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Abstract

Protein-ligand interaction (PLI) networks show how proteins interact with small non-
protein ligands and can be used to study molecular recognition, which plays an impor-
tant role in biological systems. The binding and interaction of molecules depend on a
combination of conformational and physicochemical complementarity. There are sev-
eral methods to predict protein-ligand interactions, but a few are designed to identify
and describe implications of intelligible factors in protein-ligand recognition.

We propose CALI (Complex network-based Analysis of protein-Ligand Interac-
tions), a strategy based on complex network modeling of protein-ligand interactions,
revealing frequent and relevant patterns among them. We compared patterns obtained
with CALI to those computed using Frequent Subgraph Mining (FSM) paradigm. FSM
needs to run several times for a variety of support values and it also needs a mapping
step, in which computed patterns are mapped to the graph input dataset through a
subgraph isomorphism algorithm. On the other hand, CALI is executed once and with-
out applying the mapping step to the input dataset. Additionally, patterns obtained
with CALI were compared to experimentally determined protein-ligand interactions
from previous studies involving two datasets: one composed by the well studied CDK2
enzymes and, the other, by the Ricin toxin. For CDK2 dataset, CALI found 90% of
such residues and, for Ricin dataset, CALI found all residues that interact with ligands.

CALI was able to predict residues experimentally determined as relevant in
protein-ligand interactions for two diverse datasets. This new model requires nei-
ther running FSM nor analyzing its wide number of output patterns to find the most
common protein-ligand interactions. Instead, we propose using network topological
properties coupled with a powerful visual and interactive representation of data to
analyze interactions. Furthermore, our strategy provides a general view of the input
interaction dataset, showing the most common PLIs from a global perspective.

Keywords: protein-ligand interaction, complex networks, frequent pattern mining,
visualization, graph-mining.
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Chapter 1

Introduction

1.1 Motivation

Biological data and its relationships are commonly represented as graphs or networks.
Entities such as DNA, genes, proteins, just to name a few, are usually interacting
with each other and these interactions can be studied in a straightforward manner
using classical graph theory and complex network theory as well. For instance, when
proteins and/or genes interact in a complex network, there may be a group of them that
contribute to a disease process and at the same time a subgroup may become active
at different stages of the disease. If the sequence of biological events at the different
stages of the disease can be identified, it may be possible to propose pharmaceutical
interventions, accomplishing more effective treatment of the disease [Wang et al., 2005].

Some of the most well known biological networks are metabolic, gene regulation,
protein-protein interaction (PPI) and protein-ligand interaction (PLI) networks. Pro-
teins are essential macro-molecules composed by units called amino acids. Protein
interactions are the basis for the function of a larger protein complex [Junker and
Schreiber, 2008], and lately have been studied through PPI and PLI networks perspec-
tives. PPI networks show how proteins interact with others for different roles, as to
assembly cell structural components, metabolic channeling and transmission of regula-
tory signals. On the other hand, PLI networks show how proteins interact with small
non-protein ligands.

An important phenomenon that can be studied under the light of PPI and PLI
networks is molecular recognition. It plays an important role in biological systems and
refers to interactions between two or more molecules through noncovalent bonding,
such as aromatic stacking, hydrogen bonding, hydrophobic forces and salt bridges.
The conditions responsible for an interaction between two or more molecules are a

3
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combination of conformational and physicochemical complementarity [Kahraman et al.,
2007]. Understanding and predicting protein-ligand interactions are essential steps
towards ligand prediction, target identification, lead discovery and drug design [Pires
et al., 2013]. Despite the existence of several methods to predict protein ligands, few
methodologies are devised to identify and describe implications of intelligible factors
in protein ligand recognition.

According to Kitano [2002], computer techniques and bioinformatics approaches
had become the most promising options for effective drug discovery based on struc-
tures and on how a receptor recognizes its ligands. These computational models and
algorithms have showed their potential in early stage of drug-target identification and
target validation [Chen et al., 2015]. Advances on the understanding of PPI and PLIs
have led the development of algorithms to predict interactions [Medina-Franco et al.,
2014] for proteins [Szilágyi et al., 2005], to find missing links [Clauset et al., 2008]
and detecting overlapping protein complexes (proteins which belong to two families or
more) in PPIs [Nepusz et al., 2012].

1.2 Biological Background

1.2.1 Protein

Proteins are macro-molecules with crucial functions for all biological processes in or-
ganisms. Their work include to transport and store other molecules, such as oxygen,
bring mechanical support and immunity protection, generate movement, nervous im-
pulse transmission, growth and differentiation control.

Proteins are made of linear sequence of units called amino acids. An amino acid
(Figure 1.1) is a simple molecule composed by an organic acid. Additionally, proteins
have a wide range of chemical functional groups, which permit some proteins, known as
enzymes, to catalyze specific reactions in biological systems. The interaction between
proteins and other biological macro-molecules is very important because it allows to
form complex structures. Flexibility allows proteins to form diverse structural elements,
each one with a peculiar function [Stryer et al., 2013].

1.2.1.1 Protein Structural Organization

The protein synthesis produces thousands of macro-molecules in the cell, which is
controlled by instructions coded in the DNA. Every type of protein has an unique amino
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acid sequence with a particular shape, size and function [Restrepo O. and Zuluaga,
2011].

Figure 1.1: The structure of an amino acid molecule. Source: Wikipedia, "Amino
acid", June 23 2016.

The basic protein components, the amino acids, contain three groups: an amine
group (-NH2), a carboxylic group (-COOH) and a radical group (-R), also known as
side-chain (see Figure 1.1). There are 20 amino acids that compound all proteins from
all species, differenced only by their side chain [Stryer et al., 2013]. The names of these
20 types of amino acids are usually abbreviated with one-letter or three-letters as shown
in Table A.1. The amino acids inside proteins are called residues. Residues establish
bonds with one another, specifically known as peptide bonds, forming peptide chains.
The protein structure has a hierarchy containing four levels (Figure 1.2). The primary
structure is the linear sequence of amino acids or a peptide chain, which can have a
length between 50 and 2000 amino acids. The secondary structure describes the folds
done by the amino acid sequence. There are three basic folds: alpha helices, beta sheets
and turns or loops. The secondary structure is mainly formed by helices and sheets in an
approximated proportion of 70%-20% respectively and the loops are considered random
shapes connecting them [Wang et al., 2005]. The tertiary structure describes another
folds done by the secondary structure. Resulting in connections among amino acids
side-chains that are widely separated in the peptide chain. The quaternary structure
occurs only in proteins formed by two or more polypeptide chains, these chains are
also known as subunits. The specific manner that subunits fit together in the native
protein conformation is the quaternary structure. The function is determinated by all
this specific structural organization adopted by the protein [Restrepo O. and Zuluaga,
2011]. For instance, the hemoglobin is an oxygen-carrying protein in red blood cells, its
quaternary structure is formed by four subunits in roughly a tetrahedral arrangement.

1.2.1.2 Protein Complex

Protein complex is a form of quaternary structure. The polypeptide chains in a com-
plex are linked by non-covalent protein-protein interactions, causing proteins to have



6 Chapter 1. Introduction

Figure 1.2: Protein Hierarchy. Source: Wikipedia. "Protein Structure", 5 June 2016.

different folded conformations over time. Many biological processes are supported by
the functions of protein complexes as enzymes that catalyze chemical reactions. En-
zymes are proteins acting alone or forming complexes usually with a non-proteic chain.
Enzymes speed up (catalyze) chemical reactions decreasing the activation energy of
those reactions.
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Additionally, enzymes have a high specificity confered by a special region called
active site, which according to Kahraman and Thornton [2008] is composed by regions
on their surface specially modeled to interact with other molecules. The active site has
usually two parts: the binding site and the catalytic site. The first one checks if the
incoming molecule has the right characteristics to bond the enzyme. The second one is
the group composed commonly by two to six amino acids interacting with the molecule
that perform the catalytic reaction. The molecule bound to the enzyme active site,
commonly known as substrate is transformed creating the products of the catalytic
reaction [Restrepo O. and Zuluaga, 2011]. Proteins composed only by polypeptide
chains are protein-protein complexes. When a protein is binding to a ligand forming a
complex is called protein-ligand complex, as is shown in Figure 1.3.

Figure 1.3: Protein-ligand complex. The protein (green) adopts a specific shape to
interact with a ligand (yellow) through non-covalent bonds in particular sites of the
protein structure. Source: Alberts, et al. 2008. Molecular Biology of the Cell (5th ed).
Garland Science: New York.

1.2.1.3 Ligand

Most enzymes are proteins, forming protein-ligand complexes which create specific
bonds to the ligand, through the binding site. Some proteins are not enzymes but they
also form protein-ligand complexes, as the metalloproteins, a well-known example of
them is the hemoglobin, an oxygen-transport protein present in the blood of almost all
vertebrates. Some ligands produce a signal causing inhibition of the protein function.
These ligands are called inhibitors, which decrease the velocity of reactions catalyzed
by enzymes. Inhibitors are able to regulate enzyme activity (see Figure 1.4). If an
inhibitor binds to the active site it can block the chemical reaction of the enzyme. There
are two principal types of inhibitors: reversible and irreversible. Reversible inhibitors
form non-covalent bonds with the enzyme, which are weak and can be easily removed
by dilution or dialysis. Irreversible inhibitors form covalent bonds with the enzyme,
causing chemical changes to the enzyme active site. Some inhibitors are known as
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drugs or medicines, because are used in disease treatments [Restrepo O. and Zuluaga,
2011]. A very famous drug that have its mechanism of action by inhibition is penicillin.
Other ligands are known as poisons, because they inactivate irreversibly an enzyme,
even causing death. Arsenate is a potent poison that leads to death, because it disrupts
the production of ATP, which is the molecule that transports chemical energy where
it is necessary.

Figure 1.4: Enzyme inhibition. In a competitive inhibition, the substrate and the
inhibitor compete to bind the active site of the enzyme. If the substrate wins to bind
the enzyme, the reaction occurs normally. When the inhibitor wins the reaction is
blocked incapable of generating a product. Source: "Microbiology Fundamentals: A
Clinical Approach". McGraw-Hill Education. Cowan and Bunn [2015].

1.2.1.4 Interactions

Molecular interactions are essential for biological processes. Chemical bonds make pos-
sible molecular interactions and can be classified as strong or weak. The strong bonds
are known as covalent bonds and keep together atoms by sharing a pair of electrons be-
tween them. Single (i.e. σ and π), double and triple bonds are types of covalent bonds.
However, non-covalent bonds are the essential of life, because they are reversible. These
interactions are able to maintain the protein structure and to form protein complexes.
The three main types of non-covalent bonds, which create reversible interactions in
biomolecules, are electrostatic interactions (e.g. coulombic charge-charge), hydrogen
bonds and Van der Waals interactions (e.g. dipole-ion) [Stryer et al., 2013].
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1.2.1.5 Protein-Protein Interactions

Protein-protein interactions (PPI) have a vast area of application principally for drug
discovery, which include subareas as molecular docking, structure-based design, cluster-
ing of complexes, virtual screening of molecular fragments, small molecules and other
types of compounds [Medina-Franco et al., 2014].

Interactions driving the affinity of a pair of proteins are not distributed evenly
across their surfaces. Instead they are located in regions known as hot spots [Scott et al.,
2016]. These regions are composed by residues with high binding free energy, essential
for protein-protein binding. Frequent residues found in hot spots are tryptophan,
arginine and tyrosine. The "anchor residues" are tyrosine, phenylalanine, tryptophan
and leucine which are known as characteristic of small-molecule binding pockets in the
interface of protein-protein interactions [Medina-Franco et al., 2014].

There are experimental methods for detecting PPIs (as the described in Section C)
but bioinformatic approaches have been also used for the same purpose. The study of
PPIs became supported by the creation of several databases as SPRING [Szklarczyk
et al., 2011], TIMBAL [Higueruelo et al., 2009] and PICCOLO [Bickerton et al., 2011].

PPIs can be classified as obligate (strong and long lived) or non-obligate (weaker
and transient). Additionally, PPIs can be divided in four classes according their struc-
ture: pairs of globular proteins (Figure 1.5 a), interactions between a pair of globular
proteins in which one or both proteins undergo a substantial conformational change
on binding (Figure 1.5 b), PPIs involving a globular protein interacting with a single
peptide chain (Figure 1.5 c-d) and PPIs between two peptide chains (Figure 1.5 e).

1.2.1.6 Protein-Ligand Interactions

Almost all processes in living organisms involve protein-ligand interactions (PLI). These
interactions describe the relation between a particular protein and diverse ligands.
This relation is chemical and comprise biological recognition at the molecular level
(Figure 1.6). Proteins have specific sites designed to bind ligands depending on the
cell needs. The common weak bonding forces that create binding interactions are hy-
drophobic forces or charge dipole interactions. Studying structures of protein-ligand
complexes at atomic resolution make possible to conceive drugs for many disease treat-
ments [Dunn, 2001]. Most of the biochemical and pharmaceutical researches focus
on the equilibrium binding affinities in PLIs. The similarities between protein-ligand
binding and protein folding, allow to apply methods or principles that worked out in
one to another [Held et al., 2011].
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Figure 1.5: Structural classification of protein-protein interactions. In the
upper part of the figure, simplified illustrations are used to represent protein and/or
peptide partners, and in the lower part of the figure, example crystal structures for
each interaction type are shown. a | An interaction between two globular proteins with
preformed surfaces (PDB ID: 2CCY). b | An interaction between two globular proteins
with an induced binding surface (PDB ID: 1z92). c | An interaction of a rigid globular
protein with a peptide (PDB ID: 2DYH). d | An interaction of a flexible globular
protein with a peptide (PDB ID: 2XA0). e | An interaction of two peptides (PDB ID:
1NKP). Source: "Small molecules, big targets: drug discovery faces the protein-protein
interaction challenge". [Scott et al., 2016].

Bonds between proteins and ligands are discovered by biochemical and biophys-
ical assays1 which are labor-intensive. Recently, new PLIs have been discovered by
developing novel approaches as the affinity-based separation by affinity chromatogra-
phy [Liu et al., 2011]. However, it is becoming evident that the dynamical and kinetic
properties are crucial for the effectiveness of PLIs. The dynamical properties of binding
are inherently linked to structural aspects (such as the size, concentration, and spatial
distribution) of the binding partners, as well as their detailed atomic structures and
changes that occur therein [Held et al., 2011].

1.2.1.7 Sequence Alignment

Macro-molecule structure analysis involves several diverse topics as prediction of sec-
ondary structure of RNA and proteins, comparison of protein structures, protein struc-
ture classification and visualization of protein structures. Sequence alignment permits
comparison between biological sequences (DNA, RNA, protein). Analysis of the amino
acid sequences allow to identify changes in proteins, through time. Multiple sequence

1An assay is a biological experiment.
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Figure 1.6: Protein-ligand interaction of a compound (inhibitor) with the
enzyme CDK2. The enzyme is shown in gray and the inhibitor in yellow. The
exploded view show in red and orange residues from the enzyme and in cyan is a
motif. The water molecules are also shown as cyan spheres. PDB ID:3QQK. Source:
Schonbrunn et al. [2013].

alignment process takes three or more input sequences forcing them to have the same
length by inserting a gap symbol. Algorithms implementing this process are able to
identify similar regions in all sequences, defining a conserved consensus pattern. DALI
is a software tool for structural alignment and Clustal (with its different versions, as
V, X and omega) is a software tool for sequence alignment. Progressive alignment
[Hogeweg and Hesper, 1984] and iterative methods from PRRN/PRRP software pack-
age [Gotoh, 1996] are some of the most popular strategies for sequence alignment. An
example of sequence alignment is provided in Figure1.7.

1.2.1.8 Three-Dimensional Structure

Biological macro-molecules structure are obtained preeminently by X-ray crystallog-
raphy, NMR spectroscopy, or cryo-electron microscopy. The Protein Data Bank
(PDB) [Rose et al., 2015] is the main online public database 2 that storages three-
dimensional structural data, including proteins and nucleic acids, as DNA. There are
other databases that use structures deposited in the PDB, with specific purposes as
the classification by class, architecture, topology, and homology (CATH) database, the
structural classification of proteins (SCOP) database, Molecular Modeling Database
(MMDB), and Swiss-Model resource [Wang et al., 2005].

