UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Especialização em Dimensionamento de Estruturas de Aço e de Concreto

Armado

Rafael Matos Santos

DIMENSIONAMENTO ESTRUTURAL CONFORME DNV-RP-C208:2013 DE UM ALIMENTADOR DE CORREIA SUJEITO A CARGAS DE AVALANCHES DE MINÉRIO DE FERRO

Belo Horizonte 2022 Rafael Matos Santos

DIMENSIONAMENTO ESTRUTURAL CONFORME DNV-RP-C208:2013 DE UM ALIMENTADOR DE CORREIA SUJEITO A CARGAS DE AVALANCHES DE MINÉRIO DE FERRO

Monografia de especialização apresentado à Coordenação do curso de Especialização em Dimensionamento de Estruturas de Aço e de Concreto Armado do Departamento de Engenharia de Estruturas da Universidade Federal de Minas Gerais como requisito à obtenção do título de Especialista em Dimensionamento de Estruturas de Aço e de Concreto Armado.

Orientador: Prof. Dr. Rodrigo Barreto Caldas

Belo Horizonte 2022 0000202218:55

SEUUFING - 1814516 - Ale de delives de Monografie/TCC

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA

CURSO DE ESPECIALIZAÇÃO EM ANÁLISE E DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO E AÇO

ATA DE DEFESA DE MONOGRAFIA / TRABALHO DE CONCLUSÃO DE CURSO (TCC)

Aos vinte dias do mês de julho de 2020 , às 18:00 h min, o/a estudante **RAFAEL MATOS** SANTOS , matrícula 2017691342 , defendeu o Trabalho intitulado ^e DIMENSIONAMENTO ESTRUTURAL CONFORME DNV-RP-C208:2013 DE UM ALIMENTADOR DE CORREIA SUJEITO A CARSAS DE AVALANCHES DE MINÉRIO DE FERRO; ^e tendo obtido a média (100) .

Participaram da banca examinadora os ababo indicados, que, por nada mais terem a declarar; assinam eletronicamente a presente ata.

Nota: 100 (cem)

Orientador(a): Prof. Dr. Rodrigo Berreto Caldas

Nota: 100 (cem)

Examination(a): Prof. Dr. Lucas Figueirado Grilo

Note: digitar a nota em numeral (escrever a nota por extenso)

Examinador(a): nome completo do examinador

Note: digitar a nota em numeral (escrever a nota por extenso)

Examinador(a): nome completo do examinador

Documento assinado eletronicamente por **Rodrigo Berrato Caldes, Professor do Magintirio** Superior, em 01/06/2022, és 12:17, conforme horário oficial de Brasilia, com fundamento no art. 54 do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

sell

Documento assinado eletronicamente por Lucas Agoalvalo Grilo, Usulrio Esterno, am 08/09/2022, às 16:45, conforme horário oficial de Brasília, com fundamento no art. 5ª do <u>Decreto nª 10.543, de</u> 13 de novembro de 2020.

A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferida no site Marcon A sutenticidade deste documento pode ser conferidade deste Marcon A sutenticidade deste documento pode ser conferidade deste Marcon A sutenticidade deste documento pode ser conferidade deste Marcon A sutenticidade deste Marco

accession accession and an anticipation of the second seco

https://wil.uling.britesiteeninteiseter.php?seas=dearmente_imprimir_web5asse_origen=envers_visasizar5id_decumente=17357313inffs_sistems... 1/2.

AGRADECIMENTOS

À Tecnologia em Movimentação - TMSA pelo tema para o trabalho, pelo acesso às licenças dos *softwares* necessários, mas principalmente por um ambiente de trabalho acolhedor e propício ao desenvolvimento e aprendizado.

Ao Professor Rodrigo Caldas por toda a paciência e apoio para o desenvolvimento do trabalho.

Meus sinceros agradecimentos.

RESUMO

Este trabalho apresenta o dimensionamento estrutural de um alimentador de correia de uma planta de beneficiamento de minério.

Particularmente, os silos desta planta de beneficiamento estão sujeitos a um fenômeno que vêm sendo chamado de avalanche: a liquefação de parte do minério neles estocado quando o tempo de residência e umidade excedem valores críticos e, quando da abertura da válvula de controle de fluxo, seu escoamento de forma não controlada pelos equipamentos subsequentes (sendo o primeiro destes, o alimentador de correia).

Para o dimensionamento do alimentador para esta situação excepcional, adotou-se os critérios da recomendação de cálculo DNV-RP-C208:2013 para determinação de capacidade estrutural por análises não-lineares pelo método dos elementos finitos.

Foi possível o dimensionamento seguro e econômico das estruturas reticuladas, mas, principalmente, destaca-se uma redução significativa de peso das estruturas em caldeiraria em comparação com métodos mais tradicionais de dimensionamento que empregam análises lineares elásticas.

Palavras-chave: ("alimentadores de correia"; "avalanche de minério"; "análise estrutural não-linear")

ABSTRACT

This paper presents the structural design of a belt feeder of an ore processing plant. Particularly, the silos of this processing plant are subjected to a phenomenon that has been called avalanche: the liquefaction of a portion of the stocked ore when residence time and humidity exceed critical values and then, when the flow control valve is opened, the ore flows uncontrollably through the subsequent equipment (the belt feeder is the first of these equipment).

To design the feeder to such exceptional situation, the designer adopted the criteria for determination of structural capacity by non-linear finite element analysis methods of the recommendation DNV-RP-C208:2013.

Safe and economic design of reticulate structures was possible but, it is highlighted an expressive weight reduction in boiler shop structures in comparison with more traditional design methods that apply linear elastic analyses.

Key words: ("belt feeders"; "ore avalanche"; "non-linear structural analysis")

LISTA DE FIGURAS

Figura 2-1: Curva tensão-deformação verdadeiras para o aço S235, espessura
inferior a 16mm (adotada para o aço ASTM A36)26
Figura 2-2: Curva tensão-deformação verdadeiras para o aço S355 (adotada para o
aço ASTM A572 Gr50)
Figura 3-1: Geometria do silo da britagem secundária
Figura 3-2: Vista lateral do alimentador de correia
Figura 3-3: Vista superior do alimentador de correia
Figura 3-4: Vistas em corte do alimentador de correia na região de extração de
material do silo e na região de transporte de material
Figura 3-5: Distribuição das cargas de material entre os apoios dos rolos no seu
suporte
Figura 4-1: Exemplo de obtenção dos esforços solicitantes nos perfis modelad
com elementos bidimensionais
Figura 4-1: Geometria do modelo completo do alimentador
Figura 4-2: Principais dimensões do chassi 52
Figura 4-3: Materiais especificados no modelo do chassi
Figura 4-4: Espessuras de chapas e perfis do chassi – Parte 1 – Pórtico do
esticamento
Figura 4-5: Espessuras de chapas e perfis do chassi – Parte 2 – Grelha na região de
extração de material
Figura 4-6: Espessuras de chapas e perfís do chassi – Parte 3 – Grelha na região de
transporte de material
Figura 4-7: Espessuras de chapas e perfis do chassi – Parte 4 – Região de descarga
de material
Figura 4-8: Detalhe dos suportes dos roletes de extração e carga
Figura 4-9: Malha de elementos finitos do chassi do alimentador
Figura 4-10: Condições de contorno aplicadas ao chassi do alimentador 57
Figura 4-11: Elementos de massa dos tambores de descarga e de esticamento 58
Figura 4-12: Elementos de massa dos roletes de extração e carga e dos roletes de
retorno
Figura 4-13: Carregamento de tensão de correia aplicado aos pontos remotos dos
centros dos mancais dos tambores de descarga e de esticamento

Figura 4-14: Carregamento de material aplicado aos cavaletes dos roletes de impacto e de carga do alimentador......60 Figura 4-15: Carregamento de impacto de mataco aplicado a um par de cavaletes Figura 4-16: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga - Combinação 1 - 1,40 PP + Figura 4-17: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento - Combinação 1 - 1,40 PP + 1,50 Figura 4-18: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material – Combinação 1 – 1,40 PP + 1,50 (PMGD Figura 4-19: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga - Combinação 3 - 1,20 PP + Figura 4-20: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento - Combinação 3 - 1,20 PP + 1,30 Figura 4-21: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material - Combinação 3 - 1,20 PP + 1,30 PMGD Figura 4-22: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga - Combinação 7 - 1,15 PP + Figura 4-23: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento - Combinação 7 - 1,15 PP + 0,70 Figura 4-24: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material - Combinação 7 - 1,15 PP + 0,70 TCDT Figura 4-25: Deformações plásticas na viga longitudinal principal (PS

Figura 4-26: Deformações plásticas nas vigas transversais (W 410x85)69
Figura 4-27: Deformações plásticas nas vigas do esticamento (W 200x86) 70
Figura 4-28:Perfis estruturais do chassi verificados analiticamente
Figura 4-29: Ligação do chassi I – Ligação entre a viga longitudinal principal e a
coluna da descarga118
Figura 4-30: Ligação do chassi II – Ligação entre a base do tambor de descarga e a
coluna
Figura 4-31: Ligação do chassi III – Ligação de emenda da viga longitudinal
principal
Figura 4-32: Ligação do chassi IV – Ligação da chapa de base da coluna da descarga
no truque das rodas dianteiras 124
Figura 4-33: Ligação do chassi V – Ligação entre os apoios da viga longitudinal
principal e os truques das rodas intermediárias126
Figura 4-34: Ligação do chassi VI – Ligação entre os apoios da viga longitudinal
principal e os truques das rodas intermediárias mais traseiras
Figura 4-35: Ligações do chassi VII A e B – Ligações entre o pórtico do esticamento
da correia e os truques das rodas traseiras
Figura 4-36: Ligação do chassi VIII – Ligação da viga central que suporta os roletes
de carga sem material
Figura 4-37: Ligação do chassi IX – Ligação da viga central que suporta os roletes
de extração
Figura 4-38: Ligação do chassi X – Ligação da viga central que suporta os roletes
de carga
Figura 4-39: Ligação do chassi XI – Ligação entre a viga transversal e a viga
longitudinal principal
Figura 4-40: Ligação do chassi XII – Ligação da travessa entre colunas
Figura 4-41: Ligação do chassi XIII – Ligação entre a viga e coluna do pórtico do
esticamento
Figura 4-42: Ligação do chassi XIV – Ligação pinada da viga longitudinal
principal
Figura 4-43: Principais dimensões da guia de material148
Figura 4-44: Materiais especificados no modelo da guia de material 148
Figura 4-45: Espessuras de chapas e perfis da guia de material149

Figura 4-46: Malha de elementos finitos da guia de material150
Figura 4-47: Condição de contorno de simetria no plano médio da guia de material.
Figura 4-48: Condição de contorno de engastamento das nervuras da viga principal
do alimentador que participam da ligação com os suportes da guia de material151
Figura 4-49: Aplicação do carregamento devido à avalanche no modelo da guia de
material
Figura 4-50: Estado de tensões equivalentes de Von Mises e deformada (1:4) da
guia de material durante evento de avalanche153
Figura 4-51: Estado de tensões equivalentes de Von Mises nas chapas e cantoneiras
da guia (aço ASTM A36) com destaques para regiões mais críticas – Parte I 154
Figura 4-52: Estado de tensões equivalentes de Von Mises nas chapas e cantoneiras
da guia (aço ASTM A36) com destaques para regiões mais críticas – Parte II 155
Figura 4-53: Estado de tensões equivalentes de Von Mises em perfis I laminados e
chapas da guia (aço ASTM A572 Gr50) com destaques para regiões mais críticas 156
Figura 4-54: Deformações plásticas calculadas nas chapas (aço ASTM A36) com
destaques para regiões mais críticas
Figura 4-55: Deformações plásticas calculadas nos perfis I laminados (aço ASTM
A572 Gr50) com destaques para regiões mais críticas
Figura 4-56: Perfis estruturais da guia verificados analiticamente
Figura 4-57: Ligação da guia I – Flange da guia na região de extração166
Figura 4-58: Ligação da guia II – Flange da guia na região de carga167
Figura 4-59: Ligação da guia III – Flange da cobertura na região de carga 169
Figura 4-60: Ligação da guia IV – Chapa de topo superior do suporte na região de
extração
Figura 4-61: Ligação da guia V – Chapa de topo inferior do suporte na região de
extração 173
Figura 4-62: Ligação da guia VI – Chapa de topo superior do suporte na região de
carga
Figura 4-63: Ligação da guia VII – Chapa de topo inferior do suporte na região de
carga
Figura 4-64: Ligações da guia VIII e IX – Apoio da guia na coluna e no chute de
descarga179

Figura 4-65: Ligação da guia X – Tampa de inspeção
Figura 4-66: Principais dimensões do chute de descarga
Figura 4-67: Materiais especificados no modelo do chute de descarga 185
Figura 4-68: Espessuras de chapas e perfis do chute de descarga 185
Figura 4-69: Malha de elementos finitos do chute de descarga
Figura 4-70: Condição de contorno de engastamento da coluneta sobre a roda
dianteira nos planos de interrupção do submodelo para cálculo do chute de descarga 187
Figura 4-71: Aplicação do carregamento devido à avalanche no modelo do chute de
descarga
Figura 4-72: Estado de tensões equivalentes de Von Mises e deformada (1:1) do
chute de descarga durante evento de avalanche
Figura 4-73: Estado de tensões equivalentes de Von Mises nas nervuras em perfis
laminados cortados (aço ASTM A572 Gr50) com destaques para regiões mais críticas 190
Figura 4-74: Estado de tensões equivalentes de Von Mises nas chapas (aço ASTM
A36) com destaques para regiões mais críticas
Figura 4-75: Deformações plásticas calculadas nas nervuras em perfis laminados
cortados (aço ASTM A572 Gr50) com destaques para regiões mais críticas193
Figura 4-76: Deformações plásticas calculadas nas chapas (aço ASTM A36) com
destaques para regiões mais críticas
Figura 4-77: Ligação do chute de descarga I – Flange horizontal 195
Figura 4-78: Ligação do chute de descarga II – Tampa superior
Figura 4-79: Ligação do chute de descarga III – Ligação com a coluna do
alimentador199
Figura 4-80: Ligação do chute de descarga IV – Ligação com as vigas de apoio.
Figura 4-81: Ligação do chute de descarga V – Ligação da porta de inspeção 202
Figura 4-82: Ligação do chute de descarga VI – Ligação do tirante do quadro em
balanço
Figura 4-83: Ligação do chute de descarga VII – Ligações de chapa de topo das
vigas do quadro em balanço

LISTA DE TABELAS E QUADROS

Tabela 2-1: Dados da curva de tensão-deformação verdadeira para o aço S2
espessura inferior a 16mm
Tabela 2-2: Dados da curva de tensão-deformação verdadeira para o aço S355,
espessura inferior a 16mm
Tabela 2-3: Deformação crítica e proporção da seção bruta crítica para escoamento
da seção bruta
Tabela 2-4: Deformação crítica para surgimento de trincas. 28
Tabela 3-1: Carregamentos considerados no dimensionamento do alimentador33
Tabela 3-2: Ações permanentes
Tabela 3-3: Cálculo das ações por rolete devido ao transporte de material
Tabela 3-4: Cálculo da distribuição das cargas de material entre os apoios dos rolos
no seu suporte
Tabela 3-5: Tensões de correia — Densidade de material de 2,2 t/m ³ 37
Tabela 3-6: Tensões de correia — Densidade de material de 3,0 t/m ³ 37
Tabela 3-7: Cálculo das forças de impacto de matacos
Tabela 3-8: Resumo das pressões devido ao evento de avalanche quando o material
atinge a descarga do alimentador
Tabela 3-9: Cálculo do volume de material no interior de meio silo (correspondente
a um alimentador)
Tabela 3-10: Propriedades de atrito interno e externo do material relevantes para o
cálculo das pressões conforme Janssen (Comité Européen de Normalisation, 2006)41
Tabela 3-11: Cálculo da pressão vertical efetiva no instante em que o material atinge
a correia
Tabela 3-12: Cálculo da pressão vertical efetiva no instante em que material atinge
a descarga do alimentador
Tabela 3-13: Pressões hidrostáticas devido ao evento de avalanche no instante que
o material atinge a correia
Tabela 3-14: Pressões hidrostáticas devido ao evento de avalanche no instante que
o material atinge a descarga do alimentador
Tabela 3-15: Resumo das pressões devido ao evento de avalanche no instante que
o material atinge a correia

Tabela 3-16: Resumo das pressões devido ao evento de avalanche no instante em
que material atinge a descarga do alimentador
Tabela 3-17: Combinações de carregamento para verificação da estrutura do
alimentador conforme NBR 8800:2008 (ABNT, 2008)
Tabela 3-18: Coeficientes de ponderação da resistência dos materiais conforme
NBR 8800:2008 (ABNT, 2008)
Tabela 3-19: Combinações de carregamento para verificação da estrutura do
alimentador conforme NBR 8800:2008 (ABNT, 2008) e DNV-RP-C208:2013 (Det Norske
Veritas AS, 2013) - Verificação de escoamento, flambagem e instabilidade45
Tabela 3-20: Configuração dos contatos entre chapas de ligações no modelo de
cálculo47
Tabela 3-21: Configuração das análises estruturais não-lineares
Tabela 4-1: Dados específicos da malha do chassi do alimentador
Tabela 4-2: Verificação conforme norma NBR 8800:2008 dos perfis do chassi do
alimentador71
Tabela 4-3: Verificação do perfil principal PS 530x160x10x10 – Primeiro vão – 1
- 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO
Tabela 4-4: Verificação do perfil principal PS 530x160x10x10 – Segundo vão – 7
- 1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-5: Verificação do perfil principal PS 530x160x10x10 – Terceiro vão – 7
- 1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-6: Verificação do perfil principal PS 530x160x10x10 – Quarto vão – 7 –
1,15 PP + 0,70 TCDT + 1,00 AVL79
Tabela 4-7: Verificação do perfil principal PS 530x160x10x10 – Quinto vão – 7 –
1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-8: Verificação da viga central W 360x44,6 – Primeiro vão – 7 – 1,15 PP
+ 0,70 TCDT + 1,00 AVL
Tabela 4-9: Verificação da viga central W 360x44,6 – Segundo vão – 7 – 1,15 PP
+ 0,70 TCDT + 1,00 AVL
Tabela 4-10: Verificação da viga central W 360x44,6 – Terceiro vão – 7 – 1,15 PP
+ 0,70 TCDT + 1,00 AVL
Tabela 4-11: Verificação da viga central W 360x58 – Quarto vão – 7 – 1,15 PP +
0,70 TCDT + 1,00 AVL

Tabela 4-12: Análise de travamento para flambagem lateral por torção por atrito
entre cavalete do rolete e viga do apoio central – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00
AVL
Tabela 4-13: Verificação da viga transversal W 360x44,6 - Eixo dianteiro - 7 -
1,15 PP + 0,70 TCDT + 1,00 AVL93
Tabela 4-14: Verificação da viga transversal W 410x85 – Primeiro eixo
intermediário - 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL95
Tabela 4-15: Verificação da viga transversal W 410x85 – Segundo eixo
intermediário - 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL97
Tabela 4-16: Verificação da viga transversal W 410x85 – Terceiro eixo
intermediário - 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-17: Verificação da viga transversal W 410x85 – Quarto eixo intermediário
- 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-18: Verificação da viga transversal W 200x26,6 - 7 - 1,15 PP + 0,70
TCDT + 1,00 AVL
Tabela 4-19: Verificação da viga transversal de apoio do chute W $200x41,7-7-$
1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-20: Verificação da viga longitudinal de apoio do chute W 200x41,7 - 7 -
1,15 PP + 0,70 TCDT + 1,00 AVL
Tabela 4-21: Verificação da coluna dianteira W 360x91 – 7 – 1,15 PP + 0,70 TCDT
+ 1,00 AVL
Tabela 4-22: Verificação da coluna traseira W 200x86 – 2 – 1,40 PP + 1,05 (PMGD
+ CMDO) + 1,50 TCDO
Tabela 4-23: Verificação da coluna do fuso W 200x26,6 - 2 - 1,40 PP + 1,05
(PMGD + CMDO) + 1,50 TCDO113
Tabela 4-24: Verificação da viga do esticamento W 200x86 - 2 - 1,40 PP + 1,05
(PMGD + CMDO) + 1,50 TCDO
Tabela 4-25: Verificação conforme norma NBR 8800:2008 das ligações entre
elementos estruturais do chassi
Tabela 4-26: Correlação entre ligações do chassi e respectiva combinação de
carregamento crítica
Tabela 4-27: Ligação do chassi I – Esforços resistentes de cálculo

Tabela 4-28: Ligação do chassi I – Esforços solicitantes de cálculo por parafuso
utilização por estado limite último individual119
Tabela 4-29: Ligação do chassi I – Verificação por estado limite último global
Tabela 4-30: Ligação do chassi II – Esforços resistentes de cálculo 120
Tabela 4-31: Ligação do chassi II – Esforços solicitantes de cálculo por parafuso
utilização por estado limite último individual
Tabela 4-32: Ligação do chassi II – Verificação por estado limite último global
Tabela 4-33: Ligação do chassi III – Esforços resistentes de cálculo
Tabela 4-34: Ligação do chassi III – Esforços solicitantes de cálculo por parafuso
utilização por estado limite último individual
Tabela 4-35: Ligação do chassi III – Verificação por estado limite último global
Tabela 4-36: Ligação do chassi IV – Esforços resistentes de cálculo 124
Tabela 4-37: Ligação do chassi IV – Esforços solicitantes de cálculo por parafus
e utilização por estado limite último individual
Tabela 4-38: Ligação do chassi IV – Verificação por estado limite último global
Tabela 4-39: Ligação do chassi V – Esforços resistentes de cálculo
Tabela 4-40: Ligação do chassi V – Esforços solicitantes de cálculo por parafuso
utilização por estado limite último individual
Tabela 4-41: Ligação do chassi V – Verificação por estado limite último global
Tabela 4-42: Ligação do chassi VI – Esforços resistentes de cálculo
Tabela 4-43: Ligação do chassi VI – Esforços solicitantes de cálculo por parafuso
e utilização por estado limite último individual
Tabela 4-44: Ligação do chassi VI – Verificação por estado limite último global
Tabela 4-45: Ligação do chassi VII A – Esforços resistentes de cálculo
Tabela 4-46: Ligação do chassi VII A – Esforços solicitantes de cálculo po
parafuso e utilização por estado limite último individual

Tabela 4-47: Ligação do chassi VII A – Verificação por estado limite último global
Tabela 4-48: Ligação do chassi VII B – Esforços resistentes de cálculo
Tabela 4-49: Ligação do chassi VII B – Esforços solicitantes de cálculo po
parafuso e utilização por estado limite último individual
Tabela 4-50: Ligação do chassi VII B – Verificação por estado limite último globa
Tabela 4-51: Ligação do chassi VIII – Esforços resistentes de cálculo 134
Tabela 4-52: Ligação do chassi VIII – Esforços solicitantes de cálculo por parafus
e utilização por estado limite último individual
Tabela 4-53: Ligação do chassi VIII – Verificação por estado limite último global
Tabela 4-54: Ligação do chassi IX – Esforços resistentes de cálculo 130
Tabela 4-55: Ligação do chassi IX – Esforços solicitantes de cálculo por parafuse
e utilização por estado limite último individual
Tabela 4-56: Ligação do chassi IX – Verificação por estado limite último global
Tabela 4-57: Ligação do chassi X – Esforços resistentes de cálculo
Tabela 4-58: Ligação do chassi X – Esforços solicitantes de cálculo por parafuso
utilização por estado limite último individual
Tabela 4-59: Ligação do chassi X – Verificação por estado limite último global
Tabela 4-60: Ligação do chassi XI – Esforços resistentes de cálculo 14
Tabela 4-61: Ligação do chassi XI – Esforços solicitantes de cálculo por parafuse
e utilização por estado limite último individual14
Tabela 4-62: Ligação do chassi XI – Verificação por estado limite último global
Tabela 4-63: Ligação do chassi XII – Esforços resistentes de cálculo 142
Tabela 4-64: Ligação do chassi XII – Esforços solicitantes de cálculo por parafus
e utilização por estado limite último individual142
Tabela 4-65: Ligação do chassi XIII – Esforços resistentes de cálculo 144
Tabela 4-66: Ligação do chassi XIII – Esforços solicitantes de cálculo por parafus
e utilização por estado limite último individual14

Т	abela 4-67: Ligação do chassi XIII – Verificação por estado limite último global.
Т	abela 4-68: Ligação do chassi XIV – Esforços resistentes de cálculo 146
Т	abela 4-69: Ligação do chassi XIV - Esforços solicitantes de cálculo do pino e
utilização por	r estado limite último individual147
Т	abela 4-70: Ligação do chassi XIV – Verificação por estado limite último global.
Т	abela 4-71: Dados específicos da malha da guia de material
Т	abela 4-72: Verificação conforme norma NBR 8800:2008 dos perfis de suporte da
guia de mater	rial
Т	abela 4-73: Verificação do perfil W 200 x 26,6 crítico (primeiro suporte da região
de carga)	
Т	abela 4-74: Verificação do perfil caixa 200x135x6,4x10 crítico (penúltimo
suporte da reg	gião de extração)163
Т	abela 4-75: Verificação conforme norma NBR 8800:2008 das ligações entre
elementos est	truturais da guia de material
Т	abela 4-76: Ligação da guia I – Esforços resistentes de cálculo 166
Т	abela 4-77: Ligação da guia I – Esforços solicitantes de cálculo por parafuso e
utilização por	r estado limite último individual166
Т	abela 4-78: Ligação da guia I – Verificação por estado limite último global 166
Т	abela 4-79: Ligação da guia II – Esforços resistentes de cálculo 167
Т	abela 4-80: Ligação da guia II – Esforços solicitantes de cálculo por parafuso e
utilização por	r estado limite último individual168
Т	abela 4-81: Ligação da guia II – Verificação por estado limite último global. 168
Т	abela 4-82: Ligação da guia III – Esforços resistentes de cálculo 169
Т	abela 4-83: Ligação da guia III – Esforços solicitantes de cálculo por parafuso e
utilização por	r estado limite último individual170
Т	abela 4-84: Ligação da guia III – Verificação por estado limite último global. 170
Т	abela 4-85: Ligação da guia IV – Esforços resistentes de cálculo
Т	abela 4-86: Ligação da guia IV – Esforços solicitantes de cálculo por parafuso e
utilização por	r estado limite último individual172
Т	abela 4-87: Ligação da guia IV – Verificação por estado limite último global.172
Т	Cabela 4-88: Ligação da guia V – Esforços resistentes de cálculo. 173

Tabela 4-89: Ligação da guia V – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual174
Tabela 4-90: Ligação da guia V – Verificação por estado limite último global. 174
Tabela 4-91: Ligação da guia VI – Esforços resistentes de cálculo 175
Tabela 4-92: Ligação da guia VI – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual176
Tabela 4-93: Ligação da guia VI – Verificação por estado limite último global. 176
Tabela 4-94: Ligação da guia VII – Esforços resistentes de cálculo 177
Tabela 4-95: Ligação da guia VII – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual178
Tabela 4-96: Ligação da guia VIII – Esforços resistentes de cálculo 179
Tabela 4-97: Ligação da guia VIII – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual
Tabela 4-98: Ligação da guia VIII – Verificação por estado limite último global.
Tabela 4-99: Ligação da guia IX – Esforços resistentes de cálculo
Tabela 4-100: Ligação da guia IX – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual181
Tabela 4-101: Ligação da guia X – Esforços resistentes de cálculo 182
Tabela 4-102: Ligação da guia X – Esforços solicitantes de cálculo por parafuso e
utilização por estado limite último individual
Tabela 4-103: Ligação da guia X – Verificação por estado limite último global.
Tabela 4-104: Dados específicos da malha do chute de descarga 186
Tabela 4-105: Verificação conforme norma NBR 8800:2008 das ligações entre
elementos estruturais do chute de descarga
Tabela 4-106: Ligação do chute de descarga I – Esforços resistentes de cálculo.
Tabela 4-107: Ligação do chute de descarga I – Esforços solicitantes de cálculo por
parafuso e utilização por estado limite último individual
Tabela 4-108: Ligação do chute de descarga I – Verificação por estado limite último
global

Tabela 4-109: Ligação do chute de descarga II – Esforços resistentes de cálculo.
Tabela 4-110: Ligação do chute de descarga II – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-111: Ligação do chute de descarga II – Verificação por estado limite
último global
Tabela 4-112: Ligação do chute de descarga III – Esforços resistentes de cálculo.
Tabela 4-113: Ligação do chute de descarga III – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-114: Ligação do chute de descarga III – Verificação por estado limite
último global
Tabela 4-115: Ligação do chute de descarga IV – Esforços resistentes de cálculo.
Tabela 4-116: Ligação do chute de descarga IV – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-117: Ligação do chute de descarga V – Esforços resistentes de cálculo.
Tabela 4-118: Ligação do chute de descarga V – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-119: Ligação do chute de descarga VI – Esforços resistentes de cálculo.
Tabela 4-120: Ligação do chute de descarga VI – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-121: Ligação do chute de descarga VII – Esforços resistentes de cálculo.
Tabela 4-122: Ligação do chute de descarga VII – Esforços solicitantes de cálculo
por parafuso e utilização por estado limite último individual
Tabela 4-123: Ligação do chute de descarga VII – Verificação por estado limite
último global

SUMÁRIO

1 INTRODUÇÃO	
1.1 Visão geral	21
1.2 Objetivo	
2 REVISÃO BIBLIOGRÁFICA	
2.1 Dimensionamento estrutural de alimentadores de correia	23
2.2 Liquefação de minério de ferro	
2.2.1 Liquefação de solos	
2.2.2 Avalanches em pilhas e silos de minério	24
2.3 Recomendações da DNV-RP-C208:2013	
2.3.1 Requisitos quanto à análise estrutural pelo métodofinitos 25	dos elementos
2.3.2 Representação de diferentes estados limite últimos	
3 METODOLOGIA	
3.1 Contextualização do projeto	
3.2 Carregamentos e combinações de carregamento	
3.2.1 Carregamentos	
3.2.2 Combinações de carregamento	
3.3 Análise estrutural não-linear	
3.3.1 Modelo em elementos finitos	
3.3.2 Análise estrutural	
3.3.3 Dimensionamento	
4 RESULTADOS E DISCUSSÕES	
4.1 Dimensionamento da estrutural principal (chassi)	
4.1.1 Modelo em elementos finitos	
4.1.2 Dimensionamento	61

	4.2 D	imensionamento das guias de material	148
	4.2.1	Modelo em elementos finitos	148
	4.2.2	2 Dimensionamento	153
	4.3 D	imensionamento do chute de descarga	184
	4.3.1	Modelo em elementos finitos	184
	4.3.2	2 Dimensionamento	189
5	CON	CLUSÕES	207
	5.1 R	ecomendação DNV-RP-C208:2013	207
	5.2 C	arregamento de avalanche	207
	5.3 S	ugestões para trabalhos futuros	208
6	BIBL	JOGRAFIA	209

1 INTRODUÇÃO

1.1 Visão geral

Jazidas de minério de ferro de alta concentração no estado do Pará tem sido intensivamente exploradas nas últimas décadas e novas frentes de lavra têm se mostrado economicamente muito vantajosas, em especial pelo fato de que camadas de solo e rocha que, em geral, seriam consideradas estéril, apresentam concentração de ferro suficiente para serem incluídas na formação do *blend* a ser comercializado.

