UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA

SHIRLEY SANTANA SILVA

Nanocompósitos Semicondutores ZnO/TiO2 e

Testes Fotocatalíticos

UFMG, BELO HORIZONTE

2009

UFMG / ICEX / DQ 764^a

D 448

SHIRLEY SANTANA SILVA

Nanocompósitos Semicondutores ZnO/TiO2 e

Testes Fotocatalíticos

DISSERTAÇÃO APRESENTADA AO DEPARTAMENTO DE QUÍMICA DO INSTITUTO DE CIÊNCIAS EXATAS DA UNIVERSIDADE FEDERAL DE MINAS GERAIS COMO REQUISITO PARCIAL PARA OBTENÇÃO DO TÍTULO DE MESTRE EM QUÍMICA – QUÍMICA INORGÂNICA

UFMG, BELO HORIZONTE 2009

AGRADECIMENTOS

A Deus, minha eterna gratidão.

À minha orientadora Terezinha, que, com muita competência, paciência e seriedade contribuiu positivamente para que fosse possível a realização deste trabalho.

Ao meu amado Carlos, incentivador desta jornada e companheiro do início ao fim.

À minha querida mãezinha e as minhas irmãs que tanto amo.

Ao meu pai (in memorian) que, se pudesse ver e sentir regozijaria comigo mais esta conquista.

Aos colegas do curso de química pelos momentos de descontração e ajudas prestadas para a realização deste trabalho, principalmente ao Fabiano M. e a Viviane F.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelas bolsas concedidas e pelo suporte financeiro.

Ao professor Dr. Rochel Monteiro Lago pelas discussões sobre fotocatálise.

Se consegui enxergar tão longe, foi porque apoiei- me em ombros de gigantes (Isaac Newton)

SUMÁRIO

LISTAS DE FIGURAS	
LISTAS DE TABELAS	
ABREVIATURAS	
RESUMO	
ABSTRACT	
CAPÍTULO 1: INTRODUÇÃO	01
1.1. O semicondutor TiO ₂	02
1.1.1. Desenvolvimento do Dióxido de Titânio	02
1.1.2. Propriedades do TiO ₂	02
1.2. O semicondutor ZnO	04
1.3. Processos avançados de oxidação	05
1.4. Fotocatálise	06
1.5. Nanocompósito semicondutor / TiO ₂	08
1.6. Espectroscopia Micro Raman e no Infravermelho	09
1.7. Corantes e sua importância ambiental	10
1.8. Objetivos	11
CAPÍTULO 2: PARTE EXPERIMENTAL	12
2.1. Reagentes e Equipamentos	13
2.2. Metodologia	15
2.3. Medidas de adsorção	15
2.4. Testes fotocatalíticos	17
CAPÍTULO 3: ZnO: SÍNTESE, CARACTERIZAÇÃO E TESTES FOTOCATALÍTICOS	
3.1 AnáliseTermogravimétrica	20
3.2.1. Espectroscopia no infravermelho (IV)	21
3.2.2. Espectroscopia Micro-Raman	23
3.2.4. Difração de raios X (DRX)	24
3.2.4. Reflectância difusa	26
3.2.5. Microscopia Eletrônica de Varredura (MEV)	27
3.2.6. Medidas de área superficial (BET)	28
3.3. Testes fotocatalíticos	30
3.4 Conclusões	34
CAPÍTULO 4: COMPÓSITOS ZnO/TiO2: SÍNTESE, CARACTERIZAÇÃO E TESTES FOTOCATALÍTICOS	37
4.1. AnáliseTermogravimétrica	36
4.2.2. Espectroscopia no infravermelho (IV)	38

4.2.3. Difração de raios X (DRX) ------ 39

4.2.4. Espectroscopia Micro-Raman	41
4.2.5. Espectroscopia de Refletância difusa	43
4.2.6. Microscopia Eletrônica de Varredura (MEV)	44
4.2.7. Medidas de área superficial BET	43
4.3. Testes fotocatalíticos	48
4.4. Conclusões	52

CAPÍTULO 5: TESTES DE ADSORÇÃO UTILIZANDO OS CORANTES VERMELHO DO CONGO E VEI	RDE DE
JANUS E SEMICONDUTORES ZnO e TiO ₂	
5.1. Vermelho do Congo e Verde de Janus	54
5.2. Fotólise	56
5.3. Testes de adsorção	57
5.4. Conclusões	60
CAPÍTULO 6: CONCLUSÃO FINAL	61
CAPÍTULO 7: REFERÊNCIAS BIBLIOGRÁFICAS	62
CAPÍTULO 8: ANEXOS	70

FIGURAS

Figura 1.1: Cela unitária do rutilo	03
Figura 1.2: Cela unitária do anatásio	03
Figura 1.3: Forma alotrópica do cristal rutila	03
Figura 1.4: Forma alotrópica do cristal anatásio	03
Figura 1.5: Cela unitária para o ZnO	04
Figura 1.6: Estruturas de bandas do TiO ₂	06
Figura 1.7: Esquema do mecanismo geral da foto-catálise na superfície da partícula de um semicondutor	07
Figura 1.8: Estrutura eletrônica do Ti ${ m O}_2$ e representação do processo fotocatalítico para este semicondutor	08
Figura 1.9: Esquema do processo fotocatalítico do TiO ₂ quando sensibilizado pelo semicondutor CdS	09
Figura 2.2: Esquema do fotoreator utilizado nas análises	17
Figura 3.1: Curva TG/DSC em atmosfera de ar, para o acetato de zinco dihidratado	20
Figura 3.2: Espectro IV para o Acetato de Zinco diidratado	21
Figura 3.3: Espectro IV para o ZnO após decomposição em forno tubular	23
Figura 3.4: Espectros Raman para o ZnO obtido a partir da pirólise do precursor molecular à 300°C	23
Figura 3.5: Difratograma de Raios-X do ZnO obtido a partir da pirólise do precursor molecular à 300°C er	n forno
tubular	24
Figura 3.6: Espectro de refletância difusa para ZnO obtido a partir da pirólise do precursor molecular à 30	0°C em
forno tubular	26
Figura 3.7: Micrografia eletrônica de varredura (MEV) para a ZnO	27
Figura 3.8: Isoterma de adsorção de N ₂ para o ZnO	28
Figura 3.9: Curvas de distribuição de tamanho de poros obtidos para o ZnO	29
Figura 3.10: Espectro de absorção e fórmula molecular para o corante Vermelho Drimaren	30
Figura 3.11: Degradação do corante VD pelo ZnO	31
Figura 3.12: Logaritmo da absorvância em função do tempo para ZnO	32
Figura 4.1: Curva TG/DSC em atmosfera de a, para o Zn(C ₂ H ₃ 0 ₂).2H ₂ 0 / TiO ₂ 10%	36
Figura 4.2: Curva TG/DSC em atmosfera de ar para o TiO2 P25 calcinado à 300°C 37	
Figura 4.3: Espectro IV para os compósitos 3 e 20%, TiO ₂ e ZnO	38
Figura 4.4: Difratogramas de Raios-X do TiO ₂ P25, do ZnO obtido a partir da pirólise do precursor molecu	lar e do
compósito ZnO/TiO ₂ 20% à 300°C em forno tubular	39
Figura 4.5: Espectros Raman do TiO ₂ P25	41
Figura 4.6: Espectros Raman do TiO ₂ e dos compósitos ZnO/TiO ₂	41
Figura 4.7: Espectro de refletância difusa do TiO ₂ , ZnO e dos compósitos ZnO/TiO ₂	43
Figura 4.8: Micrografia eletrônica de varredura (MEV)	45
Figura 4.9: Isoterma de adsorção de N2 para o ZnO, TiO2 e os compósitos 3 e 20%	46
Figura 4.10: Curvas de distribuição de tamanho de poros obtidos para o TiO2, ZnO e os compósitos ZnO/TiO) ₂ 3% e
10%	47
Figura 4.11: Foto da fotodecomposição do corante vermelho de Drimaren pelo ZnO/TiO ₂ 3%	48
Figura 4.12 Degradação do corante VD pelo compósito ZnO/TiO ₂ 3%	49

Figura 4.13: Logaritmo das absorvâncias em função do tempo para as diferentes porcentagens dos compósi	tos, ZnO
e TiO ₂	50
Figura 4.14: Gráfico dos valores das constantes de velocidade k2 para degradação do corante vermelho	52
Figura 5.1: Fórmulas estruturais dos azo-corantes Vermelho de Congo e Verde de Janus	54
Figura 5.2: Espectro de absorção para o corante Vermelho do Congo	55
Figura 5.3: Espectro de absorção para o corante Verde de Janus	55
Figura 5.4: Corante VC na ausência de fotocatalisador e frente à radiação UV-Vis	56
Figura 5.5: Diagrama de Energia da Interface Cromóforo – TiO ₂	57
Figura 5.6: Teste de adsorção para o VC com o catalisador ZnO	58
Figura 5.7: Teste de adsorção para o VC com o catalisador TiO ₂	
Figura 5.8: Teste de adsorção para o VJ mais ZnO	59
Figura 5.9: Teste de adsorção para o VJ mais o TiO ₂	

TABELAS

Tabela 1.1: Dados cristalográficos para as 3 fases do TiO ₂	3
Tabela 2.1: Relação das massas utilizadas na preparação dos compósitos e do ZnO	5
Tabela 3.1: Valores das freqüências observadas para o composto Acetato de Zinco, com suas respectivas atribuiçõe	S
2	2
Tabela 3.2: Valores das freqüências observadas para o composto Óxido de Zinco, com suas respectivas atribuições	-
2	3
Tabela 3.3: Posições dos picos no Espectro Raman para o ZnO2	ł
Tabela 3.4: Valores da distância interplanar para o ZnO2	5
Tabela 3.5: Valores da absorvância em função do tempo3	2
Tabela 4.1: Valores das freqüências observadas para o composto TiO ₂ P25 e os compósitos, com suas respectiva	IS
atribuições3	3
Tabela 4.2: Valores da distancia interplanar para o compósito ZnO/TiO ₂ 20% calculados a partir da equação d	e
Bragg $2dseno\theta = \lambda$ 4	0
Tabela 4.3: Valores do tamanho médio de partícula4	0
Tabela 4.4: Posições dos picos no Espectro Raman para o TiO2 e a série de compósitos 4	2
Tabela 4.5: Relação das intensidades relativas entre a banda do rutilo e a banda do anatásio para o TiO ₂ 4	3

ABREVIAÇÕES

- POAs Processos Oxidativos Avançados
- UV-VIS Ultravioleta e Visível
- HO' Radical hidroxila
- CB Banda de condução
- VB Banda de valência
- e Elétron
- h⁺ Buraco
- NHE Eletrodo normal de hidrogênio
- O2. Radical superóxido
- P25 Dióxido de Titânio fornecido pela Degussa
- BET Brunauer Emmett Teller
- Ca Aproximadamente
- DRX Difração de Raios X
- IV Infravermelho
- VD Vermelho Drimarem
- VC Vermelho do Congo
- VJ Verde de Janus
- MEV Microscopia eletrônica de varredura
- TG Termogravimetria
- δ Deformação
- υ Estiramento

Resumo

O dióxido de titânio é um fotocatalisador eficiente, mas, é possível melhorar sua eficiência com melhor separação de cargas quando se acopla o TiO₂ com outros semicondutores. Para este fim, utilizou-se neste trabalho nanopartículas de óxido de zinco que foram impregnadas no TiO₂ P25. Acetato de zinco dihidratado foi usado como precursor molecular para obtenção do ZnO. A preparação de compósitos semicondutores ZnO/TiO_2 foi feita impregnando-se acetato de zinco dihidratado na superfície de TiO₂ P25 e seguida por tratamento térmico. Compósitos ZnO/TiO₂ foram obtidos em diferentes proporções molares (20, 10, 7, 5, 3 and 1)%. O semicondutor ZnO é também um bom fotocatalisador, e desta forma obtivemos o ZnO puro pela pirólise do acetato de zinco dihidratado nas mesma condições experimentais usada para obtenção dos compósitos. Tanto o ZnO puro como os compósitos ZnO/TiO₂ foram caracterizados por difração de raios X (DRX), espectroscopia micro-Raman e reflectância difusa, medidas de área superficial (BET) e microscopia eletrônica de varredura (MEV). Dados de espectroscopia Raman revelaram que existe uma interação eletrônica entre ZnO e TiO₂ nos compósitos e portanto não é uma simples mistura. Esta interação foi observada através de um alargamento dos picos do TiO₂ e uma variação na proporção entre as fases anatásio e rutilo nos compósitos. Tanto o ZnO como os compósitos foram caracterizados como materiais nanométricos. O tamanho de partículas obtida por DRX foi de 21,2 nm para o ZnO e de 17,2 nm para o compósito ZnO/TiO₂ 20%. Uma banda em 801 cm⁻¹ observada no espectro Raman está também associada com a formação de nanopartículas. A análise BET revelou que tanto ZnO como os compósitos são materiais mesoporosos. A fotodegradação do azo corante vermelho de Drimaren revelou melhor eficiência para o compósito ZnO/TiO₂ 3% e para o ZnO puro quando comparadas com o TiO₂ P25 e com os compósitos ZnO/TiO₂ em outras proporções molares. Foram testados também os azo corantes Vermelho do Congo e Verde de Janus, mas, estes adsorvem fortemente na superfície dos catalisadores, de forma que não foi possível efetuar-se testes fotocatalíticos.

