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Abstract

Prediction of scholar popularity has become an important research topic for a number of
reasons. In this dissertation, we tackle the problem of predicting the popularity trend of
scholars by concentrating on making predictions both as earlier and accurate as possible. In
order to perform the prediction task, we first extract the popularity trends of scholars from a
training set. To that end, we apply a time series clustering algorithm called K-Spectral Clus-
tering (K-SC) to identify the popularity trends as cluster centroids. We then predict trends
for scholars in a test set by solving a classification problem. Specifically, we first compute a
set of measures for individual scholars based on the distance between earlier points in their
particular popularity curve and the identified centroids. We then combine those distance
measures with a set of academic features (e.g., number of publications, number of venues,
etc) collected during the same monitoring period, and use them as input to a classification
method. One aspect that distinguishes our method from other approaches is that the moni-
toring period, during which we gather information on each scholar popularity and academic
features, is determined on a per scholar basis, as part of our approach. Using total citation
count as measure of scientific popularity, we evaluate our solution on the popularity time
series of more than 500,000 Computer Science scholars, gathered from Microsoft Azure
Marketplace1. The experimental results show that our prediction method outperforms other
alternative prediction methods. We also show how to apply our method jointly with regres-
sion models to improve the prediction of scholar popularity values (e.g., number of citations)
at a future time.

Palavras-chave: Trend Cassification, Prediction, Scholar’s Popularity.

1https://datamarket.azure.com/dataset/mrc/microsoftacademic
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Chapter 1

Introduction

1.1 Motivation

We have witnessed a steep increase in the volume of scholarly publications, such as scientific
articles, conference papers, books and other types of scientific communications in basically
all research fields. Such phenomenon is followed by an increasing competition among sci-
entists, as the amount of financial and human resources to produce high quality research is
limited. Accordingly, funding agencies and academic departments have relied on some mea-
sures of academic success in order to try to better distribute such resources among scholars.
One such measure, which aims at assessing the impact of a scholar’s research is “ popular-
ity”, usually quantified by metrics such as overall number of citations [25, 30, 59] or the
well-known h-index [20].

In this context, a natural question that arises in many contexts is “How popular will
a scholar be in the near future or in the long run?” Answering such question is valuable
for several goals. From an organization’s perspective, knowing the scientific potential of a
scholar can be very helpful in decisions for hiring faculty members or for guiding funding
agencies in their decision processes. Moreover, academic search engines such as Google
Scholar and Microsoft Academic Search or scientific recommender systems (e.g.,[40]) can
benefit from such information as a feature for improving their rankings. More importantly,
answers for such question, and mainly the factors that influence such answers, can help an
individual scholar to better manage her scientific career.

Traditionally, the total number of citations has been widely used as a measure of pop-

ularity for both publications and scientific researchers [25, 30, 50, 59]. Indeed, it has already
been argued that citation counts are better indicators of the scientific contribution of re-
searchers than impact factors such as the h-index [25]. Accordingly, we focus on this metric
in this dissertation [37].

1



2 CHAPTER 1. INTRODUCTION

Some prior studies on scholar popularity focus on studying the impact of academic
features on popularity [25, 30, 50]. Others aim at developing popularity prediction meth-
ods [10, 20]. Among the latter, most attempt to predict the popularity of individual publi-
cations. Some studies, for instance, predict the future citation counts of articles based on
learning models [13, 60, 61]. Despite such efforts, we are aware of only two previous studies
on predicting the popularity of scholars. Acuna et al., [1] use regression models to predict
the h-index of scholars at a future time. In [37], the author aims at predicting the scholars’
scientific impact in terms of future number of citations and found that the current number of
citations is the most reliable feature for such a prediction.

Complementing prior work, we here are interested in predicting the trend that the pop-
ularity of a scholar will follow in the future (or her popularity curve), as opposed to predicting
popularity values at specific future times. Prediction of popularity trends is valuable as it may
bring insights into the evolution of the research impact of a scholar. It may also contribute to
improving the effectiveness of models to predict future popularity values [47, 63]. Moreover,
producing prediction models of scientific impact can also induce interesting services for a
digital library, such as a career profile prediction service and expert recommendation.

Another significant contribution of our work is that we aim at solving a trade-off that
is inherent to any prediction task. On one hand, we want to make the prediction as early as
possible. The sooner we make a prediction, the earlier corrective measures (if any) can be
applied1. On the other hand, we want to make predictions as accurate as possible. These two
goals are often conflicting as one needs to monitor the scholar features for longer periods to
guarantee more accurate predictions. So, determining the earliest point in time when predic-
tion can be made with reasonable accuracy is an inherent challenge of the early popularity
prediction problem.

Unlike prior work, we here solve this trade-off on a per scholar basis (i.e., the monitor-
ing period is different for different scholars), recognizing that different scholars may present
quite different popularity evolution curves. This is better illustrated in Figure 1.1, which
shows the popularity curves of two scholars. Scholar A receives most of her citations at the
beginning of her academic career, whereas scholar B becomes more popular later on in her
profession. Thus, if we monitor both scholars during the same period (e.g., 8 years) to make
the prediction, a large portion of the popularity of scholar A would have already passed. Per-
haps more accurate and useful predictions could have been made much earlier in scholar A’s
lifespan. In contrast, predictions before the first 5 years most certainly would not capture the
correct trend of scholar B. Thus, the aforementioned trade-off must be solved separately for

1We acknowledge that there are also some important boundary events in a scholar career’s in which such
predictions are useful such as job applications, midterm review before going up for tenure and tenure decision.
In any case, our method can be easily adapted to predict in specific points in time.
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(a) Scholar A. (b) Scholar B.

Figure 1.1. Popularity evolution of two scholars during 20 years.

each scholar, which implies that determining the duration of the monitoring period for each
scholar is part of solving the prediction task. However, the challenge of addressing the trade-
off between prediction accuracy and remaining citations after prediction on a per-scholar
basis makes this problem much harder than traditional classification tasks.

To tackle the problem of predicting popularity trends of individual scholars, we apply
a novel two-step combined learning approach called TrendLearner which was originally pro-
posed for user generated content (UGC) [24] for online content. In this approach the pop-
ularity trends of UGC are predicted based on a trade-off between prediction accuracy and
remaining interest in the content after prediction. In this dissertation, we adapt TrendLearner
to our context of predicting scholar popularity trends by solving the tradeoff between pre-
diction accuracy and remaining citations (or remaining popularity) after prediction. The
adaptation consists mainly using features that are specific of our target domain. In other
word, we applied the same algorithm of TrendLearner with different features (which associ-
ated with scholars) for training classifiers. The idea is to monitor a scholar to determine, for
each one, individually, the earliest point in time when prediction can be made with enough
confidence (defined by input parameters), producing, as output, the probabilities of each
scholar belonging to each class (trend). We also combine the results of this classification
task (i.e., the probabilities) with a set of academic associated features, such as number of
publications and number of distinct venues, building an ensemble learner. We call our final
solution ScholarTrendLearner.

1.2 Objectives

The general objective of this dissertation is narrowed down into three specific goals we aim
to achieve:



4 CHAPTER 1. INTRODUCTION

1. Clustering and classifying scholars based on popularity time series
Using state-of-the-art time series clustering techniques, we extract the most common
popularity evolution trends followed by scholars. Each discovred trend is represented
by a time series centroid.

2. Extracting and predicting popularity trends of scholars
After defining the most correlated features, we exploit the available data to answer the
following question: Is it possible to predict how the popularity of individual scholars
evolves over time? In other words, we want to know if it is possible to predict the
popularity curve (or trend) of each scholar.

3. Predicting the Number of Citations at a Future time
We also investigate whether more effective methods to predict the popularity measures
(e.g., citations) of a scholar at a target date can be devised. This is done by exploiting
the developed popularity trend prediction models by building specialized models to
pre-defined popularity trends. Our results showed that we can indeed improve popu-
larity prediction models using trend prediction models. More importantly, we focus
not only on predicting the popularity of a scholar at time tt = tr +σ but also on the
evolution its popularity it may follow after prediction.