2 http://www.rcsb.org/pdb

http://www.rcsb.org/pdb
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Figure 1.7: Alignment of 27 avian influenza hemagglutinin protein sequences colored
by residue conservation (top) and residue properties (bottom). Alignment produced
with ClustalW software. Source: Wikipedia, "Sequence alignment", 5 June 2016.

Visualization of the 3D protein structures takes crystal structures, usually from
the PDB, showing details for every organization level of the protein (as the one in
Figure 1.8). This is crucial to scientists, because it allows them to understand how
protein interactions are formed in space. Cn3d, Rasmol and PyMOL are well-known
visualization tools for 3D protein structures [Wang et al., 2005].

1.2.1.9 Contacts

The files stored in the PDB contain the 3D conformation of proteins, which means they
include the atomic coordinates. However, PDB files do not include contacts formed by
the atoms. Contacts have diverse definitions depending on their applications. Accord-
ing to Sobolev et al. [1999b], two elements (e.g. amino acids, ligands) were postulated
as forming a contact if the closest distance between their atoms is below a certain
threshold. There are various approaches to calculate which atoms establish contact,
according to the distance between them 3, creating physicochemical interactions. Some
methods are based on contact surface area, as the one proposed by Sobolev et al., 1999b,

3Distance between protein atoms is measured in Angstroms Å.
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Figure 1.8: Crystal structure of Ricin A-chain in complex with the cyclic tetranucleotide
inhibitor, a transition state analogue. Source: PDB web site (http://www.rcsb.org),
PDB ID: 3HIO. 6 September 2016.

others propose algorithms as the based on Voronoi diagrams (polyhedra draws around
atoms and residues) [Poupon, 2004], Delaunay triangulation (a unique partition of 3D
space with non-overlapping tetrahedron) [Zhou and Yan, 2014] or both (see Figure 1.9).
Types of contacts are hydrogen bonds, hydrophobic-hydrophobic, aromatic-aromatic,
aromatic-polar, etc.

Figure 1.9: Delaunay triangulation, Voronoi diagram and the combination of both.
Source: Weisstein, Eric W. "Voronoi Diagram." From MathWorld–A Wolfram Web
Resource.

1.2.2 Mining Chemical Compounds

Mining frequent structural patterns is an important strategy to analyze and compre-
hend protein complexes or chemical compound structures (i.e. inhibitors). Chemical
compounds are groups of different atoms bound together adopting a well-defined geo-

http://www.rcsb.org/pdb/explore.do?structureId=3HIO
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metric configuration, as hexagons, pentagons, etc. (see Figure 1.10), allowing a graph-
ical representation which chemists are used to work with. There are many representa-
tions for chemical compounds. The most known and simplest is the molecular formula
[Wang et al., 2005]. For example, the molecular formula of caffeine is C8H10N4O2.

Figure 1.10: Graphical representation of the caffeine molecule. Source: Wikipedia.
"Caffeine". June 27 2016.

The chemical 3D structure determinates the compound activity and can be nat-
urally represented as a graph. In the atomic level, a compound can be viewed as a
graph where vertices are the atoms and the edges are the bonds between the atoms.
Also, this representation is refered as topological graph.

Drug discovery is an area related to bioinformatics, which involves searching lig-
ands that act as inhibitors and then modifying or designing them in order to bind
protein targets. The search that leads to drug discovery requires study of ligand-target
interaction, which is a traditional domain of medicinal chemistry and computational
chemists [MacCuish and MacCuish, 2010]. Protein kinases are the second most impor-
tant group of drug targets, because their abnormal activity causes nearly 400 human
diseases, such as cancer, diabetes and asthma [Chen et al., 2015]. The cyclin-dependent
kinases (CDK) are protein complexes regulators of the cell cycle progression, composed
by two subunits: the regulatory (cyclin) and the catalytic (kinase). CDK2 is an enzyme
(belongs to the CDKs family) that controls the transition of some cell mitosis phases
(from G1 to S) [Shapiro, 2006]. It has been demonstrated by Akli et al., 2011, that the
cyclin E binding to the CDK2 is directly related with the formation of breast cancer.

Computational techniques have been used to identify chemical compounds. How-
ever, the classical machine learning approaches can not handle the natural structure
of chemical compounds, creating an accurate or representative model of them. Thus,
new computational techniques were developed with this objective. One of the first
techniques developed builds a classification model based on physicochemical properties
usually derivated from the compounds structure, known as quantitative-activity re-
lantionships (QSAR). The second and actually most successful technique attempts to
identify a small number of substructures in the chemical compound representing them
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as graphs, applying frequent subgraph mining (FSM). In this last approach there are
two manners to identify these substructures [Wang et al., 2005]. The first one is through
apriori candidate generation as the frequent subgraph discovery algorithm proposed by
Kuramochi and Karypis, 2004. The second one is by growing frequent substructure
patterns and pruning those that are non-frequent based on a threshold (support) value,
as the gSpan algorithm [Yan and Han, 2002]. Computational techniques avoid man-
ual comparisons among all compounds, which is a time-consuming task and requires a
huge specific knowledge. Finding frequent patterns applying FSM algorithms can be
easier in data which naturally are able to be represented as a graph or graphs, as it is
the case of chemical compounds. In the next section, detailed descriptions about FSM
algorithms are presented.

1.3 Related Work

Protein-ligand Interactions (PLI) have been recently studied using diverse approaches,
here are mentioned four of them. Biochemistry is the first approach, which studies PLIs
doing laboratory experiments (assays). Computer science offers a huge variety of tech-
niques and methods, which sometimes reduces the search space and/or time applying
algorithms or simulations (i.e. Monte Carlo). In other cases, computer science con-
tributes to improve a characterization or model, using the knowledge of emerging areas.
This work focus barely on two contrasting approaches of the computer science. Net-
work Science [Barabási, 2016], the second approach, also known as Complex Network
Theory, emerged in 2000, allowing to see the data as a system and deduce non-trivial
behaviors. Graph Mining [Zaki and Wagner Meira, 2014] the third approach, arises
for the need to extract relevant information (e.g. FSM algorithms) in data, which can
be modeled using graphs, such as PPI and PLI. Data Visualization, the fourth and
last approach is fundamental for biological sciences, such as in biochemistry where it is
mainly used for 2D or 3D molecular structure representations. In this Thesis, we pro-
pose an interdisciplinary model based on these four approaches to represent PLIs and
find biological patterns. Next, we present the most prominent works of biochemistry,
network science, graph mining and data visualization related to our research topic.

1.3.1 Biochemistry

There are a huge amount of biochemical studies that aim to generate inhibitors or try
to understand the inhibition process for a determinate protein. We relate two main
papers as basis for our biological analysis, for the two datasets (Section 3.2) used in
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this work: CDK2 and Ricin. These two proteins dissimilar between them (first one is
from humans, second one is from plants), were useful as case studies for this work and
both represent actually interesting research targets. CDK2 is related to the formation
of breast cancer [Akli et al., 2011] and a promising target for the development of
nonhormonal male contraceptives [Schonbrunn et al., 2013]. On the other hand, Ricin
is a toxic protein, classified as a category B bioterrorism agent, which has been used in
clinical trials to kill leukemia and lymphoma cells, but it is limited by its side effects
[Ho et al., 2009].

Schonbrunn et al. [2013] developed highly potent diaminothiazole inhibitors of
the protein family Cyclin-Dependent Kinases (CDKs), with preference for the CDK2
and CDK5. They describe all the chemical processes for the compound development,
the experiments, the chemical composition and, most important of all, their mechanism
of action.

The main topic in the work of Ho et al. [2009] is the transition state analogue
inhibitors in two homologous structures: Ricin A-chain(RTA) and Saporin-L1 (SAP).
They studied structural similarities (30% identity) and differences (in the N-terminal
region) between these two proteins, with the goal to establish the catalytic site features.
They found that the inhibitor-binding modes, in both proteins, are reversed and these
proteins have an active site composed by two tyrosines and one arginine, to form
a polarized quadruple π-stack. Additionally, both papers include 2D maps and 3D
visualizations of the structure of these proteins and their inhibitors.

1.3.2 Network Science

Several biochemistry studies begin to use Network Science. Taylor [2013] did an in-
teresting survey, with synopsis of many articles that study protein structures applying
network strategies. Several types of networks are described modeling molecular struc-
ture data. Also, the author brings attention to the network descriptors and the fact
that the network approach can be incorporated into computational methods.

Kuhn et al. [2011] capture local cooperativity in protein-ligand interactions using
interaction networks. They modeled the network constructing a set of noncovalent
contacts, three training sets with the same quality criteria.A fourth training set4 with
compounds in which a small change in the ligand causes a drastic change in binding
affinity. They also define network descriptors and develop ScorpionScore, a scoring
function to predict binding affinity in these four datasets. Their results were promising,

4This dataset also includes no public information from the company Roche: 93 protein complexes.
The reason related by the authors is a well-known problem in molecular interactions: There was no
data with samples of unfavorable interactions.
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even when they highlight some problems as absence of a good training set and inability
of the model to capture long-range cooperativity effects. Besides, they emphasize
interest to apply the network approach in other protein families, as kinases.

The work of Liu and Hu [2011] focuses on Heme proteins, which are a group of
proteins characterized for containing an iron-porphyrin complex and are essential for
the survival of organisms. Liu et al. model the network with residues as nodes and the
contacts between them as edges. They aim to identify the binding residues through
their topological characteristics. The predictor of key residues was done using support
vector machines (SVM). They concluded that residues with high centrality values are
more likely to be involved in the binding.

Cheng et al. [2012] construct a network of drug-target interactions (DTI), as a
bipartite graph, where one node set represents drugs and the second node set represents
targets (i.e. proteins, enzymes, hormones, ligands, etc.). They take data from several
databases, as the Drugbank [Wishart et al., 2006], and develop inference methods
based on the interaction network, which allows them to predict new DTI. They did
experimental validation and found that five old drugs, indeed, are able to inhibit several
targets.

Network science is continually evolving and it is important to highlight three
articles that collaborate to it. Latapy et al. [2008] propose new network metrics for
bipartite networks, demonstrating the inconveniences of analyzing these networks by
their projections. They develop a new definition of clustering coefficient and propose
a new coefficient, called redundancy, which focuses on neighborhood overlapping in
nodes. They call attention to maintain the nature of the network, as in bipartite
networks, which allows to obtain more precise information.

Estrada has several works related to networks. Here, we briefly comment on two
of them. The first one [Estrada and Rodríguez-Velázquez, 2005] analyses several com-
plex networks, as yeast protein-protein interactions (PPI). The second one [Estrada and
Hatano, 2008] develop a new manner to calculate communicability (Section 2.1.2.6),
using the graph spectral theory. It permits calculations based on eigenvalues and eigen-
vectors from the adjacency matrix of the network. This method is the implementation
done for communicability in the networkx library [Hagberg et al., 2008].

These network studies show the applicability of networks in biochemistry and
guided us to model PLIs as an interaction network, which is the basis of the proposal
model.
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1.3.3 Graph Mining

Graph mining is an important field within data mining. The goal of graph mining
is to identify frequent subgraphs in graph datasets. The survey done by Jiang et al.
[2013] presents main definitions for frequent subgraph mining (FSM) and its most
popular and used algorithms. They separately discuss frequent subgraph (FGM) and
frequent subtree mining (FTM). The FTM algorithms applied to chemical compound
analysis are FreeTreeMiner [Chi et al., 2003] , FTMiner [Rückert and Kramer, 2004],
F3TM [Zhao and Yu, 2008], CFFTree [Zhao and Yu, 2007] and HybridTreeMiner [Chi
et al., 2004]. A huge number of FGM algorithms use a expansion technique, such
as VSIGRAM and HISGRAM [Kuramochi and Karypis, 2005], gSpan [Yan and Han,
2002] (restrictive extension), CloseGraph [Yan and Han, 2003] and CloseCut-Splat [Yan
et al., 2005]. There are some FGM algorithms as SPIN, developed by Huan et al. [2004],
which only mines maximal frequent subgraphs.

A noteworthy algorithm for frequent subgraph mining is gSpan, the most cited
FSM algorithm according to Jiang et al. [2013], considered as the state-of-art as it has
successfully applied in many different graph data, using an efficient candidate gener-
ation based on a lexicographic order. gSpan experiments performed by Yan and Han
[2002] used a chemical compound dataset (DTP Antiviral Screen), however they do not
conclude anything about the semantic of the patterns found. They focus on the general
efficiency of the algorithm as the runtime data and the low memory consumption. As
gSpan became reference for FSM algorithms, many articles (as the mentioned above)
used this same chemical dataset to compare proposed algorithms to gSpan, also consid-
ering complexity, runtime and memory consumption, without discussing the semantic
of computed patterns.

There are approximately 2n frequent subgraphs in a n-edge labeled graph G.
Mining complete subpatterns in G, which represents a molecule structure, generates
subgraphs predominantly with redundant information when they share the same sup-
port. This means that exploring all the possibles subpatterns in G have exponential
space and time complexity. gSpan reduces both complexities by using a lexicographic
order avoiding the generation of all candidates and pruning false positives. However,
it still generates recurring patterns. Using the mining frequent itemsets approach offer
advantages in large graph datasets, reducing the number of mined subgraphs and con-
sequently reducing the execution time. A frequent pattern I is closed if there exists
no proper super-pattern of I with the same support. CloseGraph mines only closed
frequent graph patterns and it was proposed by the same authors of gSpan. A frequent
pattern I is maximal if none of its supersets are frequent. SPIN is a mining algorithm
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which finds maximal frequent subgraphs.
Graph mining algorithms designed specifically for biological or chemical data

are few, because of the complexity to do a generalization in this context. Hu et al.
[2005] propose an scalable algorithm called CODENSE, for pattern mining in biological
networks (e.g. protein-protein interaction, genetic regulatory and co-expression), which
is able to mine coherent dense subgraphs and identifies modules, useful for biological
applications (to discover unrelated genes). An optimization for gSpan is proposed by
Jahn and Kramer [2005] for molecular datasets, reducing the number of subgraphs
isomorphisms, taking advantage of the symmetries inherent in molecules. They did
tests in the DTP Antiviral Screen (October 99 release) dataset and in the Predictive
Toxicology Evaluation Challenge (PTE) dataset (also used by Kuramochi 2001). The
symmetries enhance the performance just for the first one dataset.

Vanetik [2010] propose mining graphs with constraints on symmetry and diameter
based on tree decomposition. The evaluation was done using two types of datasets. The
first two sets with molecular data from the PTE and the DTP Antiviral Screen. The
other two sets were synthetic graphs generated using the VFLib library. The results
showed that the algorithm using constrains saves approximately 2 orders of magnitude
for a support value less than 10%.

Silveira et al. [2015] proposed a model to represent PLI networks that used gSpan
to find frequent subgraphs in an attempt to find patterns in PLIs. This proposal was
tested in two datasets, CDK2 and Ricin. gSpan generated for both datasets a large
amount of very small frequent subgraphs (with one or two edges), making it difficult
to discover relevant patterns that can help in ligand binding comprehension.

The above mentioned works showed several and diverse limitations when they
model biological data. When graph mining algorithms are used it is necessary to
apply an isomorphism algorithm, which is computationally expensive, to be able to
analyze the patterns/subgraphs found. Additionally, these patterns do not include
biological features, because almost all graph mining algorithms do not allow it. Mining
closed or maximal subgraphs could be a solution but remains the problem of pattern
reconstruction to be able to analyze its biological meaning. However, as gSpan is the
most common used FSM algorithm it was chosen to compare the patterns found by
the proposal model (Chapter 4).

1.3.4 Data Visualization

Data Visualization is an interdisciplinary emerging area, which comprises the creation
and study of visual representation of data. It aims at finding the most effective way to
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communicate discoveries found in a dataset. Also, it allows to identify hidden trends,
behaviors and anomalies. There are two main classes of visualizations. The first one
is data visualization and techniques that offers guidance to create 2D and 3D easily
interpretative graphics to obtain knowledge and insights into the dataset analyzed.
The second one is visual data mining tools and techniques that gives the foundations
to create visualizations of data mining models and the patterns identified by the data
mining algorithms [Soukup and Davidson, 2002].

