARF).
ARF, in turn, is a complication of Group A Streptococcal (GAS) Pharyngitis, which is
informally called strep throat. Figure 2.4 depicts the progression from GAS Pharyngitis to
RHD. Strep throat occurrences are common, and in most people, usually resolve without
treatment. However, there is a small risk of developing an autoimmune response which
results in ARF about 3 weeks later [32]. The most common clinical symptoms of ARF are:
large joint pain or swelling, acute fever, choreiform movements, and heart inflammation
(carditis) [18]. Recurrent episodes of ARF, or a single very severe one, can result in
permanent damage to valves in the heart due to carditis, which is diagnosed as RHD.

Valves on the left side of the heart (mitral and aortic) are predominantly affected
by RHD, with damage to the mitral valve being the most common [18]. Damage to the



2.1. Clinical Background 25

Figure 2.4: Progression from Group A Streptococcal Pharyngitis to Rheumatic
Heart Disease. Image reproduced from [36].

valves results in morphological abnormalities such as scarring, thickness, and stiffness
of the tissue, compromising their function. They may also begin not to close properly
(regurgitation) or open fully (stenosis), resulting in leakage of blood back through the
valve or poor blood flow to the next chamber, respectively. Figure 2.4 visually depicts
valve regurgitation and stenosis. Stenosis on both valves tends to occur later in the
disease, often co-existing with regurgitation [36].

If heart valves are not working as they should, the cardiovascular system strains
itself to maintain proper circulation around the body. The heart can cope with this
temporarily, but heart failure can develop with time, leading to worse complications and
even death. Heart failure affects around 50% of patients with RHD, being the most
common consequence of the disease, but atrial fibrillation, infective endocarditis, and
even stroke are possible outcomes [32, 36].

Diagnosis

The diagnosis of RHD can be done clinically through the assessment of the patient’s ARF
history, combined with the presence of pathological murmur, exercise-induced chest pain,
shortness of breath, heart failure, syncope, palpitations, atrial fibrillation, or stroke [32].
However, a long latent phase of asymptomatic valvular heart disease, often without any
preceding history or symptoms of ARF, is the most common scenario [60].

Much subtler signals of RHD can be observed through cardiac imaging techniques,
which allow observations of morphological changes to the valves and lone blood jets op-
posing the expected flow between steps of the cardiac cycle. Echocardiography is the
current gold standard for RHD diagnosis [32] being a very effective tool for the detection
of latent RHD, identifying 10 times more subclinical disease cases when compared with
auscultation with a stethoscope [70, 90].
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Figure 2.5: Heart valve regurgitation and stenosis. Image adapted from [36].

In 2012, the World Heart Federation (WHF) published the first evidence-based
echocardiographic diagnosis guidelines [88], which, along with recent advances in echocar-
diographic technology that reduced acquisition cost and improved portability, made this
the preferred technology for RHD diagnosis [88, 90, 10]. With these guidelines at hand,
it is possible to issue a diagnosis for RHD by assessing echocardiographic findings: the
combination of pathological left-sided regurgitation/stenosis and morphological changes
allows the diagnosis of definite RHD; whereas, if found in isolation, borderline (subclinical
disease) RHD may be diagnosed. The guidelines are extensive, composed of many specific
criteria, so we will abstain from reproducing them in their entirety here. Figure 2.6 ex-
emplifies the usage of WHF’s guidelines for the diagnosis of RHD in the echocardiogram
of an 18-year old patient.
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Prevention

RHD often remains asymptomatic until serious complications develop. However, prophy-
laxis in the form of regular penicillin injections can be initiated to prevent new ARF
episodes and the disease’s progression. During the later decades of the 20th century, the
prevalence of RHD in high-income countries reduced significantly due to improvements
in sanitation and medical follow-up [20]. However, areas where RHD remained endemic
mostly present resource-poor settings with little to no medical records on ARF for the
population.

The burden of RHD and its complications can be reduced by interventions during
different stages of the progression from GAS infections to RHD:

Primordial Prevention. As ARF and RHD are predominantly diseases of social, en-
vironmental, and economic poverty, primordial prevention can be defined as improving
socioeconomic and living conditions and having well-organized, effective health systems.
This is arguably the most important and effective population-based strategy for the pre-
vention of both ARF and RHD. Its effect could be seen during the 1940s and 1950s in
countries such as Denmark [31] and the United States [48], even before the introduction of
penicillin. Sustained political and economic change in LMICs is needed for this to happen
in currently endemic areas.

LA

LV Ao

(a) (b)

LV

Ao

(c)

Figure 2.6: Diagnosis of Definite Rheumatic Heart Disease in the echocardio-
graphic images of an 18-year-old obtained during a screening program. (a)
shows a > 2 cm jet of mitral regurgitation in parasternal long axis Doppler viewpoint;
(b) and (c) show a > 2 cm jet of aortic insufficiency (yellow arrows) in parasternal long
axis Doppler and apical 4 chamber Doppler viewpoints. Ao, aorta; LA, left atrium; LV,
left ventricle.
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Primary Prevention. Consists in the early diagnosis and treatment of GAS infections
to prevent the first episode of ARF. Reliable and affordable methods for diagnosing and
treating GAS infections are needed for primary prevention to be effective. Although
definitive evidence for the efficacy of this intervention is still lacking, studies from the late
20th century in Cuba [79], Costa Rica [5], and the French Caribbean islands [7], suggest
that the integration of this approach along with other economic developments contributed
to the reduction of ARF in these countries. This is still a challenge in many LMICs, as
there is a shortage of skilled staff and resources at the primary health care level. Also,
many patients consider it a low priority to attend to a doctor with a sore throat [36].

Secondary Prevention. In patients who have had an episode of ARF or already have
established RHD, long-term penicillin treatment, in the form of monthly injections, can
prevent the development and worsen of RHD [121, 107]. Also, several studies have shown
that even regression of the disease in 50-70% is possible over 10 years, especially for mild
disease [97, 69]. Secondary prevention strategies seem feasible even in resource-limited
settings, due to penicillin, in its many forms, being off-patent and generally an inexpensive
antibiotic.

Tertiary Intervention. The aim of tertiary intervention of RHD is to reduce symp-
toms, disability, and premature death in patients who already have RHD-associated com-
plications, therefore being a palliative treatment and not a prevention strategy itself.
Treatments include medications to reduce heart failure and treat abnormal heart rhythms.
However, the only definitive treatment is heart surgery to replace the damaged valves,
which is not only costly but most of the time not available in endemic areas [57, 127]. In
2013 alone, the Brazilian Public Health System reported 5,169 hospitalizations related to
ARF, and 8,841 related to chronic RHD, at a cost of 33 million USD, mostly related to
cardiovascular surgeries [89].

2.1.3 Echocardiography

Echocardiography (echo) consists of sequential ultrasound images of a segment of
the heart, taken with a probe that emits radiofrequency waves and receives them back.
The signals are post-processed to form an image according to each wave’s time to reflect
from the surface it encountered. Figure 2.7 shows a segment of the heart being scanned
with a probe and generating an echo image. The probe is small enough to fit between
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Figure 2.7: Ultrasound probe scanning a segment of the heart to generate an
echo image. Image reproduced from [36].

the patient’s ribs to prevent bone interference in the imaging process, and positioning the
probe in different positions results in different cardiac viewpoints (views).

Echo is non-invasive, relatively inexpensive, and easy to use, making it the most
widely adopted cardiovascular imaging modality [81]. Through multiple viewpoints and
different modes, it is capable of providing rich information on the size, shape, and function
of the heart, being crucial for diagnosing a range of heart conditions and reducing CVD-
related deaths [33, 88, 81, 126].

Even though there are multiple echo modes, in this work we focus only in two: B-
Mode and Color Doppler. Also, only 3 different viewpoints are used due to their relevance
for RHD diagnosis: Apical 4 Chambers, Apical 5 Chambers, and Parasternal Long Axis.
Figure 2.8 exemplifies the combination of modes and viewpoints used in this work.

(a) (b) (c) (d) (e) (f) (g)

Figure 2.8: Examples of echocardiogram viewpoints and modes used in this
work. Frames were sampled from different videos of the same patient.(a) Apical 4 Cham-
bers (b) Apical 4 Chambers with Doppler (c) Apical 5 Chambers (d) Apical 5 Chambers
with Doppler (e) Parasternal Long Axis (f) Parasternal Long Axis with Doppler on the
Mitral Valve Level (g) Parasternal Long Axis with Doppler on the Aortic Valve Level.
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B-Mode

B-Mode (brightness mode), also called 2D echo, forms the basis of echocardiography.
The amplitude of the wave determines the brightness of each pixel in the image returned
to the probe, which allows real-time tissue visualization and, therefore, the analysis of
anatomical structures, stationary or at motion. In RHD diagnosis, according to [88], this
mode is used mostly for detection of morphological abnormalities in the mitral and aortic
valves, e.g., chordal thickening or uncommon leaflet motions. B-Mode echocardiograms
are exemplified in Figures 2.8a, 2.8c, and 2.8e.

Color Doppler

Color Doppler mode can determine, with certain limits, the speed and direction of blood
flow by utilizing the Doppler effect along with ultrasonography. Doppler information in
a region of interest (ROI) is encoded in a color scale and then superimposed on B-Mode
echo images. Blood flowing away from the probe is depicted in blue by convention (red
on the opposite), with color intensity varying according to flow speed.

This echocardiography mode is very important for RHD diagnosis, as abnormal
blood jets can be directly seen and then measured at their peak to assess if they are
physiological or pathological [88]. Color Doppler echocardiogram are exemplified in Fig-
ures 2.8b, 2.8d, 2.8f, and 2.8g. The color scales can be seen in the top left of each image
and their ROI is within the yellow borders.

Cardiac Viewpoints

Transthoracic echocardiography, which is the most conventional type of echo, consists of
multiple videos of the heart’s views, which are obtained by placing the probe in stan-
dardized places on the patient’s chest. Having more than one view is important for RHD
diagnosis, as the criteria in WHF’s guidelines establish that for valve regurgitation to be
pathological, it should be present in at least two views, having a size above a threshold in
at least one of them [88]. Figure 2.9 shows the cross-sections of the heart that should be

(a) Apical 4 Chambers (b) Apical 5 Chambers (c) Parasternal Long Axis

Figure 2.9: Cross-sections of the heart related to the cardiac views used in this
dissertation. Image adapted from [36].
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probed in order to obtain the viewpoints used in this dissertation. It is worth noting that
the Parasternal Long Axis (PLAX) viewpoint presents a clear view of the entire left side
of the heart and the start of the aorta, making regurgitation detection and measurement
easier.