1.3 Contributions and Outline of Dissertation

In sum, our main contributions include:

1. Prediction of scholar popularity trends as early and accurate as possible recognizing
that different scholars may exhibit quite different popularity trends (as identified by
Gonccalves et al. [30]).

2. Determining the best monitoring period for each scholar so as to achieve a good trade-
off between prediction accuracy and remaining citation (or popularity) after prediction.

3. The use of ScholarTrendLearner to improve the prediction of popularity metrics (e.g.,
number of citations), with improvements over the baselines.

The main results of this dissertation were published as a full paper in the proceeding
of ACM/IEEE Joint Conference on Digital Libraries (JCDL 2106) [41], the main conference
in the field.

The rest of this dissertation is organized as follows. Chapter 2 discusses our related
work. We state the target problem and present our approach to solve it in chapter 3. The
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dataset and the experimental setup as well as our main experimental results are discussed in
Chapter 4. Finally Chapter 5 presents conclusions and directions for future work.





Chapter 2

Related Work

In this chapter, we discuss previous efforts related to our objectives (presented in Chapter 1).
In Section 2.1, we discuss works on scientific popularity, influence and related metrics. In
Section 2.2, we discuss previous analyses of the temporal evolution of popularity. Finally in
Section 2.3, we shift our focus to works on the prediction of scholars’ popularity.

2.1 Scientific Popularity

Influence, as a measure of research achievement, has long been discussed. For example,
Impact Factor, proposed by Eugene Garfield, is a measure that reflects articles’ influence [27,
54]. Journals with higher impact factors are deemed to be more important than those with
lower ones [23]. However, impact factor does not reflect the influence of individual papers
[16] and hence needs a normalization from the audience of citing sides [65]. Other previous
studies aim at measuring the influence of scientific research based on different metrics. These
metrics can be classified into two categories: publication level and author level metrics. A
number of previous efforts focused on estimating the influence of scientific publications. As
an example, Yan et al. implemented a system that takes a series of features of a specific
publication as input and predicts its number of citations after a given time period [61].

Regarding the influence of individual scholars, Ding and Cronin [18] proposed the use
of weighted citation counts as a measure of the prestige of a scholar, whereas unweighted
citation counts should be used as an estimate of the scholar popularity.

The Hirsch-index (h-index), introduced in 2005 by J. E. Hirsch [31], is one of the
most popular indicators in information science and informetrics. It combines both produc-
tivity and citation impact of a scholar by capturing both the number of publications and the
number of citations per publication. Hundreds of articles have been written on the h-index
and related indices. The work of L.Egghe is a comprehensive study of h-index that presents

7



8 CHAPTER 2. RELATED WORK

advantages and disadvantages of it and also introduces several h-type indices (also called
impact measures) along with applications of these indices [22]. Furthermore, as argued by
Leydesdorff [34], the h-index is statistically (using PCA = Principal Components Analy-
sis) compared with non-h-type indices (such as Page Rank, impact factor, Scimago Journal
Ranking, network centrality measures, etc.). It is found that the h-index combines the two
dimensions (size and impact).

More recently, some approaches have been introduced that improve some limitations of
h− index, such as g− index [21] and the hm− index [51]. Unlike h− index, g− index depends
on the full citation count of very highly cited papers and it can be defined as the number
of highly cited articles, such that each of them has an average of g citations. Two years
later Schreiber introduced hm− index, a modification of h− index that takes multiple co-
authorships into account, by counting each paper only fractionally according to (the inverse
of) the number of authors.

Citations indicate the influence of authors, papers and venues. Several works have
conducted new retrieval models developed by analysis of citation behaviors can outperform
previous approaches. For example Bethard and Jurafsky introduced a model for scientific
article retrieval that incorporates a wide variety of important scientific factors, and learns
the weights of each of these factors by observing citation patterns [5]. Pao [21] ran a case
study where medical professionals gave a description of a topic of interest and an example
article, and librarians searched using both keywords and citations. Pao found that searching
by citations added an extra 24% relevant articles not found by keyword search [43]. Some
previous efforts studied on the relation between citation patterns and impact publications.
For instance, Shi, Leskovec, investigated how different citation patterns reflect the scien-
tific impact of the paper. In this study, the authors developed citation projection graphs by
investigating citations among publications that a given paper cites [52].

In a different perspective, some previous work focused on quantitative measures of sci-
entific impact. Gonçalves et al. [30] quantified the impact of various academic features (e.g.,
number of publications, quality of publication venues, properties of the co-authorship net-
work, etc) on scholar popularity by applying regression analysis. The authors also uncovered
five profiles (or trends) of scholar popularity evolution. Cason and Lubotsky [9] conducted
one of the earliest citation analysis studies with focus on measuring dependences among
journals. Pinski and Narin [46] evaluated the influence of journals by taking both the num-
ber of citations and the importance of the citing journal into account. As one of the newest
study in the research area of quantifying measures of scientific popularity, we can mention
work of M.Ausloos et al. [3]. In this study, the role (or weight) of co-authors, has been
estimated as the additional value to an author paper’s popularity. It is found that an effec-
tive h-index can be calculated from the co-authorship popularity matrix (called H−matrix)
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eigenvalues, through the selection of team partners, but also up to the whole team size.

Finally, in 2015, a very interesting study was performed on the relationship between
scholars’ breadth of research and scientific impact. Since many existing metrics to evaluate
scholars only concern their scientific impact and neglect the importance of the breadth of
their research, the authors proposed a new metric based on the existing generalized Stirling
metric and compared it to existing metrics, evaluating its relationship to scientific impact[62].

2.2 Evolution and Clustering of Temporal Patterns

Time series data occur in almost all domains, and this fact has created a great interest in time
series data mining [4]. There is a plethora of classification algorithms that can be applied
to time series. Comprehensively, we can refer the reader to a machine learning book for
a description of classification techniques [39]. A recent work suggests that for time series
clustering, the choice of the clustering algorithm is much less important than the choice of
distance measure used [17]. One of the simplest definition of distance is the Euclidean one,
but despite simple, the euclidean distance has major drawbacks, as pointed out by previous
studies [4, 63]. For example, this measure fails to account for the shifted behavior of time
series.

In order to mitigate the problem of Euclidean distance, Bataista et al. [4] introduced the
first complexity-invariant distance (CID) measure for time series and showed that it generally
produces significant improvements in classification and clustering accuracy. A measure that
is invariant to both shifts and scale is said to be complexity invariant [4]. However, the
effectiveness of such a measure in extracting popularity trends has not yet been assessed.
Other previous work also make use and extend on the notion of Dynamic Time Warp (DTW)
[48, 58]. DTW is not a distance measure. It is an algorithm that finds the optimal alignment
between consecutive time series points. In essence, it deals with problems in shifts to align
time series and then computes distances using any given distance measure.

Yang et al. [63] proposed a complexity invariant distance measure called dksc. We
note that, in our work, in order to extract trends from popularity time series, we employ the
KSC algorithm that uses dksc which unlike other measures, it can be directly employed in a
K-means [39] framework.

We now shift our focus to recent studies of popularity evolution, specially in online
content. For instance, Borghol et al. [7] showed how weekly based views can be used to
model popularity of user-generated videos. Also, the authors developed a model to determine
the number of videos that may exceed a given popularity threshold. More recently, the work
of Islam et al. [32] showed that modeling of user-generated video popularity evolution based
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on weekly view counts, is still valid even years after upload. Focusing on image content, Cha
et al. [12] analyzed the propagation of pictures through Flickr internal OSN. The authors
found that popularity (measured in number of favorite markings) of the most popular Flickr
pictures exhibit close to linear growth. The authors discussed the importance of social links
in the increase in popularity of images, showing that about 50% of favorite markings come
from social cascades.