Several factors drive the need for visual data in the biological domain. First,
the huge complexity, diversity and size of biological databases. A clear example is
the exponential growth of the PDB since 1990, which actually has 120.057 molecular
structures and 21.224 ligands deposited5. Second, the data produced by biotechnology
as DNA microarrays which are 2D arrays on a solid substrate (lab-on-a-chip) that
permits experiments with a large amount of biological material using HTS. Third, a
colossal increase in the demand for bioinformatic services, principally to process huge
data, as genomes. Finally, the integration of multiple biological data resources requires
powerful visualization tools (Figure 1.11) allowing to extract knowledge as patterns
and tendencies in complex biological systems [Wang et al., 2005]. Biological networks
(i.e. metabolic and genetic) are another example of data that needs to be represented
with powerful graphics that allow a better understanding and analysis of them.

There are several visualization tools and software developed specifically for
protein-ligand interactions (PLI). One of the most used tools is LigPlot+ [Laskowski
and Swindells, 2011], which generates interactive 2D protein-ligand interaction dia-
grams allowing overlaid them when they have a certain degree of similarity, which is
done by the sequence alignment algorithm of Needleman and Wunsch [1970]. Also, it
highlights conserved interactions involving protein residues that are in equivalent 3D
positions when the two structural models are superposed and show the 3D representa-
tion of such diagram in molecular viewers.

PoseView [Stierand and Rarey, 2010] is a software6 that automatically generates
structure diagrams of molecular complexes (containing the amino acids and the inter-
acting ligand). It calculates a collision-free layout that provides information about the
interacting pattern modeling amino acids as rigid structures and ligands can be mod-
ified in order to allow an intersection-free arrangement of interaction lines. This tool
receives as input data from the PDB and docking results generated by FlexX [Rarey
et al., 1999], which calculates the position of absent hydrogen atoms. After that it gen-
erates the pose diagram, showing only the amino acids that interact with the ligand

5Number of macromolecular structures at June 30 2016. Site web: http://www.rcsb.org/pdb/
6Available online at: http://poseview.zbh.uni-hamburg.de/

http://www.rcsb.org/pdb/results/results.do?qrid=C8B05A70&tabtoshow=Current
http://poseview.zbh.uni-hamburg.de/
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and have an energy contribution of at least 33% (of the maximal energy possible for
the interaction type).

LigDig [Fuller et al., 2015] is a web server 7 that links diverse data sources 8

allowing basic manipulations and analyses of protein-ligand complexes. Seven tools
compose LigDig, each one can be used separately: (i) text compound search, (ii) query
interaction network based on a search for suitable ligands (inhibitors) of a protein, (iii)
search for the likely function of a ligand, (iv) batch search for compound identifiers, (v)
find structures of protein ligand complexes, (vi) comparison of 3D structures of ligand
binding sites and (vii) process coordinate files of protein-ligand complexes for further
calculations. Despite LigDig offers diverse services, it has the disadvantage that reusing
software do not allow a complete control of the output. Specifically, visualizations of
huge interaction networks are drawn with their nodes, edges and its respective labels
superposed, creating images where it is not possible to distinguish them clearly.

PLIP [Salentin et al., 2015] is a web service9 for fully automated detection and
visualization of non-covalent protein-ligand contacts in 3D structure. The input can
be 3D structure files or PDB files. The output of PLIP are 2D and 3D interaction
diagrams and a table with the interaction binding site details.

Initially it was not intended to create visualizations of the proposal model or the
patterns found. However, it emerged as an imperative need in the analysis stage of
this work. Despite that 3D plots of molecular structures are highly used, 2D plots of
PLIs are more useful when the atomic contacts are analyzed. The model proposal is
graph-based which allow to create 2D representations of the PLIs. Though these 2D
visualizations are different from those generated by all the software tools described in
this section and consequently they are not comparable. The proposal model trans-
form the input graphs into other comprised graphs with the aim to facilitate find PLI
patterns. This whole process is described in Chapter 3.

1.4 Justification

The four areas mentioned previously offer different approaches to find patterns in PLI
networks, as tools and / or algorithms with some limitations. The FSM algorithms, the
2D or 3D visualizations tools for PLI and the network models for PLIs are examples
of these approaches.

7Available online at: http://mcm.h-its.org/ligdig
8 Including the databases: ChEMBL, PubChem, and the software programs: cytoscape.js,

PDB2PQR, ProBis and Fconv.
9 https://projects.biotec.tu-dresden.de/plip-web/

http://mcm.h-its.org/ligdig
https://projects.biotec.tu-dresden.de/plip-web/plip/index
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Figure 1.11: Graphical user interface of the PDB web site. Its showing a CDK2 with
the identifier 3QL8, which corresponds to a protein complex of the CDK family. On
the left side is a 3D visualization of the protein structure. Source: PDB web site. June
30 2016.

The FSM algorithms have several limitations when are applied to biological
datasets. The original input data need to be transformed in order to fit the specific
model of the FSM algorithm and be able to run it. This implies that the output of the
FSM algorithm, which are the patterns found also need to be transformed, returning
to the original data domain. The transformation can be defined as a function, which
maps from the original domain X to a domain Y , preserving as much as possible the
nature of the data. However, the output needs a second transformation to be able to
analyze the patterns. This second transformation corresponds to an isomorphism algo-
rithm to identify which graph contents the pattern in the original input. Unfortunately,
isomorphism graph detection is computationally expensive, non solvable in polynomial
time. On the other hand, subgraph isomorphism is NP-complete [Garey and Johnson,
1979]. The first transformation function is restricted by the graph definition of the
FSM algorithm. For example, gSpan allows as input undirected graphs with vertices
and edges represented by sequential numbers, admitting one attribute per vertex and
edge. The molecule data (e.g. PLI and PPI) does not depend barely on its topology,
it is complex and involves other factors as the atom types (defined by experimental
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observations), physicochemical properties of the interactions, the Van der Waals effect
(attraction between long-range interactions), etc.. Execution time for FSM algorithms
applied in biological datasets, usually takes a huge amount of time, because the ma-
jority of them are large. Moreover, it is necessary to run the FSM algorithm several
times with different support values in order to find interesting patterns according to
the biological context.

The network approach allows to model PLI as interaction networks providing
global and local metrics to analyze them. Nevertheless, it is not the focus of this area
to identify patterns, it aims to find the tendencies followed by a network which are
grouped in three main models (Random, Small-World and Free-scale). The majority
of biological network studies need to cross references with another databases to obtain
interesting inferences and many of these studies are for specific datasets. However, it
seems very promising because molecular data can be easily modeled as graphs.

Specific software is continually developed according to biochemists or molecular
biologists needs. Many of these software tools require deep biochemistry knowledge
to manage them and analyze its results. Visualizations are crucial to analyze and
understand the behavior of macromolecules, almost all biochemistry studies includes
at least one 2D or 3D visualization as its first approach [O’Donoghue et al., 2003].
Visualization tools, as those mentioned in Section 1.3.1 (i.e. LigPlot+), create useful
and powerful graphics but for a limited number of PLIs. This restriction is due to the
complexity of the calculations for 3D structural superposition, which is time-consuming
[Gallina et al., 2013].

Thus, we decide to combine all these mentioned approaches, eliminating the ma-
jority of their limitations, proposing an interdisciplinary strategy to model and find
patterns in PLI: CALI (Complex network-based Analysis of protein-Ligand Interac-
tions). This strategy allows us to generate a simple graph-based model represented
by a 2D visualization easy to interpret, with the graph components comprising the
interaction patterns, which do not require an extensive biochemistry knowledge.

The CALI model is based on compression of the PLI data, with two graphs G′

and G”. The first one allow us to see how the patterns (frequent and non-frequent) are
distributed. The second one is created after applying a merge algorithm, presenting
patterns in a more compact view, by grouping edges and nodes according to biological
features. We choose two biological datasets for test: CDK2 (Section 3.2.1) and Ricins
(Section 3.2.2). This new model does not require running data mining algorithms to
find the most common PLIs, because it uses network topological properties (particularly
centralities) coupled with a powerful visual and interactive data representation.
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1.5 Objectives

1.5.1 General Objective

The objective of this Master Thesis is to identify relevant biological patterns in inter-
action networks of protein-ligand complexes using a visual and graph-based strategy.

1.5.2 Specific Objectives

The following objectives have been set to fulfill this main goal:

• To propose a graph-based model for protein-ligand interactions (PLI) that allows
to identify relevant biological patterns.

• To characterize and analyze the PLI network with different ligands using local and
global descriptors from network science (degree, shortest path, node centralities,
edge centralities, and so on).

• To propose and implement a strategy to group common protein-ligand interac-
tions based on their physicochemical properties and their atom types, allowing
to identify relevant biological patterns in a PLI network.

• To develop a visual strategy to identify relevant biological patterns in a PLI
network.

• To evaluate and compare the proposed methodology (the graph model, the al-
gorithm to group common interactions and the visual strategy) results with the
state of the art graph mining algorithm.

• To analyze the results and identify its biological meaning.

1.6 Contributions

The contributions of this Master Thesis are:

• A graph-based visual model for representing protein-ligand interactions (PLI).

• A strategy for visual-pattern discovery in protein-ligand interaction networks.

• A strategy that groups common interactions based on their physicochemical prop-
erties and their atom types, from the PLI dataset.
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• A prototype tool for 2D visualization of protein-ligand interaction.

• Information about relevant biological patterns and its localization in the protein-
ligand interaction dataset.

1.7 Organization of the Document

This Master’s Thesis has 5 chapters. Chapter 1 is the introduction, including a bio-
logical background and related works for biochemistry, network science, graph mining
and data visualization. Chapter 2 describes and explains the main concepts of net-
work science, as global properties and metrics. The last section of the Chapter 2 is
dedicated to describe well-known biological networks. Chapter 3 explains the proposed
model, which we named CALI. Also, we formalize the PLI graph model and the pat-
tern definition. Furthermore, the datasets used in this study are described. Chapter 4
shows the results of the Thesis, divided in three sections. In the first section is done
a network analysis according to the metrics and properties calculated. This analysis
is complemented by visualizations of the PLI graphs. The second section makes a
comparison of the patterns found by CALI with the patterns found by the frequent
subgraph mining paradigm. In the third section are discussed the patterns found by
CALI with those found in experimental papers, which used the same datasets. Finally,
Chapter 5 presents the conclusions of this work.





Chapter 2

Complex Networks

A network, also called a graph in the mathematical literature, is a collection of vertices
joined by edges. According to Diestel [2000], a graph is a pair G = (V,E) of sets such
that E ⊆ [V ]2. Thus the elements of E are 2-element subsets of V . The elements
of V are the vertices of the graph G and the elements of E are its edges. To avoid
notational ambiguities, we assume that V ∩ E = ∅. In diverse areas such as physics,
sociology, chemistry and biology, many interactions can be understood as networks
[Newman, 2010]. Complex networks is a term relatively new, used to describe real
dynamic complex networks with a particular topology and with non-trivial properties
[Boccaletti et al., 2006].

In this chapter, we present and define network properties (Section 2.1), includ-
ing global properties (Section 2.1.1) and some of the principal metrics (Section 2.1.2)
which are the basis to characterize networks through models. In addition, we describe
bipartite graphs (Section 2.2) and biological networks (Section 2.3), which are concepts
important to understand the proposed model for protein-ligand interactions (Section
1.2.1.6).

2.1 Network Properties

Complex networks usually represent dynamical systems through graphs. A huge num-
ber of the network elements interact nonlinearly, bringing emergent properties. The
characterization and analysis of graphs representing networks is vital to understand
the system behavior. Network properties allow to characterize and, in some cases, to
predict the system behavior. Understanding the collective behavior of different levels
of biological organization (cells, tissues and organisms) in terms of their component
properties is one of the most important challenges in biological sciences [Junker and

27
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Schreiber, 2008]. This section describes diverse measures and network topology char-
acteristics, frequently used in complex network analysis.

2.1.1 Global Properties

The global properties of a network allow us to understand the topology and the internal
structure, which makes possible to fit the network into a well-known model (Random,
Small-World and Scale-free).

2.1.1.1 Distance

The distance dij between two vertices in the network is the minimal number of edges
that need to be traversed from the initial vertex (vi) to the final vertex (vj). This
definition is most common known as the shortest path. For example, in Figure 2.1, the
distance between vertices A and F is 5, because there are 5 edges connecting them.
However, A is directly connected with B, which means a distance 1. All distances for
every pair of vertices are in Table 2.1.

Table 2.1: Matrix of distances for graph in Figure 2.1

A 0
B 1 0
C 2 1 0
D 3 2 1 0
E 4 3 2 1 0
F 5 4 3 2 1 0
G 5 4 3 2 1 2 0

A B C D E F G

Figure 2.1: Example of a graph. This graph corresponds to one of the components
of the CDK2 PLI (protein-ligand interaction) network. These nodes represent protein
atoms: A is GLN131:O, C is ASN132:OD1 and E is ASP145:OD1. The nodes B, D,
F and G represent atoms from different ligands.
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2.1.1.2 Diameter

The diameter is defined as the maximal distance of any pair of vertices of a graph.
Another definition for diameter is the maximum eccentricity (this metric is explained
in Section 2.1.2.5).

dm = max(dij) (2.1)

For the graph in Figure 2.1 the diameter is 5, because it is the longest distance between
the vertices (A-F and A-G).

2.1.1.3 Average Path Length

The average path length of a network is defined as the average distance of all pairs
of vertices in G. It is also called average shortest path length and characteristic path
length. The well-known algorithms to calculate shortest paths are the Dijkstra and
Floyd-Warshall [Bang-Jensen and Gutin, 2007]. For the graph in Figure 2.1 L = 1.19,
according to Equation 2.2. This value is the sum of all distances for every pair of
vertices in the graph (see Table 2.1), multiplied by the fraction of Nv − 1 times the
number of vertices ( Nv).

L =
1

Nv(Nv − 1)

∑
i,j∈N,i 6=j

dij (2.2)

2.1.1.4 The Degree Distribution

This is one of the most important properties because defines the network structure,
which means the frequency distribution of vertex degrees. The degree of a vertex vi
is the number edges adjacent to it. The degree distribution represented by pk can be
defined as the fraction of vertices in a network that have degree k [Newman, 2010].
The degree distribution can also be seen as the probability pk that the degree of a
randomly chosen vertex in the network equals k. The distribution degree is commonly
analyzed making a plot (see Figure 2.2) of the values as a function of k, specially
when the network is large. Many empirical networks, such as social networks, have a
peculiarity related with their distribution pk: follow a power law. These networks have
the majority of their vertices with low degree, meanwhile a small number of vertices
are highly connected, conforming hubs(Figure 2.3).
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Figure 2.2: Degree distribution (pk) for a network with 100.000 vertices generated by
the scale-free model. k represents the degree values of the network vertices. This plot
shows the pk linearly-binned (purple) and log-binned (green). The log bins (green)
allow to identify easily the scale-free behavior, because the bins tend to form a straight
line. Source: Network Science. Barabasi. May 2016.

Figure 2.3: Component of the CDK2 PLI (protein-ligand interaction) network. The
graph representing this component is also known as star graph or hub. The central
node is representing an atom of the CDK2 protein complex, which is an oxygen of the
glutamic acid (GLU) in the position 81, summarized as GLU81:O.

2.1.1.5 Power Laws

There are degree distributions that follow the form described in Equations 2.3 and 2.4.
The variation occurs as power of k, hence these distributions receive the name of power
laws. The power-law degree distributions happen in non-homogeneous networks and
follow a straight line when they are plotted in a logarithmic scale. The logarithm of
the degree distribution pk is a linear function of degree k [Newman, 2010].

ln pk = −α ln k + c (2.3)

Taking the exponential of both sizes:

pk = Ck−α (2.4)
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The majority of real networks, as social networks, have their exponents varying in
the range 2 < α < 3. Values outside this range are possible but observed occasionally.

A true power-law distribution is monotonically decreasing over its entire range
(Figure 2.4). However, for small values of k, the degree distribution presents fluctu-
ations from the expected behavior of a power-law. Additionally, it is very common
that the power-law is only followed in the tail of the distribution, where values of k are
higher.

Figure 2.4: Power law distributions with different values for the exponent (γ). The plot
at right is in linear scale and the plot at left is in logarithmic scale. Source: Network
Science. Barabasi. May 2016.