Todavia, a maior variabilidade de materiais sendo manuseados nos equipamentos de usina (não exclusivamente hematita, mas também os que antes seriam considerados canga e vem sendo chamados de "minério hidratado") leva a maiores dificuldades operacionais como, por exemplo, no controle de umidade e de quantidade de finos do material transportado.

Dentre as etapas de processamento deste minério de ferro incluem-se, em geral, três etapas de britagem e peneiramento. Para regularização destes processos e maior disponibilidade da usina como um todo (permitindo manutenções em equipamentos sem necessariamente paradas de linhas como um todo), têm-se silos de volume considerável entre as etapas do processo. O material é extraído destes silos por alimentadores de correia.

O tempo de residência do material nestes silos é determinado não só por seu volume e taxas de alimentação e extração de material, mas, também, pelos intervalos correspondentes a paradas operacionais e a manutenções menores nos equipamentos de manuseio, sendo que, nestes intervalos, há o fechamento das válvulas de saída destes silos.

Nestes intervalos em que o material se encontra estanque no interior do silo, há percolação de umidade ao longo da coluna de material e, após algumas horas de residência de material úmido, observa-se a formação de um nível piezométrico. A depender da concentração de finos no material, da pressão vertical devido à coluna de minério e da poropressão induzida pelo nível piezométrico, pode ocorrer a liquefação da parte inferior da coluna de material no interior do silo.

Ao final das paradas de manutenção, tem-se a abertura da válvula de saída do silo. Caso tenha ocorrido liquefação de material no interior do silo, ocorre o que tem se chamado de avalanche de material: abrupto escoamento do material liquefeito e da coluna de material sólido sobre ele.

Desta forma, os alimentadores de correia podem estar sujeitos aos carregamentos oriundos destas avalanches. Em geral, normas e recomendações de cálculo deste tipo de

equipamento não preveem este carregamento por se tratar de equipamento de manuseio de granéis sólidos.

Ainda que os controles de processo da operação da usina estejam adequados para minimizar a possibilidade do evento de avalanche, este se tornou requisito no dimensionamento dos equipamentos subsequentes a silos em que a mineradora prevê tempos de residência significativos.

1.2 Objetivo

Apresentar o dimensionamento estrutural de um alimentador de correia possivelmente sujeito a carregamentos de avalanche de minério de ferro em silo de regularização da britagem secundária da usina de uma mina no estado do Pará.

2 REVISÃO BIBLIOGRÁFICA

2.1 Dimensionamento estrutural de alimentadores de correia

Há várias normas e recomendações existentes relacionadas ao dimensionamento, tanto mecânico quanto estrutural, de equipamentos para o manuseio de granéis sólidos.

Dentre elas, destacam-se as normas da Associação de Fabricantes de Equipamentos de Transporte (CEMA) (Conveyor Equipment Manufacturers Association, 2014), as normas australianas para máquinas de pátio (Australian Standards, 1995), e normas internacionais baseadas em normas alemãs (International Standard Organization, 1994).

Deste conjunto de referências, têm-se as diretrizes e informações necessárias para o cálculo dos carregamentos atuantes sobre um alimentador de correia durante suas condições operacionais. Deve-se dar destaque para variadas teorias de cálculo das pressões atuantes sobre a correia e a correspondente força de cisalhamento necessária para partida e operação em regime do alimentador (muitas vezes relacionadas a um volume ativo de material no silo do qual o alimentador extrai sua carga).

Neste trabalho, adotou-se as distribuições de pressões verticais, pressões normais, pressões tangenciais e tensões de atrito apresentadas no Eurocode (Comité Européen de Normalisation, 2006) e desenvolvidas por Janssen.

Entretanto, estas normas não apresentam procedimento para cálculo de carregamentos devido a potencial liquefação do minério estocado no silo, uma vez que não preveem a ocorrência deste fenômeno.

2.2 Liquefação de minério de ferro

2.2.1 Liquefação de solos

A liquefação é o fenômeno pelo qual solos sofrem um considerável decréscimo da sua resistência ao cisalhamento, em condições não-drenadas, ocasionando um fluxo de massa. Esse processo ocorre em solos sem coesão (granulares), contrácteis e saturados, quando submetidos a carregamentos suficientemente rápidos, gerando um grande acréscimo das poropressões com a consequente redução das tensões efetivas e da resistência ao cisalhamento (Freire Neto, 2009).

Isso ocorre porque a resistência do solo não coesivo é proporcional à tensão efetiva, que, em solos granulares, corresponde praticamente à tensão de contato entre os grãos. Pelo princípio das tensões efetivas, o aumento da poropressão reduz essas tensões, gerando uma perda de resistência do solo, podendo levá-lo a uma condição extrema de se comportar como um fluido viscoso (Freire Neto, 2009).

Dentre as faixas de solos suscetíveis à liquefação estão as areias siltosas, siltes arenosos, siltes e rejeitos (Freire Neto, 2009).

2.2.2 Avalanches em pilhas e silos de minério

As propriedades geotécnicas de minérios relacionadas à sua liquefação são objeto de estudo, em especial devido aos riscos da ocorrência da liquefação de carga na estabilidade de navios durante transporte marítimo, fenômeno este responsável por acidentes em várias embarcações ao longo dos anos (de Souza, 2020).

Já o projeto e estimativa de pilhas de estoque temporários de minério, com enfoque para estabilidade (relacionada a teor de umidade, grau de saturação e fatores de segurança para deslizamento de taludes), é prática cotidiana no controle de processo de grandes mineradoras (Moura, 2020).

Também há diretrizes para o dimensionamento de silos e tanques para cargas líquidas ou liquefeitas (Comité Européen de Normalisation, 2006).

Todavia, nas normas para dimensionamento de equipamentos de mineração, não se encontram referências quanto ao seu dimensionamento para situação de liquefação de minério em silos que os antecedem nas etapas de processo. Considerando as massas e pressões potencialmente envolvidas, é uma situação (ainda que excepcional) preponderante no dimensionamento estrutural de equipamentos que estão envolvidos no manuseio de granéis a grandes taxas, como na indústria mineradora.

2.3 Recomendações da DNV-RP-C208:2013

2.3.1 <u>Requisitos quanto à análise estrutural pelo método dos elementos finitos</u>

2.3.1.1 Método de análise

Quanto aos métodos de análise, estática ou dinâmica, implícita ou explícita, são citados alguns pontos a serem observados.

Por limitações quanto ao método que a carga de avalanche foi calculada (aproximações de cargas em silos) e de licenciamento de *software*, foram realizadas análises estáticas implícitas.

Uma vez que a solução ocorre por incrementação da carga, a recomendação destaca 2 pontos a serem observados: um algoritmo por convergência de força não consegue passar por pontos de carga limite ou bifurcação, enquanto algoritmos por convergência de deslocamento conseguem. As análises realizadas neste trabalho levaram em consideração tanto a convergência de força quanto a convergência de deslocamentos.

2.3.1.2 Densidade de malha

Quanto à densidade ou refino de malha, são apresentadas recomendações de que se tenha vários elementos nas zonas de plastificação críticas, para melhores estimativas das deformações plásticas, assim como que se tenha de 3 a 6 elementos ao longo da meia onda de modos de flambagem relevantes.

Também é destacada a necessidade de eventuais refinos de malha em regiões de aplicação de forças ou de condições de contorno, assim como cuidado nas transições de malha entre regiões de tamanhos de malha diferentes. Também deve-se atentar para refinos de malha onde ocorram elevados gradientes de deformações.

Ao menos um teste de sensibilidade de malha, reduzindo-se o tamanho de elemento à metade, é considerado adequado. Também se destaca a capacidade do analista em avaliar se a malha é suficientemente detalhada e refinada para representar adequadamente todos os possíveis modos de falha da estrutura.

2.3.1.3 Modelos de materiais – Curvas tensão-deformação para aços estruturais

Durante análises estruturais não-lineares efetuadas em *softwares* atuais que adotam o método dos elementos finitos, as matrizes de rigidez dos elementos são atualizadas a cada iteração e, as tensões e deformações calculadas são verdadeiras, uma vez que as deformações na espessura de elementos bidimensionais são consideradas durante a análise. Desta forma, aqui são apresentadas, na Figura 2-1 (Tabela 2-1) e na Figura 2-2 (Tabela 2-2), as curvas tensão-deformação verdadeiras dos aços S235 e S355 das tabelas 4-6 e 4-7 da DNV-RP-C208 (Det Norske Veritas AS, 2013). Essas curvas foram adotadas, por analogia, para os aços ASTM A36 e ASTM A572 Gr50, respectivamente. O módulo de elasticidade é de 210 GPa e o coeficiente de Poisson, 0,3. São apresentadas as curvas para chapas com espessura inferior a 16mm, predominantes no projeto.

Figura 2-1: Curva tensão-deformação verdadeiras para o aço S235, espessura inferior a 16mm (adotada para o aço ASTM A36).

Tabela 2-1: Dados da curva de tensão-deformação verdadeira para o aço S235, espessura inferior a 16mm.

Tensão [MPa]	Deformação plástica	Deformação elástica	Deformação total
0,0	0,0000	0,0000	0,0000
211,7	0,0000	0,0010	0,0010
236,2	0,0040	0,0011	0,0050
243,4	0,0198	0,0012	0,0200
432,6	0,1820	0,0021	0,1840

Figura 2-2: Curva tensão-deformação verdadeiras para o aço S355 (adotada para o aço ASTM A572 Gr50).

Tabela 2-2: Dados da curva de tensão-deformação verdadeira para o aço S355, espessura inferior a 16mm.

Tensão [MPa]	Deformação plástica	Deformação elástica	Deformação total
0,0	0,000	0,0000	0,0000
320,0	0,000	0,0015	0,0015
357,0	0,004	0,0017	0,0057
366,1	0,020	0,0017	0,0214
541,6	0,139	0,0026	0,1417

2.3.1.4 Aplicação de fatores de segurança

Uma vez que os fatores de segurança (ou coeficientes de ponderação) relacionados a resistência variam conforme o estado limite último avaliado e classificação da combinação de carregamento, aplicá-los às curvas de tensão-deformação dos materiais implicaria na necessidade de vários modelos para avaliação de uma estrutura.

Portanto, considera-se razoável que os coeficientes de ponderação de resistência sejam tratados como um fator adicional ao produto entre coeficiente de ponderação da ação e fator de combinação.

2.3.2 <u>Representação de diferentes estados limite últimos</u>

2.3.2.1 Plastificação

Há duas possibilidades de falha em metais base devido a escoamento conforme DNV-RP-C208:2013 (Det Norske Veritas AS, 2013): I) o escoamento da seção bruta ao longo de uma linha de falha (item 5.1.3.2 da recomendação); II) o surgimento de trincas em locais de concentração de deformação (item 5.1.3.3 da recomendação).

2.3.2.1.1 Escoamento da seção bruta

A Tabela 2-3 é uma reprodução da parte de interesse da tabela 5-1 da recomendação.

Conforme a nota 1 da mesma tabela, a deformação crítica de um elemento estrutural pode ser calculada como um valor médio ao longo de um comprimento igual à espessura da própria chapa para casos de flexão dentro do plano e de 5 vezes a espessura da chapa para casos de deformação predominantemente causada por tensões de membrana.

Já a proporção da seção bruta limita o quanto do elemento estrutural pode apresentar deformação plástica antes de se considerar que uma rótula plástica foi formada e sua capacidade resistente excedida.

Tabela 2-3: Deformação crítica e proporção da seção bruta crítica para escoamento da seção bruta.

Material		S355
Deformação crítica para escoamento da seção bruta	0,05	0,04
Proporção da seção bruta		0,94

2.3.2.1.2 Surgimento de trincas em locais de concentração de deformação

Para verificação de deformação excessiva e formação de trincas (começo da ruptura), toma-se a deformação média ao longo de um retângulo cujos lados são uma vez e 5 vezes a espessura da chapa, conforme figura 5-1 da recomendação.

A Tabela 2-4 apresenta os valores de deformação crítica para verificação de surgimento de trincas em locais de concentração de deformação.

Tabela 2-4: Deformação crítica para surgimento de trincas.

Material	S235	S355
Deformação crítica para surgimento de trincas em concentradores	0,15	0,12

2.3.2.2 Flambagem

A recomendação apresenta 3 formas de se verificar a carga correspondente à instabilidade de um elemento estrutural: a) abordagem linearizada, pela determinação da carga de flambagem elástica por autovalores e uso de fórmulas e curvas de flambagem empíricas; b) análise não-linear utilizando imperfeições dimensionais e tensões residuais equivalentes; c) análise não-linear calibrada com formulações normativas ou ensaios.

Quanto às exigências de análise, as análises não-lineares realizadas no dimensionamento da estrutura atendem parcialmente às exigências de b), uma vez que atendem às exigências quanto à análise não-linear.

Entretanto, a aplicação de imperfeições iniciais à malha, ajustadas em escala às tolerâncias de fabricação correspondentes aos modos de flambagem críticos por autovalor, a cada elemento estrutural, conforme DNV-RP-C208:2013 (Det Norske Veritas AS, 2013), se prova um processo bastante demorado para uma estrutura com tantos elementos quanto o alimentador em questão e, portanto, não foi realizada. A magnitude dos carregamentos laterais às estruturas para situações de avalanche, todavia, dispensam a necessidade de cargas nocionais e da representação das imperfeições de fabricação das barras, conforme NBR 8800:2008 (ABNT, 2008).

3 METODOLOGIA

3.1 Contextualização do projeto

A expansão da usina de beneficiamento de minério de ferro de um projeto mineral de grande porte no estado do Pará consiste em uma nova linha de etapas de beneficiamento em paralelo às existentes.

Dentre estas etapas, encontra-se a britagem e peneiramento secundários, primeira etapa de beneficiamento realizada na usina (uma vez que a britagem primária deste projeto ocorre em britadores móveis e semimóveis na mina). Nesta etapa a granulometria máxima do minério de ferro é reduzida de 350mm (recebimento da mina) para 50mm (*under-size* do peneiramento secundário).

Entre o recebimento de material da mina e os equipamentos de processo (britadores e peneiras), encontra-se um silo de regularização, com capacidade de aproximadamente 1.800 m³ e altura total de 19,4 m.

A Figura 3-1 apresenta um desenho esquemático da geometria do novo silo da britagem secundária desta usina, para fornecimento de material às novas linhas de beneficiamento.

O silo apresenta quatro saídas. Abaixo de cada saída está localizado um alimentador de correia, com velocidade de extração de 0,28 m/s, largura de correia de 3.000 mm e capacidade nominal de 3.700 t/h, que transporta material do silo de regularização a uma peneira, para classificação do material e transporte do *over-size* (>50 mm) para o britador secundário e do *under-size* (<50mm) para o silo da britagem terciária, a uma densidade aparente operacional de 2,2 t/m³ e densidade aparente máxima de 3,0 t/m³.

A Figura 3-2, a Figura 3-3 e a Figura 3-4 apresentam vistas do alimentador de correia, objeto de estudo deste trabalho.

Figura 3-4: Vistas em corte do alimentador de correia na região de extração de material do silo e na região de transporte de material.

3.2 Carregamentos e combinações de carregamento

3.2.1 Carregamentos

A Tabela 3-1 lista todas as ações que foram consideradas no dimensionamento do alimentador, a sigla adotada para cada uma e sua classificação conforme (ABNT, 2008). As ações foram classificadas entre permanentes e variáveis e as ações variáveis foram classificadas conforme sua probabilidade de ocorrência e uso previsto do equipamento, conforme norma NBR 8800:2008 (ABNT, 2008).

Descrição	Sigla	Classificação NBR 8800:2008
Peso próprio da estrutura metálica e dos equipamentos	РР	Ação permanentes diretas agrupadas
Carga de material em operação, densidade de material de 2,2 t/m ³	СМО	Ação variável de uso e ocupação Combinações normais
Carga de material transiente, densidade de material de 2,2 t/m ³	CMT	Ação truncada Combinações especiais
Carga de material em operação, densidade de material de 3,0 t/m ³	CMDO	Ação variável de uso e ocupação Combinações normais
Carga de material transiente, densidade de material de 3,0 t/m ³	CMDT	Ação truncada Combinações especiais
Carga devido ao impacto de mataco de 350 mm da altura da válvula	IMP	Ação variável de uso e ocupação Combinações excepcionais
Pressão e atrito do material nas guias, densidade de material de 2,2 t/m ³	PMG	Ação variável de uso e ocupação Combinações normais
Pressão e atrito do material nas guias, densidade de material de 3,0 t/m ³	PMGD	Ação variável truncada Combinações especiais
Tensões na correia do alimentador em operação com material, densidade de 2,2 t/m ³	ТСО	Ação variável de uso e ocupação Combinações normais
Tensões na correia do alimentador, transientes, densidade de 2,2 t/m ³	TCT	Ação truncada Combinações especiais
Tensões na correia do alimentador em operação com material, densidade de 3,0 t/m ³	TCDO	Ação variável de uso e ocupação Combinações normais
Tensões na correia do alimentador, transientes, densidade de 3,0 t/m ³	TCDT	Ação variável truncada Combinações especiais

Tabela 3-1: Carregamentos considerados no dimensionamento do alimentador.

Descrição	Sigla	Classificação NBR 8800:2008
Ocorrência de avalanches	AVL	Ação excepcional Combinações excepcionais

3.2.1.1 Ações permanentes

A Tabela 3-2 apresenta as ações permanentes atuantes na estrutura. Demais componentes foram modelados e sua massa é computada pelo *software* de análise estrutural.

Item	Peso [kg, kg/m ou kg/m²]	Quantidade
Rolos de carga	154 kg	26
Rolos de impacto	209 kg	28
Correia	94,3 kg/m	44,8 m
Rolos de retorno	119 kg	5
Revestimento das guias	158 kg/m ²	—
Revestimento do chute de descarga	158 kg/m ²	—
Tambor de acionamento Ø1400 com mancais e rolamentos	11.531 kg	1
Raspadores	531 kg	—
Tambor de retorno Ø1400 com mancais e rolamentos	8.572 kg	1

Tabela 3-2: Ações permanentes.

3.2.1.2 Ações variáveis

Há três ações de amplitude variável que atuam sobre as estruturas do alimentador: as ações devido ao transporte de material, devido à tensão de correia e devido ao impacto da queda de um mataco (material com dimensão superior a 350 mm).

As ações devido ao transporte de material que ocorrem durante o regime de operação permanente do alimentador foram classificadas como ações decorrentes de uso ou ocupação. As ações devido ao transporte de material que ocorrem durante os regimes transientes do alimentador foram classificadas como ações truncadas, pois, quando avaliadas para densidade máxima do minério transportado, resultam em potência máxima na motorização dimensionada no projeto mecânico do equipamento.

As ações devido às tensões na correia foram classificadas separadamente entre o tambor de acionamento e o tambor de esticamento. Uma vez que as tensões no tambor de acionamento dependem da quantidade de material sendo movimentado, foram classificadas como ação de uso ou ocupação. Já as tensões no tambor de esticamento são controladas pelo aperto de um fuso e não sofrem variação significativa com a carga na correia, sendo classificadas, portanto, como uma ação permanente indireta. Também foram classificadas como ações normais.

A ação devido à queda de um mataco de 350 mm de diâmetro após a abertura da válvula guilhotina do silo foi também classificada como uma ação de uso e ocupação, mas as combinações que a contemplam foram tomadas como especiais, uma vez que a frequência com que há um mataco apoiado sobre a válvula guilhotina no momento de sua abertura corresponde apenas a uma fração das vezes em que a válvula será aberta, o que por sua vez corresponde a um intervalo pequeno comparado com o tempo de operação total do equipamento.

3.2.1.2.1 Ações devido ao transporte de material

A Tabela 3-3 apresenta o cálculo das cargas lineares por rolete, diferenciando-se os roletes que se encontram na região de extração do alimentador, logo abaixo da moega posicionada entre a válvula guilhotina do silo e o alimentador, e os roletes da região de carga do alimentador.

Para o projeto mecânico do alimentador foi considerada a densidade mínima do material transportado (2,2 t/m³) devido a resultados volumétricos mais críticos, enquanto para o projeto estrutural foi considerada a densidade máxima do material (3,0 t/m³) devido ao máximo carregamento imposto à estrutura.

Esperamente entre relates	Região de extração		0,25	m
Espaçamento entre foietes	Re	0,35	m	
Área de extração de m	aterial na cori	reia	2,21	m ²
Dongidada da matarial	Projeto mecânico		2,2	t/m³
Densidade do material	Pro	jeto estrutural	3,0	t/m³
Carga linear de material devido ao	Pro	jeto mecânico	4,86	tf/m
transporte na correia na região de carga	Pro	jeto estrutural	6,63	tf/m
Carga por relata na ragião do cargo	Pro	jeto mecânico	1,70	tf
Carga por rolete na região de carga	Pro	jeto estrutural	2,32	tf
Quantidada da ralatas	Região de extração		27	
Quantidade de l'oletes	Região de carga		23	_
	Operação	Projeto mecânico	19,9	tf
Força vertical na extração devido ao		Projeto estrutural	27,2	tf
volume ativo de material no silo	Partida	Projeto mecânico	49,9	tf
		Projeto estrutural	68,0	tf
Comprimento da região de extração				m
	Operação	Projeto mecânico	2,83	tf/m
Carga linear de material devido à extração de material sobre a correia		Projeto estrutural	3,86	tf/m
	Partida	Projeto mecânico	7,08	tf/m
		Projeto estrutural	9,65	tf/m
Área média sob a saída da moega			0,65	m ²

Tabela 3-3: Cálculo das ações por rolete devido ao transporte de material.
Carga linear de material devido ao	Pro	1,42	tf/m	
transporte na correia na região de extração	Pro	Projeto estrutural		
	Oranação	Projeto mecânico	4,25	tf/m
Carga linear de material total sobre a	Operação	Projeto estrutural	5,28	tf/m
correia na região de extração	Partida	Projeto mecânico	9,01	tf/m
		Projeto estrutural	11,59	tf/m
	Onoração	Projeto mecânico	1,06	tf
Carga total por rolete na região de	Operação	Projeto estrutural	1,32	tf
extração	Dortido	Projeto mecânico	2,25	tf
	raitida	Projeto estrutural	2,90	tf

A Figura 3-5 apresenta a distribuição das reações ao carregamento de material por rolete (conjunto de 4 rolos, 2 planos e 2 inclinados) entre seus 5 apoios em seu cavalete. A Tabela 3-4 apresenta o cálculo dessas reações.

Figura 3-5: Distribuição das cargas de material entre os apoios dos rolos no seu suporte.

Com	1,12	m					
Comp	0,80	m					
Ga	p entre os d	ois rolos			0,07	m	
Compr	imento do re	olo inclinad	lo		0,67	m	
Incl	inação do ro	olo lateral			20	0	
Comprimento d	e material a	poiado no 1	olo lateral		0,26	m	
Comprimento o	le correia ar	oiado no r	olo lateral		0,51	m	
Distância en	tre os apoios	s do rolo in	clinado		0,67	m	
D	istância enti	e guias			2,50	m	
Carga linear ao longo		Projeto m	ecânico		6,67	kN/m	
dos roletes de carga		Projeto es	strutural		9,10	kN/m	
	0	Pro	Projeto mecânico			kN/m	
Carga linear ao longo	Operação	Projeto estrutural			5,18	kN/m	
dos roletes de extração	Dentida	Projeto mecânico			8,84	kN/m	
	Partida	Projeto estrutural			11,37	kN/m	
	D - 1 - 4	1		Roletes d	de extração		
Reação por anoio [kN]	Roletes (le carga	Operação		Par	tida	
	Projeto	Projeto	Projeto	Projeto	Projeto	Projeto	
	mecânico	estrutural	mecânico	estrutural	mecânico	estrutural	
R1	0,32	0,44	0,20	0,25	0,43	0,55	
R2	4,17	5,68	2,60	3,23	5,52	7,09	
R3	6,64	9,06	4,15	5,15	8,80	11,31	
R4	5,24	7,14	3,27	4,06	6,93	8,91	
R5	0,32	0,44	0,20	0,25	0,43	0,55	

Tabela 3-4: Cálculo da distribuição das cargas de material entre os apoios dos rolos no seu suporte.

3.2.1.2.2 Tensão na correia

A Tabela 3-5 e a Tabela 3-6 apresentam as tensões de correia calculadas para o alimentador.

Tabela 3-5: Tensões de correia — Densidade de material de 2,2 t/m³

Tombor	Oper	ração	Partida		
Talliool	T1 [kN]	T2 [kN]	T1 [kN]	T2 [kN]	
Acionamento	713	400	911	400	
Esticamento	400	400	400	400	

Tabela 3-6:	Tensões de	correia —	Densidade	de material	de 3,0 t/m ³
-------------	------------	-----------	-----------	-------------	-------------------------

Tambar	Ope	ração	Partida		
Tambor	T1 [kN]	T2 [kN]	T1 [kN]	T2 [kN]	
Acionamento	813	400	1082	400	
Esticamento	400	400	400	400	

3.2.1.2.3 Impacto de queda de mataco

A Tabela 3-7 apresenta o cálculo da força de impacto de um mataco de material que cai da altura da válvula guilhotina até a correia, conforme referência (Standards Association of Australia, 1996). Devido ao raio de atuação da ação, aplicou-se todo o carregamento a apenas um rolete da região de extração do alimentador.

Diâmetro do mataco	0,35	m
Volume do mataco	0,02245	m ³
Peso do mataco	67,3	kgf
Altura de queda	3,00	m
Velocidade de impacto	7,67	m/s
Força de impacto do mataco	1,58	tf
Área de aplicação da carga	0,024	m ²
Raio de área de aplicação de carga	8,7	cm

Tabela 3-7: Cálculo das forças de impacto de matacos

3.2.1.3 Ação excepcional

Apenas os carregamentos devido à avalanche de material no silo foram considerados excepcionais, uma vez que o evento caracteriza acidente operacional com medidas mitigatórias à causa aplicadas no projeto do silo.

3.2.1.3.1 Avalanche

Foi reportado pela equipe de operação da usina em questão que, em eventos de avalanche em silos ocorridos em alimentadores existentes, observou-se um volume de material deslocado de dentro do silo, durante o evento, após abertura da válvula guilhotina, de aproximadamente: o volume do chute de descarga, o volume total de material que pode ser contido pela correia e um escape de material de aproximadamente 0,5m de altura no entorno do alimentador ao longo do comprimento de correia. A Tabela 3-8 apresenta o cálculo relativo a estas estimativas de volume de material liquefeito durante o evento.

Volume do chute de descarga					
Área de extração	2,21	m^2			
Comprimento de correia na região de extração	7,0	m			
Volume de material amortecido na correia na região de extração	15,3	m ³			
Comprimento de correia na região de carga	9,0	m			
Volume de material amortecido na região de descarga	19,9	m^3			
Volume amortecido na correia	35,2	m^3			
Altura de material acumulado	0,5	m			
Ângulo de pilha do material ao fim da avalanche	40	0			
Largura da pilha	0,60	m			
Área transversal da pilha	0,15	m^2			
Volume de material no entorno do alimentador	4,8	m ³			
Estimativa de volume total de material liquefeito	70,1	m ³			

 Tabela 3-8: Resumo das pressões devido ao evento de avalanche quando o material atinge a descarga do alimentador.

A Tabela 3-9 apresenta o cálculo do volume de material no interior do meio silo que descarrega em um alimentador, entre a correia e a respectiva cota de referência. Foram destacados os 5 valores de interesse para o cálculo dos carregamentos devido a avalanche: 1) o volume máximo de material do meio silo, correspondente a uma coluna de material de 22,4m de altura e a 980,3 m³ de material; 2) o volume de material sólido no silo após o movimento abrupto do material que se liquefaz (980,3 m³ - 70,1 m³ = 910,2 m³), correspondente a uma coluna de material de 21,3 m; 3) o volume total de material que se liquefaz (5,2m de coluna de material); 4) o volume de material líquido na região de extração do alimentador quando o material liquefeito atinge a região de descarga mas ainda não ocupou o chute de descarga (40 m³, coluna de 4,0m de material).