2.1.4 Screenings

In epidemiology, screening is a strategy to assess the presence of preclinical disease
in individuals or a specific population, aiming at intervening to improve health outcomes
through further investigation and treatment of identified conditions. The WHO first
published guidelines for screenings in 1968 [119], which were revised in 2008 with the
emergence of new technologies [4].

As described in Section 2.1.2, secondary prevention strategies seem the most promis-
ing for regions where RHD is endemic, so screenings aim to identify the disease in its latent
(subclinical) stage, intervening with prophylaxis to prevent its progression. As there is
often time after an initial ARF episode and the development of advanced cardiac dis-
ease, which can occur as late as decades later [18], most screening programs have their
demographics set to children and young adults.

The first study on echocardiographic screening for RHD was published in 1996
by [3] and demonstrated that the use of echocardiography detected more children with
RHD than auscultation, which was the screening method previously used. However, at
the time, the technological capabilities of portable echocardiograms were severely limited.
Since 2004, the WHO has recommended screening in high-prevalence regions [19]. Ac-
cording to the 2020 Population Reference Bureau’s estimates, approximately 84% of the
children under 15 years of age (around 2 billion) live in countries endemic for RHD and
are potentially at risk of developing the disease [85].

The advent of portable echocardiographic technology, around the size of a large lap-
top computer, made this a valuable diagnostic tool more widely available in resource-poor
settings and remote locations, thus transforming the diagnosis of both ARF and RHD [32].
This was followed by the release of WHF’s evidence-based standardized guidelines with
echocardiographic criteria to facilitate the early diagnosis of RHD [88]. Consequently,
over the past decade, echocardiographic screening for RHD has emerged as a potential
strategy for the global control of the disease [77]. However, it is evident that the human,
infrastructure, and financial resources required for testing, diagnosis, follow-up, monitor-
ing, and quality assurance will be considerable and are likely to be a major challenge in
resource-limited settings [100].
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Figure 2.10: Pocket-sized ultrasound device with human hand for scale. This is
a Vscan Extend™ handheld ultrasound device from GE Healthcare.

Even though portable echo machines are much cheaper and more portable than
traditional hospital-based equipment, newer developments in ultraportable handheld ul-
trasound machines offer even greater portability at a much lower cost. Figure 2.10 depicts
a pocket-sized Vscan Extend™ echo device with a human hand for scale, which was the
device used during the screenings that generated the data used in this dissertation. These
devices are capable of producing 2D and color images, are simple to use by inexperi-
enced staff [88], and more recent versions are using smartphones, offering greater reach
for screening teams at reduced cost [9]. However, they lack the spectral Doppler imaging
capabilities needed to use the WHF criteria fully. Nonetheless, [11] showed that when
used by experienced cardiologists with modified WHF criteria, an encouraging accuracy
compared to standard portable echocardiography was obtained. The same research group
reported that handheld echocardiography is more sensitive than auscultation [45].

Screening surveys or population-based screening programs require considerable or-
ganization and human resources. LMICs are evolving strategies such as task-shifting [118]
to trained non-experts to make this vital strategy available and affordable for the most
remote and poorest populations [35, 78]. Initial studies found that training non-experts
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nurses or medical students to perform echocardiography for RHD screening was feasi-
ble [27, 8, 99]. Subsequent studies evaluated the possibility of task-shifting even the
diagnosis through simplified protocols to trained non-experts [73, 84, 12, 35]. In screen-
ings with non-experts, they were instructed to analyze the color Doppler echos while in
the point-of-care facility to identify possible mitral and aortic regurgitations, immediately
referring patients to cardiac centers according to specific criteria. Exams were later eval-
uated by experts. In one case, a telemedicine setup was used, with research cardiologists
in Brazil and the United States reporting diagnosis through a remote system [76].

Efforts to reduce screening costs continue. Future directions for the evaluation,
diagnosis and prevention of RHD worldwide are stated in Chapter 5 of [32]:

The future for the clinical evaluation and diagnosis of RHD around the world
lies in the development of affordable, accessible echocardiography with task-
shifting of screening and diagnosis. These need to be employed effectively
in hyperendemic communities to empower them to care for their people and
improve knowledge, experience, and outcomes for future generations

We argue that using computer-aided diagnosis systems for automated identification
of RHD during (referrals in the point-of-care facility) or after screenings can help make
screenings even more widespread. The system could be made available through a cloud-
based application for telemedicine or embedded directly into screening devices.

2.2 Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) systems are responsible for assisting clinicians
in the diagnostic process. CAD systems may use diagnostic rules to emulate the way
a skilled human expert makes diagnostic decisions, but more advanced systems are able
to analyze clinical data and learn from patterns to infer the diagnosis. Systems that can
improve automatically by learning from data are said to perform Machine Learning (ML).

Since the late 1950s, due to advancements in computing technology, biomedical
researchers began exploring the possibility of using computers to investigate and solve
problems in biology and medicine. Some of those studies were ultimately directed to the
development of systems for computer-based medical diagnosis [62, 110, 117]. However,
by the early 1970s, it became clear that there were some severe limitations in delivering
accurate diagnosis when using traditional methods such as flow-charts [15], statistical
pattern-matching [92], or probability theory [49]. Early expectations of the potential of
the newly emerged computer-based approaches tended to be overly optimistic. At the
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beginning of these early studies, researchers were hoping to develop entirely automatic
computer-aided diagnostic systems, but new, more sophisticated methods were necessary.

Even though CAD systems, in the form of artificial neural networks, have been
used to analyze 2D echocardiograms since 1990 [24], the past decade has witnessed an
explosion of successful classification approaches in many areas of medicine thanks to the
development of Deep Learning (DL), a subfield of ML. Historically, constructing a ML
system required domain expertise and human engineering to design feature extractors that
transformed raw data into suitable representations from which a learning algorithm could
detect patterns. In contrast, DL is capable of not only learning the patterns themselves,
but also the best way to extract features from the data in which patterns appear more
clearly.

The components that comprise DL are not new, but recent increases in computa-
tional power and the availability of massive datasets allowed performing more complex
learning in treatable time. Artificial neurons form the basis of DL.

2.2.1 Artificial Neurons and Neural Networks

Artificial neurons are the basic building blocks of neural networks and, as the name
suggests, are inspired by the biological neuron. In general, biological neurons consist of
dendrites, a cell body with a nucleus, and an axon. The cell body receives electrical
signals through the dendrites, the signals are processed by the cell body, and a response
is transmitted through the axon. Similarly, an artificial neuron receives an input signal,
processes it by summing the weighted inputs, and outputs the result. The output is given
by the following equation:

z =
∑
i

wixi + b

where z is the output, w is a weight, x is input data and b is a correction bias. This
mathematical description for an artificial neuron is also called a perceptron since it was
proposed by [93]. Similarities between a biological and an artificial neuron are drawn in
Figure 2.11.

We can stack multiple neurons to receive multiple inputs at once. If we connect all
of the outputs of our neurons to the inputs of new ones added alongside, we will create a
fully-connected feedforward Artificial Neural Network (ANN) with two layers, commonly
called a Multi-layer Perceptron (MLP). The first layer of a neural network is the input
layer, and the last layer is the output layer. The layers in-between are called hidden
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(a) Biological neuron (b) Artificial neuron

Figure 2.11: Biological and artificial neurons.

layers. The total number of layers in an ANN is referred to as the depth of the network,
and the process of training multilayered ANNs is referred to as deep learning.

A simple perceptron can only learn linear mappings of the input data [46]. To be
able to learn more complex non-linear mapping, we can process the information that is
propagated between layers of an ANN with a non-linear activation function. The most
common activation function used is the rectified linear unit function (ReLU) due to its
proven performance improvement [46]. That way, a MLP with two layers is already capa-
ble of solving the XOR in 2 dimensions, which is not linearly separable [96]. Figure 2.12
shows how, as data flows through the layers of an ANN, the input space becomes warped,
and data points become increasingly distinguishable. Following this principle, highly com-
plex functions that map any input to arbitrary labels can be learned. It is possible to
approximate any computable function with feedforward ANNs, as shown by [52].

Figure 2.12: Neural network layers making data linearly separable. Different
input classes are denoted by different colors. Image adapted from [39].
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2.2.2 Deep Neural Networks

A Deep Neural Network (DNN) is an ANN with multiple hidden layers. Typical
DNNs contain millions of trainable parameters (weights), which usually require large
amounts of data to be adjusted (trained) properly. Figure 2.13 exemplifies a large-scale
network receiving multiple types of data at once. Hidden layers 1 and 2 work as feature
extractors, while hidden layers 3 and 4 combine all the features and classify the input into
one of three classes.

DNNs are trained to minimize the error, or the loss, between the label attributed
to a sample and the network’s output after receiving that sample as input. The error value
is calculated according to a loss function, and the network parameters are subsequently
adjusted based on how much each sample contributed to the loss. First, the gradient
of the loss function concerning each parameter is calculated using the backpropagation
algorithm, initially described in [95]. With the gradients at hand, adjusting the weights
to minimize the loss consists of solving a non-convex optimization problem, meaning
that the network may go through local optima during the process. The most commonly

Figure 2.13: Example large-scale network that accepts a variety of data types
as input. Image adapted from [39].
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used optimization algorithm is the Stochastic Gradient Descent (SGD) [46]. This is an
iterative process, where typically training samples are seen multiple times across epochs.
An epoch in ML consists in passing through the entire training dataset once. With these
mechanisms, DNN systems can featurize and learn from a variety of data types, with
different network architectures being more tailored for specific types of data.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are DNNs with an architecture specialized
for processing data with a grid-like structure[46] and were first inspired by visual cortex
research done by [54]. CNNs can efficiently work with one-dimensional (time-series) data,
two-dimensional images, or three-dimensional volumes such as videos or point clouds.
They are a powerful tool for image classification and regression problems, having grown
to be central in the field of computer-aided diagnosis [39].

In the context of medical imaging, CNNs receive as input a matrix of pixels rep-
resenting an image or a volume of pixels representing a video, which are sequentially
downsampled by convolutional layers. Convolutional layers consist mainly of three oper-
ations: convolution, non-linear activation, and pooling. The convolution operation filters
the input data, generating feature maps that preserve multi-dimensional information since
the activation of each learnable filter (kernel) is dependent on neighboring inputs. This
information is spatial when using 2D CNNs and spatio-temporal for 3D CNNs. Non-
linear activation, e.g., ReLU, is applied to the feature maps to warp the representation
into iteratively more distinguishable features. Finally, the pooling of the feature map is
performed to reduce the feature representation, effectively downsampling at each step.
Kernels have weights that are adjusted according to the minimization of a loss function,
as described in the previous section.