Abstract

Titanium dioxide is an efficient photocatalyst, but it is possible to improve its efficiency with better charge separation by coupling TiO₂ with other semiconductors. To achieve this, in these work nanometric particles of ZnO were used to impregnate TiO₂ P25. Zinc acetate was used as molecular precursor for ZnO. The preparation of ZnO/TiO₂ semiconductors composites was performed by impregnating zinc acetate di-hydrate on to the surface of TiO₂ P25, followed by thermal treatment. ZnO/TiO₂ composites were obtained at different molar proportions (20, 10, 7, 5, 3 and 1%). ZnO is also a good photocatalyst it was obtained by pyrolysis of zinc acetate di-hydrate under the same experimental conditions of the composites. ZnO as well as ZnO/TiO₂ composites were characterized by X-ray diffraction (XRD), micro-Raman spectroscopy, difuse reflectance spectroscopy, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed an interaction between ZnO and TiO₂ that was observed by an enlargement of TiO₂ peaks and a change on the rate relation between anatase and rutile phases on the composites. The size of ZnO particles, measured by XRD, was 21.2 nm and for ZnO/TiO₂ 20% composite was 17.2 nm. A new Raman band at 801 cm⁻¹ was observed which was assigned to the presence of nanosized materials. The BET analysis revealed that both ZnO and composites are mesoporous materials. Photodegradation of Drimaren Red azo-dye revealed better efficiency for ZnO/TiO₂ 3% nanocomposite and for ZnO pure when compared with TiO₂ alone and other ZnO/TiO₂ molar proportions. Other azo-dyes such as Congo Red and Janus Green were tested but these dyes adsorbed strongly the catalysts powders, therefore it was not possible to test the photo-degradation for these dyes.

Capítulo 1 *INTRODUÇÃO*

2

O semicondutor Dióxido de Titânio - TiO2

O dióxido de titânio impuro foi isolado pela primeira vez em 1791, quando o Reverendo William Gregor, de Devon, Inglaterra, isolou um óxido metálico branco, desconhecido por químicos contemporâneos, da areia preta magnética local. A análise de Gregor desta areia preta mostrou que ela continha:¹ Óxido de ferro; Óxido de titânio; Sílica e Óxido de manganês.

A descoberta deste novo óxido branco causou pequeno interesse em tal ocasião, mas em 1795, Martin Klaproth, químico Germânico, notou que este material era similar a um óxido que ele havia extraído de um depósito de rutilo Húngaro. Klaproth nomeiou este elemento óxido "Titanium" em homenagem aos mitológicos Titans, os primeiros filhos da Terra na Mitologia Grega, sendo este nome utilizado até hoje¹.

O TiO₂ é um sólido branco, cujo ponto de fusão é 1800° C,² massa molar 79,87 g.mol⁻¹ e densidade 2,23 g.cm⁻³. Possui excelente propriedade de pigmentação, tem boas propriedades dielétricas, alta absorção ultravioleta e alta estabilidade que permite ser usado em aplicações especiais ^{2,3}.

O dióxido de titânio é um semicondutor encontrado em 3 fases cristalinas distintas: a forma anastásio (*band gap* 3,2 eV, 384nm), a forma rutilo (*band gap* 3,02 eV, 411nm) e a forma broquita ^{4,5}. Tem sido mostrado que a atividade fotocatalítica e o mecanismo de reação do TiO₂ são influenciados pela estrutura, defeitos e impurezas, morfologia da superfície e interface, entres outros fatores. Dependendo das fases cristalinas presentes, as quais vão variar com o pré-tratamento e preparação do TiO₂, partículas com estruturas anatásio ou rutila são obtidas ^{6,7}. A forma rutilo tem o menor *band gap* que a forma anastásio. Isto contribui para que a recombinação elétron/vacância ocorra com maior freqüência e probabilidade na forma rutilo, por isso, muitos pesquisadores argumentam que a forma rutilo é menos fotoativa que a anastásio ou até mesmo que não possui atividade fotocatalítica. Isto tem sido considerada como a causa principal para explicar a maior atividade fotocatalítica da forma anastásio ^{8, 9, 10}.

	Rutilo	Anatásio	Bruquita
Peso Molecular	79,890	79,890	79,890
Z	2	4	8
Simetria	Tetragonal	Tetragonal	Ortorrômbico
Grupo de ponto	4/mmm	4/mmm	mmm
Grupo Espacial	P4 ₂ /mnm	I4 ₁ /amd	Pbca
Célula Unitária	Rutilo	Anatásio	Bruquita
a(Å)	4,5845	3,7842	9,184
b(Å)	4,5845	3,7842	5,447
c(Å)	2,9533	9.5146	5.145

Tabela 1.1: Dados cristalográficos para as 3 fases do ${\rm TiO_2}^{11}$

Figura 1.1: Cela unitária do rutilo³

Figura 1.2: Cela unitária do anatásio³

Figura 1.3: Forma alotrópica do cristal rutila³

Figura 1.4: Forma alotrópica do cristal anatásio³

Dentre os óxidos metálicos semicondutores como TiO₂, ZnO, WO₃, SrTiO₃ e FeO₃, **o** TiO₂ é o semicondutor mais utilizado por ser considerado bastante ativo em fotocatálise de degradação de compostos orgânicos, na forma de suspensões aquosas ^{12, 13, 14} e por esta razão, várias propriedades já foram exaustivamente estudadas. O TiO₂ é um catalisador de baixo custo, comercialmente disponível, não tóxico e fotoquimicamente estável ^{15, 16, 17, 18}.

Nos últimos trinta anos, vários estudos têm sido realizados para investigar as possíveis aplicações do TiO_2 como fotocatalisador. A maior parte desses estudos está concentrada no tratamento de sistemas aquosos contaminados por poluentes orgânicos considerados potencialmente tóxicos ¹⁹.

1.2. O semicondutor Óxido de Zinco - ZnO

O óxido de zinco é um material semicondutor, de cor branca e ponto de fusão 1975°C, que cristaliza no sistema cristalino hexagonal ²⁰.

Figura 1.5: Cela unitária para o ZnO²⁰

O óxido de zinco é pouco solúvel em água, porém muito solúvel em ácidos minerais diluídos. É um pó fino, amorfo, branco ou levemente amarelado. Quando se encontra em grande quantidade e em alta pureza, é recomendado para utilização nas indústrias farmacêuticas, alimentícias e de cosméticos ²¹, por exemplo, para a fabricação de protetor solar, pois, absorve radiação ultravioleta (UV) e combate os problemas potenciais associados com a exposição ao sol, que vão desde "pintas" no rosto e nas costas até o envelhecimento prematuro e melanomas de crescimento rápido ^{21, 22}. Pode ser utilizado também como inibidor de crescimento de fungos em pinturas e como pomada antisséptica na medicina ^{20, 22}.

Nanopartículas ZnO, recentemente têm recebido grande atenção devido a uma variedade de aplicações tais como, absorção no UV, desodorização e tratamento anti-bacteriano ^{23, 24} como varistor, sensor de gás, óxidos luminescentes ²⁵, borracha, tintas, cerâmica, e outros ²⁶. O semicondutor ZnO tem um *band gap* de 3,37 eV em temperatura ambiente e é um dos mais importantes materiais inorgânicos, com propriedades catalítica ^{27, 28}, elétrica ^{29, 30}, óptico eletrônica ^{31,32} e fotoquímica ³³, o que tem estimulado cada vez mais a ampla investigação em sua aplicabilidade. O uso do ZnO como material fotocatalisador para a degradação de poluentes ambientais, tem sido vantajoso em relação a outros materiais devido à sua natureza não-tóxica, seu baixo custo e alta reatividade ^{34, 35}, como também ocorre para o dióxido de titânio.

Outros catalisadores como, CdS, ZnS e FeO também têm sido usados na busca por materiais cerâmicos nanoestruturados que resultem em materiais de alta performance, tem levado ao desenvolvimento de vários métodos químicos em escala de laboratório. Entre os vários métodos de síntese química podemos

citar o método de sol-gel ^{36, 37, 38}, método de estado sólido ^{39, 40}, método de condensação da fase gasosa ^{41, 42}, método químico de precipitação em fase líquida ^{43, 44}, pirólise de spray ⁴⁴, reação por combustão via líquida ⁴⁵, síntese hidrotérmica ⁴⁶, spray-dryind ⁴⁷ e o método Pechini ⁴⁸.

1.3. Processos avançados de oxidação

Ao longo da história, a busca por uma melhor qualidade de vida foi se traduzindo em consumo, e consequentemente na geração de grandes quantidades de resíduos. Como conseqüência, foram desenvolvidas tecnologias para minimizar o impacto causado por estes resíduos que, em sua grande maioria, baseiam-se apenas na transferência de fase dos poluentes sem, contudo destruí-lo. É o caso de tratamento de efluentes à base de carvão ativado, onde a descontaminação ocorre pela adsorção dos poluentes, ou seja, transferindo o poluente do líquido para o sólido ⁴⁹.

Dentre as soluções apontadas para tal problema ambiental, destacam-se os Processos Oxidativos Avançados (POA)⁵⁰. Os POA dividem-se em processos heterogêneos e homogêneos. Nos processos homogêneos, o catalisador se encontra dissolvido na fase aquosa e pode ser um problema em potencial para o meio ambiente. Esse fato faz com que um processo de separação deva ser adaptado para sua remoção no final do processo, e na maioria dos casos essa separação pode ser técnica e/ou economicamente inviável ⁵. Entre os POA, a fotocatálise heterogênea é a mais usada e tem sido amplamente estudada principalmente nas últimas duas décadas ⁵¹. Estes processos em que o catalisador é utilizado em uma fase diferente à da solução é que chamamos de fotocatálise heterogênea ⁵, 12</sup>.

Entre as diversas publicações referentes a fotocatálise, uma série de revisões recentes aborda a aplicação do processo à descontaminação ambiental ^{51, 52}. Entretanto, o controle dos processos heterogêneos é usualmente mais complexo, o que pode ser explicado pelo fato de cinco etapas serem necessárias para que os processos possam ocorrer ⁵³:

- difusão das espécies (água, oxigênio, moléculas orgânicas) para a superfície,
- adsorção das espécies na superfície,
- reação na superfície,
- · dessorção dos produtos da superfície, e
- difusão dos produtos da superfície.

Os POA são baseados na geração de radical hidroxila como espécie altamente oxidante e não seletiva, capaz de oxidar uma grande variedade de contaminantes orgânicos ^{54, 55}. A fotocatálise heterogênea pertence à classe dos POA, e é uma tecnologia promissora no tratamento de efluentes

industriais e na descontaminação ambiental. Este é um processo que alia reações de oxi-redução induzidas pela radiação ultravioleta em meio aquoso, fazendo uso de um fotocatalisador ⁵⁰.

1.4. Fotocatálise

O termo fotocatálise foi introduzido na literatura científica em 1930². Porém, esta tecnologia teve início aproximadamente há duas décadas atrás¹⁻⁵ sendo reconhecida pela primeira vez como tecnologia que poderia ser aplicada a remediação ambiental em 1983, onde foi demonstrada a mineralização de clorofórmio e tricloroetileno através da irradiação de suspensão de TiO₂^{56, 57}. Desde então, representa a divisão da química que estuda as reações catalíticas que acontecem sob o efeito da luz, ou seja, fenômeno que relaciona a fotoquímica e a catálise ².

O processo de fotocatálise está baseado na irradiação de um fotocatalisador, geralmente um semicondutor inorgânico tal como TiO₂, ZnO, ou CdS, cuja energia do fóton deve ser maior ou igual a energia do "*band gap*" do semicondutor para provocar uma transição eletrônica⁴⁹. Desse modo, um fotocatalisador é formado por banda de valência (BV) e banda de condução (BC), havendo entre ambas uma região energética denominada "*band gap*" ⁵⁰. Em reações fotocatalíticas a energia do *band gap* é que determina o comprimento de onda da radiação mais eficiente para o processo fotocatalítico e a posição do nível de maior energia da banda de valência condiciona o poder de decomposição oxidativa do fotocatalisador ⁴ (Figura 1.6).

Figura 1.6: Estruturas de bandas do TiO_2^4

Sob irradiação, um elétron é promovido da banda de valência para a banda de condução formando sítios oxidantes e redutores capazes de catalisar reações químicas, oxidando os compostos orgânicos à CO_2 e H_2O e reduzindo metais dissolvidos ou outras espécies presentes na solução ^{2, 5}. O processo global pode ser sumarizado pela seguinte equação:

POLUENTES ORGÂNICOS + O₂ SEMICONDUTOR + LUZ UV CO₂ + ÁGUA + ÁCIDOS MINERAIS²

Figura 1.7: Esquema do mecanismo geral da fotocatálise na superfície da partícula de um semicondutor ^{58, 59}.

Os semicondutores usados em fotocatálise podem ser mais interessantes que os demais métodos de oxidação química porque eles são mais baratos, atóxicos e podem ser usados extensivamente sem perda substancial da atividade fotocatalítica¹⁹. Nestes materiais o número de elétrons na banda de condução é igual ao número de buracos formados na banda de valência. O processo de movimentação de cargas elétricas é causado pela absorção de um fóton de energia *hv*, o que promove a transição eletrônica do elétron da BV para a BC acarretando na formação de um par elétron / lacuna na superfície do semicondutor^{19, 52, 59} de acordo com a equação 1.

$$hv$$

TiO₂ TiO_2 $(e^+ h^+)$ (Equação 1)⁶⁰

De acordo com a Figura 1.7, quando um semicondutor, por exemplo, o TiO_2 está imerso em solução aquosa e é irradiado com um fóton de energia *h*v, ocorrerá a sobreposição das bandas de energia do semicondutor com a suposta geometria esférica de uma partícula da molécula orgânica, que neste caso, é o corante têxtil.

Os elétrons migram da BV para a BC formando uma lacuna na BV que pode oxidar com espécies doadoras de elétrons como água e as ⁻OH adsorvidos na superfície do catalisador formando radicais hidroxilas. Os elétrons presentes na BC é que são os responsáveis pelas reações de redução de substâncias inorgânicas ⁵⁰, devido aos potencias de redução de 0 à -1V. Eles reagem com espécies receptoras de elétrons como O₂ molecular dissolvido na água, formando espécies de oxigênio reativas como peróxido e ânions superóxidos, posteriormente formando o mesmo radical hidroxila ⁵⁰. Estes processos podem ser sumarizados pelas equações abaixo:

 $TiO_{2}(e^{-}) + O_{2} \longrightarrow O_{2}^{-} (Equação 2)_{0}^{62}$ $TiO_{2}(h^{+}) + H_{2}O \longrightarrow HO^{+} + H^{+} (Equação 3)_{0}^{-5}$ $TiO_{2}(h^{+}) + OH^{-} \longrightarrow HO^{-} (Equação 4)_{0}^{-5}$

O HO' apresenta um potencial de oxidação de aproximadamente 2,9 V versus NHE (eletrodo normal de hidrogênio), o que é suficiente para oxidar a maioria dos poluentes presentes em resíduos aquosos ⁵. Os radicais hidroxilas e as outras substâncias formadas apresentam como característica um alto poder oxidante, e em contato com moléculas orgânicas podem levar à sua oxidação e, idealmente, à sua mineralização, ou seja, à formação de espécies inorgânicas. ² Ainda, segundo Daniel ⁶²; eliminase a necessidade de oxidantes químicos; não necessitando da adição de receptores de elétrons; o fotocatalisador pode ser reaproveitado e, pode ser exitado com radiação solar.