Coluna de		L'argura do		Área da	Volume de
material total	Pegião	silo na região	Comprimento do	superfície de	material até
Inaterial total	Regiao		silo na região [m]	material [m ²]	$cota [m^3]$
1.5		2.1	6.5		
1,5	1	2,1	6,5	13,0	27.2
2,0		2,1	0,5	15,0	27,5
3,9		2,4	0,5	10,1	40,0
4,/		3,0	6,5	19,1	57,1
5,2		3,3	6,5	21,6	69,3
5,4		3,5	6,5	22,6	74,4
5,5		3,6	6,5	23,2	77,7
5,7		3,7	6,5	24,0	82,2
6,0	2	4,0	6,5	25,6	91,6
6,6		4,3	6,5	28,1	106,8
7,3		4,9	6,5	31,5	129,8
7,6		5,1	6,5	33,0	140,4
8,1		5,5	6,5	35,5	158,8
8,7		5,9	6,5	37,9	178,3
9,2		6,2	6,5	40,4	198,9
9,9		6,8	6,5	43,7	228,6
10,4		7,1	6,5	46,2	252,8
10,9		7,5	6,5	48,7	279,6
11.5		8,1	6,5	52,1	310,4
12.0		8.1	6.5	52.1	340.8
12.6		8.1	6.5	52.1	368.1
13.1		8,1	6.5	52.6	395.6
13.6		8.1	6.7	54.1	424.2
14.1		8.1	69	55 7	453.5
14 7		8.1	7 1	57.2	483.7
15.2	4	8.1	73	58.7	514.6
15,2		8 1	7,5	60.3	546.3
16.2		8.1	7,5	61.8	578.8
15.0		8.1	7,7	60.0	560.2
15,9		0,1 0,1	7,0	62.7	621.4
10,9		0,1	/,9 0 1	65.2	655.5
17,4	-	<u> </u>	<u> </u>	03,5	633,3
1/,9		<u> </u>	10,0	80,5	089,0
18,5		<u> </u>	10,0	80,5	121,5
19,0		8,1	10,0	80,5	/01,4
19,6	5	8,1	10,0	80,5	795,5
20,1		8,1	10,0	80,5	829,7
20,6		8,1	10,0	80,5	863,8
21,3		8,1	10,0	80,5	908,6
22,4		8,1	10,0	80,5	980,3

Tabela 3-9: Cálculo do volume de material no interior de meio silo (correspondente a um alimentador).

A Tabela 3-10 apresenta as propriedades de atrito interno e externo do minério considerado para cálculo da pressão vertical efetiva do sólido sobre o líquido. Os cálculos foram realizados conforme exposto na referência (Comité Européen de Normalisation, 2006) para pressão atuante no fundo de silos, considerando-se que a interface entre sólido e líquido é análoga ao fundo de um silo.

 Tabela 3-10: Propriedades de atrito interno e externo do material relevantes para o cálculo das pressões conforme Janssen (Comité Européen de Normalisation, 2006).

Ângulo de atrito com a parede	45	0
Ângulo de atrito interno do material	36	0
Razão de pressão lateral característica	0,43	53

A Tabela 3-11 apresenta o cálculo da pressão vertical efetiva do sólido sobre o líquido no instante em que o minério liquefeito atinge a correia. A primeira linha destaca (coluna total de material de 5,0 m) a interface entre o sólido e o líquido neste instante, para a qual, área e perímetro foram calculados conforme Tabela 3-9, enquanto a última linha destaca a coluna de material total (22,4 m) e a pressão vertical efetiva que o sólido exerce sobre o líquido nesta situação.

Tabela 3-11: Cálculo da pressão vertical efetiva no instante em que o material atinge a correia.

Área plana	da seção tran	20,7	m ²			
Períme	tro da saída c	le material sólic	lo no inter	ior do silo	19,3	m
	Razão	entre área e per	ímetro		1,1	m
	Altura c	aracterística de	Janssen		3,3	m
Pressã	o horizontal a	assintótica a gra	ndes profi	indidades	44,5	kPa
Coluna de material total [m]Coluna de sólido líquido [m]Altura de parede vertical carregadaRazão [hc/dc]Classificação do silo				Classificação do silo	Função de Janssen com a altura	Pressão vertical efetiva do sólido sobre o líquido [kPa]
5,0	0,0	0,0	0,0	Compacto	0,0	0,0
7,1	2,1	0,0	0,0	Compacto	0,47	45,7
8,1	3,1	0,0	0,0	Compacto	0,61	59,8
9,2	4,2	0,0	0,0	Compacto	0,71	70,1
10,4	5,4	0,0	0,0	Compacto	0,80	78,8
11,5	6,5	0,5	0,2	Compacto	0,86	84,0
12,6	7,6	1,6	0,5	Compacto	0,90	88,0
13,6	8,6	2,7	0,8	Compacto	0,92	90,7
14,7	9,7	3,7	1,2	Compacto	0,94	92,7
15.7	10 -	1.0	1 7	C I	0.06	010

17,9	12,9	7,0	2,2	Esbelto	0,98	96,1
19,6	14,6	8,6	2,7	Esbelto	0,98	96,9
22,4	17,4	11,5	3,6	Esbelto	1,00	97,6

A Tabela 3-12 apresenta o cálculo da pressão vertical efetiva do sólido sobre o líquido no instante em que o minério liquefeito atinge a descarga do alimentador. A primeira linha destaca (coluna total de material de 3,9 m) a interface entre o sólido e o líquido neste instante, para a qual, área e perímetro foram calculados conforme Tabela 3-9, enquanto a última linha destaca a coluna de material total considerando o material que ocupou a correia e verteu para o seu entorno (21,3 m) e a pressão vertical efetiva que o sólido exerce sobre o líquido nesta situação.

Tabela 3-12: Cálculo da pressão vertical efetiva no instante em que material atinge a
descarga do alimentador.

Área plana da seção transversal de material sólido no interior do silo					15,4	m ²
Períme	tro da saída c	le material sólic	lo no inte	rior do silo	17,7	m
	Razão	entre área e per	rímetro		0,9	m
	Altura c	aracterística de	Janssen		2,7	m
Pressã	o horizontal a	assintótica a gra	indes pro	fundidades	36,2	kPa
Coluna de material total [m]	Coluna de sólido sobre o líquido [m]	Altura de parede vertical carregada [m]	Razão [hc/dc]	Classificação do silo	Função de Janssen com a altura	Pressão vertical efetiva do sólido sobre o líquido [kPa]
3,9	0,0	0,0	0,0	Compacto	0,00	0,0
4,7	0,8	0,0	0,0	Compacto	0,25	20,2
5,7	1,8	0,0	0,0	Compacto	0,49	39,0
6,6	2,7	0,0	0,0	Compacto	0,63	50,2
7,6	3,7	0,0	0,0	Compacto	0,75	59,7
8,7	4,8	0,0	0,0	Compacto	0,83	66,1
9,9	6,0	0,0	0,0	Compacto	0,89	71,1
10,9	7,1	0,0	0,0	Compacto	0,93	73,9
13,1	9,2	2,1	0,9	Compacto	0,97	77,1
15,2	11,3	4,2	1,8	Compacto	0,98	78,5
16,2	12,4	5,3	2,2	Esbelto	0,99	78,9
17,9	14,1	7,0	2,9	Esbelto	0,99	79,3
19,0	15,2	8,1	3,4	Esbelto	1,00	79,4
21,3	17,4	10,4	4,4	Esbelto	1,00	79,6

Entre os instantes em que o material atinge a correia e em que o material atinge a descarga, pode-se perceber uma redução da pressão do sólido sobre o líquido, pois, conforme o nível de material líquido diminui, também diminui a área de interface entre os dois e, desta forma, os efeitos de atrito entre o material sólido e as paredes do silo tornam-se mais pronunciados, reduzindo a massa de sólido que age sobre o líquido (redução da altura característica de Janssen).

A Tabela 3-13 e a Tabela 3-14 apresentam os cálculos das pressões hidrostáticas por região do alimentador sujeita à pressão de material durante o evento de avalanche, nos instantes que o material atinge a correia e a descarga do alimentador, respectivamente,

Tabela 3-13: Pressões hidrostáticas devido ao evento de avalanche no instante que omaterial atinge a correia.

Região	Altura da coluna de material [m]	Pressão hidrostática [kN/m ²]
Correia	5,0	147,2
Topo da guia lateral	4,0	117,4

Tabela 3-14: Pressões hidrostáticas devido ao evento de avalanche no instante que omaterial atinge a descarga do alimentador.

Região	Altura da coluna de material [m]	Pressão hidrostática [kN/m ²]
Correia	3,9	114,1
Topo da guia lateral	2,9	84,4
Cumeeira da cobertura	2,4	70,6

A Tabela 3-15 e a Tabela 3-16 apresentam o resumo das pressões do sólido sobre o líquido, das pressões hidrostáticas e das pressões totais atuantes no alimentador nos instantes em que o material atinge a correia e no instante em que ele atinge a descarga, respectivamente.

Tabela 3-15: Resumo das pressões devido ao evento de avalanche no instante que omaterial atinge a correia.

Pressão vertical na interface entre sólido e líquido			97,6	kPa
	Hidrostótico	Correia	147,1	kPa
Pressões na saída do silo	niurostatica	Topo da guia	117,4	kPa
	Total	Correia	244,7	kPa
		Topo da guia	215,0	kPa

Tabela 3-16: Resumo das pressões devido ao evento de avalanche no instante em quematerial atinge a descarga do alimentador.

Pressão vertical na interface entre sólido e líquido			79,6	kPa
	Hidrostático	Correia	114,1	kPa
Pressões na	niurostatica	Topo da guia	84,4	kPa
saída do silo	Total	Correia	193,7	kPa
	Total	Topo da guia	164,0	kPa
		Correia	76,7	kPa
	Hidrostática	Topo da guia	47,0	kPa
Pressão na região de		Cumeeira da cobertura	33,2	kPa
transporte de		Correia	156,3	kPa
material	Total	Topo da guia	126,6	kPa
	10141	Cumeeira da cobertura	112,8	kPa

3.2.2 Combinações de carregamento

A Tabela 3-17 apresenta as combinações de carregamento utilizadas para o dimensionamento da estrutura do alimentador. As combinações foram classificadas entre normais, especiais e excepcionais e os valores indicados por carregamento representam o produto entre o coeficiente de ponderação da ação e o fator de combinação para a ação na combinação.

Tabela 3-17: Combinações de carregamento para verificação da estrutura doalimentador conforme NBR 8800:2008 (ABNT, 2008).

ID	Classifianaño	Carregamento							
ID	Classificação	PP	PMGD	CMDO	TCDO	CMDT	TCDT	IMP	AVL
1	N	1,40	1,50	1,50	1,05				
2	Normai	1,40	1,05	1,05	1,50				
3		1,20	1,30			1,10	0,77		
4	Especial	1,20	0,91			0,77	1,10		
5		1,20	0,91			0,77	0,77	1,30	
6	Euconcional	1,15					0,70		1,00
7	Excepcional	1,15					1,00		0,70

A Tabela 3-18 apresenta os coeficientes de ponderação da resistência dos materiais

conforme classificação da combinação de carregamento e estado limite último avaliado.

Tabela 3-18: Coeficientes de ponderação da resistência dos materiais conforme NBR8800:2008 (ABNT, 2008).

Combinação	Escoamento, flambagem e instabilidade	Ruptura
Normal	1,10	1,35
Especial	1,10	1,35
Exceptional	1,00	1,15

Uma vez que a recomendação DNV-RP-C208:2013 (Det Norske Veritas AS, 2013)

indica aplicar os coeficientes de ponderação da resistência dos materiais aos carregamentos em

análises não-lineares, as combinações de carregamento resultantes para verificação de estados limites de escoamento, flambagem e instabilidade são apresentadas na Tabela 3-19.

Tabela 3-19: Combinações de carregamento para verificação da estrutura do alimentador conforme NBR 8800:2008 (ABNT, 2008) e DNV-RP-C208:2013 (Det Norske Veritas AS, 2013) – Verificação de escoamento, flambagem e instabilidade.

	Classifianaño				Carrega	mento			
ID	Classificação	PP	PMGD	CMDO	TCDO	CMDT	TCDT	IMP	AVL
1	Normal	1,54	1,65	1,65	1,155				
2	Normai	1,54	1,155	1,155	1,65				
3		1,32	1,43			1,21	0,847		
4	Especial	1,32	1,001			0,847	1,21		
5	_	1,32	1,001			0,847	0,847	1,43	
6	Everneignel	1,15					0,70		1,00
7	Exceptional	1,15					1,00		0,70

3.3 Análise estrutural não-linear

3.3.1 Modelo em elementos finitos

Todos os modelos em elementos finitos foram desenvolvidos no *software* ANSYS *Mechanical Workbench* 2021 R2, sendo as geometrias preparadas no *software* SpaceClaim 2021R2.

3.3.1.1 Geometria

Todos os elementos estruturais foram geometricamente modelados pelos planos médios das superfícies que os compõe, sendo suas espessuras um atributo da superfície. Optouse pela modelagem bidimensional de todos os elementos estruturais devido ao tipo de análise que se objetivava desenvolver (análise estrutural de segunda ordem com comportamento elastoplástico do aço).

Os parafusos de ligações foram representados por linhas às quais foram atribuídas seções transversais com diâmetro correspondente ao diâmetro nominal da seção do parafuso.

3.3.1.2 Malha

Foram utilizados elementos de primeira ordem, predominantemente quadriláteros. A geração de malha do *software* utilizou-se de elementos triangulares apenas em transições de malha em torno de detalhes geométricos de menor dimensão.

Os elementos lineares representativos dos parafusos foram ligados aos elementos de casca a partir do uso do recurso de *Joints* do *software*, recurso este que gera um elemento de interpolação de deslocamentos entre um nó central e os nós dependentes, sendo, neste caso, o

nó central uma das extremidades do parafuso e os nós dependentes, os nós nos elementos de casca que correspondem à projeção das arruelas nas chapas.

Para avaliação da adequação da malha às análises, considerou-se a métrica *Element Quality*, medida de forma que apresenta a razão entre a área e a soma dos quadrados dos lados do elemento normalizada conforme forma do elemento, com valores entre 0 e 1, sendo o valor correspondente a 1 à forma geométrica regular (similarmente ao jacobiano do elemento). Foi mantido como limite de erro no gerador automático do *software* o critério *Agressive Mechanical*, em que não é considerada válida qualquer malha que apresente *Element Quality* inferior a 0,02, jacobiano inferior a 0,025 ou elemento com área negativa. Também foi utilizado o recurso de captura de curvatura do gerador de malha, com *Capture Min Size* de 3 mm, de forma que a malha fosse automaticamente refinada em torno de detalhes geométricos maiores que 3 mm, sendo detalhes geométricos menores que 3 mm foram suprimidos de representação na malha.

3.3.1.3 Materiais

Os aços estruturais S235 e S355, cujas curvas tensão-deformação para análises nãolineares são apresentadas na seção 2.3.1.3, não são de fornecimento usual por siderúrgicas brasileiras. Optou-se, entretanto, por adotar suas propriedades para os aços ASTM A36 e ASTM A572 Gr50 (aços de fornecimento usual no Brasil), respectivamente, devido aos limites de escoamento e de ruptura, composição química e metalúrgica semelhantes.

3.3.1.4 Contatos

Foram utilizados dois tipos de contatos na modelagem das estruturas.

Para representação de elementos estruturais soldados entre si, utilizou-se o contato tipo *Bonded*. Neste tipo de contato, os nós da superfície em contato são projetados na superfície alvo e, verificados os nós mais próximos, são gerados elementos de compatibilização de deslocamentos entre as superfícies.

Para representação do contato entre chapas de ligações parafusadas, utilizou-se o contato tipo *Frictionless*. Neste tipo de contato, são gerados elementos de contato, à distância de meia espessura das chapas (ou seja, na superfície de contato entre as chapas) entre a chapa em contato e a chapa alvo. O método de busca de nós próximos (projeção dos nós da chapa em contato sobre a chapa alvo) é semelhante ao contato tipo *Bonded*. Os elementos criados são molas uniaxiais de rigidez variável, entretanto. A rigidez dos elementos é calculada de forma

que a penetração da chapa em contato na chapa alvo (consideradas as espessuras de ambas as chapas) mantenha-se dentro do intervalo de tolerância especificado.

As configurações dos contatos tipo *Frictionless* podem ser consultadas na Tabela 3-20.

Propriedade	Valor
Formulação	Lagrange modificado
Método de detecção	Nodal – Projeção normal do contato
Tolerância de penetração	0,5 mm
Atualização da rigidez do contato	A cada iteração
Fator na atualização da rigidez entre iterações	10%
Raio de busca nos contatos	30 mm

Tabela 3-20: Configuração dos contatos entre chapas de ligações no modelo de cálculo.

3.3.1.5 Ações permanentes

Todas as ações permanentes diretas foram aplicadas como elementos de massa ao elemento – seja ela concentrada ou distribuída. As cargas, portanto, são geradas pela aplicação da aceleração correspondente à gravidade multiplicada pelo coeficiente de ponderação das ações permanentes para a combinação de carregamentos. São melhor detalhadas nas seções 4.1.1.4, 4.2.1.4 e 4.3.1.4 para cada uma das estruturas dimensionadas.

3.3.1.6 Ações variáveis

As ações variáveis foram aplicadas ao modelo seja como acelerações, forças localizadas ou pressões e são melhor detalhadas nas seções 4.1.1.5, 4.2.1.5 e 4.3.1.5 para cada uma das estruturas dimensionadas.

3.3.2 Análise estrutural

A cada uma das combinações de carregamento foi feita uma análise estrutural nãolinear, considerando-se as não-linearidades de material apresentadas na seção 3.3.1.3 e efeitos geométricos de segunda ordem. A configuração das análises pode ser observada na Tabela 3-21.

Propriedade	Valor
Fracionamento dos passos de carga	Automático
Número mínimo de passos de carga	20
Número máximo de passos de carga	1000
Número inicial de passos de carga	40

Tabela 3-21: Configuração das análises estruturais não-lineares.

Quantidade máxima de iterações por passo de carga	25
Efeitos de segunda ordem de grandes deslocamentos	Ativado
Solver	Newton-Raphson modificado
Tolerância de convergência de forças	0,5%
Tolerância de convergência de deslocamentos	0,5%

3.3.3 Dimensionamento

3.3.3.1 Análise de tensões

Dados os critérios estabelecidos pela DNV-RP-C208:2013 (Det Norske Veritas AS, 2013), a verificação de níveis de tensão equivalente de Von Mises serve como verificação do nível de solicitação dos elementos estruturais em que não ocorre o escoamento do aço e cujo estado limite último não venha a ser a plastificação.

Uma vez que a mesma recomendação indica que os coeficientes de ponderação de resistência aplicáveis devam ser aplicados aos carregamentos para realização das análises, a verificação se dá simplesmente pela conferência da tensão atuante contra o limite de escoamento do aço que constitui o elemento sendo analisado.

3.3.3.2 Análise de estabilidade

Dado que a análise estrutural realizada considera os efeitos de segunda ordem de pequenos e grandes deslocamentos, apresenta instabilidade numérica ao se aproximar dos pontos de bifurcação de instabilidade dos elementos estruturais.

Desta forma, dado que ocorra a convergência da análise, entende-se que os elementos estruturais não apresentam como estados limites últimos instabilidades, desde que a discretização adotada na malha seja capaz de capturar o primeiro modo de instabilidade do elemento. Entretanto, tem-se consciência de que as imperfeições correspondentes às tolerâncias de fabricação não foram aplicadas à geometria ou à malha, conforme exposto no item 2.3.2.2.

3.3.3.3 Análise de deformações

A verificação de estados limites últimos de plastificação excessiva, conforme DNV-RP-C208:2013 (Det Norske Veritas AS, 2013), se deu pela verificação da deformação plástica máxima e da extensão da região que se plastifica dos elementos estruturais, conforme exposto no item 2.3.2.1.

O aço ASTM A36 foi tomado como análogo ao aço S235, enquanto o aço ASTM A572 GR50, análogo ao aço S355.

3.3.3.4 Verificação de perfis estruturais

Ainda que considere que tanto elementos estruturais bidimensionais e unidimensionais teriam seus estados limite últimos verificados pelo exposto nas seções 3.3.3.2 e 3.3.3.3 (excetuando a influência de imperfeições de fabricação na instabilidade dos elementos), foi realizada também a verificação dos perfis em aço conforme norma NBR 8800:2008 (ABNT, 2008), por ser o código de dimensionamento de estruturas metálicas em vigor no país e por incluir os efeitos de imperfeições geométricas e tensões residuais em suas curvas de flambagem.

Os esforços solicitantes de cálculo nos perfis foram obtidos a partir da resultante das tensões dos elementos de casca que os representam, a partir de recurso do *software* de elementos finitos utilizado (recursos de "*Force Reaction Probe*" e "*Moment Reaction Probe*" localizados em uma "*Surface*", conforme ilustrado na Figura 3-6). O cálculo dos esforços resistentes de cálculo e a verificação de cada um dos perfis foram realizados em planilhas de cálculo elaboradas em Excel.

Para elementos predominantemente sujeitos a flexão, foram obtidos os esforços solicitantes de cálculo no centro do vão e a meia distância entre o centro do vão e os apoios, para cálculo do fator de modificação do diagrama de momento não uniforme (C_b), assim como nos apoios, para verificação dos esforços cortantes.

Figura 3-6: Exemplo de obtenção dos esforços solicitantes nos perfis modelados com elementos bidimensionais.

3.3.3.5 Verificação de ligações entre elementos estruturais

As ligações entre elementos estruturais foram verificadas conforme critérios da norma NBR 8800:2008 (ABNT, 2008) em planilhas de cálculo elaboradas em Excel. Os esforços solicitantes nos elementos de ligação foram obtidos diretamente dos resultados das simulações estruturais para cada uma das combinações de carregamento, sem necessidade de cálculos analíticos para distribuição de esforços devido ao nível de detalhamento da modelagem das estruturas. Para verificação dos estados limites relacionados às chapas e perfis como um todo, foram utilizados os esforços solicitantes nos perfis conforme explicado no item 3.3.3.4.

4 **RESULTADOS E DISCUSSÕES**

4.1 Dimensionamento da estrutural principal (chassi)

A depender do elemento estrutural do chassi sendo verificado, 4 das 7 combinações de carregamento se mostraram críticas, sendo elas: 1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO; 2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO; 3 – 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT; 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

4.1.1 <u>Modelo em elementos finitos</u>

O modelo em elementos finitos da estrutura principal (chassi) do alimentador conta com guias, chute de descarga e suportes dos roletes de extração e carga que foram modelados de forma a permitir uma boa distribuição dos carregamentos neles aplicados e representação de sua rigidez no modelo do chassi.

Todavia, estas estruturas foram dimensionadas, considerando não-linearidade de materiais e malhas suficientemente refinadas, em modelos distintos, estando representadas neste modelo global do alimentador com materiais com comportamento linear e malha um tanto mais grosseira.

4.1.1.1 Geometria

A Figura 4-1 apresenta a geometria do modelo completo do alimentador, enquanto a Figura 4-2 as principais dimensões do chassi, a Figura 4-3 apresenta os materiais utilizados no chassi e da Figura 4-4 a Figura 4-7 apresentam as espessuras de chapa e perfis especificados.

Figura 4-1: Geometria do modelo completo do alimentador.

Figura 4-3: Materiais especificados no modelo do chassi.

Figura 4-4: Espessuras de chapas e perfis do chassi – Parte 1 – Pórtico do esticamento.

Figura 4-5: Espessuras de chapas e perfis do chassi – Parte 2 – Grelha na região de extração de material.

Figura 4-6: Espessuras de chapas e perfis do chassi – Parte 3 – Grelha na região de transporte de material.

Figura 4-7: Espessuras de chapas e perfis do chassi – Parte 4 – Região de descarga de material.

A Figura 4-8 apresenta os detalhes dos apoios dos suportes dos roletes nas vigas do chassi do alimentador. Os suportes são parafusados em suas extremidades, mas não são apoiados na viga central, havendo um espaço de 8mm entre sua face inferior e a face superior da mesa das vigas. Esta flecha de 8mm corresponde ao máximo deslocamento admissível nos rolos dos roletes para que não apresentem problemas de fixação nos rolamentos. Desta forma, obtém-se uma boa divisão das ações de maior magnitude entre as 3 vigas longitudinais do alimentador. Para representação no modelo, foram criados os contatos pertinentes, detectados e ativados a passos de carga mais avançados na análise, de forma que até a flecha de 8mm, todo o carregamento se divide entre as 3 vigas longitudinais principais e os incrementos de carregamento dividem-se entre as 3 vigas apenas a partir do momento em que o contato entre o suporte e a mesa da viga ocorre.

Figura 4-8: Detalhe dos suportes dos roletes de extração e carga.

4.1.1.2 Malha

A Figura 4-9 apresenta alguns dos detalhes da malha gerada no modelo do chassi do alimentador, enquanto a Tabela 4-1 apresenta o resumo dos dados relativos à malha.

Figura 4-9: Malha de elementos finitos do chassi do alimentador. Tabela 4-1: Dados específicos da malha do chassi do alimentador.

Ordem dos elementos	Linear	
Tamanho de elemento	30 mm	
Tamanho mínimo de curvatura	3 mm	
Quantidade de nós	493.709)
Quantidade de elementos	470.537	
	Mínima	0,088
Qualidada das alamantas	Máxima	0,999
Qualidade dos elementos	Média	0,918
	Desvio padrão	0,116

4.1.1.3 Condições de contorno

Dois tipos de condições de contorno foram aplicados ao modelo: restrições aos eixos das rodas e restrições aos pontos de ancoragem do alimentador.

A Figura 4-10 mostra a localização de cada tipo de condição de contorno aplicada. Às rodas foram aplicadas restrições absolutas ao deslocamento vertical.

Já quanto ao deslocamento transversal, foi aplicada condição em que cada par de rodas alinhadas apresenta deslocamento ponderado nulo. Desta forma, as rodas podem se deslocar lateralmente, mas de forma simétrica a cada par. Os deslocamentos laterais nominais calculados das rodas foram verificados quanto à folga entre face interna do flange da roda e trilho.

Aos pontos de ancoragem foram aplicadas restrições de engastamento (restrição a todos os deslocamentos e rotações). Uma vez que a parte superior e a parte inferior da ancoragem são ligadas entre si apenas por pino e contrapino, a transmissão de momento do alimentador para a base é desprezível, funcionando como uma ligação flexível que restringe, principalmente, o movimento longitudinal do alimentador durante avalanches, mas também alguma tendência de levantamento da roda mais traseira do alimentador.

Figura 4-10: Condições de contorno aplicadas ao chassi do alimentador.

4.1.1.4 Ações permanentes

Excetuando as cargas permanentes aplicadas à guia de material e ao chute de descarga (detalhadas nos itens 4.2.1.4 e 4.3.1.4), as outras cargas permanentes atuantes no chassi do alimentador consistem nos tambores de descarga e de esticamento e nos roletes de extração, carga e retorno.

Estas cargas foram aplicadas como elementos de massa ligados a pontos remotos localizados no centro de massa dos elementos e conectados aos respectivos pontos de apoio. Os valores das cargas podem ser observados na Tabela 3-2, enquanto sua aplicação ao modelo pode ser conferida na Figura 4-11 e na Figura 4-12.

Figura 4-11: Elementos de massa dos tambores de descarga e de esticamento.

Figura 4-12: Elementos de massa dos roletes de extração e carga e dos roletes de retorno.

4.1.1.5 Ações variáveis

A Figura 4-13 apresenta as forças correspondentes às resultantes das tensões de correia aplicadas aos pontos remotos representativos dos centros dos mancais dos tambores de descarga e de esticamento do alimentador.

Figura 4-13: Carregamento de tensão de correia aplicado aos pontos remotos dos centros dos mancais dos tambores de descarga e de esticamento.

A Figura 4-14 apresenta a aplicação dos carregamentos devido ao transporte e

extração de material nos cavaletes dos roletes do alimentador.

Figura 4-14: Carregamento de material aplicado aos cavaletes dos roletes de impacto e de carga do alimentador.

A Figura 4-15 apresenta a carga de impacto de mataco aplicada à mesa superior de um par de roletes de impacto na região de extração de material do alimentador.

Figura 4-15: Carregamento de impacto de mataco aplicado a um par de cavaletes de impacto na região de extração de material.

Os carregamentos devido à avalanche de minério no silo de alimentação aplicados à guia de material podem ser observados na Figura 4-49, enquanto as cargas aplicadas aos cavaletes devido à pressão na correia foram aplicadas aos mesmos pontos indicados na Figura 4-14 para aplicação dos carregamentos devido ao transporte do material em estado sólido.

4.1.2 Dimensionamento

4.1.2.1 Análise de tensões

A Figura 4-16, a Figura 4-17 e a Figura 4-18 apresentam o estado de tensões equivalentes de Von Mises da estrutura do chassi para a combinação de carregamentos 1 - 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO.

Figura 4-16: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga – Combinação 1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO.

Figura 4-17: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento – Combinação 1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO.

Figura 4-18: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material – Combinação 1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO.

O único elemento estrutural que apresenta tensões equivalentes superiores ao limite de escoamento do material para a combinação de carregamento 1 - 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO é a viga inferior do pórtico do escoamento, que se liga à roda traseira e à ancoragem do alimentador, conforme pode ser observado na Figura 4-17. Isto ocorre por ser o ponto em que toda a resultante de cargas longitudinais atuantes no alimentador (tensões de correia, força de extração de material e atrito do material com as guias) é transferida para o prédio em que o alimentador se encontra.

A Figura 4-19, a Figura 4-20 e a Figura 4-21 apresentam o estado de tensões equivalentes de Von Mises da estrutura do chassi para a combinação de carregamentos 3 - 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT.

Figura 4-19: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga – Combinação 3 – 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT.

Figura 4-20: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento – Combinação 3 – 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT.

Figura 4-21: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material – Combinação 3 – 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT.

O único elemento estrutural que apresenta tensões equivalentes superiores ao limite de escoamento do material para a combinação de carregamento 3 - 1,20 PP + 1,30 PMGD + 1,10 CMDT + 0,77 TCDT é a viga inferior do pórtico do escoamento, que se liga à roda traseira e à ancoragem do alimentador, conforme pode ser observado na Figura 4-20. Isto ocorre por ser o ponto em que toda a resultante de cargas longitudinais atuantes no alimentador (tensões de correia, força de extração de material e atrito do material com as guias) é transferida para o prédio em que o alimentador se encontra.

A Figura 4-22, a Figura 4-23 e a Figura 4-24 apresentam o estado de tensões equivalentes de Von Mises da estrutura do chassi para a combinação de carregamentos 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL.