Figure 2.14 is a typical configuration of a CNN architecture for medical imaging
diagnosis. The configuration mainly consists of an input image, followed by a sequence
of convolution operations joint with a non-linear activation function and pooling function
responsible for feature extraction. The extracted features are then fed to fully-connected
feedforward layers, which act as a classifier. The number of neurons in the output layer
equals the number of different labels in the classification task. A softmax function is used
so that the outputs represent the probability of the current input representing each class,
sometimes referred to as the model’s confidence.

The first real-world application of CNNs with significant accuracy was the recogni-
tion of hand-written digits [61]. However, the breakthrough for this technology happened
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Figure 2.14: Medical imaging automated diagnosis using a typical architecture
with Convolutional Neural Networks. Image reproduced from [39].

only in 2012, when [59] improved the performance of image classification on the Ima-
geNet Large-Scale Visual Recognition Challenge by almost 100% using a CNN. One of
their main contributions was a very efficient method for training DNNs using graphic
processing units (GPUs), which sparked remarkable interest in DL among the ML com-
munity, subsequently leading to significant advancements in the field.

Since them, CNNs have been developed to detect diseases in many medical fields [98],
such as pneumology [53, 86], optometry [43, 124, 87], and oncology [112, 38]. They have
even achieved physician-level accuracy at a broad variety of diagnostic tasks, including
detecting anomalies in optical coherence tomography [29] and identifying moles from
melanomas [38]. Clinics are beginning to employ object detection and segmentation in
images for urgent and easily missed cases [123]. The primary limitation when building a
supervised CAD system for a new medical imaging task is access to a sufficiently large,
labeled dataset [123].

2.3 Related Work

Related DL literature mainly comprises studies on echocardiogram viewpoint iden-
tification [42, 67, 68, 125], heart chamber segmentation [125, 21], and classification of heart
disease [65, 68, 44, 125]. Viewpoint identification is primarily made with regular frame-
based 2D CNNs, with architectures similar to [59]. Works on heart chamber segmentation
mostly use models equivalent or derived from U-Net [91]. Classification of heart diseases
through DL methods has been, in most cases, used for the detection of chamber hypertro-
phy or dilation. Automatic identification of RHD through conventional echocardiogram
exams was not previously addressed in the literature to the best of our knowledge.

In [65], left ventricle diameter, left atrium area, and interventricular septum width
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Figure 2.15: Example of regular frame-based convolutional neural network used
for cardiac disease diagnosis. Image adapted from [67].

are estimated from selected frames of end-diastole through a regression network that
receives 3 different viewpoints (Apical 2 Chambers, Apical 4 Chambers, and Parasternal
Long Axis) in individual convolutional modules. Through the concatenation of the learned
feature maps, followed by more convolutional layers, a fully connected module outputs
the 3 measures for each viewpoint, which, if above certain thresholds, can be indicative
of hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy.

The work by [68] compares results for binary classification of left ventricular hyper-
trophy (LVH) between two proposed architectures. The first architecture consists in two
image segmentation phases performed by U-Nets, interleaved with phases of viewpoint
and LVH classification performed by either ResNet50 [51] or VGG-16 [101] networks that
have been pre-trained on the ImageNet dataset [30]. The second proposed method is an
ensemble of 3 GAN models trained in a semi-supervised fashion, which shows a superior
accuracy in the detection of the condition. The semi-supervised architecture was proposed
to take advantage of an unlabeled set of images with 33 times the number of labeled ones.
Both architectures received only 2 frames from each Apical 4 Chamber video as input to
ensure that only the diastolic phase is considered.

[44] performs a binary classification of LVH and enlargement of the left atrium.
Their proposed 75-layer CNN, named EchoNet, was based on the architecture of Inception-
ResNet-v1 [105] and received 20 frames from each echocardiographic video that depicted
an Apical 4 Chambers viewpoint. Final predictions were obtained by averaging all the
predictions from individual frames.

Finally, [125] uses a VGG-13 [101] to diagnose HCM, cardiac amyloidosis (CA),
and pulmonary artery hypertension (PAH). Separate networks were derived for Apical 4
Chambers and Parasternal Long Axis images for HCM and CA, and only a single Apical
4 Chambers network for PAH. Each model was trained with 3 random images from each
video, and the accuracy of the model was assessed by an average of the probabilities output
for 10 random images of an echocardiogram, with further aggregations of the results by a
mean of videos per study, and a mean of the trained models in the case of HCM and CA.

All of the described related works use regular frame-based CNN architectures that
disregard temporal information, as exemplified in Figure 2.15. When considering the
morphological and functional criteria for RHD diagnosis established in [88], some struc-
tural features, such as Chordal thickening of the mitral valve or Irregular/focal thickening
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of the aortic valve, can be identified in single frames if they are not obstructed by other
structures or blood flow. However, the identification of most morphological and functional
features used for diagnosis, e.g., Excessive mitral valve leaflet tip motion during systole
or Pathological aortic regurgitation with jet length ≥ 1 cm, is directly correlated to the
spatio-temporal observation of some heart structures, and, therefore, a temporal-aware
method seems more suitable for this specific task. Also, it is worth noting that none of the
related works use data acquired from echocardiographic screenings. In all of them, experts
performed exams with gold standard equipment and in controlled hospital environments,
thus probably providing data with superior quality to the machine learning models.

2.4 Summary

This chapter described the background and related works relevant for this disser-
tation. We explain the important clinical concepts regarding RHD’s symptoms, causes,
diagnosis and prevention, also highlighting the importance of increasing the availability
of screenings to reduce the burden of RHD in the developing world, something that can
be benefited by the development of applications for automated diagnosis of the disease.
We also briefly describe advancements in computer-aided diagnosis for many areas in
medicine, describing how the main method behind this revolution, CNNs, works. The
chapter finishes by listing related work in computer vision applied to echocardiography.
There are no previous works in the identification of RHD in conventional echocardio-
grams, and the related work in disease classification always use single frame classification,
something that we hypothesize to be suboptimal for the task we are tackling.

The next chapter describes our first proposed method for the automatic diagnosis
of RHD, which not only encodes temporal information present in echocardiograms but
also generates final predictions in a more sophisticated way. The method is compared to
the performance of a frame-based approach similar to the ones used in [125] and [68].
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Chapter 3

Supervised Diagnosis with
Temporal-Aware Learning

The task of identifying structural cardiac abnormalities has been shown to be efficiently
done through single frame classification, as described in the last chapter. However, the
diagnosis of Rheumatic Heart Disease (RHD) also relies on observations that span multiple
sequential frames of an echocardiogram. We, therefore, hypothesize that a temporal-aware
method would perform better in such a task.

In this chapter, we present a method that uses a 3D convolutional neural network
(CNN), C3D [108], for individual video classification, therefore encoding temporal infor-
mation. The method is also composed of a supervised meta-classifier based on Random
Forest [17] to aggregate predictions from the previous classifier regarding the same exam
into a final diagnosis for RHD. We start by describing our dataset, as its nature directly
impacts architecture decisions. This chapter is based on [72].

3.1 Dataset

Our dataset comprises 11,646 echocardiographic videos in MP4 format (resolution
320 Œ 240 pixels), taken with Vscan Extend™ devices (GE Healthcare, Milwaukee, WI,
USA), which sum up to 912 complete exams of unique patients. The data was acquired as
part of screening programs in Uganda [11, 84] (359 exams) and the PROVAR screening
program in Brazil [76] (553 exams). The programs were conducted between 2012 and
2016 and screened children attending public schools. It focused on the early detection
and prevention of disease progression, and screenings were performed mostly by trained
non-experts (584 exams). Table 3.1 presents the demographic profile of our dataset. Note
that only a subset of 528 exams, all from the PROVAR study, have complete demographic
data annotated. The observed discrepancy in the prevalence of rheumatic valve disease
by gender, with a remarkably higher prevalence in females, is also noted in other stud-
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Table 3.1: Demographic data of subjects present in the dataset.

Overall RHD Negative Borderline RHD Definite RHD
(N = 912) (n = 456, 50%) (n = 349, 38.3%) (n = 107, 11.7%)

Patient demographics, n (%) 528 (100%) 265 (50.2%) 231 (43.8%) 32 (6%)
Gender, n female (%) 316 (59.9%) 145 (54.7%) 150 (64.9%) 21 (65.6%)

Age, years (SD) 13.1 (3.1) 12.6 (3.1) 13.6 (3.0) 13.1 (3.4)

ies [76, 104, 109]. The studies were approved by the institutional review boards of both
the Childrens National Health System and Universidade Federal de Minas Gerais. In
both studies, informed consents were collected during visits to schools. After the inter-
vention, a letter explaining the study procedures was sent to families with the consent
and assent terms. Patients were only included after returning the signed consents, and
their echocardiograms were de-identified.

The estimated RHD prevalence in the examined regions and age group is ≤ 4.2% [76,
11]. However, due to the sensibility of the evaluated learning methods to extreme imbal-
ances in the distribution of labels [114], the dataset comprises 456 (50%) RHD negative
and 456 (50%) RHD positive exams, which are composed of Borderline RHD and Definite
RHD diagnosis.

Each exam contains, on average, 12.77 (3.59) videos, each possibly representing
one of seven different viewpoints of the patient’s heart. The viewpoints are depicted in
Figure 2.8 include Apical 4 Chambers with and without Doppler, Apical 5 Chambers with
and without Doppler, Parasternal Long Axis, Parasternal Long Axis with Doppler on the
Mitral Valve Level, and Parasternal Long Axis with Doppler on the Aortic Valve Level.
Videos in the dataset are missing the labels for the viewpoints they represent. Figure 3.1
shows the distribution of number of videos per exam by video type (with Doppler or
without Doppler). The vast majority of our videos contain Doppler, accounting for 69.77%
of all the data, even though they represent only 57.11% (4

7
) of the viewpoint classes.

For the PROVAR exams, five cardiologists with expertise in RHD examined all
morphological and functional changes in mitral and aortic valves according to the WHF
criteria. Two readers independently reviewed all abnormal echocardiograms, and discrep-
ancies were resolved by consensus between three readers. The inter-reviewer agreement
was 0.89 (95% CI 0.860.92), and the between-reviewer agreement 92% [76]. A similar re-
viewing process was executed for exams performed in Uganda. The self-agreement ranged
between 71.4 and 94.1% (κ 0.470.84), and the between-reviewer agreement ranged from
66.7 to 82.8% (κ 0.340.46) [11, 84].