2.1.1.6 Clustering Coefficient

The clustering coefficient measures the probability that two vertices with a common
neighbor have an edge between them. This property is related to the local cohesiveness
and transitivity of a network, helping to understand the internal structure [Junker and
Schreiber, 2008]. A simple definition of the clustering coefficient of a vertex i is given
by:

Ci =
Ei
Emax

(2.5)

where Ei is the number of edges between vi neighbors and Emax is the number of all
possible edges between vi neighbors. Emax can be defined in terms of the number of
neighbors (ki) of vi:

Ci =
Ei

1
2
(ki(ki − 1))

(2.6)

Ci is known as the local clustering coefficient for a single vertex (Figure 2.5).
Another way to calculate local clustering coefficient is by counting the number

of triangles, but it does not make sense for bipartite networks (it is impossible to have
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Figure 2.5: Clustering coefficient for the central node of three graphs. Source: Network
Science. Barabasi. May 2016.

triangles on them) and it is not described here, because we represented protein-ligand
interactions as a bipartite network.

The global clustering coefficient C of the whole network is the average cluster co-
efficient of all vertices. A network with a high value for C indicates a local cohesiveness
and a disposition to form groups.

2.1.2 Centrality Metrics

Centrality metrics are measures that aim to characterize networks by characterizing
edges and vertices with respect to their position inside the network. The centrality of
a graph G, is a function that assigns a numerical value to each vertex of G. These
numerical values are useful to create vertex rankings depending on the computing
concepts used to calculate the centralities. Also, it permits pairwise vertex comparison
by comparing their values. A vertex is more important or central than another if the
centrality value of the first one is greater than the second one [Junker and Schreiber,
2008]. When network analysis is done by using centralities, it is important to consider
that comparison among centrality values is only allowed inside the same network and
some measures can only be calculated in connected networks. The majority of the
centralities explained here are based on the concept of shortest path (Section 2.1.1.3).
The shortest path of a graph is the minimum distance between a pair of nodes i and j.
Besides, it is very common to represent the edges between nodes with a matrix. The
adjacency matrix of a graph G has size n x n, where n is the number of nodes, and
the position aij is filled with 1 if the vertices i and j are linked, otherwise it is filled
with 0. In the next subsections we present the centralities most used in literature and
applied to this work.
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2.1.2.1 Degree

The simplest centrality metric is the degree of a node, which is the number of edges
connected to it. [Newman, 2010]. This metric is equivalent to the number of neighbors
of the node. For example, in the Figure 2.6 the degree of the central node is 14, which
means that this node is central and important (connecting all other nodes), because
without it the network would not exist.

Figure 2.6: Hub corresponding to one of the components of the CDK2 PLI (protein-
ligand interaction) network. The central node of the hub (dark gray) has degree 14,
meaning that it is linked to 14 nodes that represent ligand atoms (light gray). This
node represents a nitrogen (NZ) atom, part of a lysine (LYS) residue, which is in the
sequence position 33. Briefly, this is resumed in LYS33:NZ.

2.1.2.2 Node Betweenness

The node betweenness centrality measures the extent to which a node lies on paths
between other nodes. This metric allows to identify important nodes with low degree,
which also work as a bridge, joining two or more groups. The betweenness centrality
of a node i is the number of all shortest paths in the graph that pass through i:

xi =
∑
st

nist (2.7)

s and t are nodes of the graph and if there is no path between them nist is
zero. In the Figure 2.6 the node betweenness is 1 for the dark grey node, because all
paths pass through it, making it the most central node. A high betwenenness as 1
(in a normalized scale) is considered high and identifies the most central nodes of the
network. On the other hand, a low value for betweenness, near to zero, implies that the
vertex do not concentrate a high number of paths, making it less important principally
for communication goals.
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2.1.2.3 Edge Betweenness

This metric shares the betweenness concept with Section 2.1.2.2, it measures the extent
to which an edge lies on paths between nodes. It can be defined as the number of
shortest paths between pairs of nodes that pass through the measured edge [Bang-
Jensen and Gutin, 2007]. Edge betweenness allow to identify the most important pairs
of vertices communicating essential parts of the network. In the Figure 2.6, all edges
have the same value of betweenness, because every edge is in just one shortest path.
Besides, in Figure 2.1 the edges C-D and D-E have the highest betweenness (0.55)
because several paths pass through them.

2.1.2.4 Closeness

Measures the mean distance from one node to other nodes. Suppose di,j is the length
of a shortest path between nodes i and j, then the mean shortest path distance from
i to j, averaged over all vertices j in the network is, according to Newman [2010]:

li =
1

n

∑
j

dij (2.8)

The mean distance li is not considered a measure of centrality as the measures
discussed above because it gives low values for more central nodes and high values for
less central ones. To circumvent this problem, researchers from social networks com-
munity calculate the inverse of li, which is called closeness centrality Ci. In Figure 2.6,
the closeness for the central node is 1 (normalized scale), because it is the only node
connected to the rest of nodes and also, it is the nearest to all of them. Additionally,
these nodes have all the same value for closeness (0.5).

2.1.2.5 Eccentricity

Eccentricity is the maximum distance between a node s and any reachable node t
(the opposite definition for closeness) of the graph [Junker and Schreiber, 2008]. The
distance between two nodes that are not connected is defined as infinite. In this case,
eccentricity can be calculated for the graph connected components. This metric allow
us to identify the most far vertices of a network. The eccentricity centrality for s is
defined by the formula:

ecc(s) =
1

max{dist(s, t) : t ∈ V }
(2.9)
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If an eccentricity value is high, it implies that the vertex needs a long path to
reach the most distant vertex from it. For example in Figure 2.1 the eccentricity for
nodes A, F and G is 5. Meanwhile, for nodes B and E is 4 and for nodes C and D is
3.

2.1.2.6 Communicability

The network communicability is the sum of closed walks of all lengths starting at a
node s and ending at a node t. Using the graph spectrum notation in the generalization
proposed by [Estrada and Hatano, 2008], where φj(s) is the s th element of the j th
orthonormal eigenvector of the adjacency matrix associated with the eigenvalue λj ,
the communicability between the nodes s and t is given by:

c(s, t) =
n∑
j=1

φj(s)φj(t)e
λj (2.10)

The communicability function express how the propagation from one node to an-
other occurs. This extension of the communicability definition done by Estrada and
Hatano [2008] permits to obtain global and local information about the network struc-
tures. This metric also allows to identify communities as sets of nodes displaying large
internal communicability. A community characterize a group of nodes that communi-
cate better among them than with the rest of the network nodes. Metrics only based
in shortest paths are not very perceptive with structural bottlenecks in the network.

Largest values for communicability usually take place among nodes with high
degree and low communicability occurs between nodes with low degree. For example,
in Figure 2.1 the node E has the highest communicability centrality (2.95), this node
also has the highest degree (3). The lowest value for communicability is 1.6 for node
A, which has the lowest degree (1).

2.2 Bipartite Networks

A graph G = (V,E), where V is the vertex set and E is the edge set is known as a
bipartite graph or bigraph if there is a partition in V = S ∪ T , such that every edge in
E has one end-vertex in S and one end-vertex in T [Junker and Schreiber, 2008]. This
kind of graphs are commonly used to represent entities and the groups they belong,
which are connected by edges representing interactions between them [Newman, 2010].
In network theory literature, bipartite networks, affiliation networks and two-mode
networks [Latapy et al., 2008] are all referencing the same type of network, representing



36 Chapter 2. Complex Networks

it with a bipartite graph and they are usually found in the context of membership of
groups.

There are two types of vertices (S and T ) in bipartite networks, which constitute
two disjoint vertex sets that do not establish edges between the same set (Figure 2.7).
The adjacency matrix for the graphs representing this kind of networks is called inci-
dence matrix. Being n the number of vertices in one group and g the number of vertices
in the other group, the incidence matrix B has a size g × n:

Bij =

1 if vertex j belongs to group i

0 otherwise
(2.11)

Figure 2.7: Graph representing an affiliation or bipartite network. The network has
11 nodes: 6 purple and 5 green. However, there are no edges between nodes with the
same color (membership). Source: Network Science. Barabasi. May 2016.

A notable example of a bipartite network in Medicine is the Human Disease
Network (the diseasome), Figure 2.8, which shows how diseases and genes are connected
[Barabási, 2016].

2.3 Biological Networks

Networks are used in biology to represent interactions between biological elements and
are known as biological networks. These can be classified according to the scale they
exhibit: macroscopic or microscopic, as proposed by Junker and Schreiber, 2008.

Macroscopic networks involve organisms and interactions between them. In this
case, nodes represent organisms and edges represent interactions between these organ-
isms. Two famous examples of this kind of networks are Ecological (food webs) and
Phylogenetic (i. e. genealogical or family trees).

Microscopic networks are in at the molecular level, as the biochemical networks,
which have been attracted attention during the last years. These networks represent
molecular patterns of interaction and mechanisms of control in the biological cell.
They model biochemical processes through graphs, where nodes are molecules and
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Figure 2.8: The Human Disease Network. Nodes are diseases (circles) and
genes(rectangles). An edge appear between them if a mutation in a gene affect a
particular disease. Source: Network Science. Barabasi. May 2016.

edges are interactions between them. Representative examples of this kind of networks
are metabolic networks, genetic regulatory networks and protein-protein interaction
networks.

The metabolic networks represent all the chemical reactions necessary for the
cell to break down food and build biological molecules to complete its tasks. This
type of network is properly represented by directed graphs with nodes as the chemical
products consumed and produced (known as metabolites) and the edges represent the
direction of the reactions. The genetic regulatory networks (GRN) allow to understand
interactions between genes in a cell. The vertices in this network are proteins or the
genes that code them and a directed edge indicates that one gene controls another.
The protein-protein interaction (PPI) network is the set of all chemical interactions
between proteins. The vertices represent proteins and the edges represent interactions
between such proteins [Newman, 2010]. In a similar manner, protein-ligand interaction
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(PLI) networks model interactions between proteins and their ligands. In the next
section we explain PPI and PLI networks in detail, as they involve concepts closely
related to our work.

2.3.1 Protein-Protein Interaction Networks

Proteins interact among them and with other biomolecules. The interactions are usu-
ally chemical (exchanging small subgroups), but some are physical (without exchanging
subunits), specially between a protein and another. Protein interactions occur due to
physico-chemical forces such as electrostatic interactions, hydrogen bonds, van der
Waals attraction and hydrophobic effects. These particular interactions create protein
complexes by folding its shapes to interlock. A graph representing a protein-protein
interaction (PPI) network has nodes as proteins and each edge between a pair of nodes
means that these two proteins interact. A famous PPI network is the baker’s yeast
(Figure 2.9). In this network a vertex with high degree corresponds to an important
protein for the organism survival [Junker and Schreiber, 2008]

There are several experimental techniques available to probe interactions between
proteins as immunoprecipitation, co-immunoprecipitation, the high-throughput (such
as the two-hybrid screen) and the affinity purification methods (such as the tandem
affinity purification) 1. These methods, even the most accurate and efficient of them,
require time and laboratory experiments to be done. In some cases, when the function
of a protein is unknown, it can be discovered by applying the information inside a PPI
network and using computational techniques from machine learning, such as clustering
[Zaki et al., 2013].

Global analysis of the networks formed by PPI is essential to understand bio-
logical mechanisms and disease processes. PPI study contributes to understand the
alterations caused by certain diseases and can elicit a potential therapeutic strategy.
The information inside a PPI network allows to construct protein-linkage maps on a
genome wide scale, which is known as interactome. The interactome is the whole set of
PPI inside a cell. Actually, the interactome is still under construction, as its complexity
is greater than the genome, but it is crucial for a complete understanding of biology
[Bonetta, 2010].

1Detailed description of these methods and techniques is available in Section C.
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Figure 2.9: The protein interaction map of yeast (Saccharomyces cerevisiae). It is
shown only the largest component of the network, which is composed by 1870 nodes
and 2277 edges (interactions). The red nodes represent proteins that are vital for the
organism and the green are not. Source: Network Science. Barabasi. May 2016.

2.3.2 Protein-Ligand Interaction Networks

The understanding of protein-ligand interactions is key for molecular recognition. The
study of protein-ligand complexes allows scientists, as chemists, to discover new drugs.
In the areas of network science, biochemistry, bioinformatics and chemoinformatics
literature, to the best of our knowledge, the PLI networks are mentioned in PPI network
studies or referred as special cases of PPI networks. The acronym PLI (protein-ligand
interaction), appear in the work of Gallina et al., 2013, who create a web-based tool
for comparison of protein-ligand interactions, and in the work of Medina-Franco et al.,
2014, who did a compilation of PPI and PLI studies.

The network approach applied to PLI networks surge as a plus to collaborate
in the analysis of these interactions. The PLI network can be easily build by using a
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graph, modeling interactions as edges and the protein and the ligand atoms as nodes.
Another possibility to model a PLI network as a graph is to define residues as nodes
and the interactions between them as edges. Actually, there is no consensus for PLI
models, it relies on the author’s goal.

The visualizations of protein-ligand complexes are used as a first impression to ob-
tain information about their structure [O’Donoghue et al., 2003]. These visualizations
represent the molecules forming the protein-ligand complex. The majority of PLI stud-
ies begin with a 3D visualization of the protein complex. However, 2D visualizations
are usually generated in an attempt to simplify the structure analysis and increase the
understanding for non-experts in molecular modeling. Both types of visualization are
done with specialized software tools as LigPlot+ [Laskowski and Swindells, 2011], Pose-
View [Stierand and Rarey, 2010], MOE [Clark and Labute, 2007] and Maestro [Laimer
et al., 2016].



Chapter 3

Methodology

This Chapter explains CALI: Complex Network-Based Analysis of Protein-
Ligand Interaction. The datasets (Section 3.2) used to analyze this proposed model
are CDK2 and Ricin. A scheme of the model is in Figure 3.1. The web prototype
application is available at: www.lbs.dcc.ufmg.br/projetos/cali.

3.1 The Strategy: a General View

A protein-ligand interaction (PLI) complex is usually formed by two units: a protein
and a ligand. Extracting data from the PDB for a particular protein complex enables to
reconstruct their contacts at an atomic level (Section 3.3). Protein-ligand contacts can
be seen in a simple manner as a link between a protein atom and a ligand atom. Graphs
allow to model this type of data and observe global and local characteristics. When
PLI are modeled as graphs, they tend to form tiny subgraphs, commonly with two or
three edges. The majority of interactions in these complexes are protein-protein type,
which means contacts between two protein atoms. There are less contacts between a
protein and a ligand atom, because a ligand is a smaller molecule (around ten atoms)
than a protein (in average a protein can have 500 amino acids 1 and each one have
19 atoms on average 2 [Lefranc et al., 2009]). Hence, PLI graphs for a specific protein
complex are usually highly disconnected. Also, when the ligand is an inhibitor there
is a small amount of them developed or discovered for a specific protein. The PLI
graphs are commonly analyzed by protein families or functional groups, which are
composed by tiny subgraphs with repeated protein vertices, when their sequences have

1yeast proteins are on average 466 amino acids.
2The smallest (Alanine) amino acid have 13 atoms and the biggest (Tryptophan)

have 27 amino acids, the complete table with the 20 amino acids can be found in:
www.imgt.org/IMGTeducation/Aide-memoire/
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Figure 3.1: CALI workflow. This diagram includes the major steps to create the pro-
posal models G′ and G′′, basis of CALI. (a) Collect the data from the PDB, pre-process
the protein-ligand complexes to calculate their atomic contacts using the Delaunay tri-
angulation, remove the protein-protein interactions and construct graphs only with
protein-ligand interactions. (b) Superposition of protein complexes with similar 3D
structure. (c) Run the multiple sequence alignment algorithm for protein complexes
with different 3D structure. (d) Graph G′ with merged protein nodes. (e) Graph G′′
based on G′ with merged ligand nodes and edges grouped by interaction types.

high similarity (over 80%). Next, we will briefly comment on some strategies used to
investigate PLIs.

The first approach, before the conception of CALI, was to apply graph theory
and data mining algorithms to investigate if there are patterns in PLIs. Classical graph
algorithms in PLI graphs to find communities (relevant groups) as clique percolation
clustering [Derenyi et al., 2005] or the Girvan-Newman algorithm [Newman and Girvan,
2004] based on betweeness, can not be always used, because these algorithms first
calculate paths or a clique of a specific size. However, many paths between pairs of
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vertices do not exist neither cliques with the required size. A similar problem happened
with spectral clustering, because its graph adjacency matrix has infinite distances for
pairs of vertices without a path. Other cluster algorithms, such as DBSCAN, are
seriously affected by the imbalance of the PLI data, where the majority of interactions
(in our datasets) are hydrogen bond and hydrophobic, creating huge clusters which can
not classify accurately another type of interactions, such as aromatic stackings.