Figura 4-22: Estado de tensões equivalentes de Von Mises com destaques para regiões das colunas e suportes das rodas e tambor de descarga – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

Figura 4-23: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas nas regiões da descarga e do esticamento – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

Figura 4-24: Estado de tensões equivalentes de Von Mises com destaques para regiões das vigas na região de transporte de material – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

Os elementos estruturais que apresentam tensões equivalentes atuantes superiores ao limite de escoamento de seu material, para a combinação de carregamento 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL, em regiões significativas são: as almas das vigas longitudinais principais; as mesas das vigas transversais sobre eixos intermediários do alimentador; as vigas inferiores do pórtico do escoamento. As almas das vigas longitudinais principais apresentam tensões equivalentes atuantes superiores à correspondente ao escoamento nas regiões de ligação dos suportes da guia de material, pontos nos quais as forças de pressão de material perpendiculares às guias são transferidas como cortantes horizontais para o perfil longitudinal principal do alimentador. Essa transferência de carregamento acaba por gerar alguma flexão e puncionamento na alma do perfil, em especial em sua parte superior, uma vez que as nervuras transversais precisam de ser interrompidas para evitar interferências com os parafusos de fixação dos cavaletes dos roletes.

As vigas transversais apresentam escoamento das mesas superiores e inferiores devido à flexão. Esta flexão ocorre devido às cargas verticais transmitidas pelas vigas de apoio central dos cavaletes dos roletes como cargas pontuais no centro de seu vão. Essas vigas acabam por receber 35% do carregamento total devido à avalanche (conforme somatório das cargas transmitidas pelos contatos, apresentadas na Tabela 4-12), sendo o restante (65%) transmitido às vigas longitudinais principais, que também suportam as cargas permanentes dos cavaletes e roletes.

As vigas inferiores do pórtico do esticamento, que se ligam à roda traseira e à ancoragem do alimentador, apresentam escoamento por ser o ponto em que toda a resultante de cargas longitudinais atuantes no alimentador nesta combinação de carregamento (tensões de correia, perdas de carga do material liquefeito ao longo da guia e impacto de material no chute de descarga) é transferida para o prédio em que o alimentador se encontra. A avaliação do nível de deformação plástica após o escoamento é apresentada na seção 4.1.2.2, Figura 4-27.

4.1.2.2 Análise de deformações

Elementos estruturais apresentam deformação plástica representativa (superior a 0,1%) apenas quando a estrutura é avaliada para a combinação de carregamentos correspondente ao evento de avalanche (7 – 1,15 PP + 0,70 TCDT + 1,00 AVL).

Estes elementos são destacados na Figura 4-25, Figura 4-26 e Figura 4-27.

Figura 4-25: Deformações plásticas na viga longitudinal principal (PS 530x160x10x10).

A deformação plástica na alma da viga longitudinal principal (Figura 4-25) ocorre localmente devido à interrupção de seu enrijecedor transversal na região de ligação do suporte da guia de material. Essa interrupção do enrijecedor próximo à mesa comprimida é necessária para evitar interferências com os parafusos de fixação dos cavaletes dos roletes.

De toda a forma, a máxima deformação plástica localizada calculada neste elemento estrutural é de 7,5%, inferior à deformação correspondente à iniciação de trincas, de 12%. A máxima altura da alma que apresenta alguma deformação plástica é de 280mm (54,9% da altura da alma), enquanto o comprimento que apresenta deformação plástica superior a 4% é de 85mm (16,7% da altura da alma). Desta forma, a alma da viga longitudinal principal encontra-se aprovada para os dois estados limites últimos de plastificação apresentados pela recomendação DNV-RP-C208 (Det Norske Veritas AS, 2013).

A deformação plástica calculada nas vigas transversais em perfil W 410x85 (Figura 4-26) para a situação de avalanche é característica do processo de plastificação total da seção devido à flexão.

A máxima deformação plástica localizada calculada neste elemento estrutural é de 6,0%, inferior à deformação correspondente à iniciação de trincas, de 12%, em torno de furos de ligações. A máxima deformação no perfil laminado é de 1,1%.

Ambas as mesas apresentam deformação plástica ao longo de toda a sua largura. A altura de alma que apresenta alguma plastificação é de 300 mm. Somando-se as áreas das mesas e a área que apresenta deformação plástica das mesas, a área que apresenta algum escoamento é de 98,6 cm², enquanto a área bruta do perfil é de 107,4 cm², o que constitui 91,8% da área bruta do perfil. Tanto deformação (1,1%) quanto proporção de área bruta (91,8%) encontram-se abaixo dos limites admissíveis (4,0% e 94%, respectivamente).

Desta forma, as vigas transversais encontram-se aprovadas para os dois estados limites últimos de plastificação apresentados pela recomendação DNV-RP-C208 (Det Norske Veritas AS, 2013).

Figura 4-27: Deformações plásticas nas vigas do esticamento (W 200x86).

A deformação plástica calculada nas vigas do pórtico do esticamento em perfil W 200x86 (Figura 4-27) para a situação de avalanche ocorre na região da ligação com a ancoragem do alimentador.

A máxima deformação plástica localizada calculada neste elemento estrutural é de 13,9%, superior à deformação correspondente à iniciação de trincas, de 12%, em torno de furos de ligações. Excetuados os furos de ligações, máxima deformação é de 3,9%.

A mesa inferior do perfil apresenta deformação plástica ao longo de toda a sua largura. Toda a alma apresenta alguma plastificação, assim como uma das abas da mesa superior do perfil. Somando-se as áreas que apresenta deformação plástica, a área que apresenta algum escoamento é de 88,1 cm², enquanto a área bruta do perfil é de 109,6 cm², o que constitui 88,1% da área bruta do perfil. Tanto deformação (3,9%) quanto proporção de área bruta (88,1%) encontram-se abaixo dos limites admissíveis (4,0% e 94%, respectivamente).

Desta forma, vigas do pórtico do esticamento encontram-se aprovadas para os dois estados limites últimos de plastificação apresentados pela recomendação DNV-RP-C208 (Det Norske Veritas AS, 2013).

4.1.2.3 Verificação de perfis estruturais

A Figura 4-28 apresenta os perfis estruturais do chassi do alimentador verificados analiticamente conforme norma NBR 8800:2008.

Figura 4-28:Perfis estruturais do chassi verificados analiticamente.

A Tabela 4-2 apresenta, em formato eletrônico editável, a verificação dos perfis dos suportes do chassi do alimentador destacados na Figura 4-28.

Tabela 4-2: Verificação conforme norma NBR 8800:2008 dos perfis do chassi do alimentador.

Principal 1 - 1,40 PP Principal 3 - 1,30 PP Principal 7 - 1,20 PP + 1,50 CMDO.xlsx + 1,10 CMDT.xlsx + 1,00 AVL.xlsx

Da Tabela 4-3 à Tabela 4-24 são apresentados os resumos das verificações dos perfis do chassi do alimentador para a combinação crítica de acordo com o dimensionamento de cada perfil.
O fator de modificação de diagrama de momento não-uniforme para cálculo de flambagem lateral com torção do perfil longitudinal principal PS 530x160x10x10 do chassi (Tabela 4-3 a Tabela 4-6) foi calculado considerando os perfis como vigas com restrição contínua, uma vez que os cavaletes dos roletes têm rigidez significativa e espaçamento muito próximo (25 cm no trecho de extração, 35 cm no trecho de carga). Demais vigas foram calculadas como vigas com restrições pontuais.

O quinto vão da viga longitudinal principal (PS 530x160x10x10, Tabela 4-7) apresenta solicitação combinada superior à resistência (124%) para a combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL pela verificação conforme NBR 8800:2008. Todos os estados limites últimos apresentados encontram-se em fase de flambagem inelástica (chapas e perfil nãocompactos) com resistência característica bastante próxima da de plastificação.

Conforme pode ser observado na Figura 4-25, os níveis de deformação plástica são inferiores aos admissíveis dados pela recomendação DNV-RP-C208 (Det Norske Veritas AS, 2013) e a deformação plástica se restringe a parte da alma do perfil. Entende-se que a modelagem de demais elementos (enrijecedores transversais, vigas transversais) com elementos de casca e suas ligações reduzem os níveis de tensão em relação aos cálculos de tensões na seção transversal isolada.

Tabela 4-3: Verificação do perfil principal PS 530x160x10x10 – Primeiro vão – 1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	25	cm	
Flambagem por flexão em torno do eixo de maior inércia	225	cm	
Flambagem por torção	25	cm	
Flambagem lateral com torção	225	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-762,3	kN	
Cortante na alma	112,2	kN	
Cortante nas mesas	33,9	kN	
Momento de torção	533,3	kN cm	
Momento de flexão na menor inércia	128,0	kN cm	
Momento de flexão na maior inércia	15967,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	2603,2	kN	
COMPRESSÃO			
Esbeltez da alma	51,0	_	
Fator de redução devido a flambagem local da alma	0,85	_	
Esbeltez da meia mesa	8,00	_	
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	2203,0	kN	
Estado limite	FLAMBAGEM FLEXURAL		
CORTANTE NA ALMA			
Força cortante de plastificação da alma	1055,7	kN	
Cortante crítica	1764,7	kN	
Cortante resistente de cálculo	959,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	602,2	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	4014,5	kN cm	
PLASTIFICACÃO			
Momento de plastificação da seção	4416,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	18514,6	kN cm	

Tabela 4-3: Verificação do perfil principal PS 530x160x10x10 – Primeiro vão – 1	- 1,40
PP + 1,50 (PMGD + CMDO) + 1,05 TCDO. (continuação)	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	43374,4	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	51137,6	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	157562,5	kN cm	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não-	3 / 3		
uniforme	5,45		
Momento crítico	252440	kN cm	
Esbeltez da barra	78,2	—	
Classificação da barra	Não compacta		
Momento resistente característico	47711,8	kN cm	
VERIFICAÇÕES			
Esforço axial	35%	OK	
Cortante na alma	12%	OK	
Cortante nas mesas	6%	OK	
Momento de flexão na menor inércia	3%	OK	
Momento de flexão na maior inércia	37%	OK	
Esforço combinado	70%	OK	

Tabela 4-4: Verificação do perfil principal PS 530x160x10x10 - Segundo vão - 7 - 1,15
PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	25	cm	
Flambagem por flexão em torno do eixo de maior inércia	265	cm	
Flambagem por torção	25	cm	
Flambagem lateral com torção	265	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-134,1	kN	
Cortante na alma	136,7	kN	
Cortante nas mesas	136,7	kN	
Momento de torção	284,8	kN cm	
Momento de flexão na menor inércia	669,8	kN cm	
Momento de flexão na maior inércia	37922,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	2863,5	kN	
COMPRESSÃO			
Esbeltez da alma	51,0	_	
Fator de redução devido a flambagem local da alma	0,85	_	
Esbeltez da meia mesa	8,00		
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	2415,8	kN	
Estado limite	FLAMBAGEM FLEXURAL		
CORTANTE NA ALMA			
Força cortante de plastificação da alma	1055,7	kN	
Cortante crítica	1764,7	kN	
Cortante resistente de cálculo	1055,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	662,4	kN	
FLEXÃO NA MENOR INÉRCI	A		
Momento resistente de cálculo	4416,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	4416,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	18514,6	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	45545,8	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	51137,6	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	157562,5	kN cm	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LATERAL COM TO	RÇÃO		
Fator de modificação de diagrama de momento não- uniforme	2,84	_	
Momento crítico	153535	kN cm	
Esbeltez da barra	92,1	_	
Classificação da barra	Não compacta		
Momento resistente característico	45545,8	kN cm	
VERIFICAÇÕES			
Esforço axial	6%	OK	
Cortante na alma	13%	OK	
Cortante nas mesas	21%	OK	
Momento de flexão na menor inércia	15%	OK	
Momento de flexão na maior inércia	83%	OK	
Esforço combinado	101%	OK	

Tabela 4-4: Verificação do perfil principal PS 530x160x10x10 – Segundo vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-5: Verificação do perfil principal PS 530x160x10x10 – Terceiro vão – 7 – 1,15
PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	25	cm	
Flambagem por flexão em torno do eixo de maior inércia	265	cm	
Flambagem por torção	25	cm	
Flambagem lateral com torção	265	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-119,6	kN	
Cortante na alma	136,7	kN	
Cortante nas mesas	130,3	kN	
Momento de torção	0,0	kN cm	
Momento de flexão na menor inércia	0,0	kN cm	
Momento de flexão na maior inércia	35843,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	2863,5	kN	
COMPRESSÃO			
Esbeltez da alma	51,0	—	
Fator de redução devido a flambagem local da alma	0,85	—	
Esbeltez da meia mesa	8,00	—	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	2415,8	kN	
Estado limite	FLAMBAGEM		
CORTANTE NA ALMA	TEEntone		
Força cortante de plastificação da alma	1055,7	kN	
Cortante crítica	1764,7	kN	
Cortante resistente de cálculo	1055,7	kN	
CORTANTE NAS MESAS	,		
Cortante resistente de cálculo	662,4	kN	
FLEXÃO NA MENOR INÉRCIA	A		
Momento resistente de cálculo	4416,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	4416,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	18514,6	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	45576,4	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	51137,6	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	157562,5	kN cm	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LATERAL COM TO	RÇÃO		
Fator de modificação de diagrama de momento não- uniforme	2,85	_	
Momento crítico	154538	kN cm	
Esbeltez da barra	92,1	_	
Classificação da barra	Não compacta		
Momento resistente característico	45576,4	kN cm	
VERIFICAÇÕES			
Esforço axial	5%	OK	
Cortante na alma	13%	OK	
Cortante nas mesas	20%	OK	
Momento de flexão na menor inércia	0%	OK	
Momento de flexão na maior inércia	79%	OK	
Esforço combinado	81%	OK	

Tabela 4-5: Verificação do perfil principal PS 530x160x10x10 – Terceiro vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-6: Verificação do perfil principal PS 530x160x10x10 – Quarto vão – 7 – 1,15 PI
+ 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	35	cm	
Flambagem por flexão em torno do eixo de maior inércia	315	cm	
Flambagem por torção	35	cm	
Flambagem lateral com torção	315	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-182,2	kN	
Cortante na alma	202,7	kN	
Cortante nas mesas	9,1	kN	
Momento de torção	269,7	kN cm	
Momento de flexão na menor inércia	1587,4	kN cm	
Momento de flexão na maior inércia	21633,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	2863,5	kN	
COMPRESSÃO			
Esbeltez da alma	51,0	_	
Fator de redução devido a flambagem local da alma	0,85	_	
Esbeltez da meia mesa	8,00	_	
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	2404,8	kN	
Estado limita	FLAMBAGEM		
	FLEXURAL		
CORTANTE NA ALMA			
Força cortante de plastificação da alma	1055,7	kN	
Cortante crítica	1764,7	kN	
Cortante resistente de cálculo	1055,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	662,4	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	4416,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	4416,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	18514,6	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	45154,9	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	51137,6	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	157562,5	kN cm	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	51137,6	kN cm	
FLAMBAGEM LATERAL COM TO	RÇÃO		
Fator de modificação de diagrama de momento não- uniforme	3,72	_	
Momento crítico	146482	kN cm	
Esbeltez da barra	109,5	_	
Classificação da barra	Não compacta		
Momento resistente característico	45154,9	kN cm	
VERIFICAÇÕES			
Esforço axial	8%	OK	
Cortante na alma	19%	OK	
Cortante nas mesas	1%	OK	
Momento de flexão na menor inércia	36%	OK	
Momento de flexão na maior inércia	48%	OK	
Esforço combinado	88%	OK	

Tabela 4-6: Verificação do perfil principal PS 530x160x10x10 – Quarto vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-7: Verificação do perfil principal PS 530x160x10x10 – Quinto vão – 7 – 1,15 PP
+ 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS		
Flambagem por flexão em torno do eixo de menor inércia	100	cm
Flambagem por flexão em torno do eixo de maior inércia	250	cm
Flambagem por torção	100	cm
Flambagem lateral com torção	250	cm
ESFORÇOS SOLICITANTES DE CÁI	LCULO	
Esforço axial (>0, tração, <0, compressão)	-434,2	kN
Cortante na alma	177,1	kN
Cortante nas mesas	80,5	kN
Momento de torção	0,0	kN cm
Momento de flexão na menor inércia	0,0	kN cm
Momento de flexão na maior inércia	52862,0	kN cm
ESFORÇOS RESISTENTES DE CÁL	CULO	
ESFORÇO AXIAL		
TRAÇÃO		
Esforço resistente de cálculo	2863,5	kN
COMPRESSÃO		
Esbeltez da alma	51,0	_
Fator de redução devido a flambagem local da alma	0,85	_
Esbeltez da meia mesa	8,00	_
Fator de redução devido a flambagem local de mesa	1,00	_
Esforço resistente de cálculo 2265,4		kN
Estado limito FLAMBAGEM		
Estado limite FLEXURAL		AL
CORTANTE NA ALMA		
Força cortante de plastificação da alma	1055,7	kN
Cortante crítica	1764,7	kN
Cortante resistente de cálculo	1055,7	kN
CORTANTE NAS MESAS		
Cortante resistente de cálculo	662,4	kN
FLEXÃO NA MENOR INÉRCIA	A	
Momento resistente de cálculo	4416,0	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	4416,0	kN cm
FLAMBAGEM LOCAL DA MESA		
Momento crítico	18514,6	kN cm

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo 46364,9 k		kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	51137,6	kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	157562,5	kN cm
Momento resistente característico	51137,6	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico 51137,6		kN cm
FLAMBAGEM LATERAL COM TO	RÇÃO	
Fator de modificação de diagrama de momento não-	3.00	_
uniforme		137
Momento crítico 181090		kN cm
Esbeltez da barra 86,9		_
Classificação da barra Não compacta		acta
Momento resistente característico	to resistente característico 46364,9 k	
VERIFICAÇÕES	-	
Esforço axial	19%	OK
Cortante na alma	17%	OK
Cortante nas mesas	12%	OK
Momento de flexão na menor inércia	0%	OK
Momente de flevão no major inércia	11/10/	NÃO
	114/0	OK
Esforco combinado	124%	NÃO
Lororço comonado	127/0	OK

Tabela 4-7: Verificação do perfil principal PS 530x160x10x10 – Quinto vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Dois dos vãos das vigas centrais (os dois mais próximos da descarga, W 360x44,6) de suporte dos cavaletes dos roletes apresentam momento de flexão em torno de sua maior inércia superior ao momento resistente de cálculo (Tabela 4-8 - 115%, Tabela 4-9 - 107%) para a combinação 7 - 1,15 PP + 0,70 TCDT + 1,00 AVL pela verificação conforme NBR 8800:2008.

Essas vigas apenas são carregadas pelo material transportado (seja sólido ou liquefeito) quando a flecha dos suportes dos roletes excede 8 mm (flecha a partir da qual há risco de desencaixe dos rolos de seus suportes). Todavia, para seu dimensionamento, não foi considerada a contribuição de rigidez dos cavaletes após o estabelecimento do contato das partes.

Tabela 4-8: Verificação da viga central W 360x44,6 – Primeiro vão – 7 – 1,15 PP + 0,70
TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS		
Flambagem por flexão em torno do eixo de menor inércia	302	cm
Flambagem por flexão em torno do eixo de maior inércia	302	cm
Flambagem por torção	277,5	cm
Flambagem lateral com torção	277,5	cm
ESFORÇOS SOLICITANTES DE CÁI	LCULO	
Esforço axial (>0, tração, <0, compressão)	-7,2	kN
Cortante na alma	314,6	kN
Cortante nas mesas	1,6	kN
Momento de torção	146,6	kN cm
Momento de flexão na menor inércia	134,0	kN cm
Momento de flexão na maior inércia	25814,0	kN cm
ESFORÇOS RESISTENTES DE CÁL	CULO	
ESFORÇO AXIAL		
TRAÇÃO		
Esforço resistente de cálculo	1947,6	kN
COMPRESSÃO		
Esbeltez da alma	48,2	_
Fator de redução devido a flambagem local da alma	0,92	—
Esbeltez da meia mesa	8,72	_
Fator de redução devido a flambagem local de mesa	1,00	_
Esforço resistente de cálculo	1170,8	kN
Estado limite FLAMBAGEM LATER		LATERAL
CORTANTE NA ALMA		
Força cortante de plastificação da alma	474,8	kN
Cortante crítica	889,5	kN
Cortante resistente de cálculo	474,8	kN
CORTANTE NAS MESAS		
Cortante resistente de cálculo	693,8	kN
FLEXÃO NA MENOR INÉRCL	A	
Momento resistente de cálculo	4943,2	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	4943,2	kN cm
FLAMBAGEM LOCAL DA MESA		
Momento crítico	17337,2	kN cm

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo 22387,6		kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção 26359,8		kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	122855,3 kN cm	
Momento resistente característico	26359,8	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico	26359,8 kN cm	
FLAMBAGEM LATERAL COM TO	RÇÃO	
Fator de modificação de diagrama de momento não- uniforme		_
Momento crítico	43130 kN c	
Esbeltez da barra	Esbeltez da barra 72,9	
Classificação da barra	Não compacta	
Momento resistente característico	22387,6	kN cm
VERIFICAÇÕES		
Esforço axial	1%	OK
Cortante na alma	66%	OK
Cortante nas mesas	0%	OK
Momento de flexão na menor inércia	3%	OK
Momento de flexão na maior inércia	115%	OK
Esforço combinado	118%	OK

Tabela 4-8: Verificação da viga central W 360x44,6 – Primeiro vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-9: Verificação da viga central W 360x44,6 – Segundo vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS		
Flambagem por flexão em torno do eixo de menor inércia	332	cm
Flambagem por flexão em torno do eixo de maior inércia	332	cm
Flambagem por torção	282,5	cm
Flambagem lateral com torção	282,5	cm
ESFORÇOS SOLICITANTES DE CÁI	LCULO	
Esforço axial (>0, tração, <0, compressão)	-6,3	kN
Cortante na alma	299,8	kN
Cortante nas mesas	0,6	kN
Momento de torção	335,8	kN cm
Momento de flexão na menor inércia	42,3	kN cm
Momento de flexão na maior inércia	23692,0	kN cm
ESFORÇOS RESISTENTES DE CÁL	CULO	
ESFORÇO AXIAL		
TRAÇÃO		
Esforço resistente de cálculo	1947,6	kN
COMPRESSÃO		
Esbeltez da alma	48,2	_
Fator de redução devido a flambagem local da alma	0,92	_
Esbeltez da meia mesa	8,72	_
Fator de redução devido a flambagem local de mesa	1,00	_
Esforço resistente de cálculo	1072,1	kN
Estado limite FLAMBAGEM LATER		LATERAL
CORTANTE NA ALMA		
Força cortante de plastificação da alma	474,8	kN
Cortante crítica	889,5	kN
Cortante resistente de cálculo	474,8	kN
CORTANTE NAS MESAS		
Cortante resistente de cálculo	693,8	kN
FLEXÃO NA MENOR INÉRCI	A	
Momento resistente de cálculo	4943,2	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	4943,2	kN cm
FLAMBAGEM LOCAL DA MESA		
Momento crítico	17337,2	kN cm

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo 22216,7 kl		kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção 26359,8		kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	Momento crítico 122855,3	
Momento resistente característico	26359,8	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico 263598		kN cm
FLAMBAGEM LATERAL COM TORÇÃO		
Fator de modificação de diagrama de momento não-	1.16	_
uniforme		133
Momento crítico 43575		kN cm
Esbeltez da barra 74,2		—
Classificação da barra	Não compacta	
Momento resistente característico	22216,7 kN c	
VERIFICAÇÕES		
Esforço axial 1%		OK
Cortante na alma	63%	OK
Cortante nas mesas	0%	OK
Momento de flexão na menor inércia	1%	OK
Momento de flexão na maior inércia	107%	OK
Esforço combinado	108%	OK

Tabela 4-9: Verificação da viga central W 360x44,6 – Segundo vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-10: Verificação da viga central W 360x44,6 – Terceiro vão – 7 – 1,15 PP + 0,7	0
TCDT + 1,00 AVL.	

COMPRIMENTOS DESTRAVADOS		
Flambagem por flexão em torno do eixo de menor inércia	332	cm
Flambagem por flexão em torno do eixo de maior inércia	332	cm
Flambagem por torção	308	cm
Flambagem lateral com torção	308	cm
ESFORÇOS SOLICITANTES DE CÁI	LCULO	
Esforço axial (>0, tração, <0, compressão)	-5,0	kN
Cortante na alma	291,4	kN
Cortante nas mesas	1,4	kN
Momento de torção	489,6	kN cm
Momento de flexão na menor inércia	136,5	kN cm
Momento de flexão na maior inércia	20436,0	kN cm
ESFORÇOS RESISTENTES DE CÁL	CULO	
ESFORÇO AXIAL		
TRAÇÃO		
Esforço resistente de cálculo	1947,6	kN
COMPRESSÃO		
Esbeltez da alma	48,2	_
Fator de redução devido a flambagem local da alma	0,92	—
Esbeltez da meia mesa	8,72	_
Fator de redução devido a flambagem local de mesa	1,00	_
Esforço resistente de cálculo	1072,1	kN
Estado limite FLAMBAGEM LATER		LATERAL
CORTANTE NA ALMA		
Força cortante de plastificação da alma	474,8	kN
Cortante crítica	889,5	kN
Cortante resistente de cálculo	474,8	kN
CORTANTE NAS MESAS		
Cortante resistente de cálculo	693,8	kN
FLEXÃO NA MENOR INÉRCIA	A	
Momento resistente de cálculo	4943,2	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	4943,2	kN cm
FLAMBAGEM LOCAL DA MESA		
Momento crítico	17337,2	kN cm

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo 21345,2		kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção 26359,7		kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	Momento crítico 122855,3	
Momento resistente característico	26359,8	kN cm
FLAMBAGEM LOCAL DA ALM	ÍA	
Esbeltez correspondente a plastificação	Esbeltez correspondente a plastificação 90,5	
Esbeltez crítica 137,2		_
Momento resistente característico	26359,8 kN cm	
FLAMBAGEM LATERAL COM TORÇÃO		
Fator de modificação de diagrama de momento não- uniforme 1,20		_
Momento crítico	38774 kN	
Esbeltez da barra	Esbeltez da barra 80,9	
Classificação da barra	ra Não compacta	
Momento resistente característico	21345,2 kN cr	
VERIFICAÇÕES		
Esforço axial	0%	OK
Cortante na alma	61%	OK
Cortante nas mesas	0%	OK
Momento de flexão na menor inércia	3%	OK
Momento de flexão na maior inércia	96%	OK
Esforço combinado	99%	OK

Tabela 4-10: Verificação da viga central W 360x44,6 – Terceiro vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-11: Verificação da vig	a central W 360	x58 – Quarto vão –	7 – 1,15 PP + 0,70
	TCDT + 1,00	AVL.	

COMPRIMENTOS DESTRAVAD	OS		
Flambagem por flexão em torno do eixo de menor inércia	382	cm	
Flambagem por flexão em torno do eixo de maior inércia	382	cm	
Flambagem por torção	337	cm	
Flambagem lateral com torção	337	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-4,7	kN	
Cortante na alma	310,8	kN	
Cortante nas mesas	2,4	kN	
Momento de torção	426,9	kN cm	
Momento de flexão na menor inércia	293,0	kN cm	
Momento de flexão na maior inércia	26465,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	2459,0	kN	
COMPRESSÃO			
Esbeltez da alma	42,0	—	
Fator de redução devido a flambagem local da alma	0,96	—	
Esbeltez da meia mesa	6,56	—	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	1223,4	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	542,6	kN	
Cortante crítica	1337,4	kN	
Cortante resistente de cálculo	542,6	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	932,8	kN	
FLEXÃO NA MENOR INÉRCL	A		
Momento resistente de cálculo	6685,2	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	6685,2	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	41415,6	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	27600,2	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	34312,3	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	282866	kN cm	
Momento resistente característico	34312,3	kN cm	
FLAMBAGEM LOCAL DA ALM	ÍA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	34312,3	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,08	_	
Momento crítico	4845	kN cm	
Esbeltez da barra	85,3	_	
Classificação da barra	Não compacta		
Momento resistente característico	27600,2	kN cm	
VERIFICAÇÕES			
Esforço axial	0%	OK	
Cortante na alma	57%	OK	
Cortante nas mesas	0%	OK	
Momento de flexão na menor inércia	4%	OK	
Momento de flexão na maior inércia	96%	OK	
Esforço combinado	100%	OK	

Tabela 4-11: Verificação da viga central W 360x58 – Quarto vão – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

A Tabela 4-12 apresenta a verificação, considerando um coeficiente de atrito de 0,10 entre o cavalete dos roletes e a mesa superior das vigas de apoio central, de quantos cavaletes são necessários para desenvolver a força necessária para travamento, resultando em 4 cavaletes no trecho de carga do alimentador, o equivalente a um comprimento de 1,4m. Considerando este como o comprimento destravado para flambagem lateral com torção destas vigas, a solicitação corresponderia a Tabela 4-8 – 98%, Tabela 4-9 – 91%. Considera-se, portanto, que, durante avalanche, não só os cavaletes dos roletes transmitem o carregamento, mas, em conjunto, são capazes de prover travamento suficiente para aprovação das vigas através do atrito existente nos contatos.