When considering the usefulness of the collected data for computer-aided diag-
nosis, the measures taken to make screenings more widespread pose some challenges.
Handheld devices present a poor signal-to-noise ratio, which is exacerbated even more
as the environments where screenings take place are often improvised, with substandard
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Figure 3.1: Distribution of the number videos per exam by video type.

infrastructure. Pediatric imaging has the potential to aggravate these errors even further
due to the smaller size of the hearts, higher heart rates, and a limited ability to have the
patients voluntarily hold their breath.

Videos can begin at any point in the cardiac cycle and may not even present a
complete cycle in some cases. They have less than 2 seconds in most cases, being recorded
at 12 frames per second and averaging 17 frames each. Another point that should also be
taken into account is that the average number of videos per exam is well above the count
of unique viewpoint classes, and this happens due to two behaviors reproduced by the
professionals that performed the exams. Videos with recording problems, e.g., bad probe
positioning or suboptimal imaging setup (skewed image gain), were not deleted, and,
without any tag to differentiate and remove them afterward, noisy instances populate our
final dataset. Besides, some videos did not correspond directly to any of the specified
viewpoints. This happens because when a point of interest that would later help identify
the presence of RHD is perceived, another video, zooming into the area, is recorded,
changing the scale of cardiac structures to an unknown pattern.
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3.2 Methodology

This section introduces the two main components of our proposed methodology:
i) a deep CNN to classify the videos as RHD positive or negative and ii) an aggregation
strategy, which accounts for the results of all videos of a single patient, as shown in
Figures 3.2 and 3.3, respectively. The methodology starts by feeding a 3D CNN, i.e.,
C3D [108], with videos from all viewpoints of the patient exam. Then, the networks’
outputs for all videos of a single patient are combined using a meta-classifier, as detailed
next. It is noteworthy that information regarding the patient itself is not provided during
the training phase, i.e., the CNN does not know which videos correspond to the same
exam.

3.2.1 Convolutional 3D Network

We use the C3D as the backbone network of our method, as illustrated in Fig-
ure 3.2. The C3D network is a deep CNN that can learn from the temporal information
by applying three-dimensional convolution operations. The network receives a tensor of
112 Œ 112 pixels Œ 3 color channels Œ 16 frames. The initial 16 frames of each video are
used to train the network. Since some videos contain less than 16 frames, we add padding
frames that are a balanced number of duplicates of the first and last frames until the re-
quired length is achieved. In a transfer learning fashion, we used the model pre-trained on
the Sports-1M dataset [58]. Initially, visual features are extracted by convolution layers
with small 3 Œ 3 Œ 3 kernels combined with the max-pooling operation. These features

16×112×112×3 16×112×112×64

16×56×56×128

8×28×28×256
4×14×14×512

Twice

1×4096

Visual Feature Extraction (Convolution) Video Classification (Dense)

Twice

1×4096

Video Prediction

1×22×7×7×512

Twice

Figure 3.2: C3D network architecture for video classification.
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are then fed to a fully connected set of layers, with the last layer composed of only two
neurons and the softmax function as activation, outputting the probability of the video
belonging to one out of two classes: RHD Negative or RHD Positive. In order to simplify
the problem, the Borderline RHD and Definite RHD diagnosis were grouped into a single
class, named RHD Positive. All other layers use ReLU as the activation function. To
prevent overfitting and improve generalization, dropout [102] with a probability of 0.5 is
implemented within the first two dense layers.

The C3D model minimizes the binary cross-entropy loss function L as follows:

L(y, ŷ) = − 1

N

N∑
i=0

(yi × log(ŷi) + (1− yi)× log(1− log(ŷi)) ,

where yi is the label of the i-th sample, ŷi the predicted probability of the positive class,
and N the number of samples. In summary, the network tries to minimize the distance
between the confidence in its predictions and the true diagnosis for each echocardiogram.

3.2.2 Aggregation with a Supervised Meta-Classifier

In the first step of our methodology, images from an exam are given to C3D
independently. Next, the output of the CNN can be used in different ways to provide
a diagnosis to a single patient. A standard approach to aggregate the results of all
frames is to use a majority vote strategy, where each predicted video class counts as a
single vote. However, a binary view of each prediction (positive RHD or negative RHD)
disregards a great deal of information that could be useful for counterbalancing biases
that emerged during the training of our model, therefore possibly improving the accuracy
of our prediction. Thus, we propose a more sophisticated aggregation strategy that uses
a supervised classifier to predict the diagnosis (see Figure 3.3). This aggregation strategy
is based on a set of meta-features extracted from the probability distribution output by
CNN over videos per exam, namely, the mean, standard deviation, skewness, and kurtosis.

Stacked generalization [120], now commonly referred to as stacking, is one of the
most used ensemble learning techniques in machine learning. It combines multiple clas-
sification or regression models via a meta-classifier or a meta-regressor that leverages the
output of the base models to give a final prediction. In the context of our study, there
is only one base predictor but multiple instances that should be aggregated into a single
output. As the number of videos per exam is not fixed, we use the statistical moments of
our classifiers confidence distribution as inputs for the meta-model. The proposed aggre-
gation strategy is agnostic to both the base classifier and the meta-classifier, as long as
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Figure 3.3: Proposed supervised meta-classifier for result aggregation toward
exam classification.

the first can output its prediction as a probability. The meta-classifier of choice for this
experiment was the decision tree-based Random Forest [17], due to its notorious efficacy
when little is known about the domain being evaluated [40].

3.3 Experiments

3.3.1 Baseline, Hyperparameters and Implementation

We consider that one of the novelties of the methodology proposed here is the
use of a 3D CNN to process videos as inputs instead of a 2D CNN, which works with
images. Hence, to start with, we compare the proposed methodology against a frame-
based method that uses VGG-16 as the backbone neural network. The VGG-16 [101]
architecture is similar to the ones used in two related works [125, 68] and it is well-
established in the computer vision community. VGG-16 is a 2D CNN that receives as
input a still frame of 224×224 pixels ×3 color channels. Following a similar methodology
as the one in [125] we have sampled 10 random frames from each video to create instances
for the network, and the network predictions are then aggregated using a majority vote
strategy per video and then per exam, giving preference to the positive class in case of a
draw. The model used was pre-trained on the ImageNet dataset. The loss function used
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was also the binary cross-entropy.
Next, to measure the contribution of the proposed meta-classifier, we have also run

experiments where the C3D results were aggregated using a majority voting to give the
patient’s final diagnosis. We have trained in our dataset the VGG-16 network (pre-trained
in the ImageNet dataset) with the Adam optimizer, a learning rate of 1e − 5, batch size
of 32 and 25 epochs, using early stopping with a patience value of 10. For C3D we used
an SGD optimizer, a learning rate of 1e− 3, batch size of 16 and 25 epochs also, but with
5 as the patience for early stopping. The Random Forest model was trained with 200
estimators in the forest and a max depth of 75. Unlisted hyperparameters for all models
were left to their default values. The set of hyperparameters for each method were chosen
through a Random Search setup with 30 iterations for the neural networks and 500 for
the Random Forest.

Our code was written in Python 3.6, and executed in a machine with Intel(R)
Core(TM) i7-9700K CPU and an NVIDIA GeForce RTX 2080 Ti GPU. All the neural
networks were implemented using Keras [23] with TensorFlow 1.12 [1] as the backend.
The used Random Forest classifier is packed within version 0.20 of scikit-learn [83].

3.3.2 Experimental Setup

We have performed a binary classification with the Borderline RHD and Definite
RHD diagnosis grouped into a single class, named RHD Positive. All echocardiograms
were de-identified by applying a mask of black pixels to the area outside of the ultrasound
beam during preprocessing, therefore omitting the metadata present in the images. As
all echocardiograms in the dataset were collected using the same equipment and software,
the size of this area was fixed. For the C3D inputs, videos were first rotated 90 degrees
and then resized to 128 × 171 × 3 × 16. This was done to obtain a better aspect ratio
when removing the mean cube of the original training data, a preprocessing step called
whitening [14]. A centered cropping was then applied to generate the final data. As for
the VGG-16, videos were directly resized to the expected input dimensions.

In order to train the model, tune hyperparameters and then diagnose new ex-
ams, we randomly split the dataset into training, validation, and test in an approximate
80:10:10 ratio. The splits were stratified, and videos from the same exam were always in
the same data partition. Each patient has only one exam in the dataset. Hyperparameter
tuning for both neural networks and the Random Forest meta-classifier used for aggre-
gation was done using only the train and validation sets to prevent information leakage
from the test partitions.
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Figure 3.4: Metrics used to assess models’ performance and how to calculate
them from a confusion matrix.

The metrics used to assess models’ performance were specificity, sensitivity and
accuracy, calculated from a confusion matrix as described in Figure 3.4. The results
displayed are obtained through a 10-fold cross-validation procedure, making each video go
through the validation and test partitions only once. Folds are the same for all evaluated
methods.

3.3.3 Results

Table 3.2 reports the mean specificity, sensitivity, accuracy for the test partitions in
the 10-fold cross-validation procedure. We performed a Wilcoxon signed-rank test with
95% of confidence to compare the results of the three different methods, and the best
method for each metric is highlighted in bold in the table. In cases where there is no
evidence of statistical difference, both results are highlighted. The specificity and sensi-
tivity obtained by the best model were 70.59% (± 4.06) and 74.94% (± 4.84), respectively.
Averaged over the test partitions for each of the 10-folds, its accuracy was 72.77% (± 3.49).

As expected, C3D with the majority vote is significantly better than VGG-16 for
all metrics but specificity (where the results of both methods present no statistically
significant difference) at the video level, showing the already stated importance of spatio-
temporal information to the task at hand. Considering the exam level, which provides
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Table 3.2: Mean specificity, sensitivity, accuracy (with 95% confidence inter-
vals) for RHD classification on the test set over a 10-fold cross-validation
procedure for different levels of result aggregation. Results in bold are the best
for that metric according to a 95% confidence Wilcoxon signed-rank test. In cases where
there was no evidence of difference, both results are highlighted. MV and MC stand for
the Majority Vote and Meta-Classifier aggregation strategies, respectively.