1.5. Nanocompósito semicondutor / TiO₂

O processo de fotocatálise promovida por um óxido metálico semicondutor, como o TiO₂ (Figura 1.8) é iniciado pela absorção de um fóton com energia igual ou superior ao *band gap* do semicondutor TiO₂ (3.2 eV para a *anátasio*), produzindo um par elétron/buraco (e^{-}/h^{+}). Seguidamente, as partículas de TiO₂ atuam como doadoras ou receptoras de elétrons, dependendo das moléculas nas suas vizinhanças ⁶³. No entanto, a separação de carga fotoinduzida, nas partículas de TiO₂, tem um tempo de vida pequeno devido à recombinação de cargas. Portanto, é importante retardar a recombinação elétron/buraco deste semicondutor para aumentar o seu desempenho fotocatalítico ⁴.

Figura 1.8: Estrutura eletrônica do TiO₂ e representação do processo fotocatalítico para este semicondutor⁶³.

Sendo assim, a síntese de novos materiais Nanocompósito semicondutor / TiO_2 ou Metal / TiO_2 , tem como objetivo principal retardar a recombinação elétron / buraco. Uma das técnicas usadas para diminuir a probabilidade de recombinação de cargas é retirar as cargas fotogeradas através de espécies que as absorvam⁴. Assim o aumento da separação de cargas no TiO_2 pode ser conseguido por incorporação na superfície deste semicondutor de um metal ou de outro semicondutor com uma banda de condução localizada a energias superiores à do TiO_2 (Figura 1.9)⁴. Neste último caso, os

elétrons fotogerados migram para a BC do segundo semicondutor. Como as lacunas se movem em sentido oposto aos elétrons, ficam presas no interior do TiO_2 . Por este processo consegue-se aumentar a separação de cargas reduzindo a possibilidade de recombinação ⁴.

Os métodos referidos descrevem tentativas de melhorar o comportamento fotocatalítico do TiO_2 quando submetido à radiação ultravioleta. Um dos métodos utilizados para atingir este objetivo é sensibilizar o TiO_2 com um semicondutor que deverá ter a banda de condução mais energética que o TiO_2 (Figura 1.9). Um sistema que obedeça a estes requisitos consegue sensibilizar o TiO_2 , sendo possível à utilização de radiação visível em processos fotocatalíticos ^{64, 65}. Neste caso, o segundo semicondutor absorve radiação visível passando um elétron da banda de valência para a sua banda de condução. Este elétron passa depois para a banda de condução do TiO_2 sendo possível o processo catalítico à superfície deste semicondutor, como por exemplo, o acoplamento de CdS com TiO_2 mostrado na Figura 1.9 ^{66, 67}.

Figura 1.9: Esquema do processo fotocatalítico do Ti O_2 quando sensibilizado pelo semicondutor CdS $^{66, 67}$.

Estudos demonstraram que os nanocompósitos de TiO₂/CdS podem funcionar como fotocatalisadores, quando sujeitos a radiação visível de comprimento de onda inferior a 495 nm, e degradar poluentes como o fenol e derivados (clorofenóis), o azul de metileno, o ácido 4-hidroxobenzóico, a benzamida e o indol $^{68 - 74}$ e o Corante Vermelho Drimeren pelos nanocompósito TiO₂/CdS 75 . Foi verificado que a eficiência do par TiO₂/CdS como fotocatalisador depende da quantidade de CdS. Por exemplo, no caso da fotodegradação do ácido 4-(2-hidroxi-1-naftilazo) benzenossulfanato de sódio (orange acid II) sob luz visível a melhor actividade catalítica é apresentada para percentagens de CdS entre 5% e 10% 4 . Para além do CdS⁷⁵ outros semicondutores já foram utilizados para sensibilizar o TiO₂ como ZnS, PbS, Bi₂S₃, Ag₂S, CdSe e PbSe $^{73, 76-81}$.

1.6. Espectroscopia Micro Raman e no Infravermelho

Nanopartículas e nanocompósitos podem existir em muitas fases possíveis. Por exemplo,

nanopartículas do grupo II-VI podem cristalizar na estrutura de wurtzita (hexagonal), zinco blenda ou cloreto de sódio (cúbico) ou algumas em fases desordenadas relacionadas a estas estruturas. As propriedades eletrônicas dependem da fase e medidas ópticas são boas para determinação da estrutura.

A espectroscopia Raman é também uma técnica muito sensível para o estudo de compostos contendo TiO₂, pois cada fase apresenta bandas distintas e características. Assim é possível caracterizar-se bem se o TiO₂ se encontra na fase anastásio, rutilo ou se está amorfo ⁸². Outro fato importante é que alguns modos do TiO₂ observados no Raman são muito sensíveis a pequenas interações sofrendo deslocamentos característicos e aumento na largura de banda, o que nos permitirá avaliar se está ocorrendo algum tipo de interação entre os materiais semicondutores no compósito^{83, 84, 85}.

1.7. Corantes e sua importância ambiental

A economia de água em processos produtivos vem ganhando especial atenção devido ao grande valor que tem sido atribuído a esse bem. Aliado a isso, podemos mencionar algumas perspectivas preocupantes para o século que se inicia, como, por exemplo, a previsão feita pela Companhia de Saneamento Básico do Estado de São Paulo (SABESP), que estima que já em 2010 a demanda de água será superior a capacidade hídrica dos mananciais do Estado⁸⁶.

A tintura de tecidos é uma arte que começou há milhares de anos e a disponibilidade comercial de corantes é enorme ⁸⁷. Dentro desse contexto, o setor têxtil apresenta um especial destaque, devido à geração de grandes volumes de efluentes ⁵⁰, os quais, quando tratados inadequadamente, podem causar sérios problemas de contaminação ambiental ⁵.

Os efluentes têxteis caracterizam-se por serem altamente coloridos ⁶¹, devido à presença de corantes que não se fixam na fibra durante o processo de tingimento ⁵. Devido à sua própria natureza, a presença dos corantes é facilmente detectada, sendo visíveis mesmo em concentrações tão baixas como 1 mgL⁻¹. Quando lançados nos corpos aquáticos receptores, mesmo quantidades reduzidas podem alterar a coloração natural dos rios, resultando em graves problemas estéticos além de reduzir alguns processos fotossintéticos ^{88, 89}. Apresentam composição química variada, baixa degradabilidade por processos biológicos, elevada DQO (Demanda Química de Oxigênio), além da presença de compostos recalcitrantes que podem estar associados à toxicidade crônica e aguda ^{90, 91}.

A indústria têxtil utiliza aproximadamente 10000 diferentes tipos de corantes e pigmentos e a produção mundial anual desses corantes é cerca de $7x10^{5}$ toneladas $^{92, 93, 94}$ e 26.500 somente no Brasil 95 . Admite-se que o maior problema ambiental seja gerado pela larga utilização dos azos corantes que se caracteriza pelo grupo –**N=N-** ligados a sistema aromáticos 50 . Alguns desses corantes são altamente perigosos 96 , de reconhecido efeito carcinogênico e mutagênico 5 . Esses corantes

compreendem dois componentes principais: o grupo cromóforo, responsável pela cor que absorve luz solar, e o grupo funcional que permite a fixação nas fibras do tecido ⁹⁷.

Deste modo, métodos para remoção da cor das águas de rejeito têm recebido enorme atenção nos últimos anos ^{98, 99}. De um modo geral, a efetividade da remoção da cor pode ser avaliada por um padrão espectrofotométricamente permitido, o qual pode ser usado para controlar a diluição do corante nas águas dos rios. Assim, através da comparação direta entre absorbância da amostra de um efluente e o padrão de qualidade requerido para coloração em rios, é possível avaliar o grau de contaminação previsto. Entretanto, a níveis não detectáveis em escala espectrofotométrica, o problema é mais sério e envolve acumulação, biodisponibilidade, etc.⁸⁷.

1.8. Objetivos

• Neste trabalho, o objetivo principal é a obtenção e caracterização de nanocompósitos semicondutor /TiO₂, onde o semicondutor usado foi o óxido de zinco, com a finalidade de melhorar a atividade fotocatalítica do TiO₂ P25.

• O ZnO puro será sintetizado pelo método de pirólise do acetato de zinco diidratado, e posteriormente testado como focatalisador na degradação do azo corante VD

• As atividades fotocatalíticas do ZnO, TiO_2 P25 e nanocompósitos obtidos em diferentes proporções de ZnO/TiO₂ serão comparadas.

• Serão ainda, investigadas as atividades do ZnO e do TiO_2 P25 puros na fotodegradação de outros azo corantes, tais como o verde de Janus e o vermelho do Congo.

Capítulo 2 PARTE EXPERIMENTAL

2.1. Reagentes e Equipamentos

Reagentes:

- TiO₂ P25 da Degusa,
- Acetato de zinco diidratado Zn(CH₃COO)₂.2H₂O PA foi usado é da marca Synth.
- Corante Vermelho Drimarim (VD) color index 18286).
- Metanol da Merck

Equipamentos

- Balança analítica: marca Shimadzu, modelo AY220
- Reator com lâmpada utravioleta artificial (lâmpada de vapor de Hg, potência 15w, λ = 254 nm) adaptada a uma câmara escura.
- Centrifuga da marca CentriBio, modelo 80 2B
- Análise térmica: As curvas TG foram obtidas utilizando o aparelho Shimadzu TGA 50H, em fluxo de ar sintético de 50 mL/min, taxa de aquecimento de 10°C/min entre 25°C e 750°C aproximadamente, (Departamento de Química - UFMG).
- Difração de raios X: Os produtos das decomposições foram caracterizados por DRX utilizando o difratômetro Rigaku Geigeflex com radiação K α do Cu (λ = 1,5418 Å). As seguintes condições foram utilizadas: intervalo (2θ) entre 8 e 80 ° e velocidade de varredura igual a 4°.mim⁻¹, (Departamento de Química UFMG).
- Espectroscopia de absorção na região do infravermelho (IV): A análise de absorção no IV foi realizada utilizando o equipamento FTIR da Perkin Elmer, modelo Spectrum GX, faixa de 4000 à 300 cm⁻¹, com amostragem feita em pastilha de KBr, (Departamento de Química - UFMG).
- Espectroscopia Micro Ramam: Os experimentos de espalhamento Raman foram efetuados num espectrômetro micro-Raman Renishaw Ínvia com a linha de laser de excitação de 514,5 nm e 1,34 mW de potência na amostra. Todas as medidas foram efetuadas na geometria

14

"backscattering", usando-se uma lente de objetiva de microscópio de 50 x com valor de abertura numérica de 0.75, varrendo uma área de espalhamento de *ca*. 1 mm², (CETC - BH).

- Espectrofotômetro UV/Vis para líquidos: Os espectros de absorção no UV-visível foram registrados num espectrômetro da marca HP modelo Analyser 800 M, em temperatura ambiente na região de 190 a 900nm, (Departamento de Química - UFMG).
- Espectrofotômetro UV/Vis para sólidos: Os espectros eletrônicos dos catalisadores sólidos foram também obtidos por medidas de espectroscopia de reflectância difusa num espectrômetro UV-visível da marca Shimadzu modelo UV-2401PC/2501PC com acessório para reflectância difusa, (Departamento de Química - UFMG).
- Análise da área superficial BET: Os valores de área superficial foram obtidos em um equipamento Quantachrome Autosorb 1. As medidas foram realizadas utilizando-se nitrogênio gasoso com 41 ciclos de adsorção e dessorção. As amostras (*ca.* de 300 mg) foram desgaseificadas a temperatura de 150 °C durante 20 h antes da análise, (Departamento de Química UFMG).
- Microscopia Eletrônica de Varredura (MEV): As micrografias de microscopia eletrônica de varredura foram obtidas num microscópio Jeol – JKA-8900RL. As amostras em pó, depositadas sobre uma fita condutora, foram recobertas com uma camada de ouro, para realização da análise morfológica, (Departamento de Física - UFMG).
- Forno tubular: As decomposições térmicas dos precursores moleculares foram realizadas em fluxo de ar, com razão de aquecimento de 10°C.min⁻¹ até 300°C, permanecendo o forno nesta temperatura durante 1 hora. A Figura 2.1 apresenta o esquema da montagem utilizada para a decomposição térmica.

Figura 2.1: Montagem esquemática do forno tubular utilizado nas decomposições térmicas dos precursores moleculares

2.2. Metodologia

Preparação do ZnO e dos compósitos ZnO/TiO₂

A preparação das nanopartículas de óxido de zinco, foi feita a partir da pirólise do precursor molecular, acetato de zinco Zn(CH₃COO)₂.2H₂O, em um forno tubular (Figura 2.1) sob taxa de aquecimento 10°C min⁻¹ em atmosfera de ar até atingir a temperatura de 300°C e mantido nesta temperatura durante 1 hora.

Os nanocompósitos ZnO/TiO₂ foram preparados através da impregnação de acetato de zinco na superfície do TiO₂. As massas do precursor e dióxido de titânio foram dissolvidas em pequena quantidade de metanol nas proporções molares precursor/TiO₂ (1, 3, 7, 10 e 20)% e mantidos sob agitação constante por 30 minutos e em seguida o solvente foi evaporado em banho-maria. Após a impregnação, os compósitos precursor / TiO₂ foram termicamente tratados nas mesmas condições descritas acima para o acetato de zinco diidratado.