Tabela 4-12: Análise de travamento para flambagem lateral por torção por atrito entre cavalete do rolete e viga do apoio central – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

Vão	Força resistente lateral mínima para travamento [kN]	Cavalete	Pressão média no contato [MPa]	Força transmitida no contato [kN]	Força de atrito no contato [kN]	Força de atrito 4 a 4	Trava 4 a 4?
		1	0,00	0,0	0,0	3,6	Não
		2	0,00	0,0	0,0	7,1	Não
		3	0,00	0,0	0,0	12,0	Sim
5°	10,7	4	1,27	35,6	3,6	16,9	Sim
		5	1,27	35,6	3,6	7,1	Não
		6	1,74	48,9	4,9	7,1 Não 12,0 Sim 16,9 Sim 16,7 Sim 14,2 Não	
		7	1,74	48,9	4,9	16,9	Sim
		8	1,89	53,1	5,3	16,7	Sim
		9	1,44	40,3	4,0	14,2	Não
		10	1,45	40,7	4,1	13,4	Não
		11	1,17	32,7	3,3	16,7	Sim
	12	1,01	28,3	2,8	14,2	Não	
		13	1,16	32,6	3,3	13,4	Não
		14	0,99	27,8	2,8	12,1	Não
10	15.2	15	1,06	29,8	3,0	12,1	Não
4	15,5	16	1,27	35,6	3,6	12,6	Não
		17	0,78	22,0	2,2	12,4	Não
		18	1,21	34,0	3,4	13,1	Não
		19	1,10	31,0	3,1	13,4	Não
		20	1,32	37,0	3,7	14,6	Não
		21	1,03	28,9	2,9	13,1	Não
		22	1,32	37,2	3,7	13,4	Não
		23	1,52	42,6	4,3	14,6	Não

Tabela 4-12: Análise de travamento para flambagem lateral por torção por atrito entre cavalete do rolete e viga do apoio central – Combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

	Força						
	resistente		Pressão	Força	Força de	Força	
₩ 7~ -	lateral	Correlate	média no	transmitida	atrito no	de	Trava
vao	mínima para	Cavalete	contato	no contato	contato	atrito	4 a 4?
	travamento		[MPa]	[kN]	[kN]	4 a 4	
	[kN]						
		24	1,21	33,9	3,4	12,8	Sim
		25	1,35	37,8	3,8	12,4	Sim
		26	1,25	35,1	3,5	11,6	Não
		27	0,75	21,0	2,1	12,8	Sim
		28	1,06	29,8	3,0	14,7	Sim
20	11.0	29	1,07	30,0	3,0	17,3	Sim
5	11,9	30	1,09	30,7	3,1	19,8	Sim
		31	2,01	56,5	5,6	21,9	Sim
		32	1,99	56,0	5,6	21,5	Sim
		33	1,94	54,5	5,4	19,8	Sim
		34	1,84	51,6	5,2	21,9	Sim
		35	1,90	53,2	5,3	21,5	Sim
		36	1,75	49,0	4,9	20,6	Sim
		37	1,90	53,4	5,3	20,5	Sim
		38	1,87	52,5	5,3	20,2	Sim
		39	1,81	50,7	5,1	20,6	Sim
20	12.8	40	1,73	48,5	4,9	20,5	Sim
2	15,0	41	1,78	49,8	5,0	20,7	Sim
		42	1,84	51,6	5,2	21,0	Sim
		43	1,85	52,0	5,2	20,2	Sim
		44	1,90	53,4	5,3	20,7	Sim
		45	1,90	53,4	5,3	21,0	Sim
		46	1,71	48,1	4,8	20,8	Sim
		47	1,89	53,1	5,3	21,4	Sim
		48	1,91	53,7	5,4	21,8	Sim
10	15 1	49	1,90	53,4	5,3	22,4	Sim
1	13,1	50	1,92	54,0	5,4	23,1	Sim
		51	2,03	56,9	5,7	21,8	Sim
		52	2,12	59,5	6,0	22,4	Sim
		53	2,15	60,4	6,0	23,1	Sim

As vigas transversais sobre os eixos intermediários do alimentador (W 410x85) apresentam solicitação combinada superior à resistência (Tabela 4-14 – 134%, Tabela 4-15 – 130%, Tabela 4-16 – 123%) para a combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL pela verificação conforme NBR 8800:2008.

Conforme pode ser observado na Figura 4-26, o modelo numérico também indica o início do processo de formação de rótulas plásticas devido à flexão das vigas transversais sobre os eixos do alimentador. Todavia, os níveis de deformação plástica (1,1%) e sua extensão na seção (91,8%), encontram-se dentro do admissível conforme recomendação DNV-RP-C208. **Tabela 4-13: Verificação da viga transversal W 360x44,6 – Eixo dianteiro – 7 – 1,15 PP +** 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVAD	OS		
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	384	cm	
Flambagem por torção	205	cm	
Flambagem lateral com torção	175	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-235,2	kN	
Cortante na alma	132,7	kN	
Cortante nas mesas	7,5	kN	
Momento de torção	673,9	kN cm	
Momento de flexão na menor inércia	1209,9	kN cm	
Momento de flexão na maior inércia	18360,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	1947,6	kN	
COMPRESSÃO			
Esbeltez da alma	48,2	_	
Fator de redução devido a flambagem local da alma	0,92	-	
Esbeltez da meia mesa	8,72	_	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	1470,5	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	474,8	kN	
Cortante crítica	889,5	kN	
Cortante resistente de cálculo	474,8	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	693,8	kN	
FLEXÃO NA MENOR INÉRCIA	A		
Momento resistente de cálculo	4943,2	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	4943,2	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	17337,2	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	25890,6	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	26359,8	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	122855,3	kN cm	
Momento resistente característico	26359,8	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	26359,8	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,01	_	
Momento crítico	94729	kN cm	
Esbeltez da barra	46,0	_	
Classificação da barra	Não compacta		
Momento resistente característico	25890,6	kN cm	
VERIFICAÇÕES			
Esforço axial	16%	OK	
Cortante na alma	28%	OK	
Cortante nas mesas	1%	OK	
Momento de flexão na menor inércia	24%	OK	
Momento de flexão na maior inércia	71%	OK	
Esforço combinado	103%	OK	

Tabela 4-13: Verificação da viga transversal W 360x44,6 – Eixo dianteiro – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-14: Verificação da viga transversal W 410x85 – Primeiro eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	394	cm	
Flambagem por torção	205	cm	
Flambagem lateral com torção	175,5	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-505,9	kN	
Cortante na alma	333,2	kN	
Cortante nas mesas	0,3	kN	
Momento de torção	1705,4	kN cm	
Momento de flexão na menor inércia	2710,3	kN cm	
Momento de flexão na maior inércia	58541,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3704,2	kN	
COMPRESSÃO			
Esbeltez da alma	34,9	_	
Fator de redução devido a flambagem local da alma	1,00	_	
Esbeltez da meia mesa	4,97	_	
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	3084,5	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	858,7	kN	
Cortante crítica	3062,3	kN	
Cortante resistente de cálculo	858,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1363,8	kN	
FLEXÃO NA MENOR INÉRCI	4		
Momento resistente de cálculo	10285,3	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	10285,3	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	111179,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	58831,7	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	58941,9	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	835749,2	kN cm	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,03	_	
Momento crítico	254889	kN cm	
Esbeltez da barra	42,8	_	
Classificação da barra	Não compacta		
Momento resistente característico	58831,7	kN cm	
VERIFICAÇÕES			
Esforço axial	16%	OK	
Cortante na alma	39%	OK	
Cortante nas mesas	0%	OK	
Momento de flexão na menor inércia	26%	OK	
Momento de flexão na maior inércia	100%	OK	
Esforço combinado	134%	NÃO OK	

Tabela 4-14: Verificação da viga transversal W 410x85 – Primeiro eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-15: Verificação da viga transversal W 410x85 – Segundo eixo intermediário –	- 7
- 1,15 PP + 0,70 TCDT + 1,00 AVL.	

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	394	cm	
Flambagem por torção	205	cm	
Flambagem lateral com torção	175,5	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-475,1	kN	
Cortante na alma	325,9	kN	
Cortante nas mesas	26,9	kN	
Momento de torção	1737,3	kN cm	
Momento de flexão na menor inércia	2534,8	kN cm	
Momento de flexão na maior inércia	57285,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3704,2	kN	
COMPRESSÃO			
Esbeltez da alma	34,9	—	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	4,97	_	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	3084,5	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	858,7	kN	
Cortante crítica	3062,3	kN	
Cortante resistente de cálculo	858,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1363,8	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	10285,3	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	10285,3	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	111179,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	58831,7	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	58941,9	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	835749,2	kN cm	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não-	1.03	_	
uniforme	1,05		
Momento crítico	254202	kN cm	
Esbeltez da barra	42,8	—	
Classificação da barra	Não compacta		
Momento resistente característico	58831,7	kN cm	
VERIFICAÇÕES			
Esforço axial	15%	OK	
Cortante na alma	38%	OK	
Cortante nas mesas	2%	OK	
Momento de flexão na menor inércia	25%	OK	
Momento de flexão na maior inércia	97%	ОК	
Esforco combinado	130%	NÃO	
Estorço combinado	13070	OK	

Tabela 4-15: Verificação da viga transversal W 410x85 – Segundo eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-16: Verificação da viga transversal W 410x85 – Terceiro eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	394	cm	
Flambagem por torção	351	cm	
Flambagem lateral com torção	175,5	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-444,9	kN	
Cortante na alma	315,3	kN	
Cortante nas mesas	1,4	kN	
Momento de torção	1657,4	kN cm	
Momento de flexão na menor inércia	2280,9	kN cm	
Momento de flexão na maior inércia	54799,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3704,2	kN	
COMPRESSÃO			
Esbeltez da alma	34,9	—	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	4,97	_	
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	3085,3	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	858,7	kN	
Cortante crítica	3062,3	kN	
Cortante resistente de cálculo	858,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1363,8	kN	
FLEXÃO NA MENOR INÉRCI	4		
Momento resistente de cálculo	10285,3	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	10285,3	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	111179,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	58831,7	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	58941,9	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	835749,2	kN cm	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	—	
Esbeltez crítica	137,2	_	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LATERAL COM TO	RÇÃO		
Fator de modificação de diagrama de momento não- uniforme	1,03	_	
Momento crítico	254202	kN cm	
Esbeltez da barra	42.8		
Classificação da barra	Não compacta		
Momento resistente característico	58831,7	kN cm	
VERIFICAÇÕES	,		
Esforço axial	14%	OK	
Cortante na alma	37%	OK	
Cortante nas mesas	0%	OK	
Momento de flexão na menor inércia	22%	OK	
Momento de flexão na maior inércia	93%	OK	
Esforço combinado	123%	NÃO OK	

Tabela 4-16: Verificação da viga transversal W 410x85 – Terceiro eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-17: Verificação da viga transversal W 410x85 – Quarto eixo intermediário – 7
- 1,15 PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	394	cm	
Flambagem por torção	351	cm	
Flambagem lateral com torção	175,5	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-283,1	kN	
Cortante na alma	229,4	kN	
Cortante nas mesas	20,4	kN	
Momento de torção	1363,5	kN cm	
Momento de flexão na menor inércia	1575,9	kN cm	
Momento de flexão na maior inércia	37571,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3704,2	kN	
COMPRESSÃO			
Esbeltez da alma	34,9	—	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	4,97	_	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	3085,3	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	858,7	kN	
Cortante crítica	3062,3	kN	
Cortante resistente de cálculo	858,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1363,8	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	10285,3	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	10285,3	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	111179,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	58831,7	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	58941,9	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	835749,2	kN cm	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA	·	
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	58941,9	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,03	_	
Momento crítico	254202	kN cm	
Esbeltez da barra	42,8	_	
Classificação da barra	Não compacta		
Momento resistente característico	58831,7	kN cm	
VERIFICAÇÕES			
Esforço axial	9%	OK	
Cortante na alma	27%	OK	
Cortante nas mesas	1%	OK	
Momento de flexão na menor inércia	15%	OK	
Momento de flexão na maior inércia	64%	OK	
Esforco combinado	84%	OK	

Tabela 4-17: Verificação da viga transversal W 410x85 – Quarto eixo intermediário – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-18: Verificação da viga transversal W 200x26,6 – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	205	cm	
Flambagem por flexão em torno do eixo de maior inércia	390	cm	
Flambagem por torção	365	cm	
Flambagem lateral com torção	182,5	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-21,9	kN	
Cortante na alma	1,5	kN	
Cortante nas mesas	1,9	kN	
Momento de torção	17,8	kN cm	
Momento de flexão na menor inércia	232,6	kN cm	
Momento de flexão na maior inércia	1299,1	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	1151,5	kN	
COMPRESSÃO			
Esbeltez da alma	32,8	—	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	7,92	—	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	755,1	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	228,4	kN	
Cortante crítica	923,2	kN	
Cortante resistente de cálculo	228,4	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	462,5	kN	
FLEXÃO NA MENOR INÉRCIA	A		
Momento resistente de cálculo	2563,1	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	2563,1	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	53975,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo	8825,4	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	9464,4	kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	53975,0	kN cm
Momento resistente característico	9464,4	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico	9464,4	kN cm
FLAMBAGEM LATERAL COM TORÇÃO		
Fator de modificação de diagrama de momento não-	1.02	_
uniforme	1,02	
Momento crítico	22212	kN cm
Esbeltez da barra	58,1	
Classificação da barra	Não compacta	
Momento resistente característico	8825,4	kN cm
VERIFICAÇÕES		
Esforço axial	3%	OK
Cortante na alma	1%	OK
Cortante nas mesas	0%	OK
Momento de flexão na menor inércia	9%	OK
Momento de flexão na maior inércia	15%	OK
Esforço combinado	25%	OK

Tabela 4-18: Verificação da viga transversal W 200x26,6 – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

A viga transversal frontal que suporta o chute de descarga (W 200x41,7, Tabela 4-19) apresenta solicitação combinada superior à resistência (105%) para a combinação 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL pela verificação conforme NBR 8800:2008.

Conforme Figura 4-23, apenas as bordas das mesas apresentam níveis de tensão próximos do limite de escoamento do material.

Tabela 4-19: Verificação da viga transversal de a	poio do chute W 200x41,7 – 7 – 1,15 PP
+ 0,70 TCDT + 1,0	00 AVL.

COMPRIMENTOS DESTRAVADOS		
Flambagem por flexão em torno do eixo de menor inércia	410	cm
Flambagem por flexão em torno do eixo de maior inércia	410	cm
Flambagem por torção	410	cm
Flambagem lateral com torção	410	cm
ESFORÇOS SOLICITANTES DE CÁI	LCULO	
Esforço axial (>0, tração, <0, compressão)	-198,0	kN
Cortante na alma	16,9	kN
Cortante nas mesas	40,7	kN
Momento de torção	423,5	kN cm
Momento de flexão na menor inércia	4935,0	kN cm
Momento de flexão na maior inércia	644,9	kN cm
ESFORÇOS RESISTENTES DE CÁL	CULO	
ESFORÇO AXIAL		
TRAÇÃO		
Esforço resistente de cálculo	1802,2	kN
COMPRESSÃO		
Esbeltez da alma	25,2	-
Fator de redução devido a flambagem local da alma	1,00	
Esbeltez da meia mesa	7,03	
Fator de redução devido a flambagem local de mesa	1,00	_
Esforço resistente de cálculo	882,8	kN
Estado limite	FLAMBAGEM I	LATERAL
CORTANTE NA ALMA		
Força cortante de plastificação da alma	270,4	kN
Cortante crítica	1851,8	kN
Cortante resistente de cálculo	270,4	kN
CORTANTE NAS MESAS		
Cortante resistente de cálculo	810,9	kN
FLEXÃO NA MENOR INÉRCI	A	
Momento resistente de cálculo	5609,0	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	5609,0	kN cm
FLAMBAGEM LOCAL DA MESA		
Momento crítico	30250,7	kN cm

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo	12192,4	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	15099,6	kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	109350,1	kN cm
Momento resistente característico	15099,6	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico	15099,6	kN cm
FLAMBAGEM LATERAL COM TORÇÃO		
Fator de modificação de diagrama de momento não-	1.07	_
uniforme	1,07	
Momento crítico	17674	kN cm
Esbeltez da barra	98,8	-
Classificação da barra	Não compacta	
Momento resistente característico	12192,4	kN cm
VERIFICAÇÕES		
Esforço axial	22%	OK
Cortante na alma	6%	OK
Cortante nas mesas	5%	OK
Momento de flexão na menor inércia	88%	OK
Momento de flexão na maior inércia	5%	OK
Esforço combinado	105%	NÃO
	10370	OK

Tabela 4-19: Verificação da viga transversal de apoio do chute W 200x41,7 – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-20: Verificação da viga longitudinal de apoio do chute W 200x41,7 - 7	- 1,15
PP + 0,70 TCDT + 1,00 AVL.	

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	330	cm	
Flambagem por flexão em torno do eixo de maior inércia	330	cm	
Flambagem por torção	330	cm	
Flambagem lateral com torção	330	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	33,1	kN	
Cortante na alma	102,4	kN	
Cortante nas mesas	202,6	kN	
Momento de torção	544,3	kN cm	
Momento de flexão na menor inércia	414,8	kN cm	
Momento de flexão na maior inércia	2210,5	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	1715,2	kN	
COMPRESSÃO			
Esbeltez da alma	20,3	_	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	7,03	_	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	1104,6	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	218,2	kN	
Cortante crítica	2294,6	kN	
Cortante resistente de cálculo	218,2	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	810,9	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	5609,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	5609,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	30247,1	kN cm	
FLEXÃO NA MAIOR INÉRCIA			
--	--------------	-------	--
Momento resistente de cálculo	10819,3	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	12021,9	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	86761,3	kN cm	
Momento resistente característico	12021,9	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	12021,9	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,57	_	
Momento crítico	32004	kN cm	
Esbeltez da barra	77,6	_	
Classificação da barra	Não compacta		
Momento resistente característico	10819,3	kN cm	
VERIFICAÇÕES			
Esforço axial	2%	OK	
Cortante na alma	47%	OK	
Cortante nas mesas	25%	OK	
Momento de flexão na menor inércia	7%	OK	
Momento de flexão na maior inércia	20%	OK	
Esforço combinado	29%	OK	

Tabela 4-20: Verificação da viga longitudinal de apoio do chute W 200x41,7 – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Todos os demais perfis estão aprovados nas verificações conforme NBR 8800:2008 sem ressalvas.

Tabela 4-21: Verificação da coluna dianteira W 360x91 - 7 - 1,15 PP + 0,70 TCDT +
1,00 AVL.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	295	cm	
Flambagem por flexão em torno do eixo de maior inércia	295	cm	
Flambagem por torção	295	cm	
Flambagem lateral com torção	295	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-141,2	kN	
Cortante na alma	342,9	kN	
Cortante nas mesas	92,6	kN	
Momento de torção	223,8	kN cm	
Momento de flexão na menor inércia	5872,7	kN cm	
Momento de flexão na maior inércia	45976,0	kN cm	
ESFORÇOS RESISTENTES DE CÁL	CULO		
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3923,7	kN	
COMPRESSÃO			
Esbeltez da alma	33,7	_	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	7,74	—	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	3338,3	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	629,7	kN	
Cortante crítica	2409,9	kN	
Cortante resistente de cálculo	629,7	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1724,6	kN	
FLEXÃO NA MENOR INÉRCIA	4		
Momento resistente de cálculo	18251,6	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	18251,6	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	81202,8	kN cm	

FLEXÃO NA MAIOR INÉRCIA		
Momento resistente de cálculo	55706,1	kN cm
PLASTIFICAÇÃO		
Momento de plastificação da seção	56774,8	kN cm
FLAMBAGEM LOCAL DA MES	SA	
Momento crítico	341803,2	kN cm
Momento resistente característico	56774,8	kN cm
FLAMBAGEM LOCAL DA ALM	ſA	
Esbeltez correspondente a plastificação	90,5	_
Esbeltez crítica	137,2	_
Momento resistente característico	56774,8	kN cm
FLAMBAGEM LATERAL COM TORÇÃO		
Fator de modificação de diagrama de momento não-	2 14	_
uniforme	2,14	
Momento crítico	404625	kN cm
Esbeltez da barra	47,0	_
Classificação da barra	Não compacta	
Momento resistente característico	55706,1	kN cm
VERIFICAÇÕES		
Esforço axial	4%	OK
Cortante na alma	54%	OK
Cortante nas mesas	5%	OK
Momento de flexão na menor inércia	32%	OK
Momento de flexão na maior inércia	83%	OK
Esforço combinado	117%	OK

Tabela 4-21: Verificação da coluna dianteira W 360x91 – 7 – 1,15 PP + 0,70 TCDT + 1,00 AVL. (continuação)

Tabela 4-22: Verificação da coluna traseira W 200x86 - 2 - 1,40 PP + 1,05 (PMGD +
CMDO) + 1,50 TCDO.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	380	cm	
Flambagem por flexão em torno do eixo de maior inércia	156	cm	
Flambagem por torção	156	cm	
Flambagem lateral com torção	156	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-191,7	kN	
Cortante na alma	397,2	kN	
Cortante nas mesas	43,7	kN	
Momento de torção	491,1	kN cm	
Momento de flexão na menor inércia	852,0	kN cm	
Momento de flexão na maior inércia	18984,3	kN cm	
ESFORÇOS RESISTENTES DE CÁLCULO			
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3437,8	kN	
COMPRESSÃO			
Esbeltez da alma	13,9	_	
Fator de redução devido a flambagem local da alma	1,00	-	
Esbeltez da meia mesa	5,07	_	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	2377,0	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	486,5	kN	
Cortante crítica	10936,4	kN	
Cortante resistente de cálculo	442,3	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1620,4	kN	
FLEXÃO NA MENOR INÉRCIA			
Momento resistente de cálculo	14110,9	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	15522,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	161019,3	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	30527,7	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	33580,4	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	454256	kN cm	
Momento resistente característico	33580,4	kN cm	
FLAMBAGEM LOCAL DA ALM	ÍA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	33580,4	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não-	1.63		
uniforme	1,05		
Momento crítico	495668	kN cm	
Esbeltez da barra	29,2	_	
Classificação da barra	Compacta		
Momento resistente característico	33580,4	kN cm	
VERIFICAÇÕES			
Esforço axial	8%	OK	
Cortante na alma	90%	OK	
Cortante nas mesas	3%	OK	
Momento de flexão na menor inércia	6%	OK	
Momento de flexão na maior inércia	62%	OK	
Esforço combinado	72%	OK	

Tabela 4-22: Verificação da coluna traseira W 200x86 – 2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO. (continuação)

Tabela 4-23: Verificação da coluna do fuso	W 200x26,6 - 2 - 1,40 PP + 1,05 (PMGD +
CMDO) + 1	1,50 TCDO.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	110	cm	
Flambagem por flexão em torno do eixo de maior inércia	110	cm	
Flambagem por torção	110	cm	
Flambagem lateral com torção	110	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-202,1	kN	
Cortante na alma	79,9	kN	
Cortante nas mesas	5,9	kN	
Momento de torção	276,4	kN cm	
Momento de flexão na menor inércia	211,1	kN cm	
Momento de flexão na maior inércia	5048,0	kN cm	
ESFORÇOS RESISTENTES DE CÁLCULO			
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	1046,8	kN	
COMPRESSÃO			
Esbeltez da alma	32,8	—	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	7,92	_	
Fator de redução devido a flambagem local de mesa	1,00	_	
Esforço resistente de cálculo	957,1	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	228,4	kN	
Cortante crítica	923,2	kN	
Cortante resistente de cálculo	207,6	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	420,5	kN	
FLEXÃO NA MENOR INÉRCL	4		
Momento resistente de cálculo	2330,1	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	2563,1	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	10916,0	kN cm	

FLEXÃO NA MAIOR INÉRCIA			
Momento resistente de cálculo	8604,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	9464,4	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento crítico	53975,0	kN cm	
Momento resistente característico	9464,4	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Esbeltez correspondente a plastificação	90,5	_	
Esbeltez crítica	137,2	_	
Momento resistente característico	9464,4	kN cm	
FLAMBAGEM LATERAL COM TORÇÃO			
Fator de modificação de diagrama de momento não- uniforme	1,83	_	
Momento crítico	101988	kN cm	
Esbeltez da barra	35,0	_	
Classificação da barra	Compacta		
Momento resistente característico	9464,4	kN cm	
VERIFICAÇÕES			
Esforço axial	21%	OK	
Cortante na alma	39%	OK	
Cortante nas mesas	1%	OK	
Momento de flexão na menor inércia	9%	OK	
Momento de flexão na maior inércia	59%	OK	
Esforço combinado	81%	OK	

Tabela 4-23: Verificação da coluna do fuso W 200x26,6 – 2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO.(continuação)

Tabela 4-24: Verificação da viga do esticamento W 200x86 - 2 - 1,40 PP + 1,05 (PMGD
+ CMDO) + 1,50 TCDO.

COMPRIMENTOS DESTRAVADOS			
Flambagem por flexão em torno do eixo de menor inércia	380	cm	
Flambagem por flexão em torno do eixo de maior inércia	156	cm	
Flambagem por torção	380	cm	
Flambagem lateral com torção	156	cm	
ESFORÇOS SOLICITANTES DE CÁI	LCULO		
Esforço axial (>0, tração, <0, compressão)	-185,9	kN	
Cortante na alma	248,0	kN	
Cortante nas mesas	47,4	kN	
Momento de torção	508,3	kN cm	
Momento de flexão na menor inércia	5871,7	kN cm	
Momento de flexão na maior inércia	8712,9	kN cm	
ESFORÇOS RESISTENTES DE CÁLCULO			
ESFORÇO AXIAL			
TRAÇÃO			
Esforço resistente de cálculo	3437,8	kN	
COMPRESSÃO			
Esbeltez da alma	13,9	_	
Fator de redução devido a flambagem local da alma	1,00	—	
Esbeltez da meia mesa	5,07	—	
Fator de redução devido a flambagem local de mesa	1,00	—	
Esforço resistente de cálculo	2377,0	kN	
Estado limite	FLAMBAGEM I	LATERAL	
CORTANTE NA ALMA			
Força cortante de plastificação da alma	486,5	kN	
Cortante crítica	10936,4	kN	
Cortante resistente de cálculo	486,5	kN	
CORTANTE NAS MESAS			
Cortante resistente de cálculo	1620,4	kN	
FLEXÃO NA MENOR INÉRCIA	A		
Momento resistente de cálculo	14110,9	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	15522,0	kN cm	
FLAMBAGEM LOCAL DA MESA			
Momento crítico	161019,3	kN cm	

FLEXÃO NA MAIOR INÉRCIA						
Momento resistente de cálculo	30527,7	kN cm				
PLASTIFICAÇÃO						
Momento de plastificação da seção	33580,4	kN cm				
FLAMBAGEM LOCAL DA MES	SA					
Momento crítico	454256	kN cm				
Momento resistente característico	33580,4	kN cm				
FLAMBAGEM LOCAL DA ALM	ſA					
Esbeltez correspondente a plastificação	90,5	_				
Esbeltez crítica	137,2	_				
Momento resistente característico	33580,4	kN cm				
FLAMBAGEM LATERAL COM TO	RÇÃO					
Fator de modificação de diagrama de momento não- uniforme	1,75	_				
Momento crítico	530211	kN cm				
Esbeltez da barra	29,2	_				
Classificação da barra	Compacta					
Momento resistente característico	33580,4	kN cm				
VERIFICAÇÕES						
Esforço axial	8%	OK				
Cortante na alma	56%	OK				
Cortante nas mesas	3%	OK				
Momento de flexão na menor inércia	42%	OK				
Momento de flexão na maior inércia	29%	OK				
Esforço combinado	74%	OK				

Tabela 4-24: Verificação da viga do esticamento W 200x86 – 2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO.(continuação)

4.1.2.4 Verificação de ligações entre elementos estruturais

A Tabela 4-25 apresenta, em formato eletrônico editável, a verificação das ligações entre elementos estruturais do chassi do alimentador.

Tabela 4-25: Verificação conforme norma NBR 8800:2008 das ligações entre elementos estruturais do chassi.

Da Figura 4-29 à Figura 4-42 são apresentadas e identificadas as ligações parafusadas entre os elementos estruturais das guias de material do alimentador e entre seus elementos estrutural e o chassi do alimentador.

Da Tabela 4-27 à Tabela 4-70 é apresentado o dimensionamento das ligações, sendo apresentados primeiramente os esforços resistentes de cálculo e, em seguida, a verificação de estados limite últimos individuais (devido ao esforço por parafuso) e globais (verificação das soldas e rupturas das chapas) por ligação.

A Tabela 4-26 apresenta qual a combinação de carregamento mais crítica para verificação de cada uma das ligações. Os resultados aqui apresentados para cada uma das ligações correspondem apenas à combinação de carregamento crítica.

Tabela 4-26: Correlação entre ligações do chassi e respectiva combinação de carregamento crítica.

Ligação	Combinação de carregamento crítica
Ι	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
II	2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO
III	1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO
IV	1 – 1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO
V	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
VI	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
VII A	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
VII B	2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO
VIII	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
IX	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
Х	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
XI	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
XII	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL
XIII	2 – 1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDO
XIV	7 – 1,15 PP + 0,70 TCDT + 1,00 AVL

Figura 4-29: Ligação do chassi I – Ligação entre a viga longitudinal principal e a coluna da descarga.

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
			Normal	Especial	Exceptional	
Derefuses	Tração	kN	174,5	174,5	204,9	
Faratusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	270,2	270,2	317,2	
	Rasgamento entre furos	kN	391,8	391,8	460,0	
	Rasgamento de furo a borda	kN	195,9	195,9	230,0	
Chapa	Rasgamento de bloco, Cortante vertical	kN	2421,9	2421,9	2843,1	
	Ruptura por tração, Cortante vertical	kN	653,0	653,0	766,6	
	Rasgamento de bloco, Cortante horizontal	kN	3514,0	3514,0	4125,1	
	Ruptura por tração, Cortante horizontal	kN	3467,9	3467,9	4071,0	
	Metal base – Alma	kN/cm	13,6	13,6	15,0	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solda	Metal base – Mesa	kN/cm	13,6	13,6	15,0	
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8	

Tabela 4-27: Ligação do chassi I – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	cional	Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	137,1	85,1	67%	62%	91%	27%	18%	37%
2	31,0	27,1	15%	20%	25%	9%	6%	12%
3	18,7	18,3	9%	13%	16%	6%	4%	8%
4	14,6	19,7	7%	14%	16%	6%	4%	9%
5	9,9	8,9	5%	7%	8%	3%	2%	4%
6	7,5	13,7	4%	10%	11%	4%	3%	6%
7	8,9	19,8	4%	14%	15%	6%	4%	9%
8	42,0	103,3	21%	76%	78%	33%	22%	45%

Tabela 4-28: Ligação do chassi I – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-29: Ligação do chassi I – Verificação por estado limite último global.

Tensão de cisalh	198,8	
Utilização	Metal de base	96%
	Metal de solda	81%
Tensão de cisalha	amento máxima na mesa [MPa]	180,8
114:1:	Metal de base	87%
Umzação	Metal de solda	74%

Figura 4-30: Ligação do chassi II – Ligação entre a base do tambor de descarga e a coluna.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Derefuces	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	227,6	227,6	267,1	
	Rasgamento entre furos	kN	534,8	534,8	627,8	
Chapa	Rasgamento de furo a borda	kN	278,8	278,8	327,2	
	Rasgamento de bloco, Cortante vertical	kN	3015,1	3015,1	3539,5	
	Ruptura por tração, Cortante vertical	kN	1005,0	1005,0	1179,8	
	Rasgamento de bloco, Cortante horizontal	kN	4251,5	4251,5	4990,9	
	Ruptura por tração, Cortante horizontal	kN	4048,6	4048,6	4752,7	
	Metal base – Alma	kN/cm	13,6	13,6	15,0	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solda	Metal base – Mesa	kN/cm	13,6	13,6	15,0	
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8	

Tabela 4-30: Ligação do chassi II – Esforços resistentes de cálculo.