Aggregation Metric VGG-16 C3D + MV C3D + MC

Frame
Specificity 54.37± 2.59

Sensitivity 56.90± 2.92 — —
Accuracy 55.70± 1.12

Video
Specificity 59.59± 3.30 52.67± 5.67

Sensitivity 55.17± 3.98 67.71± 5.11 —
Accuracy 57.29± 1.46 60.42± 1.66

Exam
Specificity 67.98± 5.30 57.92± 9.93 70.59± 4.06

Sensitivity 57.52± 5.12 78.01± 6.48 74.94± 4.84

Accuracy 62.80± 1.11 67.95± 3.03 72.77± 3.49

the final diagnosis, the proposed methodology significantly outperforms the other two
methods with regard to accuracy, which is our final classification objective. The meta-
classifier significantly outperforms the majority voting in terms of specificity, but there is
no statistically significant difference for sensitivity. The considerable variance seen across
methods for specificity and sensitivity can be explained due to the small number of videos
and exams seen in the test partitions. At most, there are 46 exams and 621 videos for
each class, which can be considered a small amount, given that our data already has high
variability due to its nature of noisy acquisition, multiple viewpoints (with and without
color Doppler), and different heart sizes.

An analysis to assess if Definite RHD cases are easier to identify than Borderline
cases which is expected was also performed, and the reported sensitivities corroborate the
expected results. In Table 3.3 we break the results for the RHD Positive class considering
its original subclasses: Definite RHD and Borderline RHD. The sensitivity obtained for
the Definite RHD class is comparable to the 83% (95% CI, 76%-89%) overall sensitivity
achieved by non-expert users in RHD identification after following a computer-based 3-
week training curriculum, as reported by [12]. More detailed comparisons with non-expert
human performance are drawn in the next chapter.

Table 3.3: Sensitivity values (with 95% confidence intervals) for exam classifi-
cation of the two subclasses aggregated as RHD Positive in our dataset.

Diagnosis Subclass Exam Sensitivity
Borderline RHD 71.90± 5.19

Definite RHD 85.78± 6.41
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Table 3.4: Average meta-feature importance percentage observed across folds
using the C3D network as the base classifier.

Meta-Feature Importance (%)
Confidence Mean 76.4
Confidence Std 6.3
Confidence Skewness 12.6
Confidence Kurtosis 4.7

3.3.4 Importance of the Meta-Classifier

Regarding the proposed aggregation strategy, it achieved significantly better re-
sults than the baselines. We took advantage of the decision tree method’s interpretability
to explore the meta-classifier’s functionality further and compare its effects against the
solo C3D model. Table 3.4 presents the average feature importance detected by the
meta-classifier across folds, indicating that the distribution moments used as features
were indeed relevant for a better prediction. An analysis of feature importance showed
that all distribution moments were indeed relevant for a better prediction. For a simple
comparison, training the same model only with the Confidence Mean feature, respon-
sible for most of the feature importance, the cross-validation accuracy of the C3D +
Meta-Classifier would be 70.47%, which is not statistically better than the C3D with the
majority vote strategy (confidence of 95%).

Figure 3.5 shows the distributions of the four statistical moments for the training
and test partition of the first fold of our data, discriminated by the correct diagnosis.
The accuracy of the C3D + Meta-Classifier method in the test partition of this fold was
70%, with a specificity of 60% and a sensitivity of 80%. The Confidence Mean is the most
prominent feature for separating the two classes, followed by the Skewness.

We assumed that the meta-classifier counterbalances biases acquired during the
training of the base model. If this holds, results from a majority vote ensembling strategy
should be more unbalanced in nature. Figure 3.6 shows the confusion matrices obtained
for both aggregation strategies along with the C3D network. By comparing Figure 3.6b
with Figure 3.6c one can observe a loss of sensitivity around 3 absolute percentage points
with a compensatory increase in specificity of almost 13 absolute percentage points. This
same pattern appears in executions with different hyperparameters. This indicates that
the proposed aggregation strategy possibly identifies noisy videos in an exam through
unexpected disruptions in the confidence distribution and filters the noise out, obtaining
more accurate predictions overall.
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Figure 3.5: Distributions of meta-features for the training and test partition of
the first fold of our data considering a 10-fold cross-validation, discriminated
by the correct diagnosis.

3.3.5 Classification Examples

Figure 3.7 shows examples of four frames extracted from four videos where the
proposed model classified an exam as RHD positive or negative with high confidence. The
videos are from four different exams, and we have provided in Appendix A the detailed
information used by our method during its decision making process on these exams when
in the test set.

Analyzing the images classified as RHD positive or negative in Figure 3.7, we notice
that images (a) and (b) have quality problems. In Figure 3.7a the blood flow from the
abdomen (in blue) was captured by the Doppler, which probably confused the network
due to a pattern similar to a valve regurgitation, and led to the classification of a negative
example as positive. Figure 3.7b shows a video of low quality where heart structures are
poorly visible, which can be caused, for instance, by adipose tissue thicker than normal
between the probe and the patient’s heart. Without any clearly detectable abnormalities,
the network classified an RHD positive as negative, probably due to the low quality of
the image. In Figures 3.7c and 3.7d the images are clear. Figure 3.7c shows the absence
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Figure 3.6: Resulting confusion matrices for each method on Rheumatic Heart
Disease classification of echocardiographic exams. (a) VGG16 with Majority Vote
(b) C3D with Majority Vote (c) C3D with Meta-Classifier.

of mitral regurgitation during systole to represent the lack of abnormalities in the video,
which led the model to correctly predict the exam as RHD negative. In Figure3.7d we
can observe, also during systole, the presence of mitral regurgitation as the blue Doppler
jet, which is one of the main factors for the detection of RHD, and therefore probably led
the model to classify the video as RHD positive.

These examples show that the quality of images directly affects the performance
of the model. However, as the main motivation for this work is to process the images as
they come, a preprocessing step to remove this type of noise from the dataset can greatly
improve the model’s performance.

3.4 Summary

Throughout this chapter, we have described the first published method for auto-
matic RHD diagnosis in conventional echocardiograms. The method’s ability to encode
temporal information was shown to be significantly more effective for the task at hand
than previous methods from the literature, suggesting that our hypothesis was correct.
We also show that the method is substantially better at identifying RHD at later stages
of the disease, as opposed to the latent (Borderline) disease. The properties and effective-
ness of the supervised meta-classifier for the final diagnosis of the exam are also discussed.
Finally, we exemplify instances of the dataset to which the model issued a diagnosis with
high confidence, in the process highlighting some of the issues present in our data.

In the next chapter, another method is proposed, this time providing multiple
layers of interpretability while using medical annotations as auxiliary classification tasks
to boost the accuracy in the main tasks of diagnosing RHD.



3.4. Summary 53

(a) (b)

(c) (d)

Figure 3.7: Examples of frames extracted from 4 videos where the model made
the predictions with high confidence. Videos are from different exams, and we
consider their predictions when in the test set. (a) RHD negative misclassified as RHD
positive (b) RHD positive misclassified as RHD negative (c) RHD negative correctly
classified (d) RHD positive correctly classified.
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Chapter 4

Interpretable Unsupervised
Diagnosis with Multi-Task Learning

The confidence of physicians and patients toward automatic diagnosis plays an important
role in the widespread adoption of computer-aided diagnosis in the real world. Therefore,
having a method that provides interpretability of its predictions is crucial. Also, the
scarcity of echo data from screenings shown in the previous chapter is something that will
only change in the long term, so extracting more information relevant for diagnosis from
the current dataset seems imperative.

The current chapter describes our final method for the automatic diagnosis of
RHD in echocardiograms. We present a two-stream convolutional neural network in a
multi-task learning setup that uses a 2D CNN as feature extractor but can nonethe-
less incorporate temporal information in the prediction through attention mechanisms.
The method leverages labels of functional abnormalities of the heart as auxiliary tasks
to increase its generalization ability. Furthermore, we propose an unsupervised aggre-
gation strategy centered around detecting out-of-distribution videos as noisy instances,
ultimately removing them from the final diagnosis process. The method is also able to
provide interpretable information about its decision-making process on multiple levels.

4.1 Dataset

Our dataset is a subset of the one used in Chapter 3, and was composed by fil-
tering for exams that contain annotations for Rheumatic Heart Disease (RHD) features
related to Doppler videos. The data is comprised of 5,526 echocardiographic videos with
resolution 320×240 pixels, taken with Vscan Extend™ devices. The videos correspond to
538 complete exams of unique patients (269 RHD negative and 269 RHD positive exams).
The data was acquired by trained technicians only as part of the PROVAR screening
program [76], as exams from the Uganda screening program [11] were lacking the anno-
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(a) (b) (c) (d)

Figure 4.1: Examples of frames sampled from four different viewpoints of a
single exam.

tations. Due to the extremely low number of samples of Definite RHD (only 32 exams
in total), we once again aggregate both Borderline and Definite diagnosis into the same
final label, RHD Positive.

As part of RHD’s diagnosis procedure following the World Heart Federation’s
guidelines [88], doctors annotate for each exam different echocardiographic features that
are directly related to morphological (structural) and functional abnormalities in the pa-
tient’s heart valves. As we only use Doppler videos, the only relevant annotations will
be those related to the function of the valves, i.e., the presence and nature of regurgita-
tion and stenosis. Our dataset contains seven additional labels that are used as auxiliary
binary classification tasks for our multi-task learning setup, namely: Mitral Stenosis, Mi-
tral Regurgitation, Mitral Regurgitation > 1.5cm, Mitral Regurgitation > 2cm, Aortic
Stenosis, Aortic Regurgitation, and Aortic Regurgitation > 1cm.

The average age of patients was 13.1 (std = 3.1) years, from which 59.85% were
female. Each exam contains, on average, 10.2 (std = 3.15) color Doppler echocardiograms
videos, which visually depict the flow of blood through the heart’s chambers and valves.
Figure 4.1 shows frames extracted from videos of our dataset, which may depict one of four
viewpoints: (a) Apical 4 Chambers with Doppler; (b) Apical 5 Chambers with Doppler;
(c) Parasternal Long Axis with Doppler on the Mitral Valve Level; (d) Parasternal Long
Axis with Doppler on the Aortic Valve Level.

4.2 Methodology

This section describes a new method for classifying RHD in an echocardiographic
exam composed of a set of videos. Our method consists of two main steps: i) a multi-task
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two-stream network trained for RHD detection and related sub-tasks with echocardio-
graphic videos and ii) an unsupervised aggregation strategy that accounts for predictions
across all videos to diagnose the exam. Figure 4.2 shows an overview of the two steps of
our method.
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Figure 4.2: Exam classification. After computing the class score for each video using
our multi-task two-stream network, we apply a sparse voting strategy that selects a few
scores to determine the exam diagnosis.