Tabela 2.1: Relação das massas utilizadas na preparação dos compósitos e do ZnO

	1%	3%	7%	10%	20%	ZnO
Massa TiO ₂ /mg	200	200	200	200	200	
Massa do acetato de Zinco/mg	54,8	166,8	384,1	548,6	1097,3	30

2.3. Medidas de adsorção

Curva de calibração para o corante VD 55, VC e VJ

- Para determinar a concentração do corante a ser usada nos testes, foi construída uma curva de calibração usando soluções nas seguintes concentrações: (15, 20, 25, 38, 50, 55 e 63) mg/L.
- Alíquotas de 10 mL foram retiradas e centrifugadas. As absorções dos sobrenadantes foram medidas no espectrofotômetro UV/Vis.

Medidas de adsorção para o TiO₂⁵⁵

- Em dois béqueres de 500 mL foram misturados 100 mL de uma solução VD 50 mg/L contendo 20 e 40 mg de TiO₂ P25. As reações de adsorção foram realizadas no escuro sob agitação magnética constante de 3 rpm a temperatura ambiente.
- Alíquotas de 10 mL foram retiradas e centrifugadas durante o tempo de 75 min., nos intervalos de tempos de 0, 10, 25, 45 e 75 min. As absorções dos sobrenadantes foram medidas no espectrofotômetro UV/Vis para líquidos no comprimento de onda de 541 nm.

Quantidade de TiO₂ a ser usado no processo 55

- Para este estudo, foram feitas diferentes soluções contendo 10, 20, 30, 40 80 e 160 mg de TiO₂ respectivamente com 100 mL do corante VD 50mg/L. Cada solução preparada foi deixada em repouso durante 1 hora para a ocorrência da adsorção, e em seguida foi exposta à radiação UV artificial. As alíquotas foram sendo retiradas ao longo do tempo, centrifugadas e levadas para medidas de absorção no espectrofotômetro UV.
- Construiu-se então um gráfico ln([At]/[A]0) X tempo para cada solução preparada acima a fim de obter a constante de velocidade (k) para cada uma delas. Feito isto, construiu se outro gráfico k X quantidade de TiO2 sendo possível então, estimar o a massa de TiO2 em 30 mg.

Medidas de adsorção para o TiO₂ e o ZnO utilizando os corantes VC e VJ

Em dois béqueres de 500 mL foram misturados 100 mL de uma solução VC 15 mg.L⁻¹ contendo 30 mg de TiO₂ P25 e 30 mg de ZnO. Em outros dois béqueres de 500 mL foram misturados 100 mL de uma solução VC 15 mg.L⁻¹ contendo 30 mg de TiO₂ P25 e 30 mg de ZnO. As reações de adsorção foram realizadas no escuro sob agitação magnética constante de 3 rpm a temperatura ambiente. Alíquotas de 10 mL foram retiradas e centrifugadas durante o tempo de 210 min., nos intervalos de tempos de 0, 30, 60, 90 e 120, 150, 180 e 210 min. As absorções dos

sobrenadantes foram medidas no espectrofotômetro UV/Vis para líquidos no comprimento de onda de 494 nm e 606 nm para os corantes VC e VJ respectivamente.

2.4. Testes fotocatalíticos

Os testes fotocatalíticos foram realizados a fim de determinar qual compósito sintetizado apresenta melhor atividade fotocatalítica. Para isto, foi utilizado como material orgânico o corante vermelho drimaren (VD) 50 mg/L. Montou-se um reator fotocatalítico para execução das análises utilizando radiação UV artificial. O fotoreator está esquematizado na Figura 7:

Figura 2.2: Esquema do fotoreator utilizado nas análises

A execução dos testes fotocatalíticos seguiu basicamente a seguinte seqüência:

- Previamente, em um béquer, a amostra contendo o compósito ou o TiO₂ puro foram misturadas à solução do corante vermelho drimaren (VD) e deixada em repouso, em ambiente escuro, para a ocorrência da adsorção.
- Após completa adsorção, retirou-se uma alíquota (10mL) da amostra (tempo 0) e em seguida, o sistema foi inserido no fotoreator esquematizado na Figura 2.2, na presença de radiação UV artificial e sob 3 rpm de agitação.

- Após 30 minutos de exposição à radiação UV artificial e sob agitação, retirou-se uma nova alíquota da amostra (tempo 30). Prosseguiu-se o processo retirando alíquotas nos tempos 60, 120, 180 e 240 min, respectivamente.
- 4. As alíquotas foram centrifugadas a 4.000 rpm durante 30 min e em seguida os sobrenadantes foram transferidos para novos frascos de vidro e levados para medidas de absorção no espectrofotômetro no comprimento de onda 541 nm para o corante Vermelho Drimarim.
- A partir dos resultados obtidos de absorvância em função do tempo, construíram-se os gráficos necessários.

Capítulo 3 ZnO PREPARAÇÃO, CARACTERIZAÇÃO E TESTES FOTOCATALÍTICOS Nesta parte do trabalho será investigado a formação do semicondutor ZnO a partir da decomposição térmica do precursor molecular $Zn(C_2H_3O_2)_{2,2}H_2O$ e sua eficiência fotocatalítica em relação a descoloração do corante VD.

3.1 AnáliseTermogravimétrica

As análises térmicas permitem avaliar propriedades de uma substância em função do tempo ou da temperatura. Neste último caso, é feito o aquecimento a uma taxa fixa de variação de temperatura.

A Figura 3.1 mostra a análise termogravimétrica efetuada em atmosfera de ar sintético para investigar a decomposição térmica do acetato de zinco diidratado - $Zn(C_2H_3O_2)_2.2H_2O$ - (219g/mol) a ser usado como precursor molecular.

Figura 3.1: Curva TG/DTG em atmosfera de ar, para o acetato de zinco diidratado.

A análise da curva TG/DTG mostra que o precursor apresenta perda de massa em duas etapas dentro de uma faixa de temperatura de aproximadamente 300 °C. Verifica-se que entre 38°C –122°C o

precursor perde 16% de sua massa, o que pode ser atribuída à perda das duas moléculas de água de hidratação presentes na molécula. Entre $122^{\circ}C - 297^{\circ}C$, perde 58 % de sua massa. O resíduo final apresenta 26% em massa, o que corresponde ao esperado para o ZnO. Baseado nestes resultados, foi escolhido a temperatura de 300 °C para efetuar a decomposição térmica do precursor molecular Zn(C₂H₃0₂)₂.2H₂0 em forno tubular. A decomposição térmica do precursor molecular foi a metodologia usada para a síntese do oxido de zinco, o qual foi confirmado por DRX.

3.2. Caracterizações do ZnO obtido

3.2.1. Espectroscopia no infravermelho (IV)

A Figura 3.2 mostra o espectro de FTIR para o acetato de zinco diidratado e as atribuições das principais freqüências observadas estão na Tabela 3.1

Figura 3.2: Espectro IV para o Acetato de Zinco diidratado

Tabela 3.1:	Valores das freqüências	observadas para o	composto Acetato	o de Zinco, con	n suas respectivas	atribuições
¹⁰¹ :	-	-	-		-	2

Freqüência observada (cm ⁻¹)	Atribuições tentativas
3600 – 3200 (larga) F	υ (H-O)
2496 (ob)	υ (C - H)
2327 (ob)	
1560 F	υ (COO)
1433 F	δ (C - H)
1017 m	$\delta (C - H) (CH_3)$
698 F	δ (OCO) ou (COO)
390 m	υ (Zn – O)

 υ = estiramento da ligação, δ = deformação da ligação no plano

F =forte, f= fraca; m= média; ob= ombro.

A Figura 3.3 mostra o espectro de FTIR para o ZnO obtido por decomposição térmica do acetato de Zinco em forno tubular à 300°C durante uma hora e os dados das principais freqüências características observadas na Figura 3.3 estão expostos na Tabela 3.2

Figura 3.3: Espectro IV para o ZnO após decomposição em forno tubular

Freqüência observada (cm ⁻¹)	Atribuições tentativas
3550 - 3200 (larga) f	υ (H-O)
1691 - 1563 f	δ СОО
1410 – 1354 f	δ (C - H)
490 - 390	$\upsilon (Zn - O)$

Tabela 3.2: Valores das freqüências observadas para o composto Óxido de Zinco, com suas respectivas atribuições ¹⁰¹:

 υ = estiramento da ligação, δ = deformação da ligação no plano

f= fraca; m= média;

De acordo com o espectro vibracional no infravermelho pode-se verificar que há uma banda larga entre 3550 -3200 cm⁻¹, correspondente ao estiramento dos grupos –OH, mostrando a presença de água adsorvida no material. Observa-se também a eminência de uma forte banda de absorção em torno de 490 e 390 cm⁻¹ atribuídas à ligação Zn-O, confirmando assim a formação do óxido de zinco. Também é possível observar que no semicondutor ZnO sintetizado ainda existem vestígios do acetato de zinco devido as freqüências de estiramento e deformação da ligação C – H do mesmo.

3.2.2. Espectroscopia Micro-Raman

A espectroscopia Raman foi utilizada para a caracterização da amostra do semicondutor ZnO sintetizado e seu espectro é mostrado na Figura 3.4 e atribuições na Tabela 3.3

Figura 3.4: Espectros Raman para o ZnO obtido a partir da pirólise do precursor molecular à 300°C.

Pico	Deslocamento Raman (cm ⁻¹)	Simetria
1	99	E ₂
2	329	\mathbf{A}_1
3	434	E_2

Tabela 3.3: Posições dos picos no Espectro Raman para o ZnO

O ZnO foi caracterizado como hexagonal com simetria de zincita pertencente ao grupo de ponto C_{6v} ^{102, 103}. Os fonóns mais proeminentes no espectro estão em 99 e 434 cm⁻¹ e são vibrações de simetria E₂. É importante observarmos que as bandas em 329 e 434 cm⁻¹, apresentam-se alargadas em relação ao ZnO cristalino e o modo em 434 cm⁻¹ está ligeiramente deslocado para freqüências menores em relação ao material *bulk* (438 cm⁻¹), estas são características de material nanométrico ¹⁰⁰ o que concorda com os dados de DRX e MEV.

3.2.4. Difração de raios-X (DRX)

A Figura 3.5 mostra o difratograma de raios X obtido para o ZnO obtido pela pirólise do acetato de zinco diidratado.

Figura 3.5: Difratograma de Raios-X do ZnO obtido a partir da pirólise do precursor molecular à 300°C em forno tubular.

A Tabela 3.4 apresenta os valores da distância interplanar para o ZnO calculados a partir da equação de Bragg 2dseno $\theta = \lambda$

2 θ (°)	d (Å)	h	k	1	
31,8	2.811	1	0	0	
34,4	2.604	0	0	2	
36,2	2.479	1	0	1	
47,6	1.908	1	0	2	
56,6	1.625	1	1	0	
62,8	1.476	2	0	4	
68,0	1.377	1	1	2	

Tabela 3.4: Valores da distancia interplanar para o ZnO *

* Philips Eletronic Instruments, 1987 – n° 36 – 1451

Dados de DRX revelaram a presença de ZnO com geometria hexagonal com picos de difração intensos em (20: 31,8; 34,4 e 36,2) do tipo zincita (ficha 36 - 1451 PCPDFWIN).

O tamanho dos cristalitos em um material tem grandes efeitos em suas propriedades e esta dependência faz então com que a medida do tamanho dos cristalitos seja de grande importância. Para materiais onde o tamanho dos cristais individuais é menor que cerca de 0,1µm (1000 Å), a equação de Debeyer – Scherrer (1) pode ser usada para calcular o tamanho desse cristalitos ⁸⁴.

O cálculo do tamanho do cristalito para o ZnO foi feito usando a equação de Debeyer - Scherrer:

$g = 0,9 \lambda / B \cos\theta$ (Equação 1)

onde g é o tamanho médio da partícula, λ é o comprimento de onda da radiação da linha K α do Cu (λ = 1,5418 Å), B é largura do pico mais intenso à meia altura e θ é o ângulo de difração. Para isso, foi utilizado o pico mais intenso do ZnO (36,2°) correspondente ao plano de difração (1 0 1), dando um valor médio de 21,2 nm.
3.2.4. Refletância difusa

A espectroscopia por refletância difusa é usada para obter espectros UV-Vis de amostras sólidas. Por meio desta técnica é possível calcular o valor de energia do band gap (E_{gap}) que é obtido através do método da primeira derivada do espectro no ponto de inflexão. A Figura 3.6 mostra o espectro de reflectância difusa para o ZnO.

Figura 3.6: Espectro de refletância difusa para ZnO obtido a partir da pirólise do precursor molecular à 300°C em forno tubular. Obs: * Troca de filtro

O valor de energia do band gap para o ZnO, de acordo com a literatura, é cerca de 3,2 - 3,3 eV $(388 - 76 \text{ nm})^{84}$. De acordo com a Figura 3.2.4, para o ZnO puro, a transição de E_{gap} pode ser observada em ca. 377 nm (3,29 eV).

3.2.5. Microscopia Eletrônica de Varredura (MEV)

O desenvolvimento de novos materiais têm exigido um número de informações bastante detalhado das características morfológicas que é possível de ser observado no MEV. A Figura 3.7 permite observar a morfologia e o tamanho das partículas do Óxido de Zinco

Figura 3.7: Micrografia eletrônica de varredura (MEV) para a ZnO

A micrografia do óxido de zinco obtido pela decomposição térmica do acetato de zinco diidratado, a 300° C mostrou partículas esféricas bem formadas com tamanho médio de partículas de *ca* 177 nm.

3.2.6. Medidas de área superficial BET

Na década de 1930, Brunauer, Emmett e Teller^{104, 105} deduziram uma equação baseada em um modelo simplificado de fisiosorção de gases em multicamadas na superfície de sólidos. A equação, denominada BET (letras iniciais dos nomes dos três autores), se baseia na hipótese de que as forças responsáveis pela condensação de um certo gás (no caso do N₂ a 77 K) são também responsáveis pela atração de várias moléculas para a formação de multicamadas ¹⁰⁶.