Another interesting study in this context was done by Ratkiewicz et al. [49]. The
authors investigated how external events, captured by search volume on Google Trends3 and
local browsing (i.e., university/community traffic) affect the popularity of Wikipedia articles.
More recently, Khosla et al. [76] compared the use of image and social features for predicting
the final popularity values of images.

Regarding clustering objects based on their popularity patterns, there has also been
some efforts. For instance, Yang and Leskovec [63] proposed a time series clustering algo-
rithm to identify trends on temporal patterns of popularity evolution. The model proposed
by Matsubara et al. [36] provides a unifying analytical framework of the temporal patterns
extracted by Crane and Sornette [15] and Yang and Leskovec [63].

2.3 Prediction of Scholar’s Popularity

We now focus on previous research that aimed at developing models to predict the popularity
of publications or scholars. For example, the authors [8, 10, 35] used measures computed
after a paper was published (e.g., number of downloads) to predict its future citation count.
Chakraborty et al. also tackled the problem of predicting citation counts of a given article
by proposing a two-stage prediction model. The first step of the model fits the pattern of
early popularity measures of the article into one of six given patterns. Next, a regression
model predicts future citation count of the article based on the subpopulation of scholars (in
a training set) who follow the same fitted pattern [13].

Aiming at predicting the future popularity of a scholar, Mazloumian [37] examined
the predictive capability of citation counts and found that they are reliable predictors of
future success (e.g., future citation counts and approval of research grants) for scientists.
Acuna et al. proposed a model to predict the future h-index of a scholar based on linear
regression with elastic net regularization [1]. The authors evaluated their model on a set
of 3,085 neuroscientists. Complementary work of Acuna model, Penner et al. showed that
any regression model aimed at “predicting” should avoid using cumulative, nondecreasing,
career measures because the retention of past information intrinsic to such measures will
yield artificially large coefficients of determination R2 [45]. On a different direction, Penner
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et al. provided evidence that, for the purpose of predicting a scientist’s future h-index, linear
regression models suffer a variety of flaws and their performance strongly depends upon
career age [44].

Van Dijk [57] focused on a slightly different problem: predicting whether a scholar
will become a principal investigator (PI). They found that it depends on the number of pub-
lications, the impact factor (IF) of the journals in which those papers are published, and
the number of papers that receive more citations than average for the journal in which they
were published (citations/IF). However, both the scholar’s gender and the rank of their uni-
versity are also of importance, suggesting that non-publication features play a statistically
significant role in this process. Hirsch [31] on the other hand focused on an comparison of
the predictive power of different metrics, namely, h-index, total citation count, citations per
paper, and total paper count. He found that h-index appears to be more suitable to predict fu-
ture achievement than the other metrics but explicitly stated that further studies are required
to confirm this.

Compared to these studies, we here focus on a somewhat different problem: predict-
ing the popularity trend (or curve, evolution pattern) of a scholar as early and accurate as
possible. Yet, we show that our popularity trend prediction model can be applied to im-
prove regression-based models that predict the future popularity value of a scholar. This is
achieved by developing specialized regression models for each trend (as proposed by Pinto
et al. [47]).

Unlike all previous studies, this dissertation is the first study that aims at predicting
popularity trends for scholars. However, similar efforts in other domains, notably popularity
of user generated content (UGC), can be cited. For instance, Nikolov [42] proposed a method
that predicts whether a tweet will become a trending topic by applying a binary classification
model (trending versus non-trending), learned from a set of objects from each class. Ahmed
et al. [2] designed a prediction model in two steps. First they classify UGC objects (e.g.,
videos) based on their popularity trends and then predict the popularity of that object in the
future. Unlike those studies, our method considers the trade-off between remaining citations
after prediction and prediction accuracy, adapting a model called TrendLearner, previously
proposed to the context of UGC popularity trend predictions [24], to the particular context
of scholar popularity trends. Like TrendLearner, our approach determines the duration of
the period during which each scholar should be monitored before prediction on a per scholar
basis, while other studies considered fixed monitoring periods for all objects such as [47]
which predicted the popularity of youtube videos, [55] that aimed to predicting the long time
popularity of online conten, and study of [33] that proposed a methodology about macro-
scopic prediction of the popularity of online contents. Even though in these studies the
authors showed the effectiveness of their methods for different monitoring periods, they did
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not discuss on methods how to determine such monitoring periods for each individual object.
Prediction of popularity trends has also been studied in social networks and search en-

gines. For instance Vakali et al. [56] designed a cloud-based application named Cloud4Trend
to cluster streams of web data and detect the trend of user generated content on Twitter and
blogging systems. Golbandi et al. [29] explored a search trend detection algorithm [19] to
develop a method for predicting query counts in order to detect search trends.

In sum, to the best of our knowledge, ours is the first work that tackles the prediction
of scholar popularity trends as early and accurately as possible recognizing that different
scholars may exhibit quite different popularity trends (as identified by Gonçalves [30]). Our
solution determines the best monitoring period for each scholar so as to achieve a good trade-
off between prediction accuracy and remaining citation (or popularity) after prediction.



Chapter 3

Early Prediction of Popularity Trends
of Scholars

In this chapter we describe our scholar popularity trend prediction model, which was adapted
from a method that was originally proposed for predicting the popularity of UGC. As men-
tioned before, we tackle the trade-off between prediction accuracy and the capability of
making such prediction as soon as possible, a problem to which we refer to as early predic-

tion of scholar popularity. Our model can be summarized into two parts. Firstly the goal is
to extract the scholar popularity trends using a training set. Next, we predict the popularity
trend (or class) of each scholar in a test set by training a classification method using various
scholar features as input.

The rest of this chapter is organized as follow. We formally describe the predic-
tion problem in Section 3.1. In Section 3.2 we present proposed solution (i.e. Schol-
arTrendLeaner) for early prediction of popularity trends. In Section 3.3 we discuss how
predicted trend by ScholarTrendLeaner can improve results of regression-based popularity
prediction models.

3.1 Problem Statement

In this dissertation, the early popularity trend prediction problem is defined as follows. Given
a training set Dtrain and a test set of scholars Dtest , the popularity trends are extracted from
Dtrain; then a trend which previously extracted is predicted for each scholar in Dtest using
a classifier as early and accurately as possible. Table 3.1 describes the notation used in
this chapter. Each scholar x is presented by an n-dimensional time series vector px =<

px1, px2, ..., pxn >, where px1 is the acquired popularity (i.e., number of citations) by scholar

13
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x during the ith monitoring time window. We also note the complete dataset used in this
chapter is referred to as D = Dtrain∪Dtest .

Table 3.1. Summary of Notation

Symbol description

Dtrain training set
Dtest test set
Ki class i

CKi centroid of class i
x scholar x ∈ Dtrain
px time sereis vector of scholar x
pxi popularity of x at ith time window

px[a : b] a slice of vector px from elements a up to b

3.2 Proposed Solution

As we discussed in Chapter 1, we tackle the problem of early predicting popularity trends of
individual scholars by applying a new trend classification approach, namely TrendLearner
[24]. We adapt TrendLearner to our context of predicting scholar popularity trends by solving
the trade-off between prediction accuracy and remaining citations (or remaining popularity)
after prediction. Our adaptation of TrendLearner to the scholarly domain has two main steps:

1. In the first step, the popularity trends of scholars are identified by applying a time
series clustering algorithm, named K-Spectral Clustering (K-SC) [63]. K-SC extracts
popularity trends from a training set based on the centroids of clusters, being agnostic
to the volume and length of the time interval.

2. In the second step, a classifier is first built to predict the popularity trend (i.e., class)
of each scholar based on distances between her popularity time series and the trends
previously extracted by K-SC. This classifier produces as output the probability of the
scholar belonging to a particular trend/class. Finally, TrendLearner builds upon this
classifier by combining those probabilities with a set of academic features associated
with the scholars (e.g., number of publications, number of venues) to an ensemble
learner named Extremely Randomized Trees classifier [28].