4.2.1 Two-Stream Network

In diagnosing RHD in echocardiographic exams, functional (e.g., regurgitation or
stenosis) and structural (e.g., restricted valve movement) abnormalities may indicate the
disease’s presence. These abnormalities can be identified in an echocardiographic video
respectively via blood flow (color Doppler) and morphological analysis of the valves’ move-
ment. Even though no single B-Mode echocardiograms are used in the experiments de-
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Figure 4.3: Two-Stream Multi-Task Network training. The networks are trained in
a multi-task regime processing both spatial and temporal information from echocardio-
graphic videos. Attention units are applied to weigh important frames, where morpho-
logical features and the blood flow are present.

scribed in this chapter, structural changes on the heart may still be visible outside the
Doppler region of interest or when blood flow is small or absent, as color Doppler informa-
tion is superimposed on B-Mode echo images. Our architecture simultaneously extracts
relevant spatial and temporal features from visual data using two streams: the spatial
feature extractor and the temporal feature extractor. Figure 4.3 depicts the architecture
of our model and the training process.

Spatial Feature Extraction. In the spatial feature extractor stream, we fine-tune a
ResNet-18 [51] pre-trained in the ImageNet dataset [30]. For each frame of our visual
input, this stream extracts a feature vector of size 512 from the adaptive average pooling
layer. Since our network receives as input RGB videos with 16 frames, we add duplicates
of the first and last frames for videos shorter than 16 frames until the target length is
achieved.

Temporal Feature Extraction. Identifying crucial features in RHD classification is
directly correlated to the spatio-temporal observation of some heart structures. Thus,
we incorporate the temporal relationship between consecutive frames and the structures
represented in them into our model. We feed our second stream – the temporal feature
extractor – with the optical flow generated by a frozen FlowNet 2.0 [55] for each of the 15

sequential pairs of frames present in a video, represented with the flow field color coding
described by [55]. Similar to the spatial feature extractor, a pretrained ResNet-18 model
is fine-tuned to extract the flow features.

Attention Units. Abnormalities appear in different moments of the heart’s dynamic.
Thus, these abnormalities may be detectable using a subset of frames of an echocardio-
gram. Aiming to weaken the influence of non-relevant or noisy frames from the video,
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we use a set of attention units to aggregate the feature vectors of frames into the final
representation.

Let X be a matrix in which columns are the feature vectors extracted from one
of the network streams, i.e., the spatial or temporal stream. We aggregate these feature
vectors into the final representation g. For instance, let Xs be the matrix with feature
vectors computed by the spatial stream network. We rely on an attention mechanism that
learns the importance of each frame by computing the weights aw. The weights are applied
to Xs and generate the representation af = Xsaw. Each attention unit is implemented as
a single fully-connected layer with a softmax activation function as follows:

aw = softmax(wTXs + b),

where w and b are the learnable attention weights.
While each attention unit focuses on a particular set of related frames, there can

be multiple relevant parts that together describe the situation portrayed in the video.
Therefore, we use the attention clusters approach proposed by [64], where, in order to
efficiently lead different units to generate different weight distributions, a shifting oper-
ation is added to each attention unit. This operation is performed by applying a linear
transformation to the original af , followed by a cluster-level ℓ2 normalization, generating
the shifted representation âf , defined as:

âf =
c1Xsaw + c2√

N∥c1Xsaw + c2∥2
,

where N is the number of attention units composing our attention cluster and both c1

and c2 are learnable scalars.
The final representation gs of Xs is created by concatenating the representation âif

of each attention unit i: gs =
[
â1f , â

2
f , · · · , ânf

]
, where n is the number of attention units

composing our attention cluster.
The same procedure is simultaneously executed for the temporal stream network

computing another set of weights w, b, and the final representation gt.

4.2.2 Multi-Task Learning

In our multi-task learning approach, we leverage the additional labels described in
Section 4.1 as auxiliary sub-tasks in our training procedure. The information contained
in these 7 sub-tasks is used as a learning bias during training, helping the model with
generalization and, therefore, increasing the final diagnosis’s accuracy.
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For each task i, we input the features extracted from the attention clusters in both
streams into a fully-connected classifier. We use the binary cross-entropy loss as each
classifier’s loss Li:

Li(y, ŷ) = yi log(ŷi) + (1− yi) log(1− log(ŷi)),

where yi and ŷi are the corresponding binary label and predicted probability for task i,
respectively.

Let N be the number of tasks, including the RHD diagnosis. To learn representa-
tions that can be used in multiple tasks and enhance our generalization, our architecture
minimizes the aggregated loss defined as:

LMTL = − 1

N

N∑
i=0

Li.

4.2.3 Unsupervised Sparse Aggregation

Our method’s ultimate goal is to diagnose an exam composed of a set of echocar-
diogram videos. In general, videos are not captured by specialized cardiologists, and most
patients are children, who tend to be less cooperative during the procedure. These un-
favorable conditions during the acquisition process lead to quality issues in some videos.
During exam diagnosis, experts can identify and ignore misrecorded samples. However,
our method will receive all instances regardless, as explained in Section 3.1. Since the
outputs of our multi-task method are related to each video, we propose a new aggregation
strategy that takes into consideration the possibility of having out-of-distribution videos,
i.e., videos that have acquisition problems and may not focus entirely on the heart (e.g.,
videos including parts of the abdomen).

Let V = {v0, · · · , vn−1} be an exam composed of n videos and fi ∈ Rm be the i-th
feature vector extracted by our multi-task network from the i-th video. For each feature
vector fi, we create the dictionary D ∈ Rm×(n−1) with columns composed of the remaining
feature vectors fj, where j ̸= i. Assuming that only a few videos contains good data, we
solve a sparse code problem to represent the feature vector fi using as few columns as
possible from D, i.e., after creating the dictionary, for each feature vector fi, we solve the
optimization:

ŝ =s ∥fi −Ds∥2 + α∥s∥1,

where α is the penalty applied to the ℓ1 norm and ŝ is the sparse representation of fi.
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Each feature vector fi votes twice. Firstly, the number of votes for class c, inferred
by the network, is incremented by

1

∥fi −Dŝ∥22 × (1− SCI) + ϵ
,

where ϵ prevents zero division and SCI is the sparse concentration index of ŝ [122]. When
the coefficients of the sparse vector ŝ are spread over the negative and positive classes,
then SCI = 0, and when the coefficients are concentrated, SCI = 1.

Secondly, given the sparse representation of the i-th feature vector, according to the
classification strategy used by [122], we compute, for both negative and positive classes,
the characteristic functions δ+ : Rn → Rn and δ− : Rn → Rn that select the coefficients
from ŝ associated with each class. Then, we encode the vectors δ+(̂s) and δ−(̂s) using
matrix D and select the class which transformed vector is the closest to ŝ. After selecting
which class to vote, we increase the number of votes by inverse the squared error between
the sparse representation and the transformed vector. The final classification of the exam
is given by the class with more votes after processing all feature vectors.

4.3 Experiments

4.3.1 Baselines, Hyperparameters and Implementation

We compare our method against two baselines. First, we evaluate [125] method.
Their method works in three steps: first, a VGG-13 CNN [101] predicts the disease
separately for 10 random frames of a video; second, it uses the confidence mean per frame
to determine the overall confidence and predict the class of a video; and finally, it calculates
the median confidences of all the videos in an exam to issue a final diagnosis for a patient.
Our second baseline is the method presented in Chapter 3, which classifies videos directly
through a C3D backbone, then generates exam-level predictions with their supervised
meta-classifier aggregation strategy. This time, we chose to use VGG-13 instead of VGG-
16 to be accurate with the implementation in [125] and also for a more fair comparison
with the C3D in terms of method size (learnable parameters). For a clearer comparison,
from now on, we will refer to Chapter 3’s method as Martins et al., as it is the foundational
published work for automatic RHD diagnosis in conventional echocardiograms [72].

The VGG-13 model was pre-trained on the ImageNet dataset, while the C3D
model was pre-trained on the Sports-1M [58] dataset. All methods were implemented
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using Python 3.6 in PyTorch 1.2 [82], and executed in a machine with Intel(R) Xeon(R)
E5-2620 CPU and an NVIDIA TITAN RTX GPU.

We selected our hyperparameters using the performance of the models in validation
partitions. Our method was trained during 25 epochs using the SGD optimizer with a
batch size of 8, a learning rate of 1e−2, and a momentum of 0.9. Regarding the attention
cluster size, 32 heads are used for both streams. Convolutional layers were kept frozen in
the first 5 epochs for all models. The learning rate used for the VGG-13 was 1e−4, while
the learning rate for the C3D was 1e−3. We used the Least-angle regression (LARS) [34]
optimization with α = 2.0 to estimate the sparse vectors ŝ in the sparse aggregation step.

4.3.2 Experimental Setup

We have performed a binary classification with the Borderline RHD and Definite
RHD diagnosis grouped into a single class named RHD Positive. All information outside
of the ultrasound beam was removed for de-identification purposes. The images were
directly downsized to the input size of each method, normalized, and had their color
channels centralized using the respective mean and standard deviation obtained in the
training dataset at each iteration. We extracted the optical flow using FlowNet 2.0 [55].

We used a 10-fold cross-validation procedure in our experiments. For each split, we
randomly divided the data into training, validation, and test partitions in an approximate
80:10:10 ratio and each video went through the validation and test partitions only once.
We ensured that same-exam videos were always in the same partition, and splits were
stratified according to the diagnosis class. For fair pairwise comparison, splits are fixed
for all evaluated methods. The quantitative analysis uses the mean specificity, sensitivity,
and accuracy score metrics for the test partitions.

4.3.3 Results

We evaluate the efficacy of RHD classification in video and exam levels. While
video-level predictions are made from a single video, exam-level predictions result from
aggregating the video-level predictions using strategies such as majority vote and the
proposed sparse aggregation.

Table 4.1 reports the mean specificity, sensitivity, and accuracy scores for RHD
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Table 4.1: Comparison with baselines. Average specificity, sensitivity, and accuracy
for RHD classification using 10-fold cross-validation. Best values in bold according to
a 95% confidence Wilcoxon signed-rank test. Sizes represent the number of learnable
parameters in each of the methods.