Foram realizadas análises de área superficial BET da amostra ZnO. As Figuras 3.8 e 3.9 mostram respectivamente as isotermas de adsorção / dessorção e as curvas de distribuição de tamanho de poros obtidos para esta amostra.

Figura 3.8: Isoterma de adsorção de N₂ para o ZnO

Figura 3.9: Curvas de distribuição de tamanho de poros obtidos para o ZnO

Assim, a área superficial e a distribuição de tamanhos ou de volumes de poro em função do diâmetro de poro de um determinado material podem ser calculada a partir da pressão relativa, na qual os poros são preenchidos com um líquido proveniente da condensação do gás N₂. O processo inverso, ou seja, a evaporação do líquido contido no poro, também pode ser utilizado ^{107.}

A isoterma (Figura 3.8) evidencia um gráfico de adsorção/dessorção sobrepostos até uma pressão relativa de 0,8. Acima deste valor, pode ser observado que o composto não apresenta histerese, indicando a pouca contribuição dos microporos no processo de adsorção/dessorção. Entre 0,8 e 1,0, observa-se que houve um aumento brusco de volume adsorvido, o que sugere a presença de mesoporos e macroporos. A partir da equação BET, foi determinada a área superficial do ZnO que é igual a 13 m² g⁻¹. Observando a Figura 3.9 nota-se que o ZnO apresenta uma grande quantidade de macroporos e de mesoporos acima de 100 Å.

3.3. Testes fotocatalíticos

Reações fotocatalíticas são aquelas em que partículas de um semicondutor absorvem um fóton de luz mais energético que o "band gap". O elétron é excitado da banda de valência para a banda de condução, formando um par elétron/vacância, podendo iniciar processos de oxidação e/ou redução de substratos adsorvidos na superfície do fotocatalisador ⁵. O mecanismo detalhado de como esse processo ocorre está descrito na parte "*Introdução*" desta dissertação.

Para o corante Vermelho Drimaren, estão representados na Figura 3.10 sua fórmula molecular e seu espectro de absorção (541nm, $\epsilon = 1.4 \times 10^4 L \text{ mol}^{-1} \text{ cm}^{-1}$).

Figura 3.10: Espectro de absorção e fórmula molecular para o corante Vermelho Drimaren

Em nosso trabalho, para a reação de fotocatálise, o substrato usado foi o corante Vermelho Drimaren (VD) 50 mgL⁻¹, 30 mg do fotocatalisador ZnO e um reator fotocatalítico (conforme descrito na parte experimental) para execução das análises utilizando radiação UV artificial.

De acordo com dados do espectro de absorção mostrados na Figura 3.9, observa-se que a descoloração da solução de corante, pela radiação UV na presença do fotocatalisador ZnO, pode ser acompanhado pelo desaparecimento da banda de absorção do espectro do corante em 541nm.

A seguir, são apresentados os espectros de absorção (Figura 3.11) das alíquotas retiradas a cada 30 min. A Tabela 3.5 apresenta os valores de absorvância para cada tempo, medidos em relação à banda em 541 nm.

Figura 3.11: Degradação do corante VD pelo ZnO

Tempo (min)	Absorvância (λ _{máx} . 541 nm)
0	0,8662
30	0,676
60	0,5821
90	0,4134
120	0,3115
150	0,2592
180	0,1542
210	0,0179

Tabela 3.5: Valores da absorvância em função do tempo

Na Figura 3.11 observa-se uma diminuição de intensidade da banda em 541 nm do corante a medida que o tempo de irradiação aumenta, mostrando assim a descoloração do corante. Não há aparecimento de novas bandas de absorção em outra região do visível ou ultravioleta. Não foi observada a descoloração da solução do corante VD quando a irradiação foi realizada na ausência de ZnO no mesmo intervalo de tempo (210 min.).

A partir dos resultados obtidos de absorbância em função do tempo para todas as amostras de ZnO, construiu-se o gráfico apresentado na Figura 3.12 que mostra um plote do lnA_t/lnA_0 versus tempo de reação, onde A_t é a absorvância medida em cada intervalo de tempo e A_0 é a absorvância em t = 0s.

Figura 3.12: Logaritmo das absorvâncias em função do tempo para ZnO

De acordo com alguns pesquisadores (Poulious e Aetopoulou, 1999; Lee et al., 1999; Chen e Ray, 1998; Galindo et al., 2001) ^{108, 109, 110}, a influência da concentração inicial do soluto na velocidade de degradação fotocatalítica de muitos compostos orgânicos é descrita pela cinética de pseudoprimeira ordem. Para Davis et al ², para baixa concentração do substrato $C_{corante}$ (molL⁻¹), ou seja, Keq para C << 1, a reação pode ser de pseudo primeira ordem, que é racionalizada em termos do modelo de Langmuir-Hinshelwood (L. H) modificada para acomodar reações que ocorrem na interface sólidolíquido ¹¹¹.

A análise das curvas permite constatar que o ZnO sintetizado apresenta um comportamento catalítico mais complexo, originando duas constantes de velocidade $k_1 e k_2$. Inicialmente a reação passa por um período de latência caracterizado pela constante de velocidade $k_1 (0,00939 \text{ molL}^{-1}\text{min}^{-1})$. Em seguida ocorre um aumento da velocidade da reação de degradação do corante, caracterizado pela constante de velocidade $k_2 (0,02961 \text{ mol/L}^{-1}\text{min}^{-1})$. Com os dados obtidos, referentes às constantes cinéticas observa-se que a cinética da fotocatálise heterogênea, para o corante VD pelo semicondutor ZnO, seguiu o modelo de L. H. Esta é uma forma simplificada de descrever as várias reações que ocorrem durante a degradação fotocatalítica ¹¹², mostrando que as reações de oxidação e de redução são de pseudo-primeira ordem. Para esse período de latência observado nos primeiros momentos do curso da reação (até o tempo de 120 min., Figura 3.12), pode-se levantar duas possíveis hipóteses explicativas para o fenômeno:

- A primeira possível explicação para a observação do período de latência seria uma degradação preferencial pelo corante adsorvido na superfície do ZnO, ao invés do corante livre na solução.
- Uma segunda possibilidade seria o desenvolvimento de uma transferência de cargas (e⁻ / h⁺) no semicondutore ZnO, o que afetaria a geração de radicais livres 'OH/'OOH, diminuindo, portanto a velocidade de degradação do corante presente na solução.

Comportamento similar foi também observado no estudo da fotodegradação do corante vermelho de Drimaren pelos compósitos semicondutores CdS/TiO₂ 75 e SnS / TiO₂ 113 .

Os resultados sugerem que o ZnO obtido pela pirólise do acetato de zinco apresentou excelente atividade fotocatalítica diante da degradação do corante VD.

3.4. Conclusões

- Os resultados obtidos por DRX e espectroscopia Raman revelaram que o óxido de zinco obtido pela pirólise do acetato de zinco diidratado em atmosfera de ar à 300°C está na geometria hexagonal e o tamanho de partícula calculado por dados de DRX foi de *ca* 21,2 nm.
- Os resultados de BET revelaram um material com área supercial de 13m²g⁻¹, e um material mesoporoso o que é uma característica muito importante para fins de catálise.
- O ZnO nas condições de preparo aqui utilizadas, mostrou-se um excelente fotocatalisador para a degradação do corante Vermelho de Drimaren

4. ESULTADOS E DISCUSSÕES: COMPÓSITOS ZnO/TiO2

Capítulo 4 *COMPÓSITOS ZnO/TiO*₂ *PREPARAÇÃO, CARACTERIZAÇÃO E TESTES FOTOCATALÍTICOS*

Os catalisadores mais usados para fotodegradação são o TiO_2 principalmente na estrutura anastásio e o ZnO ^{32-35, 37, 38}. Porém, uma estratégia que vem sendo utilizada para melhorar a eficiência do processo fotocatalítico devido a melhor separação de cargas na superfície do semicondutor, é a obtenção de nanocompósitos do tipo metal/TiO₂ e semicondutor/TiO₂³.

Nesta parte do trabalho será investigado e comparado a eficiência fotocatalítica dos nanocompósitos ZnO/TiO₂ preparados em relação ao ZnO e TiO₂ puros frente a degradação do corante VD.

4.1. AnáliseTermogravimétrica

A análise termogravimétrica foi efetuada em atmosfera de ar sintético para investigar a decomposição térmica do compósito precursor $Zn(C_2H_3O_2)_2.2H_2O / TiO_2 10\%$ e compará-la com o resultado obtido para o acetato de zinco diidratado com o TiO₂ calcinado à 300°C.

As Figuras 4.1 e 4.2 mostram respectivamente as curvas TG/DTG efetuadas em atmosfera de ar sintético para investigar a decomposição térmica do compósito precursor $Zn(C_2H_3O_2).2H_2O / TiO_2 10\%$ e do TiO₂ calcinado à 300°C

Figura 4.1: Curva TG/DTG em atmosfera de a, para o Zn(C₂H₃0₂)₂.2H₂0 / TiO₂ 10%

Figura 4.2: Curva TG/DTG em atmosfera de ar para o TiO₂ P25 calcinado à 300°C

A análise da curva TG/DTG para o precursor molecular puro, já foi apresentado na parte *"Resultados e discussoes: ZnO"* deste trabalho, o qual foi verificado que o precursor (Figura 3.1) apresenta perda de massa em duas etapas dentro de uma faixa de temperatura de aproximadamente 300 °C. Decomposições térmicas similares, isto é, no mesmo intervalo de temperatura, foi observada para o compósito precursor/TiO₂ 10% com perda de massa proporcional à do precursor puro na faixa de temperatura de 300°C. Estes resultados indicaram que nenhum efeito significativo é produzido pela presença do TiO₂ na decomposição térmica do Zn(C₂H₃O₂)₂.2H₂O.

Baseado nestes resultados, foi escolhida a temperatura de 300°C para efetuar as decomposições térmicas dos compósitos precursor/TiO₂, pois, nesta temperatura, se garante a presença da fase anatasio do TiO₂ nos compósitos, o que de acordo com Litter (1999) ¹¹⁴ é considerada como a fase mais importante para explicar a melhor atividade fotocatalítica do TiO₂.

4.2. Caracterizações dos fotocatalisadores

4.2.2. Espectroscopia no infravermelho (IV):

O espectro no IV (Figura 4.3) para os compósitos precursor/TiO₂ 3 e 20% após tratamento térmico apresentaram bandas muito intensa em 650 e 503 cm⁻¹ atribuídas ao TiO₂. Também é possível observar que tanto nos compósitos como no próprio ZnO, ainda existem vestígios do acetato devido à observação da freqüência de estiramento da ligação C = O do mesmo. Nos compósitos não é possível observar a banda característica da ligação Zn - O, pois a mesma se sobrepõem as bandas características do TiO₂.

Figura 4.3: Espectro IV para os compósitos 3 e 20%, TiO₂ e ZnO

Tabela 4.1: Valores das freqüências observadas para o composto TiO₂ P25, ZnO e os compósitos, com suas respectivas atribuições ¹⁰¹:

Freqüência (cm ⁻¹)	Tentativas Atribuições
3439 f	υ (H-O)
1691 - 1563 f	δ COO
1410 – 1354 f	δ (C - H)
650 – 503 F	TiO ₂
490 – 390 F	Zn - O

 υ = estiramento da ligação, δ = deformação da ligação no plano

F = forte; f= fraca; m= média

4.2.3. Difração de raios X (DRX)

O compósito escolhido para se avaliar a estrutura foi o $ZnO/TiO_2 20\%$, isso porque ele é o que apresenta maior proporção de ZnO em relação ao TiO_2 , o que torna possível observar os picos mais intensos correspondentes ao ZnO, presentes no compósito mencionado.

A Figura 4.4. mostra os difratogramas de raios X obtidos para as séries TiO₂ P25, ZnO e compósito $ZnO/TiO_2 20\%$.

Figura 4.4: Difratogramas de Raios X do TiO₂ P25, do ZnO obtido a partir da pirólise do precursor molecular e do compósito ZnO/TiO₂ 20% à 300°C em forno tubular.

A Tabela 4.2 apresenta a identificação dos picos observados na Figura 4.4 para o ZnO, TiO₂ e ZnO/TiO₂ 20%.

2 θ (°)	d (Å)	h	k	l (TiO ₂)
25,2	3,534	1	0	0
27,4		1	0	0
31,8	2,811	1	0	0
34,4	2,604	0	0	2
36,2	2,479	1	0	1
37,8		2	0	
48,0		3	5	
53,8		6	0	
55,0		1	4	

Tabela 4.2: Valores das distancias interplanares para o compósito ZnO/TiO₂ 20%. Os dados apresentados na tabela são relativos ao anatásio.

Dados de DRX revelaram no compósito a presença de ZnO com geometria hexagonal, o que pode ser nitidamente observado na Figura 4.5, devido a presença dos picos de difração intensos em (20: 31,8; 34,4 e 36,2) (ficha 36-1451 PCPDFWIN) correspondentes ao picos do ZnO. O TiO₂ está presente principalmente na forma anatásio (20: 25,2°; 37,8°; 48°; 53,8°; e 55,0°) (ficha 21-1272 PCPDFWIN). O cálculo do tamanho do cristalito para as amostras analisadas foi feito usando a equação de Debeyer - Scherrer:

$g = \theta, 9 \lambda / B \cos\theta$

onde g é o tamanho médio da partícula, λ é o comprimento de onda da radiação da linha K α do Cu (λ = 1,5418 Å), B é largura do pico mais intenso à meia altura e θ é o ângulo de difração.

A Tabela 4.3 apresenta os valores do tamanho médio das partículas calculado para o ZnO, TiO₂ e ZnO/TiO_2 .

Tabela 4.3: Valores do tamanho médio de partícula

	Compósito 20%	ZnO	TiO ₂
2θ/°	25,2	36,2	25,2
g (nm)	17,2	21,2	8,6

4.2.4. Espectroscopia Micro-Raman

O espectro Raman do TiO₂ P25 puro e dos compósitos ZnO/TiO_2 preparados em diferentes proporções são mostrados nas Figuras 4.5 e 4.6 respectivamente.