We here refer to this adaptation of TrendLearner to the scholar domain as Schol-
arTrendLearner. Compared to the original TrendLearnerm the main differences of Schol-
arTrendLearner lies in the choice of academic features which are specific of the domain.
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Moreover applying such information to a completely different domain is a key contribution
of our work. As we will show in Section 4.3, it produces new insights and qualitative resuls
which are different from those in TrendLearner [24].

3.2.1 Trend Extraction

Since our popularity prediction model deal with time series, in this section we first discuss
common representation of time series in Section 3.2.1.1. Then, we discuss extracting popu-
larity trend of scholars in Section 3.2.1.2.

3.2.1.1 Time Series Representation

In research areas such as Statistics [53] it is common to represent time series using definitions
from the stochastic processes literature. Since this is a more general representation, we begin
by briefly describing stochastic processes. We then narrow this definition down to the vector
representation of time series commonly used in data mining (as well as this dissertation).

A stochastic process is denoted as:

{xti}
∞
i=1 = xt1,xt2,xt3, ..., (3.1)

where xti are values in R. Each such observation defines the quantity which the time series
captures. The values ti represent the points in time (or indexes) for each quantity xti . A
necessary condition is that t1 < t2 < t3tn, that captures the nature of a series. It is common
for quantities to be observed at uniform lengths from one another, thus making the use of the
index variable ti unnecessary in most applications. Thus, a simpler notation is {xt}∞

t=1.

Since the definition of time series based on stochastic process is general definition, in
practice we observe a subsequence of the time series. That is, a vector x of observations is
observed. In this sense, a time series can be summarized simply as a sequence of data points
measured at different times steps [26]. Thus, we define a time series vector as:

x =< xt1,xt2,xt3 , ...,xtn > (3.2)

where x is an observation vector, again composed of values xti ∈R. The same comment
for uniform indexes apply in this case, thus turning the definition above in the one below:

x =< x1,x2,x3, ...,xn > (3.3)
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3.2.1.2 Extracting Popularity Trends of Scholars

We identify scholar popularity trends by clustering the popularity time series of scholars in a
given training set. To that end, we exploit a clustering algorithm called K-Spectral Clustering
(K-SC) as done by Gonçalves et al. [30]. The K-SC algorithm effectively finds temporal
patterns based on a time series similarity measure. Similarly to the K-Means algorithm [64],
which minimizes the sum of the squared Euclidean distances between the members of the
same cluster, K-SC computes cluster centroids by introducing a new distance metric that is
invariant to scaling and translation of the time series [63]. That is, given two vectors px and
py that represent the popularity time series of two scholars, the distance dist(px, py) between
both vectors is defined as following:

dist(px, py) = min
α,q

||px−α py(q)||
||px||

(3.4)

where py(q) is the shifted time series py by q time units. Note that dist(px, py) is
symmetric in px and py. For a fixed value of q the optimal distance can be computed by
setting its gradient in terms of α equal to zero. Therefore the exact solution for α is α∗ =
pT

x py(q)

||py(q)||2
which minimized dist(px, py). However there is no simple manner to find the optimal

q. Thus, as in [24, 30], we search for the optimal value of q considering all integers in the
range (-n, n), where n is the length of the input vectors px and py. Note that K-SC requires
all time series have the same size n. Thus, we represent each scholar by a vector px with
20 elements, that each element represents the scholar popularity (i.e., number of citations)
in one year. We discuss more about how we set the value of n in Section 4.1. The detailed
description of K-SC algorithm can be found in [63].

Though there exists other clustering methods, such as K-Means and Affinity Propa-
gation [39], we chose to use K-SC as it has some desirable properties for our application.
Firstly, we need a time series clustering method compatible with our focus on trends (i.e.,
popularity evolution patterns), as opposed to specific popularity and time values. Secondly,
the euclidean distance used in the aforementioned methods has major drawbacks for this
goal, as pointed out by previous studies [4, 63]. For instance, it fails to account for the
shifted behavior of time series. K-SC, on the other hand, employs dist(px, py), which is
invariant to time shifts and popularity scale. Thus, it is an algorithm capable of finding the
optimal alignment between different time series. Thirdly, it has been shown that K-SC can
be very effective on the task of extracting trends from social media [63] and should be easily
adaptable to our goals.

Given a number of clusters k and the set of time series to be clustered, K-SC algorithm
works as follows:
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1. The time series are uniformly distributed to n random clusters Ki, where i = 1, ...,n;

2. Cluster centroids are computed based on the members of each cluster. In K-Means
based algorithms, the objective is to find centroid c that minimizes:

c∗ = argmin
c ∑

px∈Ki

dist(px,c)2

We refer the reader to the original K-SC paper for more details on how to find c [63];

3. Each time series vector px is assigned to the nearest centroid based on distance metric
dist(px, py);

4. Return to Step 2 until convergence, i.e., until all time series remain within the same
cluster in Step 3.

Each cluster’s centroid represents the popularity trend that the time series in the cluster
follow. So we refer to each cluster as a class Ki, which is represented by centroid CKi . We
discuss how we define the given number of clusters k in Section 3.2.2.

The next step of our method consists of predicting the cluster (or class) to which each
scholar in a test set belongs to. Such prediction is performed given the identified cluster
centroids (classes) as well as early measures of the scholar popularity (i.e., early points in
the scholar popularity curve) and possibly the values of a set of academic features computed
over the same monitoring period. We discuss this step of our method in the next section.

3.2.2 Trend Prediction

Given the k centroids (classes) obtained in the previous step using a training set, we now aim
at predicting the popularity trend, i.e., determining the class, of each scholar in a given test
set as early and as accurate as possible. Hence, we perform our prediction task by building a
classifier which monitors the popularity time series (and possibly other academic features) of
each scholar x during a monitoring period tx. As soon as the classifier is “confident enough”
that it can determine the class of x, the algorithm stops and returns the detected class. This
is performed for each scholar in the test set independently.

We experiment with three classification strategies. The first strategy exploits solely the
distances between the popularity curve of each vector px (up to the monitoring period tx) and
the centroid of all classes (Section 3.2.2.1). We also explore two other classification strate-
gies that employ a state-of-the-art learning method – extremely randomized trees (ERTrees)
[28] – to build a classification algorithm. In one strategy, we use the same computed proba-
bilities as input to the ERTrees. In the other, we experiment with a set of academic features,
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whose values are computed over the same monitoring period tx, as input to ERTrees (Sec-
tion 3.2.2.2). Finally we combine the two former approaches in a third algorithm by using
both probabilities and academic features as input to ERTRee. We show that this algorithm,
which we call ScholarTrendLearner, improves the quality of prediction task considering the
tradeoff between prediction accuracy and citations after prediction (Section 3.2.2.4).

3.2.2.1 Prediction Based on Class Probabilities

We build a classifier that computes the probability of belonging to class Ki based on the dis-
tances between the initial points in the popularity curve of x (captured in vector px) and each
curve CKi (denoting the centroid of class Ki). Regarding the shifting invariants in comput-
ing the distances, we consider all possible alignments between px and CKi . That is, given a
monitoring period tx, we take a starting time window ts and vary it from 1 to |CKi|− tx, where
|CKi| is the number of time windows in CKi . So given centroid CKi , the monitoring period tx
and a starting window ts, this probability is obtained as follows:

P(px ∈ Ki|CKi ; tx, ts) ∝ e(−dist(px[1 : tx],CKi [ts : ts + tx−1])) (3.5)

As already discussed, different popularity time series may need different monitoring
periods. given Equation 3.5, the classifier computes the probability of each scholar belonging
to each class at the end of each time window, starting with tx equal to 1, and returns the class
Ki with the highest probability For each scholar x, the algorithm stops this procedure once
the computed probability exceeds a class-specific threshold θ [c] or the monitoring period tx
exceeds a maximum limit γmax. Threshold θ [c] captures the minimum confidence required to
state that a scholar belongs to class k. We also consider that a minimum monitoring period is
provided for each class, given that different classes, exhibiting different popularity dynamics,
may require quite different monitoring periods. This procedure is shown in Algorithm 1.