120

Parafuso	1,40 PP + 1,05 (PMGD + CMDO) + 1,50 TCDONormalEsforço axialEsforço cortante		Utilização Parafusos Tração Cisalhamento Combinado Pressão 1			Chapa Rasgamento	Rasgamento de furo a	
	[kN]	[kN]				contato		borda
1	3,2	18,7	2%	16%	16%	7%	5%	10%
2	15,9	20,1	9%	17%	20%	7%	5%	10%
3	30,5	12,0	17%	10%	20%	4%	3%	6%
4	30,9	4,6	18%	4%	18%	2%	1%	2%
5	71,7	13,5	41%	12%	43%	5%	3%	7%
6	78,7	17,5	45%	15%	48%	6%	4%	9%
7	90,5	6,0	52%	5%	52%	2%	2%	3%
8	104,9	4,3	60%	4%	60%	2%	1%	2%
9	91,2	25,7	52%	22%	57%	10%	7%	13%
10	107,2	28,5	61%	25%	66%	11%	7%	15%
11	52,7	43,4	30%	37%	48%	16%	11%	22%
12	53,5	46,7	31%	40%	50%	17%	12%	24%
13	98,0	41,6	56%	36%	67%	15%	11%	21%
14	112,6	38,8	65%	33%	73%	14%	10%	20%
15	3,2	18,7	2%	16%	16%	7%	5%	10%
16	15,9	20,1	9%	17%	20%	7%	5%	10%

Tabela 4-31: Ligação do chassi II – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-32: Ligação do chassi II – Verificação por estado limite último global.

Tensão de cisalh	196,6				
Utilização	Metal de base	104%			
	Metal de solda	94%			
Tensão de cisalh	Tensão de cisalhamento máxima na mesa [MPa]				
Litilização	Metal de base	106%			
Utilização	Metal de solda	96%			

Figura 4-31: Ligação do chassi III – Ligação de emenda da viga longitudinal principal. Tabela 4-33: Ligação do chassi III – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Demofração	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	270,2	270,2	317,2	
	Rasgamento entre furos	kN	391,8	391,8	460,0	
Chapa	Rasgamento de furo a borda	kN	195,9	195,9	230,0	
	Rasgamento de bloco, Cortante vertical	kN	2046,9	2046,9	2402,9	
	Ruptura por tração, Cortante vertical	kN	653,0	653,0	766,6	
	Rasgamento de bloco, Cortante horizontal	kN	2889,1	2889,1	3391,6	
	Ruptura por tração, Cortante horizontal	kN	2758,5	2758,5	3238,3	
	Metal base – Alma	kN/cm	13,6	13,6	15,0	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solda	Metal base – Mesa	kN/cm	13,6	13,6	15,0	
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8	

Tabela 4-55. Engação do chassi III – Estorços resistentes de carculo.

Tabela 4-34: Ligação do chassi III – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Parafuso	1,40 PP + 1,50 (PMGD + CMDO) + 1,05 TCDO		Utilização					
	Nor	mal		Parafusos	5		Chapa	
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	104,9	4,2	60%	4%	60%	2%	1%	2%
2	105,6	4,8	61%	4%	61%	2%	1%	2%
3	66,9	3,2	38%	3%	38%	1%	1%	2%
4	65,6	4,7	38%	4%	38%	2%	1%	2%
5	55,9	3,0	32%	3%	32%	1%	1%	2%
6	55,1	4,9	32%	4%	32%	2%	1%	2%
7	65,4	2,2	37%	2%	38%	1%	1%	1%
8	68,2	4,2	39%	4%	39%	2%	1%	2%

Tabela 4-35: Ligação do chassi III – Verificação por estado limite último global.

Tensão de cisalha	194,2	
Utilização	Metal de base	94%
	Metal de solda	79%
Tensão de cisalha	194,7	
Utilização	Metal de base	94%
	Metal de solda	79%

Figura 4-32: Ligação do chassi IV – Ligação da chapa de base da coluna da descarga no truque das rodas dianteiras.

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
			Normal	Especial	Excepcional	
Derefuses	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	524,4	524,4	615,7	
Chapa	Rasgamento de furo a borda	kN	173,3	173,3	203,5	
	Rasgamento de bloco, Cortante vertical	kN	2203,0	2203,0	2586,1	
	Ruptura por tração, Cortante vertical	kN	1429,6	1429,6	1678,3	
	Rasgamento de bloco, Cortante horizontal	kN	2300,7	2300,7	2700,9	
	Ruptura por tração, Cortante horizontal	kN	1748,1	1748,1	2052,2	
	Metal base – Alma	kN/cm	13,0	13,0	14,3	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solua	Metal base – Mesa	kN/cm	22,4	22,4	24,6	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-36: Ligação do chassi IV – Esforços resistentes de cálculo.

Tabela 4-37: Ligação do chassi IV – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Parafuso	1,40 PP (PMC CMD 1,05 T	9 + 1,50 GD + OO) + CCDO	Utilização					
	Exceptional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	3,5	8,6	2%	7%	8%	5%	1%	5%
2	4,0	9,5	2%	8%	9%	5%	1%	6%
3	3,8	7,9	2%	7%	7%	4%	1%	5%
4	4,2	8,8	2%	8%	8%	5%	1%	5%

Tabela 4-38: Ligação do chassi IV – Verificação por estado limite último global.

Tensão de cisalha	129,2				
Utilização	Metal de base	86%			
	Metal de solda	69%			
Tensão de cisalha	Tensão de cisalhamento máxima na mesa [MPa]				
Litilização	Metal de base	66%			
Otinzação	Metal de solda	76%			

Figura 4-33: Ligação do chassi V – Ligação entre os apoios da viga longitudinal principal e os truques das rodas intermediárias.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Excepcional	
Derefuses	Tração	kN	174,5	174,5	204,9	
Paratusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	524,4	524,4	615,7	
	Rasgamento de furo a borda	kN	173,3	173,3	203,5	
CI	Rasgamento de bloco, Cortante vertical	kN	2203,0	2203,0	2586,1	
Спара	Ruptura por tração, Cortante vertical	kN	1429,6	1429,6	1678,3	
	Rasgamento de bloco, Cortante horizontal	kN	2300,7	2300,7	2700,9	
	Ruptura por tração, Cortante horizontal	kN	1748,1	1748,1	2052,2	
	Metal base – Alma	kN/cm	10,9	10,9	12,0	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
	Metal base – Mesa	kN/cm	10,9	10,9	12,0	
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8	

Tabela 4-39: Ligação do chassi V – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	cional	Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	2,1	23,2	1%	17%	17%	11%	4%	11%
2	2,0	19,7	1%	14%	14%	9%	3%	10%
3	0,2	12,5	0%	9%	9%	6%	2%	6%
4	0,5	17,2	0%	13%	13%	8%	3%	8%

Tabela 4-40: Ligação do chassi V – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-41: Ligação do chassi V – Verificação por estado limite último global.

Tensão de cisalha	145,4	
Utilização	Metal de base	97%
	Metal de solda	65%
Tensão de cisalha	147,5	
Utilização	Metal de base	98%
	Metal de solda	66%

Figura 4-34: Ligação do chassi VI – Ligação entre os apoios da viga longitudinal principal e os truques das rodas intermediárias mais traseiras.

			Resistência de cálculo por tipo de				
Elemento	Estados limite	Unidade	combinação				
			Normal	Especial	Exceptional		
Derefuses	Tração	kN	174,5	174,5	204,9		
Paratusos	Cisalhamento	kN	116,4	116,4	136,6		
	Pressão de contato	kN	177,8	177,8	208,7		
	Rasgamento entre furos	kN	524,4	524,4	615,7		
CI	Rasgamento de furo a borda	kN	173,3	173,3	203,5		
	Rasgamento de bloco, Cortante vertical	kN	2203,0	2203,0	2586,1		
Спара	Ruptura por tração, Cortante vertical	kN	1429,6	1429,6	1678,3		
	Rasgamento de bloco, Cortante horizontal	kN	2300,7	2300,7	2700,9		
	Ruptura por tração, Cortante horizontal	kN	1748,1	1748,1	2052,2		
	Metal base – Alma	kN/cm	21,8	21,8	24,0		
C . 1.1.	Metal de solda – Alma	kN/cm	21,2	21,2	24,9		
Solda	Metal base – Mesa	kN/cm	21,8	21,8	24,0		
	Metal de solda – Mesa	kN/cm	21,2	21,2	24,9		

Tabela 4-42: Ligação do chassi VI – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso Excepcional			Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	1,8	28,5	1%	21%	21%	14%	5%	14%
2	0,7	19,9	0%	15%	15%	10%	3%	10%
3	1,0	9,8	1%	7%	7%	5%	2%	5%
4	0,4	18,3	0%	13%	13%	9%	3%	9%

Tabela 4-43: Ligação do chassi VI – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-44: Ligação do chassi VI – Verificação por estado limite último global.

Tensão de cisalha	137,7	
Utilização	Metal de base	92%
	Metal de solda	88%
Tensão de cisalha	124,0	
Utilização	Metal de base	83%
	Metal de solda	80%

Figura 4-35: Ligações do chassi VII A e B – Ligações entre o pórtico do esticamento da correia e os truques das rodas traseiras.

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
			Normal	Especial	Excepcional	
Derefuses	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	524,4	524,4	615,7	
	Rasgamento de furo a borda	kN	173,3	173,3	203,5	
Chapa	Rasgamento de bloco, Cortante vertical	kN	2203,0	2203,0	2586,1	
	Ruptura por tração, Cortante vertical	kN	1429,6	1429,6	1678,3	
	Rasgamento de bloco, Cortante horizontal	kN	2300,7	2300,7	2700,9	
	Ruptura por tração, Cortante horizontal	kN	1748,1	1748,1	2052,2	
	Metal base – Alma	kN/cm	17,0	17,0	18,8	
Solda	Metal de solda – Alma	kN/cm	18,2	18,2	21,4	
Solda	Metal base – Mesa	kN/cm	17,0	17,0	18,8	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-45: Ligação do chassi VII A – Esfor	ços resistentes de cálculo.
--	-----------------------------

	1,20 PP + 1,00 AVL		Utilização					
Parafuso Excepcio		cional	Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	37,7	6,0	18%	4%	19%	3%	1%	3%
2	45,8	13,9	22%	10%	25%	7%	2%	7%
3	32,0	4,1	16%	3%	16%	2%	1%	2%
4	24,7	8,3	12%	6%	13%	4%	1%	4%

Tabela 4-46: Ligação do chassi VII A – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-47: Ligação do chassi VII A – Verificação por estado limite último global.

Tensão de cisalha	124,6	
Utilização	Metal de base	83%
	Metal de solda	73%
Tensão de cisalha	82,8	
Utilização	Metal de base	55%
	Metal de solda	48%

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Derefuces	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	524,4	524,4	615,7	
Chapa	Rasgamento de furo a borda	kN	173,3	173,3	203,5	
	Rasgamento de bloco, Cortante vertical	kN	2727,4	2727,4	3201,7	
	Ruptura por tração, Cortante vertical	kN	1429,6	1429,6	1678,3	
	Rasgamento de bloco, Cortante horizontal	kN	3174,8	3174,8	3727,0	
	Ruptura por tração, Cortante horizontal	kN	2622,2	2622,2	3078,3	
	Metal base – Alma	kN/cm	17,0	17,0	18,8	
Solda	Metal de solda – Alma	kN/cm	18,2	18,2	21,4	
Solua	Metal base – Mesa	kN/cm	17,0	17,0	18,8	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-48: Ligação do chassi VII B – Esforços resistentes de cálculo.

Parafuso	1,40 PP (PMC CMD 1,50 T	9 + 1,05 GD + O) + CCDO	Utilização					
	Excep	cional		Parafusos Chapa				
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	16,5	15,4	9%	13%	16%	9%	3%	9%
2	3,2	14,2	2%	12%	12%	8%	3%	8%
3	4,6	9,9	3%	8%	9%	6%	2%	6%
4	2,1	4,9	1%	4%	4%	3%	1%	3%
5	2,6	17,7	1%	15%	15%	10%	3%	10%
6	6,2	36,3	4%	31%	31%	20%	7%	21%
7	11,3	77,7	6%	67%	67%	44%	15%	45%
8	7,9	50,0	5%	43%	43%	28%	10%	29%
9	9,0	18,8	5%	16%	17%	11%	4%	11%
10	4,7	5,8	3%	5%	6%	3%	1%	3%
11	4,1	28,3	2%	24%	24%	16%	5%	16%
12	7,7	69,8	4%	60%	60%	39%	13%	40%

Tabela 4-49: Ligação do chassi VII B – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-50: Ligação do chassi VII B – Verificação por estado limite último global
--

Tensão de cisalha	Tensão de cisalhamento máxima na alma [MPa]				
Litilização	Metal de base	83%			
Utilização	Metal de solda	73%			
Tensão de cisalha	122,7				
Litilização	Metal de base	90%			
Utilização	Metal de solda	84%			

Figura 4-36: Ligação do chassi VIII – Ligação da viga central que suporta os roletes de carga sem material.

			Resistência de cálculo por tipo de				
Elemento	Estados limite	Unidade	combinação				
			Normal	Especial	Exceptional		
Derefuces	Tração	kN	89,4	89,4	104,9		
Faralusos	Cisalhamento	kN	44,7	44,7	52,5		
	Pressão de contato	kN	113,8	113,8	133,6		
	Rasgamento entre furos	kN	167,1	167,1	196,2		
Chapa	Rasgamento de furo a borda	kN	39,1	39,1	45,9		
	Rasgamento de bloco, Cortante vertical	kN	504,3	504,3	592,0		
	Ruptura por tração, Cortante vertical	kN	284,4	284,4	333,9		
	Rasgamento de bloco, Cortante horizontal	kN	590,8	590,8	693,6		
	Ruptura por tração, Cortante horizontal	kN	483,0	483,0	567,0		
0.11	Metal base – Alma	kN/cm	7,9	7,9	8,7		
	Metal de solda – Alma	kN/cm	9,1	9,1	10,7		
Solda	Metal base – Mesa	kN/cm	11,5	11,5	12,6		
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8		

	1,20 PP AV	9 + 1,00 7L	Utilização					
Parafuso	Excep	cional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	65,1	5,8	62%	11%	63%	4%	3%	13%
2	39,7	7,8	38%	15%	41%	6%	4%	17%
3	22,4	14,6	21%	28%	35%	11%	7%	32%
4	45,9	1,8	44%	3%	44%	1%	1%	4%
5	80,8	20,8	77%	40%	87%	16%	11%	45%
6	39,0	16,5	37%	32%	49%	12%	8%	36%
7	18,3	14,8	17%	28%	33%	11%	8%	32%
8	42,6	7,0	41%	13%	43%	5%	4%	15%

Tabela 4-52: Ligação do chassi VIII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-53: Ligação do chassi VIII – Verificação por estado limite último global.

Tensão de cisalha	198,9	
Litilização	Metal de base	96%
Utilização	Metal de solda	78%
Tensão de cisalha	217,2	
I 14:1:====?=	Metal de base	105%
Utilização	Metal de solda	74%

Figura 4-37: Ligação do chassi IX - L	igação da	viga central	que suporta	os roletes de
	extração.			

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
			Normal	Especial	Excepcional	
Derefuses	Tração	kN	174,5	174,5	204,9	
Paralusos	Cisalhamento	kN	116,4	116,4	136,6	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	257,8	257,8	302,6	
	Rasgamento de furo a borda	kN	62,2	62,2	73,0	
Chapa	Rasgamento de bloco, Cortante vertical	kN	887,4	887,4	1041,7	
	Ruptura por tração, Cortante vertical	kN	466,7	466,7	547,8	
	Rasgamento de bloco, Cortante horizontal	kN	1115,6	1115,6	1309,6	
	Ruptura por tração, Cortante horizontal	kN	963,0	963,0	1130,4	
	Metal base – Alma	kN/cm	10,8	10,8	11,9	
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solua	Metal base – Mesa	kN/cm	17,9	17,9	19,7	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-54: Ligação do chassi IX – Esforços resistentes de cálculo.

	1,20 PP AV	9 + 1,00 7L	Utilização					
Parafuso	Excep	cional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	67,1	29,8	33%	22%	39%	14%	10%	41%
2	16,1	35,1	8%	26%	27%	17%	12%	48%
3	4,1	33,2	2%	24%	24%	16%	11%	45%
4	14,2	32,9	7%	24%	25%	16%	11%	45%
5	27,3	15,6	13%	11%	18%	7%	5%	21%
6	43,8	32,3	21%	24%	32%	15%	11%	44%
7	14,0	31,1	7%	23%	24%	15%	10%	43%
8	4,8	31,9	2%	23%	23%	15%	11%	44%

Tabela 4-55: Ligação do chassi IX – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-56: Ligação do chassi IX – Verificação por estado limite último global.

Tensão de cisalha	196,4	
Litilização	Metal de base	95%
Utilização	Metal de solda	63%
Tensão de cisalha	207,7	
I I4:1:	Metal de base	100%
Utilização	Metal de solda	92%

Figura 4-38: Ligação do chassi X – Ligação da viga central que suporta os roletes de carga.

			Resistência de cálculo por tipo de				
Elemento	Estados limite	Unidade	combinação				
			Normal	Especial	Excepcional		
Derefuses	Tração	kN	174,5	174,5	204,9		
Faratusos	Cisalhamento	kN	116,4	116,4	136,6		
	Pressão de contato	kN	177,8	177,8	208,7		
	Rasgamento entre furos	kN	257,8	257,8	302,6		
	Rasgamento de furo a borda	kN	62,2	62,2	73,0		
Chapa	Rasgamento de bloco, Cortante vertical	kN	887,4	887,4	1041,7		
	Ruptura por tração, Cortante vertical	kN	466,7	466,7	547,8		
	Rasgamento de bloco, Cortante horizontal	kN	1115,6	1115,6	1309,6		
	Ruptura por tração, Cortante horizontal	kN	963,0	963,0	1130,4		
	Metal base – Alma	kN/cm	9,4	9,4	10,4		
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8		
Solua	Metal base – Mesa	kN/cm	13,4	13,4	14,7		
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8		

Tabela 4-57: Ligação do chassi X – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização						
Parafuso	Excep	Exceptional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	97,4	33,0	48%	24%	53%	16%	11%	45%	
2	40,1	42,6	20%	31%	37%	20%	14%	58%	
3	30,0	41,2	15%	30%	34%	20%	14%	56%	
4	28,2	36,8	14%	27%	30%	18%	12%	50%	
5	69,5	14,0	34%	10%	35%	7%	5%	19%	
6	102,7	29,7	50%	22%	55%	14%	10%	41%	
7	15,0	19,6	7%	14%	16%	9%	6%	27%	
8	41,6	39,0	20%	29%	35%	19%	13%	53%	

Tabela 4-58: Ligação do chassi X – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-59: Ligação do chassi X – Verificação por estado limite último global.

Tensão de cisalha	196,9	
Utilização	Metal de base	95%
	Metal de solda	55%
Tensão de cisalha	212,6	
Utilização	Metal de base	103%
	Metal de solda	85%

Figura 4-39: Ligação do chassi XI – Ligação entre a viga transversal e a viga longitudinal principal.

			Resistência de cálculo por tipo de				
Elemento	Estados limite	Unidade	combinação				
			Normal	Especial	Excepcional		
Derefuses	Tração	kN	174,5	174,5	204,9		
Faralusos	Cisalhamento	kN	116,4	116,4	136,6		
	Pressão de contato	kN	177,8	177,8	208,7		
	Rasgamento entre furos	kN	257,8	257,8	302,6		
	Rasgamento de furo a borda	kN	62,2	62,2	73,0		
Chapa	Rasgamento de bloco, Cortante vertical	kN	887,4	887,4	1041,7		
	Ruptura por tração, Cortante vertical	kN	466,7	466,7	547,8		
	Rasgamento de bloco, Cortante horizontal	kN	1115,6	1115,6	1309,6		
	Ruptura por tração, Cortante horizontal	kN	963,0	963,0	1130,4		
	Metal base – Alma	kN/cm	9,4	9,4	10,4		
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8		
Solua	Metal base – Mesa	kN/cm	13,4	13,4	14,7		
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8		

Tabela 4-60: Ligação do chassi XI – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excepcional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	95,0	48,0	46%	35%	58%	23%	16%	66%
2	59,8	40,4	29%	30%	42%	19%	13%	55%
3	46,4	35,6	23%	26%	35%	17%	12%	49%
4	45,9	29,2	22%	21%	31%	14%	10%	40%
5	37,6	16,3	18%	12%	22%	8%	5%	22%
6	89,1	37,7	43%	28%	52%	18%	12%	52%
7	60,4	37,9	29%	28%	40%	18%	13%	52%
8	47,2	35,6	23%	26%	35%	17%	12%	49%

Tabela 4-61: Ligação do chassi XI – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-62: Ligação do chassi XI – Verificação por estado limite último global.

Tensão de cisalha	199,3	
Utilização	Metal de base	96%
	Metal de solda	56%
Tensão de cisalha	197,1	
I 14:1:====?=	Metal de base	95%
Utilização	Metal de solda	79%

Figura 4-40: Ligação do chassi XII – Ligação da travessa entre colunas. Tabela 4-63: Ligação do chassi XII – Esforços resistentes de cálculo.

			Resistência de cálculo por tipo de				
Elemento	Estados limite	Unidade	combinação				
			Normal	Especial	Exceptional		
Derefuses	Tração	kN	139,6	139,6	163,9		
Faralusos	Cisalhamento	kN	69,8	69,8	82,0		
	Pressão de contato	kN	113,8	113,8	133,6		
	Rasgamento entre furos	kN	250,3	250,3	293,8		
Chapa	Rasgamento de furo a borda	kN	139,4	139,4	163,6		
	Rasgamento de bloco, Cortante vertical	kN	436,1	436,1	512,0		
	Ruptura por tração, Cortante vertical	kN	232,3	232,3	272,7		
	Rasgamento de bloco, Cortante horizontal	kN	556,6	556,6	653,4		
	Ruptura por tração, Cortante horizontal	kN	649,5	649,5	762,4		

	1,20 PP + 1,00 AVL		Utilização					
Parafuso Excepcional			Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	5,6	37,6	3%	46%	46%	28%	13%	23%
2	0,2	20,8	0%	25%	25%	16%	7%	13%
3	2,3	62,0	1%	76%	76%	46%	21%	38%

Tabela 4-64: Ligação do chassi XII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Figura 4-41: Ligação do chassi XIII – Ligação entre a viga e coluna do pórtico do esticamento.

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
Elemento Parafusos			Normal	Especial	Excepcional	
Derefuses	Tração	kN	89,4	89,4	104,9	
Paralusos	Cisalhamento	kN	44,7	44,7	52,5	
	Pressão de contato	kN	113,8	113,8	133,6	
	Rasgamento entre furos	kN	220,4	220,4	258,8	
	Rasgamento de furo a borda	kN	56,9	56,9	66,8	
Chapa	Rasgamento de bloco, Cortante vertical	kN	759,7	759,7	891,8	
	Ruptura por tração, Cortante vertical	kN	397,0	397,0	466,1	
	Rasgamento de bloco, Cortante horizontal	kN	956,4	956,4	1122,8	
	Ruptura por tração, Cortante horizontal	kN	829,6	829,6	973,9	
	Metal base – Alma	kN/cm	7,9	7,9	8,7	
Solda	Metal de solda – Alma	kN/cm	9,1	9,1	10,7	
Solua	Metal base – Mesa	kN/cm	11,5	11,5	12,6	
	Metal de solda – Mesa	kN/cm	15,2	15,2	17,8	

Tabela 4-65: Ligação do chassi XIII – Esforços resistentes de cálculo.

Tabela 4-66: Ligação do chassi XIII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Parafuso	1,40 PP (PMC CMD 1,50 T	9 + 1,05 GD + O) + CCDO	Utilização					
	Exceptional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	48,5	17,5	54%	39%	67%	15%	8%	31%
2	51,4	19,6	58%	44%	72%	17%	9%	35%
3	27,9	14,9	31%	33%	46%	13%	7%	26%
4	31,6	17,4	35%	39%	53%	15%	8%	31%

Tabela 4-67: Ligação do chassi XIII – Verificação por estado limite último global.

Tensão de cisalha	100,9	
Utilização	Metal de base	49%
	Metal de solda	40%
Tensão de cisalha	177,5	
Litilização	Metal de base	86%
Utilização	Metal de solda	61%

			Resistência de cálculo por tipo d				
Elemento	Estados limite	Unidade		combinação			
			Normal	Especial	Exceptional		
Dorofusos	Tração	kN	32579,5	32579,5	38245,5		
Paralusos	Cisalhamento	kN	10821,0	10821,0	12703,0		
	Pressão de contato	kN	711,1	711,1	834,8		
Chapa	Rasgamento de furo a borda	kN	885,3	885,3	1039,3		
Solda	Metal base	kN/cm	13,6	13,6	15,0		
	Metal de solda	kN/cm	15,2	15,2	17,8		

Tabela 4-68: Ligação do chassi XIV – Esforços res	sistentes de	cálculo.
---	--------------	----------

	1,20 PP + 1,00 AVL		Utilização				
Pino	Excep	ocional		Parafusos		Chapa	
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento de furo a borda
1	7,3	485,2	0%	4%	4%	68%	55%

Tabela 4-69: Ligação do chassi XIV – Esforços solicitantes de cálculo do pino e utilização por estado limite último individual.

Tabela 4-70: Ligação do chassi XIV – Verificação por estado limite último global.

Tensão de cisalha	130,6	
Utilização	Metal de base	96%
	Metal de solda	86%

4.2 Dimensionamento das guias de material

Para dimensionamento das guias de material, a combinação de carregamento representativa do evento de avalanche (7 - 1,15 PP + 0,70 TCDT + 1,00 AVL) mostrou-se a mais crítica.

4.2.1 Modelo em elementos finitos

4.2.1.1 Geometria

A Figura 4-43 apresenta as principais dimensões da guia de material, a Figura 4-44 apresenta os materiais utilizados na guia de material e a Figura 4-45 apresenta as espessuras de chapa e perfis especificados.

Figura 4-44: Materiais especificados no modelo da guia de material.

Figura 4-45: Espessuras de chapas e perfis da guia de material.

4.2.1.2 Malha

A Figura 4-46 apresenta alguns dos detalhes da malha gerada no modelo da guia de material, enquanto a Tabela 4-71 apresenta o resumo dos dados relativos à malha.

Figura 4-46: Malha de elementos finitos da guia de material.

Ordem dos elementos	Linear		
Tamanho de elemento	22,5 mm		
Tamanho mínimo de curvatura	3 mm		
Quantidade de nós	286.585	286.585	
Quantidade de elementos	279.857		
	Mínima	0,1283	
Qualidada das alamantas	Máxima	0,9999	
Qualidade dos elementos	Média	0,8739	
	Desvio padrão	0,1311	

4.2.1.3 Condições de contorno

Foram aplicadas duas condições de contorno no modelo da guia de material.

Uma condição de simetria, representada na Figura 4-47, em que foram restritos o deslocamento no eixo Y e as rotações em torno dos eixos X e Z dos nós contidos nas arestas selecionadas, dadas pela intersecção da estrutura com seu plano médio. E uma condição de engastamento (restrição dos 3 deslocamentos e das 3 rotações dos nós nas arestas selecionadas), representada na Figura 4-48, nas soldas das nervuras transversais da viga principal do alimentador que participam de sua ligação com a guia de material.

Figura 4-47: Condição de contorno de simetria no plano médio da guia de material.

Figura 4-48: Condição de contorno de engastamento das nervuras da viga principal do alimentador que participam da ligação com os suportes da guia de material.

4.2.1.4 Ações permanentes

As únicas ações permanentes atuantes nas guias de material são o peso próprio estrutural e o peso das chapas de revestimento interno da guia, de 158 kg/m², conforme Tabela 3-2.

4.2.1.5 Ações variáveis

A Figura 4-49 apresenta a aplicação do carregamento devido à avalanche no modelo da guia de material. Deve-se destacar que se considerou que as paredes laterais do chute de extração do alimentador encobrem parte da guia na região de extração, evitando que o material a atinja.

Figura 4-49: Aplicação do carregamento devido à avalanche no modelo da guia de material.

4.2.2 Dimensionamento

4.2.2.1 Análise de tensões

A Figura 4-50 apresenta o estado de tensões equivalentes de Von Mises e a deformada, em escala 1:4, da guia de material durante evento de avalanche.

Figura 4-50: Estado de tensões equivalentes de Von Mises e deformada (1:4) da guia de material durante evento de avalanche.

A região com maiores deslocamentos e maiores solicitações é a transição entre a região de extração do alimentador e a região de carga do alimentador. Isto ocorre pela diferença de rigidez entre os módulos utilizados no projeto dos trechos, sendo o trecho de carga mais rígido devido à cobertura conectando as guias de ambos os lados do alimentador, enquanto os módulos da região de extração de material trabalham como estruturas em balanço.

Os níveis de tensão nos perfis, de forma geral, indicam bom aproveitamento da resistência dos materiais empregados. Já o nível de tensão nas chapas, em especial da guia em si, é relativamente baixo e é indicativo de níveis de deformação plástica reduzida. Alguns componentes estruturais não puderam ser melhor otimizados devido a restrições construtivas de elementos não-estruturais e por exigências da empresa dona do equipamento.

A Figura 4-51 e a Figura 4-52 apresentam o estado de tensões equivalentes de Von Mises nos perfis caixa soldados e nas chapas, em aço ASTM A36, que compõem a própria guia de material, a cobertura na região de carga, as chapas de ligação e nervuras transversais de perfis e os suportes da guia na região de extração, com destaques para as regiões críticas quanto ao nível de solicitação: a parte inferior dos suportes, a guia e sua nervura em cantoneira no último módulo da região de extração e tanto guia quanto cobertura do primeiro módulo da

Figura 4-51: Estado de tensões equivalentes de Von Mises nas chapas e cantoneiras da guia (aço ASTM A36) com destaques para regiões mais críticas – Parte I.