The second approach was based on the egonet concept, proposed by Akoglu et al.
[2010], which compares neighbors of networks centered in one node (ego) that aim
to discover abnormal networks, which are those highly different from others. The
comparison is done with the four features or new power laws discovered by the same
authors, which were calculated for a PLI dataset. However, the interpretation of the
results was hard (one feature produced complex numbers with an imaginary part).
Also, to create definitions of normal and anormal for PLIs is hard.

However, in many cases it is necessary to analyze a set of protein complexes and,
to avoid the problems described above, we propose CALI: Complex Network- Based
Analysis of Protein-Ligand Interaction. The Section 3.2 describes the PLI datasets.
The calculation of atomic contacts of the PLI datasets are presented in Section 3.3.
The graph models G′ and G”, which are the basis of CALI, are explained in Section 3.4.

3.2 Datasets

In this section we discuss the two datasets of PLI modeled using CALI. Here we detail
how CDK2 and Ricin datasets were obtained (from Protein Data Bank [Rose et al.,
2015] in August 2014). The list of PDB identifiers for each dataset is provided in
Table A.3 for CDK2 and Table A.2 for Ricin.

3.2.1 CDK2

This dataset is based on the work of Schonbrunn et al., 2013, and it comprises a specific
protein for which several inhibitors are known. This same protein was crystallized with
a variety of ligands and the 73 experimental structures are available in PDB. In the
mentioned work, authors experimentally determined important residues for PLI, so
this dataset is also used to check if our proposed model CALI is able to find relevant
interaction patterns by comparing CALI patterns with those experimentally obtained.

Schonbrunn and colleagues in their work depict how they discovered by
high-throughput screening the compound 2-(allylamino)-4-aminothiazol-5-yl-(phenyl)
methanone as a potent inhibitor of the human CDK2. Through the co-crystal structure
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(PDB id 3QQK), they show the importance of hydrogen bonds in the binding of this
compound with the ATP site. The hydrogen bonds occur between the thiazolamine
moiety and the hinge region (GLU81-LEU83).

Departing from previously cited compound, the authors developed other 95 ana-
logues by replacing systematically the flanking allyl and the phenyl moieties whereas
the aminothiazole core was maintained unchanged to preserve its functionality. Thence-
forth, they evaluated analogues concerning their inhibitory potential, but only 35 from
these analogues had their crystal structure determined.

Besides these 35 structures, we have found another 38 related structures (totaling
73 PDB files) by searching on the PDB3 website. These files are supposed to be
discussed in another work from the same authors which is not published yet to the
best of our knowledge.

3.2.2 Ricin

This dataset is composed by 29 experimental structures from the PDB which have at
least one ligand and 50% or more identity with Ricin (2AAI, chain A in PDB). We
consider this dataset a more realistic (or frequent) one, as the sequences are not exactly
the same, which is common, for instance, in a protein family. Thus this dataset was
chosen to show the applicability of the proposed model CALI for a diverse, real-world
protein set by comparing CALI patterns with those experimentally determined by Ho
et al., 2009.

We searched the PDB for key words ricin, ricin-like and ribosome inactivating
protein and obtained 136, 126 and 163 results respectively. As there was overlap among
results, the total number of different PDB entries was 266.

Sequences from all 266 PDB entries were split by chain using PDBest tool
[Gonçalves et al., 2015] and were aligned against PDB id 2AAI [Rutenber et al.,
1991] chain A, which we call 2AAI.A, using an in-house implementation of Needleman-
Wunsch algorithm [Needleman and Wunsch, 1970]. PDB entry 2AAI.A is the catalytic
subunit of ricin toxin without any ligands. Those 47 structures which have 50% or
more identity were taken as our initial Ricin dataset.

The final step to obtain the Ricin dataset was to select entries which have at
least one ligand, as we were interested in patterns of interactions between a protein
and its ligands. So we computed probable PLI at atomic level using a geometric
approach (which is detailed in Section 3.3) to determine ligands that were interacting
with protein residues. Only ligands with seven or more atoms were considered, in a

3http://www.rcsb.org

http://www.rcsb.org
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similar manner to the work of Pires et al. [2013]. This process resulted in 29 PDB
chains.

3.3 Pre-processing Datasets

The graph for each protein chain and its ligands was computed through a cutoff-
independent and geometric-based approach which consists of building a Voronoi di-
agram and its dual graph, the Delaunay triangulation [Poupon, 2004; Okabe et al.,
2009]. In a Delaunay graph, edges connecting two nodes represent atoms that are
likely in contact and not occluded by other atoms (Figure 3.1-a). For this computa-
tion, CGAL library 4 was used. The Delaunay graph was post processed by keeping
only edges connecting protein and ligand atoms, which are the interest of this research,
generating a bigraph.

Thereafter, by using the generated contacts, edges are labeled according to the
distance between atoms and their physicochemical properties. Atoms were classified
as acceptor, aromatic, donor, hydrophobic, negative (anion) or positive (cation) in ac-
cordance with [Sobolev et al., 1999a]. The chemical properties of each protein atom
were obtained from previous works [de Melo et al., 2006] while the ligand atom proper-
ties were computed by using Pmapper software from Chemaxon (Pmapper 5.3.8, 2010,
Chemaxon 5) at pH 7.0.

Finally, interactions were labeled by considering each physicochemical property
and a distance criterion [Mancini et al., 2004; Silveira et al., 2015]. The distance
criterion for each type of interaction is provided in Table 3.1. This pre-processing data
was done by the Bioinformatics PhD student Alexandre V. Fassio from UFMG, as part
of his master Thesis in Bioinformatics [Fassio, 2015].

Table 3.1: Criteria used to compute the interactions.

Type of interaction Atom types Min. Max.
distance distance

Aromatic stacking two aromatic atoms 1.5 3.5
Hydrogen bond an acceptor and a donor atom 2.0 3.0
Hydrophobic two hydrophobic atoms 2.0 3.8
Repulsive two atoms with the same charge 2.0 6.0
Salt bridges two atoms with opposite charge 2.0 6.0

4http://www.cgal.org
5http://www.chemaxon.com
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3.4 PLI Models: G’ and G”

3.4.1 Graph Model for One Protein-Ligand Complex

Denoting I = {(p1, l1), (p2, l2), (p3, l3), ..., (pn, lm)} as the interaction set composed by
two subsets, VP = {p1, p2, p3..., pn} as protein atoms, and VL = {l1, l2, l3..., lm} as ligand
atoms, an edge eij of the PLI graph G is defined as a pair of a protein atom and a
ligand atom eij = (pi, lj), which means that these two atoms are linked configuring a
contact. G(VP , VL, E), by its definition, is a bipartite graph where the set of edges,
E = {eij : pi ∈ VP , lj ∈ VL}, are only possible between a ligand atom li and a
protein atom pj that are able to form a chemical bond. Thus, I = E . The edges
from set E have as attributes the names of the two atoms in contact, the interaction
physicochemical type, the contact distance (in Angstroms) and the edge betweenness
centrality (the only network metric calculated for edges). The nodes from sets VP and
VL have as attributes the atom type and the atom name. The calculated network
metrics (Section 2.1.2) are used also as attributes for both vertex sets. The graph
G(VP , VL, E) (Figure 3.2) represents interactions for one protein-ligand complex.

Figure 3.2: Set I of protein-ligand interactions of the protein complex CDK2, cor-
responding to the structure 3QQF from the Protein Data Bank (PDB). Source:
http://www.napoli.dcc.ufmg.br/, a bioinformatic tool for protein-ligand visualization.

http://www.napoli.dcc.ufmg.br/
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3.4.2 Graph Model Formalization

In this Section, we will formally state CALI model. Let γ be a set of graphs, γ =

G1, G2, G3, ..., Gn where n is the number of graphs in the input dataset (each graph Gi

represents a protein-ligand complex as in Section 3.4.1), which can be seen in Figure 3.1-
a. Each graph i, Gi = (VPi, VLi, Ei) is composed by a set of nodes, VPi, representing
protein atoms, and VLi, representing ligand atoms. Also, each graph has a set of edges,
Ei, that are interactions between nodes in VPi and in VLi, so we have a set of bipartite
graphs. The problem is then finding frequent subgraphs in the set γ .

Our model consists of building a new graph, G′ = (V ′P , VL, E) where V ′P is
a new set of nodes comprised by compositions of nodes in VPi ∀i ∈ n. This is
described by a transformation function TSA(VP ) = V ′P . We define the function
TSA as a multiple sequence alignment (Figure 3.1-c) on the set of protein vertices
VP = {VP1, VP2, VP3, ..., VPn}, where every subset VPi corresponds to the nodes of a
protein complex. The idea behind this structural superposition (Figure 3.1-b) is to
join together protein residues to form a connected graph of PLI, where V ′P is a new
vertex set, composed by protein atoms grouped by alignment residue positions. An
example of this process is provided in Figure 3.3. Using this new model or graph G′

(Figure 3.1-d), we see at a first glance all the interacting protein and ligand atoms, as
well as conserved patterns as big components. Residues establishing a high number of
interactions and its atoms simply emerge as hubs in the network. We define this whole
process of generating G′ as graph superposition.
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Figure 3.3: Transformation of protein-ligand interactions. (a) An interaction
I is composed by one protein atom node pi linked to one ligand atom node
li from an a specific protein-ligand complex. (b) The bipartite graph G′ con-
formed by one protein atom p1 which have interactions with 5 different lig-
ands l. The multiple sequence alignment (TSA) is needed if the sequences of
the protein-ligand complexes are different. Source of the sequence alignment:
2013.igem.org/wiki/images/4/4b/Heidelberg_IndPD_Fig4.png.

http://2013.igem.org/wiki/images/4/4b/Heidelberg_IndPD_Fig4.png
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We also propose a second graph, G′′ = (V ′P , V
′
L, E

′) (Figure 3.1-e) where V ′L is a
new set of nodes, that consists of node compositions in VLi ∀i ∈ n. Each composition
is obtained by merging or aggregating nodes sharing exactly the same physicochemi-
cal properties (interaction type and atomic ligand type), interacting with exactly the
same protein atoms and establishing the same type of interactions (established in the
Table 3.1). An example of this process is provided in Figure 3.4. G′′ is obtained by
applying simultaneously a two-part merge Tm. One is Tm1(VL) = V ′L, applied on vertex
ligand atom set VL = {l1, l2, l3, ..., lm}, generating V ′L, a new vertex set representing
ligand atoms grouped by atom type. The other is Tm2(E) = E ′, which creates a new
edge set E ′ as result of grouping interactions by type. Tm1 is done for a set of k ligand
vertices Vk = {v1, v2, v3, ..., vc} of a component κ ∈ K (the set of connected compo-
nents of G′) with the same atom type if and only if for Tm2, eij : p ∈ V ′P , l ∈ Vk and all
candidates for merge eij have the same interaction type. Ligand atom vertices that can
not be grouped by atom type or with edges that are not candidates for merge, remain
in the new graph, implying that the whole transformation Tm of G′ requires a strict
consensus. Then the new graph G′′(V ”P , V

′
L, E

′) is obtained as a result of this merge
transformation function Tm. We define the process of shrinking nodes and edges of G′

to generate G′′ as merge.
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Figure 3.4: Transformation of G′ in G′′. (a) The graph G′ is composed by two types
of ligand atoms and two types of interactions. The ligand atoms l1, l2 and l3 are
connected with p1 by hydrogen bonds (HB). On the other hand, the ligand atoms
l4 and l5 are connected to p1 by aromatic stackings (AS). (b) The graph G′′ is a
comprised representation of G′ grouping edges by interaction type and ligand nodes by
atom type.
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3.4.3 Model Generator Algorithm

The whole formalization of PLI graphs described in Section 3.4.2 is done by a script in
python using the networkx library to represent the γ set of PLI graphs. The particular
choice of this library is because it allows to add attributes to nodes and edges. We take
advantage of this feature saving all the biological information available of the dataset
as edge and node attributes.

The attributes for a protein node of G′ are: atom label (unique string), atom
type (acceptor, aromatic, donor, hydrophobic, negative or positive), color (according
to node type= aligned, normal, heteratom), bipartite (0 or 1) and aligned (boolean
value). The interaction types defined for PLI are: aromatic stacking, hydrogen bond,
hydrophobic, repulsive and salt bridge. The attributes to construct edges of G′ are:
protein atom label, ligand atom label, distance (measured in Angstroms - Å), protein
complex id (from PDB), interaction type and color (according to interaction type).

For the best of our knowledge, there is no graph mining algorithm that allows a
representation of PLI as the one made in CALI, because it considers atom types and
physicochemical types of interactions. Many graph mining algorithms do not model
attributes or do not make them part of the mining process. These mining algorithms
generalize their graph representation, allowing the graphs to contain different types of
data.

The calculated components of G′, which we denote by K, have attributes which
make possible to shrink it into the G′′ model. We call the resulting components frequent
PLI patterns and denote them by K ′. These attributes correspond to biological data
inherent to the protein-ligand atom contacts.

After pre-processing the PLI input (Section 3.3) we applied the transformation
function TSA only for datasets that have proteins with different amino acid sequences.
However, some datasets, as CDK2 (Section 3.2.1), do not need application of TSA
because they are special cases where all the proteins from the dataset have the same
amino acid sequence, which means that all graphs in γ have the same set of nodes
representing protein atoms VP .

The steps to generate G′ are:

1. Pre-process interaction data applying TSA, which for PLI graphs is a sequence
alignment function.

2. Construct edges and nodes of G′ from input interaction data.

3. Calculate connected components, using the networkx function which traverses
all the vertices of the graph and uses the Dijkstra algorithm to calculate all the
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shortest path lengths.

4. Calculate global descriptors, using implementations of networkx library.

5. Calculate network metrics for every component in the K set, using implementa-
tions of networkx library.

The process to generateG′ takesO(|V ||E|) space and its time complexity depends
mainly on the connected components calculation, which is O(|E|+ |V |log|V |). The
network metrics calculated for each component could be time-consuming if the biggest
components of G′ are dense and have large size. However, the G′ components (K) are
bipartite, implying that time complexity for centralities as betweenness, will be always
lower than for an undirected weighted complete graph, which is O

(
|V ||E|+ n2log n

)
[Brandes, 2001].

The steps to generate G′′, described in Algorithm 1 are:

1. Merge interactions for all components K of G′, using the function Tm.

2. Construct edges and nodes of G”
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Algorithm 1: Merge PLI
Data: I
Result: G′′, K ′

1 initialization;
2 Mc := matrix for counting all interactions ;
3 Lc := list of protein nodes;
4 for ki ∈ K do
5 for pi ∈ V ′P ∈ ki do
6 % Identify candidates for merge ;
7 V ′c := set of candidates for merge;
8 if pi.degree() > 1 then
9 V ′c .add(pi);

10 for ne ∈ pi.neighbors() do
11 if ne.degree() == 1 then
12 c1 := count_types_interaction(Mc);
13 la1:=join_labels(Mc);

14 end
15 if ne.degree() > 1 then
16 c2 := count_types_interaction(Mc);
17 la2 := join_labels(Mc);

18 end

19 end
20 Lc.add(pi, c1, la1, c2, la2) ;

21 else
22 pi is not candidate;
23 end

24 end
25 κ′ =construct_component(V ′c , Lc);
26 K ′.add(k′)

27 end
28 G′′ = construct_G_composed(K ′);

Algorithm 1 generates G′′ creating its components κi by counting all interactions.
The matrixMc is created for counting all interaction types. First, all nodes representing
protein atoms, pi, are evaluated to select candidates to merge. All pi with degree greater
than one are selected and stored. Second, the pi neighbors, which are nodes representing
ligand atoms, are evaluated and separated into two groups: c1 for nodes with degree
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equal to one, and c2 for nodes with degree greater than one. The labels of the respective
nodes are stored in la1 and la2. The list Lc save the information necessary for every pi
candidate: c1, c2, la1 and la2. Third, components κ′ are calculated with the function
construct_component described in algorithm 2 and G′′ is constructed based on the set
of components K ′.