Algorithm 1 computes probabilities and monitoring periods for all scholars in a given
test set Dtest . The algorithm takes as input the time series of all scholars in Dtest , the vector
CK with all class centroids, vectors θ with the minimum confidence thresholds for each
class, vector γ with the minimum thresholds for monitoring period for each class, and γmax,
the maximum threshold for the monitoring period. The output is a vector t with the number
of monitored time windows for each scholar and a matrix M with the probabilities of each
scholar belonging to each class.

The algorithm begins by initializing matrix M and vector t with 0 in all elements.
Starting with a monitoring period tx equal to the minimum possible for all classes. The
algorithm monitors each time series in Dtest , and computes the probability of time series
belonging to each class using function ComputeProb. This works as follows: for a given tx,
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the function computes the probability by trying all possible alignments between the initial
elements of px (up to tx) and the corresponding cluster centroid. This is done by applying
Equation 2 using all possible values of ts. The algorithm takes the largest of all computed
probabilities along with the associated class. The algorithm stops searching for the class
of a scholar x when both the computed probability and the monitoring period tx exceed
class-specific thresholds θ [k] and γ [k], respectively. At this point, it saves the identified class
in matrix M and the current tx in vector t. The algorithm repeats this procedure for all
scholars in Dtest , returning matrix M and vector t. Note that matrix M may contain only
zeros for some scholars, indicating cases for which the algorithm was not able to predict
a class with minimum confidence, within the maximum monitoring period allowed (γmax).
This classification strategy exploits only the probabilities of a scholar belonging to each
class. We refer to it as ProbClassifier.

Algorithm 1 Producing Matrix M and vector t
Require: Dtest , Ck, θ , γ and γmax

Initial t[i] = 0; M[i][ j] = 0; i← |Dtest | tx← min(γ)
while (tx ≤ γmax) and (i > 0) do

for all px ∈ Dtest do
for all CKi ∈Ck do

P[i]←ComputeProb(px,Cki,θ
[i], tx)

end for
prob← max(P); k← argmax(P) . Identify class k with largest probability
if (prob > θ [k]) and (tx ≥ γ [k]) then

t [x]← tx ; M[x]← p
i← i−1; Dtest ← Dtest−{px} . Classification of x is done, remove it from

Dtest
end if

end for
tx← tx +1

end while
return t,M
function ComputeProb(px,Cki,θ

[i], tx)
ts← 1; p← 0
while (ts ≤ |Cki|− tx) and (p < θ [i]) do

p
′ ← e (−dist(px[1 : tx],CKi[ts : ts + tx−1])) . Check all possible alignments

between the first tx windows of px (monitoring period) and CKi by varying ts. Stops once
probability exceeds minimum threshold

p← max(p, p
′
) . Take the largest probability (best alignment)

ts← ts +1
end while
return p

end function
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3.2.2.2 Prediction Using ERTrees

Inspired by [14], we propose to use the probabilities obtained by Algorithm 1 as input fea-
tures to a feature-learning method. Specifically, we use the estimated probabilities as input
to an Extremely Randomized Trees (ERTrees) classifier, a tree-based ensemble method [28].
We refer to this prediction method as ProbERTrees. We chose ERTrees as our classification
algorithm because of its good accuracy and computational efficiency on large scale datasets.
The method builds regression trees according to the classical top-down procedure but ran-
domly choosing the most appropriate features to grow up the trees. A majority voting of
the individual regression trees at classification time leads to the final prediction. For more
information about ERTrees we refer the reader to the original paper [28]. The description of
the Extra-Trees algorithm is given in Section 3.2.2.3.

As a variation of the aforementioned strategy, we also exploited the ERTrees classifier
using as input a set of academic features associated with each scholar. These features are
presented in Table 1. Note that the feature values used as input are computed over the same
monitoring period tx. We call this approach FeatERTrees.

Table 3.2. List of Considered Academic Features

Feature Notation Description

# citations total number of citations

# publications total number of publications

# coauthors total number of coauthors

# venues total number of distinct venues

h− index h-index of scholar at each year

short impact factor average yearly number of citations in the last two years

long impact factor average yearly number of citations in the whole period

3.2.2.3 Extra-Trees Algorithm Description and Rationale

The Extra-Trees method implements a meta estimator that fits a number of randomized deci-
sion trees on various sub-samples of the dataset and use averaging to improve the predictive
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accuracy and control over-fitting. The two main differences of this method with other tree-
based ensemble methods are that it splits nodes by choosing cut-points fully at random and
that it uses the whole learning sample (rather than a bootstrap replica) to grow the trees. In
our case, all features shown in Table 3.2 are numerical features. So the Extra-Trees splitting
procedure for numerical input features is given by Algorithm 3.2.2.31.

Algorithm 2 Extra-Trees splitting algorithm (for numerical features)
Split_a_node(S)
Input: the local learning subset S corresponding to the node we want to split
Output: a split [a < ac] or nothing
– If stop split(S) is TRUE then return nothing.
– Otherwise select K features a1, ...,aK among all non constant (in S) candidate features;
– Draw K splits s1, ...,sk, where si =pick a random split(S,ai),∀i = 1, ...,K;
– Return a split s∗ such that Score(s∗,S) = maxi=1,...,k Score(si,S)

Pick a random split(S,a)
Input: a subset S and an attribute a
Output: a split
– Let aS

max and aS
min denote the maximal and minimal value of a in S;

– Draw a random cut-point ac uniformly in [aS
max,a

S
min];

– Return the split [a < ac].

Stop split(S)
Output: a subset S
Output: a boolean
– If |S| < nmin, then return TRUE; – If all features are constant in S, then return TRUE; – If
the output is constant in S, then return TRUE; – Otherwise, return FALSE.

This algorithm has two parameters: K and nmin , the former is the number of features
(or features) randomly selected at each node. The parameter K may be chosen in the interval
[1, ...,n], where n is the number of features. The latter is the minimum sample size for
splitting a node. It is used several times with the (full) original learning sample to generate
an ensemble model. The predictions of the trees are aggregated to yield the final prediction,
by majority vote in classification problems and arithmetic average in regression problems
[28].

1complete Extra-Trees algorithm, for numerical and categorical features, is presented by Geurts et al. [28]
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3.2.2.4 ScholarTrendLearner

Finally, we propose to “merge" the two former approaches by combining the probability
features with “domain-specific" features. In other words, we use as input features to the
ERTrees classifier both the set of probabilities taken from matrix M and the scholar’s asso-
ciated feature values (Table 1). We refer to this approach as ScholarTrendLeaner.

3.3 Applying Results to Regression-Based

Predictive Models

In this section, we show how to apply the predicted trends to estimate the popularity of a
scholar at a given future time. For this, we exploit ideas first proposed in [47], which builds
specialized regression popularity prediction models for Web objects (in the case, YouTube
videos) with similar popularity patterns. In that work, the authors demonstrated that the
specialized models can, at classification time, reduce the prediction errors. We combine our
predicted trends with the state-of-the-art (ML) and MRBF regression-based models proposed
in [47] to predict the future popularity of scholars.

Before describing the prediction models, we discuss the regression models commonly
used to predict popularity of Scholars in Sections 3.3.1. Next, the used performance criterion
by ML and MRBF models (i.e, the mean Relative Squared Error (mRSE)), described in
Section 3.3.2. Finally, we describe the ML and MRBF prediction models in Sections 3.3.3
and 3.3.4 respectively.