Figura 4-52: Estado de tensões equivalentes de Von Mises nas chapas e cantoneiras da guia (aço ASTM A36) com destaques para regiões mais críticas – Parte II.

A Figura 4-74 apresenta o estado de tensões equivalentes de Von Mises nos perfis laminados, em aço ASTM A572 Gr50, os suportes da região de extração, os suportes da região de carga e parte das nervuras tanto da guia quanto da cobertura, com destaque para a região de maior solicitação, sendo os perfis do primeiro módulo da região de carga. O relativo baixo aproveitamento dos perfis se justifica por questões de padronização de perfis, tamanhos mínimos dos perfis para montagem das ligações parafusadas e bitola mínima disponível em perfil laminado (no caso das nervuras em perfil WT 150x13,0).

Figura 4-53: Estado de tensões equivalentes de Von Mises em perfis I laminados e chapas da guia (aço ASTM A572 Gr50) com destaques para regiões mais críticas.

4.2.2.2 Análise de deformações

A Figura 4-54 apresenta as deformações plásticas calculadas nos perfis e chapas em aço ASTM A36 da guia de material do alimentador com destaque para as regiões mais críticas.

A máxima deformação plástica calculada para os perfis que suportam a guia de material na região de extração (destaque A) é de 3,2%, no encontro entre alma e mesa do perfil caixa soldado, próximo à sua ligação com a estrutura principal do alimentador, estando aprovada na análise de deformações.

Já no destaque B, percebe-se regiões de deformação plástica nas nervuras em cantoneira no centro do vão do módulo. Estas deformações plásticas estão limitadas a 5,0% de forma pontual. É previsto o início de formação de uma rótula plástica (uma vez que foram calculadas deformações plásticas ao longo de toda a seção transversal da cantoneira neste ponto), entretanto, esta não atinge níveis correspondentes ao começo da falha do perfil (seja local seja globalmente).

No destaque C ocorre uma linha, correspondente à solda da mesa do perfil de suporte à chapa da chapa, com deformações plásticas superiores a 15%. A região em que a deformação plástica excede 5% limita-se a 28,5mm além da largura da mesa do perfil totalizando um comprimento de 190mm, com largura de 25mm, em que os níveis de deformação plástica não são aceitáveis conforme critério de aceitação. A região que excede 5% de deformação plástica também se estende entre os 2 furos dos parafusos mais próximos na ligação entre a guia e cobertura.

Todavia, prosseguiu-se com o projeto com este dimensionamento por algumas razões: a) ser uma região de *hot-spot*, em que a modelagem em elementos finitos e a avaliação dos níveis de tensão e deformação precisaria de ser mais criteriosa (levando a resultados menos conservadores); b) o conservadorismo implícito na aplicação das máximas pressões nas regiões de extração e carga em todos os módulos da guia simultaneamente; c) a necessidade de padronização entre os módulos da guia.

Desta forma, a região deve ser incluída dentre aquelas mais cuidadosamente inspecionadas após um evento de avalanche e provavelmente necessitará de reparos. Não se entende haver risco de colapso generalizado ou risco à vida, entretanto.

Figura 4-54: Deformações plásticas calculadas nas chapas (aço ASTM A36) com destaques para regiões mais críticas.

A Figura 4-55 apresenta as deformações plásticas calculadas nos perfis em aço ASTM A572, com destaque para as 3 regiões mais críticas. Em todas as 3, as deformações plásticas calculadas excedem 4% (6,1% na região A, 16,0% na região B, 4,8% na região C), referência para começo da falha por plastificação global, mas são bastante reduzidas e, portanto, podem ser avaliadas apenas quanto ao surgimento de trincas localizadas.

Apenas o detalhe B apresenta níveis de deformação plástica superiores a 12%. Os mesmos pontos levantados quanto aos níveis de deformação plástica observados na chapa da guia ao longo de sua solda com o perfil de suporte se aplicam e, portanto, mantém-se a conclusão de que o detalhe deve ser inspecionado cuidadosamente após eventos de avalanche, provavelmente sendo necessário seu reparo.

Figura 4-55: Deformações plásticas calculadas nos perfis I laminados (aço ASTM A572 Gr50) com destaques para regiões mais críticas.

4.2.2.3 Verificação de perfis estruturais

A Figura 4-56 apresenta os perfis estruturais da guia de material verificados analiticamente conforme norma nacional.

A Tabela 4-72 apresenta, em formato eletrônico editável, a verificação dos perfis dos suportes da guia de material destacados na Figura 4-56. Foram considerados comprimentos livres de flambagem iguais às distâncias entre os centros das ligações dos perfis. Para os perfis I que suportam a guia na região de extração de material, também se considerou um fator de comprimento efetivo a torção de 0,5, uma vez que a rotação das mesas dos perfis é impedida pelas ligações com o restante da estrutura.

Tabela 4-72: Verificação conforme norma NBR 8800:2008 dos perfis de suporte da guiade material.

A Tabela 4-73 apresenta o resumo da verificação do perfil W 200 x 26,6 (aço ASTM A572 Gr50) crítico, sendo este primeiro suporte da guia na região de carga de material.

Tabela 4-73: Verificação do perfil W 200 x 26,6 crítico (primeiro suporte da região de carga).

COMPRIMENTOS DESTRAVADOS				
Flambagem por flexão em torno do eixo de menor inércia	160	cm		
Flambagem por flexão em torno do eixo de maior inércia	160	cm		
Flambagem por torção	80	cm		
Flambagem lateral com torção	160	cm		
ESFORÇOS SOLICITANTES DE CÁI	LCULO			
Esforço axial (>0, tração, <0, compressão)	-56,0	kN		
Cortante na alma	41,5	kN		
Cortante nas mesas	2,8	kN		
Momento de torção	129,7	kN cm		
Momento de flexão na menor inércia	365,5	kN cm		
Momento de flexão na maior inércia	7625,6	kN cm		
ESFORÇOS RESISTENTES DE CÁL	CULO			
ESFORÇO AXIAL				
TRAÇÃO				
Esforço resistente de cálculo	1151,5	kN		
COMPRESSÃO				
Esbeltez da alma	32,8	_		
Fator de redução devido a flambagem local da alma	1,00	_		
Esbeltez da meia mesa	7,92	_		
Fator de redução devido a flambagem local de mesa	1,00	_		
Esforço resistente de cálculo	952,6	kN		
Estado limite	FLAMBAGEM I	LATERAL		
CORTANTE NA ALMA				
Força cortante de plastificação da alma	228,4	kN		
Cortante crítica	1758,2	kN		
Cortante resistente de cálculo	228,4	kN		
CORTANTE NAS MESAS				
Cortante resistente de cálculo	462,5	kN		
FLEXÃO NA MENOR INÉRCIA	4			
Momento resistente de cálculo	2563,1	kN cm		
PLASTIFICAÇÃO				
Momento de plastificação da seção	2563,1	kN cm		
FLAMBAGEM LOCAL DA MESA				
Momento crítico	10916,0	kN cm		

FLEXÃO NA MAIOR INÉRCIA				
Momento resistente de cálculo	9117,0	kN cm		
PLASTIFICAÇÃO				
Momento de plastificação da seção	9464,4	kN cm		
FLAMBAGEM LOCAL DA MES	SA			
Momento crítico	53975,0	kN cm		
Momento resistente característico	9464,4	kN cm		
FLAMBAGEM LOCAL DA ALM	ÍA			
Esbeltez correspondente a plastificação	90,5	_		
Esbeltez crítica	137,2	_		
Momento resistente característico	9464,4	kN cm		
FLAMBAGEM LATERAL COM TORÇÃO				
Fator de modificação de diagrama de momento não-	1 28	_		
uniforme	1,20			
Momento crítico	35437	kN cm		
Esbeltez da barra	50,9	_		
Classificação da barra	Não compacta			
Momento resistente característico	9117,0	kN cm		
VERIFICAÇÕES				
Esforço axial	6%	OK		
Cortante na alma	18%	OK		
Cortante nas mesas	1%	OK		
Momento de flexão na menor inércia	14%	OK		
Momento de flexão na maior inércia	84%	OK		
Esforço combinado	101%	OK		

Tabela 4-73: Verificação do perfil W 200 x 26,6 crítico (primeiro suporte da região de carga). (continuação)

Os estados limites últimos do perfil W 200 x 26,6, neste caso, relacionam-se às instabilidades globais (flambagem lateral e flambagem lateral com torção) em regime nãolinear. Não há estados limites últimos críticos relacionados a instabilidades locais e o perfil encontra-se aprovado conforme nacional, assim como pela referência para cálculo numérico.

A Tabela 4-74 apresenta o resumo da verificação do perfil caixa 200x135x6,4x10 (aço ASTM A36) crítico, sendo este o penúltimo suporte da guia na região de extração de material.

Tabela 4-74: Verificação do perfil caixa 200x135x6,4x10 crítico (penú	último suporte da
região de extração).	

COMPRIMENTOS DESTRAVADOS					
Flambagem por flexão em torno do eixo de menor inércia	160	cm			
Flambagem por flexão em torno do eixo de maior inércia	160	cm			
Flambagem por torção	160	cm			
Flambagem lateral com torção	160	cm			
ESFORÇOS SOLICITANTES DE CÁI	LCULO				
Esforço axial (>0, tração, <0, compressão)	-75,9	kN			
Cortante na alma	163,2	kN			
Cortante nas mesas	5,2	kN			
Momento de torção	294,3	kN cm			
Momento de flexão na menor inércia	205,6	kN cm			
Momento de flexão na maior inércia	14948,0	kN cm			
ESFORÇOS RESISTENTES DE CÁL	CULO				
ESFORÇO AXIAL					
TRAÇÃO					
Esforço resistente de cálculo	1246,5	kN			
COMPRESSÃO					
Esbeltez da alma	28,35	_			
Fator de redução devido a flambagem local da alma	0,67				
Esbeltez da mesa	13,50	_			
Fator de redução devido a flambagem local	1,00	—			
Esforço resistente de cálculo	811,6	kN			
Estado limite	FLAMBAGEM I	LATERAL			
CORTANTE NA ALMA					
Força cortante de plastificação da alma	342,9	kN			
Cortante crítica	1280,2	kN			
Cortante resistente de cálculo	342,9	kN			
CORTANTE NAS MESAS					
Cortante resistente de cálculo	405,0	kN			
FLEXÃO NA MENOR INÉRCI	4				
Momento resistente de cálculo	5954,3	kN cm			
PLASTIFICAÇÃO					
Momento de plastificação da seção	5954,3	kN cm			
FLAMBAGEM LOCAL DA MES	SA				
Momento crítico	5954,3	kN cm			

FLEXÃO NA MAIOR INÉRCIA	ł		
Momento resistente de cálculo	11556,0	kN cm	
PLASTIFICAÇÃO			
Momento de plastificação da seção	11556,0	kN cm	
FLAMBAGEM LOCAL DA MES	SA		
Momento resistente característico	11556,0	kN cm	
FLAMBAGEM LOCAL DA ALM	ſA		
Momento resistente característico	11556,0	kN cm	
TORÇÃO			
Esbeltez limite	69,3	—	
Esbeltez superior	86,8	-	
Classificação da alma	Compacta		
Tensão crítica	15	kN/cm ²	
Torque resistente de cálculo	5709,4	kN cm	
VERIFICAÇÕES			
Esforço axial	9%	OK	
Cortante na alma	48%	OK	
Cortante nas mesas	1%	OK	
Momento de flexão na menor inércia	3%	OK	
Momento de flexão na maior inércia	120%	NÃO	
	12970	OK	
Torção	5%	OK	
Esforco combinado	170%	NÃO	
2010130 10110100	1,0,0	OK	

Tabela 4-74: Verificação do perfil caixa 200x135x6,4x10 crítico (penúltimo suporte da região de extração). (continuação)

Os estados limites últimos do perfil caixa 200x135x6,4x10 são de instabilidade global quanto à compressão, com redução de resistência devido a flambagem local de alma, e de plastificação quanto aos demais esforços solicitantes de cálculo.

Conforme norma, haveria a reprovação do perfil quanto a plastificação devido ao momento em torno do seu eixo de maior inércia, o que difere dos critérios quanto à recomendação para avaliação numérica (ver detalhe A da Figura 4-54). O cálculo numérico indica a plastificação total de uma das almas e de uma das mesas do perfil na região crítica, sem indicar deformações plásticas no restante da seção.

Entende-se que o critério da DNV-RP-C208 (Det Norske Veritas AS, 2013) é menos conservativo no sentido de que entende que o aço ainda possui rigidez e capacidade resistente após seu escoamento, enquanto na formulação do módulo resistente plástico de uma seção pressupõe-se o contrário. Uma vez que, conforme norma, o perfil caixa é aprovado quanto

às instabilidades, considerou-se o perfil como um todo aprovado ao adotar-se o critério da recomendação para a plastificação.

4.2.2.4 Verificação de ligações entre elementos estruturais

A Tabela 4-75 apresenta, em formato eletrônico editável, a verificação das ligações entre elementos estruturais da guia de material.

Tabela 4-75: Verificação conforme norma NBR 8800:2008 das ligações entre elementosestruturais da guia de material.

Da Figura 4-57 à Figura 4-65 são apresentadas e identificadas as ligações parafusadas entre os elementos estruturais das guias de material do alimentador e entre seus elementos estrutural e o chassi do alimentador.

Da Tabela 4-76 à Tabela 4-103 é apresentado o dimensionamento das ligações, sendo apresentados primeiramente os esforços resistentes de cálculo e, em seguida, a verificação de estados limite últimos individuais (devido ao esforço por parafuso) e globais (verificação das soldas e rupturas das chapas) por ligação.

Figura 4-57: Ligação da guia I – Flange da guia na região de extração.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Excepcional	
Demofração	Tração	kN	139,6	139,6	163,9	
Parafusos	Cisalhamento	kN	69,8	69,8	82,0	
	Pressão de contato	kN	113,8	113,8	133,6	
Chana	Rasgamento entre furos	kN	165,0	165,0	193,7	
Спара	Rasgamento de furo a borda	kN	150,8	150,8	177,0	
Solda	Metal base	kN/cm	10,6	10,6	12,5	
	Metal de solda	kN/cm	10,9	10,9	12,0	

Tabela 4-77: Ligação da guia I – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

	1,20 PP + 1,00 AVL		Utilização						
Parafuso	Excep	ocional		Parafusos	5		Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	26,7	49,1	16%	60%	62%	37%	25%	28%	
2	18,1	3,6	11%	4%	12%	3%	2%	2%	
3	14,9	5,9	9%	7%	12%	4%	3%	3%	
4	12,7	3,2	8%	4%	9%	2%	2%	2%	
5	10,8	20,2	7%	25%	26%	15%	10%	11%	
6	15,4	10,4	9%	13%	16%	8%	5%	6%	
7	1,4	7,4	1%	9%	9%	6%	4%	4%	
8	11,8	4,6	7%	6%	9%	3%	2%	3%	
9	13,0	6,4	8%	8%	11%	5%	3%	4%	

Tabela 4-78: Ligação da guia I – Verificação por estado limite último global.

Tensão de cisalha	145,7	
Utilização	Metal de base	97%
	Metal de solda	94%

Figura 4-58: Ligação da guia II – Flange da guia na região de carga.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação				
			Normal	Especial	Exceptional		
Danafugag	Tração	kN	139,6	139,6	163,9		
Parafusos	Cisalhamento	kN	69,8	69,8	82,0		
	Pressão de contato	kN	113,8	113,8	133,6		
Chana	Rasgamento entre furos	kN	165,0	165,0	193,7		
Спара	Rasgamento de furo a borda	kN	150,8	150,8	177,0		
Solda	Metal base	kN/cm	10,6	10,6	12,5		
	Metal de solda	kN/cm	10,9	10,9	12,0		

Tabela 4-79: Ligação da guia II – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	ocional		Parafusos			Chapa	
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	22,7	2,9	14%	4%	14%	2%	1%	2%
2	11,2	1,8	7%	2%	7%	1%	1%	1%
3	4,4	1,1	3%	1%	3%	1%	1%	1%
4	2,7	3,0	2%	4%	4%	2%	2%	2%
5	9,7	3,1	6%	4%	7%	2%	2%	2%
6	14,7	2,4	9%	3%	9%	2%	1%	1%
7	20,5	2,6	12%	3%	13%	2%	1%	1%
8	35,3	2,8	22%	3%	22%	2%	1%	2%
9	12,8	4,4	8%	5%	9%	3%	2%	2%
10	7,8	4,7	5%	6%	7%	3%	2%	3%
11	4,2	5,5	3%	7%	7%	4%	3%	3%
12	12,4	9,7	8%	12%	14%	7%	5%	6%
13	0,2	7,5	0%	9%	9%	6%	4%	4%
14	11,9	0,3	7%	0%	7%	0%	0%	0%
15	28,2	2,2	17%	3%	17%	2%	1%	1%
16	33,2	1,4	20%	2%	20%	1%	1%	1%

Tabela 4-80: Ligação da guia II – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-81: Ligação da guia II – Verificação por estado limite último global.

Tensão de cisalha	144,3	
Utilização	Metal de base	96%
	Metal de solda	93%

Figura 4-59: Ligação da guia III – Flange da cobertura na região de carga. Tabela 4-82: Ligação da guia III – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Excepcional	
Demofração	Tração	kN	139,6	139,6	163,9	
Paratusos	Cisalhamento	kN	69,8	69,8	82,0	
	Pressão de contato	kN	90,3	90,3	106,0	
Chapa	Rasgamento entre furos	kN	232,6	232,6	273,0	
	Rasgamento de furo a borda	kN	61,0	61,0	71,6	
	Rasgamento de bloco, Cortante vertical	kN	13,6	13,6	15,0	
	Ruptura por tração, Cortante vertical	kN	16,7	16,7	19,6	
	Rasgamento de bloco, Cortante horizontal	kN	139,6	139,6	163,9	
	Ruptura por tração, Cortante horizontal	kN	69,8	69,8	82,0	
Solda	Metal base	kN/cm	8,7	8,7	9,5	
Solua	Metal de solda	kN/cm	10,6	10,6	12,5	

	1,20 1,00	PP + AVL	Utilização					
Parafuso	Excep	cional		Parafusos			Chapa	
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	18,3	52,3	11%	64%	65%	49%	19%	73%
2	32,7	37,0	20%	45%	49%	35%	14%	52%
3	34,5	34,3	21%	42%	47%	32%	13%	48%
4	24,0	24,3	15%	30%	33%	23%	9%	34%
5	14,8	67,7	9%	83%	83%	64%	25%	95%
6	14,7	71,5	9%	87%	88%	67%	26%	100%
7	23,2	31,5	14%	38%	41%	30%	12%	44%
8	31,7	44,7	19%	55%	58%	42%	16%	62%
9	27,1	36,7	17%	45%	48%	35%	13%	51%
10	4,7	25,0	3%	31%	31%	24%	9%	35%
11	18,3	52,3	11%	64%	65%	49%	19%	73%
12	32,7	37,0	20%	45%	49%	35%	14%	52%

Tabela 4-83: Ligação da guia III – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-84: Ligação da guia III – Verificação por estado limite último global.

Tensão de cisalha	149,8	
Utilização	Metal de base	100%
	Metal de solda	76%

Figura 4-60: Ligação da guia IV – Chapa de topo superior do suporte na região de extração.

			Resistência de cálculo por tipo de			
Elemento	Estados limite	Unidade	combinação			
			Normal	Especial	Excepcional	
Parafusos -	Tração	kN	139,6	139,6	163,9	
	Cisalhamento	kN	69,8	69,8	82,0	
	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	346,7	346,7	407,0	
Chapa	Rasgamento de furo a borda	kN	117,8	117,8	138,3	
	Rasgamento de bloco, Cortante vertical	kN	1749,6	1749,6	2053,9	
	Ruptura por tração, Cortante vertical	kN	855,6	855,6	1004,3	
	Rasgamento de bloco, Cortante horizontal	kN	2108,1	2108,1	2474,8	
	Ruptura por tração, Cortante horizontal	kN	1863,0	1863,0	2187,0	
	Metal base – Alma	kN/cm	7,9	7,9	8,7	
Salda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solda	Metal base – Mesa	kN/cm	11,5	11,5	12,6	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-85: Ligação da guia IV – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	cional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	48,5	23,6	30%	29%	41%	11%	6%	17%
2	52,7	20,2	32%	25%	40%	10%	5%	15%
3	26,4	19,8	16%	24%	29%	9%	5%	14%
4	1,4	8,3	1%	10%	10%	4%	2%	6%
5	3,7	36,7	2%	45%	45%	18%	9%	27%
6	31,5	53,6	19%	65%	68%	26%	13%	39%
7	47,0	25,9	29%	32%	43%	12%	6%	19%
8	45,0	48,7	27%	59%	65%	23%	12%	35%
9	21,0	17,7	13%	22%	25%	8%	4%	13%
10	4,7	7,2	3%	9%	9%	3%	2%	5%
11	5,4	40,0	3%	49%	49%	19%	10%	29%
12	31,0	54,2	19%	66%	69%	26%	13%	39%

Tabela 4-86: Ligação da guia IV – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-87: Ligação da guia IV – Verificação por estado limite último global.

Tensão de cisalha	120,0	
Utilização	Metal de base	58%
	Metal de solda	28%
Tensão de cisalha	201,1	
I 14:1:	Metal de base	97%
Utilização	Metal de solda	57%

Figura 4-61: Ligação da guia V – Chapa de topo inferior do suporte na região de extração.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Danafaraa	Tração	kN	314,2	314,2	368,8	
Paralusos	Cisalhamento	kN	157,1	157,1	184,4	
	Pressão de contato	kN	405,3	405,3	475,8	
	Rasgamento entre furos	kN	234,2	234,2	274,9	
	Rasgamento de furo a borda	kN	145,2	145,2	170,5	
Chapa	Rasgamento de bloco, Cortante vertical	kN	1510,4	1510,4	1773,1	
	Ruptura por tração, Cortante vertical	kN	827,6	827,6	971,5	
	Rasgamento de bloco, Cortante horizontal	kN	1763,8	1763,8	2070,5	
	Ruptura por tração, Cortante horizontal	kN	1531,3	1531,3	1797,6	
Solda	Metal base – Alma	kN/cm	8,7	8,7	9,5	
Solua	Metal de solda – Alma	kN/cm	13,6	13,6	16,0	

	1,20 PF AV	P + 1,00 VL			Utiliz	zação		
Parafuso	Excep	cional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	107,1	168,8	29%	92%	96%	35%	61%	99%
2	74,2	126,8	20%	69%	72%	27%	46%	74%
3	62,2	87,2	17%	47%	50%	18%	32%	51%
4	46,8	74,4	13%	40%	42%	16%	27%	44%
5	73,6	153,0	20%	83%	85%	32%	56%	90%
6	106,8	161,4	29%	88%	92%	34%	59%	95%
7	75,1	131,7	20%	71%	74%	28%	48%	77%
8	63,3	99,0	17%	54%	56%	21%	36%	58%
9	52,1	69,3	14%	38%	40%	15%	25%	41%
10	63,3	165,0	17%	89%	91%	35%	60%	97%

Tabela 4-89: Ligação da guia V – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-90: Ligação da guia V – Verificação por estado limite último global.

Tensão de cisalha	144,5	
Utilização	Metal de base	96%
	Metal de solda	87%

Figura 4-62: Ligação da guia VI – Chapa de topo superior do suporte na região de carga.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Derefuces	Tração	kN	314,2	314,2	368,8	
Faratusos	Cisalhamento	kN	157,1	157,1	184,4	
	Pressão de contato	kN	266,7	266,7	313,0	
	Rasgamento entre furos	kN	153,3	153,3	180,0	
Chapa	Rasgamento de furo a borda	kN	76,7	76,7	90,0	
	Rasgamento de bloco, Cortante vertical	kN	1018,3	1018,3	1195,4	
	Ruptura por tração, Cortante vertical	kN	255,6	255,6	300,0	
	Rasgamento de bloco, Cortante horizontal	kN	1489,3	1489,3	1748,3	
	Ruptura por tração, Cortante horizontal	kN	1496,3	1496,3	1756,5	
	Metal base – Alma	kN/cm	7,9	7,9	8,7	
Salda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8	
Solda	Metal base – Mesa	kN/cm	11,5	11,5	12,6	
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4	

Tabela 4-91: Ligação da guia VI – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	ocional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	32,8	10,4	9%	6%	11%	3%	6%	12%
2	17,6	8,2	5%	4%	7%	3%	5%	9%
3	5,2	7,9	1%	4%	5%	3%	4%	9%
4	15,6	3,8	4%	2%	5%	1%	2%	4%
5	46,0	13,3	12%	7%	14%	4%	7%	15%
6	46,8	82,0	13%	44%	46%	26%	46%	91%
7	32,2	1,5	9%	1%	9%	0%	1%	2%
8	18,0	11,8	5%	6%	8%	4%	7%	13%
9	5,3	13,6	1%	7%	8%	4%	8%	15%
10	15,3	8,6	4%	5%	6%	3%	5%	10%
11	45,5	9,7	12%	5%	13%	3%	5%	11%
12	48,1	80,0	13%	43%	45%	26%	44%	89%

Tabela 4-92: Ligação da guia VI – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-93: Ligação da guia VI – Verificação por estado limite último global.

Tensão de cisalha	199,6	
Utilização	Metal de base	96%
	Metal de solda	47%
Tensão de cisalha	209,4	
Utilização	Metal de base	101%
	Metal de solda	60%

Figura 4-63: Ligação da guia	VII – Chapa de topo	inferior do su	iporte na regi	ão de
	carga.			

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Excepcional	
Parafusos	Tração	kN	139,6	139,6	163,9	
	Cisalhamento	kN	69,8	69,8	82,0	
Chapa	Pressão de contato	kN	177,8	177,8	208,7	
	Rasgamento entre furos	kN	197,8	197,8	232,2	
	Rasgamento de furo a borda	kN	98,9	98,9	116,1	
	Rasgamento de bloco, Cortante vertical	kN	853,9	853,9	1002,4	
	Ruptura por tração, Cortante vertical	kN	329,6	329,6	387,0	
	Rasgamento de bloco, Cortante horizontal	kN	1159,4	1159,4	1361,1	
	Ruptura por tração, Cortante horizontal	kN	1155,6	1155,6	1356,5	

Tabela 4-94: Ligação da guia VII – Esforços resistentes de cálculo.

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excepcional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	6,1	63,1	4%	77%	77%	30%	27%	54%
2	2,8	32,5	2%	40%	40%	16%	14%	28%
3	5,3	22,3	3%	27%	27%	11%	10%	19%
4	7,4	18,8	5%	23%	23%	9%	8%	16%
5	8,6	44,1	5%	54%	54%	21%	19%	38%
6	2,0	15,3	1%	19%	19%	7%	7%	13%
7	5,6	6,6	3%	8%	9%	3%	3%	6%
8	9,3	8,5	6%	10%	12%	4%	4%	7%

Tabela 4-95: Ligação da guia VII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Figura 4-64: Ligações da guia VIII e IX – Apoio da guia na coluna e no chute de descarga.

Tabela 4-96: Ligação da guia VIII – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação						
			Normal	Especial	Exceptional				
Parafusos	Tração	kN	139,6	139,6	163,9				
	Cisalhamento	kN	69,8	69,8	82,0				
Chapa	Pressão de contato	kN	119,5	119,5	140,2				
	Rasgamento entre furos	kN	132,9	132,9	156,0				
	Rasgamento de furo a borda	kN	66,5	66,5	78,0				
	Rasgamento de bloco, Cortante vertical	kN	803,8	803,8	943,6				
	Ruptura por tração, Cortante vertical	kN	221,5	221,5	260,0				
	Rasgamento de bloco, Cortante horizontal	kN	1162,4	1162,4	1364,6				
	Ruptura por tração, Cortante horizontal	kN	1154,8	1154,8	1355,7				
Solda	Metal base	kN/cm	17,0	17,0	18,8				
	Metal de solda	kN/cm	27,3	27,3	32,0				
	1,20 1,00	PP + AVL		Utilização					
----------	--------------------------	-----------------------------	--------	--------------	-----------	--------------------------	---------------------------	----------------------------------	--
Parafuso	Excep	ocional		Parafusos	5		Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	12,5	47,3	8%	58%	58%	34%	30%	61%	
2	7,3	30,1	4%	37%	37%	21%	19%	39%	
3	6,3	20,8	4%	25%	26%	15%	13%	27%	
4	2,6	21,6	2%	26%	26%	15%	14%	28%	
5	3,9	23,9	2%	29%	29%	17%	15%	31%	
6	2,5	38,7	2%	47%	47%	28%	25%	50%	
7	5,1	32,1	3%	39%	39%	23%	21%	41%	
8	1,6	16,5	1%	20%	20%	12%	11%	21%	
9	0,4	6,6	0%	8%	8%	5%	4%	8%	
10	2,9	2,5	2%	3%	4%	2%	2%	3%	
11	6,0	12,9	4%	16%	16%	9%	8%	17%	
12	17,4	26,5	11%	32%	34%	19%	17%	34%	

Tabela 4-97: Ligação da guia VIII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-98: Ligação da guia VIII – Verificação por estado limite último global.