Method Size Video Exam
Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

[125] 129M 34.33± 9.02 76.10± 6.92 56.87± 3.42 31.29± 10.55 83.30± 7.26 57.26± 3.93

Supervised Temporal-Aware 130M 58.57± 10.51 58.00± 10.59 58.20± 2.70 64.84± 7.03 65.14± 10.84 64.88± 5.22

Unsupervised Multi-Task 23M 65.87± 7.81 63.83± 8.46 64.70± 2.17 71.71± 10.90 70.70± 9.62 71.18± 3.10

classification in the test partitions, both in the video and exam levels. To ensure statistical
significance in comparing the methods’ performance, we used a Wilcoxon-signed rank
test with a confidence interval of 95%. We draw the following observations. Regarding
accuracy, the temporal-aware methods, namely Martins et al. and ours, outperformed the
frame-based predictor from Zhang et al. in all aggregation levels. Our method performs
significantly better than Martins et al., the current state-of-the-art for RHD classification
while containing 5× fewer parameters. The same pattern can be observed in the specificity
results.

Although the method of Zhang et al. achieved the best sensitivity results, it is
worth noting the significant discrepancy between its specificity and sensitivity, which
reaches values of 98.01% in sensitivity versus 8% specificity at the video-level for one of
the splits of the cross-validation procedure. This discrepancy is even more prominent
when the results are aggregated to obtain the exam-level predictions. We argue that this
happens because the method predicts frame by frame without any temporal correlation,
and, thus, its generalization ability is handicapped due to the nature of RHD classification,
which is strongly influenced by temporal cues such as the blood flow. There is a clear
bias towards the positive diagnosis in this classifier, which ends up generating a lot of
false positives in the process. After aggregation, the video-level bias is propagated to the
exam-level diagnosis, increasing the bias even further.

For sanity checking purposes, we repeat the evaluation of results done in Sec-
tion 3.3.3 for the subclasses that compose the RHD Positive class: Borderline RHD and
Definite RHD. The overall sensitivity of 70.70% (± 9.62) is broken into 69.59% (± 10.12)

for the Borderline subclass and 85.50% (± 9.31) for the Definite subclass, repeating the
pattern seen previously and corroborating that our model is learning the correct features
for RHD diagnosis, which become more noticeable in more severe stages of the disease.
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4.3.4 Ablation Study

To verify the contribution of the main components of our methodology, namely
Sparse Aggregation, Multi-Task Learning, Two-Stream Network, and Attention Units to
the success of our approach, we progressively remove each component while executing the
same training procedure and evaluate the impact on the exam classification. Table 4.2
shows the results after removing each of the following components:

Aggregation Strategies. We compare our unsupervised Sparse Voting aggregation
(TSMSV ) with the supervised Meta-Classifier presented in [72] (TSMMC), and the ma-
jority vote strategy (TSMMV ). We argue that the sparse formulation identifies out-of-
distribution videos that should not be considered valid votes without depending on a
large exam set to counterbalance biases acquired during model training due to its non-
supervised nature. The majority vote strategy is outperformed by its counterparts, pre-
senting an accuracy score 1.68% lower when compared to the (TSMSV ), evidencing the
importance of more sophisticated aggregation strategies for the task at hand. However,
while TSMSV is significantly better than TSMMV , given a 95% confidence Wilcoxon
signed-rank test, the same is not true when comparing the latter with TSMMC , rein-
forcing the importance of the proposed aggregation strategy. These results indicate that
supervised aggregation strategies can struggle in more realistic scenarios where fewer data
tend to be available. We can also observe that the specificity and sensitivity are more
balanced in the sparse aggregation results. This balance is desirable in our context. Fi-
nally, the unsupervised method can provide a new layer of interpretability to exam level
classification by indicating which videos contributed the most to the voting process that
resulted in the final diagnosis.

Table 4.2: Ablation study. Effects on RHD classification for different components of
our method: Spatial stream only (OS) with a global average strategy (OSGA) and with
attention units (OSatt); Two-Stream only (TS); multi-task approaches with Majority
vote (TSMMV ), Meta-Classifier (TSMMC), and Sparse voting (TSMSV ). All results are
for exam-level using 10-fold cross-validation. Where no aggregation strategy is explicit,
Majority Vote was used.

Method Specificity Sensitivity Accuracy

OSGA 51.67± 8.63 71.84± 11.52 61.72± 4.36

OSatt 54.98± 14.86 76.64± 7.73 65.64± 5.28

TS 57.01± 15.16 75.13± 10.20 65.97± 5.30

TSMMV 72.83± 10.25 66.24± 11.87 69.50± 2.93

TSMMC 66.11± 9.46 74.76± 7.84 70.43± 4.51

TSMSV 71.71± 10.90 70.70± 9.62 71.18± 3.10
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Multi-Task Learning. To ascertain that our multi-task approach (TSMSV ) improves
the generalization capacity of our method, we contrast it with a model that only predicts
the RHD diagnosis (TS). The addition of auxiliary tasks regarding the classification of
the heart’s functional characteristics resulted in 3.53% net improvement in the accuracy
performance for our main task. The expressive reduction of the confidence interval size
for the accuracy, primarily due to significant improvements in specificity, corroborates the
importance of our multi-task setup. When experimenting with annotations for morpho-
logical features (along with B-Mode echos), the network presented convergence problems.
This makes complete sense, given that the prevalence of morphological features in sub-
clinical disease is very low [88]. Therefore additional information was very poor and not
able to improve generalization ability. Training the network with auxiliary tasks related
to both functional and morphological features was also less effective, as functional abnor-
malities are not observable in B-Mode echos.

Two-Stream Network. As stated, the addition of a temporal stream is prompted
by the observed correlation between spatial-temporal observation of some heart struc-
tures with the RHD diagnosis. For this analysis, we removed the flow stream from our
single-task architecture (TS) and kept the remaining settings (OSatt). Although we only
improved the overall accuracy marginally, the results show that the classifier was more
balanced in its predictions regarding specificity and sensitivity. In Section 4.2.1 we hy-
pothesize that, even without B-Mode echos, morphological features might still be present
in the videos used. However, this result shows that for the current experiment, this was
probably not the case. Nonetheless, it is important to remember that this method may
be used in a different experimental setup, preventing the complete invalidation of the
proposed temporal stream for now.

Attention Units. Lastly, we replace the attention units with a straightforward global
average strategy (OSGA), which can be interpreted as a degenerate form of attention [64].
This experiment allows us to assess the contribution of the learned attention weighting the
frames when generating the video feature vector. As stated, not all frames in echocardio-
grams contain information useful for diagnosing the disease. Frames that do not contain
blood flow, for instance, cannot show signs of any functional abnormalities, such as mitral
regurgitation, which can hint at the presence of RHD. We assume that distributing equal
weights among frames would result in lower predictive performance. Results indicate that
our hypothesis holds, since the accuracy increased by 3.92% points in total, with im-
provements in both specificity and sensitivity compared to the global average operation
to generate the feature vectors classified upon by the fully connected layer.



4.3. Experiments 65

4.3.5 Interpretability

Physicians’ and patients’ confidence toward automatic diagnosis plays an impor-
tant role in the widespread adoption of computer-aided diagnosis applications [111, 106].
Our method is able to boost users’ confidence by generating two visualizations that work
together, bringing a sense of interpretability to the results. First, our method provides the
importance of each frame given by the matrix of weights embedded within each stream’s
attention units. The final values assigned to each frame are generated by taking the mean
of the weight vectors outputted by each of the clusters’ attention units.

Additionally, after identifying which frames are more relevant, we can also generate
the Class Activation Maps (CAMs) for the frames of interest to check which image regions
were more important to generate the prediction. The CAMs are generated using the Score-
CAM [113] method after a forward pass in the last layer of our ResNet-18 extractors. We
chose to use Score-CAM because it achieves better visual performance and fairness for
interpreting the decision-making process [113].

Figure 4.4 shows a way of interpreting the model’s decision process for a single
video. In this case, information that stands out in the Spatial Stream will mainly be
related to blood flow abnormalities that may indicate pathological valve regurgitation or
stenosis. At the same time, the Temporal Stream interpretation possibly highlights struc-
tural movement of the heart that was important for RHD diagnosis. Further information
for video-level interpretation could be provided by the predicted labels for the sub-tasks
in each instance.

Concerning exam-level interpretation, the proposed unsupervised aggregation strat-
egy enables the identification of the videos in the exam that contributed significantly to
the final agreed diagnosis, thus possibly reducing the number of samples that need to be
inspected. This identification can be made by assessing each video participation during
the voting procedure described in Section 4.2.3.
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Figure 4.4: Video-level interpretability of our method. For each stream, two frames are highlighted with their respective ScoreCAM
visualization. In the spatial stream, both most (a) and least (b) attended frames have similar activation maps, emphasizing that the
actual region of interest (where blood flow is detected) is contributing the most to the model’s prediction. However, (b) represents a case
of mitral regurgitation at its peak (blue blood flow in the original frame), which an expert later measured to be 2.3cm long, while (a)
contains almost no blood flow. Regarding the temporal stream, the first highlighted frame (c) is an example of the method’s ability to
pay less attention to frames in which the most activated area is actually outside the region of interest while attending to more relevant
structural movement as shown in frame (d).
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4.3.6 Practical Application

Concerning the diagnosis, better sensitivity would be the preferred metric because
misdiagnosing a patient’s disease in its initial stages would let it progress and create a
burden for their quality of life and the government’s public health system. However, the
shortage of expert personnel and equipment combined with a biased classifier reporting
patients diagnosed with RHD, even in large urban areas, is a limiting factor to how many
patients can be referred to cardiac centers from screenings in remote areas. Also, from
the perspective of patients, positive results have been shown to cause anxiety [50] and
decreased parental [16] and child quality of life [16, 115], which are the most significant
causes of harm in RHD screenings. There is a lack of broader studies that weigh the
benefits over the harms of screenings [32], making assumptions about preferred metrics
more difficult. Therefore, we argue that a balanced specificity and sensitivity may be the
most prudent until further studies are conducted.

There are two studies that explore non-expert diagnoses that not only have a setup
similar to the one used in this experiment but also were conducted with the same data that
compose the dataset described in Section 3.1, coming from Uganda [84] and Brazil [12].
The main difference consists in their use of abbreviated diagnostic criteria to issue a pos-
itive diagnosis, named screen positive. The criteria are simply the identification of mitral
regurgitation greater than 1.5 cm or any aortic regurgitation. Therefore, screen positive
diagnosis seems to be a much easier task than RHD Positive diagnosis. In Table 4.3 we
present a comparison of the Specificity and Sensitivity of the methods described in this
dissertation with the performance of non-experts in the relevant studies.

[84] trained two nurses with 4 hours of theoretical material and 2 days of echocar-
diographic practice. They report a specificity of 78.8% (95% CI, 76.0%-81.4%) and a
sensitivity of 74.4% (95% CI, 58.8%-86.5%), which was judged reasonable by the authors.
[12] trained 2 nurses, 2 medical students and 2 biotechnicians with a much more thorough
3-week computer-based interpretation course and weekly hurdle assessments. They report
more expressive metrics, with a specificity of 85% (95% CI, 82%− 87%) and a sensitivity
of 83% (95% CI, 76% − 89%), performances comparable to previous handheld screening

Table 4.3: Comparison with non-experts.