3.3.1 Linear Regression Models

Ordinary Least Squares (OLS) linear regression models have been adopted as a means build
models of popularity prediction. An OLS regression is defined as follows:

yt+h = XT
t Θ+ ε (3.6)

where Xt is a matrix of multiple time series column vectors (also called the covariate
matrix), each with observations up to reference time t, yt+h, is the response, and ε is the error
of the model. The notation, XT represents a matrix transpose. Solving the OLS equation for
Θ will define the prediction model, that is, the parameter Θ, that minimizes the Mean Squared
Error (MSE):

mse(y) = n−1
n

∑
i=1

(yi− ȳ)2 (3.7)
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However, if applied to heavy-tailed data this model may fail to produce accurate pre-
dictions. One of the premises for linear regression is that of independence between the
errors, ε , and the response yt+h. Due to the heavy-tailed nature of popularity, this premise
is violated. For example, if we take the MSE equation above and apply it to a heavy-tailed
distribution, it is better to reduce the error on the most popular objects since any arithmetic
mean is biased towards higher values. Thus, a correlation between errors and parameters
will exist in the model. To understand this, note that MSE will try to get the most popular
content correct, since they have a large impact in the mean error. Given that only a handful
of these objects exist, the model may be wrong for the majority of content.

In order to mitigate this behavior, the Mean Relative Squared Error (MRSE) was sug-
gested [47, 55], being given by:

mrse(y) = n−1
n

∑
i=1

(yi− ȳ
yi

)2 (3.8)

In order to create such a model, we can slightly change the OLS equations. That is, the
new equation will have the form:

1 = T T
t Θ+ ε, (3.9)

where 1 is a vector of ones, and Tt is a matrix composed of column vectors with the
following normalization:

t j =<
x1

y
,
x2

y
, ...,

xn

y
>, (3.10)

which is the original time series vector divided by the response variable. The proof for
that this model minimizes MRSE can be found inis given by Pinto et al. [47]. We use the
above models for our prediction task.

3.3.2 Performance Criterion

I this section, we introduce the performance criterion (i.e., mRSE) adapted to evaluate the
performance of the ML and MRBF prediction models. Let N(x, t) be the total number of
citations received by scholar x up to day t (N(x,0)=0), and N̂(x, tr, tt) be the total number of
citations predicted for scholar x at target date tt based on data from the first tr time windows.
Given a training set C, the mRSE for this prediction is defined as:

mRSE =
1
|C|
·∑

x∈C

(
N̂(x, tr, tt)

N(x, t)
−1

)2

(3.11)
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As shown in equation 3.11, the relative squared error is adapted instead of absolute
quadratic error. Because, relative errors tend to be more relevant and meaningful than ab-
solute ones, particularly given the great variability in popularity across different scholars
[11].

3.3.3 Multivariate Linear (ML) Model

The original ML model is a multivariate linear regression model that receives the popularity
(number of citations in our case) acquired by an object (scholar) at multiple given points in
time up to a given reference date tr and predicts the popularity of the scholar at a target date
tt (tr < tt). We assume each time window be one year, although in this model there is no
assumption on the rate of time windows.

More formally, the ML model is described as follows. let gi(x) be the number of
citations received by scholar x on the i-th time window, therefore, gi(x)=N(x, i)−V (x, i−1),
thus the feature vector Gtr(x) is defined as:

Gtr(x) = (g1(x),g2(x), ...,gtr(x))
T (3.12)

and the popularity of scholar x at tt is estimated as:

N̂(x, tr, tt) = θ(tr,tt) ·Gtr(x) (3.13)

where θ(tr,tt) = (θ1,θ2, ...,θtr) is the vector of model parameters and depends only on tr
and tt . Given equation 3.11 and training set C, we can compute the optimal values for the
elements of vector θtr,tt as the ones that minimizes the mRSE on C by solving the following
optimizatin problem:

argminθ(tr ,tt )

1
|C|
·∑

x∈C

(
θ(tr,tt) ·Gtr(x)

N(x, t)
−1

)2

(3.14)

which is an Ordinary Least Squares (OLS) problem. If n be the number of scholars in
the training set and p be the number of model parameters, it is considered that n ≥ p. One
possible drawback of ML model is that the number of parameters is not fixed and it increases
linearly with tr. however, this would not be an issue in practice because we considered that
the ScholarTrendLearner does not observe the popularity of scholars for very long time and
it predicts the popularity as early as possible.
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3.3.4 MRBF Model

In the ML model, different weights are assigned to different time windows in the observed
history of the scholar. The MRBF model is an extension of the ML model that includes
additional features to measure the similarity between the popularity curves of the object and
known examples from a training set, based on Radial Basis Functions (RBFs). Using these
extra features, some particular aspect of certain group of scholars can be captured.

For measuring the similarity between videos, the Radial Basis Function (RBF) is used
that is a real-valued function whose value depends only on the distance between its inputs
and a given point, the center. The Gaussian RBF that capture similarity between a scholar xc

as center and a target scholar x is as follows:

RBFxc(x) = e
(
− ||g(x)−g(xc)||2

2.σ2

)
(3.15)

where σ is a parameter and g(x) is the ML model feature vector for scholar x. A number
of scholars from training set are selected randomly to be centers for RBF features. Then
for each scholar x, the value of RBFxc(x) is computed and used as one of the features in the
prediction model. This model is called MRBF model and defined as:

N̂(x, tr, tt) = θ(tr,tt) ·G(x)+ ∑
xc∈C

ωxc ·RBFxc(x) (3.16)

where C is the set of scholars chosen as centers and ωxc is the model weight associated with
the RBF feature for xc used for prediction purposes. Notice that the MRBF model as defined
in Equation 3.16 is mathematically equivalent to:

N̂(x, tr, tt) = θ
∗
(tr,tt) ·G

∗
tr(x) (3.17)

where θ ∗ is the θ vector with the ωxc parameters appended to it and G∗tr(x) is the G(x) vector
with the values of the corresponding RBF functions appended to it i.e., the RBF features
can be simply treated as additional features in the original feature and parameter vectors.
Equation 3.17 is in exactly the same format as Equation 3.13 that describes the ML model.
Thus, the optimization problem can be solved using the same OLS technique. Because of
extra features, to reduce the risk of over-fitting training set, this optimization problem can
also be solved using ridge regression technique.

In order to use the MRBF model, we should set the parameter σ and also the number of
scholars that chosen as centers. We experimented with many values for σ and finally chose
the value that provided the lowest prediction error in a cross-validation set, i.e., σ = 0.06.
For the number of RBF features, we considered 100 and 500 centers and finally because
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of computational cost we selected 100 centers uniformly at random from the training set.
However there is very little variation in prediction error between different numbers of centers.

3.3.5 Model Specialization

The different popularity trends (i.e., cluster centroids) display different behaviors, and thus
it is likely that exploring particular aspects of each trend can lead to improved prediction
accuracy. Because of this reason we exploit mRSE measure to assess the prediction accuracy
of the ML and MRBF models applied to the context of scholar popularity, considering two
approaches, also proposed in [47]: a general and a specialized model. In the former, the
parameters of the regression model are configured using the whole set of objects in training
set, while in the latter, the parameters are trained using only specific information of each
cluster previously identified by the first step of our ScholarTrendLeaner method. We consider
the monitoring time window tx previously set by our model (see Table 2) as the reference
date tr and tt = tr +δ as target date that considering δ equals to 1 and 4, thus tt = tx +1,4,
meaning one and four years in the future, respectively.



Chapter 4

Dataset and Experiments

In this Chapter, we first present a brief characterization of the used datasets in Section 4.1.
then we discuss our experimental setup in Section 4.2. Finally the results of the trend pre-
diction model are presented in Section 4.3.

4.1 Dataset

We evaluate our prediction models using an experimental research dataset developed by Mi-
crosoft Academic named Microsoft Azure Marketplace (MAM)1. MAM indexes 19,856,190
scholars covering a total of over 39 million publications by those scholars. The dataset also
contains other types of information such as publication venues for journals and conferences
as well as keywords and references for each publication.