Algorithm 2: construct component κ′ of G′′

Data: V ′c , Lc
Result: κ′

1 for each pi ∈ Lc and pi ∈ V ′c do
2 for each interaction type ∈Mc do
3 forall eij ∈ Lc with same interaction type do
4 if eij ⊂ lj.degree() == 1 then
5 merge edges → Ec;
6 end
7 if found ∃ eij ⊂ lj.degree() == 1 then
8 add edges with degree == 1 → Ec;
9 add the rest of edges → Ec without merge;

10 end
11 if eij ⊂ lj.degree() > 1 then
12 % This edges have interaction with two or more proteins;
13 merge edges just for pi → Ec ;

14 end

15 end

16 end

17 end
18 return κ′(Ec) ;

The set of connected components K ′ is constructed using Algorithm 2. The
protein nodes pi in V ′c are processed according to the counting data saved in Mc.
Edges eij, with the same interaction type in Mc, are merged if all their ligand nodes
lj have degree equal to one. On the other hand, only edges eij, whose ligand nodes lj
have degree equal to one, are added without merge. The rest of edges are processed
separately, to avoid merging edges whose ligands have interactions with two or more
protein nodes pi.

The whole process of constructing G′′ requires traverse the graph twice, first for
counting the interactions and second to do the merge. Thus, G′′ calculation can be
approximately done in time O(|V ||E|).



3.4. PLI Models: G’ and G” 53

3.4.4 Relevant Biological Patterns

A component can be defined as an independent piece of the graph, a subgraph where
each node is connected to every other and the subgraph is not a part of any larger
subgraph [Kleinberg and Easley, 2010]. Analyzing components is essential when a
network is highly sparse [Newman, 2010] to calculate metrics and network properties,
which occurs on most PLI graphs. G is the disconnected graph that represents protein-
ligand interactions for a set γ of protein complexes. Doing some transformations on
γ, we generate new graph models G′ and G′′, whose components represent interaction
patterns.

The set K = {κ1, κ2, κ3, ..., κc} of connected components of G′ shows conserved
and big components in the PLI graph. Many of these components present the shape
of a hub or a star, which means there is only one node in the center with a lot of
connections to other nodes that do not have edges among them.

The graph G′′ was conceived as another representation of PLIs, grouping ligand
interactions with the aim to improve the recognition of patterns by identifying the
more common types of ligand interactions in every component. G′′ components, which
belong to the set K ′ = {κ′1, κ′2, κ′3, ..., κ′c}, are shrink in comparison with those in the
set K of G′ components.

The component sets K and K ′ from the graph models G′ and G′′ can be defined
as biological patterns of PLIs, where the degree centrality is the measure for frequency.
Nodes with a high degree in G′ correspond to protein atoms belonging to residues that
have biological importance for the protein complexes. These nodes represent atoms
of residues with high binding affinity, which usually are in hubs. A high number of
hubs in G′ could mean that there are few residues well-conserved and important to the
ligand binding. Also, this could mean that the ligands in the dataset are derived from
the same inhibitor or a set of inhibitors. A huge component in K indicates that there
is a extensive region (composed by several residues) of the protein complex involved in
the ligand binding.





Chapter 4

Results

This chapter discusses the results obtained using CALI, our visual model for frequent
pattern mining in protein-ligand interactions. The PLI visualization developed based
on the CALI graph models is explained in Section 4.1 including the application web
(Section 4.1.1) and the visual strategy used to identify relevant biological patterns
(Section 4.1.2). A brief network analysis for the PLI graphs is presented in section 4.2.
Complementing this analysis, a network model characterization is provided in Ap-
pendix D. Finally, two comparisons are done. The first one, in Section 4.3, we compare
CALI with the state-of-the-art algorithm for graph mining, gSpan. The second one,
in Section 4.4, we compare CALI with results experimentally generated for CDK and
Ricin.

4.1 PLI Visualization

The graphs G′ and G′′ represent a PLI network. However, a visualization focusing on
the components (K and K ′) allow to identify easily the biggest ones, specially hubs,
which biologically are more interesting to analyze. Due to this fact, we developed a
prototype tool (Section 4.1.1) allowing flexible visualizations of the PLI networks with
the aim to explore the centrality metrics of these networks join with biological relevant
data (e.g. residue name, atom name, residue number, ligand name, distance between
atoms, etc.) displayed in the same network. The strategy used to discover biological
patterns with this visualization is described in Section 4.1.2.

55
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4.1.1 Visualization Tool for PLI Graphs

The visualization web application for PLI graphs modeled using CALI was developed
with the collaboration of the PhD student in Bioinformatics, Alexandre V. Fassio from
the ICB and DCC, UFMG (Belo Horizonte, Brazil), as part of a teamwork of the
Laboratory of Bioinformatics and Systems (LBS) from the same University.

The PLI network visualization is coupled with several filters to support explo-
ration, investigation and analysis of the model and its emerging patterns. We use a
force directed layout to draw the bipartite PLI graph, grouped by components, where
nodes depict atoms and edges are interactions between them. Different colors distin-
guish between protein and ligand atoms and we have five colors for edges, to represent
the five different types of interactions, as shown in Figure 4.1. The interactive visu-
alization was implemented in D31, a JavaScript library to build a wide spectrum of
visual representations.

We also implemented several filtering and highlighting possibilities. The user can
filter out the network by the types of atoms (Figure B.1) and by the types of interactions
(Figure B.2). When the user checks or unchecks an option, the corresponding atoms
(nodes) / interactions (edges) lose contrast with the background and all the others are
highlighted. Users can search for a particular residue and / or atom and highlight it
(picking any color they prefer) which makes easy to find a residue and / or atom in the
network. In Figure 4.2, we present an example where we select the TYR80 (all atoms
from this residue) which it is highlighted in a brilliant shade of blue. Finally, there
are also a total of eight measures, that can be used to filter out the network elements
through sliders. In Figure B.3, we show an example where we filter out nodes whose
degrees are bellow 10% of the maximum value. For every element of the graph, details
can be obtained on demand by passing the mouse over it (Figure B.4).

4.1.2 The Visual Strategy

The graphs G′ and G′′ are plotted in a way that allow to identify directly by visual
inspection their connected components. The biggest components in G′ (Figures 4.1 and
4.4) are the result of a graph superposition and can be visually identified by their size,
which is characterized by two main types. The first type corresponds to hubs: a central
protein atom node with many edges to different atom ligand nodes. The second type
are subgraphs forming odd cycles including several protein atom nodes interacting with
many atom ligand nodes. Using the number of edges filter of the developed tool, the

1http://d3js.org/
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Figure 4.1: CALI model bipartite graph drawn using a force directed layout. Nodes
depict atoms and edges are interactions between them. Different colors distinguish
between protein and ligand atoms and also, we have five colors for edges, to represent
the five different types of interactions. This graph G′ represents the CDK2 dataset,
with its components K.

biggest components remain while the others loss emphasize. Also, the filter to search
specific residues, ligands or atoms, locate them in the network, allowing to identify at
once if the element searched is or not in a big component. The described features in
Section 4.1.1 allow to explore the PLI networks in many ways. Preserving the biological
information of the PLI in the network visualizations allow to complement its analysis
with other molecular visualization tools as PyMOL.

The graph G′′ (Figures 4.3 and 4.5) is the result of the merge described in Sec-
tion 3.4.2, grouping edges (interactions) and ligand atom nodes by their types respec-
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Figure 4.2: CALI search example. Users can search for a particular residue and / or
atom and it is highlighted (users can pick any color they prefer), which makes easy to
find a residue and / or atom in the network. In this figure, we searched for TYR80
and it was highlighted in a brilliant shade of blue. The graph is from Ricin dataset.

tively. The visualization of G′′ maintain the focus on components (K ′) but as a result
of the merge are only shown the principal types of interactions and several ligand atom
nodes are represented by one node. Edges merged are represented by thicker lines.
However, the information of the ligand nodes and the edges merged remain in the visu-
alization and can be obtained by passing the mouse over them. The protein nodes with
high degree are drawn bigger than those with low degree, highlighted that these nodes
represent atoms from residues with high binding affinity from the PLI dataset. This
big picture of the whole PLI network, combined with the filters of the tool (Figure 4.2),
allow to identify the more frequent atoms involved in the ligand binding. Also, it is
possible to discover atoms from residues with high degree, which are not reported as
important in experimental results. The biggest components from both graphs (G′ and
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G′′) also represent the main regions of interaction between the protein complex and
the ligands from the dataset.

Figure 4.3: CALI model bipartite graph G′′ for the CDK2 dataset, with its components
K ′.

4.2 PLI Network Analysis

Global network descriptors were calculated using networkx 2 library [Hagberg et al.,
2008]. Some useful global measures are the total number of edges and nodes, the number
of components and the density (this measure describes the portion of the potential
connections in a network that are actual connections). This last one is remarkably low
and it is something potentially interesting because being so sparse (global clustering
coefficient is zero), the network can be more effectively visualized and relevant patterns

2https://networkx.github.io/documentation

https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.communicability
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Figure 4.4: CALI model bipartite graph G′ representing the Ricin dataset, with its
componentsK. Nodes depict atoms and edges are interactions between them. Different
colors distinguish between protein and ligand atoms and also, we have five colors for
edges, to represent the five different types of interactions.

can emerge in a straightforward manner. To characterize the model, we computed the
centrality metrics: degree, closeness, communicability, eccentricity, node betweenness
and edge betweenness. Additionally, another two metrics are used as filters: the distance
between pairs of (node) atoms measured in Angstroms and the number of edges for
each component, which allow us to filter them by its size.

Global network descriptors for the G′ graphs of CDK2 and Ricin are presented in
Table 4.1. Note that both are sparse as the number of edges and nodes are the same
order of magnitude (about 400 for CDK2 and 300 for Ricin). Also, notice that both are
disconnected presenting several components (12 for CDK2 and 34 for Ricin). This is
interesting and could indicate that ligands present far (disconnected) points of contacts
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Figure 4.5: CALI model bipartite graph G′′ representing the Ricin dataset with its
components K ′.

Table 4.1: Global network descriptors

Descriptors CDK2 Ricin
Number of nodes 407 321
Number of edges 459 377
Global clustering coefficient 0.0 0.0
Number of connected components 12 34
Order of largest component 128 134
Order of second largest component 120 28
Order of third largest component 62 18
Density 0.026 0.020
Average bipartite clustering coefficient 0.748 0.547
Average bipartite clustering coefficient for ligands 0.823 0.623
Average bipartite clustering coefficient for proteins 0.188 0.306
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with proteins. Additionally, there is a big component for the Ricin (134 nodes), which
may suggest that the protein-ligand contacts are in great part close, and there are two
components for CDK2 (128 and 120 nodes), which may indicate two main regions of
contact with ligands for CDK2.

The CDK2 G′ network (Figure 4.1) is more transitive, it has a higher bipartite
clustering coefficient 3 than Ricins. This happens because there are a considerable
number of hydrophobic interactions in the largest component of CDK2, forming odd
cycles larger than triangles. This behavior is similar to the metabolic network of yeast
in the work of Estrada and Rodríguez-Velázquez, 2005. It is also noteworthy the fact
that the average bipartite clustering coefficient is considerably higher for ligand atoms
than for proteins. It happens because groups of ligand atoms tend to establish inter-
actions with groups of protein atoms, those that can be considered more conserved
in the protein structure. If the CDK2 G′ network did not have its biggest compo-
nent(hydrophobic), the bipartite clustering coefficient would be very low. The other
components are mainly hubs (Figure 2.3) or planar graphs (Figure 2.1).

PLI in CDK2 involve an identical protein with several ligands. Consequently,
protein atoms are more conserved and then more connected in the network. In the
Ricin graph G′ (Figure 4.4), protein nodes were generated using a structural superpo-
sition to define a similarity function that allows us to group nodes. In this case, we
have an heterogeneous residues sequence set, where not every position is necessarily
well conserved and thus nodes tend to be less connected and less transitive as well.
Moreover, both datasets are dissimilar in biological context (CDK2 forms a human
protein complex and Ricin forms a toxic protein from the seeds of a plant).

Despite the Ricin PLI network is smaller than the CDK2 network, it has a huge
connected component with 134 nodes composed mainly by hydrogen bonds and aro-
matic stackings and a few hydrophobic interactions. The majority of the other com-
ponents have less than 16 edges and there are no hubs, excepting two components.
The first one is a hub formed by a node representing a Nitrogen from the TYR123
with degree 11 (interactions). The second one is composed by three atom nodes (with
degrees 19, 20 and 8) from the TYR123.

Also, we addressed the question of which are the most important nodes (central
ones according to our modeling) of a PLI network produced by CALI. It is important
to point out that we have a premise that the most important patterns should comprise
important nodes of the network, as the largest component of hydrogen bonds in CDK2

3Latapy et al., 2008 propose this definition for bipartite graphs because in these graphs it is not
possible to have triangles. This definition is based on the possibility that 4 nodes are connected with
4 links, forming a square.
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(see the light blue subgraph on the left side in Figure 4.3), which have two biggest
protein nodes (in dark gray) with high degree, corresponding to an oxygen and a nitro-
gen of Leucine in the position 83 of the residue sequence. Among the several centrality
measures we computed, we concluded degree is the most important for frequent pattern
detection as expected. In fact, in our PLI model, conserved elements tend to have a
high degree. Despite in some cases, considering other metrics, can help to filter out
irrelevant elements in the PLI graphs.

4.3 CALI Comparison with gSpan

This section explains the patterns found in the CDK2 and Ricin datasets using CALI.
Moreover, we compare CALI patterns with those computed by gSpan, the most cited
graph mining algorithm according to Jiang et al., 2013, which is commonly used to
find frequent patterns in biological data.

4.3.1 gSpan Pattern Generation

gSpan is a depth-first search-based mining algorithm for efficient mining of frequent
subgraphs in large graph databases. The two main advantages of gSpan are better
memory utilization and effective subgraph testing [Huan et al., 2004]. This algorithm
introduces a novel lexicographic ordering by mapping each graph to an unique minimum
DFS code and then performs a search tree based on this lexicographic order [Yan and
Han, 2002]. We selected gSpan to perform a comparison with CALI because gSpan is
the most cited frequent subgraph mining algorithm [Jiang et al., 2013].

In order to be able to compare the patterns found by CALI with the patterns
found by gSpan, we have to follow several steps (Figure 4.6) to be able to run this
algorithm properly for the PLI datasets. These steps are pre-process the protein-
ligand complexes, calculate their atomic contacts, choose a model and a mapping for
the PLI graphs and create the input file required to run gSpan with different support
values.

The gSpan algorithm requires a specific input file, which was generated processing
each dataset, resulting in one file with 341 graphs representing CDK2 PLIs and another
file with 168 graphs representing Ricin PLIs. gSpan was run for both datasets with
support values between 90% and 10%, decreasing 10% each time. After 10% it was
decreased in 1% each time, until 1% was reached. To test the gSpan limits and the
maximal number of patterns it is able to find, gSpan was executed with support 0,10%.
Patterns began to appear for CDK2 with 50% support and for Ricin with 30% support.
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Figure 4.6: Process to apply gSpan to find frequent patterns in PLI datasets. There
are four steps requiered to generate the input file for gSpan. First, obtain the protein-
ligand complexes from the PDB. Second, calculate the atomic contacts from the PDB
files. Third, model the biological information to construct graphs which represent the
PLIs. Fourth, choose the most relevant characteristics and map them to construct
graphs according to the gSpan input format. Finally, gSpan is tested with several
support values to find frequent patterns.

Figures 4.7 and 4.8 show the number of patterns found for each dataset, with support
values between 1% and 90%. The highest number of patterns found, as expected, was
when gSpan run with 1%, resulting in 37 graph-patterns for CDK2 and 224 graph-
patterns for Ricin.

The gSpan implementation 4 used for this comparison found patterns (graphs)
composed by one node, which were not included in our analysis because a graph with
one node does not present any interactions.

Even gSpan, which is the most used, save-memory FSM algorithm, did not offer
useful results searching patterns in PLI graphs. We found the following limitations for
gSpan in the comparison performed:

• It is not able to treat input graphs with several node and edge attributes.