Figura 4.5: Espectros Raman do TiO₂ P25

Figura 4.6: Espectros Raman do TiO₂ e dos compósitos ZnO/TiO₂.

Existem três fases estruturais para o dióxido de titânio. Anatásio é tetragonal (I41=amd) com quatro fórmulas por célula unitária e seis modos Raman ativos ($A_{1g}+2B_{1g}+3E_g$). Rutilo (tetragonal, P42=mnm) tem duas fórmulas por célula e quatro modos Raman ativos ($A_{1g}+B_{1g}+B_{2g}+E_g$). Brokita é ortorrômbico (Pcab) com oito unidades de fórmula por célula unitária, e apresenta 36 modos Raman ativos ($9A_{1g}+9B_{1g}+9B_{2g}+9B_{3g}$)^{116.}

O espectro do TiO₂ na região de 200 - 800 cm⁻¹ apresenta bandas em 396, 514 e 638 cm⁻¹ características da fase anatásio. A banda em 638 cm⁻¹ é atribuída ao modo E_g e a banda em 396 cm⁻¹ ao modo B_{1g} . Uma banda fraca em 444 cm⁻¹ é atribuída à fase rutilo presente em menor quantidade (*ca* de 1/3) no TiO₂ P25.

A Tabela 4.4 mostra os valores dos picos relativos ao TiO_2 e aos compósitos para efeito de comparação.

n°da banda	Deslocamento Raman (cm- ¹)				Fase
	TiO ₂ P25	ZnO/TiO ₂ 1%	ZnO/TiO ₂ 10%	ZnO/TiO ₂ 20%	
1	396	396	396	396	TiO ₂ anatase
2	448	444	444	444	TiO ₂ rutilo
3	514	515	515	515	TiO ₂ anatase
4	638	637	637	637	TiO ₂ anatase

Tabela 4.4: Posições dos picos no Espectro Raman para o TiO2 e a série de compósitos

Dados de espectroscopia Raman revelaram a interação entre ZnO e TiO₂ que foi observada pelo alargamento dos picos do TiO₂. Outro importante aspecto que indica a interação entre os semicondutores ZnO e TiO₂ nos compósitos é que quando a percentagem de ZnO no compósito diminui a relação entre as fases rutilo e anatásio muda. Para pequenas quantidades de ZnO a fase anatásio é predominante. Este fato foi observado pela relação das intensidades relativas entre a banda do rutilo em 448 cm⁻¹ e a banda do anatásio em 395 cm⁻¹ como mostra a Tabela 4.5 Em adição aos fônons fundamentais, um fraco sobretom (B_{1g}) em 801 cm⁻¹ foi observado no espectro Raman, o qual usualmente é observado em materiais nanométricos ¹⁰⁰, evidência da formação de nanocompósitos.

Tabela 4.5: Relação das intensidades relativas entre a banda do rutilo e a banda do anatásio para o TiO₂

	TiO ₂ P25	ZnO/TiO ₂ 1%	ZnO/TiO ₂ 10%	ZnO/TiO ₂ 20%
I _{448R/395A}	0,535	0,206	0,245	0,488

4.2.5. Espectroscopia de Refletância difusa

Por meio desta técnica é possível calcular o valor de energia do band gap (E_{gap}) que é obtido através do método da primeira derivada do espectro no ponto de inflexão da curva. A Figura 4.7 mostra o espectro de reflectância difusa para o ZnO, TiO₂ e os compósitos ZnO/TiO₂ 1 e 3%

Figura 4.7: Espectro de refletância difusa do TiO₂, ZnO e dos compósitos ZnO/TiO₂. *Troca de lâmpada

Bandas de absorção largas e intensas foram observadas para as amostras analisadas. O TiO₂ "bulk" tem uma banda de absorção larga no intervalo de 200 - 385 nm, que tem origem na transição de transferência de carga que ocorre do orbital 2p do átomo de oxigênio para o 3d do Ti¹¹⁷. Os valores das E_{gaps} foram obtidos através do cálculo de 1^a derivada. Para o ZnO puro a transição de E_{gap} pode ser observada em *ca* 377 nm (valor teórico para ZnO bulk está entre 388 – 376 nm). Enquanto a banda de E_{gap} para o TiO₂ foi observada em ca 327 nm e está deslocada para energias maiores (blue shift) em relação ao valor esperado para TiO₂ bulk (387 nm), indicando a presença de nanopartículas. Os valores de E_{gap} obtidos para os compósitos 1 e 3 % foram de 327 nm, idênticos ao TiO₂ puro

4.2.6 Microscopia Eletrônica de Varredura (MEV)

O aspecto morfológico dos compósitos e do ZnO foram examinados por microscopia eletrônica de varredura (MEV). As micrografías são mostradas na Figura 4.8.

a) ZnO

b) ZnO/TiO₂ 10%

c) ZnO/TiO₂ 3%

d) ZnO/TiO₂ 20%

e) TiO₂

Figura 4.8: Micrografia eletrônica de varredura (MEV) para: a) ZnO; b) ZnO/TiO₂ 10%; c) ZnO/TiO₂ 3% d) ZnO/TiO₂ 20%; e)TiO₂ à 300°C

A micrografía do óxido de zinco obtido pela decomposição térmica do acetato de zinco diidratado, a 300° C (Figura 4.8 a) mostrou partículas esféricas bem formadas com tamanho médio de partículas de *ca* 177 nm. Os compósitos 3, 10 e 20% ZnO/TiO₂ apresentaram tamanho médio de partículas com *ca* de 60 nm.

4.2.7 Medidas de área superficial BET

Foram realizadas análises de área superficial BET da amostra comercial TiO₂, ZnO e dos compósitos ZnO/TiO₂ 3% e 10%. As Figuras 4.9 e 4.10 mostram respectivamente as isotermas de adsorção / dessorção e as curvas de distribuição de tamanho de poros obtidos para esta série.

Figura 4.9: Isoterma de adsorção de N₂ para o ZnO, TiO₂ e os compósitos 3 e 20%

Figura 4.10: Curvas de distribuição de tamanho de poros obtidos para o TiO₂, ZnO e os compósitos ZnO/TiO₂ 3% e 10%.

As isotermas obtidas para os compósitos possuem um aumento acentuado na adsorção de N₂ para valores de pressão relativa superiores a 0,8. Esta isoterma é características de materiais meso (20 – 500 Å) e macroporosos (maior que 500 Å). A área superficial do ZnO é igual a 13 m²/g, no entanto o valor obtido para as áreas superficiais dos complexos foi de 41 m²/g para o compósito 3% e 40 m² /g para o compósito 10 %, ou seja valores muito próximos da área superficial do TiO₂ P 25 que é de 45 m²/g. Observa–se ainda que o gráfico da distribuição de poros (Figura 4.10) mostra um aumento do volume de macroporos e mesoporos nos compósitos e uma diminuição do volume de micro e mesoporos de menor diâmetro (região de 18 a 60 Å).

4.3 Testes fotocatalíticos

Embora o processo de fotooxidação das moléculas de corantes têxteis seja complexo, sabe-se que uma reação fotocatalítica ocorre gerando radicais livres:

$$O_2 + e^- \rightarrow O_2^-$$

$$O^{2-} + H_2O \rightarrow OOH \qquad \qquad H_2O + h^+ \rightarrow OH + H^+$$

Esses radicais livres presentes no meio são os responsáveis pela degradação do corante que é evidenciada através da descoloração, acarretando em sua completa desmineralização no final da reação.

Os testes fotocatalíticos foram realizados a fim de determinar qual compósito sintetizado apresenta melhor atividade fotocatalítica em relação ao TiO₂ P25 e o ZnO puros. Para isto, foi utilizado como material orgânico o corante têxtil vermelho Drimaren (VD) 50 mgL⁻¹ e um reator fotocatalítico para execução das análises utilizando radiação UV artificial (lâmpada de vapor de Hg, potência 15w, $\lambda = 254$ nm). A figura 4.12 ilustra a decomposição do corante vermelho de Drimaren, pelo compósito 3% nos tempos 0, 30, 60, 90, 120, 150, 180 e 210 minutos (da esquerda para a direita respectivamente).

Figura 4.11: Foto da fotodecomposição do corante vermelho de Drimaren pelo ZnO/TiO₂3% * Comportamento semelhante foi observado para todos os outros compósitos em relação ao TiO₂

Na Figura 4.11, observa-se à diminuição e finalmente o desaparecimento da cor da solução do corante, indicando a degradação do mesmo.

A seguir, são apresentados os espectros UV-Vis (Figura 4.12) para o compósito $ZnO/TiO_2 3\%$, que foi o que apresentou melhor atividade fotocatalítica.

Figura 4.12 Degradação do corante VD pelo compósito ZnO/TiO₂ 3% *O comportamento do espectro acima foi observado em todos os compósitos em relação ao TiO₂

De acordo com a Figura 4.12, nota-se que a descoloração da solução de corante pela radiação UV pode ser acompanhado pelo desaparecimento da banda de absorção do corante em 541nm.

A partir dos resultados obtidos de absorvância em função do tempo para todas as amostras de compósitos, construiu-se o gráfico apresentado na Figura 4.13 que mostra um plote do lnA_t/lnA_0 (onde A_t é a absorvância a 541 nm) versus tempo de reação, sendo A_t a absorvância medida em cada intervalo de tempo e A_0 é a absorvância em t = 0 s.

Figura 4.13: Logaritmo das absorvâncias em função do tempo para as diferentes porcentagens dos compósitos, ZnO e TiO2.

Assim sendo, a taxa de descoloração do corante pode ser usada para obter informações sobre a cinética da reação no processo fotocatalítico. A análise das curvas permite constatar que os compósitos sintetizados apresentam um comportamento catalítico mais complexo que o TiO₂, originando duas constantes de velocidade $k_1 e k_2$. Inicialmente a reação passa por um período de latência caracterizado pela constante de velocidade k_1 . Em seguida ocorre um aumento da velocidade da reação de degradação do corante, caracterizado pela constante de velocidade k_2 .

Esse período de latência observado nos primeiros momentos do curso da reação (Figura 4.13), não ocorre quando utiliza como catalisador apenas o TiO₂. A presença do semicondutor ZnO é o responsável por este diferencial. Pode-se levantar duas possíveis hipóteses explicativas para o fenômeno, as quais já foram discutidas no *CAPÍTULO 3* páginas 32 e 33.

Comportamento similar foi também observado no estudo da fotodegradação do corante vermelho de Drimaren pelo compósito semicondutor CdS/TiO₂⁷⁵ e SnS / TiO₂. Diante das possíveis explicações para o primeiro momento do curso da reação de degradação do corante, tornou-se conveniente para efeito de comparações, apenas os valores das constantes de velocidades k_2 , apresentados na Figura 4.14.

Figura 4.14: Gráfico dos valores das constantes de velocidade k₂ para degradação do corante vermelho.

É interessante comparar o valor da constante de velocidade obtida para o composto TiO_2 com os valores de k_2 encontrados para os compósitos. Comparando os valores das constantes de velocidade k_2 entre os compósitos, verifica-se que a melhor atividade fotocatalítica foi observada para o compósito ZnO/TiO₂ 3%. O compósito ZnO/TiO₂ 10% também resultou em uma melhora significativa para a fotocatálise. Nota-se que o compósito ZnO/TiO₂ 1% segue uma reação de degradação do corante aproximadamente igual ao do TiO₂ puro, indicando que a presença do ZnO não interfere no curso da reação. Para o compósito ZnO/TiO₂ 20% já é possível observar uma ligeira queda na constante de velocidade em relação aos demais compósitos. É ainda importante mencionarmos que o compósito 3% que apresentou melhor atividade fotocatalítica comparada com o TiO2 P 25 puro foi da mesma ordem de velocidade de degradação obtida para o ZnO puro, mostrando que o ZnO obtido pela pirólise do acetato de zinco mostrou-se um melhor fotocatalisador para o corante VD do que o TiO₂ P25. Este comportamento já foi notado anteriormente em relação ao também azo corante Reactive Yellow (RY14)¹¹⁸.

4.4. Conclusões

- No DRX dos compósitos ZnO/TiO₂, observam-se reflexões características do ZnO na estrutura cristalina de wurtzita e TiO₂ principalmente na forma de anatásio. O tamanho de partícula calculado foi de 17,2 nm para o compósito 20%.
- Dados de espectroscopia Raman revelaram uma interação entre ZnO e TiO₂ que foi observada tanto por um alargamento das bandas do anatásio como pela variação nas proporções entre anatásio e rutilo nos compósitos ZnO/TiO₂. Em adição aos modos de fónons fundamentais em 636, 517 e 395 cm⁻¹ do TiO₂ anatásio, um fraco sobretom foi observado em *ca* 800 cm⁻¹ (B_{1g}) que está associado a materiais nanométricos.
- A fotodegradação do corante vermelho de Drimaren revelou melhor eficiência para o nanocompósito ZnO/TiO₂ 3% em comparação com outras proporções de ZnO/TiO₂ e com TiO₂ puro.

5. RESULTADOS E DISCUSSOES: CORANTE VERMELHO DO CONGO E VERDE DE JANUS

Capítulo 5 TESTES DE ADSORÇÃO UTILIZANDO OS CORANTES VERMELHO DO CONGO E VERDE DE JANUS E SEMICONDUTORES ZnO e TiO₂

5.1. Vermelho do Congo e Verde de Janus

Nessa parte do trabalho, estaremos concentrando nossa atenção em dois azo-corantes utilizados industrialmente, o Vermelho do Congo (VC), um diazo com cadeia carbônica aniônica e o Verde de Janus (VJ), um monoazo cuja cadeia carbônica é catiônica Suas fórmulas estruturais estão representadas na Figura 5.1.

Figura 5.1: Fórmulas estruturais dos azo-corantes Vermelho de Congo e Verde de Janus.