In order to exclude very inactive scholars, we restricted our dataset to authors having at
least 10 publications. After applying this filtering, we obtained data about roughly 1,500,000
scholars. Using this data, we produced the yearly time series of the number of citations for
each scholar, considering the period between 1995 and 2014 (20 years). We note that MAM
records are very sparse before and after this period. Thus, we set the parameter n, the length
of the popularity time series of the K-SC algorithm (see Section 3.2.1) equal to 20 elements2.
Then we eliminated time series containing more than 80% elements equal to 0 indicating that
the corresponding scholars were not very popular throughout their academic careers. After
this filtering, we were left with 500,000 scholars, over which we evaluate our prediction
models. For each scholar we also extracted the time series associated with the other features

1The dataset is of public use and can be downloaded from
https://datamarket.azure.com/dataset/mrc/microsoftacademic.

2Note that scholars with fewer years of activity or no citations in some of those years have elements equal
to 0 in their corresponding popularity vector.
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shown in Table 3.2, namely: total number of publications, distinct venues and coauthors as
well as the value of h-index, short impact factor (the average number of citations of articles
published in the last two years), and long impact factor (average number of citations received
by papers published so far).

4.2 Experimental Setup

Since our popularity prediction problem is formulated as a clustering task combined with
a classifier algorithm, we here discuss how we defined the input parameters of the K-SC
algorithm, Algorithm 1 and the Extremely Randomized Trees classifier. Similarly to other
clustering algorithms, K-SC requires the number of clusters k as input. To set such parame-
ter, we relied on the βCV clustering quality metric [38]. The βCV is defined as the ratio of the
coefficient of variation (CV)3 of the intra-cluster distances to the CV of the inter-cluster dis-
tances. The intra-cluster distance is the distance between a cluster member and its centroid,
and the inter-cluster distance is the distance between different cluster centroids. The general
purpose of the clustering task is to group elements so as to obtain high similarity among
members of the same cluster, and low similarity across members of different clusters. Thus,
the idea behind the βCV heuristic is to minimize the variance of the intra-cluster distances
while maximizing the variance of the inter-cluster distances. The value of βCV should be
computed for increasing values of k. We select the lowest value of k after which the value of
βCV becomes stable, implying that intra and inter-cluster distances are stable as well. This
indicates that the clustering process converged. After applying the βCV heuristic in our data,
we found that the βCV value stabilized around k = 5 as shown in Figure 4.1, which was used
as an input parameter for the K-SC algorithm.

3The ratio of the standard deviation to the mean.
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Figure 4.1. βCV clustering quality metric.

Regarding the parameters of Algorithm 1, namely vectors θ and γ , we adopt the same
parameterization approach as in [24]. Notably, we apply an One-Vs-All classification (OVA)
algorithm [6] for all classes separately. OVA is implemented for all scholars in the training
set that are classified previously by considering different values for γ [i] from 1 up to γmax. We
select the smallest value of γ [i] (the minimum monitoring period for class Ki) for which the
classification performance exceeds a given target (e.g., classification above random chance,
meaning Micro-F1 above 0.5). Using the selected value for γ [i], the minimum confidence θ [i]

is the average probability computed for all scholars in class Ki. Regarding parameter γmax, we
set its value equal to the total number of points in the popularity time series (i.e., 20), as done
in [24]. Table 4.1 shows the best parameter values obtained following the aforementioned
procedure for each of the five identified classes. These parameter values were used by all
four classification approaches described in Section 3. We note that in order to be able to
compare those approaches under fair conditions, all of them monitor each scholar x until tx,
the monitoring time produced as output of ScholarTrendLearner.

Finally, the Extremely Randomized Trees classifier has three parameters K, M and
nmin. Parameter K determines the strength of the feature selection process and was set to
the square root of the total number of features. The averaging strength parameter M denotes
the number of trees in the ensemble, set to 20, a default value suggested by the majority of
the works on ERTrees. We then apply cross-validation within the training set to choose the



30 CHAPTER 4. DATASET AND EXPERIMENTS

smoothing strength parameter nmin, the minimum number of samples required for splitting
a node, considering values equal to 1, 2, 4, 8, 16, 32. For more information concerning the
parameterization of Extremely Randomized Trees we refer to [28].

4.3 Experimental Results

In this section we present our experimental results regarding the extraction and prediction
of scholar popularity trends. The results are assessed by means of a 5-fold cross validation4

such that the original dataset is randomly partitioned into 5 equally sized folds. One of the
folds is used as test set (Dtest) whereas the remaining four folds are used as training set
for learning the model (with one of the training folds used as validation set for parameter
setting). The cross-validation process is then repeated 5 times with each of the five folds
used exactly once as the test data. The results from the five test folds are then averaged to
produce a single prediction result.

Figure 4.2 shows the centroids (i.e., popularity trends) of the five clusters for scholars
in the training set5. The figure also presents, for each cluster, the percentage of scholars
belonging to it as well as the average number of citations of them. Absolute values in both
axes are omitted to emphasize the scale and time shifting (x-axis) invariants of the algorithm.

Classes K1, K3 and K4 correspond to scholars who managed to become increasingly
popular over time, acquiring more and more citations over time. Particularly, the popularity
of scholars identified in cluster K4 is roughly stable over a longer period of time. Moreover,
those scholars tend to be the most popular ones, on average. Scholars in clusters K1 and K3

exhibit a sharper increase (particularly those in K1) towards their popularity peak, having
also a smaller total number of citations, on average, compared to scholars in K4. Although
there are similarities between these two patterns, the main difference regards the popularity
growth rates. Note that the sharp decay in the late of career in these clusters exhibits that
recent publications have fewer citations. Also, recall that each centroid represents an average
popularity curve for all scholars in the cluster. By manually inspecting the popularity curves
for various scholars in these three clusters, we found that the decay at the end was not clear
in several individual curves, although others did exhibit it.

In contrast, scholars in clusters K0 and K2 are the least popular ones. They reached the
popularity peak more quickly rather than other three clusters. In other word these scholars
grow in popularity, experiencing a clear peak, but fail to remain popular afterwards. The
main differences between scholars in K0 and K2 are the rates of popularity growth and decay
before and after the peak, which are much sharper for scholars in K2. As mentioned, these

4A standard technique for estimating the performance of predictive models.
5The same clusters were found in all five training sets.
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(a) K0 (13.35% of scholars; Avg.# of citations = 331)

(b) K1 (24.62% of scholars; Avg.# of citations = 367)

(c) K2 (10.32% of scholars; Avg.# of citations = 77)

(d) K3 (31.53% of scholars; Avg.# of citations = 965)

(e) K4 (20.15% of scholars; Avg.# of citations = 1050)

Figure 4.2. Scholar popularity trends extracted by K-SC.
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popularity profiles are similar to those identified in [30]. However, unlike in that work, we
here take a step further and try to predict the popularity trend of each scholar and use such
trend predictions to improve the prediction of popularity values.

Recall that we here investigate four trend prediction strategies: ScholarTrendLearner,
ProbClassifier, ProbERTrees and FeatERTrees. As discussed in Section 3.2.2.1, ProbClas-
sifier is trained with probabilities and assigns the class (i.e., popularity trend) with largest
probability (based on the distance to the closest cluster centroid) in matrix M to a scholar.
ProbERTrees predicts a class for scholars by training an extremely randomized trees learner
using only probabilities as input features. FeatERTrees predicts the class of a scholar by
training an extremely randomized trees learner using only the scholar features. Schol-
arTrendLeaner, in turn, uses both sets of features as input to the learner. As mentioned,
all methods use the monitoring period optimized by ScholarTrendLearner (presented in Ta-
ble 4.1), to ensure a fair comparison6. All results are averages over all test sets, along with
95% confidence intervals. Before discussing our popularity trend prediction results, we note
that, as shown in Table 4.1, classes K3 and K4 require more monitoring time windows (i.e.,
larger value of γi), as these classes experience some fluctuations that may be confused as
peaks. Thus, it is harder to determine whether the scholar belongs to one of those classes.
On the other hand, classes K0 and K1 and K2 exhibit sharper peaks, requiring somewhat
shorter monitoring periods, making it easier to classify scholars in these classes.