• Loss of biological data for PLI graphs (as contact distance), when these graphs
are converted to gSpan input format with just one label for node/edge.

4The implementation used was the binary code (2009) for linux. Available at the web site of
professor Xifeng Yan https://www.cs.ucsb.edu/ xyan/software/gSpan.htm

https://www.cs.ucsb.edu/~xyan/software/gSpan.htm
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• Running gSpan is not time-consuming (takes less than 0.01 seconds for each
support value), because our datasets are small. However, for larger datasets this
algorithm takes considerable time to process graphs, because it does not mine
maximal frequent subgraphs and it only finds frequent patterns with very low
support values (around 10% or lower) in PLI datasets.

The frequent pattern-graphs obtained by gSpan have two main problems. First,
among the patterns, many can be structurally repetitive, as a frequent subgraph can
have other frequent subgraphs within it [Yan and Han, 2003]. Second, gSpan output
does not have labels indicating which nodes from input graph Gi match to a pattern gi.
Thus we need to apply an algorithm of subgraph isomorphism (as the VF2 algorithm
[Cordella et al., 2004]) to find which nodes from input graph Gi match to a subgraph
gi, as occurs in the work of Silveira et al., 2015. The problem of graph isomorphism
has not been yet determined as solvable in polynomial time or NP-complete, while
subgraph isomorphism is well-known to be NP-complete [Garey and Johnson, 1979].

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

support

0

5

10

15

20

25

30

35

gS
pa

n 
pa

tte
rn
s 
(c
dk

2)

Figure 4.7: Number of patterns found by gSpan for different support values in the
CDK2 dataset.

4.3.2 Mapping gSpan Graph-Patterns

To be able to analyze the frequent gSpan patterns at the protein complexes, it was nec-
essary to choose an adequate mapping function to maintain the biological information
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Figure 4.8: Number of patterns found by gSpan for different support values in the
Ricin dataset.

in the PLI graph. In the work done in gSpan [Yan and Han, 2002] and in CloseGraph
[Yan and Han, 2003], biological node and edge labels were mapped 5 as numbers. Both
used synthetic data and also a real one, which is a chemical compound dataset (AIDS
antiviral screen). This dataset is sparse: on average 27 nodes and 28 edges per graph.
The authors goal was to find frequent substructures in graph datasets and decrease the
memory consumption by creating a new graph mining algorithm.

Our interest here is to find patterns (similar to Yan and Han) in the PLI datasets.
To accomplish this goal, we used an analogous mapping choosing to model only two
physicochemical properties as the most representatives for the input graphs of gSpan.
These properties are type of interactions (Table 3.1) as edge labels and type of atoms
as node labels of the input graphs. The type of atoms were defined (as described in
Section 3.3) with their possible combinations (i.e. an atom can be positive, donor and
aromatic). There are 14 types of atoms and 5 types of interactions, corresponding to
the types present in the two datasets (CDK2 and Ricin) used. The input graphs map
the interaction and atom types as integer numbers, as the example in Figure 4.9.

To find where and which are the gSpan patterns in the PLI graphs it was necessary
to define a process composed by two main steps (Figure 4.10). The first one was to
search for the original subgraph in the gSpan input where the pattern belongs to.

5The exact mapping used was not available in neitheir of their publications. Professor Xifeng Yan
answered us by e-mail that he did not find the mapping file.
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This search is done running a subgraph isomorphism algorithm. Second, as every
gSpan pattern was encoded with numbers (to allow gSpan execution), it needs to be
decoded (to our original data): a reverse mapping, from numbers to labels (categorical
data). Finally, the patterns with their location (on the input graphs) and the original
categorical data (atom and interaction types) were obtained.

Figure 4.9: Mapping atom and interaction types as numbers. This graph (a component
from CDK2) has only hydrogen bond interactions, linking 3 protein atoms and 4 ligand
atoms.

Figure 4.10: Process required to analyze the patterns in gSpan output.
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4.3.3 CALI and gSpan Pattern Comparison

The comparison between the patterns found by CALI and by gSpan was done using
graph and subgraph isomorphism algorithms (Figure 4.11). The gSpan patterns de-
coded in the original (PLI) data are searched running a graph isomorphism algorithm
in the PLI graph generated by CALI. This search was done through the PLI graph
components, because all of them are disconnected. Moreover, we applied subgraph iso-
morphism for cases where the gSpan pattern is smaller than the component, and graph
isomorphism for cases where the gSpan pattern has the same size as the component
(just a few of these cases found). Both isomorphism algorithms were implemented to
allow the comparison between the CALI model and gSpan. This whole process takes
around 2 seconds, beginning with the reading of the gSpan output file and finishing
with the identification of every pattern in the graph components generated by CALI.

Figure 4.11: Search for gSpan patterns. There is necessary to apply two isomorphism
algorithms for search gSpan patterns. One is for graph isomorphism, when the pattern
is exactly the same as a CALI graph component. The another is for graph isomorphism,
when the pattern is composing a CALI graph component.

All gSpan patterns were found in the components of CALI graphs for both
datasets. The difference between the two representations is that with CALI is pos-
sible to observe all patterns (frequent and infrequent) in a same diagram and filter
them according to the user’s demand. CALI is simpler, more direct and faster, needing
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one execution to create the graph with all PLI patterns. Nevertheless, gSpan requires
testing with several support values (particularly lower or equal than 10%) until a rea-
sonable number of patterns is reached.

The majority of the gSpan patterns have one or two edges (interactions) in the
CDK2 dataset as seen in Figure 4.12. The majority of patterns for Ricin dataset have
one edge for support values between 5% and 10%, but lower than 5% the distribution
changes, specially for support values 1% and 2%, where appear numerous patterns with
three to eight edges (Figure 4.15). These particular small patterns, which are much
like tree, are due to the bipartite model used to build the PLI graphs, but it is also
found on chemical compound datasets as reported by Yan and Han, 2002 and Huan
et al., 2004.

Larger components in both datasets have the majority of gSpan patterns. This
search was done implementing a subgraph isomorphism algorithm, checking either the
topology and the atom and interaction types of each gSpan pattern inside the PLI
components. The CDK2 dataset contains most of the gSpan patterns in the three
largest components of the PLI graph, as shown in Figure 4.13. The largest component
has principally hydrophobic interactions and two aromatic stackings, the second and
the third largest components are composed only by hydrogen bonds. In the Ricin
dataset, the gSpan patterns are in the two largest components of the PLI graph, as
shown in Figure 4.16. The Ricin PLI graph has one largest component with 128
interactions, and most of them are hydrogen bonds and aromatic stackings, and a few
of them are hydrophobic. The second largest component has only 28 interactions,
where most of them are hydrophobic and eight of them are aromatic stackings. We
conclude that CALI contains all gSpan patterns, which are located mainly in the largest
components. Moreover, PLI graphs are able to show non-frequent patterns in their
medium or smaller components, which can also have biological importance.

The search done applying a graph isomorphism algorithm implemented according
to the PLI data found only small gSpan patterns, as those with two nodes and one
edge. This search was faster than the first done (described above) because many
CALI components can avoid comparison by checking their size first. Figure 4.14 shows
four gSpan patterns isomorphic with CALI components in the CDK2. All of them
correspond to hydrophobic interactions with different atoms 6 from a Lysine (residue).
Figure 4.17 shows three gSpan patterns isomorphic with CALI components in the Ricin.

6 The PDB file format nomenclature is used to abbreviate atom names: C (Carbon), N(Nitrogen),
O(Oxygen) = main chain. CA = Carbon, Alpha (1st). CB = Carbon, Beta (2nd). CG, OG = Car-
bon/Oxygen, Gamma (3rd). CD = Carbon, Delta (4th). CE, NE, OE = Carbon/Nitrogen/Oxygen,
Epsilon (5th). NZ = Nitrogen, Zeta (6th). NH = Nitrogen, Eta (7th)
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The biggest one has three protein atoms and four ligand atoms. The others have one
(hydrogen bond) and two (hydrophobic) interactions.
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Figure 4.12: Number of patterns found by gSpan and their size in number of edges, for
different support values in the CDK2 dataset.
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Figure 4.13: Distribution of gSpan patterns in CALI components of the CDK2 graph.
These pattern-graphs were searched in CALI components applying an exact matching
subgraph algorithm.
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Figure 4.14: gSpan patterns found in CALI components of the CDK2 graph applying
exact matching graph isomorphism. There are four gSpan patterns, highlighting in
blue(CD LYS 88), magenta (CE LYS 129) and two in purple (CB LYS 89 and CE LYS
89).
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Figure 4.15: Number of patterns found by gSpan and their size in number of edges, for
different support values in the Ricin dataset.
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Figure 4.16: Distribution of gSpan patterns in CALI components of the Ricin graph.
These pattern-graphs were searched in CALI components applying an exact matching
subgraph algorithm

4.4 CALI Comparison with Experimental Results

Analysis of patterns and crucial interactions in PPI and PLI are usually done by
checking manually the results of laboratory experiments (assays), with the support
of visualization software tools. This requires a huge and deep biochemical knowledge
about the protein complexes being analyzed and the tools used. However, as we are
proposing a PLI graph model, which does require neither laboratory experiments nor
deep biochemical knowledge for its generation, we compare CALI results for the CDK2
dataset with the work of Schonbrunn et al., 2013 and CALI results for the Ricin dataset
with the work of Ho et al., 2009.

4.4.1 CDK2

Schonbrunn et al. [2013] present figures highlighting interacting residues and we present
these residues in Table 4.2. We notice that residues from the hinge region (GLU81,
PHE82 and LEU83) are consistently interacting according to CALI and appear in
Figure 4.18. Moreover, our model was able to spot some residues that frequently
interact with ligands through hydrophobic interactions: ILE10, LYS33, ALA31 and
LEU134.

Research done by Kuhn et al. [2011] of a 3-aminoindazole compound with CDK2
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Figure 4.17: gSpan patterns found in CALI components of the ricin graph applying
exact matching graph isomorphism. There are three gSpan patterns, with the protein
atoms highlighting in blue (one hydrogen bond interaction), magenta (a planar graph
with 4 hydrogen bond interactions and 2 aromatic stacking interactions) and purple
(two hydrophobic interactions).

(PDB id 2R64), which is not in our CDK2 dataset, shows high scores for correlated
hydrogen bond interactions. They identify three nitrogen hydrogen bond donors and
acceptors that interact with the axis backbone (GLU81 - LEU83). Using CALI, these
interactions are easily detected, without using score functions, just watching the two
components formed in our graph by GLU81 e LEU83, see Figure 4.18. The residue
GLN85 from the front specificity pocket does not appear in the CALI graphs because it
interacts with a water molecule (that are not considered in the calculation of contacts),
which binds to inhibitor. However, the residue ASP145 from the binding packet appears
in the CALI graphs because it interacts with a water molecule and the inhibitor.

4.4.2 Ricin

The work of Ho et al. [2009] call our attention to 2 conserved Tyrosines (TYR80
and TYR123) establishing π-stacking (aromatic interactions); ARG180 at one end of
the π stacking providing cationic polarization and GLU177 serving to activate H2O
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LEU83:N

LEU83:O

LYS33:NZ

ASP86:N

PHE82:CZ

PHE82:CE2
ILE10:CG2

ASP86:OD2

LYS89:NZ

GLU81:O

LYS33:CE

LEU134:CD1

ALA31:CB

Figure 4.18: Residues from the hinge region of CDK2. In this figure, we highlight two
important results: (i) CALI was able to spot residues from the hinge region (GLU81,
PHE82 and LEU83) according to [Schonbrunn et al., 2013]. Moreover, our model was
able to spot some residues that frequently interact with ligands through hydrophobic
interactions: ILE10, LYS33, ALA31 and LEU134. (ii) In a research done by [Kuhn
et al., 2011] of a 3-aminoindazole compound with CDK2 (PDB id 2R64), which is
not in our CDK2 dataset, they identified three nitrogen hydrogen bond donors and
acceptors that interact with the axis backbone (GLU81 - LEU83). Using CALI, these
interactions are easily detected just watching the two components formed in our graph
by GLU81 e LEU83. These patterns were obtained by CALI G" model.

nucleophiles. These residues are shown in Figure 4.19.

Authors present a two-dimensional map of the cyclic transition state analogue
inhibitor bound to the active site of RTA. They highlight hydrogen bonds between the
protein and the ligand, π-stackings and draw water molecules as well. The residues
involved in such interactions are presented in Table 4.3, with each of their interacting
atoms and some of their properties according to our model (degree and closeness).

CALI information on Table 4.3 was obtained by an empirical choice of filters in
CALI, using the sliders of the visual interface that, by eliminating the nodes with few
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Table 4.2: Binding site residues of CDK2 interacting with the 2 most potent sulfon-
amide analogue inhibitors.

Residue Atom Degree Closeness CALI FSM
ASP145 CB 2 0.15 • ×

CG 6 0.20 • ×
OD1 3 0.50 • ×

LYS33 CB 1 0.15 • ×
CD 3 0.20 • ×
CE 11 0.25 X ×
CG 3 0.20 • ×
NZ 14 1.00 X ×

ASP86 N 16 1.00 X •
CB 2 0.10 • ×
OD1 3 0.35 • ×
OD2 19 0.50 X ×

LYS89 CB 1 1 • ×
CE 1 1 • ×
NZ 11 0.45 X ×

GLN85 - - - × ×
HIS84 O 4 0.3 • ×
LEU83 N 42 0.45 X X

O 78 0.6 X X
PHE82 CE2 10 0.15 X ×

CZ 10 0.15 X ×
GLU81 O 61 1 X X
PHE80 CB 6 0.15 • ×

CG 4 0.15 • ×
CD2 3 0.15 • ×
CE2 3 0.20 • ×
CZ 2 0.15 • ×

Residues in bold are part of the hinge region. The column CALI is filled as follows: X
refers to nodes considered by us as frequent because their degrees are above the lower
10% (above 8.70); • is used when the residue is present in the model but is not a hub
(degree is bellow the 10%) and × for residues not found in our model. The column
FSM shows which residues were recovered in frequent patterns from FSM strategy
as follows: X is used for residues found interacting in patterns; • is used for residues
found as an isolated pattern (one node graph) and × for residues not found among
patterns.

connections (under 10% of the highest degree), keep the most connected and interesting
nodes or, in other words, we clean up the network of the non-conserved and weakly
connected atoms.
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Table 4.3 shows that from the 12 mentioned residues, 2 (GLU208 and ARG134)
did not directly interact with the ligand according to Ho et al. [2009]. From the 10
interacting residues, 6 were considered frequent and highly connected by our approach,
which configures a conserved pattern of interaction. Note that TYR80 and TYR123
have highly connected atoms with considerable degrees and ARG180 as well is re-
markably connected. On the other hand, GLU177 show up only interacting with two
inhibitors, which are also interacting with ARG180, forming just two edges in the CALI
graphs. Despite GLU177 is a catalytic site residue, it is not directly connected with
the ligand (it is connected with a water molecule), which we did not consider in our
computation.

Figure 4.19: Important residues in the interaction between Ricin A chain and 28S
rRNA. In [Ho et al., 2009], authors co-crystalize RTA with a transition state analogue
inhibitor that mimics sarcin-ricin recognition loop of the 28S rRNA. They call our
attention to 2 conserved TYR residues (TYR80 and TYR123) establishing π-stacking
(aromatic interactions); ARG180 at one end of the π stacking providing cationic po-
larization and GLU177 serving to activate H2O nucleophiles. CALI was able to spot
the mentioned residues. These patterns were obtained by CALI G" model.
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Table 4.3: Active site residues of Ricin RTA interacting with a cyclic transition state
analogue inhibitor.

Residue Atom Degree Closeness CALI FSM
GLY121 O 26 0.25 X X
ARG180 NH1 16 0.25 X •

NH2 13 0.25 X •
VAL81 N 12 0.20 X •

O 19 0.20 X •
ASP96 OD1 3 0.50 X

OD2 4 0.40 X •
ASP100 OD2 1 0.30 • •
ASP75 OD2 2 0.30 • •
ASN78 ND2 3 1.00 • X
TYR80 CD1 12 0.30 X •

CD2 9 0.25 X X
CE1 27 0.30 X •
CE2 20 0.30 X X
CG 9 0.20 X •
CZ 18 0.30 X •

TYR123 N 11 1.00 X •
CD2 19 0.60 X •
CE2 20 0.70 X X
CG 8 0.45 X •

GLU208* - - - × -
GLU177 OE2 2 0.20 • ×
ARG134* - - - × -

According to Ho et al., 2009, residues marked with an * are not directly interacting
with the inhibitor. The column CALI is filled as follows: X refers to nodes considered
by us as frequent because their degrees are above the lower 10% (above 3.17); • is used
when the residue is present in the model but is not a hub (degree is bellow the 10%) and
× for residues not found in our model. The column FSM shows which residues were
recovered in frequent patterns from FSM strategy as follows: X is used for residues
found interacting in patterns; • is used for residues found as an isolated pattern (one
node graph) and × for residues not found among patterns.