Tensão de cisalhamento máxima nas chapas [MPa] 131,2					
Litilização	Metal de base	87%			
Utilização	Metal de solda	51%			
Tabela 4-99: Ligação da guia IX – Esforços resistentes de cálculo.					

nto Estados limite Unidade Resistência de cálculo por tipo de combinação

Elemento	Estados limite	Unidade	de combinação		
			Normal	Especial	Excepcional
Demofração	Tração	kN	139,6	139,6	163,9
Paratusos	Cisalhamento	kN	69,8	69,8	82,0
	Pressão de contato	kN	119,5	119,5	140,2
	Rasgamento entre furos	kN	132,9	132,9	156,0
	Rasgamento de furo a borda	kN	66,5	66,5	78,0
	Rasgamento de bloco, Cortante vertical	kN	920,3	920,3	1080,3
Chapa	Ruptura por tração, Cortante vertical	kN	221,5	221,5	260,0
	Rasgamento de bloco, Cortante horizontal	kN	1356,6	1356,6	1592,5
	Ruptura por tração, Cortante horizontal	kN	1349,0	1349,0	1583,6
	Metal base – Alma	kN/cm	7,9	7,9	8,7
Solda	Metal de solda – Alma	kN/cm	15,2	15,2	17,8
Solua	Metal base – Mesa	kN/cm	11,5	11,5	12,6
	Metal de solda – Mesa	kN/cm	18,2	18,2	21,4

	1,20 1,00	PP + AVL	Utilização						
Parafuso	Excep	cional		Parafusos	5		Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	16,8	14,2	10%	17%	20%	10%	9%	18%	
2	2,9	7,4	2%	9%	9%	5%	5%	9%	
3	7,6	19,0	5%	23%	24%	14%	12%	24%	
4	16,6	30,3	10%	37%	38%	22%	19%	39%	
5	20,4	30,2	12%	37%	39%	22%	19%	39%	
6	22,1	31,8	13%	39%	41%	23%	20%	41%	
7	26,6	32,4	16%	40%	43%	23%	21%	42%	
8	4,8	13,6	3%	17%	17%	10%	9%	17%	
9	8,1	3,1	5%	4%	6%	2%	2%	4%	
10	15,9	20,8	10%	25%	27%	15%	13%	27%	
11	18,2	34,1	11%	42%	43%	24%	22%	44%	
12	21,8	29,7	13%	36%	39%	21%	19%	38%	
13	22,9	29,7	14%	36%	39%	21%	19%	38%	
14	26,4	25,9	16%	32%	35%	18%	17%	33%	

Tabela 4-100: Ligação da guia IX – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Figura 4-65: Ligação da guia X – Tampa de inspeção.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Parafusos	Tração	kN	89,4	89,4	104,9	
	Cisalhamento	kN	44,7	44,7	52,5	
	Pressão de contato	kN	72,2	72,2	84,8	
	Rasgamento entre furos	kN	298,0	298,0	349,9	
	Rasgamento de furo a borda	kN	58,7	58,7	68,9	
	Rasgamento de bloco, Cortante vertical	kN	873,0	873,0	1024,8	
Chapa	Ruptura por tração, Cortante vertical	kN	594,5	594,5	697,9	
	Rasgamento de bloco, Cortante horizontal	kN	873,0	873,0	1024,8	
	Ruptura por tração, Cortante horizontal	kN	594,5	594,5	697,9	
Solda	Metal base	kN/cm	8,7	8,7	9,5	
Solda	Metal de solda	kN/cm	15,2	15,2	17,8	

Tabela 4-101: Ligação da guia X – Esforços resistentes de cálculo.

	1,20 1,00	PP + AVL	Utilização					
Parafuso	Excep	ocional		Parafusos Chapa				
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	1,2	19,9	1%	38%	38%	24%	6%	29%
2	0,4	10,9	0%	21%	21%	13%	3%	16%
3	0,5	16,6	0%	32%	32%	20%	5%	24%
4	3,4	5,4	3%	10%	11%	6%	2%	8%
5	0,8	4,8	1%	9%	9%	6%	1%	7%
6	2,1	7,8	2%	15%	15%	9%	2%	11%
7	2,2	5,0	2%	9%	10%	6%	1%	7%
8	0,0	0,8	0%	1%	1%	1%	0%	1%
9	0,0	2,5	0%	5%	5%	3%	1%	4%

Tabela 4-102: Ligação da guia X – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-103: Ligação da guia X – Verificação por estado limite último global.

Tensão de cisalhame	153,5	
Utilização	Metal de base	102%
	Metal de solda	55%

4.3 Dimensionamento do chute de descarga

Para dimensionamento do chute de descarga do equipamento, a combinação de carregamento representativa do evento de avalanche (7 - 1,15 PP + 0,70 TCDT + 1,00 AVL) mostrou-se a mais crítica.

4.3.1 Modelo em elementos finitos

4.3.1.1 Geometria

A Figura 4-66 apresenta as principais dimensões do chute de descarga, a Figura 4-67 apresenta os materiais utilizados e a Figura 4-68 apresenta as espessuras de chapa e perfis especificados.

Figura 4-66: Principais dimensões do chute de descarga.

Figura 4-68: Espessuras de chapas e perfis do chute de descarga.

4.3.1.2 Malha

A Figura 4-69 apresenta alguns dos detalhes da malha gerada no modelo da guia de material, enquanto a Tabela 4-104 apresenta o resumo dos dados relativos à malha.

Figura 4-69: Malha de elementos finitos do chute de descarga.

Fabela 4-104: Dados	específicos da	malha do	chute d	le descarga
---------------------	----------------	----------	---------	-------------

Ordem dos elementos	Linear			
Tamanho de elemento	25 mm			
Tamanho mínimo de curvatura	3 mm			
Quantidade de nós	163.554			
Quantidade de elementos	161.283			
	Mínima	0,0281		
Qualidada das alamantas	Máxima	0,9998		
Qualidade dos elementos	Média	0,9262		
	Desvio padrão	0,1123		

4.3.1.3 Condições de contorno

Foram aplicadas condições de contorno de engastamento nas arestas da coluneta sobre a roda dianteira do alimentador em que o submodelo para cálculo do chute de descarga foi interrompido, regiões essas suficientemente afastadas das ligações entre o chute de descarga e a coluneta de forma que a condição de contorno não apresenta influência no dimensionamento do chute.

Figura 4-70: Condição de contorno de engastamento da coluneta sobre a roda dianteira nos planos de interrupção do submodelo para cálculo do chute de descarga.

4.3.1.4 Ações permanentes

As únicas ações permanentes atuantes no chute de descarga são o peso próprio estrutural e o peso das chapas de revestimento interno do chute, de 158 kg/m², conforme Tabela 3-2.

4.3.1.5 Ações variáveis

A Figura 4-49 apresenta a aplicação do carregamento devido à avalanche no modelo da guia de material. Deve-se destacar que se considerou que as paredes laterais do chute de extração do alimentador encobrem parte da guia na região de extração, evitando que o material a atinja.

Figura 4-71: Aplicação do carregamento devido à avalanche no modelo do chute de descarga.

4.3.2 Dimensionamento

4.3.2.1 Análise de tensões

A Figura 4-72 apresenta o estado de tensões equivalentes de Von Mises e a deformada, em escala 1:1, do chute de descarga durante evento de avalanche.

Figura 4-72: Estado de tensões equivalentes de Von Mises e deformada (1:1) do chute de descarga durante evento de avalanche.

Percebe-se grandes deslocamentos na porção do costado do chute próximo ao tambor de descarga do alimentador. Essa região do costado não pode ser reforçada com nervuras devido a interferências com as caixas de mancal do tambor e com os raspadores de correia. Todavia, devido aos mesmos componentes mecânicos ocuparem volume significativo no interior do chute, a aplicação da pressão de avalanche nesta região do costado é conservativa.

Os níveis de tensão nas chapas e perfis, de forma geral, indicam bom aproveitamento da resistência dos materiais empregados.

A Figura 4-73 apresenta o estado de tensões equivalentes de Von Mises nos perfis laminados cortados, em aço ASTM A572 Gr50, que compõem as nervuras do costado do chute de descarga, com destaque para as 3 regiões que apresentam maiores extensões com tensões atuantes acima do limite de escoamento do material e que, portanto, são críticas na análise dos níveis de deformações plásticas para avaliação dos estados limites últimos de plastificação.

Figura 4-73: Estado de tensões equivalentes de Von Mises nas nervuras em perfis laminados cortados (aço ASTM A572 Gr50) com destaques para regiões mais críticas.

A Figura 4-74 apresenta o estado de tensões equivalentes de Von Mises nas chapas, em aço ASTM A36, com destaque para as 3 regiões que apresentam maiores extensões com tensões atuantes acima do limite de escoamento do material e que, portanto, são críticas na análise dos níveis de deformações plásticas para avaliação dos estados limites últimos de plastificação.

Figura 4-74: Estado de tensões equivalentes de Von Mises nas chapas (aço ASTM A36) com destaques para regiões mais críticas.

4.3.2.2 Análise de deformações

A Figura 4-75 apresenta as deformações plásticas calculadas nos perfis laminados cortados, em aço ASTM A572 Gr50, que compõe as nervuras do costado do chute de descarga, com destaque para as 3 regiões críticas.

A região A apresenta níveis de deformação acima de 4% (correspondentes a um possível colapso por plastificação global) em extensões não maiores do que 50mm x 50mm ao em concentradores de deformação nas mesas dos perfis. Portanto, o dimensionamento encontrase adequado conforme referência.

A região B apresenta níveis de deformação plástica superiores a 12% na região correspondente ao furo de alívio de tensões das soldas das nervuras (alívio este não representado na geometria do modelo). Desconsiderando-se este estado limite último nesta região, todavia, observa-se que 78% do comprimento em diagonal na alma tem deformações plásticas calculadas acima de 4%. Descontada a dimensão do furo de alívio, ter-se-ia uma proporção do comprimento de 92% acima da deformação de referência, indicando possibilidade de surgimento de trincas na região, seja localizada seja globalmente.

Uma vez que esta criticidade é atingida em apenas na nervura mais central das três nervuras horizontais presentes no costado (devido às máximas deformações de flexão no centro do vão da chapa do costado), entende-se que há redundância estrutural suficiente para que se tolere a probabilidade de falha estrutural neste ponto, não havendo risco de colapso do chute como um todo. Desta forma, inclui-se no plano de inspeções e prováveis reparos do equipamento após avalanches esta região do chute de descarga.

A região C apresenta níveis de deformação plástica limitados a 1,5%, estando aprovada na análise de deformações.

Figura 4-75: Deformações plásticas calculadas nas nervuras em perfis laminados cortados (aço ASTM A572 Gr50) com destaques para regiões mais críticas.

A Figura 4-76 apresenta as deformações plásticas calculadas nas chapas, em aço ASTM A36, com destaque para as 3 regiões críticas.

A região A apresenta nível máximo de deformação plástica de 3,9%, nas quinas em que se engastam as nervuras horizontais, estando aprovada na análise.

A região B nível máximo de deformação plástica de 1,6%, na região de mudança de inclinação do costado em que se engasta uma nervura vertical, estado aprovada na análise.

A região C não apresenta nenhum possível caminho de ruptura com deformações plásticas superiores a 3,0%. Também se destaca que esta parede do costado foi conservadoramente carregada em toda a sua extensão, mesmo havendo componentes mecânicos que obstruem parte do fluxo de material durante um evento de avalanche.

194

Figura 4-76: Deformações plásticas calculadas nas chapas (aço ASTM A36) com destaques para regiões mais críticas.

4.3.2.3 Verificação de ligações entre elementos estruturais

A Tabela 4-105 apresenta, em formato eletrônico editável, a verificação das ligações entre elementos estruturais do chute de descarga.

Tabela 4-105: Verificação conforme norma NBR 8800:2008 das ligações entre elementosestruturais do chute de descarga.

Da Figura 4-77 à Figura 4-83 são apresentadas e identificadas as ligações parafusadas entre os elementos estruturais do chute de descarga do alimentador e entre seus elementos estruturais e o chassi do alimentador.

Da Tabela 4-106 à Tabela 4-123 é apresentado o dimensionamento das ligações, sendo apresentados primeiramente os esforços resistentes de cálculo e, em seguida, a verificação de estados limite últimos individuais (devido ao esforço por parafuso) e globais (verificação das soldas e rupturas das chapas) por ligação.

Figura 4-77: Ligação do chute de descarga I – Flange horizontal. Tabela 4-106: Ligação do chute de descarga I – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Danafaraa	Tração	kN	144,0	144,0	169,0	
Paralusos	Cisalhamento	kN	72,0	72,0	84,5	
	Pressão de contato	kN	135,1	135,1	158,6	
Chapa	Rasgamento entre furos	kN	601,2	601,2	705,8	
	Rasgamento de furo a borda	kN	98,0	98,0	115,0	
Salda	Metal base	kN/cm	13,0	13,0	14,3	
Solda	Metal de solda	kN/cm	15,2	15,2	17,8	

	1,20 1,00	PP + AVL		Utilização					
Parafuso	Excep	cional		Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	48,4	8,2	29%	10%	30%	5%	1%	7%	
2	55,4	15,1	33%	18%	37%	9%	2%	13%	
3	39,8	11,9	24%	14%	27%	7%	2%	10%	
4	65,3	30,4	39%	36%	53%	19%	4%	26%	
5	52,0	18,7	31%	22%	38%	12%	3%	16%	
6	58,2	12,2	34%	14%	37%	8%	2%	11%	
7	13,4	11,4	8%	14%	16%	7%	2%	10%	
8	1,2	18,3	1%	22%	22%	12%	3%	16%	
9	1,3	15,7	1%	19%	19%	10%	2%	14%	
10	10,9	2,8	6%	3%	7%	2%	0%	2%	
11	11,9	28,8	7%	34%	35%	18%	4%	25%	
12	33,8	62,6	20%	74%	77%	39%	9%	54%	
13	40,7	49,9	24%	59%	64%	31%	7%	43%	
14	36,6	40,2	22%	48%	52%	25%	6%	35%	
15	41,2	24,4	24%	29%	38%	15%	3%	21%	
16	43,1	18,5	26%	22%	34%	12%	3%	16%	
17	43,5	5,4	26%	6%	27%	3%	1%	5%	
18	59,5	10,1	35%	12%	37%	6%	1%	9%	

Tabela 4-107: Ligação do chute de descarga I – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-108: Ligação do chute de descarga I – Verificação por estado limite último
global.

Tensão de cisalha	150,3	
Utilização	Metal de base	100%
	Metal de solda	80%

Figura 4-78: Ligação do chute de descarga II – Tampa superior. Tabela 4-109: Ligação do chute de descarga II – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Parafusos	Tração	kN	144,0	144,0	169,0	
	Cisalhamento	kN	72,0	72,0	84,5	
	Pressão de contato	kN	135,1	135,1	158,6	
Chapa	Rasgamento entre furos	kN	601,2	601,2	705,8	
	Rasgamento de furo a borda	kN	98,0	98,0	115,0	
Solda	Metal base	kN/cm	13,0	13,0	14,3	
	Metal de solda	kN/cm	12,1	12,1	14,2	

	1,20 1,00	PP + AVL	Utilização						
Parafuso	Excep	cional	Parafusos			Chapa			
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	67,3	19,0	40%	22%	46%	12%	3%	17%	
2	71,1	21,1	42%	25%	49%	13%	3%	18%	
3	35,6	27,2	21%	32%	38%	17%	4%	24%	
4	32,2	55,7	19%	66%	69%	35%	8%	48%	
5	62,8	46,4	37%	55%	66%	29%	7%	40%	
6	64,0	23,9	38%	28%	47%	15%	3%	21%	
7	50,4	41,5	30%	49%	57%	26%	6%	36%	
8	17,0	34,2	10%	40%	42%	22%	5%	30%	
9	38,0	48,6	22%	58%	62%	31%	7%	42%	
10	69,1	51,8	41%	61%	74%	33%	7%	45%	
11	63,1	18,3	37%	22%	43%	12%	3%	16%	
12	30,7	42,3	18%	50%	53%	27%	6%	37%	
13	22,5	11,2	13%	13%	19%	7%	2%	10%	
14	15,0	16,5	9%	20%	21%	10%	2%	14%	
15	12,4	15,3	7%	18%	20%	10%	2%	13%	
16	8,4	9,6	5%	11%	12%	6%	1%	8%	
17	6,0	5,7	4%	7%	8%	4%	1%	5%	
18	4,2	3,1	3%	4%	4%	2%	0%	3%	
19	2,9	1,4	2%	2%	2%	1%	0%	1%	
20	1,6	0,1	1%	0%	1%	0%	0%	0%	
21	0,9	3,2	1%	4%	4%	2%	0%	3%	
22	7,4	55,1	4%	65%	65%	35%	8%	48%	
23	27,8	62,8	16%	74%	76%	40%	9%	55%	
24	30,7	59,3	18%	70%	72%	37%	8%	52%	
25	33,9	34,6	20%	41%	46%	22%	5%	30%	
26	35,2	25,3	21%	30%	36%	16%	4%	22%	
27	32,5	11,2	19%	13%	23%	7%	2%	10%	
28	29,5	2,1	17%	2%	18%	1%	0%	2%	
29	20,9	3,9	12%	5%	13%	2%	1%	3%	
30	7,2	24,9	4%	30%	30%	16%	4%	22%	

Tabela 4-110: Ligação do chute de descarga II – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-111: Ligação do chute de descarga II – Verificação por estado limite último global.

Tensão de cisalha	148,6	
Utilização	Metal de base	99%
Utilização	Metal de solda	79%

Figura	4-79): Lig	ação (do chute	de desc	arga III	– Lig	ação co	om a coluna	do a	ılimen	itador.	•

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Demofuses	Tração	kN	392,7	392,7	461,0	
Paralusos	Cisalhamento	kN	196,3	196,3	230,5	
	Pressão de contato	kN	405,3	405,3	475,8	
	Rasgamento entre furos	kN	459,4	459,4	539,3	
	Rasgamento de furo a borda	kN	324,3	324,3	380,7	
	Rasgamento de bloco, Cortante vertical	kN	1808,8	1808,8	2123,4	
Chapa	Ruptura por tração, Cortante vertical	kN	1080,9	1080,9	1268,9	
	Rasgamento de bloco, Cortante horizontal	kN	2121,2	2121,2	2490,2	
	Ruptura por tração, Cortante horizontal	kN	2178,7	2178,7	2557,6	
Solda	Metal base	kN/cm	13,6	13,6	15,0	
Solda	Metal de solda	kN/cm	21,2	21,2	24,9	

T 1 1 1 1 1 1 1 1 1 1			
Tabela 4-112: Ligação	do chute de descarga	III – Esforcos	resistentes de cálculo.
	as charte as asseming.		

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	cional	Parafusos			Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	102,5	172,5	22%	75%	78%	36%	32%	45%
2	154,8	71,6	34%	31%	46%	15%	13%	19%
3	62,9	64,9	14%	28%	31%	14%	12%	17%
4	78,4	64,4	17%	28%	33%	14%	12%	17%
5	57,1	73,0	12%	32%	34%	15%	14%	19%
6	69,9	73,2	15%	32%	35%	15%	14%	19%
7	0,1	87,2	0%	38%	38%	18%	16%	23%
8	44,9	34,1	10%	15%	18%	7%	6%	9%

Tabela 4-113: Ligação do chute de descarga III – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-114: Ligação do chute de descarga III	– Verificação por	estado limite	último
global.			

Tensão de cisalhar	144,6	
Utilização	Metal de base	96%
	Metal de solda	56%

– Parafusos M24, ISO 10.9, rosca parcial

Figura 4-80: Ligação do chute de descarga IV – Ligação com as vigas de apoio
Tabela 4-115: Ligação do chute de descarga IV – Esforços resistentes de cálculo

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Parafusos	Tração	kN	251,3	251,3	295,0	
	Cisalhamento	kN	167,6	167,6	196,7	
Chapa	Pressão de contato	kN	236,6	236,6	277,8	
	Rasgamento entre furos	kN	315,5	315,5	370,4	
	Rasgamento de furo a borda	kN	146,7	146,7	172,2	

Tabela 4-116: Ligação do chute de descarga IV – Esforços solicitantes de cálculo por
parafuso e utilização por estado limite último individual.

	1,20 1,00	PP + AVL	Utilização					
Parafuso	Excep	ocional		Parafusos Chapa				
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	16,9	140,4	6%	71%	72%	56%	42%	90%
2	31,6	56,9	11%	29%	31%	23%	17%	37%
3	22,9	38,7	8%	20%	21%	15%	12%	25%
4	2,5	147,9	1%	75%	75%	59%	44%	95%

Figura 4-81: Ligação do chute de descarga V – Ligação da porta de inspeção. Tabela 4-117: Ligação do chute de descarga V – Esforços resistentes de cálculo.

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Devefores	Tração	kN	89,4	89,4	104,9	
Paraiusos	Cisalhamento	kN	44,7	44,7	52,5	
	Pressão de contato	kN	72,2	72,2	84,8	
Chana	Rasgamento entre furos	kN	298,0	298,0	349,9	
Спара	Rasgamento de furo a borda	kN	58,7	58,7	68,9	
Solda	Metal de base	kN/cm	8,7	8,7	9,5	
	Metal de solda	kN/cm	15,2	15,2	17,8	

	1,20 1,00	PP + AVL	Utilização					
Parafuso	Excep	ocional		Parafusos	5	Chapa		
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	7,7	73,6	5%	90%	90%	52%	16%	86%
2	11,3	17,7	7%	22%	23%	12%	4%	21%
3	13,0	44,5	8%	54%	55%	31%	10%	52%
4	12,5	67,8	8%	83%	83%	48%	15%	80%
5	2,5	18,3	2%	22%	22%	13%	4%	22%
6	2,3	13,2	1%	16%	16%	9%	3%	16%
7	3,8	5,6	2%	7%	7%	4%	1%	7%
8	16,4	47,3	10%	58%	59%	33%	10%	56%
9	14,1	46,6	9%	57%	57%	33%	10%	55%
10	11,8	51,7	7%	63%	63%	36%	11%	61%
11	6,6	64,0	4%	78%	78%	45%	14%	75%
12	3,4	88,2	2%	108%	108%	62%	19%	104%
13	0,3	29,3	0%	36%	36%	21%	6%	34%
14	7,8	72,0	5%	88%	88%	51%	16%	85%
15	4,8	79,4	3%	97%	97%	56%	17%	93%
16	6,6	57,6	4%	70%	70%	41%	13%	68%
17	7,8	33,7	5%	41%	41%	24%	7%	40%
18	7,1	56,0	4%	68%	68%	39%	12%	66%

Tabela 4-118: Ligação do chute de descarga V – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Figura 4-82: Ligação do chute de descarga VI – Ligação do tirante do quadro em balanço.

Tabela 4-119:	Ligação do	chute de d	escarga VI -	– Esforços	resistentes d	e cálculo.
	·			,		

Elemento	Estados limite	Unidade	Resistência de cálculo por tipo de combinação			
			Normal	Especial	Exceptional	
Parafusos	Tração	kN	139,6	139,6	163,9	
	Cisalhamento	kN	69,8	69,8	82,0	
Chapa	Pressão de contato	kN	91,0	91,0	106,9	
	Rasgamento entre furos	kN	63,7	63,7	74,8	
	Rasgamento de furo a borda	kN	88,7	88,7	104,2	

Tabela 4-120: Ligação do chute de descarga VI – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

	1,20 PP + 1,00 AVL		Utilização						
Parafuso	Excep	cional	Parafusos Char			Parafusos Chapa			
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda	
1	0,0	12,3	0%	15%	15%	12%	16%	12%	
2	0,0	12,7	0%	15%	15%	12%	17%	12%	

- Chapas de 16mm
- Solda com perna de 6mm na alma e 9mm nas mesas pelas duas faces
- Onde não for possível soldar pelas duas faces, penetração total

Figura 4-83: Ligação do chute de descarga VII – Ligações de chapa de topo das vigas do quadro em balanço.

Tabela 4-121: Ligação do chute de descarga VII – Esforços resistentes de cálculo.

			Resistência de cálculo por tipo de					
Elemento	Estados limite	Unidade		combinação				
			Normal	Especial	Exceptional			
Devefores	Tração	kN	174,5	174,5	204,9			
Paralusos	Cisalhamento	kN	116,4	116,4	136,6			
	Pressão de contato	kN	177,8	177,8	208,7			
	Rasgamento entre furos	kN	133,3	133,3	156,5			
	Rasgamento de furo a borda	kN	84,4	84,4	99,1			
	Rasgamento de bloco,	kN	605.2	605,2	710.4			
	Cortante vertical		003,2		/10,4			
Chapa	Ruptura por tração, Cortante	kN	470.4	470.4	552.2			
	vertical		470,4	470,4	552,2			
	Rasgamento de bloco,	ŀΝ	621.5	621.5	729.6			
-	Cortante horizontal	KIN	021,5	021,5	729,0			
	Ruptura por tração, Cortante	ĿΝ	474-1	<i>474</i> 1	556 5			
	horizontal	KI Y	т/т,1	т/т,1	550,5			
Solda	Metal base	kN/cm	18,8	18,8	20,7			
	Metal de solda	kN/cm	34,9	34,9	40,9			

	1,20 PP + 1,00 AVL		Utilização					
Parafuso	Excep	cional		Parafusos	5		Chapa	
	Esforço axial [kN]	Esforço cortante [kN]	Tração	Cisalhamento	Combinado	Pressão de contato	Rasgamento entre furos	Rasgamento de furo a borda
1	12,2	37,6	6%	28%	28%	18%	24%	38%
2	11,4	68,7	6%	50%	51%	33%	44%	69%
3	56,8	15,0	28%	11%	30%	7%	10%	15%
4	56,1	14,2	27%	10%	29%	7%	9%	14%
5	97,7	19,7	48%	14%	50%	9%	13%	20%
6	96,1	21,8	47%	16%	50%	10%	14%	22%
7	155,7	46,2	76%	34%	83%	22%	30%	47%
8	152,9	25,6	75%	19%	77%	12%	16%	26%

Tabela 4-122: Ligação do chute de descarga VII – Esforços solicitantes de cálculo por parafuso e utilização por estado limite último individual.

Tabela 4-123: Ligação do chute de descarga VII – Ve	erificação por e	estado limite	último
global.			

Tensão de cisalha	208,8	
Litilização	Metal de base	101%
Utilização	Metal de solda	51%
Tensão de cisalha	amento máxima na mesa [MPa]	209,0
Litilização	Metal de base	101%
Otilização	Metal de solda	56%

5 CONCLUSÕES

5.1 Recomendação DNV-RP-C208:2013

A adoção da recomendação de dimensionamento DNV-RP-C208:2013 possibilitou a avaliação criteriosa dos elementos estruturais perfilados e bidimensionais, entretanto, o dimensionamento das ligações (em especiais as ligações parafusadas) entre estes elementos foi realizada pela norma NBR 8800:2008 (uma vez que a recomendação indica a utilização do código nacional ordinário para a verificação de soldas e parafusos).

Ao fornecer critérios e subsídios para a modelagem e avaliação de elementos estruturais considerando-se recursos numéricos sofisticados, como análises física e geometricamente não-lineares, a recomendação possibilitou o dimensionamento de uma estrutura ao mesmo tempo robusta e economicamente viável para o projeto em questão, sendo os impactos em redução de peso estrutural mais pronunciados nas estruturas em caldeiraria (guias e chute de descarga).

Todavia, o procedimento de dimensionamento também se mostrou mais demorado e oneroso computacionalmente e, dadas limitações de prazo e recurso, percebe-se que alguns dos pontos destacados pela recomendação, em especial quanto à densidade de malha e à análise de sensibilidade da solução com a malha, não puderam ser estritamente atendidos durante todas as análises. Por segurança, portanto, optou-se por uma segunda verificação dos elementos perfilados conforme norma NBR 8800:2008, uma vez que alguns estados limites não necessariamente foram bem representados e avaliados sistematicamente durante as análises conforme a recomendação DNV-RP-C208:2013.

5.2 Carregamento de avalanche

A estimativa das ações devido à avalanche de minério no silo foi realizada de forma racional e parcialmente balizada em norma do Eurocode (Comité Européen de Normalisation, 2006). Entretanto, entende-se que estudos em escala ou avaliações numéricas pelos métodos dos elementos discretos e/ou volumes finitos (possivelmente acoplados) são capazes de fornecer informações mais detalhadas e acuradas quanto ao evento e o carregamento resultante.

A combinação de carregamento para avaliação da estrutura sujeita à avalanche de minério no silo, ainda que considerada excepcional, foi predominante para o dimensionamento de boa parte da estrutura.

Algumas regiões que, em geral, não possuem carregamentos de grande magnitude durante operação, como as guias de material e o chute de descarga, tornam-se significativamente mais robustos e de mais difícil montagem e manutenção para apresentarem capacidade resistente tida como suficiente quanto ao evento de avalanche.

5.3 Sugestões para trabalhos futuros

Como complementação do projeto, entende-se que uma análise transiente de interação fluido-particulado-estrutura poderia indicar algum sobredimensionamento ocasionado seja pela forma como o carregamento de avalanche foi estimado seja pela adoção de uma análise estrutural estática implícita ou ainda, algum possível, mas menos provável, subdimensionamento, devido a rápida aplicação mas curta duração do carregamento.

6 **BIBLIOGRAFIA**

ABNT NBR 8800 – Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios [Livro]. - Rio de Janeiro, Rio de Janeiro : Associação Brasileira de Normas Técnicas, 2008.

Australian Standards AS 4324.1 Mobile equipment for continuous handling of bulk materials – General requirements for the design of steeel structures [Livro]. - 1995.

Comité Européen de Normalisation Eurocode 1 – Actions on structures – Part 4: Silos and Tanks [Livro]. - Bruxelas : [s.n.], 2006.

Conveyor Equipment Manufacturers Association Belt Conveyors for Bulk Materials, Seventh Edition [Livro]. - Naples, Florida : Conveyor Equipment Manufacturers Association, 2014.

de Souza Flaviano Rodrigues Propriedades geotécnicas de minérios de ferro sinterizado visando susceptibilidade durante transporte marítimo [Livro]. - Campos dos Goytacazes : Universidade Estadual do Norte Fluminense, 2020.

Det Norske Veritas AS DNV-RP-C208 – Determination of Structural Capacity by Non-linear FE analysis Methods [Livro]. - 2013.

Freire Neto J.P. Estudo de liquefação estática em rejeitos e aplicação de metodologia de análise de estabilidade [Livro]. - Ouro Preto : Universidade Federal de Ouro Preto, 2009.

International Standard Organization ISO 5049-1 : Moblie equipment for continuous handling of bulk materials [Livro]. - 1994.

Moura Adilson Lopes Estudo de parâmetros de controle necesários para garantir a estabilidade de pilhas de minério em pátios de estocagem [Livro]. - Carajás : Instituto Tecnológico VALE, 2020.

Standards Association of Australia Loads on bulk solids containers [Livro]. -Homebush, New South Wales : Standards Association of Australia, 1996.