Table 4.1. Best values for parameters θ and γ (average results across all training sets)

Cluster θ γ

K0 0.279 13
K1 0.228 13
K2 0.226 13
K3 0.229 14
K4 0.226 14

Table 4.2 show the results of the four prediction approaches in terms of prediction
accuracy. Since our prediction problem is a classification task, we assess prediction accuracy
using the Micro and Macro F1 scores. These measures are computed based on precision and
recall measures. Precision for a class Ki, p(i), is the number of correctly classified scholars
out of those assigned to Ki by the classifier, while the Recall of class Ki, r(i), is the number
of correctly classified objects that should have been classified to that class. The F1 measure

6All features are computed considering this optimized time window.
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of class Ki, F1(i) is computed as:

F1(i) =
2p(i)× r(i)
p(i)+ r(i)

Macro F1 is the average F1 across all classes, whereas Micro F1 is computed based on
global precision and recall, calculated for all classes.

Table 4.2. Evaluation of Scholar Popularity Trend Prediction Methods (averages and

95% confidence intervals)

Macro F1 Score Micro F1 Score

ProbClassifier 0.743± 0.006 0.785± 0.003
ProbERTrees 0.731±0.005 0.803±0.004
FeatERTrees 0.352±0.005 0.459±0.005

ScholarTrendLearner 0.754± 0.007 0.814± 0.003

As shown in Table 4.2, ScholarTrendLearner improves the results over the other three
alternative classification methods. Combining probabilities and scholar features brings ex-
plicit advantages over using either set of probabilities or scholar features separately. As
shown in Table 4.2, the average improvements of ScholarTrendLearner over the other pre-
diction approaches in Micro and Macro F1 reach up to 36% and 39%, respectively. In order
to illustrate the results obtained with ScholarTrendLearner, Figure 4.3 shows the true pop-
ularity curve and the predicted trend of three example scholars. Note that the predictions,
which match the correct classes, capture reasonably well the popularity dynamics of all three
scholars.

As a note regarding prediction effectiveness, recall that, as discussed in Section 3.2.2,
ScholarTrendLearner may not be able to properly identify the class of a scholar within the
maximum monitoring period allowed (γmax). In such cases, the algorithm produces no pre-
diction result. However, we found that this happened for only a small fraction of scholars
in our dataset (10%), which exhibit quite different popularity curves which could not be
matched (with enough confidence) to any identified cluster.

Recall that ScholarTrendLearner was derived from TrendLearner [24], a model pro-
posed to predict popularity trends of UGC. When comparing our results to those of the
original method, we find:

• Our results have much higher Micro and especially Macro F1 values.
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Figure 4.3. True popularity curve (left) and predicted (right) for three example scholars

• Moreover, unlike observed in [24], the use of only scholar features as input to ERTrees
(FeatERTrees) proved to be a much worse approach, compared to the others.

• A third difference is that the improvements of ScholarTrendLearner over using only
probabilities or scholar features, though statistically significant, are somewhat less
impressive than the corresponding gains of the original TrendLearner on UGC.

Such differences reflect the idiosyncrasies of each particular domain, and indicate that
the adaptation of the original technique to a very different domain (the scientific one) does
produce new important insights, being a significant contribution of our work.

We now turn our attention to how early the prediction of ScholarTrendLearner is made,
as one of our goals is to make the predictions as early as possible. Recall that we assess this
measure based on remaining popularity (citation) after the prediction. Figure 4.4 presents
the complementary cumulative distribution of the fraction of remaining citations (RC) after
prediction, produced for all scholars in the five test sets. In this graph, the x-axis represents
the fraction of total citation counts after prediction while the y-axis represents the fraction
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of scholars with remaining citations higher than the corresponding value in the x-axis. We
note that for around 48% of the scholars, the prediction could only be made after all the
citations had been received (remaining citations equal to 0). This reflects the diversity of
popularity profiles across the scholars and indicates that the prediction task we are tackling
is quite hard. However, for 21% of the scholars, ScholarTrendLearner was able to make
predictions before more than 50% of their citations were still to be received. For 40% of the
scholars, this fraction is still quite significant (30%). Thus, there is a significant diversity in
the required monitoring periods produced by ScholarTrendLearner. We also observe that for
more than 45% of scholars, ScholarTrendLearner could make predictions before half of the
maximum monitoring time windows (i.e., before 10 years). Other scholars required longer
monitoring periods. In sum, the diversity of the results shown in Figure 4.4, considering
both remaining citations and required monitoring period confirms the necessity of personal-
izing the monitoring period on a per-scholar basis, which our ScholarTrendLearner approach
addresses.
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Figure 4.4. Remaining citations after prediction
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4.3.1 Prediction Results

Table 4.3 shows the average mRSE along with 95% confidence intervals produced by the two
prediction approaches: general and specialized. We notice that for both δ = 1 and δ = 4 the
two MRBF models are much better than the ML results, which is consistent with [47]. We
also note that, again for both values of δ , the specialized models have a tendency to generate
better results than the general ones, mainly for the “specialized MRBF” vs. “general MRBF”
case, though statistical superiority cannot be guaranteed, mostly due to the high variance
in the results. Finally, notice that, as expected, the accuracy for predicting farther in the
future is smaller than for just one year later. Yet, the errors, in general can be considered
very small, meaning that our predictions are quite accurate, especially for the “specialized
MBRF” model.

Table 4.3. Prediction Errors mRSE for ML and MRBF models (Averages and confidence

intervals; δ = 1,4)

Regression Model δ=1 δ=4

General ML 0.043±0.000 0.282±0.005
Specialized ML 0.040±0.006 0.268±0.047
General MRBF 0.019±0.003 0.062±0.018

Specialized MRBF 0.018±0.004 0.047±0.009



Chapter 5

Conclusions and Future Research
Directions

In this dissertation, we introduced ScholarTrendLearner, a supervised prediction model that
estimates the popularity trends of scholars using a combination of distance-based and associ-
ated academic features. Unlike previous work, our approach focuses on predicting popularity
trends of scholars. We also focused on the natural trade-off between accurate predictions and
the remaining citations after prediction.

Our main contribution is a method that aims at reducing prediction time while keep-
ing prediction accuracy as high as possible. According to the dynamic nature of scientific
popularity in scholar career’s content, an efficient prediction solution is able to determine
the monitoring periodd, targets and prediction dates automatically. We here provided such
a solution as ScholarTrendLearner. Our method determines the monitoring time window on
a per scholar basis, considering the diversity on the popularity of scholars throughout their
careers.

Our experimental results show that high Macro and MicroF1 values can be obtained
(above 0.75 and 0.81, respectively), with statistically significant gains over the alternative
approaches. We could also achieve a good tareoff between early prediction and accuracy.
For instance, we could reliably predict the popularity of more than 20% of the scholars in
our dataset before 50% of the total number of citations obtained by them in their entire ca-
reer is acquired. Furthermore, we concluded that combining our predicted popularity trends
with two recently proposed regression based prediction models (ML and MRBF) can lead to
highly accurate popularity predictions.

As possible directions for future work, we note that different academic features may
affect differently the prediction effectiveness. Thus, we intend to investigate the effectiveness
of ScholarTrendLearner using different subsets of features as well as possibly new academic
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features. Moreover, our present study is focused only in one knowledge area: Compute
Science. Scholars from different areas may exhibit different popularity evolution patterns
and idiosyncrasies. Therefore, a natural follow-up study is to apply our proposed methods to
other knowledge areas, including a thorough comparison of the trends discovered for each
of them. Another aspect we plan to investigate is the impact of data quality issues (missing
information, name ambiguity, etc) on our prediction results. We also want to study the
impact in our methods of changing the target popularity metric to h-index as there is evidence
(though not strong yet) that it may have better predictive power than other metrics [31].

Finally, as a long term goal we want to generalize the TrendLeaner algorithm to work
in any area (not only UGC and the Scholarly domains, as we have done) in which optmizing
the tradeoff between early prediction and accuracy is an important goal.
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