Chapter 5

Conclusions and Future Works

In this work we proposed CALI, a complex network based strategy to model protein-
ligand interactions and reveal frequent relevant biological patterns among them. Our
proposal intended to increase the comprehension of key factors in molecular recognition,
which is an essential step towards the prediction of protein-ligand complexes.

The PLI graphs modeled using CALI represent protein and ligand atoms as nodes
labeled according to their physicochemical properties and the interactions between pro-
tein and ligand atoms are represented as edges. Through a sequence alignment is de-
rived a structure superposition and protein nodes are merged. Each new merged node
keeps all the interactions established with several ligands by original protein atoms.
Ligand atoms can also be merged according to their atom type, protein atoms with
whom they interact and the type of established interactions. This novel modeling,
associated to complex network metrics and interactive visualization techniques, allows
to highlight those residues that frequently interact with ligands in the whole dataset,
revealing patterns of interactions. Larger components in the graphs (G′ and G′′) gen-
erated by CALI are equivalent of key regions of the binding site.

We compared patterns obtained with CALI to some proven relevant protein-
ligand interactions from experimental studies for Ricin and CDK2 dataset and our
strategy was able to highlight the 90% of the CDK2 binding site residues and the
100% 1 of the Ricin RTA active site residues. We compared CALI with a previous
FSM based strategy and CALI found more patterns experimentally determined in an
easier and intuitive manner. We also made a comparison with gSpan and we find that
CALI discover the same patterns but it is able to show their localization in the protein
complex, conserving their biochemical context and without fragmenting them in many

1Here are not included two residues (GLU208 and ARG134) which do not interact with the
inhibitor.
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small repetitive patterns. On the other hand, gSpan needs several tests with different
support values and is only able to find a considerable amount of patterns when the
support value is bellow than 10%.

It is important to point out that CALI is not computationally expensive, its
execution time depends only of the PLI graph size, avoiding the expensive computation
of FSM and the subgraph isomorphism algorithm to map a frequent subgraph into the
input graph. Moreover, our strategy provides a general view of the input interaction
dataset (several protein complexes), showing the most common PLI from a global
perspective, while previous strategies provide a result segmented in protein complexes
or groups of them, which makes it difficult to understand what is globally relevant.
The prototype web application is available at: www.lbs.dcc.ufmg.br/projetos/cali/,
with the datasets of CDK2 and Ricin.

There are several future works for CALI. The first one is to do more experiments
for larger PLI datasets. One possibility could be the PDBbind database, which has
1300 diverse protein-ligand complexes and was used in the paper of Ballester et al.
[2014]. Also, it would be interesting to collect experimental data to create protein
family datasets for a more accurate analysis as for the CDKs. The database KLIFS
[Kooistra et al., 2016] of structural kinase-ligand interactions could improve the process
of finding patterns for the kinase protein family.

The second one, includes using others biological databases together with CALI,
which could allow us to be more conclusive about the network centrality metrics (i.e.
betweenness). Some promising databases for this purpose are the catalytic site atlas
(CSA) and Platinum [Pires et al., 2015], a structural database of the effects of mutations
in protein-ligand complexes. We also want to improve the web application allowing
users to select their own dataset from the PDB.

The third one, is improve the CALI model including water molecules, which can
interact with the protein complex and play a crucial role in the ligand binding. This
will need to be done when the atomic contacts are calculated. However, this fact
need to be studied carefully, because water molecules are not always interacting with
protein-ligand complexes and include many of them can be computationally expensive.
In the two datasets used, CALI was not able to detect interactions involving water
molecules because there were not considered in the atomic contact calculation.

http://www.lbs.dcc.ufmg.br/projetos/cali/
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Appendix A

Additional Tables

Table A.1: Abbreviation of amino acids

Amino Acid Three letter code One letter code
Alanine ALA A
Arginine ARG R
Asparagine ASN N
Aspartic Acid ASP D
Asparagine or aspartic acid ASX B
Cysteine CYS C
Glutamic Acid GLU E
Glycine GLY G
Histidine HIS H
Isoleucine ILE I
Leucine LEU L
Lysine LYS K
Methionine MET M
Phenylalanine PHE F
Proline PRO P
Serine SER S
Thereonine THR T
Tryptophan TRP W
Tyrosine TYR Y
Valine VAL V
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Table A.2: Ricin dataset.

PDB id and Chain Ligand name PDB id and Chain Ligand name
1BR5.A NEO 1BR6.A PT1
1IFS.A ADE 1IFU.A FMC
1IL3.A 7DG 1IL4.A 9DG
1IL5.A DDP 1IL9.A MOG
1J1M.A TRE 1OBT.A AMP
1RZO.A GAL 1RZO.B GAL
1RZO.C GAL 1RZO.D GAL
2P8N.A ADE 3EJ5.X EJ5
3HIO.A C2X 3PX8.X JP2
3PX9.X JP3 3RTI.A FMP
3RTI.B GAL 3RTJ.B GAL
4ESI.A 0RB 4HUO.X RS8
4HUP.X 19M 4HV3.A 19L
4HV7.X 19J 4MX1.A 1MX
4MX5.X 5MX
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Table A.3: CDK2 dataset.

PDB id and Chain Ligand name PDB id and Chain Ligand name
3QL8.A X01 3QQF.A X07
3QQG.A X06 3QQH.A X0A
3QQJ.A X11 3QQK.A X02
3QQL.A X03 3QRT.A X14
3QRU.A X19 3QTQ.A X35
3QTR.A X36 3QTS.A X46
3QTU.A X44 3QTW.A X3A
3QTX.A X43 3QTZ.A X42
3QU0.A X40 3QWJ.A X6A
3QWK.A X62 3QX2.A X63
3QX4.A X4B 3QXO.A X65
3QXP.A X64 3QZF.A X66
3QZG.A X67 3QZH.A X69
3QZI.A X72 3R1Q.A X75
3R1S.A X73 3R1Y.A X76
3R28.A XA0 3R6X.A X84
3R71.A X86 3R73.A X87
3R7E.A X88 3R7I.A X9I
3R7U.A X96 3R7V.A Z02
3R7Y.A Z04 3R83.A Z14
3R8L.A Z30 3R8M.A Z19
3R8P.A Z46 3R8U.A Z31
3R8V.A Z62 3R8Z.A Z63
3R9D.A X6B 3R9H.A Z67
3R9N.A Z68 3R9O.A Z71
3RAH.A O1Z 3RAI.A X85
3RAK.A 03Z 3RAL.A 04Z
3RJC.A 06Z 3RK5.A 07Z
3RK7.A 08Z 3RK9.A 09Z
3RKB.A 12Z 3RM6.A 18Z
3RM7.A 19Z 3RMF.A 20Z
3RNI.A 21Z 3ROY.A 22Z
3RPO.A 24Z 3RPR.A 25Z
3RPV.A 26Z 3RPY.A 27Z
3RZB.A 02Z 3S00.A Z60
3S0O.A 50Z 3S1H.A 56Z
3SQQ.A 99Z





Appendix B

Additional Images

Figure B.1: Example of an atom type filtering possibility. The user can filter out
the network by the types of atoms. When he/she checks or unchecks an option, the
corresponding atoms (nodes) lose contrast with the background and the others are
highlighted. The graph in this example is from Ricin dataset.
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Figure B.2: Example of an interaction type filtering possibility. The user can filter
out the network by the types of interactions. When he/she checks or unchecks an
option, the corresponding interactions (edges) lose contrast with the background and
the others are highlighted. The graph in this example is from Ricin dataset.
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Figure B.3: Centrality measures filters. There are a total of eight different complex
network centrality measures that can be used to filter out the network elements through
sliders. In this figure, we filter out nodes whose degrees are bellow 10% of the maximum
value. The graph is from Ricin dataset.
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Figure B.4: Details on demand. For every element of the graph, details can be obtained
on demand by passing the mouse over it. In this example, we obtain node details by
positioning the mouse over such node. The graph is from Ricin dataset.



Appendix C

Detecting Protein Interactions

One of the experimental techniques available to probe interactions between proteins is
co-immunoprecipitation. Immunoprecipitation is a technique that permits to extract a
single protein from a sample. This technique replicates in laboratory what the immune
system does. The immune system uses antibodies to neutralize harmful structures
(protein, complexes, etc.) to the body. In the immunoprecipitation an antibody is
attached to a solid surface (glass bead), then a solution containing the target protein
is passed over the surface. The protein target is attached to the surface by the action
of the antibody that binds together with it. Co-immunoprecipitation uses the same
method but the protein can attach to others, forming a protein complex. This technique
allows to recover the complex and identify every protein on it.

Unfortunately, co-immunoprecipitation is not practical for reconstruction of a
whole interaction network. This approach requires individual experiments (which takes
days) for every interaction to be identified. Appropriate antibody creation for the
experiments could take even longer (weeks or months) and demands a considerable
amount of money. In the 1990s and early 2000s the high-throughput methods for
quickly interaction identification were adopted. The best established of these methods
is the two-hybrid screen. In this method, a cell is persuaded to produce two proteins
of interest, each attached to one of the domains of the transcription factors (binding
and activation). Therefore, if the two proteins interact to form a complex, the two
domains of the transcription factor will be brought together. Two-hybrid experiments
takes a known protein (called bait) to probe if it interacts with a larger number of other
proteins (called prey), which ones are produced using plasmids. The advantages of this
method is that several proteins can be tested for interactions in a single experiment.
Also, it is cheaper and faster than co-immunoprecipitation.

The presence of the two domains of the transcription factor, in a two-hybrid screen
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experiment, can get in the way of the bait interacting with the prey protein and block
the formation of a protein complex. This means that some real protein interactions
are not going to be detected because of the experiment conditions. Additionally, the
results of the two-hybrid screen are inaccurate, because it generates false positives
(interactions that do not exist) and false negatives (not detect interactions that exist)
in high proportion. The affinity purification methods surged as an alternative, which
are able to offer accurate results. These methods use high-throughput detection but
with antibodies as in co-immunoprecipitation, producing protein complexes that can
be analyzed to identify the proteins interacting on them. The method tandem affinity
purification generates high-quality results which is the reason to be considered the most
reliable source to create protein-protein interaction (PPI) networks [Newman, 2010].



Appendix D

Model Characterization

When a network is being analyzed is common to characterize it in one of the three well-
known models: Random, Small-World or Scale-free. The global properties in Table 4.1
allow us to confirm that our PLI graph model is not small-world, because it has isolated
components causing that the diameter can not be calculated. This also implies that PLI
graphs have not local structure inside and their connectivity is limitated. Additionally,
the PLI graph do not present a random behavior, which require a low diameter and
vertices with similar degree values (following the Poisson distribution). Instead, the
PLI graphs have a few vertices with high degree and a huge number of vertices (protein
central nodes of hubs) with very low degree (specially ligand nodes). Analyzing the
network degree distribution (Section 2.1.1.4) is possible to observe if a network fits or
not in a model. When the histogram of a network degree distribution is plotted, is
possible to identify if it follows a power law, which allows us to say that it tends to
be or in fact, that it is a scale-free network. Figures D.1 and D.2 show the degree
distribution for the PLI networks. Both Figures have three lines plotted: the red one is
in order 1, the green one in order 2 and the cyan one in order 3. In Figure D.1 the cyan
line fits better for the CDK2 dataset, which means that it tends to be as a scale-free
network, with a value of 3 for the exponent (α). In the scatter plot (Figure D.2) the
degree distribution shows a curve, near the point (10,10), which barely allow us to say
that it follows a power law. One more time the cyan line is the nearest to the scatter
data for ricins. When logarithmic plots do not allow us to complete elucidate if the
network has a power law, it is suggested (by Newman, 2010) to calculate the cumulative
distribution function of the network. Figures D.3 and D.4, show this function for both
datasets, but neither of them follow what is expected (a straight line) for a scale-free
network. We can conclude that both PLI networks have a partially behavior of a scale-
free network, but they do not follow a power law completely, because of their small
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size (number of nodes and edges) and their sparsely. As PLI networks are evolving and
growing (discovering new inhibitors ligands and new protein structures), is possible to
say that in the future they will follow these tendency and they could follow a power
law.
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Figure D.1: Degree distribution (in logarithmic scale) for the CDK2 PLI network. In
blue are represented the node degrees for this graph. Three lines are plotted represented
three different functions. The green one is a straight line, α = 1. The red one is
quadratic, α = 2. The cyan one is cubic, α = 3. This last one line is the nearest to the
degree nodes.
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Figure D.2: Degree distribution (in logarithmic scale) for the Ricin PLI network. In
blue are represented the node degrees for this graph. Three lines are plotted represented
three different functions. The green one is a straight line, α = 1. The red one is
quadratic, α = 2. The cyan one is cubic, α = 3. This last one line is the nearest to the
degree nodes, nevertheless the top degree distribution is far from all lines.
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Figure D.3: Cumulative degree distribution function (in logarithmic scale) for the PLI
network from the CDK2 dataset.
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Figure D.4: Cumulative degree distribution function (in logarithmic scale) for the PLI
network from the Ricin dataset.


	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Biological Background
	1.2.1 Protein
	1.2.1.1 Protein Structural Organization
	1.2.1.2 Protein Complex
	1.2.1.3 Ligand
	1.2.1.4 Interactions
	1.2.1.5 Protein-Protein Interactions
	1.2.1.6 Protein-Ligand Interactions
	1.2.1.7 Sequence Alignment
	1.2.1.8 Three-Dimensional Structure
	1.2.1.9 Contacts

	1.2.2 Mining Chemical Compounds

	1.3 Related Work
	1.3.1 Biochemistry
	1.3.2 Network Science
	1.3.3 Graph Mining
	1.3.4 Data Visualization

	1.4 Justification
	1.5 Objectives
	1.5.1 General Objective
	1.5.2 Specific Objectives

	1.6 Contributions
	1.7 Organization of the Document

	2 Complex Networks
	2.1 Network Properties
	2.1.1 Global Properties
	2.1.1.1 Distance
	2.1.1.2 Diameter
	2.1.1.3 Average Path Length
	2.1.1.4 The Degree Distribution
	2.1.1.5 Power Laws
	2.1.1.6 Clustering Coefficient

	2.1.2 Centrality Metrics
	2.1.2.1 Degree
	2.1.2.2 Node Betweenness
	2.1.2.3 Edge Betweenness
	2.1.2.4 Closeness
	2.1.2.5 Eccentricity
	2.1.2.6 Communicability


	2.2 Bipartite Networks
	2.3 Biological Networks
	2.3.1 Protein-Protein Interaction Networks
	2.3.2 Protein-Ligand Interaction Networks


	3 Methodology
	3.1 The Strategy: a General View
	3.2 Datasets
	3.2.1 CDK2
	3.2.2 Ricin

	3.3 Pre-processing Datasets
	3.4 PLI Models: G' and G''
	3.4.1 Graph Model for One Protein-Ligand Complex
	3.4.2 Graph Model Formalization
	3.4.3 Model Generator Algorithm
	3.4.4 Relevant Biological Patterns


	4 Results
	4.1 PLI Visualization
	4.1.1 Visualization Tool for PLI Graphs
	4.1.2 The Visual Strategy

	4.2 PLI Network Analysis
	4.3 CALI Comparison with gSpan
	4.3.1 gSpan Pattern Generation
	4.3.2 Mapping gSpan Graph-Patterns
	4.3.3 CALI and gSpan Pattern Comparison

	4.4 CALI Comparison with Experimental Results
	4.4.1 CDK2
	4.4.2 Ricin


	5 Conclusions and Future Works
	Bibliography
	A Additional Tables
	B Additional Images
	C Detecting Protein Interactions
	D Model Characterization