O Vermelho do Congo tem um máximo de absorção em 495nm e o Verde de Janus tem um máximo de absorção em 606 nm. Seus espectros de absorção estão mostrados respectivamente nas Figuras 5.2 e 5.3.

Figura 5.2: Espectro de absorção para o corante Vermelho do Congo

Figura 5.3: Espectro de absorção para o corante Verde de Janus

5.2. Fotólise

Os testes de fotólise foram realizados para avaliar o comportamento do corante VC na ausência de fotocatalisador e frente à radiação UV-Vis. A Figura 5.4 mostra esse resultado

Figura 5.4: Corante VC na ausência de fotocatalisador e frente à radiação UV-Vis

A análise da Figura 5.4 permite constatar que o corante VC tem certa instabilidade diante da radiação UV-Vis. Observa-se que os picos de absorção correspondem à diminuição da quantidade de corante livre na solução, indicando que o corante está sendo degradado na presença da radiação durante a fotólise. Porter, (1973) ² estudou a fotoestabilidade de vários AZO corantes. Os corantes *Uniblue A* e *Remazol Blue R* em solução aquosa são completamente degradados em cerca de 80 minutos sobre a ação de luz ultravioleta produzida por uma lâmpada de 36 watts, na ausência de catalisador ². Por outro lado o VD tem uma fotoestabilidade maior, não sofrendo degradação neste mesmo intervalo de tempo ⁵⁵.

5.3. Testes de adsorção

Tem sido sugerido que a adsorção é um pré-requisito para que ocorra a alta eficiência no processo de oxidação (Fox e Dulay, 1993) ⁵¹. Kamat (1989) ² estudou a fotocatálise de um corante (Rose Begal) na superfície de TiO₂ e observou a completa degradação com luz visível, e somente as moléculas de corantes adsorvidas no catalisador foram passiveis de serem degradas ². Isto ocorre porque o corante adsorvido na superfície das partículas do semicondutor atua como um doador de elétron, injetando elétrons do estado excitado para a banda de condução do semicondutor sob irradiação UV. A Figura 5.5 ilustra este comportamento.

Figura 5.5: Diagrama de Energia da Interface Cromóforo – TiO₂¹¹⁹

Recentemente, pesquisa descreve as propriedades da interface cromóforo-TiO₂ que forma as bases para separação de carga fotoinduzida no sistema semicondutor sensibilizado por corante em células solares ¹¹⁹. A utilização de certas classes de corantes em células solares vem sendo amplamente estudada^{120, 121} e, nesse sentido, estudos que levem a uma melhor compreensão do mecanismo de adsorção desses corantes sobre a superfície do semicondutor são relevantes para o desenvolvimento de células solares mais eficientes ⁵.

Os testes de adsorção na ausência de luz foram realizados para avaliar a diminuição da quantidade de corante livre na solução, que foi acompanhada pela diminuição da banda de absorção em 494 nm no espectro UV- Vis para o corante VC e 606 nm para o corante VJ. Para isto, foram

utilizados os corantes VC 15 mg L⁻¹, VJ 7 mg.L⁻¹, 30 mg dos fotocatalisadores ZnO e TiO₂ e um reator fotocatalítico (conforme descrito na parte experimental) para execução das análises na ausência de radiação UV. Os resultados dos testes para os semicondutores ZnO e TiO₂ utilizando o corante VC estão apresentados nas Figuras 5.6 e 5.7 respectivamente.

Figura 5.6: Teste de adsorção para o VC com o catalisador ZnO

Os resultados dos testes para os semicondutores ZnO e TiO_2 utilizando o corante VJ estão apresentados nas Figuras 5.8 e 5.9 respectivamente.

Figura 5.9: Teste de adsorção para o VJ mais o TiO₂

A retenção dos corantes pelos materiais adsorventes envolve várias forças atrativas, como interação iônica, forças de van der Waals, ligações de hidrogênio e ligações covalentes. Dependendo

do tipo de corante, uma ou mais forças vão atuar sobre o processo de fixação ^{122, 123}. No entanto, devido à presença de grupos sulfonatos para o VC, esta classe de corantes apresenta também caráter aniônico, responsável por interações de caráter eletrostático.

5.4. Conclusões

Nesta parte do trabalho, a intenção era avaliar a atividade fotocatalítica dos semicondutores ZnO e TiO₂ para a degradação dos corantes VC e VJ, no entanto, de acordo com as análises das Figuras 5.6, 5.7, 5.8 e 5.9, observa-se que os corantes VC e VJ foram fortemente adsorvidos nas superfícies dos catalisadores. Isto pode ser observado a olho nu, pois os catalisadores ficaram visivelmente impregnados com os corantes e as suas respectivas soluções se tornaram incolores. Neste caso, principalmente para a solução de corante VC na presença de ZnO, podemos considerar que não há corante livre na solução para reagir fotocataliticamente com o semicondutor. Devido aos resultados dos testes de adsorção, a fotocatálise utilizando os semicondutores com os corantes descritos, tornouse inviável.

Já existem trabalhos na literatura que sugerem os processos de adsorção em detrimento a fotocatálise como uma alternativa para a eliminação de contaminantes orgânicos de águas industriais. Além disto, em alguns casos, por não se tratar de um método destrutivo, possibilita a recuperação do corante sem perda de sua identidade química ^{124, 125.} Neste sentido, existe um crescente interesse pela busca de materiais alternativos de baixo custo que possam ser utilizados, como adsorventes para a eliminação de corantes têxteis, tais como argilas ^{126, 127}, bagaço de cana ¹²⁸, madeira ¹²⁹ e outros resíduos celulósicos ^{130, 131}.
Neste trabalho foi investigado, discutido e comparado a eficiência fotocatalítica dos nanocompósitos ZnO/TiO_2 em relação ao ZnO obtido pela pirólise de acetato de zinco diidratado e TiO_2 P25 da Degussa para a degradação do corante VD e os processos de adsorção dos semicondutores ZnO e TiO_2 em relação ao corante VC e VJ.

• A análise termogravimétrica realizada para o precursor molecular (acetato de zinco diidratado) apresentou um resíduo final de 26% em massa, correspondendo ao esperado para o ZnO.

• Dados de DRX revelaram a presença de ZnO com geometria hexagonal e tamanho médio de partícula de 21,2 nm. O TiO₂ está presente principalmente na forma anatásio com tamanho médio da partícula de 8,6 nm e o compósito ZnO/TiO₂ 20% com tamanho médio da partícula de 17,2 nm.

• Dados da Espectroscopia de Refletância difusa para o ZnO puro mostrou que a transição de E_{gap} pode ser observada em *ca* 377 nm, enquanto a banda de E_{gap} para o TiO₂ foi observada em *ca* 327 nm e está deslocada para energias maiores (blue shift), indicando a presença de nanopartículas.

• A MEV do óxido de zinco mostrou partículas esféricas bem formadas com tamanho médio de partículas de *ca* 177 nm. Os compósitos 3, 10 e 20% ZnO/TiO₂ apresentaram tamanho médio de partículas com *ca* de 60 nm.

• A fotodegradação do corante vermelho de Drimaren revelou melhor eficiência para o nanocompósito ZnO/TiO_2 3% em comparação com outras proporções de ZnO/TiO_2 e com TiO_2 puro. Por outro lado o ZnO, nas condições de preparo aqui utilizadas, mostrou-se um excelente fotocatalisador para este sistema, com eficiência análoga à do compóito ZnO/TiO_2 3% e melhor que a do TiO_2 P25.

• O ZnO apesar de ter uma área superficial de 13 m² g⁻¹, ou seja menor que a do TiO₂ (45 m² g⁻¹) e partículas maiores como visto por DRX e MEV, mostrou ser um melhor fotocatalisador para este sistema.

• Medidas de BET indicaram que o ZnO e os compósitos são materiais mesoporosos, o que favorece efeito catalítico.

Testes de adsorção foram realizados com os semicondutores ZnO e TiO₂ para os corantes VC
 e VJ e observou-se que eles foram fortemente adsorvidos nas superfícies dos catalisadores.

REFERÊNCIAS

1. Sartori Fabia "*Titanio, leghe di titanio ed applicazioni nel settore automobilistico*" Corso di Laurea in Ingegneria dei Materiali, 2004.

- 2. Ticiane Sauer "Degradação Fotocatalítica de corante e efluente têxtil" Dissertação de Mestrado, fevereiro de 2002.
- 3. http://en.wikipedia.org/wiki, acessada em setembro de 2008.
- 4. Márcia Carvalho Neves "Síntese e caracterização de nanoestruturas compósitas" Tese de Doutorado; Universidade de Aveiro, 2008.
- 5. Carlos Eduardo Bonancêa "Estudo dos mecanismos de fotodegradação de corantes sobre dióxido de titânio através de técnicas de espectroscopia Raman intensificadas", Dissertação de Mestrado, IQ- USP, S.P. 2008.
- 6. Bredow, T.; Jug, K.; J. Phys. Chem. 1995, 99, 285.
- 7. Bredow, T.; Jug, K.; Surf. Sci. 1995, 327, 398.
- 8. Anemiya S, "Titanium-oxide photocatalyst"; Three Bond Techical News, 2004, 62: 1-8.
- 9. Mills A, Davies RH, Worsley D, "Water purification by semiconductor photocatalysis"; Chem. Soc. Rev., 1993.
- 10. Litter, M.; "Heterogeneous photocatalysis (Review)"; Appl. Catal. B.; 1999, v. 23, p. 89-114.
- 11. Elton M. P. Silvério "*Preparação e caracterização de partículas de TiO*₂"; Relatório Final de Iniciação Cientifica, **2004**.
- 12. Henrique de Santana "Fotocatálise eletroquímica de atrazina sobre dióxido de titânio: efeito de diferentes parâmetros experimentais"; Quim. Nova, 2003, v. 26, no. 6, 807-811.
- 13. Baird, C.; Química Ambiental, 2002, 2ª ed., Bookman: Porto Alegre,.
- 14. Ferreira, I. V. V.; Daniel, L. A.; Revista de Engenharia Sanitária Ambiental; 2004, 9, 335.
- 15. Santana, H.; Bonancêa, C. E. e Takashima, K.; Quim. Nova, 2003, 807.
- 16. Pelizzetti, E.; Minero, C.; Piccinini, P. e Vicenti, M.; Coord. Chem. Rev.; 125, 1993, 183.
- 17. O'Shea, K. E.; Beightol, S.; Garcia, I.; Aguiar, M.; Kalen, D. V. e Cooper, W. J.; *J. Photochem.Photobiol. Chem.*, 107, **1997**, 221.
- 18 Texier, I.; Ouazzani, J.; Dalaire, J. e Giannotti, C.; Tetrahedron, 55, 1999, 3401.
- 19. Hoffmann M.R., Martin S., Choi W.Y., Bahnemann D.W.; Chem. Rev. 1995, 95, 69.
- 20. http://pt.wikipedia.org/wiki/ZnO acessada em outubro de 2008.
- 21. Ramalho, M. A. F. "Avaliação da proporção de ácido cítrico/metal no tamanho da partícula de ZnO preparados pelo método pechini"; In: Congresso Brasileiro de Ciência e Engenharia de Materiais, 2004.
- 22. www.happi.com/latinamerica/portuguese/spring032.htm acessada em maio de 2008.
- 23. Sehili T., Boule P., Lemaire J.; J. Photochem. Photobiol. A: Chem., 1989, 50, 103.
- 24.. Villaser J., Reyes P., Pecchi G.; J. Chem. Technol. Biotechnol. 1998, 72, 105.

- 25. Ravi, V.; Pasricha, R.; DHAGE, S.R.; "Synthesis of fine particles of ZnO at 100°C"; Mater. Lett., 2004, 59, p.779 –781.
- 26. Perez Lopes, O. W.; Faria, A. C.; Marcílio, N. R.; Bueno, J. M. C. "Thecatalytic behavior of zinc oxide prepared from vários precursors and by differentmethods"; Mater. Reserch Bulletin., 2005.
- 27 Music A., Batista J., Levec J.; Appl. Catal. A, 1997, 165, 115.
- 28. French S.A., Sokol A.A., Bromley S.T., Catlow C.R.A., Sherwood P.; Top. Catal. 2003, 24, 161.
- 29. Zhang D.H., Yang T.L., Wang Q.P., Zhang D., J. Mater.; Chem. Phys. 2001, 68, 233.
- 30. Look D.C., Coskun C., Claflin B., Farlow G.C.; Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 340, 32.
- 31. Purica M., Budianu E., Rusu E.; Microelectron. Eng. 2000, 51(2), 425.
- 32. Lin C.C., Chen H.P., Chen S.Y.; Chem. Phys. Lett. 2005, 404, 30.14.
- 33. Schubnell M., Kamber I., Beaud P.; Appl. Phys. A: Mater. Sci. Process. 1997, 6,109.
- 34. Akyol, Yatmaz H.C., Bayramoglu M.; Appl. Catal. B: Lasers Opt. 2004, 54, 19.
- 35. Chakrabarti, Dutta B.K.; J. Hazard. Mater. 2004, 112, 269.
- 36. Silva, R. F. "Filmes de óxido de zinco dopado com alumínio ou európio: preparação e caracterização"; Tese de
- Doutorado Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; 2001
- 37. Kovtyukhova N.I., Buzaneva E.V., Waraksa C.C., Mallouk T.E.; Mater. Sci. Eng. B, 2000, 411, 69.
- 38. Bhattacharjee B., Ganguli D., Chaudhuri S., Pal A.K.; Thin Solid Films, 2002, 98, 422.
- 39. Chen W., Sammynaiken R., Huang Y.; J. Appl. Phys. 2001, 89, 1120.
- 40. Lin C.H., Bi-Shiou Chiou, Chang C.H., Lin J.D.; Mater. Chem. Phys. 2002, 77, 647.
- 41. Sanchez-Lopez J.C., Fernandez A.; Thin Solid Films, 1998, 317, 497.
- 42. Suyver J.F., Wuister S.F., Kelly J.J., Meijerink A.; Cano Lett. 2001, 1 (8), 429.
- 43. Yang. P., Lu M., Xu D., Yuan D., Zhou G.; J. Lumin. 2001, 93, 101.