Source Specificity Sensitivity

Unsupervised Multi-Task Subset 71.7 (60.8, 82.6) 70.7 (61.1, 80.3)

Supervised Temporal-Aware Full 70.6 (66.5, 74.6) 74.9 (70.1, 79.7)

Ploutz et al. [2016] 78.8 (76.0, 81.4) 74.4 (58.8, 86.5)

Beaton et al. [2016] 85.0 (82.0, 87.0) 83.0 (76.0, 89.0)
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performance by both expert and non-expert users [12]. The performance of our method
came close to the one reported by the study with less intensive training of non-experts,
[84]. However, experiments in the automatic diagnosis of screen positive RHD should be
performed for a fairer comparison.

Given that a computer-aided diagnosis system would represent a significant step in
overcoming financial and workforce barriers that limit widespread RHD screening due to
its diagnosis speed and low-maintenance costs, we argue that the efficacy obtained in this
work would be sufficient for practical use. The development of applications for real-world
adoption of this technology is discussed more in depth in the next chapter.

4.4 Summary

Throughout this chapter, we present our final method for the automatic diagnosis
of RHD in echocardiograms. It comprises a two-stream attention-based 2D CNN within a
multi-task learning setup and an unsupervised sparse voting strategy for exam diagnosis.
Our new method is not only able to significantly outperform other baselines with an
accuracy of 71.18% but is also able to provide consistent information about its decision-
making process in multiple levels, mainly as temporal (relevant frames in the video) and
spatial (relevant structures in a frame) visualizations, which is depicted and discussed.
An ablation study is performed to understand the contribution of each component in the
method, and comparison with non-expert human performance is also drawn.

The next chapter concludes this dissertation, wrapping up our contributions and
outlining multiple directions for future work.
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Chapter 5

Conclusion and Future Work

This work lays the foundations for automatically diagnosing RHD in conventional echocar-
diographic exams through machine learning algorithms.

In Chapter 3, we test our hypothesis that a temporal-aware method would per-
form better than the current literature for disease identification in echocardiograms by
proposing the use of a 3D convolutional neural network (CNN), C3D [108], for individual
video classification. We also propose a more sophisticated aggregation strategy to issue a
whole exam diagnosis, which is supervised and based on the confidence distribution for the
video predictions of the previous classifier. Experiments show that the temporal-aware
method and also the supervised aggregation strategy are significantly better at the task
of RHD identification. The work described in this chapter is the foundational publication
for automatic RHD diagnosis in conventional echocardiograms [72].

Chapter 4 presents a two-stream attention-based convolutional neural network that
leverages annotations of sub-tasks naturally created by experts during the diagnosis pro-
cedure to improve RHD classification accuracy significantly. The complete method is
also composed of an unsupervised sparse voting strategy that aggregates video predic-
tions into exam-level diagnosis by accounting for out-of-distribution samples. Our ap-
proach significantly outperforms baseline methods, achieving state-of-the-art performance
while providing strong interpretability, facilitating the adoption of the method in clinical
decision-making. The unsupervised aggregation strategy was significantly better than the
previously implemented supervised meta-classifier in the experimental setup described.

RHD diagnosis using conventional echocardiograms is a challenging problem due
to the extensive diagnosis guidelines that need to be used along with different types of
data (multiple echo modes and viewpoints). Data is also scarce and populated with noise
from different sources. Moreover, the existing literature is minimal, and no previous re-
lated works used methods suitable for the task approached in this study. Nonetheless,
automatic diagnosis of echo-detected RHD seems feasible and, with further research, has
the potential to substantially reduce the workload on cardiologists and experts, enabling
the implementation of more widespread screening programs that can reduce the disease
burden in the underdeveloped world. More than the point-of-care and telemedicine diag-
nosis of RHD, the proposed system, embedded in screening devices or made available as a
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cloud-based application, also has the potential to allow low-cost identification of patients
at higher risk for other valvulopathies and cardiovascular diseases. Future works in RHD
or similar diseases will also greatly benefit from the framework for interpretable video
and exam classification described in Chapters 3 and 4. Even though we work with images
from handheld devices, the same methods can be used with echocardiograms obtained
with different types of machines.

5.1 Future Work

Immediate improvements to the current setup can be made:

• Train our method for the task of screen positive RHD diagnosis. As
described in Section 4.3.6, studies about the effectiveness of task-shifting RHD di-
agnosis to trained non-experts mostly use abbreviated diagnostic criteria, which is
possibly an easier classification task. As the dataset used in Chapter 4 have the
annotations for functional features of RHD, we can reproduce the labels for screen
positive diagnosis as described in [84] and [12] and train our method with these
labels, instead of the more broad RHD diagnosis.

• Implement more powerful feature extractors to boost accuracy. Powerful
new methods, such as the most recent visual transformers [63], can not only improve
classification accuracy but also provide better interpretability through more detailed
attention maps [22].

• Actively remove noise instances from exams before issuing a diagnosis.
It is clear at this point that some exams have more than one instance per viewpoint
and that probably some of them will have quality issues, as discussed for Figure 3.7.
Removing them a priori will possibly boost classification accuracy, as less noise
will be considered during the aggregation step that issues the final diagnosis. The
unsupervised aggregation strategy presented in Chapter 4 tries to mitigate this
problem, but we could also, for instance, train an additional supervised classifier for
viewpoint identification and remove instances that fall below a confidence threshold
when going through it.

One of the main problems we face in this work is the low amount of training data.
In our largest experiment, presented in Chapter 3, the classifiers see at most 365 exams
with a positive diagnosis for RHD per partition during training, from which only 26 would
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be from people with the Definite diagnosis, thus having more expressive visual features.
Acquiring new exams from the same or similar screening programs would not only be
important for the assessment of the robustness and generalization of the methodology
proposed but would open up new experimental possibilities:

• Address the RHD diagnosis problem considering all classes. We currently
do not work with all classes due to data scarcity for the definite class, as screen-
ings are directed towards subclinical (borderline) cases of the disease. However,
issuing separate diagnoses would help the referral process for immediate healthcare
assistance.

• Train separate classifiers for each type of viewpoint. With more data, train-
ing separate classifiers for each viewpoint may also become feasible, them allowing
for the creation of a rule-based aggregation strategy adapted from diagnosis guide-
lines established by the World Heart Federation [88]. We performed viewpoint
classification using pre-trained networks for the task and subsequently trained our
method for RHD diagnosis with specific viewpoints from our current dataset. The
first step showed good results, but in the latter, networks would not converge due
to the very reduced size of datasets after splitting by viewpoint. Also, as some
viewpoints may be focused in specific structures, a subset of the sub-tasks may be
more suitable for a multi-task learning setup within the separate classifiers.

• New instance generation using Generative Adversarial Networks (GANs).
With enough new samples, Generative Adversarial Networks could be used to gen-
erate even more instances, similar to what is shown in [2] or [37], which could be
used for training and improving our classifiers.

Finally, regarding the adoption of our work in the real world, there are two main
approaches:

• Cloud-based application for remote diagnosis. Creating an application in
the cloud would remove the need for centralized infrastructure while also allowing
the upload of just acquired exams for automatic diagnosis while patients are still
at the point-of-care facility (if internet connection is available), thus reducing the
uncertainty of referrals done by trained technicians. Such an application could also
be used later to reduce the workload on expert cardiologists, as the system could
predict the diagnosis for an entire batch of exams, with the expert only reviewing
results in which the system’s confidence was not very high. Using an established
cloud platform, e.g., Amazon Web Services, would simplify the process, and costs
could be greatly reduced by joining their Nonprofits & NGO program [6].
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• Diagnosis system embedded into portable devices. Some screening locations
may not have access to the internet, however, automated diagnosis methods could
be used if they were embedded into portable devices, such as the handheld echo
devices themselves. Newer handheld devices are even using standalone probes that
connect to smartphones, as depicted in Figure 5.1, reducing application development
barriers. In order to create embedded diagnosis systems, the application size and
computation required for a prediction need to be reduced as much as possible. This
can be done by implementing the trained deep neural networks using TensorFlow
Lite [47] instead of PyTorch, which generates a much smaller and optimized model.
We can also reduce the trained model size even further by using pruning techniques
such as the Lottery Ticket Hypothesis [41]. Such models could even be used to
detect inconsistencies in the capture and instruct technicians to redo the procedure.
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Figure 5.1: Standalone ultrasound probe that is connected with a smartphone.
This is a Vscan Air™ wireless handheld ultrasound device from GE Healthcare.
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Appendix A

Information for Diagnosis Prediction

Table A.1: Correct diagnosis, predicted diagnosis with the final model and
meta-features for each exam from the sample. The text in the Predicted Diagnosis
column is colored to indicate a wrong (red) or correct (green) exam diagnosis prediction.

Correct Diagnosis Predicted Diagnosis Confidence Mean Confidence Std Confidence Skewness Confidence Kurtosis
Exam 1 RHD Negative RHD Positive 0.658 0.266 -0.987 0.118
Exam 2 RHD Positive RHD Negative 0.216 0.224 1.357 0.620
Exam 3 RHD Negative RHD Negative 0.422 0.244 0.168 -1.190
Exam 4 RHD Positive RHD Positive 0.695 0.263 -0.352 -1.117

Table A.2: Confidence in the predicted diagnosis for RHD per video for each
exam from the sample. The first videos from each exam are the ones used in the
Figure 3.7, respectively.

# Videos Confidence to diagnosis each video as RHD Positive

Exam 1 11 [0.973, 0.649, 0.332, 0.765, 0.046, 0.929, 0.747, 0.724, 0.900, 0.457,
0.720]

Exam 2 18 [0.031, 0.005, 0.766, 0.056, 0.014, 0.136, 0.091, 0.561, 0.127, 0.313,
0.165, 0.269, 0.260, 0.052, 0.053, 0.124, 0.176, 0.691]

Exam 3 13 [0.020, 0.735, 0.303, 0.179, 0.282, 0.460, 0.213, 0.466, 0.777, 0.176,
0.436, 0.640, 0.800]

Exam 4 19 [0.988, 0.996, 0.294, 0.622, 0.495, 0.555, 0.987, 0.664, 0.232, 0.920,
0.670, 0.997, 0.405, 0.766, 0.987, 0.994, 0.246, 0.669, 0.717]
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