44. Abrarov, S.M.; Yuldashev, Sh. U.; Lee, S.B.; Kang,T.W, "Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis"; J. Lumin., **2004**, 109, p.25–29.

45. Sousa, V.C. et al. "Combustion synthesized ZnO powders for varistor ceramics"; Inter.J.Inor. Mater., **1999**, v.1, p.235-241.

46. Wang, J.; GAO, L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications, 2004, 132, p.269–271.

- 47. Machado, F; Costa, A.C.F.M.; KiminamI, R. H. G. A. "*Cinética de sinterização de ZnO preparado pelo método de freeze-drie*". In: 46 Congresso Brasileiro De Cerâmica, **2002**, São Paulo.
- 48. Lima, S.A.M.; Sigoli, F.A.; Davolos, M.R.; Jafelicci Jr, M. Europium(III)-containing zinc oxide from Pechini method.
 J. of Alloys and Comp., 2002, 344, p.280–284.

7. REFERÊNCIAS

- 49. Roberta Lourenço Ziolli e Wilson F. Jardim "Mecanismo de fotodegradação de compostos orgânicos catalisados por TiO₂" Quím. Nova, **1998**, v.21 no.3 São Paulo.
- 50. Salomão de Andrade Pascoal "Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de
- curtume" Quim. Nova, 2007, v. 30, No. 5, 1082-1087.
- 51. Fox, M. ;Dulay, M.T.; Chem. Rev. 1993, 93, 341.
- 52. Nogueira, R.F.P.; Albereci, R.M.; Jardim, W.F.; Ciência e Cultura, 1997, 49,14.
- 53 Pirkanniemi, K. e Sillanpää, M.; Chemosphere, 48, 2002, 1047.
- 54. Raquel F. P. Nogueira e Wilson F. Jardim "Fotocatálise Heterogênea e sua aplicação ambiental" Quím.Nova, 1998, v.21 no.1 São Paulo.
- 55. Fabiano Magalhães "Desenvolvimento de fotocatalisadores flutuantes a base de TiO_2 e rejeitos" Dissertação de Mestrado, UFMG, 2004.
- 56. Pruden, ^aL.; Olllis, D. F.; Environ. Sci. Technol. 1993, 17, 628.
- 57. Pruden, aL.; Olllis, D. F.; J. Catal. 1983. 83. 404.
- 58. Bolzon, L. B.; SouzaDe, J. R.; Prado, A. G. S.; Rev. Bras. Ens. Quim. 2006, 1. 25.
- 59. Bahnemann, D.; Solar Energy, 2004, 77,445.
- 60. CHEN D. e RAY A. K., "Photodegradation kinetics of 4-nitrophenol in TiO₂ suspension. Water Reserch", 1998, v. 32, no 11, p 3223-3234.
- 61. Marciana Catanho "Avaliação dos tratamentos eletroquímico e fotoeletroquímico na degradação de corantes têxteis" Quim. Nova, **2006**, v. 29, no. 5, 983-989.
- 62. Daniel, L. A.; *Processos de desinfecção e desinfetantes alternativos na produção de água potável*, Projeto PROSAB, Rima, ABES: Rio de Janeiro, 2001.
- 63. Linsebigler AL, Lu G, Yates Jr JT, "Photocatalysis on TiO₂ surfaces: principles, mechanisms, and selected results", Chem. Rev., **1995**, 95: 735-758.
- 64. Yang S, Zhang Y, Guan Y, Tan S, Xu J, Cheng S, Zhang X, "Water uptake behavior of hidrogen-bonded PVPON-PAA LBL film", Soft Matter, **2006**, 2:699-704.
- 65. Schoeler B, Sharpe S, Hatton TA, Caruso F, "Polyelectrolyte multilayer films of different charge density copolymers with synergistic nonelectrostatic interactions prepared by layerby-layer technique", Langmuir, **2004**, 20: 2730-2738.
- 66. Liu S, Tang Z, Wang Z, Peng Z, Wang E, Dong S, "Oriented polyoxometalate-polycation multilayers on a carbon substrate", J. Mater. Chem., 2000, 10: 2727–2733.
- 67. Liu S, Kurth DG, Bredenkötter B, Volkmer D, "The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters", J. Am. Chem. Soc., 2002, 124: 12279-12287.

- 68. Wu L, Yu JC, Fu X, "Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation", J. Mol. Catal. A, 2006, 244: 25-32.
- 69. Gopidas KR, Bohorquez M, Kamat PV, "Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS/TiO₂, and CdS-AgI systems", J. Phys. Chem. **1990**, 94: 6435-6440.

70. 16 Kang MG, Han H-E, Kim K-J, "Enhanced photodecomposition of 4-chorophenol in aqueous solution by deposition of CdS on TiO₂", J. Photochem. Photobiol. A, **1999**, 125:119-125.

71. Wang J, Liu Z, Zheng Q, He Z, Cai R, "Preparation of photosensitized nanocrystalline TiO₂ hydrosol by nanosized CdS at low temperature", Nanotechnology, **2006**, 17: 4561-4566.

72. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV, "UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension", J. Photochem. Photobiol. A, **2006**, 183: 218-224.

73. Bessekhouad Y, Robert D, Weber JV, "Bi2S3/TiO₂ and CdS/TiO heterojunctions as an available configuration for photocatalytic degradation of organic pollutant", J. Photochem. Photobiol. A, **2004**, 163: 569-580.

74. Kumar A, Jain AK, "Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors – photocatalytic oxidation of indole", J. Mol. Catal. A, 2001, 165: 265-273.

75. Maria Terezinha C.S. "Electronic characterization and photocatalytic properties of TiO₂/CdS semicondutor composite", J. Photochem. Photobiol. A, 2005.

76. 10 Vogel R, Hoyer P, Weller H, "Quantum-sized PbS, CdS, Ag2S, Sb_2S_3 , and $Bi_2S_=$ particles as sensitizers for various nanoporous wide- bandgap semiconductors", J. Phys. Chem., **1994**, 98: 3183-3188.

77. Sun Y, Hao E, Zhang X, Yang B, gao M, Shen J, "Monolayer of TiO₂/PbS coupled semiconductor nanoparticles", Chem. Commun., **1996**, 2381-2382.

78. Lee JH, Jung KY, Park SB, "Modification of titania particles by ultrasonic spray pyrolysis of colloid", J. Mater Sci., **1999**, 34: 4089-4093.

79. Somasundaram S, Chenthamarakshan CR, Tacconi NR, MingY, Rajeshwar K, "Photoassisted deposition of chalcogenide semiconductors on the titanium dioxide surface:mechanistic and other aspects", Chem. Mater., 2004, 16: 3846-3852.

80. Ho W, Yu JC, "Sonochemical synthesis and visible ligth photocatalytic behavior of CdSe and CdSe/TiO₂ nanoparticles", J. Mol. Catal. A, 2006, 247: 268-274.

81. Lo SC, Lin CF, Wu CH, Hsieh PH, "Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4chlorophenol", J. of Hazard. Mater., 2004, B114: 183–190.

82. M. Franck, J-P.Celis, and J.R. Roos, J. Mater. Res., 1995, 10(1), 119.

84. Ana Cláudia B. Silva, Tese de Doutorado, Departamento de Química/ ICEX -UFMG, 2003.

- 85. J. Tristão, F. Magalhães, P Corio, Maria T. C. Sansiviero, J. Photochem. Photobiol. A : Chemistry, 181, 2006, 152.
- 86 Furtado, M.R.; Química e Derivados, 1997, 10.
- 87. Cláudia C. I. Guaratini e Maria Valnice B. Zanoni "*Corantes têxteis*" Departamento de Química Analítica Instituto de Química UNESP SP.
- 88. Kunz, A.; Mansilla, H.; Duran, N.; Environ. Technol. 2002, 23, 911.
- 89. Guaratini, C. C. I.; Zanoni, M. V. B.; Quim. Nova, 2000, 23, 71.
- 90. Kunz, A.; Peralta-Zamora, P.; Moraes, S. G.; Durán, N.; Quim. Nova, 2002, 25, 78.
- 91. Ciardelli, G.; Ranieri, N.; Water Res. 2001, 35, 567.
- 92. Spadaro, J. T.; Gold, M. H. e Renganathan, V.; Applied Environmental and Microbiology, 58, 1992, 2397.
- 93. Nigam, P. e Marchant, R.; Biotechnology Letters, 17, 1995, 993.
- 94. Nigam, P.; Banat, I. M.; Singh, D. e Marchant, R.; Process Biochemistry, 1, 1996, 435.
- 95. Guaratini, C.C.I. e Zanoni, M.V.B.; Química Nova, 23, 2000, 71.
- 96. Zhu C., Wang L., Kong L., Yang X., Zheng S., Chen F., Maizhi F., Zong H., "Photocatalytic degradation of AZO dyes
- by supported TiO₂ + UV in aqueous solution"; Chemosphere., 2000, v. 41. p 303-309.
- 97. Durán N., Morais S. G., Freire R. S., "Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes"; Chemosphere, **2000**, v. 40, p. 369-373.
- 98. Zollinger, H.; Color Chemistry, 1991, 2a ed., V. C. H. Publishers, New York.
- 99. Anliker, R.; Ecotoxicology and Environmental Safety; 1, 211, Chem. Abstr. 1978, 88, 84102n.
- 100. Miao L., Tanemura S., Toh S.; J. Cryst. Growth, 2004, 264, 246.
- 101. R. M. Silverstein, G. C. Bassler, "Identificação Espectrométrica de Compostos Orgânicos", 3 ª edição, Ed. Guanabara Dois, R.J. 1979.
- 102. M. T. Caruso Sansiviero, O. L. Aalves; Mater. Lett.; 45, 2000, 217 223.
- 103. T. C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 1996, 570.
- 104. Brunauer, S.; Emmett, P.; Teller; E. J. Amer. Chem. Soc. 1938, 60, 309.
- 105. Brunauer, S.; Deming, L.S.; Deming, W.S.; Teller, E. J. Amer. Chem. Soc. 1940, 62, 1723.
- 106. Pearce, C. I.; Lloyd, J. R.; Guthrie, J. T.; Dyes and Pigments, 2003, 58, 179.
- 107. 65. Teixeira, V. G.; Coutinho, F. M. B.; Gomes, A. S.; Quim. Nova, 2001, 24,808.
- 108. Chen D. e Ray A. K., "Photodegradation kinetics of 4-nitrophenol in TiO₂ suspension"; Water Reserch., **1998**, v. 32, no 11, p. 3223-3234.
- 109. Galindo C, Jacques P., Kalt A, "*Photooxidação of the phenylazonaphtol A020 on TiO*₂": kinetic and mechanistic investigations, *Chemosphere*, **2001 –a** , v.45, p. 997.

- 110. Poulios I.e Aetopoulou I, "Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO₂ suspensions", Env. Tech., **1999**, v. 20. p. 479-487.
- 111. Poulios I. e Tsachpinis I, "Photodegradation of the textile dye reactive black 5 in the presence of semiconducting oxides", J. Chem. Tech. Biotech., **1999**, v. 74. p. 349-357.
- 112. Alfano O.M.; Bahnemann D.; Cassano A.E.; Dillert R.; Goslich R.; "Photocatalysis in water nenviroaments using artificial and solar light", Catal. Today, 2000, v. 58, p. 199-230.
- 113. Sansiviero M.T.C., Bernades Silva A. C., Magalhães F, Lago R.M., Book of abstracts of 13° Congresso Brasileiro de Catálise, Foz do Iguaçu, **2005**, 1180 1183.
- 114. LITTER, M.; "Heterogeneous photocatalysis (Review)", Appl. Catal. B: Envir., 1999, v. 23, p. 89-114.
- 115. Miao L., Tanemura S., Toh S.; J. Cryst. Growth, 2004, 264, 246.
- 116. Bersani D., Antonioli G., Lottici P. P., Lopez T.; J. Con-Cryst. Solids, 1998, 232(23), 175.
- 117. 34. Xiaodan Y., Qingyin W., Shicheng J., Yihang G., Mater. Characterization, 2006, 57, 333.
- 118. 26. Muruganandham1 M., Shobana N., Swaminathan M.; J. Mol. Catal. A: Chem. 2006, 246, 154.
- 119. J.S. Agnaldo, J.B.V. Bastos "*Células solares de TiO₂ sensibilizado por corante*" Rev. Brasileira de Ens. Física, 2006,
 v. 28, n. 1, p. 77 84.
- 120. Garcia, C. G. e Iha, N.Y.M.; Inter. J. Photoenergy, 2001, 3.
- 121. Falaras, P.; Hugot-Le-Goff, A.; Bernard, M. C. e Xagas, A.; Solar Energy Materials & Solar Cells, 2000, 64, 167.
- 122. http://www.qmc.ufsc.br/qmcweb, acessada em Março 2004.
- 123. 5. Zanoni, M. V. B.; Carneiro, P. A.; Ciência Hoje, 2001, 29, 61.
- 124. 19. Smith, B.; Koonce, T.; Hudson, S.; Am. Dyest. Rep., 1993, 10, 18.
- 125 Al-Degs, Y.; Khraisheh, M. A. M.; Allen, S. J.; Ahmad, M. N.; Water Res., 2000, 34, 927.
- 126. 22. Oliveira, L. C. A.; Rios, R. V.; Fabris, J. D.; Sapag, K.; Garg, V.; Lago, R.M.; Appl. Clay Sci., 2002, 803, 1.
- 127. Nassar, M. M.; Proc. Int. Meet. On Chemical Engineering and Biotechnology, ACHEMA-94, Frankfurt, 1994.
- 128. Nassar, M.; Magdy, Y. H.; Chem. Eng., 1997, 66, 223.
- 129. Asfour, M.; Nassar, M. M.; Fadali, O. A.; EL-Geundi, M. S.; J. Chem. Technol. Biotechnol., 1991, 50, 257.
- 130. McKay, G.; Allen, S. J.; J. Sep. Process Technol., 1983, 4, 1.
- 131. Nicolet, L.; Rott, U.; Water Sci. Technol., 1999 40, 191.